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1 INTRODUCTION

A stochastic (or random) process satisfies the Markov property if the probability density function
of the future states of the process depends only on the present state, and not on any past states.
An example of this would be flipping a coin (say P(head)=P(tail)=0.5). The previous flips do
not affect the current flip; if you had just flipped 100 heads in a row, you would still have a
0.50 chance to flip another head. A continuous-time Markov process is a stochastic process that
satisfies this Markov property.

Markov processes appear in a variety of different applications. They can be used to model
population dynamics in biology, genetics, carcinogenesis, AIDS epidemiology, HIV pathogenesis,
and other biomedical systems. They can be used to model precipitation maps, shuffling methods
(quickest way to shuffle a deck of cards), and also financial networks. These are only some of
its uses. Markov processes are also commonly used in physics, especially statistical mechanics
and quantum mechanics, as they are probabilistic in nature.

Markov Chain Monte Carlo (MCMC) methods are very common in physics (and indeed in
a wide variety of disciplines), and were first used in statistical physics as a way to model ex-
tremely large systems while minimizing the amount of computations necessary. MCMC methods
are a class of algorithms that provide a means of sampling probability distributions based on a
constructed Markov chain. The premise of the idea is not too complex; if you want to sample
randomly from a given probability distribution, then construct a Markov chain with that distri-
bution and model this chain via computer simulation. The precision will get better as you take
more steps in your modeled Markov chain. This simulation will allow for modeling microscopic
systems of immense amounts of atoms with relative ease.

Another common model used in statistical mechanics and quantum mechanics is the Ising
model, which is named after the physicist Ernest Ising. The Ising model is a d-dimensional
lattice where each vertex is assigned a value of ¢ = +1. These values are termed spins, and
although Ising models were initially intended to crudely represent ferromagnetism, it can also
be used to model other systems including simple liquids, lattice gases, magnetic dipoles, and
many other systems which can be represented via graphs like this.

This work answers some of the questions originating from the interdisciplinary research



(physics/chemistry /biology /mathematics) done by E.Nir et al (see [4]). The occupation times
for birth-and-death chains were studied by Karlin and McGregor with orthogonal polynomials
(see [1], [2] and [3]).

2 OVERVIEW

Markov processes have been studied extensively for scenarios when T is taken to co. The
motivation behind the research covered in this paper stems from the desire to be able to model
the behavior of a given Markov process even when T is small. The goal is to solve for fa o(t,x),
the continuous probability distribution function governing a Markov process. This function
allows someone to immediately determine the probability that a process will spend a given time
= at a specific state, state 0. The A in fa (¢, x) represents state 0, which is the state of interest
to the observer. Q represents the generator matriz for the given Markov process(See Definitions
and Examples). Since the only identifying features of a Markov process is the number of possible
states and the rates of transfer between those states, the generator matriz uniquely determines
any given Markov process. T is the interval of time that the process is allowed to run.

We begin by constructing integral equations that govern the Markov process from scratch.
Take a look at the following equation, which is one of the two equations that represent a 2-state

Markov process with a rate of transfer from state 0 to state 1 equal to A

¢
fag(t,x) = e_)‘tét(a:) + / fBolt—y,z— y)Ae_Aydy
0

One thing to note before going further is that the rates of transfer refer to an exponential random
variable(See Definitions and Examples), which is where the e * and Ae™¥ come from.

As will be mentioned later in the paper, fa g(t,x) represents the density function for the
time spent in state 0 when the process started in state 0. fp(t,x) represents the density
function again for the time spent in state 0, but for the process that started in state 1. This
construction not only gives us the above equation, but it allows for an intuitive understanding
of it as well. It seems fairly obvious to state, but either the process will switch from state 0 to
state 1 at least once or it won’t switch at all.

By definition of the exponential random wvariable, the probability of not leaving state 0 in



time ¢ (i.e. not switching from state 0 to state 1) is e"**. The delta mass, &;(x), acts like a point-
mass that weights this probability precisely at t. Thus, e **d;(x) is the term that represents no
switch from state 0 to state 1.

If the process switches from state 0 to state 1 at some time y < t, then it can now be
considered a new process that started in state 1, with a new interval of interest ¢ — y (with
respected occupation time being x — y). We must account for all possible values of y, which is
where the integral comes in (since this is a continuous process). So fg fBot—y,z—y) e Mdy
is the term that represents at least one switch occurring.

This constructed integral equations allows for the solution of the density function and, as

such, is the starting point for each section in this paper.

3 METHODS

As mentioned earlier, we begin solving for the occupation times by writing an integral equation
governing the Markov process. Ultimately, we write the integral equation based on conditional
probabilities. Either the process will leave its initial state or it will not leave its initial state. We
weight the function either at time 0 or at time T (depending on which equation we are looking
at) with the probability that no switch occurs, and then integrate over the rest of the interval
with the probability that a switch does occur.

Given these integral equations containing the distribution function for a Markov process
in terms of T and X, our first step will be to take the Fourier transform with respect to X.
After some mathematical manipulation, we will then be able to take the Laplace transform with
respect to T. It is at this point that we will be able to solve for LfA,Q (s1,82), where LfA,Q (s1,52)
represents the Laplace transform of the Fourier transform of fa g(t, ).

We then take the inverse Fourier transform, and with some manipulation we will be able to
evaluate the inverse Laplace transform and get a form for fa q(t,x). We will see that fa ¢(t,z)
will involve Bessel functions, which are solutions to Bessel’s Equation.

For convenience, I have grouped the important equations into the results section (Section 3)

and included all intermediate calculations in the calculations section (Section 4) that follows it.



3.1 Definitions and Examples

Definition 3.1. A continuous-time Markov process is a stochastic process that satisfies the
Markov property. The Markov property states that at any time t > 0, the probability distribution

of a given Markov process after time t depends only on the state of the process at time t.

Definition 3.2. A Fourier transform is a mathematical operator which is the generalization of
the complex Fourier series. For the purposes of this paper, we don’t need to know about this
series, it is sufficient to merely know its mechanics. Given a function f(t,z), we denote the

Fourier transform of f(t,z) w.r.t. = by f(t, s9) satisfying the following equations

A~

flt,s2) = 2 ft,x)e> da

fltom) =g [ f(t, s2)e2%ds,
Definition 3.3. A Laplace transform is a mathematical operator that is useful for analyzing
linear time-invariant systems. We denote the Laplace transform of f(t,x) w.r.t. t by Ls(s1,x)

satisfying the following equation

Lisna) = [ f(t.ope

Definition 3.4. Cramer’s rule is a theorem in linear algebra that allows for the solution of a
system of linear equations in terms of determinants. Given an n x n system of equations denoted

by Az = b, where

ail ai19 o Qln I bl

a1 a2 ... QA2n i) bg
A= LT = ,b=

anl an2 ... Qpn Tn, b,

Cramer’s rule gives us the following relation

= detAi
' o det A




where A; is the matriz formed by replacing the it" column of A with the column vector of b.

Definition 3.5. If we have an n-state Markov process with rates of transfer between state i and

state j written as \; j, then the generator matrix for this Markov process, denoted Q, is defined

as follows
— Z?;él )‘Lj )\1’2 )\1771
)\271 — 2?7&2 >\2,j )\2,n
Q=
)\n’l ATL,Q ces - Z;l?én An’]

Definition 3.6. An exponential random variable with parameter X is a probability density

function that has the following form
f(z) =X x>0

Note that f(x)=0 everywhere else and that A > 0.

4 RESULTS

4.1 Two-state Markov process with rates A\ =

In this section, we will look at a Markov process with state space {0,1}. We will define the
process to start in state 0 and to move to state 1 with rate A, and to move from state 1 to state
0 also with rate .

Again, we will use ¢ to specify the time of the interval we are looking at and x to specify
the amount of time spent in state 0. We denote the distribution function for the time spent in
state 0 when the process started in state 0 as fa,(t,2) and the distribution function for the
time spent in state O when the process started in state 1 as fp (¢, ). However, since the rates
of transition are equal, we will simplify by just writing in terms of one state and call it f(t,x).

Beginning with the following integral equation



flt,z) = e_’\tét(x) + /Ot flt—y,t— x)Ae_Aydy

We obtain the following expression for L f(sl, s92), the Laplace transform of the Fourier trans-

form of f(¢,x)

2\ + s1

LA =
(51:52) = S N — (1 Vo

f

By first computing the inverse Fourier transform via the method of residues, then computing

the inverse Laplace transform, the following value for f(¢,x) is obtained

f(t,x) = e M6, (t) + e MIg(2A\/2(t — x)) + A\/E\/tl_ﬁe*)‘th@)\\/m(t —x))

4.2 Two-state Markov process with rates \ # p

In this section, we will again look at a Markov process with state space {0,1}. However, this
time, A # u.

The method used to solve this case will be extremely similar to the method used to solve
the case of the two-state process with equal rates except for this time we will not begin with
the initial substitution of fpx .(t,z) = faux(t,t — ).

Starting with the following integral equations

fagtz) = e M) + [ feolt—y.z—y)Ae Mdy

foo(tz) = eHo(x) + [y faqlt—y,w)ue dy
We obtain the value for Ls o (s1,52)

(s1+ A+ p)i

81(S1+)\+u))
S1+p

L; (81, 82) =
Jaq (s14+ p)(sg+1

Computing the inverse Fourier transform again via residues, then solving the inverse Laplace

transform gives us

fagt,z) =e Mo (x) + e e #t=2) [0(2 /Apx(t — x)) + %11(2 Mzt — x))e Ao Hit—2)




4.3 Three-state Markov process with equal rates

Now we move onto the three-state Markov process with rates of transfer equal to A for all paths.

Here we begin with the following set of integral equations

faolt,z) = e 2Me(x) + fot feolt—y,z—y)AeMdy +
Iy fe.o(t —y, o —y)re dy
folt,r) = e Miy(z) + fot feolt—y,x)Ae Mdy — +
I3 fao(t —y, x)re Ny
feq(t:a) = eMoo(@) + [y faqlt—y.2)re Ndy  +
Iy a0t —y,2)AeMdy

The Laplace transform of the Fourier transform of f(t,x) is then found to be

(Sl + 2)\)(82 + i(sl + )\))Z

s1[s2 +i(s1 + 2\)][s2 + 2=

LfA,Q (81, 82) =

Computing the inverse Fourier transform via residues and then finding a form for the inverse

Laplace transform leads to

faot,z) = e 25 () + 20e 1o (21/2)\22(t — z))

4.4 Three-state Markov process with general rates

We now attempt to utilize the same method as earlier for a three-state Markov process with
state space {0,1}.

The method used to solve this case will be similar to the method used in the three-state
case with equal rates with the obvious difference being an increase in complexity. This increased
complexity requires further manipulation, but the structure of the method remains intact. Simi-
lar to the previous cases, we will use L Fao (s1,s2) to denote the Laplace transform of the Fourier
transform of f4 o(t, x).

We will now switch notations slightly; we will denote by A(; ;) the rate of transfer from state

i to state j.



Beginning with the following set of equations

faolt,z) = e Caatiasts,(z)

f[;t vaQ(t - YT — y))\(1,2)6_>\(1v2)ydy

fOt fC:Q (t—y,x— y))\(1’3)ei/\(1a3)ydy

fB,Q (t, 32') = 6_(>‘(273)+>‘(2,1))t(50 (l’)

+
+
T (
+ Jy faelt
feo(t,z) = e*(x\(3,1>+/\(3,2))t50(x) n (
™ (

We eventually arrive at the following expressions for L fro (s1,82), L in

respectively

LfA,Q (517 82)(5% + ()\(1,2) + >\(173) - 2i32)81 + (A(172) — iSQ)()‘(l,3) _ ng))

LfB,Q (1, 52))‘(1,2)0\(173) + 51 —i892)

<317 32>)‘(1,3)()\(1,2) + 81 — Z'SQ)

Aa,2A1,3)
A(1,2)TA@1,3) 51182

Lioo

Ly o1, s2)(sT + (N\2,3) + A21))51 + A23)A2.1))

Li o (51:82)A@3) (A2 + 51)

LfA,Q (s1, 82))‘(271) ()‘(2,3) + s1)

_esreny
A@2,3)tA@2,1)+s1

TENCE s2)(s1 + (A1) +A3.2)51 + A1.221.,3)

LfA,Q(Sh 52)A3,1)(A@3.2) + 51)

Lz o (51:52) A3 (A +51)

_Aenre2)
A3 TA@,2) 81

The solution for fa q(t,x) is currently being worked on.

f(;:fAth y7x)\ s
t
Jo fBQt —y, )\,

fJ feqt —y,x) Az e @0vdy
6_)\<2s1)ydy
ei)\(371)ydy

e B2Ydy

o (s1,52), and Lfc,Q (s1,52)

_|_
+
+ (1- ()‘(1,2) + >\(1,3)))
_|_
_|_
+ (1= ey +2ezn))
+
+
+ (1 - ()\(3,1) + )\(372)))



5 CALCULATIONS

5.1 Two-state Markov process with rates A =

We can write the following integral equation to link the two functions (See Preview of Results)

t
fag(t,z) = e_)‘tcSt(:L’) + /0 fBot—y,x— y))\e_/\ydy (1)

But now we will set A = u, and the equation becomes

f(t,2) = e~ M6,(z) + /0 F(t— gt — x)he Ndy (2)

We will now use the following substitutions into the above equation

Yp=t-y
dip = —dy
These substitutions change (2) into
t
£(t.0) = )+ 20 [t - a)e NV Q
0

Now we can take the Fourier transform of (3) with respect to x, and the equation becomes

A~

o} t 00
f(t,s2) = /_ Se(w)e Met 20 dy 4 )\e_)‘t/o /_ f(h,t — z)e et dady (4)

The next substitution we can make is

X=t—ux
dx = —dx
which transforms (4) into
t oo
Ftos0) = e a0 [ g -Oandy (5)

The next substitution we’ll make will merely be one of convenience

a=\—189



10

t
Flt52) = e 1 A /0 F(ap, —s2)e My (6)

Multiplying both sides by e, we obtain the next expression

t
éﬂ%ﬁﬂ:1+AAowﬂﬁ&%w (7)

Differentiating both sides of (7) with respect to ¢ yields

S (1 52) = A (1, ~52)

aeatf(t, s2) + e“tft(t, S9) = )\e)‘tf(t, —$9)

a

Multiplying both sides by e~% and plugging in for a leads to

(A —iso) f(t, s2) + filt, s2) = Ae™2L f(t, —s5) (8)

Now taking the Laplace transform of both sides with respect to ¢ leads to

A~

()\ — iSQ)Lf(Sl, 82) + SlLf(Sl, 82) = )\Lf(sl — 189, —82) + f((), 82) (9)

But looking back at (2) we can see that f(0,2) = do(x) = f(0,s2) = 1 which leads to the

following
A 1

L. N (st —ise. — ot
(81’82) A+ 81 — 1S9 f(SI 452, S2)+)\+81—i82

; (10)

However, by using (10) with the transformation s — s1 — is9 and sy — —s2, we can get an

expression for Lf(sl — is2,—52)

A 1
:7LA
A+ s f(81782)+)\+81

Lf(sl — iSQ, —82)

Plugging the above equation into (10), we get the expression seen below

)\2 2/\+ S1
L = L; 11
7152 = o T s B T e S i) e (11)
Solving (11) for LJ[-(Sl,SQ) leads to
2A+ s
Lf-(Sl,SQ) = ! (12)

81(81 + 2)\) — ’i(Sl + )\)82
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Now we will take the inverse Fourier transform of (12) with respect to so.

1 e (2)\ + 81) i
L(s1,2) = — _ e 2T ds 13
(s1,2) 21 J_oo s1(s1 4 2A) —i(s1 + A)s2 2 (13)
1 e’} 2)\ s —182X
= - / (2 + 81)Z§51(81+2A) dss (14)
T J -0 (51 +)\)(S2+ZW)
Now we can make some substitutions to make our life easier.
s1+ 2\ S1+ 2\
fry d = [ .
s ad f=smmm=sa

With these substitutions, (13) becomes

i 0 efiSQx
L = — d 15
(s1m) = o /—oo sat+if (15)

Now this is a complex integral with a simple pole at s = —i3. Since this integral is already
of the form % where k is the singularity, we can see that the integral we are after is just

2miRes(f(k)) = —2mie~®%. Which implies that
zf

L(s1,2) = ae™

Plugging back in for o and g gives us

s1+ 2)\6_5081(351112?)
s1+ A

L(sy,x) =

Which can be easily manipulated into the following

A et
L(si,z) = (1+ 81+)\)e o
Expanding this gives us
L(s1,2) = e~ CrHVeen s (,),if—“ﬁﬂxesﬁﬁ (16)
1

Now we notice the following Laplace transforms

& 1 e
/ h(2Vahe Mt = e

0

and
1

ﬁ(e% - 1)7

o 1 _pt B
/0 W11(2\/3)6 dt =
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where Iy and I; are modified Bessel functions,
> 1 z =1
_ 2\ 2k Lz 2k+1
?) Zk!(k—l)!(Q) ’ )=
k=0 k=0
They can be modified as follows
1 a &
e Pr_er = / Io(2v/a(t — x))e Ptdt
p x

and

I1(2 a(t —x))e Pldt.

epep—ep”“%f/

Let a = A2z and p = 51 + A. Plugging in, we get

er :/ To(2XM/xz(t — z))e Me *ttdt

1

P
e_(>\+51)$€sl+/\ — e_px
s1+ A

"=

A2z
and therefore the inverse Laplace transform of ﬁe‘o‘“l)xeﬂ“ is Ae MIg(2A\/z(t — z))
for 0<z <t

Similarly

LM z(t — z))e Me 1 dt

(81+>\) 51+>\ B p — e Az —slm_|_)\\/>/
\/7

which can be rewritten as

A2, oo oo 1
e~ (1H)Te5 13X = / 6, (t)e Me o 1tdt 4 )\\/5/ ——— L2\ x(t — x))e Me 1 ldt,
0 z Vt—2

Az
Thus, the inverse Laplace transform of e~ (1TN)Tes1#x g e_’\t<5x(t)+)\\/5\/t1_7€_)‘t11(2)\\/ z(t — x))
for 0 < x <t. Here we do not divide by zero when =t as the v/t — x cancels on top and the
bottom.

Adding the terms together, we obtain

f(t, ) = e Mo, (t) + e MIg(2A\/z(t — x)) + )\\/Ex/tl_fxe_ktll(Z)\\/:v(t —x)).

5.2 Two-state Markov process with rates \ # p

We can write the following set of integral equations:

faglt,z) = eMo(x) + [ frolt—y,a—y)Ae Wy
fBot,z) = e o(x) + fot fao(t —y,x)pe dy
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Plugging in ¥ = ¢ — y into the top equation, with no substitution in the bottom equation,

we obtain

faqltx) = e My(x) + f(f fBo(¥,x —t+ U)Ae-V)qp
frata) = @) + [y faq(¥ a)ue N4
Now taking the Fourier transform with respect to x and plugging in x = z — ¢t + VU for the

top equation only, we arrive at

fA,Q(t,52) = e (A—isa)t )\67()\*2'82)15‘[(;‘“fABVQ(\I/’Sz)e()\fiSQ)\I/d\Ij
fralts) = e+ pe ™ [3 faq(V, s2)erdy

Making the quick substitution a; = A — iso, then multiplying both sides by e®! and et

respectively, we arrive at

efaolt,ss) = 1 + AJ3 fro(¥,s)emVdl
euth,Q(t,SQ) = 1 + Hfng,Q(\I/,SQ)GH‘\Pd\I/

Now we will differentiate both sides with respect to t

ae™ faq(tss) + e faqlt,s2) = Ae®fpo(t,s2)
pett fpolt,ss)  + e fpo(t,ss) = pefaglt,s2)
Now multiply both sides by e~ and e~ respectively, then take the Laplace transform of

both sides with respect to t, which will give you

alLfA,Q(81782) + SlLf”A’Q(Sl,SQ) = )‘LfB’Q(ShSZ)"i‘fA,Q(O;Sz)
MLfB,Q(Sl’SQ) + SlLfB,Q(Sl’SQ) = MLfA‘Q(SbSZ)_'_fB,Q(O?SZ)

But fA,Q(07 s2) = fB,Q(O, s2) = 1 which leads to

Ljiglonsa)Ads—ise) = Abg, (s1,82) +1 (17)

Li Jsus2)(pts1) = phy, (s1,82) +1 (18)
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Substitution yields the following

)\+M+81
(A4 51 —is2)(p+ s1)

AL L.
(A + 81 —ise)(p+s1) fae
(51 + A+ p)i

(51+ ) (s + 21200

(s1,82) +

LfA,Q (81, 82) =

LfA,Q (81, 82) =

Now computing the inverse Fourier transform via the method of residues we obtain

L(si,z) = ae™®

s1+A+p

e and 8 = s1«

where oo =

(91+u)(91 +A)—pA

A
L(S].?‘/L‘) = (1 + 51-‘,-”) site
(s143) ¢ (514X g
_ —x(s1 s + —x(s1 s1+
= e 1TH + 1+/1, es1tH

Again we take notice of the Laplace transforms of the modified Bessel functions Iy(z) and
I (2).
However, using a similar manipulation to that used in the above case where A\ = i, we notice
the following important results:
67(51+)‘)x a

[o@)
Io(2+/a(t — z))e e M=) g=sitgqy — = o5
| nevati=a) T

Apz
Thus, the inverse Laplace transform of ﬁe*m(sﬁ)‘)esﬁ“ is Ne M HE=2) (23 / Az (t — x))

for0 <z <t.

Similar manipulations will show that

e L2\ Apz(t —x) o\ i) — > _
x(31+/\ Sli# o /)\ / l u Az —p(t :13)6 Sltdt—i—/ e )\t5 e Sltdt
- Vi—x e 0 )

Apx
Thus, the inverse Laplace transform of e_m(“(”l“‘)eSlLJrH is %]1(2\/)\/&@ — a;))e_’\xe_“(t_x)—k
e M6 (x)
Which finally leads to

faru(t,z) = e Mo (z + Ae e H(t=2) (2 Aux(t —x)) + %Il 2/ Azt — x))e
s t—x
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5.3 Three-state Markov process with equal rates

For the three-state Markov process with equal rates, we can write the following set of integral

equations:

fao(t,x) = efzktét(x) + fg fBolt—y,z— y))\e”‘ydy
+ Jo fealt —y,x —y)re Wy

foa(te) = e o(@) + [y feqlt —y.z)re Ny
+ fg fao(t—uv, r)Ae Mdy

feo(t,x) = 6_2’\t50(x) + fng,Q(t—y,fL’))\e_Aydy
+ f(f fB.o(t —y, ) e Mdy

Plugging in ¥ = ¢ — y into the top equation we obtain

faglt,e) = e6(z) + [l fpo(V,a—t+W)re M0y
+ f(;t feo(¥,x —t+ \p))\efk(tfxp)d\p

folt,z) = e Mgy(x) + [y fo.o(®,z)Ae M= q 0
+ Jo fao(E@)Ae NN aw
feolt,x) = e Mi(z) + Iy fao(W,2)re XN qw
+ I3 fB.0(W, 2)Ae A=Y@

Now taking the Fourier transform with respect to x we arrive at

fag(t,sy) = e (A-isa)t 4 e fo FB.o(W,z —t 4+ W)\e ME=W) geisa? gy
+ f—oo fO fC,Q \I/ r—1t+ \I/))\ef)‘(t*\ll)d\:[/ei@xdx

folt,ss) = e 2N + e f(f fo.o(U, 2)Ae MW qeiserdy
+ % fy Fae(E ) Ae M DTy
foo(t,ss) = 2 4 I S Fao(W, 2)re MY qeisr g
+ I [ fBo(®, 2)Ae M) qWeis2 dy
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Plugging in x = =z — t + V¥ into the top equation only yields

fA,Q(t, 82) — e—(2)\—i82)t + f(]t f_oooo fB,Q(\ij X))\eiSQ(X-‘rt—\I/)e—)\(t—\P)dxd\p
+ o 7 foo (B, x)Aeis2 0t W) e =M =Y gy 4

froltiss) = e 4 [E fo (T, @) Aeme MY 4w
+ Sy 25, Fa(®, x)Aet22e A=Y dzd P
feo(t,s) = e 4 I3 22 fao(W, z)re22e W) dodw
+ I fro(W, z) et D) dp
Which simplifies to

f'A,Q(t, s2) = e~ (A—isa)t | \o—(A—isa)t fg fBQ(\If 52)6@ is2)¥
4 e (Ais2)t fot fCQ( 2>€ (A—is2)¥

feolt,z) = e 2M + e M fg foo(U, s2)erYdw

+ A [ faq(W, s2)er dw

feolt,z) = e 4 Ae M [ fa (W, s0)er AT

+ Ae ™M [Y fp o(T, 52)erYdW

(A—is2)t 2\t

Multiplying both sides of the top equation by e and the bottom two equations by e

yields the following

e()‘*iSQ)th,Q(t, s9) = e M 4 )\fg fB,Q(\I/,SQ)e()‘*iSQ)‘I’d\I/
+ M) foo (P, sp)e i)Y g
Mfpolt,ss) = e+ A[! foo(V,s0)eMdv
+ /\fo fA (v, 59)e M dW
Mfoolt,ss) = e 4+ N[ fao(P, s)eMVdw
+ )\fg fB.o(¥, s2)e Y dw
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Now differentiating with respect to t yields

(X —isg)eAi2)t )y o(t,59) + 6(’\_i52)t%fA,Q(t7$2) =

—e M + )\e(AfiSQ)thQ (t,s2) + )\6()‘71'82)15]?0,@ (t,s2)
AeM fp.o(t, s2) + M fpo(ts) =
—de N + )\e’\thQ(t, 82) + /\e/\thQ (t, 32)

AeM fo ot s2) + M foalt,s2)
—de M + )\e)‘th,Q(t, 52)

+ /\GMJ?BQG7 82)

Next we multiply both sides of the top equation by e~(*~52)t and the bottom two equations

by e—/\t

(A —is2)faq(t,s2) + &f
A B.o(t, s2) + %fB,Q(ta 52) = — e
Meolt, s2) + %fb,@(t, s9) = —e” M

A7Q(t,82) = e (2A—is2)t + )\fBQ(t,SQ) -+

+ )‘fC,Q(t752) +

+ )\fAyQ(t,SQ) +

Taking the Laplace transform w.r.t. t leads to the following expressions

()\ + 81 — iSQ)LfA,Q (81, SQ) — )\LfB,Q (81, 82)
_)\LfA,Q(Sl’S2) + ()\+51)LfB,Q(81’S2)
—AL;  (s1,$2) - AL (s1,82)

faQ IB,@

+

/\Lfc,Q (81, 82)

)\LfC,Q (81, 82)

(A+s1)b; (s1,52)

)\fC,Q(t $2)

Maolt, s2)

A B.o(t, s2)

S1+A—1s2

S1+2A—is2

s1+A
$1+2A

S1+A
$1+2A
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Using Cramer’s rule gives us the following expression for L ia Q(sl, S2)

det 581112/\/\ s1+HA —=A
381112/; —A s fA
S1+A—isy —A -\
det )\ SN —A
—A A s1+A
ST () 4 0)2 =A%) 4 2 (s1 + A)

L qls182) = (51 4+ X —is2)[(s1 + N2 — X2] — 2A[AZ + A(s1 + V)]

Which simplifies to

(81 + 2)\)(82 + i(sl + )\))Z

s1[s2 +i(s1 + 2N)][s2 + 2(81%)1(514\)]

LfA,Q (81, 82) =

(81 +2/\) (81 —/\)

S1

This has two poles at so = —i(s1 + A\) and so = —i

The inverse Fourier transform is then given by

Ly o(s1,2) ! /Oo (514 2X)(s2 +i(s1+ N))i

_g oo 81[52+Z‘(81+2A)][S2+iw]

S1

Again using the method of residues leads to

e—zsgdeQ

S (s14+2N)(s1—A . .
(314 20) (=1 +20) +i(s1 + N)i o igor 420 (51 4+ 20) (—e C1FREIZ0 gy 40

L (s1,2) = —1
fa,Q |: 51[_7;(51_,'_2)\)_;'_1'%)1(517)‘)} 81[

S1

Which simplifies to

2\ 7x<51+2>‘)(517>‘)
76 51
S1

LfA,Q (517 1’) = e_x(81+2/\) +

The first term, e (1423 can also be written as

67:1:(51+2/\) _ /OO 672/\t(5t<1_)6731tdt
0

_ 12N (s1 =) +i(s1 + 2))]

Which implies that the inverse Laplace transform of e #5120 ig  e=2Mg, (1),

—1is2T
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22 28120 (51 =)

The second term, —e 51 , can also be written as
2N . (s1+20(s1=N) 1 222 oo
—_— 51 = 20 N[ e T1e o1 ]:/ 2Xe M Io(24/2X22(t — x))e *1idt
S1 S1 T

Which implies that the inverse Laplace transform o

(€1+2>\)(S1—>\)

f 275 s 20 M (22022 (F — x)).

Thus, for the 3-state Markov process,

fag(t,z) = e 25, (z) + 20e 1o (21/2)\22(t — z))

5.4 Three-state Markov process with general rates

For the three-state Markov process with general rates, we can write the following set of integral

equations:

faq(t z)

fB,Q(ta .’B)

feo(t, o)

e—()\(l,2)+)\(1,3))t5t(m) f(f fB,Q(t —y,x— y))\(l’2)e—)\(172)ydy

fg fC:Q (t - y7 T — y)>\(173)6_A(1v3)ydy
f(f feolt—y,x )\(2 3)€ (273>ydy

e~ Qestren)ts(z) ( )

Jo Fao(t =y, ) Aaye ety
( )
( )

e_(A(3,1)+>\(3,2))t50(x) fOt fA,Q t—y,x )\ )‘<3’1)ydy

n
I
n
I
i
+ Jy fealt =y 2)Azaye re2vdy

Plugging in ¥ = ¢ — y into the top equation we obtain

fA,Q (t7 ‘T)

fB,Q (ta .’E)

fC,Q(ta ‘/E)

eCarPag @)+ [ fno(¥,z - t+ WAz 00V

e*()\(z,3)+)\(2,1))t50 (z)

e—(/\(3,1)+>\(3,2))t50 (l‘)

+ e foo(@r —t+ @)A(173)67A<1,3><t*%d\11
Iy feq

Iy fa

(U, 7))\ 23 ) gy
(¥, z)
f(f faQ(¥, :U))\ _/\(3’1>(t_‘1’)d\11
QW)

,2) A2 —A<271>(t—w)d\1/

+ o+ o+
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Now taking the Fourier transform with respect to x we arrive at

JEA,Q(t, 52) = e~ QatAas —is2)t + ffooo fg fB7Q(\I/,:C —t+ \Ij))\(l,Q)e_A(l’Q)(t_qj)d\I’ei52xd$

fB,Q(t, 32) = 6_(>‘(2,3)+>‘(2,1))t

fC,Q(t, s2) = e~ (A1) TAE2)t

+ f—oooo f(;5 fC,Q(\I/’ T —1+ \I/))\(Lg)e*)‘(ls)(t*‘l’)d\ljeisycdx

+ + + o+

—Oo ' foo(W, )\ 3 e~ 2.3 (=Y) P eis2® o

ffooo fOt fA,Q( s

)
ffooo fng,Q( 71'))\(3 e a0 (E=Y) P eis2® o
)

7% fot fB,(¥, )3

Plugging in x = =z — t + V¥ into the top equation only yields

faqlt,sa) = e Caatlap=isdt g (819 £ 0T, )\ gyet2 Ot Ve (=) gy g
+ o I fe(W, X)Aa g et e Aan 1 gy dp
fB,Q(t,SQ) = e~ QentAren)t + fg ffooo fC,Q(\I,7x))\(zs)eisgxe—)\(zﬁ)(t—\I/)dl,d\I,
+ Jo I Fa(@, ) pyere e (T dpaw
foolt,s)) = e Puntlealt 4 LI Fao(, 2)A e e o0 ey
+ o S fro(T vx))\(32 ¢i522 =M, (=) g g
Which simplifies to
faqtis) = eGuatiaamisdl g emGan =il (5 iy o (W, 55)eP02~2)¥
+ Apge Qo 1o o1, s)el0n Yy
fpo(t,z) = e Peaent 4 Aaaye 9" [ foo(P, s2)ereo Y dw
+ A, 1)6_>\(2’1)t ft fA oY, 2)@>\(2 BREA
foqlt,z) = e Pentrelt 4 A e 0 [ fa (W, sp)een ¥ d
+ Aape 62! 1 fp.o(0, s5)et@2Y Al

)\ A1) (=) g eis2t g

e~ 3.2 (=Y) I eis2® o
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Multiplying both sides by ePa =it et and erent respectively yields the following

e(/\(l,z)*isz)th,Q(t, sp) = eyt 4 A1.2) fot fB,Q(‘I’, 59)er12 752V g
+ )‘(1 3)60\(1’2)_>‘(1,3))1E fOt fC,Q(\I], 32)6()\(1,3)—7282)\qu/
6>\(2,3)th,@(@52) = e—>\(2,1)t + )\(273) fg fC,Q(‘I’,Sg)eA(Q»3>‘I’d\IJ
+  Agpelesren) Iy fao(, sp)eren¥a
Aovtfog(tss) = eMeat A Jo Fao(W, s2)erenYaw
+ AggelenTreal [1fp o (U, s)eeaTdy

Now differentiating with respect to t yields

A2y — isa)ePaa ™2t f) ot s5)  + eRan T2l £y o(t 59) = —A(g e M0+
)\(1,2)6(/\“’2)_i52)th,Q(t, 52) +
Jr

)\(13)60\(1,2)—21<>’2)YffC7Q(t7 $2) )\(1’3)()\(172) _ )\(173))6()‘(1,2>—)\(1,3>)t fg fC,Q(‘I’, 52)6(>\(1,3)—i82)‘11d\p

)\(2,3)6/\(2’3)th,@(¢7 52) + 8A(2’3)t%fB,Q(t7 52) = —)\(2,1)6_>‘(2’1)t+
A2.3e " foo(t, 52)

A(2,1)6A(2’3’th,Q(t, 52) + A2,1)(A2,3) — )\(2,1))6(’\(2’”4(2’”” f(f fag(, sp)eten¥qu
As e @D foq(ts s2) + e fo ot s2) = —Apge el

A€ @V fa ot s2)
)\(372)@&3,1#]?37@(75732) + Az (M@ — )\(3,2))@(’\(3’”_’\(3’2)” fot fB7Q(\p732)eA<3,z>‘1’d\y
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Next we multiply both sides by P Aa)t cPen=Aes)t and ePe2-Aen)t respectively

A(1.2) — 182 e()‘<1v3>*i52)tf,4 t,s9) +
(1,2) ,Q

A(l,Q)G(A(l’S)_iSZ)th o(t, s2) +

+

>\(1,3)€(/\(1 3)~is2 tfc ol(t, s2)

ePaa =D f) o(t,s0) = Az a2ty

A1,3)(A2) — Aw3)) f{f fo.o(W, sp)ePas~is2)¥ gy

A2z fp ot s2) + et fp o(t, 52) = —Ag1ye eI+
Mg e et foolt, s2)

A2 e faolt, s2) +  Aen(Aes) — M) I Fag(W, sp)eren¥aw
Aae @2 feq(t, 2) + A G foqt, sa) = =g ge e+
A1) 2 fa o, s2) +

)‘(372)6/\(3’2)th762(’57 52) + A2 (A3 — Az2) fot F5.0(¥, 52)e*e2Y QU

Again we differentiate with respect to t to obtain

(A1,2) — i82)(A1,3) — is2)ePM T o (8 s9)  + A2y +Aa3) — 2is2)ePMaa) TIDED £ o (1 50)+
ePag szt B > fa Q(t, s2) = )\(1,3))\(1,2)6_)‘<1’2>t+

Aa2)(A3) — i82)€(’\(1’3>7”2 fr.q(t, s2) + A yePraa 52D f 0t 59)
)\(173) ()\(172) — Z‘Sg)e(/\(lﬁ)_i”)tfcg (t,s2) + /\(173)60\(1 3)~is2)t O fC’ Q(\I/ 82)
>\(2,3)>\(2,1)€’\(2'1’th,@(& 52) + (A23) + )\(2,1))€A(2’1’t%f3,@(t, s2)+
e)\(Q’l)thsz,Q(tv 52) = )\(2,1))\(2,3)6_)‘(2’3>t+
A nA@zeen foqo(t, s2) + Aazeen' D foa(t, so)
)\(271))\(2,1)€A(2’1)th,Q(ta 52) + )\(2,1)6)\(2’1>t%fA,Q(\I’a 52)
A 3.2 @2 foo(t, s2) + (A@,) + )\(3,2))6)‘(3’2>t%f0,Q(757 59)+

et 82fC’Q(t $2) = A@2)A@ne @it
A€ 02" G faql(t, s2)
A3, 5 fp.q(¥, s2)

AsAe2)€ @2 faq(t, s2)

+ o+

)\(3,2))\(3,2)6/\(3'2’th,@(t7 52)
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Now we multiply both sides by e_(/\<1,3)—i52)t’

A~

(Aa2) —is2)( A3 —232)f oltiss) +
2 fao(t,s2) _

M12)(Aaz) — is2) .ot s2) +
A1) (M) — is2) feolt, s2) -
Mepren fBalt, s2) +

b lB.altss2) =
Aenrenfeolt, s2) -
AznAesfaqlt s2) +

A @ foolt, s2) +

b feq(t s2) =

A As2faq(t, s2) +
A2 Aa1) /B0t 52) -

e !, and e~ @2", respectively, to get

(A2) + A2 — 2is2) 5 faq(t, s2)+

)‘(1 3))\(1 2)6_(>\(112)+>‘(1,3)_'iSQ)t_’_

(A3 + A@s) g fp.alt, s2)+
)\(2 1)/\(2 3)6_()‘(273)"')‘(2,1))15_’_
>\(273) %fC’Q(ta 52)

Aoy faq(P,s2)

(Aan) +Aan) G oot s2)+
/\(3,2))\(3,1)67()‘(3,1)+>\(3,2))t+
)\(371) %anQ (tv 32)

Ns.2) 5 /B.0(¥, 52)
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Now taking the Laplace transform w.r.t. t leads to the following expressions

L;  (s1, 82)[8% + ()\(172) + )\(173) — 2is9)s1 + ()\(172) — iSQ)()\(LE}) — iSQ)] =

faQ
L, o (51:52)A0,2) (A ) + 51— is2) .
Lfo,Q(S1, 52)A1,3)(A(1,2) + 51 — is2) n
A(1’2>¥;(21)’;\§iz)17i52 + (1= a2 +2Aa3))
LfB,Q(Sl, s2)(s1 + (M\2,3) + A21))51 T A23)A2.1)) _
LfC,Q(sl’ $2)A2,3)(A2,1) + 51) N
LfA,Q (s1, 32))\(271)(/\(273) + 51) N
% + (1=0es +Azy))

Lo

(s1,82)(sT + (A1) +A32))81 + A1,2A1,3))
Li, o (15520 A3 1) (As2) +51)

+
Li, o (s1:82) 232 (MA@ + 1) +
+

A3,1)A3,2)

P RIE S ewsemy (I =A@ +A32))

Using the identities f4,0(0,s2) = f5.0(0,52) = fc.0(0,52) = 1 with Cramer’s Rule leads to

the following expression for L; Q(51, 59)

A2 A, Ferie2
TR ZRED 1 Qs FAe) (T Qe+ Aen)e FAeaien) A8 (@) + 51)
A2,3)TA(2,1) 51 (2,3) (2,1) 51 (2.3) (2,1))51 (2,3)7(2,1) (2,3)(X(2,1) + 51

A3.1)A3.2)
A, FtrE2)Fe

+1—=(A,2) +Aa,3)) —XA(1,2)(A(1,3) + 51 —is2) —X(1,3)(A(1,2) + 51 —is2)

+1—(A3,1) T A@3,2)) —A(3,2)(A3,1) +s1) (5T + (A\3,1) T A(3,2))51 + A3,1)A3,2))

(53 4+ (A\1,2) + Aq1,3) — 2is2)s1 + (A\(1,2) — i52)(A\(1,3) — i52)) —X(1,2)(A(1,3) + 51 — is2) —X(1,3)(A(1,2) + 51 — is2)
—X(2,1)(X(2,3) +51) (sT + (A2,3) + A2,1))51 + A2,3) A 2,1)) —XA(2,3)(A(2,1) +51)
—XA3,1)(A3,2) +51) —X(3,2)(A3,1) + 1) (53 + (A\3,1) + A(3,2))51 + A(3,1)A\3,2))

The remainder of the solution is currently being worked on.
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