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1 INTRODUCTION

A stochastic (or random) process satisfies the Markov property if the probability density function

of the future states of the process depends only on the present state, and not on any past states.

An example of this would be flipping a coin (say P(head)=P(tail)=0.5). The previous flips do

not affect the current flip; if you had just flipped 100 heads in a row, you would still have a

0.50 chance to flip another head. A continuous-time Markov process is a stochastic process that

satisfies this Markov property.

Markov processes appear in a variety of different applications. They can be used to model

population dynamics in biology, genetics, carcinogenesis, AIDS epidemiology, HIV pathogenesis,

and other biomedical systems. They can be used to model precipitation maps, shuffling methods

(quickest way to shuffle a deck of cards), and also financial networks. These are only some of

its uses. Markov processes are also commonly used in physics, especially statistical mechanics

and quantum mechanics, as they are probabilistic in nature.

Markov Chain Monte Carlo (MCMC) methods are very common in physics (and indeed in

a wide variety of disciplines), and were first used in statistical physics as a way to model ex-

tremely large systems while minimizing the amount of computations necessary. MCMC methods

are a class of algorithms that provide a means of sampling probability distributions based on a

constructed Markov chain. The premise of the idea is not too complex; if you want to sample

randomly from a given probability distribution, then construct a Markov chain with that distri-

bution and model this chain via computer simulation. The precision will get better as you take

more steps in your modeled Markov chain. This simulation will allow for modeling microscopic

systems of immense amounts of atoms with relative ease.

Another common model used in statistical mechanics and quantum mechanics is the Ising

model, which is named after the physicist Ernest Ising. The Ising model is a d-dimensional

lattice where each vertex is assigned a value of σ = +1. These values are termed spins, and

although Ising models were initially intended to crudely represent ferromagnetism, it can also

be used to model other systems including simple liquids, lattice gases, magnetic dipoles, and

many other systems which can be represented via graphs like this.

This work answers some of the questions originating from the interdisciplinary research
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(physics/chemistry/biology/mathematics) done by E.Nir et al (see [4]). The occupation times

for birth-and-death chains were studied by Karlin and McGregor with orthogonal polynomials

(see [1], [2] and [3]).

2 OVERVIEW

Markov processes have been studied extensively for scenarios when T is taken to ∞. The

motivation behind the research covered in this paper stems from the desire to be able to model

the behavior of a given Markov process even when T is small. The goal is to solve for fA,Q(t, x),

the continuous probability distribution function governing a Markov process. This function

allows someone to immediately determine the probability that a process will spend a given time

x at a specific state, state 0. The A in fA,Q(t, x) represents state 0, which is the state of interest

to the observer. Q represents the generator matrix for the given Markov process(See Definitions

and Examples). Since the only identifying features of a Markov process is the number of possible

states and the rates of transfer between those states, the generator matrix uniquely determines

any given Markov process. T is the interval of time that the process is allowed to run.

We begin by constructing integral equations that govern the Markov process from scratch.

Take a look at the following equation, which is one of the two equations that represent a 2-state

Markov process with a rate of transfer from state 0 to state 1 equal to λ

fA,Q(t, x) = e−λtδt(x) +
∫ t

0
fB,Q(t− y, x− y)λe−λydy

One thing to note before going further is that the rates of transfer refer to an exponential random

variable(See Definitions and Examples), which is where the e−λt and λe−λy come from.

As will be mentioned later in the paper, fA,Q(t, x) represents the density function for the

time spent in state 0 when the process started in state 0. fB,Q(t, x) represents the density

function again for the time spent in state 0, but for the process that started in state 1. This

construction not only gives us the above equation, but it allows for an intuitive understanding

of it as well. It seems fairly obvious to state, but either the process will switch from state 0 to

state 1 at least once or it won’t switch at all.

By definition of the exponential random variable, the probability of not leaving state 0 in
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time t (i.e. not switching from state 0 to state 1) is e−λt. The delta mass, δt(x), acts like a point-

mass that weights this probability precisely at t. Thus, e−λtδt(x) is the term that represents no

switch from state 0 to state 1.

If the process switches from state 0 to state 1 at some time y < t, then it can now be

considered a new process that started in state 1, with a new interval of interest t − y (with

respected occupation time being x − y). We must account for all possible values of y, which is

where the integral comes in (since this is a continuous process). So
∫ t

0 fB,Q(t− y, x− y)λe−λydy

is the term that represents at least one switch occurring.

This constructed integral equations allows for the solution of the density function and, as

such, is the starting point for each section in this paper.

3 METHODS

As mentioned earlier, we begin solving for the occupation times by writing an integral equation

governing the Markov process. Ultimately, we write the integral equation based on conditional

probabilities. Either the process will leave its initial state or it will not leave its initial state. We

weight the function either at time 0 or at time T (depending on which equation we are looking

at) with the probability that no switch occurs, and then integrate over the rest of the interval

with the probability that a switch does occur.

Given these integral equations containing the distribution function for a Markov process

in terms of T and X, our first step will be to take the Fourier transform with respect to X.

After some mathematical manipulation, we will then be able to take the Laplace transform with

respect to T. It is at this point that we will be able to solve for  Lf̂A,Q
(s1, s2), where  Lf̂A,Q

(s1, s2)

represents the Laplace transform of the Fourier transform of fA,Q(t, x).

We then take the inverse Fourier transform, and with some manipulation we will be able to

evaluate the inverse Laplace transform and get a form for fA,Q(t, x). We will see that fA,Q(t, x)

will involve Bessel functions, which are solutions to Bessel’s Equation.

For convenience, I have grouped the important equations into the results section (Section 3)

and included all intermediate calculations in the calculations section (Section 4) that follows it.
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3.1 Definitions and Examples

Definition 3.1. A continuous-time Markov process is a stochastic process that satisfies the

Markov property. The Markov property states that at any time t > 0, the probability distribution

of a given Markov process after time t depends only on the state of the process at time t.

Definition 3.2. A Fourier transform is a mathematical operator which is the generalization of

the complex Fourier series. For the purposes of this paper, we don’t need to know about this

series, it is sufficient to merely know its mechanics. Given a function f(t, x), we denote the

Fourier transform of f(t, x) w.r.t. x by f̂(t, s2) satisfying the following equations

f̂(t, s2) =
∫∞
−∞ f(t, x)eis2xdx

f(t, x) = 1
2π

∫∞
−∞ f̂(t, s2)e−is2xds2

Definition 3.3. A Laplace transform is a mathematical operator that is useful for analyzing

linear time-invariant systems. We denote the Laplace transform of f(t, x) w.r.t. t by  Lf (s1, x)

satisfying the following equation

 Lf (s1, x) =
∫ ∞

0
f(t, x)e−s1tdt

Definition 3.4. Cramer’s rule is a theorem in linear algebra that allows for the solution of a

system of linear equations in terms of determinants. Given an n x n system of equations denoted

by Ax = b, where

A =



a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...

an1 an2 ... ann



, x =



x1

x2

...

xn



, b =



b1

b2

...

bn


Cramer’s rule gives us the following relation

xi =
detAi
detA
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where Ai is the matrix formed by replacing the ith column of A with the column vector of b.

Definition 3.5. If we have an n-state Markov process with rates of transfer between state i and

state j written as λi,j, then the generator matrix for this Markov process, denoted Q, is defined

as follows

Q =



−
∑n

j 6=1 λ1,j λ1,2 ... λ1,n

λ2,1 −
∑n

j 6=2 λ2,j ... λ2,n

... ... ... ...

λn,1 λn,2 ... −
∑n

j 6=n λn,j


Definition 3.6. An exponential random variable with parameter λ is a probability density

function that has the following form

f(x) = λe−λx, x ≥ 0

Note that f(x)=0 everywhere else and that λ > 0.

4 RESULTS

4.1 Two-state Markov process with rates λ = µ

In this section, we will look at a Markov process with state space {0,1}. We will define the

process to start in state 0 and to move to state 1 with rate λ, and to move from state 1 to state

0 also with rate λ.

Again, we will use t to specify the time of the interval we are looking at and x to specify

the amount of time spent in state 0. We denote the distribution function for the time spent in

state 0 when the process started in state 0 as fA,Q(t, x) and the distribution function for the

time spent in state 0 when the process started in state 1 as fB,Q(t, x). However, since the rates

of transition are equal, we will simplify by just writing in terms of one state and call it f(t,x).

Beginning with the following integral equation
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f(t, x) = e−λtδt(x) +
∫ t

0
f(t− y, t− x)λe−λydy

We obtain the following expression for  Lf̂ (s1, s2), the Laplace transform of the Fourier trans-

form of f(t, x)

 Lf̂ (s1, s2) =
2λ+ s1

s1(s1 + 2λ)− i(s1 + λ)s2

By first computing the inverse Fourier transform via the method of residues, then computing

the inverse Laplace transform, the following value for f(t, x) is obtained

f(t, x) = e−λtδx(t) + λe−λtI0(2λ
√
x(t− x)) + λ

√
x 1√

t−xe
−λtI1(2λ

√
x(t− x))

4.2 Two-state Markov process with rates λ 6= µ

In this section, we will again look at a Markov process with state space {0,1}. However, this

time, λ 6= µ.

The method used to solve this case will be extremely similar to the method used to solve

the case of the two-state process with equal rates except for this time we will not begin with

the initial substitution of fB,λ,µ(t, x) = fA,µ,λ(t, t− x).

Starting with the following integral equations

fA,Q(t, x) = e−λtδt(x) +
∫ t

0 fB,Q(t− y, x− y)λe−λydy

fB,Q(t, x) = e−µtδ0(x) +
∫ t

0 fA,Q(t− y, x)µe−µydy

We obtain the value for  Lf̂A,Q
(s1, s2)

 Lf̂A,Q
(s1, s2) =

(s1 + λ+ µ)i

(s1 + µ)(s2 + i s1(s1+λ+µ)
s1+µ )

Computing the inverse Fourier transform again via residues, then solving the inverse Laplace

transform gives us

fA,Q(t, x) = e−λtδt(x) + λe−λxe−µ(t−x)I0(2
√
λµx(t− x)) +

√
λµx
t−xI1(2

√
λµx(t− x))e−λxe−µ(t−x)
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4.3 Three-state Markov process with equal rates

Now we move onto the three-state Markov process with rates of transfer equal to λ for all paths.

Here we begin with the following set of integral equations

fA,Q(t, x) = e−2λtδt(x) +
∫ t

0 fB,Q(t− y, x− y)λe−λydy +∫ t
0 fC,Q(t− y, x− y)λe−λydy

fB,Q(t, x) = e−2λtδ0(x) +
∫ t

0 fC,Q(t− y, x)λe−λydy +∫ t
0 fA,Q(t− y, x)λe−λydy

fC,Q(t, x) = e−2λtδ0(x) +
∫ t

0 fA,Q(t− y, x)λe−λydy +∫ t
0 fB,Q(t− y, x)λe−λydy

The Laplace transform of the Fourier transform of f(t,x) is then found to be

 Lf̂A,Q
(s1, s2) =

(s1 + 2λ)(s2 + i(s1 + λ))i

s1[s2 + i(s1 + 2λ)][s2 + i (s1+2λ)(s1−λ)
s1

]

Computing the inverse Fourier transform via residues and then finding a form for the inverse

Laplace transform leads to

fA,Q(t, x) = e−2λtδt(x) + 2λe−λxI0(2
√

2λ2x(t− x))

4.4 Three-state Markov process with general rates

We now attempt to utilize the same method as earlier for a three-state Markov process with

state space {0,1}.

The method used to solve this case will be similar to the method used in the three-state

case with equal rates with the obvious difference being an increase in complexity. This increased

complexity requires further manipulation, but the structure of the method remains intact. Simi-

lar to the previous cases, we will use  Lf̂A,Q
(s1, s2) to denote the Laplace transform of the Fourier

transform of fA,Q(t, x).

We will now switch notations slightly; we will denote by λ(i,j) the rate of transfer from state

i to state j.
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Beginning with the following set of equations

fA,Q(t, x) = e−(λ(1,2)+λ(1,3))tδt(x) +
∫ t

0 fB,Q(t− y, x− y)λ(1,2)e
−λ(1,2)ydy

+
∫ t

0 fC,Q(t− y, x− y)λ(1,3)e
−λ(1,3)ydy

fB,Q(t, x) = e−(λ(2,3)+λ(2,1))tδ0(x) +
∫ t

0 fC,Q(t− y, x)λ(2,3)e
−λ(2,3)ydy

+
∫ t

0 fA,Q(t− y, x)λ(2,1)e
−λ(2,1)ydy

fC,Q(t, x) = e−(λ(3,1)+λ(3,2))tδ0(x) +
∫ t

0 fA,Q(t− y, x)λ(3,1)e
−λ(3,1)ydy

+
∫ t

0 fB,Q(t− y, x)λ(3,2)e
−λ(3,2)ydy

We eventually arrive at the following expressions for  Lf̂A,Q
(s1, s2),  Lf̂B,Q

(s1, s2), and  Lf̂C,Q
(s1, s2)

respectively

 Lf̂A,Q
(s1, s2)(s2

1 + (λ(1,2) + λ(1,3) − 2is2)s1 + (λ(1,2) − is2)(λ(1,3) − is2)) =

 Lf̂B,Q
(s1, s2)λ(1,2)(λ(1,3) + s1 − is2) +

 Lf̂C,Q
(s1, s2)λ(1,3)(λ(1,2) + s1 − is2) +

λ(1,2)λ(1,3)

λ(1,2)+λ(1,3)+s1−is2
+ (1− (λ(1,2) + λ(1,3)))

 Lf̂B,Q
(s1, s2)(s2

1 + (λ(2,3) + λ(2,1))s1 + λ(2,3)λ(2,1)) =

 Lf̂C,Q
(s1, s2)λ(2,3)(λ(2,1) + s1) +

 Lf̂A,Q
(s1, s2)λ(2,1)(λ(2,3) + s1) +

λ(2,3)λ(2,1)

λ(2,3)+λ(2,1)+s1
+ (1− (λ(2,3) + λ(2,1)))

 Lf̂C,Q
(s1, s2)(s2

1 + (λ(3,1) + λ(3,2))s1 + λ(1,2)λ(1,3)) =

 Lf̂A,Q
(s1, s2)λ(3,1)(λ(3,2) + s1) +

 Lf̂B,Q
(s1, s2)λ(3,2)(λ(3,1) + s1) +

λ(3,1)λ(3,2)

λ(3,1)+λ(3,2)+s1
+ (1− (λ(3,1) + λ(3,2)))

The solution for fA,Q(t, x) is currently being worked on.
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5 CALCULATIONS

5.1 Two-state Markov process with rates λ = µ

We can write the following integral equation to link the two functions (See Preview of Results)

fA,Q(t, x) = e−λtδt(x) +
∫ t

0
fB,Q(t− y, x− y)λe−λydy (1)

But now we will set λ = µ, and the equation becomes

f(t, x) = e−λtδt(x) +
∫ t

0
f(t− y, t− x)λe−λydy (2)

We will now use the following substitutions into the above equation

ψ = t− y

dψ = −dy

These substitutions change (2) into

f(t, x) = e−λtδt(x) + λe−λt
∫ t

0
f(ψ, t− x)e−λψdψ (3)

Now we can take the Fourier transform of (3) with respect to x, and the equation becomes

f̂(t, s2) =
∫ ∞

−∞
δt(x)e−λteis2xdx+ λe−λt

∫ t

0

∫ ∞

−∞
f(ψ, t− x)eλψeis2xdxdψ (4)

The next substitution we can make is

χ = t− x

dχ = −dx

which transforms (4) into

f̂(t, s2) = e−(λ−is2)t + λe−λt
∫ t

0

∫ ∞

−∞
f(ψ, χ)eλψeis2(t−χ)dχdψ (5)

The next substitution we’ll make will merely be one of convenience

a ≡ λ− is2
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f̂(t, s2) = e−at + λe−at
∫ t

0
f̂(ψ,−s2)eλψdψ (6)

Multiplying both sides by eat, we obtain the next expression

eatf̂(t, s2) = 1 + λ

∫ t

0
f̂(ψ,−s2)eλψdψ (7)

Differentiating both sides of (7) with respect to t yields

∂

∂t
(eatf̂(t, s2)) = λeλtf̂(t,−s2)

aeatf̂(t, s2) + eatf̂t(t, s2) = λeλtf̂(t,−s2)

Multiplying both sides by e−at and plugging in for a leads to

(λ− is2)f̂(t, s2) + f̂t(t, s2) = λeis2tf̂(t,−s2) (8)

Now taking the Laplace transform of both sides with respect to t leads to

(λ− is2) Lf̂ (s1, s2) + s1  Lf̂ (s1, s2) = λ Lf̂ (s1 − is2,−s2) + f̂(0, s2) (9)

But looking back at (2) we can see that f(0, x) = δ0(x) ⇒ f̂(0, s2) = 1 which leads to the

following

 Lf̂ (s1, s2) =
λ

λ+ s1 − is2
 Lf̂ (s1 − is2,−s2) +

1
λ+ s1 − is2

(10)

However, by using (10) with the transformation s1 → s1 − is2 and s2 → −s2, we can get an

expression for  Lf̂ (s1 − is2,−s2)

 Lf̂ (s1 − is2,−s2) =
λ

λ+ s1
 Lf̂ (s1, s2) +

1
λ+ s1

Plugging the above equation into (10), we get the expression seen below

 Lf̂ (s1, s2) =
λ2

(λ+ s1 − is2)(λ+ s1)
 Lf̂ (s1, s2) +

2λ+ s1

(λ+ s1 − is2)(λ+ s1)
(11)

Solving (11) for  Lf̂ (s1, s2) leads to

 Lf̂ (s1, s2) =
2λ+ s1

s1(s1 + 2λ)− i(s1 + λ)s2
(12)
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Now we will take the inverse Fourier transform of (12) with respect to s2.

 L(s1, x) =
1

2π

∫ ∞

−∞

(2λ+ s1)
s1(s1 + 2λ)− i(s1 + λ)s2

e−is2xds2 (13)

=
1

2π

∫ ∞

−∞

(2λ+ s1)ie−is2x

(s1 + λ)(s2 + i s1(s1+2λ)
s1+λ )

ds2 (14)

Now we can make some substitutions to make our life easier.

α ≡ s1 + 2λ
s1 + λ

and β ≡ s1
s1 + 2λ
s1 + λ

= s1 · α

With these substitutions, (13) becomes

 L(s1, x) =
iα

2π

∫ ∞

−∞

e−is2x

s2 + iβ
ds2 (15)

Now this is a complex integral with a simple pole at s2 = −iβ. Since this integral is already

of the form f(s2)
s2−κ where κ is the singularity, we can see that the integral we are after is just

2πiRes(f(κ)) = −2πie−xβ . Which implies that

 L(s1, x) = αe−xβ

Plugging back in for α and β gives us

 L(s1, x) =
s1 + 2λ
s1 + λ

e
−xs1(

s1+2λ
s1+λ

)

Which can be easily manipulated into the following

 L(s1, x) = (1 +
λ

s1 + λ
)e−x

s21+2λs1+λ2−λ2

s1+λ .

Expanding this gives us

 L(s1, x) = e−(s1+λ)xe
λ2x

s1+λ +
λ

s1 + λ
e−(λ+s1)xe

λ2x
s1+λ (16)

Now we notice the following Laplace transforms∫ ∞

0
I0(2

√
at)e−ptdt =

1
p
e

a
p

and ∫ ∞

0

1√
t
I1(2

√
at)e−ptdt =

1√
a

(e
a
p − 1),
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where I0 and I1 are modified Bessel functions,

I0(z) =
∞∑
k=0

1
k!(k − 1)!

(
z

2
)2k , I1(z) =

∞∑
k=0

1
k!k!

(
z

2
)2k+1 .

They can be modified as follows

e−px
1
p
e

a
p =

∫ ∞

x
I0(2

√
a(t− x))e−ptdt

and

e−pxe
a
p = e−px +

√
a

∫ ∞

x

1√
t− x

I1(2
√
a(t− x))e−ptdt.

Let a = λ2x and p = s1 + λ. Plugging in, we get

1
s1 + λ

e−(λ+s1)xe
λ2x

s1+λ = e−px
1
p
e

a
p =

∫ ∞

x
I0(2λ

√
x(t− x))e−λte−s1tdt

and therefore the inverse Laplace transform of λ
s1+λe

−(λ+s1)xe
λ2x

s1+λ is λe−λtI0(2λ
√
x(t− x))

for 0 ≤ x ≤ t.

Similarly

e−(s1+λ)xe
λ2x

s1+λ = e−pxe
a
p = e−λxe−s1x + λ

√
x

∫ ∞

x

1√
t− x

I1(2λ
√
x(t− x))e−λte−s1tdt

which can be rewritten as

e−(s1+λ)xe
λ2x

s1+λ =
∫ ∞

0
δx(t)e−λte−s1tdt+ λ

√
x

∫ ∞

x

1√
t− x

I1(2λ
√
x(t− x))e−λte−s1tdt.

Thus, the inverse Laplace transform of e−(s1+λ)xe
λ2x

s1+λ is e−λtδx(t)+λ
√
x 1√

t−xe
−λtI1(2λ

√
x(t− x))

for 0 ≤ x ≤ t. Here we do not divide by zero when x = t as the
√
t− x cancels on top and the

bottom.

Adding the terms together, we obtain

f(t, x) = e−λtδx(t) + λe−λtI0(2λ
√
x(t− x)) + λ

√
x 1√

t−xe
−λtI1(2λ

√
x(t− x)).

5.2 Two-state Markov process with rates λ 6= µ

We can write the following set of integral equations:

fA,Q(t, x) = e−λtδt(x) +
∫ t

0 fB,Q(t− y, x− y)λe−λydy

fB,Q(t, x) = e−µtδ0(x) +
∫ t

0 fA,Q(t− y, x)µe−µydy
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Plugging in Ψ = t − y into the top equation, with no substitution in the bottom equation,

we obtain

fA,Q(t, x) = e−λtδt(x) +
∫ t

0 fB,Q(Ψ, x− t+ Ψ)λe−λ(t−Ψ)dΨ

fB,Q(t, x) = e−µtδ0(x) +
∫ t

0 fA,Q(Ψ, x)µe−µ(t−Ψ)dΨ

Now taking the Fourier transform with respect to x and plugging in χ = x − t + Ψ for the

top equation only, we arrive at

f̂A,Q(t, s2) = e−(λ−is2)t + λe−(λ−is2)t
∫ t

0 f̂B,Q(Ψ, s2)e(λ−is2)ΨdΨ

f̂B,Q(t, s2) = e−µt + µe−µt
∫ t

0 f̂A,Q(Ψ, s2)eµΨdΨ

Making the quick substitution a1 ≡ λ − is2, then multiplying both sides by ea1t and eµt

respectively, we arrive at

ea1tf̂A,Q(t, s2) = 1 + λ
∫ t

0 f̂B,Q(Ψ, s2)ea1ΨdΨ

eµtf̂B,Q(t, s2) = 1 + µ
∫ t

0 f̂A,Q(Ψ, s2)eµΨdΨ

Now we will differentiate both sides with respect to t

a1e
a1tf̂A,Q(t, s2) + ea1t ∂

∂t f̂A,Q(t, s2) = λea1tf̂B,Q(t, s2)

µeµtf̂B,Q(t, s2) + eµt ∂∂t f̂B,Q(t, s2) = µeµtf̂A,Q(t, s2)

Now multiply both sides by e−a1t and e−µt respectively, then take the Laplace transform of

both sides with respect to t, which will give you

a1  Lf̂A,Q
(s1, s2) + s1  Lf̂A,Q

(s1, s2) = λ Lf̂B,Q
(s1, s2) + f̂A,Q(0, s2)

µ Lf̂B,Q
(s1, s2) + s1  Lf̂B,Q

(s1, s2) = µ Lf̂A,Q
(s1, s2) + f̂B,Q(0, s2)

But f̂A,Q(0, s2) = f̂B,Q(0, s2) = 1 which leads to

 Lf̂A,Q
(s1, s2)(λ+ s1 − is2) = λ Lf̂B,Q

(s1, s2) + 1 (17)

 Lf̂B,Q
(s1, s2)(µ+ s1) = µ Lf̂A,Q

(s1, s2) + 1 (18)
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Substitution yields the following

 Lf̂A,Q
(s1, s2) =

λµ

(λ+ s1 − is2)(µ+ s1)
 Lf̂A,Q

(s1, s2) +
λ+ µ+ s1

(λ+ s1 − is2)(µ+ s1)

 Lf̂A,Q
(s1, s2) =

(s1 + λ+ µ)i

(s1 + µ)(s2 + i s1(s1+λ+µ)
s1+µ )

Now computing the inverse Fourier transform via the method of residues we obtain

 L(s1, x) = αe−xβ

where α = s1+λ+µ
s1+µ and β = s1α

 L(s1, x) = (1 + λ
s1+µ)e−x

(s1+µ)(s1+λ)−µλ
s1+µ

= e−x(s1+λ)e
λµx

s1+µ + λ
s1+µe

−x(s1+λ)e
λµx

s1+µ

Again we take notice of the Laplace transforms of the modified Bessel functions I0(z) and

I1(z).

However, using a similar manipulation to that used in the above case where λ = µ, we notice

the following important results:

∫ ∞

x
I0(2

√
a(t− x))e−λxe−µ(t−x)e−s1tdt =

e−(s1+λ)x

s1 + µ
e

a
s1+µ

Thus, the inverse Laplace transform of λ
s1+µe

−x(s1+λ)e
λµx

s1+µ is λe−λxe−µ(t−x)I0(2
√
λµx(t− x))

for 0 ≤ x ≤ t.

Similar manipulations will show that

e−x(s1+λ)e
λµx

s1+µ =
√
λµx

∫ ∞

x

I1(2
√
λµx(t− x))√
t− x

e−λxe−µ(t−x)e−s1tdt+
∫ ∞

0
e−λtδt(x)e−s1tdt

Thus, the inverse Laplace transform of e−x(s1+λ)e
λµx

s1+µ is
√

λµx
t−xI1(2

√
λµx(t− x))e−λxe−µ(t−x)+

e−λtδt(x)

Which finally leads to

fA,λ,µ(t, x) = e−λtδt(x) + λe−λxe−µ(t−x)I0(2
√
λµx(t− x)) +

√
λµx
t−xI1(2

√
λµx(t− x))e−λxe−µ(t−x)
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5.3 Three-state Markov process with equal rates

For the three-state Markov process with equal rates, we can write the following set of integral

equations:

fA,Q(t, x) = e−2λtδt(x) +
∫ t

0 fB,Q(t− y, x− y)λe−λydy

+
∫ t

0 fC,Q(t− y, x− y)λe−λydy

fB,Q(t, x) = e−2λtδ0(x) +
∫ t

0 fC,Q(t− y, x)λe−λydy

+
∫ t

0 fA,Q(t− y, x)λe−λydy

fC,Q(t, x) = e−2λtδ0(x) +
∫ t

0 fA,Q(t− y, x)λe−λydy

+
∫ t

0 fB,Q(t− y, x)λe−λydy

Plugging in Ψ = t− y into the top equation we obtain

fA,Q(t, x) = e−2λtδt(x) +
∫ t

0 fB,Q(Ψ, x− t+ Ψ)λe−λ(t−Ψ)dΨ

+
∫ t

0 fC,Q(Ψ, x− t+ Ψ)λe−λ(t−Ψ)dΨ

fB,Q(t, x) = e−2λtδ0(x) +
∫ t

0 fC,Q(Ψ, x)λe−λ(t−Ψ)dΨ

+
∫ t

0 fA,Q(Ψ, x)λe−λ(t−Ψ)dΨ

fC,Q(t, x) = e−2λtδ0(x) +
∫ t

0 fA,Q(Ψ, x)λe−λ(t−Ψ)dΨ

+
∫ t

0 fB,Q(Ψ, x)λe−λ(t−Ψ)dΨ

Now taking the Fourier transform with respect to x we arrive at

f̂A,Q(t, s2) = e−(2λ−is2)t +
∫∞
−∞

∫ t
0 fB,Q(Ψ, x− t+ Ψ)λe−λ(t−Ψ)dΨeis2xdx

+
∫∞
−∞

∫ t
0 fC,Q(Ψ, x− t+ Ψ)λe−λ(t−Ψ)dΨeis2xdx

f̂B,Q(t, s2) = e−2λt +
∫∞
−∞

∫ t
0 fC,Q(Ψ, x)λe−λ(t−Ψ)dΨeis2xdx

+
∫∞
−∞

∫ t
0 fA,Q(Ψ, x)λe−λ(t−Ψ)dΨeis2xdx

f̂C,Q(t, s2) = e−2λt +
∫∞
−∞

∫ t
0 fA,Q(Ψ, x)λe−λ(t−Ψ)dΨeis2xdx

+
∫∞
−∞

∫ t
0 fB,Q(Ψ, x)λe−λ(t−Ψ)dΨeis2xdx
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Plugging in χ = x− t+ Ψ into the top equation only yields

f̂A,Q(t, s2) = e−(2λ−is2)t +
∫ t

0

∫∞
−∞ fB,Q(Ψ, χ)λeis2(χ+t−Ψ)e−λ(t−Ψ)dχdΨ

+
∫ t

0

∫∞
−∞ fC,Q(Ψ, χ)λeis2(χ+t−Ψ)e−λ(t−Ψ)dχdΨ

f̂B,Q(t, s2) = e−2λt +
∫ t

0

∫∞
−∞ fC,Q(Ψ, x)λeis2xe−λ(t−Ψ)dxdΨ

+
∫ t

0

∫∞
−∞ fA,Q(Ψ, x)λeis2xe−λ(t−Ψ)dxdΨ

f̂C,Q(t, s2) = e−2λt +
∫ t

0

∫∞
−∞ fA,Q(Ψ, x)λeis2xe−λ(t−Ψ)dxdΨ

+
∫ t

0

∫∞
−∞ fB,Q(Ψ, x)λeis2xe−λ(t−Ψ)dxdΨ

Which simplifies to

f̂A,Q(t, s2) = e−(2λ−is2)t + λe−(λ−is2)t
∫ t

0 f̂B,Q(Ψ, s2)e(λ−is2)ΨdΨ

+ λe−(λ−is2)t
∫ t

0 f̂C,Q(Ψ, s2)e(λ−is2)ΨdΨ

f̂B,Q(t, x) = e−2λt + λe−λt
∫ t

0 f̂C,Q(Ψ, s2)eλΨdΨ

+ λe−λt
∫ t

0 f̂A,Q(Ψ, s2)eλΨdΨ

f̂C,Q(t, x) = e−2λt + λe−λt
∫ t

0 f̂A,Q(Ψ, s2)eλΨdΨ

+ λe−λt
∫ t

0 f̂B,Q(Ψ, s2)eλΨdΨ

Multiplying both sides of the top equation by e(λ−is2)t and the bottom two equations by eλt

yields the following

e(λ−is2)tf̂A,Q(t, s2) = e−λt + λ
∫ t

0 f̂B,Q(Ψ, s2)e(λ−is2)ΨdΨ

+ λ
∫ t

0 f̂C,Q(Ψ, s2)e(λ−is2)ΨdΨ

eλtf̂B,Q(t, s2) = e−λt + λ
∫ t

0 f̂C,Q(Ψ, s2)eλΨdΨ

+ λ
∫ t

0 f̂A,Q(Ψ, s2)eλΨdΨ

eλtf̂C,Q(t, s2) = e−λt + λ
∫ t

0 f̂A,Q(Ψ, s2)eλΨdΨ

+ λ
∫ t

0 f̂B,Q(Ψ, s2)eλΨdΨ
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Now differentiating with respect to t yields

(λ− is2)e(λ−is2)tf̂A,Q(t, s2) + e(λ−is2)t ∂
∂t f̂A,Q(t, s2) =

−λe−λt + λe(λ−is2)tf̂B,Q(t, s2) + λe(λ−is2)tf̂C,Q(t, s2)

λeλtf̂B,Q(t, s2) + eλt ∂∂t f̂B,Q(t, s2) =

−λe−λt + λeλtf̂C,Q(t, s2) + λeλtf̂A,Q(t, s2)

λeλtf̂C,Q(t, s2) + eλt ∂∂t f̂C,Q(t, s2) =

−λe−λt + λeλtf̂A,Q(t, s2) + λeλtf̂B,Q(t, s2)

Next we multiply both sides of the top equation by e−(λ−is2)t and the bottom two equations

by e−λt

(λ− is2)f̂A,Q(t, s2) + ∂
∂t f̂A,Q(t, s2) = −λe−(2λ−is2)t + λf̂B,Q(t, s2) + λf̂C,Q(t, s2)

λf̂B,Q(t, s2) + ∂
∂t f̂B,Q(t, s2) = −λe−2λt + λf̂C,Q(t, s2) + λf̂A,Q(t, s2)

λf̂C,Q(t, s2) + ∂
∂t f̂C,Q(t, s2) = −λe−2λt + λf̂A,Q(t, s2) + λf̂B,Q(t, s2)

Taking the Laplace transform w.r.t. t leads to the following expressions

(λ+ s1 − is2) Lf̂A,Q
(s1, s2) − λ Lf̂B,Q

(s1, s2) − λ Lf̂C,Q
(s1, s2) = s1+λ−is2

s1+2λ−is2

−λ Lf̂A,Q
(s1, s2) + (λ+ s1) Lf̂B,Q

(s1, s2) − λ Lf̂C,Q
(s1, s2) = s1+λ

s1+2λ

−λ Lf̂A,Q
(s1, s2) − λ Lf̂B,Q

(s1, s2) + (λ+ s1) Lf̂C,Q
(s1, s2) = s1+λ

s1+2λ
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Using Cramer’s rule gives us the following expression for  Lf̂A,Q
(s1, s2)

det


s1+λ−is2
s1+2λ−is2 −λ −λ
s1+λ
s1+2λ s1 + λ −λ
s1+λ
s1+2λ −λ s1 + λ



det


s1 + λ− is2 −λ −λ

−λ s1 + λ −λ

−λ −λ s1 + λ


 Lf̂A,Q

(s1, s2) =
s1+λ−is2
s1+2λ−is2 ((s1 + λ)2 − λ2) + 2λ(s1 + λ)

(s1 + λ− is2)[(s1 + λ)2 − λ2]− 2λ[λ2 + λ(s1 + λ)]

Which simplifies to

 Lf̂A,Q
(s1, s2) =

(s1 + 2λ)(s2 + i(s1 + λ))i

s1[s2 + i(s1 + 2λ)][s2 + i (s1+2λ)(s1−λ)
s1

]

This has two poles at s2 = −i(s1 + λ) and s2 = −i (s1+2λ)(s1−λ)
s1

The inverse Fourier transform is then given by

 LfA,Q
(s1, x) =

1
2π

∫ ∞

−∞

(s1 + 2λ)(s2 + i(s1 + λ))i

s1[s2 + i(s1 + 2λ)][s2 + i (s1+2λ)(s1−λ)
s1

]
e−is2xds2

Again using the method of residues leads to

 LfA,Q
(s1, x) = −i

2
4 (s1 + 2λ)(−i(s1 + 2λ) + i(s1 + λ))i

s1[−i(s1 + 2λ) + i
(s1+2λ)(s1−λ)

s1
]
e−ix(−i(s1+2λ)) +

(s1 + 2λ)(−i (s1+2λ)(s1−λ)
s1

+ i(s1 + λ))i

s1[−i (s1+2λ)(s1−λ)
s1

+ i(s1 + 2λ)]
e−is2x

3
5

Which simplifies to

 LfA,Q
(s1, x) = e−x(s1+2λ) +

2λ
s1
e
−x (s1+2λ)(s1−λ)

s1

The first term, e−x(s1+2λ), can also be written as

e−x(s1+2λ) =
∫ ∞

0
e−2λtδt(x)e−s1tdt

Which implies that the inverse Laplace transform of e−x(s1+2λ) is e−2λtδt(x).
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The second term, 2λ
s1
e
−x (s1+2λ)(s1−λ)

s1 , can also be written as

2λ
s1
e
−x (s1+2λ)(s1−λ)

s1 = 2λe−λx[
1
s1
e−xs1e

2λ2x
s1 ] =

∫ ∞

x
2λe−λxI0(2

√
2λ2x(t− x))e−s1tdt

Which implies that the inverse Laplace transform of 2λ
s1
e
−x (s1+2λ)(s1−λ)

s1 is 2λe−λxI0(2
√

2λ2x(t− x)).

Thus, for the 3-state Markov process,

fA,Q(t, x) = e−2λtδt(x) + 2λe−λxI0(2
√

2λ2x(t− x))

5.4 Three-state Markov process with general rates

For the three-state Markov process with general rates, we can write the following set of integral

equations:

fA,Q(t, x) = e−(λ(1,2)+λ(1,3))tδt(x) +
∫ t

0 fB,Q(t− y, x− y)λ(1,2)e
−λ(1,2)ydy

+
∫ t

0 fC,Q(t− y, x− y)λ(1,3)e
−λ(1,3)ydy

fB,Q(t, x) = e−(λ(2,3)+λ(2,1))tδ0(x) +
∫ t

0 fC,Q(t− y, x)λ(2,3)e
−λ(2,3)ydy

+
∫ t

0 fA,Q(t− y, x)λ(2,1)e
−λ(2,1)ydy

fC,Q(t, x) = e−(λ(3,1)+λ(3,2))tδ0(x) +
∫ t

0 fA,Q(t− y, x)λ(3,1)e
−λ(3,1)ydy

+
∫ t

0 fB,Q(t− y, x)λ(3,2)e
−λ(3,2)ydy

Plugging in Ψ = t− y into the top equation we obtain

fA,Q(t, x) = e−(λ(1,2)+λ(1,3))tδt(x) +
∫ t

0 fB,Q(Ψ, x− t+ Ψ)λ(1,2)e
−λ(1,2)(t−Ψ)dΨ

+
∫ t

0 fC,Q(Ψ, x− t+ Ψ)λ(1,3)e
−λ(1,3)(t−Ψ)dΨ

fB,Q(t, x) = e−(λ(2,3)+λ(2,1))tδ0(x) +
∫ t

0 fC,Q(Ψ, x)λ(2,3)e
−λ(2,3)(t−Ψ)dΨ

+
∫ t

0 fA,Q(Ψ, x)λ(2,1)e
−λ(2,1)(t−Ψ)dΨ

fC,Q(t, x) = e−(λ(3,1)+λ(3,2))tδ0(x) +
∫ t

0 fA,Q(Ψ, x)λ(3,1)e
−λ(3,1)(t−Ψ)dΨ

+
∫ t

0 fB,Q(Ψ, x)λ(3,2)e
−λ(3,2)(t−Ψ)dΨ
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Now taking the Fourier transform with respect to x we arrive at

f̂A,Q(t, s2) = e−(λ(1,2)+λ(1,3)−is2)t +
∫∞
−∞

∫ t
0 fB,Q(Ψ, x− t+ Ψ)λ(1,2)e

−λ(1,2)(t−Ψ)dΨeis2xdx

+
∫∞
−∞

∫ t
0 fC,Q(Ψ, x− t+ Ψ)λ(1,3)e

−λ(1,3)(t−Ψ)dΨeis2xdx

f̂B,Q(t, s2) = e−(λ(2,3)+λ(2,1))t +
∫∞
−∞

∫ t
0 fC,Q(Ψ, x)λ(2,3)e

−λ(2,3)(t−Ψ)dΨeis2xdx

+
∫∞
−∞

∫ t
0 fA,Q(Ψ, x)λ(2,1)e

−λ(2,1)(t−Ψ)dΨeis2xdx

f̂C,Q(t, s2) = e−(λ(3,1)+λ(3,2))t +
∫∞
−∞

∫ t
0 fA,Q(Ψ, x)λ(3,1)e

−λ(3,1)(t−Ψ)dΨeis2xdx

+
∫∞
−∞

∫ t
0 fB,Q(Ψ, x)λ(3,2)e

−λ(3,2)(t−Ψ)dΨeis2xdx

Plugging in χ = x− t+ Ψ into the top equation only yields

f̂A,Q(t, s2) = e−(λ(1,2)+λ(1,3)−is2)t +
∫ t

0

∫∞
−∞ fB,Q(Ψ, χ)λ(1,2)e

is2(χ+t−Ψ)e−λ(1,2)(t−Ψ)dχdΨ

+
∫ t

0

∫∞
−∞ fC,Q(Ψ, χ)λ(1,3)e

is2(χ+t−Ψ)e−λ(1,3)(t−Ψ)dχdΨ

f̂B,Q(t, s2) = e−(λ(2,3)+λ(2,1))t +
∫ t

0

∫∞
−∞ fC,Q(Ψ, x)λ(2,3)e

is2xe−λ(2,3)(t−Ψ)dxdΨ

+
∫ t

0

∫∞
−∞ fA,Q(Ψ, x)λ(2,1)e

is2xe−λ(2,1)(t−Ψ)dxdΨ

f̂C,Q(t, s2) = e−(λ(3,1)+λ(3,2))t +
∫ t

0

∫∞
−∞ fA,Q(Ψ, x)λ(3,1)e

is2xe−λ(3,1)(t−Ψ)dxdΨ

+
∫ t

0

∫∞
−∞ fB,Q(Ψ, x)λ(3,2)e

is2xe−λ(3,2)(t−Ψ)dxdΨ

Which simplifies to

f̂A,Q(t, s2) = e−(λ(1,2)+λ(1,3)−is2)t + λ(1,2)e
−(λ(1,2)−is2)t

∫ t
0 f̂B,Q(Ψ, s2)e(λ(1,2)−is2)ΨdΨ

+ λ(1,3)e
−(λ(1,3)−is2)t

∫ t
0 f̂C,Q(Ψ, s2)e(λ(1,3)−is2)ΨdΨ

f̂B,Q(t, x) = e−(λ(2,3)+λ(2,1))t + λ(2,3)e
−λ(2,3)t

∫ t
0 f̂C,Q(Ψ, s2)eλ(2,3)ΨdΨ

+ λ(2,1)e
−λ(2,1)t

∫ t
0 f̂A,Q(Ψ, s2)eλ(2,1)ΨdΨ

f̂C,Q(t, x) = e−(λ(3,1)+λ(3,2))t + λ(3,1)e
−λ(3,1)t

∫ t
0 f̂A,Q(Ψ, s2)eλ(3,1)ΨdΨ

+ λ(3,1)e
−λ(3,2)t

∫ t
0 f̂B,Q(Ψ, s2)eλ(3,2)ΨdΨ
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Multiplying both sides by e(λ(1,2)−is2)t, eλ(2,3)t, and eλ(3,1)t respectively yields the following

e(λ(1,2)−is2)tf̂A,Q(t, s2) = e−λ(1,3)t + λ(1,2)

∫ t
0 f̂B,Q(Ψ, s2)e(λ(1,2)−is2)ΨdΨ

+ λ(1,3)e
(λ(1,2)−λ(1,3))t

∫ t
0 f̂C,Q(Ψ, s2)e(λ(1,3)−is2)ΨdΨ

eλ(2,3)tf̂B,Q(t, s2) = e−λ(2,1)t + λ(2,3)

∫ t
0 f̂C,Q(Ψ, s2)eλ(2,3)ΨdΨ

+ λ(2,1)e
(λ(2,3)−λ(2,1))t

∫ t
0 f̂A,Q(Ψ, s2)eλ(2,1)ΨdΨ

eλ(3,1)tf̂C,Q(t, s2) = e−λ(3,2)t + λ(3,1)

∫ t
0 f̂A,Q(Ψ, s2)eλ(3,1)ΨdΨ

+ λ(3,2)e
(λ(3,1)−λ(3,2))t

∫ t
0 f̂B,Q(Ψ, s2)eλ(3,2)ΨdΨ

Now differentiating with respect to t yields

(λ(1,2) − is2)e(λ(1,2)−is2)tf̂A,Q(t, s2) + e(λ(1,2)−is2)t ∂
∂t f̂A,Q(t, s2) = −λ(1,3)e

−λ(1,3)t+

λ(1,2)e
(λ(1,2)−is2)tf̂B,Q(t, s2) +

λ(1,3)e
(λ(1,2)−is2)tf̂C,Q(t, s2) + λ(1,3)(λ(1,2) − λ(1,3))e(λ(1,2)−λ(1,3))t

∫ t
0 f̂C,Q(Ψ, s2)e(λ(1,3)−is2)ΨdΨ

λ(2,3)e
λ(2,3)tf̂B,Q(t, s2) + eλ(2,3)t ∂

∂t f̂B,Q(t, s2) = −λ(2,1)e
−λ(2,1)t+

λ(2,3)e
λ(2,3)tf̂C,Q(t, s2) +

λ(2,1)e
λ(2,3)tf̂A,Q(t, s2) + λ(2,1)(λ(2,3) − λ(2,1))e(λ(2,3)−λ(2,1))t

∫ t
0 f̂A,Q(Ψ, s2)eλ(2,1)ΨdΨ

λ(3,1)e
λ(3,1)tf̂C,Q(t, s2) + eλ(3,1)t ∂

∂t f̂C,Q(t, s2) = −λ(3,2)e
−λ(3,2)t+

λ(3,1)e
λ(3,1)tf̂A,Q(t, s2) +

λ(3,2)e
λ(3,1)tf̂B,Q(t, s2) + λ(3,2)(λ(3,1) − λ(3,2))e(λ(3,1)−λ(3,2))t

∫ t
0 f̂B,Q(Ψ, s2)eλ(3,2)ΨdΨ
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Next we multiply both sides by e(λ(1,3)−λ(1,2))t, e(λ(2,1)−λ(2,3))t, and e(λ(3,2)−λ(3,1))t respectively

(λ(1,2) − is2)e(λ(1,3)−is2)tf̂A,Q(t, s2) + e(λ(1,3)−is2)t ∂
∂t f̂A,Q(t, s2) = −λ(1,3)e

−λ(1,2)t+

λ(1,2)e
(λ(1,3)−is2)tf̂B,Q(t, s2) +

λ(1,3)e
(λ(1,3)−is2)tf̂C,Q(t, s2) + λ(1,3)(λ(1,2) − λ(1,3))

∫ t
0 f̂C,Q(Ψ, s2)e(λ(1,3)−is2)ΨdΨ

λ(2,3)e
λ(2,1)tf̂B,Q(t, s2) + eλ(2,1)t ∂

∂t f̂B,Q(t, s2) = −λ(2,1)e
−λ(2,3)t+

λ(2,3)e
λ(2,1)tf̂C,Q(t, s2) +

λ(2,1)e
λ(2,1)tf̂A,Q(t, s2) + λ(2,1)(λ(2,3) − λ(2,1))

∫ t
0 f̂A,Q(Ψ, s2)eλ(2,1)ΨdΨ

λ(3,1)e
λ(3,2)tf̂C,Q(t, s2) + eλ(3,2)t ∂

∂t f̂C,Q(t, s2) = −λ(3,2)e
−λ(3,1)t+

λ(3,1)e
λ(3,2)tf̂A,Q(t, s2) +

λ(3,2)e
λ(3,2)tf̂B,Q(t, s2) + λ(3,2)(λ(3,1) − λ(3,2))

∫ t
0 f̂B,Q(Ψ, s2)eλ(3,2)ΨdΨ

Again we differentiate with respect to t to obtain

(λ(1,2) − is2)(λ(1,3) − is2)e(λ(1,3)−is2)tf̂A,Q(t, s2) + (λ(1,2) + λ(1,3) − 2is2)e(λ(1,3)−is2)t ∂
∂t f̂A,Q(t, s2)+

e(λ(1,3)−is2)t ∂2

∂t2
f̂A,Q(t, s2) = λ(1,3)λ(1,2)e

−λ(1,2)t+

λ(1,2)(λ(1,3) − is2)e(λ(1,3)−is2)tf̂B,Q(t, s2) + λ(1,2)e
(λ(1,3)−is2)t ∂

∂t f̂B,Q(t, s2)

λ(1,3)(λ(1,2) − is2)e(λ(1,3)−is2)tf̂C,Q(t, s2) + λ(1,3)e
(λ(1,3)−is2)t ∂

∂t f̂C,Q(Ψ, s2)

λ(2,3)λ(2,1)e
λ(2,1)tf̂B,Q(t, s2) + (λ(2,3) + λ(2,1))eλ(2,1)t ∂

∂t f̂B,Q(t, s2)+

eλ(2,1)t ∂
2

∂t2
f̂B,Q(t, s2) = λ(2,1)λ(2,3)e

−λ(2,3)t+

λ(2,1)λ(2,3)e
λ(2,1)tf̂C,Q(t, s2) + λ(2,3)e

λ(2,1)t ∂
∂t f̂C,Q(t, s2)

λ(2,1)λ(2,1)e
λ(2,1)tf̂A,Q(t, s2) + λ(2,1)e

λ(2,1)t ∂
∂t f̂A,Q(Ψ, s2)

λ(3,1)λ(3,2)e
λ(3,2)tf̂C,Q(t, s2) + (λ(3,1) + λ(3,2))eλ(3,2)t ∂

∂t f̂C,Q(t, s2)+

eλ(3,2)t ∂
2

∂t2
f̂C,Q(t, s2) = λ(3,2)λ(3,1)e

−λ(3,1)t+

λ(3,1)λ(3,2)e
λ(3,2)tf̂A,Q(t, s2) + λ(3,1)e

λ(3,2)t ∂
∂t f̂A,Q(t, s2)

λ(3,2)λ(3,2)e
λ(3,2)tf̂B,Q(t, s2) + λ(3,2)e

λ(3,2)t ∂
∂t f̂B,Q(Ψ, s2)
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Now we multiply both sides by e−(λ(1,3)−is2)t, e−λ(2,1)t, and e−λ(3,2)t, respectively, to get

(λ(1,2) − is2)(λ(1,3) − is2)f̂A,Q(t, s2) + (λ(1,2) + λ(1,2) − 2is2) ∂∂t f̂A,Q(t, s2)+

∂2

∂t2
f̂A,Q(t, s2) = λ(1,3)λ(1,2)e

−(λ(1,2)+λ(1,3)−is2)t+

λ(1,2)(λ(1,3) − is2)f̂B,Q(t, s2) + λ(1,2)
∂
∂t f̂B,Q(t, s2)

λ(1,3)(λ(1,2) − is2)f̂C,Q(t, s2) + λ(1,3)
∂
∂t f̂C,Q(Ψ, s2)

λ(2,3)λ(2,1)f̂B,Q(t, s2) + (λ(2,3) + λ(2,3)) ∂∂t f̂B,Q(t, s2)+

∂2

∂t2
f̂B,Q(t, s2) = λ(2,1)λ(2,3)e

−(λ(2,3)+λ(2,1))t+

λ(2,1)λ(2,1)f̂C,Q(t, s2) + λ(2,3)
∂
∂t f̂C,Q(t, s2)

λ(2,1)λ(2,3)f̂A,Q(t, s2) + λ(2,1)
∂
∂t f̂A,Q(Ψ, s2)

λ(3,1)λ(3,2)f̂C,Q(t, s2) + (λ(3,1) + λ(3,1)) ∂∂t f̂C,Q(t, s2)+

∂2

∂t2
f̂C,Q(t, s2) = λ(3,2)λ(3,1)e

−(λ(3,1)+λ(3,2))t+

λ(3,1)λ(3,2)f̂A,Q(t, s2) + λ(3,1)
∂
∂t f̂A,Q(t, s2)

λ(3,2)λ(3,1)f̂B,Q(t, s2) + λ(3,2)
∂
∂t f̂B,Q(Ψ, s2)
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Now taking the Laplace transform w.r.t. t leads to the following expressions

 Lf̂A,Q
(s1, s2)[s2

1 + (λ(1,2) + λ(1,3) − 2is2)s1 + (λ(1,2) − is2)(λ(1,3) − is2)] =

 Lf̂B,Q
(s1, s2)λ(1,2)(λ(1,3) + s1 − is2) +

 Lf̂C,Q
(s1, s2)λ(1,3)(λ(1,2) + s1 − is2) +

λ(1,2)λ(1,3)

λ(1,2)+λ(1,3)+s1−is2
+ (1− (λ(1,2) + λ(1,3)))

 Lf̂B,Q
(s1, s2)(s2

1 + (λ(2,3) + λ(2,1))s1 + λ(2,3)λ(2,1)) =

 Lf̂C,Q
(s1, s2)λ(2,3)(λ(2,1) + s1) +

 Lf̂A,Q
(s1, s2)λ(2,1)(λ(2,3) + s1) +

λ(2,3)λ(2,1)

λ(2,3)+λ(2,1)+s1
+ (1− (λ(2,3) + λ(2,1)))

 Lf̂C,Q
(s1, s2)(s2

1 + (λ(3,1) + λ(3,2))s1 + λ(1,2)λ(1,3)) =

 Lf̂A,Q
(s1, s2)λ(3,1)(λ(3,2) + s1) +

 Lf̂B,Q
(s1, s2)λ(3,2)(λ(3,1) + s1) +

λ(3,1)λ(3,2)

λ(3,1)+λ(3,2)+s1
+ (1− (λ(3,1) + λ(3,2)))

Using the identities f̂A,Q(0, s2) = f̂B,Q(0, s2) = f̂C,Q(0, s2) = 1 with Cramer’s Rule leads to

the following expression for  Lf̂A,Q
(s1, s2)

∥∥∥∥∥∥
λ(1,2)λ(1,3)

λ(1,2)+λ(1,3)+s1−is2
+ 1− (λ(1,2) + λ(1,3)) −λ(1,2)(λ(1,3) + s1 − is2) −λ(1,3)(λ(1,2) + s1 − is2)

λ(2,3)λ(2,1)
λ(2,3)+λ(2,1)+s1

+ 1− (λ(2,3) + λ(2,1)) (s2
1 + (λ(2,3) + λ(2,1))s1 + λ(2,3)λ(2,1)) −λ(2,3)(λ(2,1) + s1)

λ(3,1)λ(3,2)
λ(3,1)+λ(3,2)+s1

+ 1− (λ(3,1) + λ(3,2)) −λ(3,2)(λ(3,1) + s1) (s2
1 + (λ(3,1) + λ(3,2))s1 + λ(3,1)λ(3,2))

∥∥∥∥∥∥∥∥∥∥∥(s2
1 + (λ(1,2) + λ(1,3) − 2is2)s1 + (λ(1,2) − is2)(λ(1,3) − is2)) −λ(1,2)(λ(1,3) + s1 − is2) −λ(1,3)(λ(1,2) + s1 − is2)

−λ(2,1)(λ(2,3) + s1) (s2
1 + (λ(2,3) + λ(2,1))s1 + λ(2,3)λ(2,1)) −λ(2,3)(λ(2,1) + s1)

−λ(3,1)(λ(3,2) + s1) −λ(3,2)(λ(3,1) + s1) (s2
1 + (λ(3,1) + λ(3,2))s1 + λ(3,1)λ(3,2))

∥∥∥∥∥
The remainder of the solution is currently being worked on.
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