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A Nonlinear Shallow Water Wave Equation

and its Classical Solutions of the Cauchy Problem

Introduction

Surface water waves of lengths much greater than the depth upon which they

propagate are called shallow water waves. To describe mathematically the

dynamics of these waves, various simplifications of the Navier-Stokes have

been made over the years, leading to different sets of equations. Indeed

there is no shortage of shallow water wave equations, familiar ones being the

Korteweg-de Vries equation, the shallow water equations [23], the Boussinesq

equations, and those resulting from the linear potential theory. All these are

described nicely in the article of Peregrine [24].

There is an interest in including the effects of viscosity in a shallow
water wave model, and these previous models do not. In the present work,

a nonlinear wave equation incorporating the effects of viscous dissipation is

formulated, and the well-posedness of the associated Cauchy problem for

long time classical solutions is established. Several numerical experiments

have been performed displaying the rather interesting behavior of solutions

of this equation.

Overview. In Chapter 1, the model equation is constructed beginning from

the Navier-Stokes equations for an incompressible fluid. By integration of

these equations over the depth of the fluid (water), we remove the vertical
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dependence of these equations and at the same time introduce explicitly the
position of the free surface. Under reasonable assumptions on the flows of
interest, the integrated equations lead to a simple nonlinear wave equation
in two spatial dimensions, (1.6), for the evolution of the free surface.

From a mathematical point of view, the next step is to establish con-

ditions under which a solution can be shown to exist. More generally, it is

important from both mathematical and physical points of view to establish

the well-posedness of problems this equation might reasonably be asked to
describe, and as it is in some sense naturally hyperbolic, we shall inquire into

the well-posedness of the simplest problem for a hyperbolic partial differen-
tial equationthe Cauchy problemfor a special case of the model equation.

Specifically, we shall deal with the case when the bottom topography is fiat

and horizontal, and dissipation is constant. In such a case we may scale the
problem to obtain the system

utt put = cliv (a(u)Vu),

u(0,x) = co(x),

ut(0,x) = 0(x),
where a(u) = 1 u and p > 0 is a constant. It is the well-posedness of this
system we shall establish in a subsequent chapter.

Chapter 2 is preparatory material, introducing certain mathematical

notation, inequalities, and results to be used in the subsequent existence and

uniqueness arguments of Chapter 3. It is in Chapter 3 that the well-posedness

of the Cauchy problem for classical solutions of the nonlinear wave equation is

established. Instead of dealing directly with the nonlinear equation, it is more

convenient to deal with a linearization of it, establishing the well-posedness

of the linear problem, then showing that this well-posedness is preserved as

the linearization is removed and we deal with the fully nonlinear equation. A

short Chapter 4 provides a result on the asymptotic relation between the size

of the initial data and the lifespan of the classical solution for the nonlinear
wave equation.
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Along with Chapter 1, Chapters 5 and 6 are of a more "physical" nature

than the others. In Chapter 5, a variety of analytical results is presented for
the nonlinear model in one spatial dimension, with an eye toward develop-

ing parameters and quantities useful for comparing theory with experiment.

Chapter 6 provides some results of numerical computations in one and two
spatial dimensions for the nonlinear waves being investigated, and a compar-

ison is made between the nonlinear wave and the wave predicted by linear

theory. The computations are made using centered finite differences for both

space and time derivatives with spatial attention paid to preserving the diver-

gence form of the equation. In order to mainstain stability of the iteration,
a local form of the classical Courant-Friedrichs-Lewy condition is used to

maintain an adequately small time step.

Previous Work. Equations similar to the one above have been derived by
Lamb [17, §§189, 193] and Gallagher [6] although in both cases, the equations

subsequently are linearized. In the present model, the nonlinearity is retained

as physically important and interesting. In fact, one reason for retaining it
is the essential difference between linear and nonlinear partial differential

equations. Numerical experiments for initially smooth waves in one spatial

dimension show that the solution may remain small, yet its gradient blows

up, a significant departure from the usual linear behavior. Since we shall

be interested in the existence of a unique, long time smooth solution to the

Cauchy problem, it is of interest to survey briefly some related results. The

one dimensional case is formally equivalent to the first order system

ut vx = 0,

vt ± (1 + u)ux = pv,

and there are important results for such systems. A "negative" result due
to Lax [18] and John [9] is that in the case tt = 0, smooth solutions of this
system can exist for only finite time. In the present case, this is because
the crest of a wave has greater local speed than its neighboring trough, and
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the tendency is for the wave to break. Yet, when p > 0, positive results
are available. Slemrod [29] has shown that when p is large enough and the
initial data small enough, global classical solutions may exist. Similar results

are given by Dafermos [4] for a variety of wave equations.

Over the past fifteen years, a great deal of attention has been directed

toward the initial value and initial-boundary value problems for nonlinear

wave equations in more than one spatial dimension as the equations arising

in physical models naturally are set in two or three space dimensions. A very

general class of these equations is of the form

utt Au = F(u, Du, D2 u),

where D = (a/ot,a/axi a/axn) and F : Rk R is regarded as a
nonlinear perturbation of the usual linear wave operator appearing on the
left hand side. For convenience in what follows immediately, A shall be a

k-tuple, (Ai, , An) and IA1 (E lAil2)1/2; also, we shall write the spatial
gradient as Dr = V = (U/Us,... ,U/ax). Particular perturbations have
proved to be important as, for example, F Fi(Du)D2 u arises in elasticity
theory and F F2(u) gives rise to nonlinear Klein-Gordon equations.

Local existence of solutions of the Cauchy problem for nonlinear hyper-

bolic equations (in more and less abstract settings) has been established by

Schauder [26], Kato [12], and others, so attention currently is focused upon

obtaining nonlocal results. Global existence results, which are much more

valuable, guarantee the existence of a solution for all t > 0 in the spatial
domain of interest. Such a result might be, for example, that for all initial
data "suitably small," a solution exists for all time. Other nonlocal results

deal with long time existence of solutions; that is, for any T > 0 we can find

a solution for 0 < t < T provided we choose the initial data small enough.

This size restriction depends upon the given T, and we can reasonably sus-

pect that larger values of T require smaller initial data. There are cases in

which a nonlinear wave equation is known to have global solutions when the



spatial dimension of the problem, n, is high enough while long time solu-
tions are known to exist for lower dimensions. It seems to be the trend that,
roughly speaking, the likeliness of global existence of solutions improves as

the number of spatial dimensions in a problem increases. When global re-

sults are known for n > no and long time results for n < no, strange things
may happen in the borderline case n 1 as is demonstrated by the
phenomenon of "almost global" existence in which a slight reduction in the

size of the initial data results in a tremendous increase in the lifespan of a

solution.

In 1975, John [10] obtained estimates for the lifespan of solutions of the

initial value problem for

tt= Fi(Du)Dr2u,

when n > 3, and a few years later, Klainerman [13] improved these by
demonstrating that, in fact, global solutions exist for

(1.1) Utt - AU F(Dtt, D,Du),

when n > 6 and F(A) 0(IAl2) near A = 0. The case of "smoother"
perturbation functions, F(A) 0(1A11±a), for a = 1,2, ... was considered
by Shatah [27] and Klainerman & Ponce [14], and the "almost global" nature

of solutions of (I.1) when n = 3 was demonstrated by John Sz Klainerman
[1.1].

Most recently, these results have been improved by Li & Chen [20]
and Lindblad [21]. In particular, Lindblad extends the work of John Sz
Klainerman on (I.1) in three dimensions by allowing the perturbations to
dependent explicitly upon u,

(1.2) utt Au F(u, Du, D Du),

under the restriction Fui,(0, 0, 0) = O.
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Little work, though, has been done in the case of two spatial dimensions.

HOrmander [8] and Kovalyov [15] obtain long time results for perturbations

of the form F = F3(Du, D2 u). The perturbation of interest in the present
nonlinear wave model is of the form

(1.3) F(u, Du, D2 u) u.D!u Au12,

so that F(A) = 0(1Al2) near A = 0. From [20] we know that a dependence of

O(A!5) will guarantee global existence of a classical solution, but we are far

from meeting this requirement. We need also to keep in mind the results of

Sideris [28] that for perturbations of the form (1.3), classical solutions of the

nonlinear wave equation must break down if the initial data are too large.



Chapter 1

The Model Equation

Derivation.t Imagine a body of water bounded below by a known topogra-
phy, and above by a free surface in contact with air, as shown in Fig. 1. The
positive x-direction is upward. Let z ho(x,y) describe the bottom and
z = h(x,y, t) the free surface. Then the thickness of the column of water at
(x,y) is H = h 110. Let u = (u, v, w) be the velocity field of the flow, 2 the
density of the fluid, p its viscosity, p the pressure field, and g = (0, 0, g)
the acceleration due to gravity.

The Navier-Stokes equations for an incompressible fluid then may be written
as

div u = 0,

ut + (u V)u = - 1- p - v curl g
2

where 4) = curl u is the vorticity and ii = 42 is the kinematic viscosity.
In the following, n = (hz , hy, +1), and no = (hox, hoy, 1) are nor-

mals to the free surface and the bottom, respectively. At the free surface
we impose the kinematic boundary condition ht u n, and the dynamic
boundary condition that the stresses are continuous across the air-water in-
terface; in the absence of surface tension and significant wind stresses, this

t The results of this chapter appear in [7].

7



Fig. 1. Shallow Water Model Geometry.

Now integrate both expressions of (1.1) with respect to z from the bottom,
z = ho(x, y), up to the free surface, z = h(x, y, t). Using Leibniz' rule for
interchanging differentiation and integration and these boundary conditions,
the continuity equation becomes

Oh a ieh
a fh

(1.2) --t- u dz v dz = 0,
01

and the conservation of momentum equation becomes

a 1
--- I u dz , I Vp dz v curl w dz

(1.3) at ho g Jh0

(n x 14j) z=h + V (no x w)lz--ho &IL

Here. in (1.3), nonlinear terms of the form -82,-r fhh u2 dz, ay fho ttV dz, etc.
have been neglected in linearizing about a still water base flow.

In inviscid shallow water theory, it is shown that the vorticity of the
flow is, to lowest order, vertical. In the present case, although the vorticity
cannot be strictly vertical throughout the flow (and not, in particular, at
the bottom), we shall assume it is nearly vertical in the vicinity of the free
surface, and more precisely, in the direction of n ; then n x cd.) 0 at the free
surface.

8

reduces to the continuity of pressure across the interface. At the bottom, we
have the no-slip condition u = 0, and trivially, the condition for no normal
flow u = 0.

z h

z = h,o
z 0



z=ho

9

Another consequence of inviscid shallow water theory is that the pressure
in the flow may be taken as hydrostatic. We assume in the flows of present
interest that this approximation is still valid. Since the atmospheric pressure
may be taken to be a constant along the free surface, say zero, and since p is
continuous across the interface, we get an explicit expression for the pressure:

p(x,y,z,t) eg (h(s,y,t) z).

Using this expression, the second integral in (1.3) becomes

(1.4) -- dz = gHn.
0 he

Equations (1.3) and (1.4) yield

(1.5) fh u dz gHn v curl I w dz gH v no x wat ho ho

The final approximation involves estimating the vorticity at the bottom. To
do this, we assume the vertical gradients of the velocity field dominate so
that

w!z-,h0 (v 2,u,, 0).

By the mean value theorem for integrals, we have

v dz = v(s. y, z*, t)H ha

for some ho < z* < h so that by Taylor expansion about z ho,

v( x, z*,t) v(s, y, ho, t) v,(x,y, ho,t)(z* ho).

Again, u = 0 at z 110, whence

1
fit1

v dz dz,vz I zh ° (z* ho)H 1,0 Hob I ho



(1.6)
a2 h v

at 2 Ho 6 at
- a /- ah) ( Oh\H + -5 H -5)] .

10

where 45 = (z* ho)H / Ho is a parameter independent of z; it is expected 6.
would be experimentally obtained. Similarly,

1 huzlz u dz.Hos ho

For small enough beach slopes, aHo/ax, an-0/ay R.-, 0 and are negligible.
Further, since we expect 8 to vary with Ho, it follows that its derivatives
should also be negligible. So

a ( 1 al 1
ax H0(5 ay Hos ) °

for small beach slopes. Specifically, if D and L are length scales characterizing
the flow depth and changes in the horizontal velocity field (u, v), respectively,
we need FHoi D/L to guarantee the "smallness" of these derivatives.

Now take the divergence of the momentum equation, (1.5), use the fact
that

a a 1.1 a2h
div-57

1h
udz = div f udzL

and that diva( 1Th
u dz)(no x w) = ax lic.(5 .1ho

a / 1 hf
v dz\+ ,

uy \ H 05 1 ho /
1 Oh

H0(5 Ot

to get an expression governing the evolution of the free surface:

Note that if we interpret the quantity g H as the local wave speed, (1.6)
describes waves in which wave crests travel faster than the troughs, since
Hcrest Htrough This suggests the possibility of the eventual presence of
shocks or wave breaking.
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When the effects of viscosity are insignificant and the water is of constant
depth, take ho = 0; then H = h and this expression becomes

52h 1 2ar2 =

If there is a steady underlying flow, say a longshore current U, approxi-
mations to the neglected nonlinear terms may be retained, and a similar
argument shows

a2h v ah= gr a ( Hah a (
pi 2 -I- Ho ) at Lax ax) ay ay)j

From a physical standpoint, we expect solutions of (1.6) to be "wave like" and

to mimick the behavior of the linear wave equation obtained by replacing H
with Ho for at least a short time. As mentioned though, the nonlinearity of
(1.6) and the attendant possibility of breaking makes the eventual divergence
of waveforms certain. A hopeful note is the presence of the damping term
(vIH08)ht which provides a mechanism for the dissipation of wave energy.
Perhaps this dissipation (causing a continuous decrease in wave amplitude),
coupled with the dispersion which occurs in two spatial dimensions, is suffi-

cient to offset the tendency toward breaking caused by local height (hence,
wave speed) differences.

Recalling that 8 represents a sort of bottom boundary layer depth, or
more precisely, an effective depth through which the vorticity present at the

bottom affects the flow, it is evident that the damping coefficient v/6H0
represents an energy dissipation mechanism in which wave energy is lost to
bottom vorticity. Presumably, if this effective vorticity is concentrated (i.e.,
6 is small), the dissipation can be rather high and the eventual breaking of
the wave delayed.

The Scaled Equation. Let us now restrict our attention to a special case
of (1.6), namely, the case in which the bottom is horizontal and the viscous
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damping coefficient is constant. If we suppose Ho is the still water depth,
we can write h = Ho + ri to get the following expression for 77:

+ oi = gdiv ((Ho + OTT).

If we scale all lengths by Ho and the time by /Ho/ g, we obtain an equation
of the form

(1.7) uti + put = div ((1 u)Vu).

It is this expression which we shall investigate in the remainder of this work
with the hope that results obtained for it will lend insight to the more general

case (1.6). The quantity u appearing in (1.7) is given by u = 771H0 and should
not be confused with the first component of the velocity field of which we no
longer shall have need to consider.



Chapter 2

Some Mathematical Preliminaries

In the following analyses, it shall prove useful to consider functions defined
on an interval [0, 7] with values in a function space. Thus for example,
f E C([0, 7], L2 (R2)) is a function assigning to each time t E [0, 7] a function
in L2(R2); moreover, f is continuous on [0, 2]. To reinforce this notion
we write f instead of ft for time derivatives. At times though it will be
convenient to revert to a more usual notation: Instead of writing f (t)(x) for
the value of f (t) when evaluated at the spatial point x E R2, we write simply
f (t, x). Moreover, notational abuses such as V f , where V

are to be interpreted in the obvious manner.

Norms and Function Spaces. The following norms and seminorms for
the Lesbegue and Sobolev spaces shall be used: the LP norms

if 1L2= if12 d)1/2x
R2

If IIL = ess sup if!;

13



the "integer" Sobolev space norms and seminorms,

If IH.

1,2
\0<lal<m

E fR,
1<laf<m

11 vf

1/2

ID"f12 dx) ,

\ 1/2

ID' fl2 dx

14

and for functions of time, t, with values in a function space, the related
quantities

If II L2 ,T max f(t) IL2'0<t<T

T = max lif(t)IlLo,0<t<T

If I Hrn ,T max (t)0<t<T

If I Hrn ,Tax I f (t)IH,.= 0<t<T

In Theorems 4 and 5, use shall be made of the L2 "fractional" Sobolev
spaces HP generated by Bessel potentials [5, 31]. These spaces coincide with
those just introduced whenever p is an integer; the norms are equivalent, but
not equal, yet this inequality of norms poses no real problem for us, and
no notational distinction shall be made between the integer space norms,

III Hr n' and the fractional space norms, II 11/1.,, in these theorems.
The spaces

T) = CUD, T}, Hi' (R2)) n cluo, Ti, eurnl(R2))

shall be of particular interest, especially for the cases m = 1 and rn 4; the
norms on these spaces are given by

If rn ,T (11 (t)
2

(t)
12

1/2

,T )

The generalization of T) to c(O, T) and its norm for fractional p is
obvious.



Then

I fk(t) fk(s)
1L2

-5- ft if k(T)ik(a)1 dr do- dx
2

L f

< J lik(7)1k(coldx drda
ft

< k(7)11L2111 k(a)11L2 dr dor

where the Cauchy-Schwarz inequality has been used. Then clearly

fk(t) fk(s)1121,2 (t 8)2111k112L2,T

15

Families of Functions. There will be an abundance of sequences, subse-

quences, subsubsequences, etc., so we employ the following convention: N

shall always denote the natural numbers 1, 2, 3, ... so a sequence may be writ-

ten as {fk : k E N}; moreover, N' shall always be an infinite subsequence

of N, N" an infinite subsequence of N', etc., so we write subsequences as

ffk :k E subsubsequences as {fk : k E N"}, and so forth. This removes

the burden of subsequences from subscripting and places it upon modifying
the index set.

The following version of the Arzela-Ascoli theorem for mappings of [0, 7]

into a metric space 3C shall be used [25]:

THEOREM. (Arzela-Ascoli). Suppose fi,12, ... is an equicontinuous
family of functions from [0, 7] into a metric space I. If ffk(t) : k E
is sequentially compact for each t E [0, 71, then there is a subsequence
{fk(t) : k E N'} converging point wise to a continuous function f, and the
convergence is uniform on [0, 7].

A Result on Equicontinuity. Suppose fi , f2, ... is a sequence of functions

with jk, E C([0, T],L2), and the jk uniformly bounded, say lijk IIL2,T
M for k = 1, 2, .... To see that f, ... is an equicontinuous family in
C([0, 71, L2), use the fact that for t > s,

fk(t) fk(s) = jk(r)dr.
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Ilfk(t) fk(s)IIL2 Mit si

which shows the family is equicontinuous.

Mollifiers. The technique of mollification introduced by K. 0. Friedrichs
allows us to construct smooth approximations to functions while preserving
bounds on the norm of the function. Suppose j° : R R and j : R2 -4 R
are nonnegative Cr functions with supports contained in the unit balls of
R and R2, respectively, and Ili° Li (R) = Li (R2) 1. For e > 0, we define
the mollifier J., by

(J, f)(t, x) = f j(t 7.-)j ,(x )f (7, e) ekdr
o JR2

where j E° (t) E-1 (t / e) and j(x) = E-2j(x/e). Then JE f is in C"(Rx R2)
whenever, for example f G [0, T] x R2). We have the following important
properties of

(2.1)

for p = 2, oo;

(2.2)

If IILP,T'

16

IJJ I<LP ,T

IIJef IIIm.T IIf!IHm,T,

and when f E C([0, TJ, L") and uniformly continuous,

(2.3) jel f I Lc'° ,T

as E. 4 0.

To verify these, notice that (2.2) follows directly from (2.1) in the case
p = 2. It is clear that (2.1) holds in the case p = Do, and (2.3) is shown in
[5], so we need establish only (2.1) in the case p = 2. To this end, we have

Ik1f(t) I L2 lie * f oT j()(t T)f(r)dr1 L2

if oT :)(t TV(7) dr 1,



by the Young inequality. Now

11f0T:4(t 7)./(7)d7-1112 = f70'f OT:4.(t 7-)].(,)(t or)fR2 f (T)f (c)ck d7- da

f oT f lj(e) (t 7-)j(t (7)11 f f (a)II L, drdo-

5- If 12,T

where the Cauchy-Schwarz inequality has been used, and it follows that

IlJef liL2,T -5- lIfIlL2,T

Inequalities of Poincare and Sobolev. The Poincare inequality shall
prove to be essential. For f G C'°(R) it may be verified that Ill 111,2 <
(d/n)lf where d diam supp f, so in the present case with n = 2 we
have

11-filL2(R2) Pl-fl H1 (R2

It will be convenient to use Cf to denote the "Poincare coefficient" d/2
associated with f. For instance, Cti (for the function u) appears in Lemma
2. Two exceptions are C, which is the constant in the Sobolev inequality

If II L ( R2 ) _5_ CS I f I 112 ( R2 )

and Cp which is an upper bound on a family of constants for the Poincare

inequality, and introduced in Lemma 2 also.

17



t The results of this chapter appear in [3].

Chapter 3

Well-Posedness of the Cauchy Problem

Of the mathematical questions surrounding a partial differential equation,
perhaps the most fundamental are those involving the existence and unique-
ness of its solutions. In this chapter, we address these problems for the
Cauchy problem for (1.7), and show that for sufficiently small initial data,
a long time classical solution exists and is unique, and more generally, the
Cauchy problem is well-posed.t Such results are, of course, not without prac-
tical implications, especially if we view this equation as a nonlinear extension
of the usual linear wave equation. Specifically what shall be shown is that,
given T> 0, there always is a unique classical solution, u E C2([0, x ,

of

ii + pit div (a(u)Vu),

(3.1) u(0) =

it (0) =

whenever cp and 1/) are supported compactly on R2 and 1(,1214.4 (R2) ± 2/) II2H, (R2)

is small enough. Here, and in what follows, a(u) = 1 + u. First, though, an
overview of the approach.

Overview. The existence proof proceeds along the lines of the classical
iteration scheme in which the nonlinear equation is replaced by pfzi =

18
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div (a(ui-1)\7u ), with the hope that ui u in the proper function space,
and u is a solution. It was found more convenient, however, to consider
instead the iteration

(3.2) Itui div (a(J,ui-1)Vui),

where J is a mollifier in space and time. The convergence uz u is es-

tablished for every E > 0, then we let E -4 0. Lemma 1 provides sufficient

conditions for the well-posedness of the Cauchy problem for a linear wave

equation with smooth (C") coefficients, and establishes the finite speed of
propagation of the support of its solution. This shows (3.2) can be solved.
In Lemma 2 it is shown that the growth of the solution of (3.2) can be con-

trolled by bounding the coefficients, and that in fact there is a bound, say
M, such that ui is norm-bounded by M whenever u is. In Lemma 3, the
convergence uz u is established for each E. > 0, and in Propositions 4 and

5 we remove the mollifier by letting 6 0 which establishes the existence of

a classical solution of the fully nonlinear problem. In Proposition 6 we show

the classical solution is unique, and in Proposition 7 we show that this classi-

cal solution depends continuously upon the initial data thereby establishing

the well-posedness of the Cauchy problem (3.1).

Linear Equations with Smooth Coefficients. We begin now to show

that (3.1) always has a long time classical solution provided the initial data

can be chosen small enough. Since the proof requires linearization of the

nonlinear equation, we state without proof a result from the theory of linear

hyperbolic equations [30]:

LEMMA 1. Suppose v E C"([0, x R2) and 11 II < 1. Then the
Cauchy problem

ii + 11,it = div (a(v

u(0) = cp,

ii(0)
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with initial data y E Ilm(R2) and 7/, E m > 2, always has a
unique solution, and

u E C2([0, Hin-2 (112)) n C' ([O, Hrn -1 (R2)) n co), Ilm (R2)).

Further, supp u(t) grows in a bounded fashion, and specifically, if

d(t) = diam {supp u(t) U supp it(t)},

then d(t) 5_ d(0) 2t(1 IlvilLoo,T)1/2.

Thus, for example, if we take v 0, we get a nice solution, unique and
defined on [0, 71. As we shall see now, if v is small this is still the case,
and in fact if the initial data are small we can find a number bounding u in
C4(0, T) whenever v is similarly bounded. This provides the first step toward
setting up a well-defined iteration scheme. Indeed, a very real concern in the
solution by iteration is the loss of hyperbolicity in (3.2): Given u°, can we be

sure that the iteration continues to produce a new hyperbolic equation? By
controlling the size of the initial data, we can answer this in the affirmative.

LEMMA 2 ("High norm" boundedness). Let v E C([0, TJ, Cr(R2))
with IIVljLT< 1 be given, and suppose u is the solution of the Cauchy
problem with compactly supported initial data

= div (a(v)Vu),

u(0) (p,

it(0) =

for 0 < t < T. Whenever the "initial energy"

12 112

- (P hm (R2) + II H3( R2)

is small enough, there are constants n and A depending only upon T and the
size of the support of the initial data such that

IlUILLco <1



and
12

11
<7,'

112 AE011/1H47 ' 11-11H3,T

whenever v satisfies the same inequalities.

Proof. By Lemma 1, u E 4(0,T) and satisfies the linear equation
ii + pit = div (a(v)Vu) in [0, 21. Let Da represent partial differentiation
of order at in the spatial variables, and for convenience, set u" = Dau,
va = Day, etc. Then for aJ < 3 we have upon differentiation

(3.3) ii" + pita = div (a(v)Vu) ECdiv (W3vui(3°)
0+131=c1

1,61>i

where the summation (which is empty for at = 0) results from application
of the product rule and C3 = (73:.)(73:). When lod < 3 we have C3( < 3; this
shall appear in a bound below. We get an energy inequality by the usual
procedure: multiply through (3.3) by U" and integrate over R2. Using the
fact that u is supported compactly, we obtain
(3.4)

1 d
JR, (it )2 + a(v)117012] dx itI (0)2 dx

R2

=
1

i2iVu I ds 1Vvi3 Vu13' vu' ds.2 R2 in2 L

This equation leads to an inequality if we drop the term involving /./ (since
p > 0) and bound the terms on the right hand side. Using the Sobolev

embedding theorem (IVIIL(R2) 5_ CsIlf 1H2(R2)) the first of these is easy,

1R2

1 I

id\TUal2 dX 75111711LeoIi

1

<2C8111)11H2

2

'11,2

L2

21

while the second term requires a look at different cases. When I/31 = 1, 1011

1

(3.5)
75



can take values 0, 1, and 2:

[Vvs Vusl vSAILS1 dx
1R2

5- + JJVIJL IlAuln1L2} 11'1°12

5_ C.911011L2 {IlVv1H2 I 11L2 ll'Aufi#11L2}

and by introducing the I-norm, we get

[vs Vtii3' vflAufil üadx 5_ C.1111a II L2 HH41U1H, H,Ittl H4}

5- 3c slinalL2luiwilvii/4.
When the cases 101 = 2 and 1/31 = 3 are treated in such a manner, the same
bound results; that is,

(3.6) f iVvS VuSI vSAuS1 dx 5_ 3C silizaii 1L211111/4 V1 //4R2 L

whenever /3 /3' = a, !al _5_ 3, and 1/31 .? 1. Using (3.5) and (3.6) in the
equation (3.4) we obtain an inequality

1 d
[(P)2 a(v)1Vu'll dx 5_ iC,111)

36C,11011

which when summed over la! < 3 gives

1 d 112H12 d
-2cipul1H3 +Kit IR2 a(v)IVel2 dx

0<lorl<3

< iCs111)11H211112//4 360C3111111H31U 1141V1H4

iC
H2 fiVill2H3 Ul2H4} 180C siV H4 0'42H.

Using the Cauchy-Schwarz inequality,

1 d 1 d
75-crt

2

IR2
0<loti<3

(3.7) < fiC,IHH3 +180c,11)11/41{

5 181C8 {}11121/3 + v12114}1/2 {

1R2

a(v)1V012 dx

IR2 IIVUa 12L2

I114 IV! /14

142H3 17112H4

12

2

1/3 + 1111114

2

99



Let Et, and Et, denote the "maximum energy" of u and v:

E(t) .11i1112H3,t+

E(t) PI12.113,t IvI2H4,e

Integration of (3.7) over [0, t] yields

1 2 1

72- Ilii(t)11H3 + E fR2
a(v(t))1Vua(t)12 dx

o<ied<3

(3.8) 1

5- " .111/(°)112H3 + fR2 a(v(0))1\70(0)12 dx
O<Ict I <3

+181C,Ev112(T)Eti(T)t,

and since
max la(v(t))1 1 +

R2

min. la(v(t))1 1
R2

we get

and

0<iai<3 R2
a(v(t))1V0(t)12 dx (1 !u(t)I12

Iv(0)11L.)111(13)
2

112

From these bounds, (3.8) yields

-121(1 Iv(t)11 )(jiL(t)110 lu(t)1j4) 5_ (1+ Ilv(0) L,3)Eu(0)

+181C,E:-,12(T)E(T)t,

and since this holds over 0 < t < T, it follows that

(3f9)

74.(1 IIL IL.,T)E.(T) 5_ 71)-(i + 112)(0)11 )E(0) 181C8E,Y2(T)Eti(T)T.

23

a(v(0))1V 1.1' (0)12 dx < (1±
0<laj<3



{ +A +B
max < < 1
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Expression (3.9) relates the energy of u to the energies of v and the ini-
tial data. Supposing for a moment that v = 0, this expression shows that
E(T) <E(0). Thus, the energy of the evolving solution is limited to that
which is initially available. It is reasonable to suspect that a similar result
holds when v is "small." To show that this is indeed the case, let A and B
be the constants

(3.10a) A =
724

T
1 + Cp

(3.10b) B 6 + 8C
T

1 + Cp

and choose -y and A so that

4 27
A

In these expressions, Cp + 2T, and d is the diameter of the initial data,
d = diam {supp y U supp ti)}. Selection of 7 in this manner guarantees A > 2.
Suppose

(3.11) ,4/2 <
A 1-7

° 724C,T A1/2

What shall be shown now is that if

(3.12a) Er(T) < AE0

and

(3.12b)
11 v II ,T1 -

then u also satisfies the same inequalities. While these inequalities perhaps

are very restrictive, they always hold when we choose v = 0. This is im-
portant for setting up the iterative scheme described earlier, since the initial

(3.10c)

and



SO

IIIL,T C + + (2 -y)T)E.I/2

< C3(1 + id +2T)Eu112

= C ,(1 + Cp)Et,"2

25

value for the iteration may then be taken to be the zero function. Assuming

(3.12) holds, the energy inequality (3.9) gives

1-YE(T) (1 .12.7)E0 +181C.,A1/2E(V2TEu(T)

and by rearrangement, E(T) is bounded as

(7 724C8A1/2E01/2T)Eu(T) <(4 27)E0.

Since E01/2 is bounded as in (3.11), we have

(7 (1 -y)A)Eu(T) 5 (4 27)E0.

Division yields
4-2

Eu(T) Eo
(1 `7)A

AE0

so we have established that (3.12a) also holds for u. To show the same for
(3.12b), note that by use of the Sobolev and Poincare inequalities,

12 11/2
III/IIL00(R2) 5- c8111/11114(10) S 111U112L2(R2) 1U1H4(R2)

cs Icu2 + 111/2 lulH4(m)

C.,(1 + Cu)E.1/2(T)

where Cu is a constant depending only upon the size of the support of u.

And in particular, since the support of u propagates at finite speed, Lemma

1 guarantees
Cu < id + T(1 +11vIlLoo,T)1/2

id +

22-d +



Finally, since En < AE0 as just shown, we have

C,(1 + Cp)A1/2E(1/2

A
=- C9(1 + Cy)724C,T°.

-y)

= 1 - 7,

so (3.12b) holds also for u. Setting - -y, we have shown the common
bounds. Q.E.D.

Convergence of the Iterative Scheme. With this result, we now turn our

eyes toward setting up the linearization/iteration of the mollified equation

(3.2). The following theorem shows that the iteration scheme is not only well-

defined, but also convergent.

LEMMA 3 ("Low norm" convergence). Let T > 0 be given and suppose

Je is a mollifier for every e > 0. If ;ya and 11, are supported compactly and the

initial energy E0 = IH4(R2)+ 110112F/3(w) is small enough, then the sequence

u1,u2,... generated by the iteration

iii div (a(JEui-1)Vut),

ui(0)

Ui(0) =

for i ,2, ... with u0 = 0 is well-defined and there is a unique u E (0, 7')

such that fr -ulli T -4 0 as i

Proof. The fact that the sequence is well-defined follows immediately

from Lemma 2, as long as we choose the initial energy small enough, accord-

ing to (3.11). To see the ith step of the iteration is defined, set v = JeU.
If

and

-1 2H4 ,T 1121137 AEo,

26



then properties (2.1) and (2.2) of mollification guarantee

114 Lo 0 ,T < 1

and

and by subtraction,

Led,i div(a(J,ui-1)Vw2 + (Jew

2

IvIH4,r 11u111-13,T AEo,

and by Lemma 2, ui has the properties required to continue the iteration.

Clearly the argument above holds when i = 1 (i.e., v 0), so the induction is

complete. To show the convergence of the sequence u1, u2, ... in (0, T), we

begin by establishing an energy estimate for wi u - u For the iterative

procedure to work, we need at least wi -4 0. The energy estimate to be
developed presently shows that this is the case, and in fact provides enough

control over this convergence as to render td, u2, ... a Cauchy sequence when

the initial data are small enough.

Since ui and ui-1 satisfy the differential equation, we have

+ = div (a(Joi-1)V ),

iii-1 div (a(Joi-2)Vui-1)

27

Multiplying by and integrating over R2, manipulations as in the previous

lemma yield

d

2 dt JR2
1

a(Jeu 1)1\771,1 dx< -2
dx

2 R2

tbiK,I,Vwi-1) Vu' (Jewi-1 )Au2-1} dx.

Let El denote the "energy" of the difference between successive solutions:

12

IWi2I L2,t I H1 ,tEi(t)



whenever E0 is small enough. Likewise,

IIuLc° (R2) ,T 2C5)'/E/2

and
sAi /2 E01 / 2

Further, the support of wi can grow only as fast as the supports of u and
ui-1, and these have known bounds. In particular, the Poincare inequality

holds as in Lemma 2, and we have

Ilwi (t)11 L2 (R2) C H (R2) 5. C / 2

where C d + 2T. With these results, it follows that

_1 d

2 cIt JR2

Lo 0 (R2).7' CAl /2 El /20

c5A'/2E01/2[Ei(011/2{ -1(011/2

+ 2C3CpA1/2E2[Ei(t)]i/2[Ei-1(111/2.

dx< J2-C,A1/2E01/262(t)

28

Since u1, u2,... all satisfy the same initial conditions, we have 0 = c2(0) =
c3(0) = .... In terms of these i's, the previous inequality yields

1 d
fR3 [(rbi)2 + a(ureui-1)1Vwill dx 5- ;11111i-111 L. (t)

ui -111 ,Tki (t)]l / 2
[i_1

(O]1

/2IlAui-1Loo (011" liwi (t)111122T

where on the right hand side we have used again the norm-bounding proper-

ties of the mollifier We need to bound the right hand side of this inequality;

by the Sobolev embedding theorem,

ui-111 (R2) ,T Clu
I H4 (R2),T

and by bounds established in the previous lemma,

( z)2 + a(J,, )1vw,
2



1C8 A1/2E1/22 0

and by rearrangement,

es
2C8A1/2E0112T) i-1

es
)T (1 -I- 2Cp)C,A112e2

1/2

(4 +8Cp)C,,A1/2E01/2T.

1/2
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The crudest of estimates now suffice; integrate over [0, t] where 0 < t < T
and use the fact that wi(0) tbi(0) = 0 to get

fiv
[(zbi (t))2 a(Jeui-1(t))1\70(t)12] dx

< -1C,A1/2E(1/2Ei(T)T + + 2Cp)C8A1/24/2[f2(T)]1/2[E2-1(T)]1/2T.

Now from Lemma 2, 0 < y < a(Jeu ) where 0 < -y < 1, so the integral
term is bounded below:

I[(iv' (t))2 Ftvi(t)12] dx
R2

5_1 f ktbz(t))2 a(u'l(t))1Vw2(t)12] dx.

This holds for every t E [0,7], so in fact we have

1.7E2(T)

< 7CsA1/24/2e(T)T + (1 2Cp)C,9,11/2E2[ei(T)11/2[E (T)]1/2T.

Now if ei-1 (T) = 0 we've hit upon a fixed point; then es (T) = Ei+1(T) ,
and the sequence of interest obviously converges. So supposing E (T) 0 0,
divide by it to get

The leftmost factor is positive (in fact, as already has been shown in Lemma
2, -y 724C3A1/2E,V2T is positive), so

1 \ 1/2 (4 + 8Cp)C.,-V1/2E0112T.

2C8A1/241/2T



m+k m- U =
1=1

Then

- u- 111,T < E ljjum - um'
1=1

m+1 - um+1-1).

= E 1

11,T

30

Clearly, by choosing E0 small enough we can make the right hand side as

small as we please. The particular choices and bounds made previously for
7, A, and E0112 in fact guarantee the ratio Ei(T)Iei-1(T) is less than unity.
Thus, ei(T) < Ai9i, where 0 < t9 < 1 for some A. To show that this forces

u2, ... to be a Cauchy sequence in 1(0, T), write um+k - Um as

and since 111W
i III 1 , T 5. (1+ Cp)e(T),

IllUm+k - 5_ (1+ Cp) E Em+1(T)
1=1

19m(1+ Cp)A

which tends to zero as in oc. This shows 121, u2, ... is a Cauchy sequence,

and since T1(0, T) is complete we conclude uz u in (0, T). Q.E.D.

Removal of the Mollifier. We now seek to remove the mollifier in order to

attack the full, nonsmoothed equation, (3.1). This shall be done in two steps:

first, we use the technique of Lax [19], using interpolation inequalities to show

that the convergence ui --+ it in 1(0, T) established in the previous lemma,

along with the uniform boundedness of the iterates in 4(0, T), actually
yields convergence in any T) for 1 < p < 4; second, we choose el ,E21.

tending to zero, and use the theorems of Rellich and Arzela-Ascoli to produce

a subsequence of solutions converging in C2([0, T]x TP) to a solution of (3.1).
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A nice demonstration of Lax's technique is given by Majda in Chapter 2 of
[22].

PROPOSITION 4. Let T > 0 be given and suppose J is a mollifier
for every e > 0. If cp and 1/) are supported compactly and the initial energy

Eo kol2H.,(R,) 110112H3(R2) is small enough, then the Cauchy problem

[tit = div (a(,7,u)Vu),

(3.13) u(0) = cp,

fi(0) =

has a unique classical solution, u E C2([0, x R2), and u E c(0,T) for
every p < 4. Moreover, u, it, and ii are bounded in C([0, T], L2(R2)) for
every e > 0 independently of e.

Proof. We shall need to make a brief detour into the "fractional" Sobolev

spaces, and this is only to use the interpolation inequality

(3.14) If litHp 11111P1/1:11f1111;Pir

for p < r. By the previous lemma we can set up a sequence ul, u2, ... of

"approximate solutions" to the nonlinear equation with ui u in (0, T).

Using the interpolation inequality with r = 4, we have

and consequently

(3.15) Ii 4 - Ui HP ,T -< -

Hp/4
H4

PH/ , T

-u
L2

H1-p/4
IU

L2

ii 1-p/4
- U L2,7,

for every 0 < p < 4. The first term on the right is always bounded (by
construction of the sequence), and for p strictly less than four the second
term on the right is tending to zero. Suppose then that p = 7/2. With the

11
-- Will

P
< 1171 U



embedding H7/2 (R2 ) C2( T-%2.tt ) the interpolation inequality shows ui u

in C([0, T], C2(R2)). In a similar fashion with r = 3,

(3.16) ,T -< 11111 H3 111-P/ 3,T itt - L2,7,

With p = 5/2, and the fact that 11512 (IV) C1 (R2), we have i --+ is in

CU°, 71 C1 (R2)). With these facts we conclude that, since the right hand
side of

(3.17) - a(J,u2-1),Aui VJ,ui-1 Vui

is continuous and uniformly convergent to - a(I +V ?I u, so the
left hand side also is uniformly convergent; thus lilt tin in C([0, C (R2))
And since

11ul - u 11 c2([0,71.R2) =11 - u 11 C([0C2(R2)) itlic([0,The1(R2))

+ iilic([0c(R2))

it follows that u2 u in C2([0, T] X R2) and u is a classical solution. In-

equalities (3.15) and (3.16) establish this convergence in p(0, T) for p <4.
In order to show that this solution and its first two time derivatives are

bounded functions in C([0, T], L2 (R2)), and bounded independently of E, use

the fact that

11111L2,T lUiIL2,T + u - IL2,T

Since ui u in C([0, 71,L2(R2)), the bound for u is established if we
can show iluillL2,7, is bounded independent of e. But this is the case since

iittillL2 T Cplui I Hi and luilH, T is bounded above by 0E0. A similar

0-1 IL2
argument holds for the bound on 11*/ ,T. To show the uniform bound on
we now show that --+ in C([0, T], L2(R2)) and that is bounded

independent of e. Since the support of ü1(t) is contained in a bounded set Ci
for every i and t E [0, T], it follows that

32
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- C([0,71,L°°)11-211/2



33

and the right hand side tends to zero which shows that we have the conver-

gence in C([0, 7], L2 ) . Now from (3.17) we have

+211a(Jeui-1)Vuzliii,T

and expanding the second term on the right, it follows from a little algebra
that

II L2 ,T 5- H2 ,Tila(41ii 1)11Lo 0 ,T 1711112 ,Tilj EV Ili IlL

Now

ila(Jeu 2

as already established in Lemma 2, and

11 JeVui 11 Lc ,T 11.1/4 711i L°

-5-

Since (U 1H2 T I ui I H3,7, _< VAEO, the required bounded on 'lull L2 follows;

specifically,

Pill L2 ,T 5- (2 7)VAEo CpAE0

and the bound is independent of E. Q.E.D.

Now we pass to the limit, E --+ 0, through a sequence .:71, ... tending to

zero. The properties established for the solutions of the mollified problem for

each E and the properties of the mollifier, 4, yield the desired convergence

to a classical solution of the fully nonlinear wave equation (3.1). The special

notations introduced for sequences and subsequences are used.

PROPOSITION 5. Let T > 0 be given. If (p and 7,1) are supported
2compactly and the initial energy E0 1012= 1//4(R2)+11011H3 R2) is small enough,

then the Cauchy problem

pit div(a(u)Vu),

u(0) cp,

U(0) =



has a unique classical solution, u E C2([0, T] X R2).

Proof. As shown in the previous theorem, the mollified nonlinear prob-

lem has a classical solution which in fact is in every p(0, T) for p < 4.
Suppose {ek : k E N} is a sequence of positive numbers tending to zero,
and let uk be the solution of (3.13) corresponding to e being replaced by E k

It has been established that {uk}, {ick}, and {ilk} are uniformly bounded
in C( [0, T], (R2)), so it follows that when uk and1°1 k are considered as

functions of [0, T] into L2, the sequences {uk} and {ilk} are equicontinuous

on [0,21. Moreover, because of the finite propagation speed, the supports

of all the uk's are contained in a fixed, bounded domain. By the Rellich
compactness theorem, the sequence {uk(t)} is sequentially compact in L2
for each t E [0, T], so the Arzela-Ascoli theorem guarantees a subsequence
{uk : k E N'} converging in C([0, T], L2(R2)). Now {ilk : k E N'} is equicon-

tinuous (since {ilk : k E N} is) and the theorems of Rellich and Arzela-Ascoli

yield a subsequence {ilk : k E N"} converging in C([0, T],L2(R2)). Thus we

may use the interpolation inequality (3.14) again:

2' 1 P 111-cripIUIUJ ,T 5- 11 ui ui II Hp ,T uj II L2 ,T

Her-1,T 'air; P--12/,T(P"Iitii
iii(Lp;;)/(p_i)

for 1 < a < p < 4. In each of these expressions, the first term on the right
is bounded and the second term tends to zero as i, j co through N", so
uk 4 u in C([0, IP (R2)) and 2.1 in C([0, H(7-1(R2)) with k E
N". Selecting 3 < a <p < 4, we have the ernbeddings
and 1-P7-1 R( 2) cr(R2,,) so it follows that uk u in C([0, 7],C2(R2))
and it k 2.1 in C([0, 7],C1 (R2)) as k oo through N".

Using the fact that each uk satisfies a mollified differential equation,
namely

a(J,kuk)Auk + (Jek VIik) Vuk,

we now demonstrate ilk in C([0, T], C(1?2)). It is clear that t.ik ,

Vtik Vu, and Auk Au in this space, so if we can show a(Juk) --+ a(u)

R2) c c2(R2)



and 4, Vuk --+ Vu, the convergence of : k E N"} follows. Now

Ila(Jektik)a(u)IlLoo,T IlJekuk uilL00,T

IlJek(uk u)11L00,T

Since IIJ(uk u)11Loo ,TII L. 7,7 the first term on the right tends
to zero as k + co through N", and since u is uniformly continuous on

u

[0, 11 X R2 it follows from relation (2.3) that the second term also tends to
zero as k oo through N".

The same argument shows IIJ VUk VI/ IILeo T 0 as k co through
,

N", so it follows that {ilk : k E N"} is a convergent sequence; and since the

convergence is uniform, we have iik -4 ü in C([0, 7], C (R2)). Thus we have

established the existence of u E C2([0, 7] X R2) satisfying the Cauchy problem

for the nonlinear equation. Q.E.D.

Uniqueness of the Classical Solution. Assuming u and v are classical
solutions satisfying the same initial data we can subtract the corresponding

equations to get an equation for w = u v with w(0) = 71)(0) = 0. A "low

order" energy estimate analogous to the one in Lemma 3 may be developed

showing w 0 on [0, 21, thereby establishing the uniqueness of the classical

solution. In this and the following section we shall use two sets Ke and 3o:

Let Ke be the closed ball of radius gin R2, and set

3e = {((p,7,b) E H4(R2) x H3(R2) : supp supp 71) C K21.

That is, 3e is to be considered a set of initial data for (3.1) vanishing outside
of the ball Ke.

PROPOSITION 6. A classical solution of (3.1) with initial data in De is

unique.

Proof. Suppose u and u' are two classical solutions of (3.1) on [0.7]
corresponding to the initial data (p,7/)) and (cp',7,b1) which are in 3e. Let
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w u u'. We shall show by means of a "low norm" energy estimate that
w 0 when both (p' (p and tki = 0. To this end, subtract the corresponding

differential equations satisfied by u and u' to obtain

+ pith = div (a(u)Vu a(u')Vul)

= div (a(u)Vu a(u)Vu' + a(u)Vu' a(u')Vu')

= div(a(u)Vw) + div (wVu').

We shall use the final term in this expression in its expanded form Vw.Vu'+

wAu'. Multiply through by tb to get

1 a .2- (w ) pth2 = thdiv (a(u)V w) ti)Vw Vu' + 'Lbw2 at

If we rewrite the divergence term as

Wdiv (a(u)Vw) div(a(u)ti)Vw) ia(u)--aIVw12

a
= div(a(u)ziiVw) [a(u)IVw12] +

it follows that

1 a
[w2 a(u)IVw12] + th2 = div (a(u)thVw) +

+ ti,Vw Vu' +

Now upon integration with respect to the spatial variables of R2, the diver-

gence vanishes; using the fact that ti > 0, we obtain the inequality

(3.18) [tb2 a(u)1Vw12] dx itIVW12 dx
R2

WVw Vu' dx tint) Aui dx
R2 JR2

which shall serve as basis for the final energy estimate. Set

6(t) = L[W2 a(u)1Vw12] dx.



We may bound the right hand side of (3.18) in terms of 5 as follows:

Iiiivw12 dx
R2

{a-1(u)u} {a(u)IVw12} dx

R2
2

11(1-1(u)n 'Leo liall2(u)Vw1IL2

lia-1(0111L.8(i);

w Vu' dx =
R2

{a"2(u)Vu'} tb{a1/2(u)Vw} dxIR2

-5- Ila-112(u)vut.11tbilL211a112(u)IVw11112

-5- 11a"2(u)vu'llL.6(t).
To bound the final term, we require the Poincare inequality to provide a
bound on the rate at which w grows.

ti' Au' dx ll'Aull1Loolltbli L2 1W111,2IR2

5- CPIIAui L.ditbil L211Vw11 L2

5_ Cplia-112(u)11L.IIL"111Lc..11thIlL2
1a1/2(u)vulL2

cplia-112(u)IL.11Aul,c,s(t).

Thus we have established the fact that

S(t) { i1a-1(u)4L0 +211a-1/2(u)vu'ilL.

2Cplia-112(u)11L. IL.}S(t).

Since we are dealing with classical solutions, the term in braces is bounded

on [0, 2] by some constant C and it follows that 5(0 < C5(t), and so 6(0 <
eci6(0). When the initial data are identical, 6(0) = 0, so 6 = 0 on [0, T}
which demonstrates u = u' there. Q.E.D.

Continuous Dependence upon the Initial Data. To conclude the proof
of the well-posedness of the Cauchy problem for long time classical solutions

of (3.1), we demonstrate that the solution depends in a continuous manner

upon the initial data. This fact follows from another energy estimate of the

(3.19)
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variety found in Lemma 2, with a few additions. Rather than perfoun the

detailed estimate showing u' + u in C2([0, T] x R2) as ((p',0') (cp,O)in
3e we show the low norm estimate, Ilu` ul1H1 + II '611L2 °-

PROPOSITION 7. Suppose g > 0 and (,0,7k) E 3e.
110112H3

is small eneough, then a unique classical solution of (3.1) exists. Further,
the problem depends continuously upon the initial data in the sense that

lui ulHi L2 0 as (w1,01) (co ,11)) in u' is the classical
solution of (3.1) corresponding to the initial data ((p',0').

Proof. The results of Propositions 5 and 6 guarantee the existence of
2

a unique classical solution whenever lic,o11H4 10112113 is small enough, the

actual degree of smallness required depending only upon T and the diameter

of the initial data. It is clear that we can base this requirement upon T and
g instead since the support of the initial data is contained in KD. It follows

then that for fixed T (which we assume), there is a number ee > 0 with the

property that a unique classical solution of (3.1) exists whenever we have
initial data (p', tY) E 3e bounded as

Now assume 0,9,1;0 has been chosen in 3e such that2 2

P111/4 11/)11H3

We are interested in letting (p', a'p') + (p, b) in 30 in the sense that

H4 -4 0 and 110' e'31 H4 -4 0, so clearly for all (o1,11)1) E 3e near

enough to Op, 110 we have /kb, 2H.
< ce and each problem (3.1)

with initial data 1.11 will have a unique classical solution, u'. To show

the dependence upon the data, we are in a position to use (3.19) from the
previous result. Since u is a classical solution, it follows that a(u) is bounded

below on [0, 71: 0< < a(u). Let C(t) denote the term in braces in (3.19).
Then

C (t) 27-112CpliAui

Ilgo'112H, + 110'1111. ce.
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and by Sobolev embedding,

CM 5- 7-1C8I1it11 H2 ,T + 27-1 /2 C alIVUI II H2 ,T + 27-1 / 2 CPC 811AUt II H2 ,T

5_ 7-1 C,E(T)112 + 27-1/2(1 + Cp)C8E1(T)112

where E(t) 11/12H4,t bli2H3,t and Ei(t) = lu'l2H4,t 11012H3,t. By the
Cauchy-Schwarz inequality then,

C(t) M (E(T)d- El(T))1/2

where

M (-y-2 Cs2 + 2-y-1(1 + Cp)2C.,2)1/2.

Now since the initial data are all sufficiently small, we know from Lemma 2

that there is a number A depending only upon T and 0 with the property
that E(T) < AE(0) and E'(T) < AE'(0) so it follows that

C(t) < A1/2M (E(0) + E'(0))112

and thus (3.19) leads to

S(t) < A1/2M (E(0)+ E'(0))1/26(t),

therefore,

8(0 < exp(A1/2M (E(0) + E1(0))1/206(0).

As ((,o', 111) ---+ (co, 7,b) in 3e, we have 6(0) 0; the argument of the exponential

remains bounded, so max{oxi 8(t) ---+ 0 and demonstrates the continuous

dependence upon the initial data. Q.E.D.



Chapter 4

An Asymptotic Result
for the

Lifespan of Classical Solutions

It has been established in the previous sections that we always have a unique
classical solution of the nonlinear system (3.1) on [0, TI provided the initial
data are chosen small enough. We now consider the reverse problem: How

does the magnitude of the initial data influence the lifespan of the classical
solution? Recall that for a nonlinear system, a smooth solution usually can
be guaranteed for only a finite time, and after this time smoothness may be
lost due to the formation of shocks or the breaking of waves. For a given set
of initial data, let [0. Cr) be the largest interval of time on which a smooth
solution of (3.1) exists. (Clearly we may have T. = oo in the case of a global
solution.) Then T. is referred to as the lifes pan of the classical solution.
As pointed out in the introduction, John & Klainerman [11] discovered the
phenomenon of "almost global" solutions to certain nonlinear wave equations

in which the lifespan T. is very sensitive to the size of the initial data. Using

results developed in Lemma 2, we shall obtain a lower bound for T. A much
more difficult and delicate problem is to find an upper bound for T.
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(4.3)

f -4 B
t1+ A'1+Bf'
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PROPOSITION 8. Consider the parameterized system in two space
dimensions

+ = div (a(u)N7u),

(4.1) u(0) = ey,

ti(0) =

where cc, and are of compact support, IVIH4 +11011113 is finite, and e >0.7,b

Let T(e) be the lifespan of the classical solution of (4.1). Then T4(e) --+

as e -4 0+, and in fact, there is a lower bound T(e) such that T.(e) > T(e)
and T(e) = 0(6-112).

Proof. For convenience, set EC = IIEV 2H4 PO112113)1/2 where we shall

regard C as fixed and assume Op, E Jo. As in (3.10), let A and B be the
quantities

724
(4.2a) A

1 + Cp
6 + 8C(4.2b) B = T
1 + Cp

where Cp = d -4- 2T. Also let

(4.2c) = max

and

(4.2d) A
4

As was shown in the previous sections, if we choose the initial data small
enough, i.e., E such that

A 1
EC <

724C8T A1/2



(4.4)

(4.5a)

(4.5b)

(4.5c)

1A
EC

(1 Cp)CsA1/2

We really are interested in the case E --+ 0+, and note that for this expression

to hold we need one of the following to occur:

Cp 00

Clearly, since CI, = d + 2T (where d = 2g is fixed), the condition (4.5a)
necessitates T oc. If instead -y 1 as in (4.5b), we have from (4.2c)
the fact that B --+ cc (since the quantity A/(1 + A) is bounded above by
362/363) and so again have T oc. Finally, it is clear that the only way for

A to approach pe as in (4.5c) is to have 7 (1 ').)A 0+. But by (4.3c) this

cannot happen, so it follows that in any case. for E and T satisfying (4.4),
T co as E 0+.

When e is sufficiently small, then T is large, and eventually B/(1 + B)

will be larger than A/(1 + A) since the former is not bounded as T 00,

but the latter is. Thus for E small,

1 _i_ 1
=--

2 2 1 + B.

It is straightforward to show that as T co,

A = 362 181(1 + + 0(T-2)

42

then a unique classical solution of (4.1) exists on [0, T]. Conversely, for a

given E a classical solution exists on [0, 71 for any T satisfying (4.3). Let us

examine the case in which e is given, and look for all values of T satisfying

A 1-7
C

724C,T A1/2

By definition of A, we may rewrite this as



and

B 8T 1+ i(1+ + 0(T-2),

SO

-y =1 *T-1 + 0(T-3).

A similar calculation may be made for as given by (4.2d) with the result

that the right hand side of (4.4) may be computed and yields

1
EC + 0(T-3).32C, T2

Reversion of the formal series gives T(e) 0(e-1/2) as e 0 Since

a solution is guaranteed to exist on [0, T(E)], it follows that 71(E) > T(E).
Q.E.D.
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Chapter 5

Analytical Results for Forced
Waves in One Dimension

We now highlight a few analytical results available for the nonlinear wave

equation, (1.7), when modeling surface waves propagating in a long, one-
dimensional wavetank. It shall be assumed the disturbances are due to a
wave generator located at x = 0, and that the waves are being driven onto
still water of constant depth. There are two main results presented in this
chapter, the first one being something of a curiosity, the second perhaps
useful in the design of experiments to test the validity of the nonlinear wave

model.

Perturbation Solution. Suppose that we rescale (1.7) by replacing u with
Av, where A is a dimensionless quantity representing the (dimensionless)

amplitude of the wave generator output. We then obtain the system

vtt = Av)v )21

u(0, s) = 0,

vt(0, x) = 0,

v(t, 0) g(t),

where the viscous damping has been neglected. In the case of small am-
plitudes, we can look for a solution by means of perturbation expansion.



Suppose then that

V v° Avl +A2v2 +

Then it may be verified that the two lowest terms are

v°(t, x) g(t x)

and

vi(t,x) = I x (t s)g(t x).2

It might be expected that examination of the higher terms is tedious and this

is indeed the case, yet an interesting trend develops in the representation of

these solutions: it appears that

vk(t, x) = k(sa I at)[g(t x)jk+1

where Pk is a polynomial of degree k, and as evidence we have

v0(t, x) = g(t x),

vl (t , x) = -,11(x a at)[g(t x)12

v2 (t , x) = f+4- (x0 I 002 (x a I at)}[g(t x)j3

v3(t,x) = {th(xa Iat)3 (x a Iat)2 ii(x300}[g(t_ x)j4

The associated polynomials up to fourth order are

Po(z) 1,

(z) =--

P2(z)=--*z2

P (z) T - 9 z3 -64.1-z2 ± ,

P4(z) 19120
3 3 29 2

320 640 128'"
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Whether or not this solution form continues for higher terms and is true in
general has not been established.
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Lifespan of Forced Waves. An application of (1.7) of particular interest
is that of forced waves in a wave tank where, as shown in Fig. 2, a wave

generator drives waves onto initially still water of constant depth. If damping

mechanisms due to bottom and sidewall drag are negligible, linear theory
predicts wave motion of permanent form, u(t, x) = f(t x/c), where c is
the wave speed and f is represents the output of the wave generator. The
present nonlinear model provides an alternative to the linear theory, and wave

tank experimentation can be used to check the validity of this theory. It is
necessary, though, to develop some sort of criteria for judging this validity. A

prominent feature of the nonlinear model is that, in contrast with the results

of the linear theory, "classical solutions" in one spatial dimension exist for

only finite time, and in fact, numerical experiments indicate that this is due
to the tendency of the waves to shoal and break. This distinction can be used

to test (1.7) as a realistic model of wave propagation. Of course the validity

of (1.7) as a wave model is dubious at, and near, the point of breaking, so we

cannot expect to predict when real waves break; however, it is reasonable to

suspect that the wave experiences significant modification in shape as this
point is neared. For this reason, it is important to estimate the time at which

breakdown of the classical solution occurs, for this provides a parameter for
gauging the time required for nonlinear behavior to develop. In the following,

an expression for this breakdown time, tb, is found. For the special case of

a still-water depth, Ho, and a sinusoidal driver, f (t) = AHo sin(27t/T), it is
found that

t b

7rA

for A> 0 and
t b 1 1

T 2 'TA

when A 0. Thus, for example, if a wave generator with 2 s period drives

waves of 0.1 m amplitude onto 2 m of still water, then A = 0.03 and the
classical solution ceases to exist at about 19 s, a distance of 84 m from the
generator.



(5.1)

The appropriate scaled expressions for the nonlinear model are

utt =-- ((1 + u)ur)z,

u(0, x) = v(x),

ut(0,x) = 11)(x),

u(t,0) = 1(0,

where f describes the output of the wave generator, and co and 7,/, specify the

initial conditions of the water. Later we shall take p = = 0, but for the
moment we formulate the general problem.

47

Wave

Generator

Fig. 2. Schematic of Wave Tank with Wave Generator.

The forced wave problem may be recast as a first order system:

ut vx = 0,

ut + (1 u)u, = 0,

(5.2) 7/(0, x) = tio(x) ,

v(0, x) = ro(r) = O(e)

u(t, 0) = f(t),

and is amenable to treatment by the hodograph transformation [2, 16]. Un-

der this transformation, we compute the solution along characteristics as well

as the characteristics themselves. The crossing of characteristics signals the

breakdown of the classical solution, so we shall be interested primarily in

computing the characteristics and their earliest crossing.



2

--3(1 +11)3/2 =
2

3(1+ 71)3/2 + = K2(a)
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The transformation begins by introducing new coordinates a and #
which parameterize the characteristics. If we write (5.2) in matrix form
as

(tt\ ( 0 i/u\v)± i+ 0)
then a curve (i(s),i(s)) is characteristic if

= Ai,

where A is an eigenvalue of the square matrix. Since there are two eigen-
values, in this case ±V1 + u, we describe the characteristics in terms of the
parameters a and # by

(5.3a) = icoh +
(5.3b) = ip/1

where we set ft(a, 0) = u(i(a. #), .17(a,#)) and f)(a,#)
Clearly,

utia

Utio tir'thm

7)c, = Vtia Vria,

Vtii3 tirs,
so we can solve for itt, u,, vt, and vx in terms of fia, f), and 1713. Doing

this and substituting these expressions into (5.2) leads to the relations

(5.4)
V1-4177 = 0,

ft,30 + f = 0.

Equations (5.3) and (5.4), the hodograph transformation of the original sys-

tem, are to be solved now. From (5.4) we have upon integration

(5.5a)

(5.5b)



T
7
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where K1 and K2 are "constants" of integration. Let T > 0 represent a
moment of time. As shown in Fig. 3a we associate with the point (0,7)
two characteristic curves, CI and C2. The curve Cl eminates from a point

on the x-axis and is the characteristic generated by varying 3 with a held
fixed, and passes through (0,7). The curve C2 is the characteristic eminating

from (0,7), generated by letting a vary while holding fixed. Finally, for
(x, t) E C2, let C3 be the characteristic shown, intersecting C2 at that point.

(a) (b)

Fig. 3. Characteristic Curves in the (x. t)-Plane.

We now treat the special case of disturbances being driven into a region

initially at rest, i.e., uo = vo = 0. Since u and v are initially zero, it follows

from (5.5b) that K2 = 2/3 so that along C1 and C3 we have

2

3(1+ ii)3/2 + =

which is to say that

9 9
(5.6a) 3(l+u(t,x))3/2+v(t,x)=.5

and

9 9
(5.6b)

3(1
+ f(7))312 + v(7,0) =



Approaching (x, t) along C2 we have from (5.5a)

(5.6c)
9

--3(1
+ u(t, x))312 v(t, x) --2(1+ f(7))3/2 + v(7,0).

3

Solving (5.6) for u(t, x), we obtain

(5.6a) u(t, x) = f(7).

Thus ü is constant along C2 so by integrating (5.3a) along C2, we find that
x and t are related by

(5.7b) S = Vi1 f (7)(t T).

Notice that if the point (x, t) is specified, we can solve (5.7b) for T and use

(5.7a) to compute u. To investigate the breakdown of classical solutions of

this problem, we use (5.7b) to find the time at which the a-characteristics
cross. Suppose that Cr and are the characteristic curves eminating
from the t-axis as shown in Fig. 3b where we imagine AT > 0 being as small

as we please. If these two curves intersect, a classical solution ceases to exist.

From (5.7b), this is when

V1 + f(7)(t 7) = + f(7 + AT)(t 7 Ar)

or in terms of a derivative with respect to T,

cT; (N/1+ f(7)(t 7)) =0.

The computation shows that

tb(T) = T + 21 f(7)
f'(7)

is the time at which neighboring characteristics cross, provided the second

term on the right in nonnegative. With this expression we can find the
time at which breakdown of the classical solution occurs by looking for the
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tbIT

Fig. 4. Breakdown Times for Sinuoidal Drivers.

When A < 0, the analysis is more complicated, and a simple formula like

(5.8) is not available. The results, however, are plotted in Fig. 4 along with

those for the case A > 0, and it may be shown that
b 1 1

T 2 7rA

31

minimum of t6(r) as we allow T to vary over [0, oo), excluding those intervals

in which (1 f j" (7) < 0. In general this may be a messy problem, yet

the physically important case of sinusoidal driving, f(r) = A sin(27r-r/T),

lends itself neatly to analysis. A straightforward computation verifies that,

when A > 0, the earliest crossing of characteristics corresponds to r = 0, so
we have

tb 1(5.8)
T

In terms of "dimensional" quantities4 = Ao/H0 where Ao is the amplitude

of the driven wave out of the wave generator, and Ho is the depth of the
initially still water, so it follows in this case that the breakdown time is a
function of the "relative amplitude" and the period of the wave generator
output.
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as A 0 . As shown in the figure, the behavior of tbIT becomes interesting

as A 1. A bit of calculation shows

tb 1 2
+ + + N(1 + A) + m1+,4)2+ 0(1+A)3)

as A 1. Notice that (5.8) gives, in contrast to the result of Chapter
4, the fact that when A> 0, the lifespan for the driven wave (in one space

dimension) behaves like T(A) = 0(A-1) whereas the pure Cauchy problem

only has the weaker result T(e) > T(e) = 0(e-1/2).



Chapter 6

Numerical Results

Forced Waves in One Dimension. To exhibit the behavior of the solution
for the nonlinear wave equation 77it gdiv ((Ho + ri)Vii), computations were

made for the case of one and two spatial dimensions. Fig. 5 shows the
progression in one dimension of a wave being forced onto a wave tank initially

at rest. Sinusoidal waves of 0.4 m (peak-to-peak) and 4 s period were driven

onto still water of depth Ho = 1.5 m. With the surface waves progressing
from left to right, we see the shape of the sinusoid beginning to alter at 6 s; at
8 s the leading edge is becoming steep while the troughs are more pronounced,

and this trend continues at 10 s. The usual linear wave equation predicts
waves of permenant form, so a perfect sinusoid would propagate unchanged

in the linear theory. Further experiments indicate the presence of numerical

problems shortly after 12 s. Indeed, from the results of the previous chapter

on the lifespan of classical solutions for forced waves, we see from (5.8) and

Fig. 4 that with A = 0.2/1.5, the solution will break down at t = 9.55 s. The
fact that "numerical breakdown" of the solution occurs after this is probably

due to two things: (i) there are smoothing effects of the discretization used

which prevent breaking at the wavefront, and (ii) it is difficult to say precisely

when the onset of numerical problems occurs as the degradation is gradual.

The Initial Value Problem in Two Dimensions. Fig. 6 & 7 show the
results of calculations in two spatial dimensions for the special case 77(0, x)
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0, qt(0, x) = OW where is supported compactly on R2 and selected so as

to introduce two identical disturbances. As only qualitative behavior of the

solution will be discussed, the precise form of 7/, and the choice of Ho are

unimportant. Fig. 6 displays the formation and interaction of the surface

waves caused by the initial disturbance tk as described by the nonlinear wave
equation

= g((1-10 + + g((Ho + 77)77y)y,

whereas for comparison, Fig. 7 shows the results obtained when the linear
equation

qtt g(11077.). + g(Hoily)y

is used. The nonlinear waves tend, in all cases, to be of lesser amplitude than

those resulting from the linear model, and indeed, are steeper as is evident at
t = 12 and 16. Notice also that the superposition of the waves in the linear
model at t = 16 is markedly different from the interaction predicted by the

nonlinear model as is evidenced by the height and separation of the peaks.

The nonlinear waves tend to increase in steepness but the eventual
breakdown of the solutions is not quite clear. Loosely speaking, we have
the effects of nonlinearity tending to steepen the wave near the wavefront,

while on the other hand, we expect a certain amount of dispersion to take

place as the disturbance continues to evolve. If this dispersion reduces the

amplitude of the wave quick enough, then perhaps the nonlinearity will be-

come negligible at which point the wave progresses like a linear wave without

breakdown. This is of course speculative, but the point is that existence of

global solutions for small enough initial data in two space dimensions has

not yet been disproved. The results of Li Sz Chen [20] however, suggest the

possibility that such a solution does not exist. When, however, the damping

term, alit, is added, there is a glimmer of hope, yet no analytical results.
What is needed to prove the nonexistence of a global classical solution is an

example showing breakdown of these solutions occuring no matter how small
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the initial data are chosen; perhaps by looking at radial solutions and using

techniques based upon the characteristics of the equation this example may
be produced.

Solution by Finite Differences. The calculations were made using cen-

tered finite difference approximations for the time and space derivatives with

special attention paid to preserving the divergence form of the equation.
Thus, for example, in one spatial dimension, the discretizations

qtt(kAt,rnAx),;:-, (6,0-2{77777k+1 277772k + 71l}

and

((Ho + 77)71x).(kAt,rnAx):::i

LL{(110 + )
k k k k

firn-f-1 'frn (H0 + rhn t rim-1 \ rim 76-1
9 ) Ax

were used. To maintain stability, a "practical" version of the Courant-
Friedrichs-Lewy condition for the linear (constant propagation speed) wave

equation was used, presumably to good effect. In its standard form, this
condition requires At selected so that

At 1

Lx -----

where c is the speed of the propagating wave. Since in the nonlinear case

the characteristics propagate with speed [g(Ho 77))1/2, we select in our
implementation

At
[g(Ho qo)]-1/2

where 770 is the largest value of Ti in the current solution step. Thus At may
be modified as necessary in the computation although in the cases examined

it was chosen sufficiently small that no such modifications were required.
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Fig. 6. Example of the Nonlinear Wave.
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Fig. 7. Example of a Linear Wave.
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Epilogue

There are a number of partial differential equations which more or less suc-
cessfully describe the evolution of shallow water waves, and in the present
study we add one more. This new equation, which in a simple, special case

may be written as utt + put = div + u)Vu), is distinguished by the pres-
ence of a damping term based upon physical principles instead of the rather

artificial damping terms appended to other shallow water models. Indeed,
the system of shallow water equations,

ht + (hu)z + (hu)y --= 0,

ut + uur + vuy + ghr 0,

vt + uvz + vvy + ghy 0,

of interest to oceanographers and engineers presents a difficult system to
solve numerically. Actual techniques of computation [32] generally involve

replacing the right hand side of the last two equations with the dissipative

terms au and ay. There is no physical significance for such terms despite
the appeal of simplicity, and so it is unclear just what numerical results rep-

resent, especially when the nonlinearity of the equation is retained. Similarly,

the integral representation of the solution for the wave model presented by
Gallagher [6] fails even to converge as there is a pole on the axis of integra-
tion. This is "remedied" by introducing a damping factor ad hoc with the
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net effect of shifting the singularity off the real axis. It is not clear, though,

what is being describedthe dissipative flow of a perfect fluid in irrotation.al

motion! The model presented in the present study is nonlinear and contains,

by derivation, a viscous damping term and for this reason is felt to be a
significant contribution to shallow water theory.

On the mathematical end of things, it is necessary to establish conditions

for the well-posedness of problems arising in a physical setting, and this has

been done for classical solutions of the Cauchy problem with initial data
u(0, x), ut(0, x), of compact support, sufficiently small in H4(R2) x H3(R2).
The proof of exi'Aence of solutions is essentially a fixed point argument: The
solution of the linear equation

'Litt + /tut = div ((1 v)N7u)

(with appropriate initial data) is u = g(v); the solution of the nonlinear
problem of interest then is a fixed point of g. Sufficiently small initial data

force g to be a contraction in a "low norm" spacesay, Illand existence
of a fixed point follows from an appeal to the Banach contraction mapping

theorem. Further, we may use this low norm contraction with a "high norm"

boundednesssay, boundedness in H4to establish contraction by g in the
spaces naturally interpolated by the low- and high-norm spaces, and another

appeal to the Bana,ch theorem gives existence in the classical solution space,

C2([0, T} x R2). A result on the dependence of the lifespan of the classical
solution upon the size of the initial data is established and given in Chapter
4.

Naturally this work was performed with the hope of eventually validat-

ing the model experimentally. Results given in Chapter 5 perhaps will be
useful in setting up such an experiment in a standard wave tank. At present,

this validation has not been performed. Numerical computation of solutions

of the nonlinear model are presented in Chapter 6. There was little difficulty

in the finite difference scheme as long as dynamic selection of the time step

was made in order to preserve stability of the iteration.
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There are a few points worth drawing attention to. First, it would be
very desirable to have in hand a global existence result for classical solutions.

The results of Lax and John cited in the introduction suggest the eventual

presence of wave breaking, but these are in one spatial dimension. In two

dimensions, the naturally occuring situation, the viscous dissipation and in-
herent spatial dispersion of the waves may work to prevent this breaking,
but this need to be investigated. Also, the effect of the damping term on the

lifespan of solutions is surely of interest, but yet unknown. The model equa-

tion presented in Chapter 1 which includes the additional advective term
(i.e., the term U Vht representing transport due to a strong mean current)
is being used to investigate the stability of "edge waves" in the presence of

a longshore current profile. Preliminary results are promising.
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