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Although machine learning systems are often effective in real-world applications, there

are situations in which they can be even better when provided with some degree of

end user feedback. This is especially true when the machine learning system needs to

customize itself to the end user’s preferences, such as in a recommender system, an email

classifier or an anomaly detector.

This thesis explores two directions in incorporating end user feedback to machine

learning systems. First, I introduce an algorithm that incorporates feature feedback

in a semi-supervised text classification setting. Feature feedback goes beyond instance-

label feedback by allowing end users to indicate which feature-value combinations are

predictive of the class label. In order to incorporate feature feedback in a semi-supervised

setting, I develop a Locally Weighted Logistic Regression algorithm that uses a similarity

metric combining information from the user’s feature feedback and information based on

label diffusion on the unlabeled data.

Second, I explore the use of instance-level feedback to anomaly detection algorithms.

Anomaly detectors commonly return a list of the top outliers in the data. Although

these outliers are statistically unusual, some are uninteresting to a user as the internal

statistical model may not necessarily be aligned with the user’s semantic notion of an

anomaly. I present an algorithm that can increase the number of true anomalies presented

to the user if a limited amount of instances are labeled as anomalous or nominal.



c©Copyright by Shubhomoy Das
May 18, 2017

All Rights Reserved



Incorporating User Feedback into Machine Learning Systems

by

Shubhomoy Das

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented May 18, 2017

Commencement June 2017



Doctor of Philosophy dissertation of Shubhomoy Das presented on May 18, 2017.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Shubhomoy Das, Author



ACKNOWLEDGEMENTS

I am greatly indebted to my advisor Dr. Weng-Keen Wong who provided me the oppor-

tunity to pursue doctoral studies. Under his guidance, I learned how to follow research

literature and quickly identify the core ideas. He also allowed me the flexibility to pursue

any ideas or approaches of my own interest and that has really broadened my knowledge.

Getting a Statistics masters degree under Dr. Alix Gitelman’s guidance has been one

of my proudest achievements. I cannot thank her enough for the encouragement and

opportunity.

Dr. Tom Dietterich and Dr. Alan Fern are some of the best collaborators anyone

could asked for. Apart from enlisting me on their projects, they have been both sources

of ideas as well as constructive criticisms.

Dr. Prasad Tadepalli was my very first advisor at Oregon State University. Without

his initial support and guidance a research position to pursue doctoral studies would

have been out of my reach. I am also thankful that he accepted to serve on my thesis

committee.

Dr. Margaret Burnett was one of my earliest collaborators with whom I worked

for the first part of my thesis. While working with her, I got an unique opportunity to

participate in designing and conducting a user study. It set the tone for my work because

I realized how important it is for end users to be able to control machine learning systems.

I am grateful that Dr. John Dilles volunteered to serve as the Graduate Council

Representative on my committee. Apart from handling the administrative tasks, he

has always been open to accommodate the schedule of my exams despite his own busy

schedule.

While pursuing my studies I had the pleasure of working with smart and helpful

fellow graduate students and staff members Janardhan Rao Doppa, Jun Yu, Shahed

Sorower, Amran Siddiqui, Satpreet Singh, Jed Irvine, and many others with whom I was

able to brain-storm ideas and collaborate on projects. Along the way I have also been

very fortunate to have taken courses with some amazing professors from both Computer

Science and Statistics departments. I am sure very few people get to have such a privilege.

Lastly, I owe a huge debt of gratitude to my parents and my sister who have patiently

supported and encouraged me to pursue higher studies.



TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 On the nature of feedback . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aspects of Feedback for Machine Learning Algorithms . . . . . . . . . . . . 4

1.3.1 Feedback paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Types of feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Feedback incorporation mechanisms . . . . . . . . . . . . . . . . . 6

1.4 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Feature labeling for semi-supervised learning . . . . . . . . . . . . 7

1.4.2 Instance-level feedback for improving an anomaly detector . . . . 8

2 Feature Labeling 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Feature Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 LWLR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 LWLR-FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Semi-supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.4 LWLR-SS-FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.5 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.6 Oracle Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.7 End-user Labeling Study . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.8 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Feedback to Anomaly Detection algorithms 34

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Anomaly Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 The top τ -quantile . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Accuracy at the top . . . . . . . . . . . . . . . . . . . . . . . . . . 40



TABLE OF CONTENTS (Continued)
Page

3.3.4 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.5 Active Anomaly Discovery (AAD) . . . . . . . . . . . . . . . . . . 44

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Query Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3 Contributions of Sub-parts of the Optimization Problem . . . . . 51

3.4.4 Computational Complexity and Scaling Up . . . . . . . . . . . . . 53

3.4.5 Comparison with Rare Category Detection . . . . . . . . . . . . . 57

3.4.6 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4 Extending Active Anomaly Discovery to other algorithms 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 AAD for Feature Bagging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Applying AAD to a single Isolation Forest . . . . . . . . . . . . . . . . . . . 65

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Conclusion and Future Work 73

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Improvements to Feature Labeling . . . . . . . . . . . . . . . . . . 74

5.2.2 Extensions to Active Anomaly Discovery . . . . . . . . . . . . . . 75

Bibliography 76

Appendices 85

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



LIST OF FIGURES
Figure Page

1.1 Components of a Machine Learning System with User Feedback (based

on a modified version of Figure 1.2 in [4]). The task for the machine

learning algorithm A is to infer a function f which should be as close to

the true target function f∗ as possible. In addition to not knowing the

true target function, the machine learning algorithm is also unaware of the

true data distribution X . For its task, A is provided with a set of training

data and the assumption that f ∈ H, where H is either a parametric or

non-parametric mathematical model. Additionally, if the system supports

feedback, it has access to an expert whom it might query. . . . . . . . . . 2

2.1 Example of a situation where LR fails but LWLR succeeds in separating

two classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Exposing structure in data through unlabeled data . . . . . . . . . . . . . 18

2.3 Label Diffusion. The circles represent the initial set of labeled training

examples. The colors red, blue, and green represent three different classes.

Points in grey are unlabeled instances. At each iteration, the labels ‘dif-

fuse’ from the currently labeled instances to their nearest neighbors. After

a number of iterations of label diffusion, the distribution of the labels over

the instances becomes stationary. . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Clustering in manifold space . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Average macro-F1 scores for incorporating 10 Oracle feature labels through

semi-supervised feature labeling for the six datasets used in our experiments. 26

2.6 A comparison of the relative benefits of feature labeling and unlabeled

data for variants of LWLR-FL. . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Results of Semi-supervised Algorithms with User Feature Labels: (Left)

incorporating 8 oracle feature labels per class, (Middle) incorporating end-

user feature labels only for existing features, (Right) incorporating all

end-user feature labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Sensitivity of LWLR-SS-FL to hyper-parameters. . . . . . . . . . . . . . . 30

3.1 Setup for Active Anomaly Discovery. . . . . . . . . . . . . . . . . . . . . . 44



LIST OF FIGURES (Continued)
Figure Page

3.2 The total number of true anomalies seen vs. the number of queries for all

datasets. Total number of queries for the smaller datasets (Abalone, Car-

diotocography, ANN-Thyroid-1v3, Covtype-sub, KDD-Cup-99-sub, Mammography-

sub, Shuttle-sub and Yeast) is 60. Total number of queries for the larger

datasets (Covtype, KDD-Cup-99, Mammography, Shuttle) is 100. The re-

sults were averaged over 10 runs for each algorithm (except SSAD, which

is deterministic). The error bars show the 95% confidence intervals. . . . . 48

3.3 Low-dimensional visualization of Abalone and ANN-Thyroid-1v3 using t-

SNE. Plus signs are anomalies and circles are nominals. A red coloring

indicates that a true anomaly point was queried. A green indicates a nom-

inal point was queried. Grey circles correspond to unqueried nominals.

To make unqueried anomalies stand out visually, we indicate them with

blue plus signs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Comparison of AAD variants. The results were averaged over 10 runs.

The error bars show the 95% confidence intervals. . . . . . . . . . . . . . . 53

3.5 The wall clock computation time at each iteration (averaged across 10 runs). 54

3.6 Comparison of AAD with variants where the constraints are relative to

τ -th ranked instance. The results were averaged over 10 runs. The error

bars show the 95% confidence intervals. . . . . . . . . . . . . . . . . . . . 55

3.7 Comparison of AAD with Rare Category Detection Algorithms. The re-

sults were averaged over 10 runs. The error bars show the 95% confidence

intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 τ -sensitivity analysis of Covtype-sub and KDD-Cup-99-sub. Performance

of AAD while varying τ while keeping parameters CA and Cξ fixed at

their default values 100, and 1000 respectively. . . . . . . . . . . . . . . . 60

3.9 CA-sensitivity analysis of Covtype-sub and KDD-Cup-99-sub. Perfor-

mance of AAD while varying CA while keeping parameters τ and Cξ fixed

at their default values 0.03, and 1000 respectively. . . . . . . . . . . . . . 60

3.10 Cξ-sensitivity analysis of Covtype-sub and KDD-Cup-99-sub. Perfor-

mance of AAD while varying Cξ while keeping parameters τ and CA fixed

at their default values 0.03, and 100 respectively. . . . . . . . . . . . . . . 61



LIST OF FIGURES (Continued)
Figure Page

4.1 Results when ensemble members were generated using feature bagging.

The y-axis shows the gain from incorporating feedback with AAD over 60

iterations. The difference is expressed as percentage change from baseline.

A gain of 100% would imply that AAD discovered twice the number of

anomalies as the baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 Random trees in Isolation Forest (IF) for synthetic data. The points

in red are true anomalies; points in gray are true nominals. Figure 4.2a

shows the leaf node regions for a single tree generated by random IF splits.

Figure 4.2b shows the leaf node regions for 10 trees generated by IF; each

tree has a different color. Figure 4.2c and Figure 4.2d show the contours

of anomaly scores assigned by Isolation Forest with one and ten trees

respectively. Deeper red means more anomalous; deeper blue means more

nominal. Red circles are true positives among top 20 instances ranked by

IF without feedback; green circles are false positives among the top 20.

The left sidebar in Figure 4.2c and Figure 4.2d show the ranking of true

anomalies (red dots). Ideally, true anomalies should be near the top on

this bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Incorporating feedback in Isolation Forest (IF) for synthetic data. Fig-

ures 4.3a – 4.3e show anomaly score contours in the same way as ex-

plained in Figure 4.2. The red curve in Figure 4.3f shows the number of

true anomalies discovered when we incorporate feedback; the blue curve

in Figure 4.3f shows the number of true anomalies discovered when no

feedback was incorporated. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Incorporating feedback in Isolation Forest with AAD. Figures 4.4a–4.4d

are the smaller datasets with 60 feedback iterations. Figures 4.4e–4.4h

are the larger datasets with 100 feedback iterations. The results were

averaged over 10 runs. The error bars show the 95% confidence intervals. 71



LIST OF TABLES
Table Page

2.1 Partially labeled document corpus for semi-supervised learning. . . . . . . 17

2.2 The classes of the data sets used in the oracle study, along with the number

of instances in each class shown in parentheses. . . . . . . . . . . . . . . . 22

2.3 Results of incorporating 10 oracle features per class through semi-supervised

feature labeling for all six datasets. The values in bold in each column

represent the highest scores for the corresponding dataset. The symbol
† denotes values that are significantly greater than all other algorithms

at the 0.05 level (Wilcoxon signed-rank test, p < 0.05). Results for the

baseline SVM and LWLR algorithms are included for reference. . . . . . . 25

2.4 Results of adding 10 oracle features per class for all six datasets for al-

gorithms that are variants of logistic regression. The symbol ∗ denotes

values that are significantly greater than the baseline LWLR algorithm at

the 0.05 level (Wilcoxon signed-rank test, p < 0.05) . . . . . . . . . . . . . 27

3.1 Datasets used in our experiments, along with their characteristics. . . . . 46



LIST OF ALGORITHMS
Algorithm Page

1 Semi-supervised Learning with Label Diffusion . . . . . . . . . . . . . . . 19

2 Active Anomaly Discovery (AAD) . . . . . . . . . . . . . . . . . . . . . . 45

3 Generating Ensembles by Feature Bagging . . . . . . . . . . . . . . . . . . 65

4 Generating randomized trees in Isolation Forest . . . . . . . . . . . . . . . 67



LIST OF APPENDIX FIGURES
Figure Page

A.1 Low-dimensional visualization of benchmark datasets using t-SNE. Plus

signs are anomalies and circles are nominals. A red coloring indicates

that the anomaly or nominal point was queried. Grey circles correspond

to unqueried nominals. To make unqueried anomalies stand out visually,

we indicate them with blue plus signs. . . . . . . . . . . . . . . . . . . . . 87

A.2 Comparison of AAD with variants where the constraints are relative to

τ -th ranked instance. The results were averaged over 10 runs. The error

bars show the 95% confidence intervals. . . . . . . . . . . . . . . . . . . . 89

A.3 Comparison of AAD with Interleave. The results were averaged over 10

runs. The error bars show the 95% confidence intervals. . . . . . . . . . . 90

A.4 Comparison of AAD with MALICE. The results were averaged over 10

runs for AAD. The error bars show the 95% confidence intervals. . . . . . 92



Chapter 1: Introduction

1.1 Motivation

Machine learning has made great strides in recent years, with impressive performance on

many real-world problems such as image recognition and speech recognition. Although

machine learning systems can be effective when deployed in the real world, they are not

perfect. Situations arise when there is a mismatch between the output of the learning

algorithm and the end user’s expectations. Consider, for instance, an user trying to set

up a classifier to sort emails into folders. The end user labels a handful of email messages

with their respective folders and then trains the classifier on the labeled training data.

The initial classifier often performs poorly due to a limited amount of training data

from that particular end user. Over time, as more training data becomes available,

the classifier’s predictions become more accurate. However, the classifier may still be

inaccurate at making fine-grained distinctions between two closely related email folders.

In general, mistakes by machine learning algorithms can occur due to a variety of reasons,

including insufficient training data, biased training data and inaccurate assumptions

made by the underlying model.

One approach for improving machine learning systems is to ask the end user to

provide corrective feedback in order to change the learning algorithm. This approach

is particularly useful after deployment. In this setting, a machine learning expert, who

we refer to as an algorithm designer, has completed designing and implementing the

machine learning algorithm. The finished system is shipped to an end user, who trains

the learning system on a training dataset and applies it to a test dataset at performance

time. Note that after the learning system is deployed, the algorithm designer is no

longer accessible and the end user, who is usually not a machine learning expert, is the

main person interacting with the deployed system. This thesis explores new methods for

incorporating end user feedback into learning algorithms to improve their performance

after deployment.

In this chapter, I first present the algorithmic setup and a general overview of feedback
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Data Distribution 
(Unknown)

𝒳
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𝒙(,𝑦( , … , 𝒙,,𝑦,

Learning Algorithm
𝒜

Infer 𝑓:𝒳 → 𝒴

Hypothesis Set
ℋ

Final Hypothesis
𝑓 ≈ 𝑓∗

Feedback
ℱ

Figure 1.1: Components of a Machine Learning System with User Feedback (based on a
modified version of Figure 1.2 in [4]). The task for the machine learning algorithm A is
to infer a function f which should be as close to the true target function f∗ as possible.
In addition to not knowing the true target function, the machine learning algorithm is
also unaware of the true data distribution X . For its task, A is provided with a set
of training data and the assumption that f ∈ H, where H is either a parametric or
non-parametric mathematical model. Additionally, if the system supports feedback, it
has access to an expert whom it might query.

mechanisms in Section 1.2. Next, in Section 1.3, I discuss aspects that are important to

the design of feedback and relevant to this thesis. Finally, in Section 1.4, I introduce two

particular problems in machine learning where user feedback can be extremely useful

after deployment.

1.2 Setup

Figure 1.1 shows the basic components of a machine learning algorithm. When the

labels y1, ..., yn, are known, the algorithm A is said to be supervised. When the labels
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are completely unknown, the algorithm is said to be unsupervised. When labels are

known for only some of the x’s, A is said to be semi-supervised.

The algorithms proposed in this thesis are semi-supervised. Here, the unlabeled data

helps get a better estimate of the data distribution. Moreover, if there are systematic

biases in the collection of unlabeled data (eg. sample selection bias), it would hurt the

performance of the algorithm more rather than help. An expert’s explicit feedback such

as which features or instances the algorithm should focus on more, and what categories

they are more predictive of, might help overcome some of these problems.

1.2.1 On the nature of feedback

Any feedback requested from end users demands their time and imposes a cognitive

burden. These are factored into the cost of feedback. In domains such as medicine

where subject matter experts themselves interact with the machine learning system, the

feedback requested might be complex. In other domains such as those where users are

primarily citizen scientists or mechanical turkers, feedback necessarily needs to be simple

in order to minimize errors. Irrespective of the skill level expected of the user, his/her

feedback should ideally have a positive impact on the algorithm performance. However,

algorithms vary in how efficiently they utilize the feedback. Therefore, when compar-

ing feedback-based algorithms, we need some metric that measures performance while

normalizing for the cost. A commonly used metric is the improvement in performance

within a budget. Budget usually corresponds to the maximum number of queries the al-

gorithm is allowed to ask a user; e.g., for an algorithm that asks users to label instances

or features, the budget would correspond to the maximum number of items (instances

or features) actually labeled by the user.

Apart from the cost, we need to keep in mind certain other aspects of feedback in

machine learning algorithms during design. These are discussed next in Section 1.3.

When we consider each of these separately, it helps us break the system down to its

logical components and survey the related literature in a systematic manner. While I

provide pointers to related work for most of these aspects, the coverage is not meant

to be exhaustive. This is intentional; research in this area is large. Nevertheless, I will

cover literature that is directly relevant to this thesis in more detail: Section 2.2 presents

research related to the first part of this thesis – feature labeling for text classification;



4

Section 3.2 presents related work for the second part of the thesis – instance feedback

for anomaly detection.

1.3 Aspects of Feedback for Machine Learning Algorithms

The design of feedback mechanisms for machine learning systems needs to take into

account aspects such as what data is helpful as feedback (Section 1.3.1), in what form

it is to be collected (Section 1.3.2), and how the base algorithm needs to be modified in

order to incorporate it (Section 1.3.3). These aspects are typically determined by the

underlying machine learning algorithm, the domain of application, and the ease with

which an end-user would be able to provide the required feedback. An overview of these

aspects follows next.

1.3.1 Feedback paradigms

Depending on who initiates the collection of feedback, the user or the algorithm, feedback-

based machine learning algorithms may be broadly categorized as follows:

• Passive (user-solicited feedback): A näıve way to incorporate feedback into

machine learning algorithms is for users to iteratively add labeled training in-

stances, train the algorithm and examine its output – possibly increasing the

amount of training data with each iteration – until the output is satisfactory.

Obviously, the downside to this approach is that it requires more manual effort

by the users. However, such an approach works well in practice when feedback

is of a form that has a large influence over the algorithm’s behavior and is easy

for users to provide; for example, feature labeling [58, 77] for text classification.

Generalized Expectation (GE) [21] and posterior constraints [26] are other ways

that allow users to freely express their preferences through statistical expectations.

Section 1.3.2 discusses some of the types of feedback relevant to the passive ap-

proach. The algorithm presented in Chapter 2 of this thesis, which allows users to

label both instances and features, also follows this approach.

• Active (algorithm-solicited feedback): In many machine learning tasks, we

might already have a large number of unlabeled data or obtaining such data might
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be easy. The machine learning algorithm has the option to choose any unlabeled

data and query an expert for the true label. This is the ideal setting for Active

Learning [65, 23] where the goal of the algorithm is to maximize the generalization

accuracy while minimizing the number of queries presented to the expert. The

large amount of unlabeled data can be used to determine its distributional prop-

erties; this in turn suggests which parts of the feature space are most informative.

The algorithm improves its efficiency by selecting unlabeled instances from these

informative parts for query. As part of this thesis, we discuss an algorithm (AAD)

in Chapter 3 that has a setting similar to the one discussed here. However, un-

like Active Learning, AAD operates in a transductive setting; it does not try to

generalize its learning to unseen test data.

In sequential prediction problems the algorithm’s goal is to predict the best action

for future observations which are themselves dependent on past predictions. Since

the data are not i.i.d, the algorithm cannot make assumptions about the distribu-

tion of the training data. Imitation Learning [63, 3, 61] is a popular approach in

this setting where an expert provides demonstrations of good behavior and then

the algorithm tries to emulate the expert. One of the techniques for learning in this

domain is follow-the-leader [61, 33, 38]. The anomaly detection algorithm (AAD)

discussed in Chapter 3 might also be considered as a type of the follow-the-leader

algorithm. However, AAD is different from the standard sequence prediction prob-

lem because, as already mentioned, it is in a transductive setting where we know

the data instances.

1.3.2 Types of feedback

Algorithms differ on the basis of the types of inputs users provide as feedback. Section 2.2

and Section 3.2 discuss in more depth literature that is relevant to this thesis. Here we

present only an overview of the commonly encountered feedback types.

• Instance labels: This is by far the most commonly encountered feedback in

machine learning, especially for active learning. Here the algorithm asks the user

to label the most informative instance. In classification settings, this form of

feedback helps in removing uncertainty at the class boundaries, thereby creating
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clear separation between classes. Chapter 3 applies this form of feedback to a non-

classification task in which the primary goal is to rerank instances on the basis of

anomalousness.

• Feature labels: Here the algorithm asks the user to label individual features [58].

In some ways this is a more direct incorporation of domain knowledge than just

labeling instances. With instance labeling, the algorithm has to infer correlations

between the features and labels, whereas with feature labeling the user directly

provides the relationship between a feature-value pair and the class label. We will

encounter this type of feedback in Chapter 2.

• Rule labels: The expert might try to transfer domain knowledge directly to the

algorithm through rules. This approach has been investigated by Rashidi and

Cook [59] in an active learning setting. In Rashidi and Cook [59], the algorithm

exploits the underlying density distribution to find an informative instance as well

as its most similar cases. Then by using a rule induction classifier to infer rules

for separating those similar cases from the rest of data, they construct a generic

query. This query has the form: rule ⇒ label. If the user marks the rule with a

label, then that label is applied to all unlabeled instances which match the rule.

Rule-based feedback is not a part of this thesis.

• Expected statistics on labeled data: Some preferences about model expec-

tations may be incorporated into parameter estimation objective functions. GE

[49] is one such framework which has been applied in an active learning setting for

incorporating feature labels [21]. GE is fairly general and not limited to feature la-

beling. [49] discusses how a human might communicate with the underlying model

using GE in terms of expectations rather than parameter values. Chapter 2 com-

pares GE with other algorithms in a text classification task where both instances

and features may be labeled.

1.3.3 Feedback incorporation mechanisms

Once the user has provided feedback or expressed some preference, the algorithm might

incorporate it into the model in one of the following ways:
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• Add labeled instances to training data: This is the most common mechanism

for incorporating feedback. The main reason is its simplicity: no other modification

is required to the base algorithm apart from retraining after adding the new labeled

data.

• Update feature weights: This changes the influence each individual feature has

on the underlying model. LWLR-FL and LWLR-SS-FL discussed in Chapter 2 use

this method to incorporate feedback.

• Use as regularizer or prior: Various forms of regularization can be employed to

incorporate user preferences in GE [49, 21] and posterior constraints [26]. Settles

[66] incorporates feature labels by changing priors on labeled features.

• Generate additional training examples that are consistent with feed-

back: Section 1.3.2 discusses an algorithm ([59]) where instances matching a rule

predicate are selected and labeled as desired by the user. Although this is similar

to simply adding labeled instances, the difference is that now multiple instances

might be labeled by a single piece of feedback. Moreover, the algorithm might

associate weights to these labeled instances based on its confidence since not all

instances affected by the feedback are inspected by the user.

1.4 Thesis overview

The two particular types of feedback mechanisms investigated in this thesis are: 1)

feature labeling for semi-supervised learning and 2) instance-level feedback for improving

an anomaly detector.

1.4.1 Feature labeling for semi-supervised learning

In Chapter 2, I introduce feature labeling as a method of incorporating user feedback.

Feature labeling [5, 21, 70, 57] is a method that allows a user to point out which feature-

value combinations are predictive of a class label. Raghavan et al. [58, 57] show that users

take one fifth of the time to label a feature than they do to label an entire document.

Wong et al. [77] propose a supervised feature labeling approach based on adjusting

the distance metric of a Locally Weighted Logistic Regression (LWLR). I extend this
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work with a semi-supervised approach [15] that combines the information from labeled

instances in the training set, the feature labels provided by end users and information

from the inherent structure found in a pool of unlabeled data. I evaluate this semi-

supervised approach using both simulated feature labels as well as feature labels provided

by actual end users in a user study.

1.4.2 Instance-level feedback for improving an anomaly detector

Anomaly detection involves detecting unusual data which do not fit the descriptions

known to the user. Some of these unusual data might indicate the presence of important

processes that the user is unaware of. For instance, an anomalous user activity might

point to the malicious intent of exfiltrating sensitive data from a computer network.

Anomaly detectors are good at detecting statistical outliers, which include noise, unin-

teresting outliers, as well as interesting patterns. We refer to the patterns that are of

interest to the user, as anomalies. Anomalies are not brought to the user’s attention in

a timely manner if there is a gap between what the detector considers as an outlier, and

what the user considers as an anomaly. This could incur a loss for the user. The gap in

understanding between the user and the detector can be bridged through instance-level

feedback. In Chapter 3, I develop an algorithm called Active Anomaly Discovery [16], for

improving the accuracy of an anomaly detector by incorporating instance-level feedback

from an end user. A strength of this algorithm is that it can use even one-sided feedback,

e.g., when all labeled instances are nominal.

Active Anomaly Discovery (AAD) operates in an interactive data exploration loop

to provide instance-level feedback to an anomaly detector. Here we have an iterative

feedback cycle in which a user answers queries posed by a learning algorithm. In each

iteration the algorithm first determines the most anomalous unlabeled instance, and

presents it to the user to label. Once the user responds, the algorithm updates the model

and repeats the cycle. The cycle is continued until a budget on the number of queries is

exhausted. For this method to be practical, a significant improvement in performance

must be achieved with a reasonably small budget of queries, and the feedback should be

incorporated in near real-time. As part of my thesis, I also investigate scaling up the

proposed anomaly detection algorithm to handle a large volume of data and feedback.
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Chapter 2: Feature Labeling

2.1 Introduction

Customizing to the end-user’s preferences is challenging, especially when there is limited

training data, such as when the application is first deployed. Raghavan et al. [58], and

Raghavan and Allan [57] found that labeling a feature with a particular class took humans

roughly a fifth of the time as labeling a document, and the benefits of feature labeling

were greatest when the training set sizes were small. Motivated by this research, Wong

et al. [77] developed an algorithm that incorporates feature labels provided by end-users

into Locally Weighted Logistic Regression (LWLR). In a user study [77], this algorithm

(LWLR-FL) outperformed other state-of-the-art feature-labeling algorithms when the

training set size was small. As part of this thesis, I present a semi-supervised extension

to LWLR-FL1.

2.2 Related Work

In this section I review related work on feature labeling. We divide the approaches for

feature labeling into supervised and semi-supervised feature labeling algorithms. Super-

vised feature labeling algorithms require only a training set of labeled instances. On the

other hand, semi-supervised feature labeling requires both a labeled training set as well

as a pool of unlabeled data, which is assumed to be relatively easy to obtain.

Two of the SVM-based methods presented by Raghavan and Allan [57] involved

supervised feature labeling. Their first method, Method 1, scaled features indicated as

relevant by the user by a constant a and the rest of the features by a constant d (where

a ≥ d). In their second method, Method 2, the user indicated that the j-th feature

was relevant for a class label l. For each feature-label pair, Method 2 created a pseudo-

document consisting of a value r in index j, zeroes elsewhere and a class label of l. The

r parameter controlled the influence of the support vectors of the pseudo-documents on

1This work was published in Das et al. [15]
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the separating hyperplane.

Another group of supervised feature labeling algorithms are based on multinomial

näıve Bayes. The pooling multinomials approach [50] combined parameters from a multi-

nomial näıve Bayes classifier trained on labeled instances and another derived from back-

ground knowledge, which in this case were feature labels. This approach, however, was

restricted to Boolean class labels. Settles [66] proposed another method based on näıve

Bayes in which he changed the priors for labeled features. If a feature was labeled with

a class, the corresponding parameter was given a Dirichlet prior of (1 +α), where α was

a tunable parameter, while all unlabeled features were given a uniform Dirichlet prior of

1.

The majority of the work in feature labeling has takes a semi-supervised approach.

A common strategy employed by several methods is to use the user feedback to label

the unlabeled data and then incorporate these soft labels into training. Method 3 of

Raghavan and Allan [57], following the approach of Wu and Srihari [80], associated slack

variables with the soft labeled data to influence the position of the margin for an SVM.

The user co-training algorithm of Stumpf et al. [72] treated the user’s feature labels

like a classifier and combined this ‘classifier’ in the co-training framework [8] with näıve

Bayes. The Multinomial näıve Bayes (MNB) approach by Settles could be extended to

a semi-supervised approach by soft-labeling the unlabeled data and then re-estimating

the MNB parameters [24]. Finally, the approach by Liu et al. [43] modified the EM

algorithm to incorporate labels produced by representative words for each class selected

by the user.

Another common approach to semi-supervised feature labeling is to treat the feature

labels as constraints and bias the learned model to respect these constraints. Algorithms

falling into this framework used an objective function during learning that consisted of

the maximum likelihood of the training data plus an additional term that penalized the

model when it failed to satisfy certain constraints. This framework was developed to

address a more general class of problems than just feature labeling, and this framework

has been used for problems as diverse as multi-view learning [24] and transfer learning

[49]. Examples of these approaches include Constraint Driven Learning [11], Generalized

Expectation [49, 21], Learning with Measurements [42] and Posterior Regularization

[26, 24]. Ganchev et al. [24] described the relationships between these approaches and

the subtle differences in the approximations these algorithms employed for inference.
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We briefly describe Generalized Expectation (GE) in more detail, since it was specif-

ically applied to feature labeling [21] and we will be using it in our experiments. GE is

a framework for incorporating preferences about variable expectations during parameter

estimation. We can describe GE as trying to maximize a score function S, between a

models expectation of f(X) and a target value f̃ , denoted:

S(Eθ[f(X)], f̃).

For instance, in Maximum Likelihood Estimation, the score function is the negative

cross entropy and the target value is the empirical distribution on the training data. We

can fit our algorithm into the GE framework by using the empirical distribution as the

target value and a weighted negative cross entropy as the score function. Our approach

incorporates feature labels by changing the score function. This is different from prior

work with GE which incorporates feature labels by changing the target value.

Aside from supervised and semi-supervised feature labeling, other work in feature

labeling investigated dual supervision [70], which is a term used to describe the process of

labeling both instances and features. Raghavan and Allan [57] combined feature labeling

with uncertainty sampling for instance labeling in their tandem learning approach. Other

dual supervision approaches include a graph-based transduction algorithm [70] and an

approach using pooled multinomials [6]. The focus of these last two papers was on

active learning for dual supervision, which chooses instances and features for labeling.

Our work differs in that it is the end-users, not the active learning algorithm, that choose

the features for labeling. Furthermore, we are investigating the effects of labeling only

features, not instances, especially with an eye to the initial training period when training

data is limited.

Attenberg and Provost [5] investigated feature labeling for budget-sensitive learning

under extreme class skew and found that it was a promising alternative for data acquisi-

tion. When humans had difficulty finding instances from the minority class, Attenberg et

al. suggested that a less costly form of data acquisition would be for humans to describe

distinguishing features of the minority class. Our work is not specifically intended for

datasets with extreme class skew but for more balanced datasets. Nevertheless, both

our work and the work by Attenberg and Provost [5] point to feature labeling being

extremely beneficial in either setting.
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All of the above methods dealt with labeling existing features. Roth and Small [62]

allowed users to create new features by replacing features corresponding to semantically

related words with a Semantically Related Word List (SWRL) feature. Their focus,

however, was on creating SWRLs to improve classifiers rather than feature labeling. In

our user study, we allow end-users to construct new features and label them. Finally,

most of the prior work in feature labeling evaluated algorithms under ideal conditions,

such as feature labels obtained from an oracle [6, 70]. Some prior work [58, 66] has

evaluated feature labeling algorithms using both oracle feature labels and labels obtained

from user experiments. However, these experiments were on a small scale with only a

handful of users and a subset of these users were knowledgeable about machine learning.

In contrast, we perform a large scale study involving 43 participants, all of whom had no

background in machine learning or human computer interaction. These non-expert end-

users can introduce noisy and inconsistent feature labels. Our study investigates both

the use of ideal oracle feature labels and feature labels provided by real world end-users.

2.3 Feature Labeling

The semi-supervised setting for feature labeling incorporates knowledge from three sources:

a small labeled training set, the feature labels provided by the end-user and information

from the implicit structure of the unlabeled data. We evaluate our semi-supervised al-

gorithm using both oracle feature labels and end-user feature labels from the user study

mentioned earlier. Our analysis shows that incorporating unlabeled data during learning

sometimes produces worse performance than just using a purely supervised learning ap-

proach, both with and without feature labeling. However, adding the information from

feature labels consistently improves performance over not including this information,

both in the supervised and semi-supervised settings.

2.3.1 LWLR

Logistic Regression (LR) [28] is a well-known method in statistics for predicting a discrete

class label yi given a data instance xi = (x1i , ..., x
D
i ) with D features; we refer to the d-th

feature, without reference to a specific data instance, using the superscript notation i.e.

xd. LR models the conditional probability P (yi|xi) by fitting a logistic function to the
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training data.

The conditional probability for an M-class problem is:

Pθ(yi = cj |xi) =
expβ0j +

∑D
d=1 β

d
j x

d
i∑M

m=1 expβ0m +
∑D

d=1 β
d
mx

d
i

(2.1)

In the equation above, the notation cj refers to the j-th class. The parameters θ =

(β1, ..., βM ) are computed by maximizing the conditional log likelihood, which cannot be

solved in closed form but must be done numerically.

(a) LR on linearly separable
data

(b) LR on unseparable data (c) LWLR on unseparable
data

Figure 2.1: Example of a situation where LR fails but LWLR succeeds in separating two
classes

LR assumes that the parameters θ are the same across all data points. Although

this approach works reasonably well when the classes are linearly separable, it fails when

the actual decision boundaries are more complex and when the data is noisy [17], which

is often the case with real-world data. One solution for dealing with this case is to use

Locally Weighted Logistic Regression (LWLR) [12, 17], in which the logistic function

is fit locally to a small neighborhood around a query point xq to be classified. LWLR

gives more weight to training points that are “closer” to the query point than those

farther away. A common function used to determine the closeness of text documents

is cosine similarity. Since we want the distance to increase when a training instance xi

is less similar to the query instance xq, we use cosim(xq,xi) = 1 − cos(xq,xi) as the

baseline distance function for LWLR. In Section 2.3.1, we will describe how we extend

this reweighting of training instances to perform feature labeling.

The log-likelihood of data in LWLR is computed with respect to the query instance
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xq as:

lw(θ) =
N∑
i=1

w(xq,xi) log(Pθ(yi|xi)) (2.2)

where,

w(xq,xi) = exp

(
−f(xq,xi)

2

k2

)
(2.3)

The weight w(xq,xi) is a kernel function which decays with the distance f(xq,xi). The

parameter k is the kernel width, which controls the size of the neighborhood as the value

of k increases. As a consequence of having to fit the logistic function locally to a query

point, LWLR is considered a lazy algorithm and we now need to train the classifier each

time it receives a query point. However, in many cases, we gain a much higher accuracy

with this tradeoff in efficiency.

Maximizing lw(θ) with respect to the parameters θ cannot be done in closed form. In

our experiments, we solve it using Limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) [52] for which we need to compute the partial derivative of lw(θ) with respect

to the β parameters. The partial derivative in Equation 2.4 computes the gradient for

the log-likelihood. In this equation, the expression [yi = cj ] takes the value of 1 if the

expression in the brackets is true, and 0 otherwise.

∂

∂βdj
lw(θ) =

N∑
i=1

w(xq,xi)

(
xdi [yi = cj ]−

xdi
Z(xi)

exp

(
β0j +

D∑
d′=1

βd
′
j x

d′
i

))
(2.4)

where,

Z(xi) =
M∑
j=1

exp

(
β0j +

D∑
d′=1

βd
′
j x

d′
i

)
.

2.3.2 LWLR-FL

LWLR-FL incorporates feature labeling into LWLR. LWLR is modified for feature label-

ing because of its ability to weight training instances differently, rather than its ability

to handle non-linear decision boundaries. We include feature labels (provided by the

end-user) when we define the local neighborhood surrounding the query point. Train-
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ing instances that are more similar to the query point according to the feature label

information are considered to be closer and hence assigned higher weight. The baseline

cosim(xq,xi) distance function is modified to incorporate feature labels. The modified

distance function between xq and xi has two distinct components – one based only on

their features (satisfied by the baseline distance cosim(xq,xi)), and the other based on

class labels. Since xq does not have an associated class label, only the class label of xi

and the feature label information are used for computing the label similarity.

The label similarity between xq and xi is based on the difference between the class-

relevant and other-class-relevant feature contributions. A class-relevant feature is a

feature that is labeled with the class label yi of instance xi as specified by the feature

labels. The class-relevant feature contribution is the sum of the values of all class-

relevant features in xq, where xq is represented as an L2-normalized term frequency-

inverse document frequency (TF-IDF) vector. Similarly, an other-class-relevant feature

is a feature that is labeled with a class label other than yi. The other-class-relevant

feature contribution refers to the sum of values of all other-class-relevant features in xq.

The user feature label matrix R is now defined as:

R[D×M ] =


r1(x

1) · · · rM (x1)
...

. . .
...

r1(x
D) · · · rM (xD)

 , (2.5)

where rj(x
d) = 1 if the d-th feature is labeled to be important for class label cj and 0

otherwise. The j-th column of R is denoted by R(j). Let U be a (D× 1) column vector

in which the i-th entry is 1 if the i-th feature has been marked important in any class.

All other entries are zero.

On the basis of the above definitions, the difference between the class-relevant and

other-class-relevant feature weights is computed as:

R(yi)
Txq −

(
(U−R(yi))

Txq
M − 1

)
(2.6)

The term R(yi)
Txq is sum of class-relevant feature values for class yi and (U−R(yi))

Txq

is the sum of other-class-relevant feature values. Since we have (M − 1) class labels
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excluding yi, we divide the other-class-relevant feature contributions by (M − 1) to

appropriately balance the difference.

We want the distance between similar instances to be smaller. Hence, the label

similarity component of the distance function is defined as:

1−R(yi)
Txq −

(
(U−R(yi))

Txq
M − 1

)
(2.7)

The complete distance function now becomes:

f(xq,xi) = cosim(xq,xi)

[
1−R(yi)

Txq −
(

(U−R(yi))
Txq

M − 1

)]
(2.8)

The above function can be negative in some cases. Hence, a max term in the weight

computation is introduced to handle such a scenario.

w(xq,xi) = exp

(
−max(0, f(xq,xi))

2

k2

)
. (2.9)

Putting these pieces together, we now have a distance function that incorporates the

feature labels into LWLR.

The LWLR-FL and LWLR are lazy algorithms, meaning that they do not perform

training until a query is made. This means each query has a computational complexity of

O(n), where n is the number of instances in the training set. Although the computational

cost can be expensive with a large training set, the LWLR-FL algorithm is intended to be

applied to small training sets during the initial period when a learning algorithm is first

deployed. With small training sets, such as those in our experiments, each query only

takes milliseconds on a standard desktop computer, making the LWLR-FL algorithm

viable in an interactive setting.

2.3.3 Semi-supervised Learning

Before elaborating on how we incorporate unlabeled data into LWLR, we first present an

overview of semi-supervised learning and the intuitions behind utilizing unlabeled data.

As mentioned in Section 1.2, semi-supervised learning utilizes data which is partly

labeled and partly unlabeled. Unlabeled data is usually easy to obtain and does not
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id label document

1 sports The Patriots won Superbowl 2017.
2 ? We were watching Monday night football at the bar.
3 ? Only two football teams make it to the Superbowl.
4 medicine He was admitted to the hospital after a massive heart attack.

Table 2.1: Partially labeled document corpus for semi-supervised learning.

require expensive labeling effort by an expert. Despite the absence of labels, it serves to

expose the structure which can be used to build bridges between different parts of the

feature space.

For example, assume that we have a corpus with four documents and their corre-

sponding labels as shown in Table 2.1. Here, only documents 1 and 4 are labeled. A

purely supervised classifier might be trained on these two documents and then used to

predict labels on documents 2 and 3. While the prediction on document 3 might be

accurate (as it shares the word ‘football’ with document 1), prediction on document 2

seems hopeless – it has no words in common with the labeled documents. If, however,

the classifier could reason that since document 3 is likely to be labeled sports and shares

a word (‘Superbowl’) with document 2, then document 2 should also be assigned the

label sports. To be able to make this type of inference, the entire corpus – both labeled

as well as unlabeled data – should be available during training; and learning under this

setting setting is called semi-supervised.

Semi-supervised learning distinguishes two different types of prediction tasks. When

the goal is to predict labels of unlabeled data which were already available during train-

ing, it is called transductive semi-supervised learning. When the task is to predict labels

for unseen future data, it is called inductive semi-supervised learning. The problems we

address in this thesis are in the transductive setting.

There are many semi-supervised learning methods [84] such as self-training, prob-

abilistic generative models, co-training, graph-based models, semi-supervised support

vector methods, etc. In this chapter we apply a graph-based method that computes

pairwise distances in the manifold space through label diffusion over the unlabeled data.

We explain this method using an illustration below.

Assume that we only have labeled data as shown in Figure 2.2a. The labeled points

are marked as ‘*’. Additionally, we also have an unlabeled instance marked as ‘+’.



18

**
*

*

* *

+

(a) Small labeled data

**

*

**

*

*

*

* *

*

*

*

*

*
**

*
*
* *

*

*
*

*
*

*

*

*

** *

*

*

*

*

*

*

**

*
* *

*
*

*
*

*

*
*

***

*

*

**

**

*

*

*

*

*
*

**

**

*

*
**

*

*

*

*

*

* *
*

**

*
*

*

*
**

*

*

*

*

**
*

*

*

*
* *

*
*

*
*

*
*

*

**

*

*

*
**

*
*

*

*
*

*

*

* *

*

*

* *

*

** **

**

*

*

*
*

* *

*

*
*

*
*

**

*
*

* **

*
*

*

*

***
*

**

*
*

*

*

*

**

*

*

*
*

*

**
*

*

*
* *

*

*

* *

* *

*
*

**

*
*
*

*

*
*

*
*

* * ** ** *** ** ** *** * **** * **** ** ****** ** *** * * ** ** ** *** ** ***** * **** *** *** * *** **** * ** ** * ** ** **** ** ** ** ****

**
*

*

* *

+

(b) Labeled data in presence of
unlabeled data
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(c) Ideal labels

Figure 2.2: Exposing structure in data through unlabeled data

When asked to predict the label of the unlabeled instance, there is likely be confusion on

whether to label it as green or red. If, on the other hand, we are shown other unlabeled

data as in Figure 2.2b, we can see how the labeled instances are part of underlying

structures which form separate classes. Those structures make it more likely that the

unlabeled instance marked as ‘+’ should be labeled red.

The above example assumes that there are manifold structures in the data that can

be used to group instances. If the label for at least one instance in a group is known, it

applies to all instances within the group. Correspondingly, the labeling effort is reduced

to a large degree. In order to infer the manifold structure, a method commonly used

in semi-supervised learning is label diffusion [82, 85]. We first describe label diffusion

without feature labeling in this section. In the next section, we extend this to the setting

where labeled features are available.

All instances (labeled and unlabeled) are represented as points in the feature space.

We build a connected graph by joining each instance to its #nn nearest neighbors with

undirected edges. The labeled training instances may now be considered as sources from

which the labels propagate to unlabeled instances along the edges. There are several

techniques for label propagation – one of which [82] is by an iterative Markov process

until a stationary state is reached. At this stationary state, we have at a pairwise affinity

matrix A which takes into account the distance the labels had to diffuse through in

manifold space rather than just the Euclidean distances. Let U be the set of unlabeled
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instances, L be the set of labeled instances, and n be the total number of instances

(|U|+|L|). Let W[n×n] be an initial affinity matrix, prior to label diffusion, that captures

the similarity between two data instances. When i = j, Wij = 0 otherwise for i 6= j,

LWLR-SS uses the following similarity measure between any two instances xq and xi:

Wqi = exp

(
−||xq,xi||

2

k2

)
(2.10)

Define D[n×n] as a diagonal matrix where Dii =
∑

jWij and let S = D−1/2WD−1/2.

The matrix A[n×n] = (I−αS)−1 will contain all pairwise similarities when label diffusion

reaches the stationary state. The similarities in matrix A are in range [0, 1], where 1

means most similar, and 0 means least similar. Here the parameter α controls the rate

of label propagation and I is an identity matrix. We view A as a distance matrix defined

within a transformed space (referred to as the manifold space.)

The algorithm for semi-supervised learning is shown in Algorithm 1.

Algorithm 1 Semi-supervised Learning with Label Diffusion

1. Setup matrices W, D, S

2. Compute A = (I− αS)−1

3. Normalize all values of A into range [0, 1] by dividing row Ai by the diagonal
element Aii. Since the diagonal elements are self-similarities, these are the highest
values in the corresponding rows and columns. An IsoMDS plot (Figure 2.4) using
the computed pairwise distances in A shows that points which are in the same
manifold structure cluster together.

4. For each unlabeled instance xq ∈ U, train a classifier with instance weights set to
normalized Aqi, where xi ∈ L and classify xq.

2.3.4 LWLR-SS-FL

Previously, the notion of locality around an unlabeled query instance xq (in LWLR and

LWLR-FL) was based on a similarity measure between only labeled instances and xq. We

now extend the similarity measure to include information from other unlabeled instances
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Figure 2.3: Label Diffusion. The circles represent the initial set of labeled training
examples. The colors red, blue, and green represent three different classes. Points in grey
are unlabeled instances. At each iteration, the labels ‘diffuse’ from the currently labeled
instances to their nearest neighbors. After a number of iterations of label diffusion, the
distribution of the labels over the instances becomes stationary.
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Figure 2.4: Clustering in manifold space

as well using label diffusion. We refer to our semi-supervised algorithm which uses no

feature labeling information as LWLR-SS and the one using feature labeling information

as LWLR-SS-FL.

In order to modify Algorithm 1 for LWLR-SS, we first define the similarity matrix

W as in Equation 2.11 where Wqi is the similarity between any two instances xq and xi.

Next, the likelihood function for the query instance xq for LWLR-SS is modified to be

lw(θ) =
∑N

i=1Aqi log(Pθ(yi|xi)) where we have replaced w(xq,xi) by Aqi in Equation 2.3:

Wqi = exp

(
−cosim(xq,xi)

2

k2

)
(2.11)

Similarly, for LWLR-SS-FL we use the similarity matrix defined in Equation 2.12.

Apart from this modification to the similarity measure, the LWLR-SS-FL algorithm is

identical to the LWLR-SS algorithm:

Wqi =

 exp
(
−max(0,f(xq ,xi))

2

k2

)
when only one of xi or xq is labeled,

exp
(
− cosim(xq ,xi)

2

k2

)
otherwise.

(2.12)
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Dataset Number of Instances Classes Used

20 Newsgroups 2750 comp.sys.ibm.pc.hardware(953),
misc.forsale(759), sci.med(557), and
sci.space(481)

Modapte 1100 earn(300), acq(300), negative topic(250),
and money-fx(250)

RCV1 6300 C15(1260), CCAT(1260), ECAT(1260),
GCAT(1260), and MCAT(1260)

WebKb 3695 Course(930), faculty(1124), and stu-
dent(1641)

Industry Sectors 3311 basic.materials(950), energy(355), fi-
nancial(290), healthcare(400), tech-
nology(500), transportation(515), and
utilities(301)

Movie Review 2000 pos(1000) and neg(1000)

Table 2.2: The classes of the data sets used in the oracle study, along with the number
of instances in each class shown in parentheses.

2.3.5 Experiment Results

To evaluate LWLR-SS-FL, we applied it to six real-world text data sets (20 Newsgroups,

Modapte, RCV1, WebKb, Industry Sectors, and Movie Review) with two kinds of studies.

First, to avoid the prohibitive expense of performing a separate user study on each data

set, we followed the usual machine learning methodology [57, 70], and simulated end-

user feature labeling on multiple data sets using a feature label oracle. Second, we

then performed a study with real users on one particular data set to investigate the

effectiveness of using feature labels obtained from end-users.

2.3.6 Oracle Study

In our oracle-based experiments, we employed six common text classification datasets:

20 Newsgroups [39], the Modapte split of the Reuters dataset [1], the Reuters Corpus

Volume 1 (RCV1) dataset [41], WebKb [14], the Industry Sector dataset [48], and the

Movie Review dataset [53]. As a pre-processing step, the text documents were converted

into TF-IDF representation and then L2-normalized. We used a vocabulary consisting



23

of unigrams with stopwords removed.

Table 2.2 summarizes the number of instances and the classes used from each of these

datasets. Class imbalance, however, can be a problem in some of these datasets. For

instance, in WebKb, the smallest class is approximately 1/16th the size of the largest

class. Such class imbalance, if unaddressed, would make the classifier focus on improving

the accuracy of only those classes which have a large number of instances, and it severely

degrades the accuracy of the smaller classes. In order to avoid class imbalance issues, we

chose the largest classes with roughly the same number of data instances in each class

and avoided classes with an extremely small number of data instances.

For 20 Newsgroups, we chose four classes (Table 2.2) that end-users in our user study

could understand easily without the need for specialized knowledge. Since we would also

present articles from these newsgroups to end-users in our user study (Section 4.2),

we wanted to preserve the topical coherence of articles by choosing articles that fell

within a relatively short date range that included a large number of articles from these

newsgroups. As a result, we chose 2750 articles from these four newsgroups within the

date range April 1, 1993-April 23, 1993.

In order to evaluate the semi-supervised learning algorithms, which assume a pool of

unlabeled data instances is available during training, we employed the same 6 datasets

as those selected for supervised learning as well as the same oracle feature labels. Fur-

thermore, we applied the same training/validation/test splits, but unlike in supervised

learning, we made the unlabeled data instances from the test set available during train-

ing. We employed the same oracle feature labels from the previous section and present

results when 10 oracle feature labels per class were provided to the semi-supervised

algorithms.

We compared LWLR-SS-FL against SVM-M3, GE, and MNB/Priors+EM, which are

representative algorithms from the two general strategies employed for semi-supervised

feature labeling. For the SVM-based methods, we experimented with different combina-

tions of Method 1 and Method 2 with Method 3, but found that SVM-M3 worked the

best. To avoid clutter, our results only show the results from SVM-M3. We chose GE

because it was specifically applied for feature labeling in [21] and because the GE code

was readily available in the Mallet package [47]. GE has also been shown empirically

to perform better than other algorithms (e.g., learning with measurements) with small

training data sets [42], which was our particular problem setting.
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For LWLR-SS-FL, as suggested in [82], we set the rate parameter α to 0.99. We did

not tune the k parameter over the validation set due to the computational expense of

tuning LWLR-SS-FL, but set k =
√

0.08 for all datasets. This value was determined

empirically and was found to give good results. The number of nearest neighbors was

fixed to 100 for all datasets.

We used GE with Schapire distributions as in Druck et al. [21], where the majority

class was assigned a weight 0.9. The Gaussian prior in GE was tuned within the range of

values from 0.2 to 1.0 at steps of 0.2 using the validation set. The GE objective function

can be modified to weight the GE term and the likelihood of the data in order to balance

the effects of feature labels with training data. Since the training sets in our experiments

were very small, the likelihood term had neglible effect, and we found that using only

the GE term produced the best results.

For all SVM methods, including SVM-M3, the parameters C, a, and r were tuned us-

ing a validation set. The parameter d was fixed to 1.0. For MNB/Prior and MNB/Prior+EM

we tuned the prior α using the validation set. We also tuned the soft-labeling weight for

unlabeled instances in MNB/Prior+EM using the validation set.

2.3.6.1 Results of Oracle Study

The results for the Oracle study are shown in Figure 2.5. LWLR-SS-FL outperformed

the other algorithms on the 20 Newsgroups, Modapte, and Industry Sectors datasets.

GE, however, had the best macro-F1 on the WebKb and Movie Review datasets. For

the RCV1 dataset, SVM-M3 had the best macro-F1.

Past work in semi-supervised learning (e.g. [7]) has indicated that the label diffusion

approach to semi-supervised learning was successful if the data had a smooth underlying

manifold structure in which instances from the same class were close enough to each

other to allow labels from labeled training instances to propagate to unlabeled instances

that were of the same class. Label diffusion performed poorly if the “islands” of data

instances from one class fell in between “islands” of data instances from another class

on the manifold structure. We believe that the poor behavior of LWLR-SS-FL on the

WebKb and Movie Review datasets was due to these datasets having an underlying

structure that did not satisfy this particular assumption of label diffusion.

Figure 2.6 compares the relative benefits of augmenting learning from labeled train-
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ing instances using feature labeling, unlabeled data, and a combination of the two. In

general, information from feature labels helped learning more than information from

unlabeled data. In fact, in four datasets (Modapte, RCV1, WebKb, and Movie), the

unlabeled data caused the performance of LWLR-SS to degrade below that of the base-

line supervised learning LWLR algorithm. Surprisingly, combining feature labeling with

semi-supervised learning overcame this deficit, resulting in better performance than the

baseline. Semi-supervised feature labeling, however, did not necessarily outperform su-

pervised feature labeling. On three datasets (RCV1, WebKb, Movie Review), LWLR-SS-

FL performed worse than LWLR-FL. Overall, however, incorporating information from

feature labels always improved performance in both the supervised and semi-supervised

settings, as one can see by the improvement of LWLR-FL over LWLR and the improve-

ment of LWLR-SS-FL over LWLR-SS.

Macro F1, Adding 10 Oracle Feature Labels per class (Semi-supervised)

Algorithm 20 News-
groups

Modapte RCV1 Industry
Sectors

WebKb Movie
Review

SVM 0.635 0.747 0.559 0.391 0.715 0.597

MNB 0.643 0.665 0.540 0.386 0.604 0.583

LWLR 0.652 0.774 0.554 0.396 0.670 0.628

LWLR-SS-FL 0.900† 0.844† 0.643 0.703† 0.745 0.708

SVM-M3 0.809 0.827 0.649 0.659 0.851 0.758

GE 0.823 0.766 0.556 0.663 0.876† 0.782†

MNB/Prior+EM 0.806 0.431 0.535 0.460 0.601 0.744

Table 2.3: Results of incorporating 10 oracle features per class through semi-supervised
feature labeling for all six datasets. The values in bold in each column represent the
highest scores for the corresponding dataset. The symbol † denotes values that are
significantly greater than all other algorithms at the 0.05 level (Wilcoxon signed-rank
test, p < 0.05). Results for the baseline SVM and LWLR algorithms are included for
reference.



26

Figure 2.5: Average macro-F1 scores for incorporating 10 Oracle feature labels through

semi-supervised feature labeling for the six datasets used in our experiments.

Figure 2.6: A comparison of the relative benefits of feature labeling and unlabeled data

for variants of LWLR-FL.

2.3.7 End-user Labeling Study

The strength of oracle studies is the ability to evaluate a variety of data sets, but their

weakness is that they may not be realistic as to the choices real users might make.

Therefore, for our second experiment, we conducted a user study to harvest feature
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Macro F1, Adding 10 Oracle Feature Labels per class (Semi-supervised)

Algorithm 20 News-
groups

Modapte RCV1 Industry
Sectors

WebKb Movie
Review

LR 0.623 0.773 0.582 0.396 0.712 0.586

LWLR 0.652 0.774 0.554 0.396 0.670 0.628

LWLR-FL 0.777∗ 0.844∗ 0.660∗ 0.603∗ 0.815∗ 0.747∗

LWLR-SS 0.789∗ 0.723 0.512 0.430∗ 0.452 0.468

LWLR-SS-FL 0.900∗ 0.840∗ 0.644∗ 0.703∗ 0.745∗ 0.691∗

Table 2.4: Results of adding 10 oracle features per class for all six datasets for algorithms
that are variants of logistic regression. The symbol ∗ denotes values that are significantly
greater than the baseline LWLR algorithm at the 0.05 level (Wilcoxon signed-rank test,
p < 0.05)

labels from actual end-users on the same 20 Newsgroups classes as used in Section 2.3.6.

We then used the users’ data to compare the performance of the same algorithms as in

our oracle study, but with smaller validation sets of size 24 (six instances for each class)

to simulate a realistic scenario in which users were able to label only a limited amount

of training instances for both a training and a validation set.

A starting point for the experiment’s design was the user study by Raghavan et al.

[58]. However, an important difference was that we chose to remove constraints on the

features users were allowed to pick. Specifically, rather than having users select features

from a pre-computed list, we allowed them to identify features by freely highlighting

text directly in the documents. This gave the participants complete freedom to choose

any features that they thought were predictive. Consequently, not only were the users

allowed to select existing features in the algorithms representation, but also to create

and label new features, such as through combinations of words or punctuation.

The user study had 43 participants: 24 males and 19 females. For the main ex-

periment, the participants were shown 24 previously labeled documents in four top-

ics: Computers, Things For Sale, Medicine, and Outer Space (corresponding to the

four newsgroups comp.sys.ibm.pc.hardware, misc.forsale, sci.med, and sci.space, respec-

tively). Each of the four topics had six documents assigned to it, which were randomly

selected from a pool of 200 training instances. The order of the documents was random-

ized for each participant. Participants were asked to teach the machine “suggestions” by

identifying features that they believed would help it label future documents. Within a
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time limit of twelve minutes, participants were asked to provide at least two suggestions

per topic, with an emphasis placed on selecting the best features for each newsgroup.

We used participant-provided feature labels instead of the oracle feature labels to

compare the performance of LWLR-FL and LWLR-SS-FL against the other supervised

and semi-supervised methods described in Section 2.3.2 and 2.3.4. Participants could

label features by highlighting any text – they did not have to know whether their feature

existed before (recall that we used a vocabulary of unigrams with stopwords removed for

the original representation). If a participant created a new feature, we added it to the

document representation used for that participant’s data and created a corresponding

feature label for it. Using these data, we analyzed two variants of this experiment: one

variant used participants’ labels on existing features only, and the other used all features

that participants provided.

2.3.7.1 Results of End-user Labeling Study

Figure 2.7 summarizes the results from this experiment. We also plot the performance

of the LWLR and SVM baselines as a reference. Results with 8 oracle feature labels per

class are shown in the leftmost group. We divide the results into the “existing” features

group, in which feature labels were only permitted on existing features, and the “all”

features group, in which new features that participants created were added to the data

representation and then labeled. Results for “existing” and “all” features are shown in

the middle and rightmost groups respectively.

For SVM-M3, end-user feature labels degraded the performance of the algorithm

below the SVM baseline in this semi-supervised setting, while LWLR was more robust.

GE performed the worst out of all the other algorithms with user feature labels, indicating

that it was very sensitive to the quality of the feature labels. The poor performance of GE

was due to the lower quality user feature labels being the only source of supervision for

GE’s learning process. Furthermore, in past work, GE performed very well when users

were guided to provide feedback on features selected by topic models or by active learning

[21], unlike in our setup where the users had no guidance at all as to which features

to label. Both LWLR-SS-FL and MNB/Priors+EM improved upon their respective

baseline algorithms with user feature labels. LWLR-SS-FL significantly outperformed

other algorithms on the “all” feature cases (Wilcoxon signed-rank test, p < 0.05).
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When compared against the gains from supervised feature labeling (Figure 2.7),

SVM-M3 was more sensitive to lower quality feature labels from participants than its su-

pervised learning counterpart (SVM-M1M2); SVM-M1M2 performed better than SVM-

M3 and resulted in an improvement over the SVM baseline. Similarly, MNB/Priors+EM

performed slightly worse than its supervised learning counterpart (MNB/Priors). Unlike

the former two algorithms, LWLR-SS-FL outperformed its supervised learning counter-

part (LWLR-FL) in all cases.

Figure 2.7: Results of Semi-supervised Algorithms with User Feature Labels: (Left)
incorporating 8 oracle feature labels per class, (Middle) incorporating end-user feature
labels only for existing features, (Right) incorporating all end-user feature labels.

2.3.8 Sensitivity Analysis

LWLR-SS-FL introduces two new parameters – the label diffusion kernel width (k), and

the number of nearest neighbors (#nn). In our experiments, we set k to
√

0.08 and #nn

to 100 for all datasets in LWLR-SS and LWLR-SS-FL. Here, we present the sensitivity

plots for k and #nn on three datasets – 20 Newsgroups, ModApte, and WebKB. In the

sensitivity analysis of parameter k, we kept #nn constant at 100 and varied k in the



30

(a) number of nearest neighbors #nn.

(b) diffusion kernel width k

Figure 2.8: Sensitivity of LWLR-SS-FL to hyper-parameters.

range [0-1]. In the sensitivity analysis of parameter #nn, we kept k constant at
√

0.08

and varied #nn in the range [5-100].

Figure 2.8a shows that the algorithm was not very sensitive to the number of nearest

neighbors (#nn). However, the algorithm was more sensitive to k, as can be seen in

Figure 2.8a. Since we used TFIDF-L2 normalization, a kernel of width 1.0 spanned
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across all instances, and therefore, a “global” fit. We can see that these datasets had

similar localized regions where label diffusion helped. The performance of the algorithm

on 20 Newsgroups hardly improved beyond k = 0.5, which might suggest that instances

in this dataset formed very few compact clusters in the feature space and the seed

(labeled training) instances managed to cover most of them. In WebKB on the other

hand, performance degraded untill k = 0.4 and then recovered as k increased to 1 and

beyond. This suggests that the WebKB categories might have formed a large number of

small clusters that were intermingled and the seed instances had not been able to cover

all small clusters. ModApte showed characteristics similar to WebKB, but managed to

avoid the steep degradation in performance as observed in WebKB at around k = 0.4.

This could have been because ModApte had fewer instances than WebKb and hence was

sparser in the feature space.

2.4 Discussion

With oracle feature labels, the semi-supervised feature labeling algorithms produced a

dramatic increase over their respective baselines, which was similar to results reported

in previous work [57, 21]. However, with the lower quality features that came from real

users, some semi-supervised feature labeling algorithms performed worse than algorithms

that ignore the feature labels (e.g., SVM-M3 performed worse than its SVM baseline).

Past work in semi-supervised learning [83, 84] has shown that semi-supervised learning

does not always produce an improvement in performance over supervised learning. In

his survey on semi-supervised learning [83], Zhu pointed out that a mismatch between

model assumptions and the problem structure could produce worse performance than

supervised learning, but “detecting this mismatch in advance is hard and remains an

open problem”.

In semi-supervised feature labeling, the oracle feature labels were generated using

the entire labeled data set and thus fit the structure of the data. On the other hand,

end-user feature labels could exacerbate the mismatch between the model assumptions

and the problem structure. Much of the past work on semi-supervised feature labeling

had evaluated algorithms against oracle feature labels. Although oracle feature labels

provide an informative “upper bound”, for semi-supervised feature labeling, it is also

extremely important to evaluate against lower quality feature labels from real users,
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which can cause dramatically different behavior for these algorithms.

LWLR-SS-FL is suitable for small datasets because it needs to be trained separately

for each test instance. Apart from this, there are two other issues with the LWLR-SS-FL

algorithm that need to be addressed in future work. First, the LWLR-SS-FL algorithm

is more sensitive to the value of k than LWLR-FL. In our experiments, we set k =
√

0.08

for all the datasets. Although this value worked well, we plan to investigate on how to

make the algorithm more robust to parameter settings of k. Second, the LWLR-SS-FL

algorithm involves a matrix inversion, where the number of rows in the matrix is the

total number of labeled and unlabeled instances. A näıve implementation of matrix

inversion does not scale well to large datasets, since the complexity is O(n3) (where n

is the number of training and test instances). This is a roadblock to applying LWLR-

SS-FL to large datasets in an interactive setting, which is an important requirement of

feature labeling [66]. However, we have two advantages here over the general case of

matrix inversion, which we plan to leverage in future work. First, our matrix is sparse

and symmetric, thus reducing the actual number of computations. Second, we only need

the rows in the inverted matrix that correspond to the training instances, which can also

significantly reduce the computational complexity.

Overall, semi-supervised feature labeling algorithms can produce large improvements

in performance if feature labels cause the resulting model to match the problem struc-

ture and if the algorithm’s key parameters are set correctly. This is precisely the case

with oracle feature labels, which consistently produced improvements over the baseline

algorithms. In the case of lower quality feature labels from users, our results showed that

LWLR-SS-FL was more robust to lower quality feature labels than other algorithms, but

it must be more computationally efficient to be applicable in an interactive setting.

2.5 Conclusion

When deployed, machine learning systems need to customize themselves to an end-user’s

preferences quickly in order to be useful. However, training data is often limited, espe-

cially during the inital stages. As an alternative, we introduced semi-supervised feature

labeling, which allows the user to provide corrective feedback by indicating which feature-

value pairs are predictive of the class label. The semi-supervised nature of the algorithm

allows it to leverage both the labeled data and the existing unlabeled data. We developed
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a new algorithm, LWLR-SS-FL, which extends LWLR-FL to a semi-supervised setting

for text classification. We showed that it performed well when provided with a small

amount of high quality labeled features and instances. We compared its performance

to other semi-supervised feature labeling algorithms and also analyzed its sensitivity to

hyper-parameters.
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Chapter 3: Feedback to Anomaly Detection algorithms

3.1 Introduction

High accuracy anomaly detection algorithms have the potential to solve difficult problems

in many application domains, including insider threat detection [64], biosurveillance [78],

computer security [27] and data cleaning [18]. The goal of anomaly detection is to identify

anomalies, which are unusual data instances of interest. More precisely, we define an

anomaly to be a data instance that is generated by a process that is different from

the process generating the “normal” data instances, which we refer to as the nominal

instances. A dataset typically contains a small percentage of anomalies, such as 1% of

the data instances or even less.

Since known anomalies are scarce, most anomaly detection algorithms (e.g. [36, 10,

44, 55]) are applied in an unsupervised setting in which an unlabeled data set is used to

build a model of nominal data instances, even though the data may be contaminated by

a small percentage of anomalies. The top B outlier instances under the nominal data

model are then identified as anomaly candidates. We use the symbol B to refer to a

budget as B is often determined by some combination of the expected anomaly rate and

the amount of human resources available to investigate the candidate anomalies. This

approach, however, usually leads to high false positive and false negative rates.

One cause of poor performance is that not all outliers are anomalies and not all

anomalies are outliers. If the distribution of nominal data points has heavy tails, then

many outliers will be nominal. Conversely, in adversarial situations, the adversary is

trying to mimic the nominal data points, so the anomalies will be buried in regions of

high nominal density. There is no statistical solution to these problems—the designer

of the anomaly detection system must choose features to mitigate these problems. A

second cause of poor performance is that it is very difficult to perform any kind of feature

selection in unsupervised anomaly detection. As most anomaly detection applications

involve high-dimensional feature spaces, this leads inexorably to poor anomaly detection

performance. In this paper, we describe a method for incorporating expert feedback to
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adjust the anomaly detector so that it puts more weight on relevant regions of the feature

space and ignores regions that do not correspond to the expert’s semantic understanding

of the anomalies.

We consider the following interactive data exploration loop. Initially, the anomaly

detector is applied to an unlabeled dataset. Then, the anomaly detector presents a data

instance to the expert analyst, and asks the analyst to label it as anomalous or nominal.

The analyst labels the instance, and the anomaly detector updates its model with the

newly acquired instance label. The process continues with the next iteration presenting

another data instance to the analyst. This process iterates until a budget B on the

total number of instances presented to the analyst is spent. Our goal is to maximize the

number of true anomalies presented to the analyst. Although the budget B will vary

depending on the cost of investigating each potential anomaly, we expect B ≤ 100 for

most applications.

3.2 Related Work

We call our approach Active Anomaly Discovery (AAD)1 to differentiate it from work in

the closely-related areas of active learning [65], rare category detection [54], and learning

to rank [45]. We now describe the differences between AAD and these three areas.

Active learning involves selecting the most informative instances to be queried (i.e.

labelled) so that a classifier trained on this strategically-chosen set of instances can

maximize its predictive performance on an unseen test set. Various criteria for selecting

instances have been explored, including uncertainty sampling [73], query-by-committee

[68], variance reduction [13], and expected model change [67] (see [65] for a more thorough

survey). AAD differs from active learning in terms of its objective; thus, rather than

maximizing the predictive performance of the classifier on an unseen test set, AAD’s

objective is to maximize the total number of true anomalies presented to the analyst

during the interactive labeling process. AAD does not differentiate between a training

and a test set. Instead, AAD works in a transductive setting in which it is applied to a

single dataset containing mostly unlabeled data and a small amount of labeled data.

1An early version of this work appeared in [16]. The current work includes a more comprehensive set
of results for AAD, introduces approximations to speed up the AAD algorithm and it includes results of
applying AAD to other ensemble anomaly detection algorithms.
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Active learning has been previously applied to anomaly detection. A common ap-

proach is to combine the outputs from supervised and unsupervised techniques. For

instance, the ALADIN algorithm [71] uses a classifier to temporarily label unlabeled

data instances. Given these temporary labels plus the labeled data, a model is then

trained for each class. During active learning, the total number of queries from the

ALADIN algorithm is evenly distributed among the classes, with half of the queries for

uncertain instances and the other half for anomalous instances. Similarly, the AI2 al-

gorithm [76] builds a query strategy based on the output of an unsupervised model and

the output of a supervised model. In each round, k queries are selected, where half of

the queries are the most anomalous instances as determined by the unsupervised model

and the other half of the queries are the most anomalous instances as determined by

the supervised model. The drawback to these approaches which use supervised learning

techniques is that they become very unstable if the class imbalance becomes extremely

skewed due to the scarcity of anomalies. In the extreme case, no anomalies have been

identified in the training data and the supervised learning algorithms cannot be trained.

Another active learning strategy combines uncertainty sampling with querying the

most likely anomalies [51]. Görnitz et al. [2013] also employ a combination strategy but

in their work, the querying strategy blends uncertainty sampling with sampling instances

from potentially anomalous clusters. We compare against this hybrid querying strategy

in our experiments. We emphasize that none of the active learning techniques have the

goal of maximizing the number of anomalies presented to the labeler as the objective is

to maximize predictive performance on an unseen test set.

Rare category detection (RCD) [54] addresses a slightly different task. RCD is in-

tended to be applied to data in which the anomalies form small but dense clusters that

correspond to new categories of items. Given a fixed budget of queries to the analyst,

the goal of RCD is to identify a representative instance from as many distinct categories

in the data as possible. Query strategies for discovering rare categories include querying

instances with greatest density differential [29, 31], with furthest distance from a cluster

center [54], or querying according to a multi-scale clustering structure discovered by hi-

erarchical mean shift [75]. We can summarize the difference between RCD and AAD as

follows: RCD aims for diversity of anomalies presented to the analyst while AAD aims

to simply present anomalies, regardless of whether they are from diverse categories or

not. RCD also differs from AAD in terms of the type of feedback the analyst provides.
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With RCD, the analyst identifies a data instance as belonging to one of K existing

classes or to a new, previously unseen class. AAD places a lighter cognitive burden on

the analyst by only requiring instances to be labeled as anomaly or nominal rather than

placing them into K distinct classes. Furthermore, if the anomalies do not form K small,

compact clusters in feature space or if the analyst cannot easily classify anomalies into

these K categories, then AAD is a more appropriate approach to use for discovering

anomalies than RCD. In Section 3.4.5, we perform an empirical comparison of applying

RCD algorithms to the AAD problem.

Our work is also closely related to the area of Learning to Rank (LTR) [45], which is

an active area of research in document retrieval. In LTR, the goal is to learn a ranking

function that can return a total (or partial) order over a set of instances. One strategy

for LTR is based on learning from pairwise preferences [32, 19], which is a technique

that we adapt to our approach. The majority of LTR methods require a large amount

of labeled data (i.e. pairwise preferences) to be effective. To reduce the labeling effort

needed to produce pairwise preferences, several authors have proposed active learning

(AL) in the context of LTR [81, 46, 19, 20, 56]. Recently, loss functions for maximizing

accuracy at the top of the ranked list [9, 34] have been proposed, and we use these loss

functions in our work.

On the surface, anomaly detection can be viewed as a ranking problem with the goal

of ranking anomalies higher than nominals. However, there are fundamental differences.

In LTR, the goal is to rank items on the basis of preference. In contrast, anomaly detec-

tion distinguishes between anomalies and nominals. The objective of anomaly detection

is to rank anomalies higher than nominals. In our work, only ranks between anomalies

and nominals are important. Within the anomalies the ranks are irrelevant, as are ranks

within the nominals. There are situations in which some anomalies may be ranked higher

than others because of their importance. Although we do not deal with this setting, our

algorithm can be extended to handle it. Furthermore, in our setting, we begin with fully

unlabeled data, making it impossible to apply LTR. As the AAD algorithm progresses,

a small number of labeled instances are available as well as a large amount of unlabeled

instances. Of these labeled instances, often a small number of them are anomalies. In the

extreme case, there are no labeled anomalies. This class imbalance limits the availability

of pairwise rankings between anomalies and nominals. Thus, it is difficult to apply LTR

in a straightforward manner.
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3.3 Methodology

In our setting, we are given a dataset D with n instances, D = {x1, . . . ,xn}, where

xi ∈ Rd. Each instance i is a tuple (xi, yi), where xi is a d-dimensional real vector and

yi ∈ {anomaly,nominal} is the (hidden) class label. We assume that there is a large

class imbalance, with yi = nominal comprising the overwhelming majority of the data.

The anomaly detector is first trained on the unlabeled data. Then, a subset of the

class labels is progressively revealed to the analyst, who provides the class labels during

the interactive feedback loop. In the first iteration, the model chooses a data instance

xq1 to present to the analyst, and the analyst provides a class label yq1 for the queried

instance. This process continues until a total of B instances have been queried. We

represent the sequence of queries as Xq
B = (xq1,x

q
2, . . . ,x

q
B). The class labels associated

with these instances are provided as feedback by the analyst. We denote the analyst

feedback as F = ((xq1, y
q
1), (xq2, y

q
2), . . . , (xqB, y

q
B)).

The goal of our work is to maximize the number of true anomalies seen by the analyst

over the B total instances presented:

arg max
Xq
B

|{(xqi , y
q
i ) ∈ F : yqi = anomaly}|. (3.1)

Equation 3.1 cannot be computed, because we do not know the true class labels. As

an alternative, we greedily select instances to query that have the highest probability of

being an anomaly under our model. Even though our approach is greedy, we show that

it is very effective in our empirical results. To achieve the goal, our model maintains a

ranked list of data instances where the rank is determined by the anomaly score computed

by the anomaly detector.

In the subsections to follow, we first describe the anomaly detector in Section 3.3.1.

Then, in Section 3.3.2, we define what it means to be at the top of the ranked list

of anomalies, and we show how to maximize accuracy at the top in Section 3.3.3. In

Section 3.3.4, we define our objective function for incorporating expert feedback into the

anomaly detector. Finally, we describe the active anomaly discovery step in Section 3.3.5.
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3.3.1 Anomaly Detector

For our anomaly detector, we employ the Loda algorithm [55], which computes an ensem-

ble P = {pm}Mm=1 of M one-dimensional histogram density estimators computed from

sparse random projections. Each projection pm is defined by a sparse d-dimensional ran-

dom vector βm, with 1/
√
d randomly chosen non-zero components; each value of these

non-zero components is drawn from a standard normal distribution. Loda constructs a

one-dimensional density estimator fm by projecting each data point onto the real line ac-

cording to pm(xi) = β>mxi and forming a histogram density estimator fm. The anomaly

score assigned to point xi is the mean negative log density (mean surprise):

score(xi)
Loda =

1

M

M∑
m=1

− log(fm(xi)) (3.2)

We can view Loda as a representation transformation that converts a data point xi

in the d-dimensional feature space into a log probability vector in M -dimensional real

space. Denote the latter as zi = [− log(f1(xi)), ...,− log(fM (xi))]
T , where zi ∈ RM . The

negative-log-pdf for the entire dataset will be represented by H = [z1, ..., zn]>. With

this notation and defining wU = [ 1
M , ...,

1
M ]T ∈ RM , we can write Equation 3.2 in a more

compact form: score(xi)
Loda = wU · zi.

Loda gives equal weight to all projections, and since these projections are selected at

random, it is not guaranteed that every projection is good at isolating anomalies by itself.

Once the projections have been computed by Loda and fixed, we propose to integrate

analyst feedback by learning a better weight vector w that assigns higher weights to the

more useful projections and lower weights to the less useful ones.

Our approach is not restricted to Loda. Other ensemble methods based on Feature

Bagging (e.g. [40]) can also be employed, and we explore this further in Section 4.2.

More generally, this method can be applied to any ensemble method that combines the

scores of different anomaly detectors.

3.3.2 The top τ -quantile

Internally, our model maintains a list of data instances ranked by the anomaly score

produced by the anomaly detector. We wish to keep the labeled anomalies at the top of
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the ranked list. We define the top of the list to be the top τ -quantile. The top τ -quantile

value of a function h : X → R is defined as the value qτ : Px(h(x) > qτ ) = τ .

For any τ ∈ [0, 1], let ρτ be defined as:

∀u ∈ R, ρτ (u) = −τ(u)− + (1− τ)(u)+

where,

(u)+ = max(u, 0), and (u)− = min(u, 0)

The τ quantile value qτ of a sample of real numbers {u1, ..., un} can be computed as

qτ = arg minu∈R
∑n

i=1 ρτ (ui − u) [37]. An alternative (and natural) way to compute the

top τ -quantile value is to sort all values in descending order and return the value that is

τ · n from the top of the sorted list.

3.3.3 Accuracy at the top

We want the scores of all labeled anomalies to be higher than qτ and the scores of all

labeled nominals to be below qτ . When this property is violated on a specific data

instance (zi, yi), we incur the loss shown in Equation 3.3, where w is a vector of weights.

Equation 3.3 is based on the surrogate empirical loss function defined in the Accuracy

at the Top (AATP) approach [9].

`(qτ ,w; zi, yi) =
0 w · zi ≥ qτ and yi = ‘anomaly′

0 w · zi < qτ and yi = ‘nominal′

(qτ −w · zi) w · zi < qτ and yi = ‘anomaly′

(w · zi − qτ ) w · zi ≥ qτ and yi = ‘nominal′

(3.3)

The AATP approach in [9] was presented in a supervised learning setting, mean-

ing that it expects all pairwise preferences between relevant and irrelevant items to be

available during training. In contrast, all pairwise preferences between anomalies and

nominals are not available in our initial dataset, and we typically only obtain a small

subset of these pairwise preferences when instance labels are revealed. As a result, the
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loss in Equation 3.3 needs to be computed by summing up the loss over the instances in

the labeled set HF , i.e., the set of instances for which the analyst has already provided

feedback. The weights w that minimize the overall loss can be computed as:

w = arg min
w

 ∑
zi∈HF

`(qτ ,w; (zi, yi))


s.t.,

qτ = arg min
u

∑
zi∈H

ρτ (w · zi − u)

(3.4)

Equation 3.4 is not convex because the equality constraint is not affine [9]. This makes

joint inference of w and qτ hard. As an alternative, we solve for w and qτ separately.

Let w(t−1) be the value of w from iteration (t− 1). The steps are as follows:

1. Solve qτ = q̂τ (w(t−1)) using the (fixed) value of w(t−1). We compute q̂τ (w(t−1)) by

ranking the anomaly scores given w(t−1).

2. Compute w(t) using Equation 3.4 keeping qτ = q̂τ (w(t−1)) fixed.

Under this approach, there is no guarantee that q̂τ (w(t−1)) still remains the τ -th quantile

score under the new value w(t). Nevertheless, this approximation was performed in [9]

and shown to produce reasonable results.

3.3.4 Objective Function

A straightforward application of the AATP approach produces the objective function in

Equation 3.4. Even with the approximation for q̂τ (w), however, Equation 3.4 performs

poorly at discovering true anomalies due to two main issues. First, since anomalies are

rare, the feedback set HF will typically have many more nominals than anomalies. How-

ever, the anomalies are more informative and we need to give them higher importance.

Second, we want the labeled anomalies to be ranked higher than the labeled nominals.

The objective function in Equation 3.4 does not enforce this ranking. Instead, it tries

to place labeled anomalies above the τ -th quantile and labeled nominals below the τ -th
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quantile in such a way that the loss is minimized. It is possible that at the minimum

value, there are anomalies below the τ -th quantile or nominals above the τ -th quantile.

These misplacements can occur if the parameter τ , which is supposed to correspond to

the true fraction of anomalies in the data, is set to be too large or too small. Getting

the value of τ to be exactly the fraction of anomalies in the data is difficult to do and

one needs to make the algorithm robust to this misspecification.

Our overall objective function is shown in Equation 3.5, and we discuss four necessary

modifications below. These modifications all contribute gains to the performance and

we will provide a detailed analysis in Section 3.4.3.

w(t) = arg min
w,ξ

CA
|HA|

 ∑
zi∈HA

`(q̂τ (w(t−1)),w; (zi, yi))


+

1

|HN |

 ∑
zi∈HN

`(q̂τ (w(t−1)),w; (zi, yi))


+ ‖w −wp‖2 + Cξ

∑
i,j

ξ2ij (3.5)

s.t.,

(zi − zj) ·w + ξij ≥ 0 ∀zi, zj : zi ∈ H′A, zj ∈ HN ,

ξij ≥ 0

where, wp = wU
‖wU‖ = [ 1√

m
, . . . , 1√

m
]T , q̂τ (w(t−1)) is computed by ranking anomaly scores

using w(t−1) and,

H′A =

{
{zτ} when HA = ∅
HA when HA 6= ∅

(zτ is the transformed τ -th quantile proxy anomaly instance xτ )

The modifications to Equation 3.4 are as follows. First, we divide the labeled dataset

HF into the set of labeled anomalies HA and the set of labeled nominals HN . We then

introduce a weight CA that causes the loss for anomalies in HA to be higher than that

associated with nominals. Typically, CA needs to be larger than 1, with higher values
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placing more emphasis on the anomalies. In Section 3.4.6, we perform a sensitivity

analysis on CA and our results indicate that the performance is not overly sensitive to

CA as long as it is bigger than 1.

Second, we use soft pairwise constraints [32] (i.e. (zi−zj) ·w+ ξij ≥ 0) to encourage

labeled anomalies to have higher scores than labeled nominals. It might not be feasible

to satisfy all such constraints; therefore we introduce slack variables2 ξij in the final

objective (Equation 3.5). At first, it might appear that the soft constraints are redundant

when we already have the hinge-loss in the objective. However, these pairwise constraints

are necessary when τ is incorrectly set to be smaller than the true fraction of anomalies

in the data, in which case anomalies end up below the τ -th quantile, or when τ is larger

than the true fraction of anomalies, resulting in nominals above the τ -th quantile. A

possible shortcoming is that we are potentially introducing a large number of constraints

which will make the optimization expensive. In practice, we assume that the number of

instances labeled by an user is limited by a small budget (e.g., < 100 queries). When the

number of true anomalies found is small, this optimization can be solved in a reasonable

amount of running time on most modern computers, as we demonstrate in Section 3.4.4.

However, if the number of true anomalies found is high, a large number of pairwise

constraints will be added. In Section 3.4.4, we discuss further optimizations that can

speed up the running time

Third, the proximal factor ‖w −wp‖2 avoids the degenerate solution of w = 0 and

regularizes the learned weights toward the uniform weights of Loda, which has been

shown to perform well as an anomaly detector [55, 22]. As we show in Section 3.4.3,

without this term, the performance degrades because the algorithm will severely overfit

the small amount of labeled data.

Finally, since anomalies are very few in number, it is very likely that at least initially,

all instances labeled by the analyst are nominal. In this case, the number of pairwise

constraints reduces to zero because there are no labeled anomalies. To overcome this

problem, we introduce zτ as a proxy anomaly. The vector zτ is computed from xτ ,

which is the τ -th ranked instance producing quantile value q̂τ (w(t−1)). Once xτ has been

identified, we compute zτ = [− log(f1(xτ )), ...,− log(fM (xτ ))]T , which is the transformed

2There is a slight change from the formulation in [16] as we square the slack variable term. We found
that this change helps the optimization by making the objective function more convex and thus yields
slightly better results.
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Figure 3.1: Setup for Active Anomaly Discovery.

version of xτ . We then generate pairwise constraints enforcing all labeled nominals to

have lower score than the proxy anomaly. This choice is guided by our assumption

that labeled nominal instances should be ranked below the top τ -quantile. Note that

the constraint introduced by the proxy anomaly uses the weights w from the current

iteration, which is different from the quantile loss function which uses the weights w(t−1)

from the previous iteration. This difference is subtle but important; it provides additional

information to the optimization that leads to a gain in performance. The proxy anomaly

only exists as a constraint in the optimization until the first labeled anomaly is found.

The proxy anomaly ensures that the known nominals, and instances that are similar to

them, are forced lower in the ranking due to pair-wise constraints while other potential

anomalous instances rise to the top.

3.3.5 Active Anomaly Discovery (AAD)

Algorithm 3.3.5 describes the active anomaly discovery loop for our approach. The

setup is illustrated in Figure 3.1. Note that we ask the analyst to label the top ranked

instance that has not already been labeled. The updated weights at Line 16 of the

algorithm are computed using a standard convex optimization package (Scipy in our

Python implementation) which solves the objective in Equation 3.5.
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Algorithm 2 Active Anomaly Discovery (AAD)

Input: Raw data D, negative-log-pdfs H, budget B
Initialize the weights w(0) = { 1√

m
, ..., 1√

m
}

Set t = 0
Set HA = HN = ∅
while t ≤ B do
t = t+ 1
Set a = H ·w (i.e., a is the vector of anomaly scores)
Let xi = instance with highest anomaly score (where i = arg maxi(ai))
Let zi = negative log probability vector corresponding to xi
Get feedback {‘anomaly′/‘nominal′} on xi
if xi is anomaly then

HA = {zi} ∪HA

else
HN = {zi} ∪HN

end if
16: w(t) = compute new weights; normalize ‖w(t)‖ = 1

end while

3.4 Results

3.4.1 Experimental Setup

Since our objective is to maximize the number of true anomalies presented to the end

user, we plot the total number of true anomalies discovered against the number of queries

presented to the user. We call this plot an anomaly discovery curve and in an ideal result,

this curve climbs as quickly as possible. In our experiments we assume that the user is an

oracle that labels instances correctly. We compare the results of our proposed algorithm

against four other algorithms:

1. Baseline: For the baseline, we present instances in decreasing order of anomaly

score computed with the original Loda algorithm (i.e. with uniform weights). This

baseline captures the performance of an unsupervised anomaly detector that does

not incorporate expert feedback.

2. Semi-supervised Anomaly Detector (SSAD): The algorithm proposed by

Görnitz et al. [25] encodes labeled anomalies and nominals as constraints and does
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Table 3.1: Datasets used in our experiments, along with their characteristics.
Dataset Nominal

Class
Anomaly
Class

Total Dims #Anomalies
(%)

Abalone 8, 9, 10 3, 21 1920 9 29 (1.5%)

ANN-Thyroid-1v3 3 1 3251 21 73 (2.25%)

Cardiotocography 1 (Normal) 3 (Patho-
logical)

1700 22 45 (2.65%)

Covtype 2 4 286048 54 2747 (0.9%)
Covtype-sub 2 4 2000 54 19 (0.95%)

KDD-Cup-99 ‘normal’ ‘u2r’,
‘probe’

63009 91 2416 (3.83%)

KDD-Cup-99-sub ‘normal’ ‘u2r’,
‘probe’

2000 91 77 (3.85%)

Mammography -1 +1 11183 6 260 (2.32%)
Mammography-sub -1 +1 2000 6 46 (2.3%)

Shuttle 1 2, 3, 5, 6, 7 12345 9 867 (7.02%)
Shuttle-sub 1 2, 3, 5, 6, 7 2000 9 140 (7.0%)

Yeast CYT, NUC,
MIT

ERL, POX,
VAC

1191 8 55 (4.6%)

not need any labeled data to initialize. The best performing query strategy for

SSAD was demonstrated to be the combination strategy called margin and cluster

[25]. In our experiments we refer to this version of SSAD as SSAD-M+C. For

comparison, we also include in our experiments the query strategy that selects the

top-ranked anomaly instance for feedback (SSAD-Top).

3. AI2: AI2 [76] is a system that incorporates analyst feedback for detecting mali-

cious attacks on information systems. It is comprised of an ensemble of unsuper-

vised outlier detection methods and a supervised learning algorithm. The technique
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is fairly general and can be applied to most anomaly detection problems. In our

implementation of AI2, we use Loda’s random projections as the unsupervised en-

semble members, and for the supervised algorithm we use L1-regularized Logistic

Regression. In our experiments, we use a batch size of 2, meaning AI2 queries the

user with one instance suggested by the ensemble of unsupervised algorithms and

an instance suggested by the supervised algorithm (if such an instance is available).

4. ATGP: Grill and Pevný [27] proposed a supervised algorithm that is also based on

maximizing accuracy at the top. Unlike our approach, ATGP does not add pairwise

constraints and it uses a simple gradient approach for inferring the detector weights.

Although this algorithm was presented in a fully supervised setting, it could easily

be adapted for active anomaly discovery.

We also investigated a querying strategy for AAD that resembles uncertainty sam-

pling in that it queries unlabeled instances near the “margin”. In our setting, the margin

would be the current instance q̂τ (w(t)) representing the top τ -th quantile. We found that

this querying strategy produced very poor results, so we do not include these results to

reduce clutter on the graphs.

In our experiments, we used the Mammography [79] dataset as well as seven datasets

from the UCI repository [2]: Abalone, Cardiotocography, Thyroid (ANN-Thyroid), Forest

Cover (Covtype), KDD-Cup-99, Shuttle and Yeast. The number of true anomalies and

true nominals in each dataset are shown in Table 3.4. We implemented our own variant

of AI2 as mentioned above. Our implementation of all algorithms and the datasets in

our experiments are available online3. For SSAD we used the code made available from

the authors4. This implementation requires an n × n kernel matrix and therefore does

not scale to large datasets. Therefore, for the larger datasets (Covtype, KDD-Cup-99,

Mammography, Shuttle), we also include results from a smaller version of the original

dataset which was created by sub-sampling 2000 data instances and keeping the ratio of

anomalies to nominals the same as in the original. These sub-sampled datasets are named

*-sub (Table 3.4). For the Cardiotocography dataset, we retained all instances from the

nominal class as in the original dataset, but down-sampled the anomaly instances so

3https://github.com/shubhomoydas/aad.git
4https://github.com/nicococo/tilitools
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(b) ANN-Thyroid-1v3

0 10 20 30 40 50 60

0
1
0

2
0

3
0

4
0

5
0

6
0

iter

#
 a

n
o
m

a
lie

s
 s

e
e
n

Baseline

AAD

ATGP

AI2

SSAD Top

SSAD M+C

(c) Cardiotocography
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(e) KDD-Cup-99-sub
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(f) Mammography-sub
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(h) KDD-Cup-99

0 20 40 60 80 100

0
2
0

4
0

6
0

8
0

1
0
0

iter

#
 a

n
o
m

a
li
e
s
 s

e
e
n

Baseline

AAD

ATGP

AI2

(i) Mammography

0 10 20 30 40 50 60

0
1
0

2
0

3
0

4
0

5
0

6
0

iter

#
 a

n
o
m

a
lie

s
 s

e
e
n

Baseline

AAD

ATGP

AI2

SSAD Top

SSAD M+C

(j) Shuttle-sub
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Figure 3.2: The total number of true anomalies seen vs. the number of queries for all
datasets. Total number of queries for the smaller datasets (Abalone, Cardiotocography,
ANN-Thyroid-1v3, Covtype-sub, KDD-Cup-99-sub, Mammography-sub, Shuttle-sub and
Yeast) is 60. Total number of queries for the larger datasets (Covtype, KDD-Cup-99,
Mammography, Shuttle) is 100. The results were averaged over 10 runs for each algorithm
(except SSAD, which is deterministic). The error bars show the 95% confidence intervals.
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that they represent only around 2% of the total data. The rest of the datasets were used

in their entirety by all algorithms. SSAD is deterministic and was therefore run once per

dataset. Since AAD and AI2 are randomized, their results were averaged across 10 runs

for each dataset. The 95% confidence intervals from these 10 runs are plotted on the

curves as error bars. In Table 3.4, the number of dimensions of each dataset (under the

‘Dims’ column) includes the additional dimensions added after performing the standard

transformation of multi-class categorical variables into multiple binary variables using

dummy coding.

For AAD, we set the parameters τ = 0.03, CA = 100, and Cξ = 1000 by default for

all datasets. AAD is not sensitive to τ over a wide range of values [0.01, 0.10], or to CA.

It generally performs well for Cξ > 1. We include results on a sensitivity analysis in

Section 3.4.6.

SSAD [25] relies on parameters Cu and Cn. The authors recommend a grid search in

[0.01, 100] for these parameters. We ran SSAD with values ∈ {0.01, 0.1, 1.0, 10.0, 100.0}
for each of these parameters; we gave SSAD an advantage by reporting the Cu and Cn

parameter values producing the best results, chosen after running the experiments. We

fixed κ = 1 as was set by Görnitz et al. [25]. For all SSAD experiments, we used the RBF

kernel. The margin and cluster strategy to query instances for SSAD requires checking

labels of some number of nearest neighbors. We have set this parameter to 10 for all

datasets.

Figure 3.2 depicts the performance of all algorithms on the datasets. The results

on the full version of the larger datasets do not include SSAD since it was too com-

putationally expensive to run. These results show that AAD is consistently one of the

best performers, with substantial improvements in the number of anomalies detected

compared to other algorithms on the ANN-Thyroid-1v3, Covtype-sub, Shuttle and Mam-

mography datasets. The AAD algorithm’s anomaly discovery curve is clearly higher than

that of all other algorithms on 6 of the 13 datasets. The AAD algorithm can be consid-

ered tied with the top algorithms on the Abalone and Yeast datasets. On Shuttle-sub,

KDD-Cup-99-sub and KDD-Cup-99 datasets, the AAD algorithm is outperformed by

the SSAD-M+C and ATGP algorithms.

Although AAD and ATGP are similar, ATGP performs worse than AAD on most

datasets. Our hypothesis is that even though both AAD and ATGP performed non-

convex optimization, and are therefore prone to local optima, the pairwise constraints
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of AAD likely restrict it to better parts of the parameter space.

Shuttle is the easiest dataset; it has the highest percentage of anomalies discovered.

For this dataset, almost all instances ranked at the top by the baseline Loda are true

anomalies. Therefore, querying the top ranked instance is very effective for AAD and

AI2. Surprisingly, SSAD-Top, which also queries instances ranked at the top by SSAD,

discovers fewer anomalies than SSAD-M+C. We hypothesize that this might be due to

the presence of clustered anomalies in the Shuttle dataset, which SSAD-M+C is able to

exploit more than AAD.

Although SSAD-M+C performs best on Shuttle-sub, its performance varies widely

across datasets. On ANN-Thyroid-1v3, Cardiotocography, KDD-Cup-99-sub and Covtype-

sub, it performed very poorly.

AI2 comes in second place to AAD on a number of datasets (ANN-Thyroid-1v3,

Cardiotocography, Covtype-sub, Mammography and Shuttle). AI2 performs poorly on

the full Covtype dataset, which is nearly 100 times larger than Covtype-sub. The un-

supervised and supervised parts of AI2 struggle initially to find true anomalies in this

much larger dataset, which results in poor performance for the relatively small budget of

100. Similarly, we hypothesize that the poor performance of AI2 on KDD-Cup-99 and

KDD-Cup-99-sub is due to the poor performance of its supervised learning part.

Unlike its competitors, AAD is consistently among the best performing algorithms

across all datasets, and it always performs better than its baseline.

3.4.2 Query Visualization

In order to gain a deeper understanding of AAD, we provide visualizations of our

datasets, along with the queries by AAD. There are many possible techniques for vi-

sualizing high dimensional datasets and discussing the pros and cons of each approach is

beyond the scope of this paper. Our intent is to provide some intuition as to how AAD

works. For this purpose, we use t-SNE [74], which is a popular dimensionality reduction

technique, to produce a 2D representation of the datasets in our experiments. Figure 3.3

shows a 2D representation of the Abalone and ANN-Thyroid-1vs3 datasets produced by

t-SNE, along with the queries made by AAD and by the baseline algorithm which does

not incorporate expert feedback. Visualizations of all the small datasets can be found in

Appendix A.1.
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As shown in Figure 3.3 and in Appendix A.1, some datasets have fairly clustered

anomalies (e.g. Covtype-sub, KDD-Cup-99-sub amd Shuttle-sub). The remaining datasets

have a mixture of both clustered and scattered anomalies (e.g. Abalone, ANN-Thyroid-

1vs3, Cardiotocography, Mammography and Yeast).

Without expert feedback, the baseline tends to discover nominals at the same loca-

tions, shown visually as a cluster of green circles (e.g. around (0,0) in Abalone) in Figure

3.3. In contrast, when expert feedback is incorporated by AAD, more anomalies are

discovered. For example, there are fewer blue plus signs (e.g. around (15,−80) in ANN-

Thyroid-1vs3 ). The AAD algorithm is also querying instances at different locations as

we can see by noting that there are fewer clusters of green circles (e.g. around (30,−50)

in Abalone). Overall, AAD appears to avoid unpromising regions of the feature space

and hone in on fruitful regions.

3.4.3 Contributions of Sub-parts of the Optimization Problem

In this section, we discuss the importance of the various parts of the AAD optimization

problem. In Equation 3.3.4, the optimization problem has three main parts:

1. P1 (AATP hinge loss): CA
|HA| (...) + 1

|HN | (...)

2. P2 (Proximal factor (PF)): ‖w −wp‖2

3. P3 (Pairwise constraints between anomalies and nominals): (zi− zj) ·w+ ξij ≥ 0.

P3 also includes the slack variable penalty term in the objective function.

The motivation behind each part has been explained in Section 3.3. In this section,

we show the importance of each part to the performance of AAD. To help understand

the importance of each part, we created six variants of AAD, as explained below, and

compared their performance on the benchmark datasets.

1. V1 (AAD): This is the unmodified AAD algorithm.

2. V2 (AAD with no constraints): Part P3 is dropped from the objective.

3. V3 (AAD with no AATP hinge loss): Part P1 is dropped; in this case the AAD

objective becomes similar to an SVM with the proximal factor on the weights.
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(d) ANN-Thyroid-1v3 AAD

Figure 3.3: Low-dimensional visualization of Abalone and ANN-Thyroid-1v3 using t-
SNE. Plus signs are anomalies and circles are nominals. A red coloring indicates that
a true anomaly point was queried. A green indicates a nominal point was queried.
Grey circles correspond to unqueried nominals. To make unqueried anomalies stand out
visually, we indicate them with blue plus signs.
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Figure 3.4: Comparison of AAD variants. The results were averaged over 10 runs. The
error bars show the 95% confidence intervals.

4. V4 (AAD with no proximal factor): Part P2 is dropped from the objective.

5. V5 (AAD with no constraints and no proximal factor): Parts P2 and P3 are

dropped from the objective.

Figure 3.4 compares the variants for three representative datasets (Covtype-sub,

KDD-Cup-99-sub and Mammography-sub). Since V3 performed poorly across most

datasets, we have left it out to reduce clutter. We observe that in almost all cases,

the various parts of the objective contribute positively towards the performance. With-

out any constraint or proximal factor, the algorithm performs almost identically to the

baseline. We get a significant gain in performance when we add the proximal factor (P1)

without adding any constraints. Adding constraints in addition to the proximal factor

improves the performance somewhat; the constraints by themselves do not provide as

much improvement as does the proximal factor.

3.4.4 Computational Complexity and Scaling Up

The computational complexity of AAD depends mainly on the number of pairwise con-

straints. The implementation of AAD in the R programming language employs an

interior-point method to solve the constrained optimization problem in Equation 3.5.

According to [35], this method has a worst-case time complexity of O(m3.5d2) where

m is the number of constraints and d is the number of dimensions of the input data.
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Figure 3.5: The wall clock computation time at each iteration (averaged across 10 runs).

Furthermore, after the i-th feedback, the number of labeled instances is i; this implies

m = O(i2) and the overall worst-case complexity in terms of the number of labeled

examples is O(i7d2). In practice, the solution is found much faster than the worst-case

complexity indicates. Furthermore, we expect the number of labeled examples to be low

(less than about 100), since it involves human effort to label these examples.

The red lines in Figure 3.5 shows the average running time in seconds per number

of queries for AAD over the Covtype, Mammography, and Shuttle datasets. Since at

least one new pairwise constraint is added with every instance labeled by the expert, the

computational cost increases with each consecutive iteration. Note that the factor ‘d’

in the complexity (m3.5d2) depends on the number of Loda projections and not on the

number of dimensions in the original feature space. The number of Loda projections is

similar across the three datasets in Figure 3.5. The timing depends on the difficulty of

finding the true anomalies. If the true anomalies are difficult to find, there will be fewer

pairwise constraints added and the time taken by AAD will be lower. On the other hand,

if the anomaly and nominal instances are being discovered in equal proportions, more

pairwise constraints will be added, and the time will increase cubically as a function of

the number of constraints.

The computation time for these three datasets on a current desktop is on the order of

2-3 minutes when the number of queries is near 60. This running time may be acceptable

for anomaly detection domains that require a substantial amount of time for an expert to

investigate if a potential anomaly is a false positive or a true anomaly. However, in some
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Figure 3.6: Comparison of AAD with variants where the constraints are relative to τ -th
ranked instance. The results were averaged over 10 runs. The error bars show the 95%
confidence intervals.

datasets, there might be a large number of true anomalies discovered, thus incurring a

significant running time. To speed things up, we present several variants of AAD based

on modifying the constraints added to the optimization. These variants are described

below:

1. T1 (AAD): Unmodified AAD.

2. T2 (AAD Tau-rel, all labeled): The objective has parts P1 and P2 (defined in

Section 3.4.3) and, instead of being based on each anomaly/nominal pair, only

pairwise constraints involving the τ -th ranked instance x
(t−1)
τ (the instance at τ -th

rank could change with each feedback) are included. If zτ is the transformed vector

for x
(t−1)
τ , then the constraints added are:

(zi − zτ ) ·w + ξAi ≥ 0 ∀zi : zi ∈ HA

(zτ − zj) ·w + ξNj ≥ 0 ∀zj : zj ∈ HN ,

ξAi, ξNj ≥ 0

The number of constraints added by this variant is linear in the number of labeled

examples as opposed to quadratic (as in P3.)

3. T3 (AAD Tau-rel, top 10 largest margin constraints (LMC)): This is similar to T2

above, but instead of adding constraints corresponding to all labeled instances, we



56

select only the top 10 largest margin constraints corresponding to instances from

the labeled anomaly set HA and the top 10 corresponding to instances from the

labeled nominal set HN . For labeled anomalies, those that have the largest margin

constraint are the anomalies which have the largest difference (z
(t−1)
τ − zi) ·w(t−1).

Similarly, for labeled nominals, those that have the largest margin constraint are

the nominals which have the largest difference (zj − z
(t−1)
τ ) ·w(t−1). This variant

results in a constant number of constraints in each iteration.

4. T4 (AAD Tau-rel, No AATP loss): The objective has part P2 and constraints

similar to T2 but without the AATP loss.

Figure 3.5 shows the running time for these variants and Figure 3.6 illustrates the

performance of these variants on the Covtype, Mammography, and Shuttle datasets. A

full set of results over all the datasets in our experiments is included in Appendix A.2.

These results show that variants T2 and T3 exhibit anomaly detection performance

similar to unmodified AAD (T1) even though they use a much smaller set of constraints.

For the majority of datasets, T2 and T3 outperform T4, indicating that having both

the AATP loss and the constraints improve performance. Variant T4, which removes

the AATP loss but includes the constraints, tends to perform poorly though for a small

number of datasets (e.g. Shuttle), the variants (T1-T4) have very similar results.

To understand why both the AATP loss and the constraints are needed, recall that

we use q̂τ (w(t−1)) to estimate the current quantile qτ in order to make the optimization

easier to compute. The AATP loss (Equation 3.3) helps because it encourages the new

weights to cause the labeled anomalies to score higher than qτ and labeled nominals to

score lower. The important point here is that approximating qτ with q̂τ (w(t−1)) uses the

previous weights w(t−1). In contrast, the pairwise constraints use the current weights

w in w · z(t−1)τ , which is the dot product of the current weights with the transformed

representation of the feature vector x
(t−1)
τ associated with q̂τ (w(t−1)). Thus, the pairwise

constraints unpack the transformed features of the previous τ -th quantile value and use

more recent information in the form of the current weights.

However, without the AATP loss in T4, the weights produced by the constraints can

change significantly from one iteration to another. These big changes occur because AAD

operates in a transductive setting where there is a small amount of labeled data (which

determines the constraints) and a large amount of unlabeled data (which determines
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the τ -th quantile). The T4 formulation, with just the pairwise constraints, has many

possible assignment of values for the weights that satisfy the constraints. Adding the

AATP loss further constrains the weights by loosely tying the current weights to the

previous weights that were used to compute q̂τ (w(t−1)). Since the initial qτ value is

computed using the uniform weights from Loda and is thus a fairly good estimate of qτ ,

the loose tying of qτ between iterations guides the optimization to a better region of the

weight space. Thus, these two parts – the AATP loss and the pairwise constraints – are

complementary and contribute differently towards satisfying the objective.

3.4.5 Comparison with Rare Category Detection

As mentioned in Section 3.2, our interactive anomaly discovery problem is closely related

to the problem of rare category detection (RCD). Recall that RCD emphasizes diversity

in the points discovered; the goal of RCD is to discover a representative from as many

categories in the data as possible, given a fixed budget of queries to the analyst. In

contrast, the goal of AAD is to find as many anomalies as possible within a fixed analyst

budget.

A natural question to ask is whether an RCD algorithm can be used to solve the AAD

problem. To answer this question, we evaluate an RCD algorithm using the anomaly

discovery curve metric. However, it is difficult to compare RCD versus AAD directly,

because RCD assumes that the analyst can identify an anomaly as belonging to one of

K different categories or belonging to a previously-unseen category. On the other hand,

the AAD problem has no notion of categories of anomalies as the analyst feedback is

binary (nominal or anomaly). This form of binary feedback can be more suitable if the

analyst finds it difficult to group anomalies into K coherent categories or if the actual

anomalies do not only form small, dense clusters but also include anomalies that are

scattered throughout the feature space.

In our experiments, we evaluate three settings for feedback with RCD:

1. All anomalies in one class: In this setting, the RCD feedback is binary, es-

sentially meaning that there is a single nominal category and a single anomaly

category which contains all the anomalies.

2. Feedback as true class: The anomaly class in our experiments consists of one
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or more (minority) classes (e.g. in the Shuttle dataset, there are five classes that

make up the anomaly class). In this setting, the simulated feedback provides

the true class label, which correctly identifies the minority class from the original

dataset that constitutes the anomaly class in our experiments. For datasets where

the nominal class consists of more than one class from the original dataset, the

simulated feedback also provides the true class label from the original dataset.

This second setting is intended to correspond to the case when the analyst can

correctly group the anomalies into coherent categories.

3. Anomalies in separate classes: In this final setting, there is a single nominal

category and the analyst defines a new category for each anomaly that is discovered.

We compare AAD against the density-based Interleave [54] RCD algorithm. Inter-

leave models the density using a Gaussian Mixture Model (GMM), and each instance is

assigned to a single mixture component, i.e., one that ‘owns’ it to the highest degree.

Each component corresponds to a separate ‘category’. Interleave cycles through each

component in a round robin fashion and adds the instances which are least owned by

each component to a priority queue. These instances are presented to the user in a batch

for feedback, ordered by their degree of ownership by a component. In addition to the

components of the GMM, the Interleave algorithm also employs a uniform “background”

mixture component. In our comparison with AAD, we follow the querying strategy for

Interleave implemented by Pelleg et al. [54]. In this setup, we select a batch of two in-

stances for querying: (1) the instance that is least owned across all mixture components

and, (2) one instance from the background component.

We present results on the Abalone, Shuttle and Yeast datasets in Figure 3.7. A more

extensive set of results can be found in Appendix A.3. We picked these three datasets due

to their varied characteristics, which can be seen in their visualizations in Appendix A.1.

In the Abalone dataset, the nominal points form three distinct clusters. One nominal

cluster has a small dense cluster of anomalies at its bottom left edge. Another cluster has

anomalies along its leftmost edge. The third cluster has anomalies scattered throughout.

The Shuttle-sub dataset has many small dense “islands” of nominal points; there is one

dense anomaly cluster and a few anomalies scattered throughout the nominal clusters.

Finally, the Yeast dataset is the most difficult of the three, as there are two dense clusters

of anomalies but also a large number of singleton anomalies scattered throughout a very
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Figure 3.7: Comparison of AAD with Rare Category Detection Algorithms. The results
were averaged over 10 runs. The error bars show the 95% confidence intervals.

diffuse cloud of nominal points.

On these three very different datasets, AAD is able to find more true anomalies than

the Interleave variants. These results indicate that when the data consist of both small,

dense clusters of anomalies and also scattered singleton anomalies, AAD outperforms

RCD at finding true anomalies. When scattered anomalies are present, the goal of

increasing the diversity of anomalies discovered tends to throw off RCD as it queries

instances in unpromising regions. In contrast, we noticed that AAD is able to down-

weight regions dominated by nominal points and thus hone in on more promising regions

of the feature space.

In Appendix A.3, we also include results from MALICE [30], which is another RCD

algorithm. MALICE employs a local density differential. The trends are similar to those

seen with Interleave as AAD discovers more true anomalies than MALICE.

3.4.6 Sensitivity Analysis

AAD relies on three parameters that need to be set before running the algorithm. These

parameters are the quantile τ , the penalty factor CA (for loss incurred when a labeled

anomaly gets a score less than qτ ), and the penalty factor Cξ (for the slack variables).

In all our experiments we set τ = 0.03, CA = 100 and Cξ = 1000. Figures 3.8, 3.9,

and 3.10 show the performance of AAD on Covtype-sub and KDDCup-99-sub when one

of these parameters is varied while the other two are kept fixed at their default values.
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Figure 3.8: τ -sensitivity analysis of Covtype-sub and KDD-Cup-99-sub. Performance of
AAD while varying τ while keeping parameters CA and Cξ fixed at their default values
100, and 1000 respectively.
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Figure 3.9: CA-sensitivity analysis of Covtype-sub and KDD-Cup-99-sub. Performance
of AAD while varying CA while keeping parameters τ and Cξ fixed at their default values
0.03, and 1000 respectively.

The number of total queries in all these plots is set to be 60.

These plots show that the performance of AAD is generally not overly sensitive to

τ (provided it is small enough) and CA. The variance displayed by Covtype-sub for CA

and Cξ reflects the overall higher variance of AAD on this dataset (see the large error

bars on the red line in Figure 3.2d). The most sensitive parameter is Cξ. Figures 3.10a

and 3.10b suggest that Cξ must be at least greater than 1 in order for the algorithm to

perform well.
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Figure 3.10: Cξ-sensitivity analysis of Covtype-sub and KDD-Cup-99-sub. Performance
of AAD while varying Cξ while keeping parameters τ and CA fixed at their default values
0.03, and 100 respectively.

3.5 Discussion

AAD is based on the concept that scores assigned to labeled anomalies should be in the

top τ -quantile of all scores while scores assigned to nominals should be below that same

quantile. This is simple and intuitive, and yet quite powerful as demonstrated in our

experiments. It makes efficient use of analyst feedback to fine-tune the behavior of a

reasonably good unsupervised anomaly detector.

In many anomaly detection settings, particularly in fraud and threat detection, the

limiting resource is the time that the analyst has available to examine the candidate

anomalies generated by an anomaly detection system. Global metrics such as AUC,

APR, and Lift—although they are commonly reported in anomaly detection research

papers—ignore this analyst cost. In this paper, we have instead assumed that the analyst

can dedicate a fixed amount of effort (enough to examine k candidates), and the relevant

metric is Precision at top k. Even more useful is to examine the precision as a function

of k, which gives an “anytime” view of the process, as we have plotted in Figure 3.2.

A critical problem with data exploration for anomaly detection is the cold start

problem – during the initial stages, few or even no true anomalies are often found.

The scarcity of true anomalies causes problems when supervised learning algorithms

are employed [64, 76] as they require an initial labeled set of anomalies and nominals.

When few labeled anomalies have been discovered, there is a severe class imbalance,
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which causes the supervised techniques to be unstable and produce inaccurate results.

In the extreme case when there are no true anomalies found, supervised techniques fail

completely. In contrast, AAD can usefully incorporate expert feedback even when that

feedback only consists of labels for nominal instances. This behavior is due to the fact

that AAD relies on an internal ranking model and it attempts to push nominal instances

below the top τ -th quantile.

There are three potential improvements to AAD that we will investigate in future

work. First, we would like to solve for the values of qτ and w simultaneously rather than

approximating them by solving them separately. Second, our current setting only queries

one instance at a time during each iteration. We intend to generalize this to querying k

instances per iteration. This would be useful, for instance, when there is a group of k

analysts available and working concurrently. In this minibatch setting, it is important

to not only query informative instances but also to diversify the instances selected in

the batch. Finally, we plan to investigate if there are more effective querying strategies

aside from querying the top ranked instance.

For convenient data exploration, AAD might be combined with a low-dimensional

visualization tool like t-SNE. The visualization would hint at the parts of data that

contain true anomalies or that seem unusual but have not yet been queried. The expert

could then use these hints to either query more instances similar to known anomalies or

to diversify the query locations.

3.6 Conclusion

We introduced the AAD algorithm, which attempts to maximize the number of anoma-

lies presented to an analyst during an interactive data exploration loop. In each iteration

of this loop, the analyst can provide feedback that tells the algorithm whether the pre-

sented instance is an anomaly or a nominal point. AAD is based on a weighted ensemble

of anomaly detectors in which each ensemble member reports an anomaly score based

on a subspace of the original feature space. This ensemble approach is general enough

to include a variety of approaches such as Loda [55] and Feature Bagging [40]. AAD

works by maintaining an internal ranking of data instances based on the overall anomaly

score produced by the ensemble. When AAD receives labeled instances, it introduces

constraints to adjust the weights of its ensemble members such that false positives are
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pushed lower in its internal ranking model while other potential true anomalies increase

in rank with each labeled instance provided by the expert. Even when no true anomalies

have been identified, AAD is still capable of incorporating nominal-only feedback and

improving its performance. In experiments comparing AAD to three other algorithms

for incorporating experiment feedback, the results showed that AAD was usually the

best (or nearly the best) method. Although AAD can be computationally expensive due

to a large number of constraints being added to its optimization, we present efficient ap-

proximations that add a constant number of constraints and do not significantly degrade

the quality of the solutions found.



64

Chapter 4: Extending Active Anomaly Discovery to other

algorithms

4.1 Introduction

Inspired by the success of AAD with Loda, we sought ways to extend AAD to work

with other anomaly detection algorithms. One hypothesis for the success of AAD with

Loda is that AAD is performing a form of indirect feature selection by reweighting

anomaly detectors that each involve only a small portion of the original features. This

hypothesis suggests that we might extend AAD by applying it to an ensemble in which

each anomaly detector is trained using only a subset of the features. This can be achieved

by a technique known as “feature bagging” [40]. In Section 4.2, we show that AAD can

improve the anomaly detection performance of an ensemble created by feature bagging.

Next, in Section 4.3 we extend AAD to another algorithm, Isolation Forest [44].

4.2 AAD for Feature Bagging

Each member in a feature bagging ensemble focuses on a particular subspace of the

original feature space. Algorithm 3 illustrates how such an ensemble is created. Here

we have assumed that the original dataset has F features and the ensemble contains

M members. The ensemble produces a set of anomaly scores O that can be uniformly

weighted in the no feedback setting or can be reweighted via AAD.

For our experiments, we set M = 50. We evaluated three algorithms for A: Loda,

LOF, and Isolation Forest. Figure 4.1 shows that incorporating feedback over 60 itera-

tions with AAD provides substantial gains in the majority of the datasets for all three

anomaly detection algorithms. LOF becomes confounded when anomalies are clustered

– as is the case in most of our datasets. Therefore, LOF’s performance is quite poor

in general. The gain in performance for ANN-Thyroid-1v3 with LOF in Figure 4.1 is

misleading: the actual number of true anomalies discovered by LOF without feedback

was close to zero. As a result, when the small increase in detected anomalies (with
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Algorithm 3 Generating Ensembles by Feature Bagging

Input: Raw data D, number of members in ensemble M
Set F = number of features in D
Set O = ∅
for i = 1..M do

Sample a number k uniformly at random (1 ≤ k ≤ F
2 )

Sample k features {f1, ..., fk} at random (without replacement)
Compute anomaly scores oi using features {f1, ..., fk} with an anomaly detection
algorithm A
Set O = O ∪ oi

end for
return O

feedback) is divided by the average baseline value, it results in a high gain in percentage

(> 650). Shuttle-sub has zero gain for Isolation Forest and Loda because it happens to be

an easy dataset where the baseline algorithm itself identifies one anomaly (on average)

in each step. Thus, for Shuttle-sub, there was no room for improvement by incorporating

feedback.

4.3 Applying AAD to a single Isolation Forest

In this section, we apply AAD to incorporate user feedback into Isolation Forest (IF)

[44]. We selected IF because it has been shown to be competitive with other anomaly

detectors [44, 22]. The IF model comprises of a set of trees generated in a randomized

manner as outlined in Algorithm 4. IF assigns an anomaly score to each leaf node as a

function of the length of the path from the root node to the leaf. IF works on the idea

that anomalous instances are few, and they are well-separated from clusters of nominal

instances in the feature space. Because of this, anomalous instances very quickly reach

leaf nodes through random partitioning. On the other hand, nominal instances, which

form dense clusters, require many more splits to finally reach leaf nodes. Therefore, the

length of the path traversed by an instance from the root node to the leaf is shorter (on

average) for anomalous instances than it is for nominal instances.

Figure 4.2 illustrates how IF works on a synthetic dataset. The size of sub-sample

(N) has been fixed to 256 in all the plots. A single tree is not very informative for this

case (Figure 4.2c), and therefore the ranking of true anomalies is very noisy (sidebar in
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Figure 4.2c). However, as we increase the number of trees (Figure 4.2d), the algorithm’s

performance improves and it ranks more true anomalies near the top. This is because

it now has a better estimate of the number of splits required to reach each region in the

feature space. So far, the algorithm is purely unsupervised. Hence, it could potentially

misjudge the relevance of outliers and report uninteresting instances as anomalies. We

will now incorporate feedback into IF so that we can avoid this problem.

In order to make IF compatible with AAD, we will first treat the structure of the

IF model as an ensemble. Let the IF model be comprised of t trees denoted by T =

{T1, ..., Tt}. It is immediately obvious that IF is an ensemble of trees. However, this

ensemble is unsuitable for AAD, because each tree is random, discrete, and global. In
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Algorithm 4 Generating randomized trees in Isolation Forest

Input: D, sub-sample size: N , numer of trees: t
T = ∅
for i = 1...t do

Let Si = a sub-sample of N instances from D
Build tree Ti as follows, by starting with all instances in Si at the root node:

Let U ⊆ Si be the set of instances at the current node
if |U | == 1 then
return

else
Let f be a feature sampled at random
Let fmin = minimum value of f across all instances in U
Let fmax = maximum value of f across all instances in U
Let pf = value selected uniformly at random from [fmin, fmax]
Partition U into two parts on the basis of pf and recurse on both partitions

end if
T = T ∪ Ti

end for

such cases, it is hard to focus the feedback on specific parts of the data. Instead, we will

treat IF as an ensemble of nodes.

Let each node ν define a region rν with an associated score sν = 1/pν , where pν is

the length of the path from the root to the node ν. Next, let x be an instance, and νkx

be the set of nodes that x visits on its way to a leaf in tree Tk (except the root). The

anomaly score for x (without feedback) is then computed as1:

score(x) =
∑
Tk∈T

1

|νkx |
∑
ν∈νkx

sν (4.1)

Figure 4.2 shows the anomaly score contours on synthetic data using Equation 4.1.

Now, each node ν in IF — each leaf node as well as each intermediate node (except

the root) — can be considered to define a ‘feature’. This feature is either zero for an

1Although the score in Equation 4.1 is different from the score computation in Liu et al. [44], both
had similar anomaly detection performance in our experiments. The anomaly score for an instance x in

Liu et al. [44] is computed as 2
−E(h(x))

c(n) , where E(h(x)) is the expected path length, n is the number of
training instances, and c(n) is a normalization term. We compute the score with Equation 4.1 because
it allows us to combine the scores linearly across all the nodes in the Isolation Forest.
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Figure 4.2: Random trees in Isolation Forest (IF) for synthetic data. The points in
red are true anomalies; points in gray are true nominals. Figure 4.2a shows the leaf
node regions for a single tree generated by random IF splits. Figure 4.2b shows the leaf
node regions for 10 trees generated by IF; each tree has a different color. Figure 4.2c
and Figure 4.2d show the contours of anomaly scores assigned by Isolation Forest with
one and ten trees respectively. Deeper red means more anomalous; deeper blue means
more nominal. Red circles are true positives among top 20 instances ranked by IF
without feedback; green circles are false positives among the top 20. The left sidebar in
Figure 4.2c and Figure 4.2d show the ranking of true anomalies (red dots). Ideally, true
anomalies should be near the top on this bar.
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instance (i.e., the instance does not belong to rν), or it is non-zero (the instance belongs

to rν). Since the location of an instance in the feature space is bounded by more than

one node (across all trees), the instance would have more than one non-zero feature. Let

νk be set of all nodes (except root) in tree Tk. We define a function f(·) that transforms

an instance x in the original feature space to an instance z in the space defined by the

IF nodes as follows.

Let zfν be the feature of z that corresponds to a node ν ∈
⋃

Tk∈T
νk. Then,

f(x) = z s.t. ∀Tk ∈ T, ∀ν ∈ νkx : zfν =
1

|νkx |
sν (4.2)

The dimensionality of z is d′ = |
⋃

Tk∈T
νk|, which corresponds to the total number

of nodes in the IF model. This could be very high, typically in tens of thousands.

This is, however, not a problem in practice, because most features in z are zero. We

now introduce the weight vector w, which has dimensionality d′. When the weights are

uniform, the anomaly score in Equation 4.1 can equivalently be written as:

score(x) = f(x) ·w

= z ·w. (4.3)

It is clear from Equation 4.3 that we can now use AAD to incorporate feedback

by learning new weights w. Figure 4.3 shows the result of incorporating feedback on

synthetic data. As the algorithm receives feedback, it alters the contours of the anomaly

scores and focuses on the more relevant parts of the feature space. In all experiments

we have set the number of trees t = 100 and the sub-sample size N = 256.

Figure 4.4 shows the result of incorporating feedback in IF on eight real-world

datasets (Table 3.4). AAD does not hurt the performance of IF, and in most cases

increases the number of true anomalies discovered.

4.4 Discussion

As demonstrated by our experiments, AAD works well when each ensemble member fo-

cuses on a particular subspace in a high-dimensional input feature space, as was shown
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Figure 4.3: Incorporating feedback in Isolation Forest (IF) for synthetic data. Fig-
ures 4.3a – 4.3e show anomaly score contours in the same way as explained in Figure 4.2.
The red curve in Figure 4.3f shows the number of true anomalies discovered when we
incorporate feedback; the blue curve in Figure 4.3f shows the number of true anomalies
discovered when no feedback was incorporated.

in Section 4.2 for both Loda ensemble and feature-bagging ensembles. An open question

is whether AAD could be successfully applied to other types of ensemble anomaly de-

tectors, such as an ensemble of heterogeneous detectors where the final score is a linear

combination of scores from the individual members. This heterogeneous detector setup

is common in real-world systems (e.g. [64, 60, 76, 27]).

In Isolation Forest, the intermediate nodes generally describe larger regions in the

feature space than the leaf nodes. Hence, the features corresponding to intermediate

nodes are more ‘global’ than features corresponding to the leaf nodes. This was the

primary reason for including the intermediate nodes in IF when adapting it for AAD;

the original IF algorithm [44] only considers the leaf nodes. Our experiments show that
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Figure 4.4: Incorporating feedback in Isolation Forest with AAD. Figures 4.4a–4.4d are
the smaller datasets with 60 feedback iterations. Figures 4.4e–4.4h are the larger datasets
with 100 feedback iterations. The results were averaged over 10 runs. The error bars
show the 95% confidence intervals.

including global features results in better performance than using only the local features.

We hypothesize that since global features are shared across more instances, they offer

better opportunities for propagating information gathered through feedback. We note

that all projection vectors in Loda are global as well. It is likely that this contributes
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favorably towards the performance we saw in Figure 3.2.

4.5 Conclusion

We showed that AAD can be used to improve the performance of feature bagging ensem-

bles. In some cases it detects twice the number of anomalies as the baseline ensemble.

Moreover, when AAD was adapted to be used with Isolation Forest, it discovered more

anomalies with feedback than the baseline Isolation Forest with no feedback. These

extensions encourage further research on adapting AAD to other algorithms.
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Chapter 5: Conclusion and Future Work

5.1 Conclusion

We first discussed in Chapter 1 the importance of feedback in machine learning algo-

rithms. This was followed by an overview of various aspects related to the design of

feedback.

Next, in Chapter 2 we developed a semi-supervised algorithm LWLR-SS-FL that

incorporates feature labels provided by end users for text classification. It computes

a pairwise similarity metric between instances over the underlying manifold structure

using label diffusion. We showed that LWLR-SS-FL performs well when the quality of

labeled features is high. It is also more robust to poor quality features when compared

with other semi-supervised feature labeling algorithms.

In Chapter 3 we presented a novel algorithm called AAD for incorporating instance

labels in anomaly detection. We showed that with expert feedback, we can use AAD

to present more true anomalies to users than without expert feedback. Among the

compared algorithms, AAD performed best on most benchmark datasets. We then

suggested modifications to AAD which improve its computational efficiency and make it

suitable for use in an interactive cycle by end users in real-time. We also applied AAD

to an ensemble of anomaly detectors created using feature bagging and found that it is

able to improve detection accuracy over baseline on most datasets. Finally, we showed

that active learning algorithms for rare category detection perform poorly in comparison

with active learning algorithms for anomaly detection.

Overall, we have shown that performance of deployed machine learning algorithms

can be improved by end-users even when the original algorithm designers are no longer

available. This facility will become more important as machine learning algorithms

become pervasive in many different activities of our lives.
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5.2 Future Work

5.2.1 Improvements to Feature Labeling

The current implementation of LWLR-SS and LWLR-SS-FL (Chapter 2) inverts a large

matrix of pairwise distances in order to get the corresponding similarities. This has

O(n3) complexity and as a result scales poorly as the number of instances (labeled and

unlabeled) increases. Instead, we might first subsample the data, and compute pairwise

similarities (in manifold space) by matrix inversion. Next, with the resulting smaller

set of similarities, we would learn regression models for computing pairwise similari-

ties locally at each sub-sampled point. These learned regression models would then

compute similarities required for classification of out-of-sample points. This approach

lowers the computation cost of matrix inversion and also extends the algorithm to a

non-transductive setting. I intend to investigate this approach because with increasing

volumes of data, scalability is critical in most applications.

An important cause of failure in semi-supervised learning with label diffusion is the

presence of noisy data in between the clusters [84]. Labels ‘leak’ into incorrect clus-

ters through these noisy data points. This is likely to have been the reason for poor

performance on some of the datasets. We may be able to avoid this problem by incorpo-

rating regularization that enforces smoothness assumptions during the diffusion process

[82]. This regularization was avoided in the current work because it requires tuning

hyper-parameters and it makes training more expensive. Future work on LWLR-SS and

its variants would need to incorporate regularization in conjunction with lowering the

computational cost.

The basic idea behind LWLR-SS is to first reduce dimensionality of the data as-

suming there exists a latent manifold structure. Coordinates of instances in the new

dimensions would then help establish better pairwise similarities. With this in mind,

any dimensionality reduction technique might be used (e.g., t-SNE [74]) assuming that

it preserves most information pertaining to relative distances between instances.
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5.2.2 Extensions to Active Anomaly Discovery

5.2.2.1 Extension to Single Anomaly Detector

Siddiqui et. al. [69] present RPAD, a simple yet effective algorithm for detecting anoma-

lies. RPAD assumes that there is an underlying set of patterns to which instances belong.

Each pattern is associated with an anomaly score and one instance might belong to more

than one pattern. The anomaly score for an instance is the average score across all pat-

terns it belongs to. This setup is compatible with AAD. Since the patterns are usually

mined in an unsupervised manner, their anomaly scores might not fit user expectations.

AAD might allow users to re-weight the patterns such that the anomalous patterns get

higher scores than nominal ones. Isolation Forest [44] is a special pattern space where

the ‘patterns’ are defined by the volumes in feature space corresponding to leaf and in-

termediate nodes. The fraction of instances from a training set that belongs to a node

is the anomaly score for that node under RPAD [69]. The extension to Isolation Forest

in Section 4.3 was motivated by RPAD. Future work will improve upon this and also

explore using AAD to improve performance of RPAD with other pattern spaces.

5.2.2.2 Developing new query strategies

Many query strategies commonly employed in active learning for classification settings

[65, 23] are also applicable to anomaly detection. Strategies for discovering rare categories

generally focus on determining cluster boundaries (using uncertainty sampling) whereas

those for discovering anomalies query the most unlikely instances under the current

model. Various strategies have been proposed [54, 25, 71] that try to query both the

novel categories as well as the anomalies. In the current implementation of our algorithm,

we only query the top ranked unseen instance in each iteration. Other query strategies

could be explored in future, such as, query items most dissimilar to labeled nominals and

items most similar to labeled anomalies, query by committee (QBC), query instances that

have highest expected gradient length, query instances that lead to maximum variance

reduction in the model, etc.

It has never been investigated whether a long-term sequential strategy might be

more efficient for anomaly detection. I hypothesize that a sequential query strategy is

useful when there are multiple types of anomalies. Some anomalies appear as standalone
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instances in the feature space, similar to noisy outliers. Others, which are generated by

structured processes, tend to form clusters. Querying just the standalone outliers risks

wasting too much budget on noise. At the same time, querying all members of an outlier

cluster before moving on to others misses out on diversity. In this case we need to design

a sequential query strategy that maximizes both the total number of detected anomalies

as well as their distinct types within a restricted budget.
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Appendix A: Appendix

A.1 Dataset Visualization with t-SNE

Figure A.1 provides two-dimensional visualizations of the eight small datasets used in

our experiments. These visualizations are produced using the t-SNE algorithm [74]. The

purpose of these visualizations is to give the reader an illustration of the locations of the

anomalies relative to the nominal points and also to show which instances are queried

by AAD.
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Figure A.1: Low-dimensional visualization of benchmark datasets using t-SNE. Plus
signs are anomalies and circles are nominals. A red coloring indicates that the anomaly
or nominal point was queried. Grey circles correspond to unqueried nominals. To make
unqueried anomalies stand out visually, we indicate them with blue plus signs.
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A.2 Performance with Constraints Relative to τ -th Ranked Instance

Figure A.2 illustrates the performance of the different approximations to the AAD al-

gorithm on the twelve datasets used in our experiments; for completeness, we include

results from the standard AAD algorithm and the LODA baseline. We refer to the three

AAD approximations in Figure A.2 as Tau-rel approximations because they rank the

anomalies and nominals relative to the τ -th ranked instance as described in Section 3.4.4.

The three AAD approximations are:

1. AAD Tau-rel, all labeled : This approximation adds constraints that rank the la-

beled anomalies above the τ -th ranked instance and all the labeled nominals below

the τ -th ranked instance. The number of constraints added by this approximation

would be linear in the number of labeled examples as opposed to quadratic when

all pairwise constraints are added.

2. AAD Tau-rel, top 10 largest margin constraints (LMC): Instead of adding all the

constraints generated by labeled anomalies and nominals, this variant only adds

the top 10 largest margin constraints for anomalies and the top 10 largest margin

constraints for nominals. This variant results in a constant number of constraints

in each iteration.

3. AAD Tau-rel, No AATP loss: The objective has part P2 and constraints similar

to T2 but without the AATP loss.

As Figure A.2 illustrates, there is very little degradation in performance, even with

AAD Tau-rel top 10 LMC, but as we showed in Figure 3.5, there is a substantial gain in

performance due to a reduced set of constraints.
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0 10 20 30 40 50 60

0
1
0

2
0

3
0

4
0

5
0

6
0

iter

#
 a

n
o
m

a
lie

s
 s

e
e
n

Baseline

AAD

AAD Tau−rel, all labeled

AAD Tau−rel, top 10 LMC

AAD Tau−rel, No AATP loss
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(e) KDD-Cup-99-sub
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(f) Mammography-sub
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(j) Shuttle-sub
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(k) Shuttle
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Figure A.2: Comparison of AAD with variants where the constraints are relative to τ -th
ranked instance. The results were averaged over 10 runs. The error bars show the 95%
confidence intervals.
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A.3 Anomaly Detection with Rare Category Detection Algorithms

Figure A.3 shows the complete set of results of comparing Interleave to AAD on the eight

small datasets. As in Section 3.4.5, we investigated the three instance labeling schemes

for Interleave: “All anomalies in one class”, “Feedback as true class” and “Anomalies in

separate classes”.
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Figure A.3: Comparison of AAD with Interleave. The results were averaged over 10
runs. The error bars show the 95% confidence intervals.
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We also include a comparison of AAD against MALICE [30], which is a distance-

based RCD algorithm that is different from Interleave. MALICE computes the local

density around each instance, assuming it belongs to class i, based on the minimum

Ki-th nearest-neighbor distance where Ki is the estimated number of instances in class

i. The anomaly score then corresponds to the change in local density. Instances with the

highest anomaly scores are candidates for querying. We compared the performance of

MALICE with that of its variant ALICE [30] and found that MALICE performs either

better or at par with ALICE in most cases. As a result, we only present results for

MALICE. We used K = 5 for all datasets.

MALICE, by design, requires an estimate of the number of classes (and their re-

spective proportions) in the dataset. It stops querying for new labels and exits as soon

as one example from each class has been discovered. When the true number of rare

classes is small, such as in the “anomalies as one class” and “feedback as true class”

labeling schemes, MALICE often terminates before discovering a significant number of

true anomalies. This behavior puts MALICE at a substantial disadvantage under these

two labeling schemes as it produces an extremely short anomaly discovery curve. As

a result, we only run MALICE in the setting where each anomaly is considered as a

distinct class.

Figure A.4 compares AAD versus MALICE on the eight small datasets. MALICE

performs very poorly on these datasets and AAD clearly outperforms it when it comes

to presenting true anomalies to the analyst.
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A.3.1 Each anomaly as a separate class
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Figure A.4: Comparison of AAD with MALICE. The results were averaged over 10 runs
for AAD. The error bars show the 95% confidence intervals.
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