Considering economic efficiency in ecosystem-based management: The case of horseshoe crabs in Delaware Bay

Sunny L. Jardine University of Washington School of Marine and Environmental Affairs

Yue Tan University of Delaware Department of Economics

Illustration by Christiane Engel

Ecosystem Based Management

Approaches:

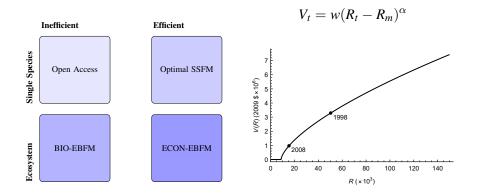
- BIO-EBFM: Add ecosystem considerations to existing management
- ECON-EBFM: Management maximizes economic efficiency considering a broader array of ecosystem services

Research Question

How do outcomes from BIO-EBFM and ECON-EBFM compare?

■ We also explore OA and optimal SSFM

Research Approach



4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 つへで 4/15

Contributions

- We add to the economics literature on the welfare gains from EBFM
- 2 We use a simple model to explore a range of welfare outcomes from a regulated open access fishery
- 3 We apply methods from time-series econometrics to decompose the shadow price of horseshoe crabs

Model: OA

$$\dot{E}_t = \gamma E_t(\Pi_t/E_t) = \gamma E_t(pqC_t - \delta E_t), \quad t \in [-T_1, 0],$$

$$\dot{C}_t = g_c C_{t-\tau} \exp(-C_{t-\tau}/K_c^*) - \eta_c C_t - q C_t E_t,$$

$$\dot{R}_t = g_r R_t \left(1 - \frac{R_t}{K_{r,t}^*(C_t)} \right)$$

4 ロ ト 4 回 ト 4 三 ト 4 三 ト 三 の Q で 6/15

Model: BIO-EBFM

$$\max_{E_{t}, t \in [0,T]} \int_{0}^{T} qC_{t}E_{t}dt$$

subject to $\dot{C}_{t} = g_{c}C_{t-\tau} \exp(-C_{t-\tau}/K_{c}^{*}) - \eta_{c}C_{t} - qC_{t}E_{t}, \quad t \in [0,T],$
 $\dot{R}_{t} = g_{r}R_{t} \left(1 - \frac{R_{t}}{K_{r,t}^{*}(C_{t})}\right), \quad t \in [0,T],$
 $qE_{t} \leq F_{MSY}, \quad t \in [0,T],$
 $E_{t} \leq 0 \quad \text{if } R_{t} < \Theta_{r}, \quad t \in [0,T],$
 $E_{t}, C_{t}, R_{t} \geq 0, \quad t \in [0,T],$
 $C_{t} = \phi_{t}, \quad t \in [-\tau,0], \quad \text{and} \quad R_{0} = \psi_{0}.$

<ロ > < 回 > < 亘 > < 亘 > < 亘 > < 亘 > < 亘 > < Ξ > < Ξ ? < ?/15

Model: ECON-EBFM

$$\max_{E_{t},t\in[0,T]} \int_{0}^{T} e^{-\rho t} \left(\Pi_{t}(C_{t},E_{t}) + V_{t}(R_{t}) \right) dt$$

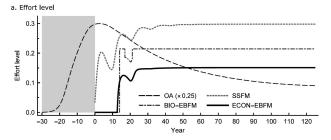
subject to $\dot{C}_{t} = g_{c}C_{t-\tau} \exp(-C_{t-\tau}/K_{c}^{*}) - \eta_{c}C_{t} - qC_{t}E_{t}, \quad t \in [0,T],$
 $\dot{R}_{t} = g_{r}R_{t} \left(1 - \frac{R_{t}}{K_{r,t}^{*}(C_{t})} \right), \quad t \in [0,T],$
 $E_{t}, C_{t}, R_{t} \ge 0, \quad t \in [0,T],$
 $C_{t} = \phi_{t}, \quad t \in [-\tau, 0], \quad \text{and} \quad R_{0} = \psi_{0},$

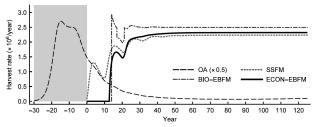
<ロ > < 回 > < 亘 > < 亘 > < 亘 > < 亘 > < Ξ > < Ξ > < Ξ < の < 8/15

Solution: ECON-EBFM

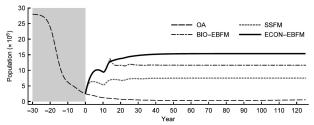
- λ_t decomposed into:
 - 1 $\lambda_{1,t}$: + \uparrow immediate HSC harvest
 - 2 $\lambda_{2,t}$: \Downarrow instantaneous HSC growth rate
 - 3 $\lambda_{3,t}$: + \uparrow HSC recruitment at time $t + \tau$
 - 4 $\lambda_{4,t}$: + \uparrow red knots
- We calculate mutations of λ_t by setting cumulative historical impacts of some components to zero

Results: Trajectories

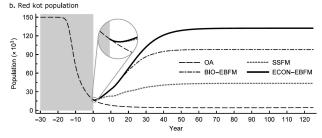




Results: Trajectories

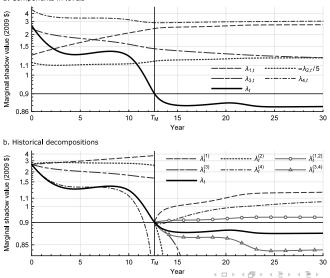


a. Horseshoe crab population



<ロ > < 回 > < 三 > < 三 > < 三 > < 三 > の へ ?? 11/15

Results: Decomposition

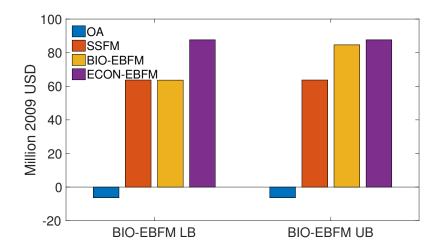


a. Components in levels

∽ へ ペ 12/15

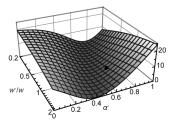
E

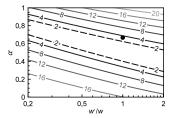
Results: NPV



Results: Sensitivity Analysis

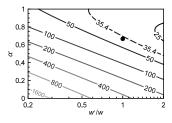
a. No rent dissipation under BIO-EBFM





b. Complete rent dissipation under BIO-EBFM





Thank you

