

Optimal Spatial Strategy of the Fishing Efforts for Heterogeneous Fishing Grounds

Gaku Ishimura
Ren Odaira
Faculty of Agriculture
Iwate University

Keita Abe
Department of Economics
University of Washington

Motivation

Kesennuma 気心認

気仙沼

The 9th largest fishery landig values in Japan.

A base port for distant water tuna fisheries.

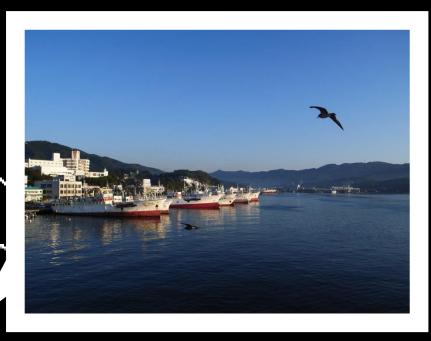
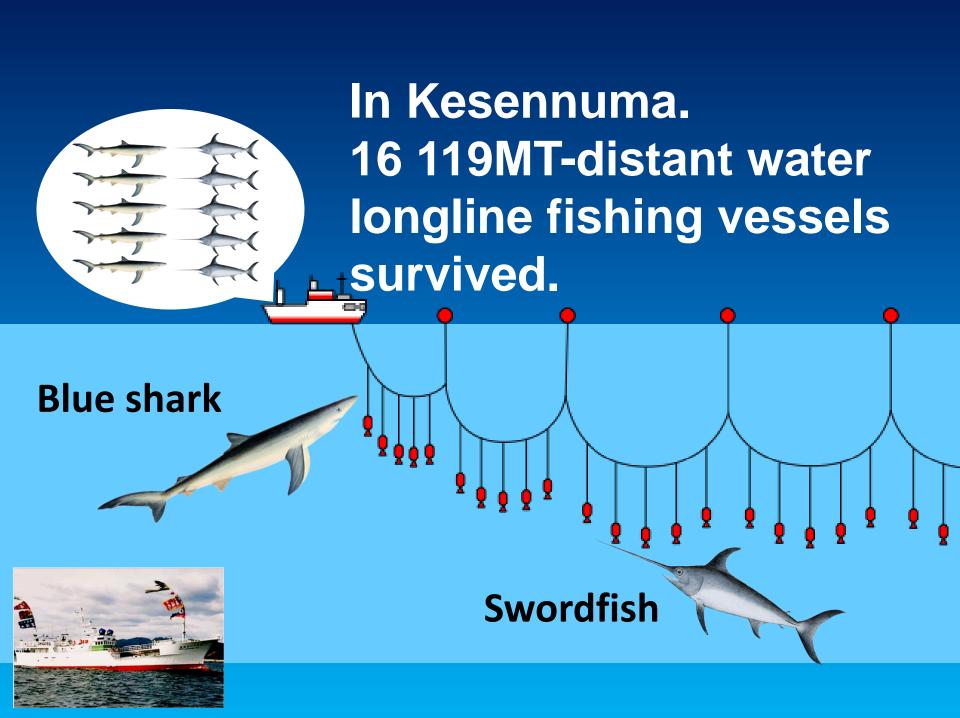



Photo: Yuma Sugawara

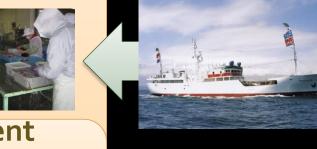
After the 2011 Earthquake/Tsunami

Ex-vessel Price

Fuel Price

Kesennnuma Longline Fisheries

Society 社会


Fishery 漁業

Fish 魚

Economic Motivations

North Pacific swordfish & blue shark resources

Employment generated by the processing industries

Approach

Approach to bring economic incentives

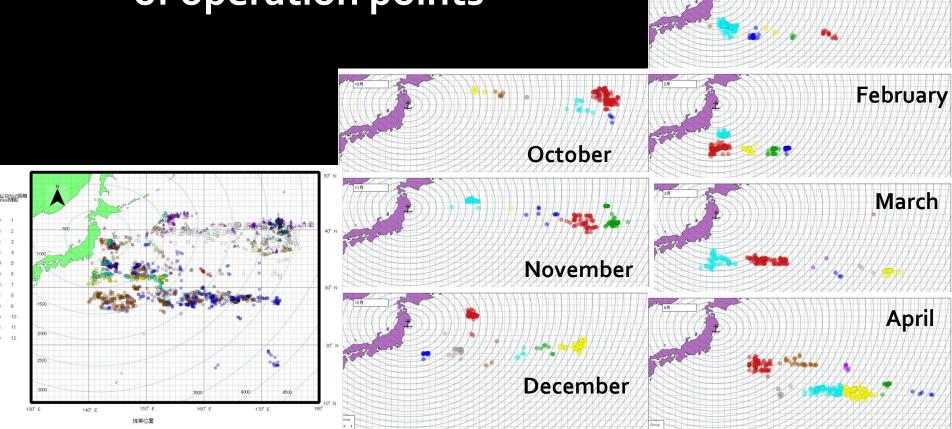
Explore optimum fishing strategies to maximize economic benefits from Swordfish fisheries.

Two decision variables for optimum fishing trip strategies

- 1) Fishing Efforts(= days per trip)How many days per trip?
 - (2) Fishing Locations Where shall we fish?

Combine Catch, Cost, Revenue from the 2005-2010 trip-based data under the competitive individual operation to explore optimum fishing efforts to maximize economic benefits from Swordfish fisheries.

= Move/Search Day + (longline) Operation Days

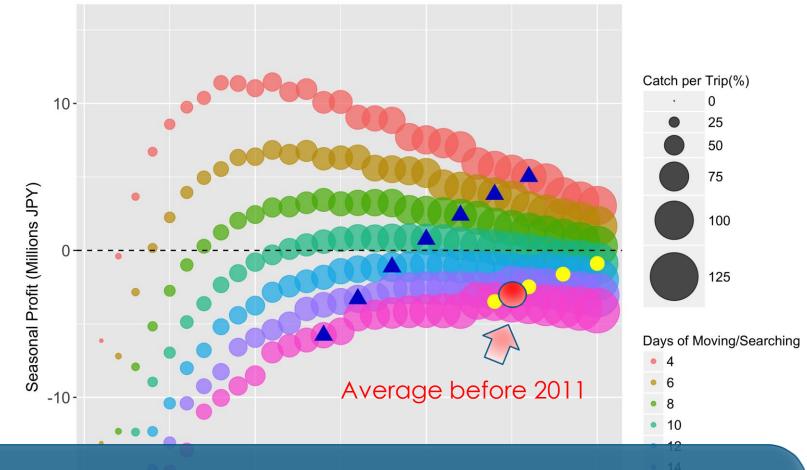

Harvest model + Price model + Cost model (Production) (Demand)

(2) Cluster Analysis to

identify the location/profile of the fishing grounds from 2012-2014 log-book data

January

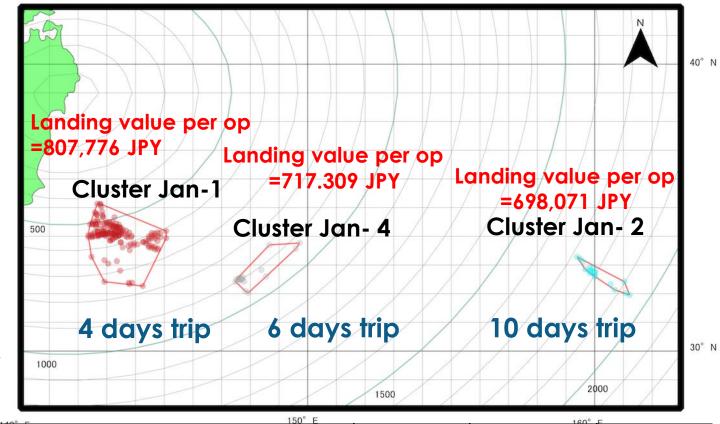
Clustered by distances of operation points



Result

The seasonal profit and harvest per trip on operation days when search/move days are 4, 6, 8, 10, 12,14 and 16 days.

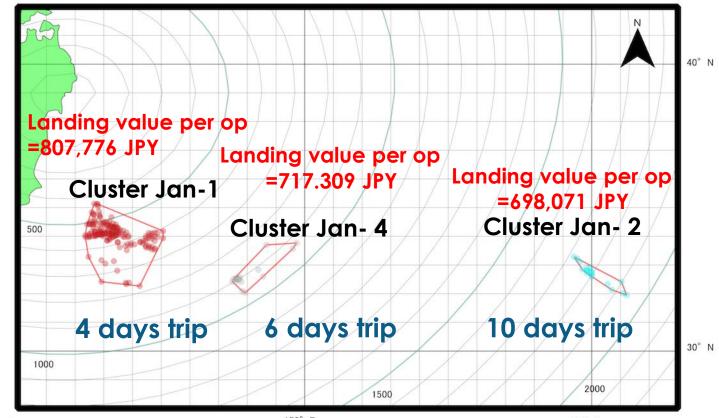
Ishimura, G., Abe, K. & Goto, T. Rivision submitted to the ICES Journal of Marine Science

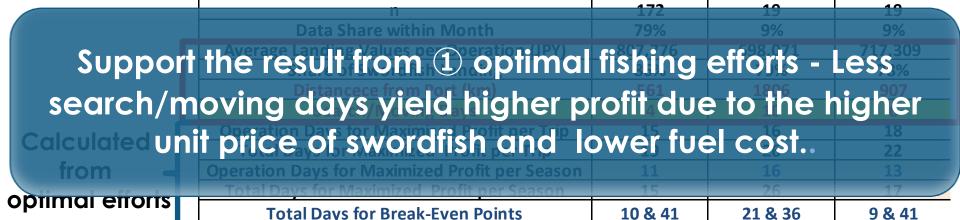


Less search/moving days yield higher profit due to the higher unit price of swordfish and lower fuel cost.

Average trip before 2011 (M/S days 14 + Op days 26 =total 40 days) is not profitable.

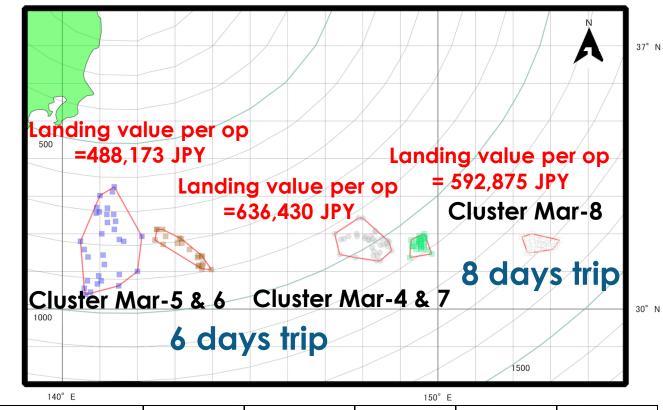
Fishing Grounds in January



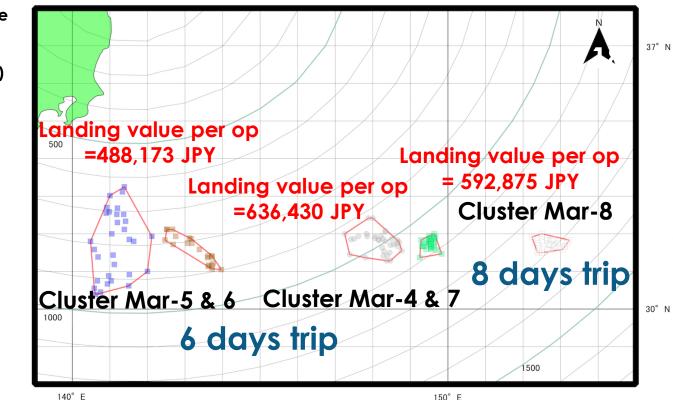

	Cluster Number	1	2	4
	n	172	19	19
	Data Share within Month	79%	9%	9%
П	Average Landing Values per Operation (JPY)	807,776	698,071	717,309
	Share of Swordfish Landing	86%	79%	78%
	Distancece from Port (km)	561	1806	907
	Search/Moving Days	4	10	6
	Operation Days for Maximized Profit per Trip	15	16	18
	Total Days for Maximized Profit per Trip	19	26	22
	Operation Days for Maximized Profit per Season	11	16	13
	Total Days for Maximized Profit per Season	15	26	17
	Total Days for Break-Even Points	10 & 41	21 & 36	9 & 41

Calculated from – optimal efforts

Fishing Grounds in January



Cluster Number


Fishing Grounds in March

Cluster Number	4	5	6	7	8
n	34	31	21	39	31
Data Share within Month	20%	18%	12%	23%	18%
Average Landing Values per Operation (JPY)	450,362	488,173	578,924	636,430	592,875
Share of Swordfish Landing	61%	65%	75%	79%	68%
Distancece from Port (km)	991	797	828	1072	1285
Search/Moving Days	6	6	6	6	8
Operation Days for Maximized Profit per Trip	18	18	18	18	17
Total Days for Maximized Profit per Trip	22	22	22	22	25
Operation Days for Maximized Profit per Season	13	13	13	13	14
Total Days for Maximized Profit per Season	17	17	17	17	22
Total Days for Break-Even Points	9 & 41	9 & 41	9 & 41	9 & 41	14 & 39

Fishing Grounds in March

	Cluster Number	4	5	6	7	8
	n	34	31	21	39	31
	Data Share within Month	20%	18%	12%	23%	18%
	Average Landing Values per Operation (JPY)	450,362	488,173	578,924	636,430	592,875
	Share of Swordfish Landing	61%	65%	75%	79%	68%
As '	the season reach to the	e end.	Ithe fish	nina ar	ounds	have
				6	6	8
	Operation Days for Maximize homoge	neous	profiles	. 18	18	17
	Total Days for Maximized Profit per Trip	22	22	22	22	25
	Operation Days for Maximized Profit per Season					
	Total Days for Maximized Profit per Season	17	17	17	17	22
	Total Days for Break-Even Points	9 & 41	9 & 41	9 & 41	9 & 41	14 & 39

Next Step

Extend analysis for blue shark and the joint production function.

Explore optimum choice of fishing grounds and fishing efforts under uncertainties.

As all vessels will join the new company, develop the group-vessel schedule to make this fishery sustainable.

Next Steps

Thanks!