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PREFACE

In 1976 Professor Andrzej Granas provided a new approach for establish-

ing fixed points of certain mappings in his paper "Sur La methode de continuite

de Poincare" [11]. This method is now known as Topological Transversality and

has proven to be very powerful in various areas of nonlinear analysis. Topological

Transversality was used in many papers of Professors Granas, Guenther and Lee to

prove existence results for initial value and boundary value problems for nonlinear or-

dinary differential equations and for integral equations. In 1988 in the paper "Some

y Eexistence results for the differential inclusions y(k) c F(x, (k-1)), y B[12]

Professors Granas, Guenther and Lee applied Topological Transversality to differ-

ential inclusions and proved some existence results for initial value and boundary

value problems for nonlinear differential inclusions.

In his 1964 paper "Differential equations with discontinuous right-hand side"

[6] Professor A.F. Filippov defined solutions of the differential equation

= f (t, x), x E Rn,

where f is discontinuous in both variables, as solutions to the differential inclusion

xi(t)En n konv f (t ,U (x(t), 6) N),
5>0 p(N).0

where U (x , 6) = {y : y1 <8} and konvY is the closed convex hull of Y. Filippov's

definition has a realistic physical meaning. I illustrate this in an example in Chapter

I.

vi

In this thesis we apply Topological Transversality and Filippov's theory to

fourth order boundary value problems modeling nonlinear beams and to the dry
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friction equation. We show how powerful and natural each of these methods is by

itself and how they become even more powerful when combined and used together.

We begin in Chapter I by introducing some notation. We recall some defini-

tions and theorems from Topological Transversality and define Filippov's solutions

to differential equations.

Chapter II deals with nonlinear beams, which are modeled by fourth order

boundary value problems. Topological Transversality is applied to obtain existence

results for all the physically relevant combinations of the three typical end condi-

tions: clamped end, simply supported end, free end. All the existence theorems

in this chapter enable us to establish the existence of solutions directly from the

differential equation. Uniqueness is also studied by using Wirtinger-type integral

inequalities.

The results of Chapter III are motivated by the dry friction equation, in

particular by the existence of periodic solutions for this equation. Since the dry

friction equation exhibits discontinuities in the spatial variable we cannot use the

classical definition or Caratheodory's definition and we use Filippov's definition. Us-

ing the results given in Professor Kurzweil's book, "Ordinary differential equations"

(Translation from the Czech edition by Michael Basch) [20], we show that under a

reasonable hypothesis on the discontinuous right hand side of the equation

= f(t, .), xERTh,

the multivalued convexification of f from Filippov's definition fits in the framework

of the above mentioned paper [12] of Professors Granas, Guenther and Lee. The

results of this paper are then applied to obtain existence results for the periodic and

Dirichlet boundary value problems for Filippov's solutions. However, the existence

result for periodic solutions involves a monotonicity condition which is applicable
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u" d(u) e(u) ksgnu' = e(t),

where k E lit, k > 0, b,c and d are nonlinear functions, and e is a measurable

1-periodic function. For this we prove an existence theorem with no monotonicity

restrictions for the second order periodic boundary value problem for the differential

inclusion

x" E F (t, x , x'), x(0) = x(1), xi (0) = (1),

where F is a set-valued function. This theorem is applicable to the more general

dry friction equation. Some numerical computations are also presented to illustrate

the results of Chapter III.

viii

only to the dry friction equation in its least general form

u" bu' cu ksgnut

where b, c, k E IR, b, c, k > 0 and e(t) is a measurable 1-periodic function. However,

our goal is to obtain an existence result for a more general dry friction equation

u" b(u1) c(u) ksgnui = e(t),



A TOPOLOGICAL APPROACH TO DRY FRICTION
AND NONLINEAR BEAMS

1. INTRODUCTION

1.1. NOTATION

Throughout this thesis we try to use the most standard notation. In the case

of some less frequently used notation we include an explanation in the section where

it appears. Therefore, this section is only for reference purposes.

The following standard notation is used: IR, = (oc, no) denotes the real line;

the n-dimensional Euclidean space is denoted by IfIn and its norm by x. C(/) is

the Banach space of continuous functions (with values in a Euclidean space) on the

interval / = [a, I)]. We define 1u0 = supflu(t)1; t E Cm(I) is the Banach space

of functions whose m-derivatives are continuous on / with the norm

= max0110, ,

By AC(/) we mean the set of absolutely continuous functions on I. For 1 < p < no,

LP(/) denotes the Banach space of p-th power, Lebesgue integrable functions with

the norm

Hullp =

L"(/) is the Banach space of essentially bounded, measurable functions together

with the essential supremum norm, which is the limit of the LP-norm as p no.

The closed convex hull of Y is denoted by konvY . Let U be a subset of a metric
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space M, then au and cl(U) denote, respectively, the boundary and the closure of

U in M. If X is a subset of a Banach space, then Kv(X) is the family of all compact,

convex, nonempty subsets of X. Suppose E and N are subsets of a finite dimensional

Banach space, it is a Lebesgue measure and 0(t, x) is a scalar valued function, then

ess max 4)(t , x) = inf sup (t , x).
sEE g(N)=0 sEE-N

The essential upper bound of the function cb(t, x) at the point x 8 is defined by

M5{0(t, x)} lim ess max ch(t, y),
(5,c) yeu(x,$)

where U(x,6) fy : < 81. Analogously the essential lower bound of the

function 0(t, x) at the point x is denoted by mx{cb(t, x)} . For further discussion of

LP spaces, Lebesgue measure and Lebesgue integration see [7].

Definition 1.1.1 (Upper Semicontinuous Set Valued Function) Let H C

IRn, F : H > 2Rm . The function F is called upper semicontinuous at a point

y E H, if for every open set V C IR' such that F(y) C V there exists 6> 0 so that

F(z) C V for z such that lz y1 < 6 and z E H. The function F is called upper

semicontinuous if it is upper semicontinuous at every point y E H.

Definition 1.1.2 (Measurable Set Valued Function) Let the set H c Iftn be

measurable, F : H > 2Rrn . The function F is called measurable if the set { y E

H; F(y) n E 0} is measurable for every closed set E C IR'.

For other equivalent definitions of a measurable set valued function see [3].

1.2. TOPOLOGICAL TRANSVERSALITY

In this section we describe the topological principles that are further used.

For proofs and details see [5] and [II]. Throughout this section we assume that E

is a normed linear space, K C E is a convex set and U C K is an open set in K.
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Definition 1.2.1 Suppose X is a metric space and F : X K is a continuous

map. F is compact if F(X) is contained in a compact subset of K. F is completely

continuous if it maps bounded subsets in X into compact subsets of K.

Definition 1.2.2 A compact map F : cl(U) K is called admissible if it is fixed

point free on a(u). The set of all such maps will be denoted by Kau(cl(U),K).

A map F E Kau(cl(U),K) is essential if every compact map which agrees

with F on aU has a fixed point in U. Otherwise F is inessential.

A homotopy (HA : X K), 0 < A < 1 is said to be compact provided the

map H : X x[0,1] K given by H(x, A) = HA(x) for (x, A) e X>< [0, 1] is compact.

Two maps F,G E Kau(ci(u),K) are homotopic if there is a compact homo-

topy Ht : cl(U) K for which F = Ho, G = H1 and HA is admissible for each

A E [0, 1].

Since every essential map agrees with itself on au it has a fixed point. Now

we formulate the Schauder fixed point theorem. For a detailed discussion see [5].

Theorem 1.2.3 Suppose E is a normed linear space, K C E is a convex set and

F: K K is a compact map. Then F has a fixed point in K.

The following theorem follows from the Schauder fixed point theorem.

Theorem 1.2.4 Let Po E U be fixed. Then the constant map sending each point of

cl(U) to po is essential in Kau(cl(U),K).

Proof. Let G : cl(U) K be a compact map with G = Po on U. Define

H(x) =

{C(s),

for x E cl(U)

Po, for x E K cl(U).
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Since H : K K. is compact we get by the Schauder fixed point theorem that there

exists an xo E K such that H(x0) = xo. From the definition of H and from the fact

that F = G on O(U) it follows that xo E U and xo = H(x0) = G(x0). Thus G has a

fixed point and F is essential.

We now state the Topological Transversality Theorem without a proof. The

proof is given in [5].

Theorem 1.2.5 (Topological Transversality) Let F and G be homotopic maps

in Kau(cl(U),K). Then F is essential if and only if G is essential.

An immediate consequence of the previous two theorems is the following

nonlinear alternative, which will be further used in Chapters 2 and 3.

Theorem 1.2.6 (Nonlinear Alternative) Let N : cl(U) K be a compact map,

Po E U, and HA(u) H(u, A) : cl(U) x [0, 1] K a compact map with H1= N and

Ho the constant map to Po. Then either

N has a fixed point in cl(U); or

there exists a A E (0, 1) such that HA has a fixed point in DU.

Proof. Assume (1) fails so that N is fixed point free in cl(U) and N E

Kau(cl(U), K). The map H: cl(U) x [0, 1] K is compact. If in addition, HA were

in Kau(cl(U), K) for each A E [0,1], then N would be homotopic to a constant map

and hence be essential by Theorems 1.2.4 and 1.2.5. Then N would have a fixed

point, and this is a contradiction. Hence, if (1) fails there must be a A e [0, 1] such

that HA Kau(cl(U), K). Since HA is compact, this means that HA is not fixed

point free on a(U); that is, (2) holds for some A E [0, 1]. A 1 because (1) fails and

A 0 because Po OU.



1.3. FILIF'POV SOLUTIONS

In this section we define Filippov solutions for systems of ordinary differential

equations. For details and further properties see [6].

Many existence results for ordinary differential equations with discontinuities

only in the time variable were proved by using Caratheodory's definition of a solu-

tion. Filippov's definition of a solution is more general than that of Caratheodory

and includes it as a special case. The reader can find a complete theory of Filippov

solutions, analogous to the classical or Caratheodory's theory in [6]. Consider an

initial value or a boundary value problem for the system of differential equations

= f (t, x), x E 1, (1.3.1)

where f is Rn valued and f = (fl,..., fn). We assume f to be measurable, but

make no continuity requirements on the function f. Based on the idea that the

values of f on N c Rn with iu(N) = 0, where ft is a Lebesgue measure, should play

no role, Filippov defined solutions of (1.3.1) as solutions to the differential inclusion

constructed as a convexification of f with respect to x E Rn in the following way:

XV) E n n konv f (t,U(x(t), 6) N),
6>o ttNo

for almost every t, where U(x, 6) = {y : a < S} and konvY is the closed convex

hull of Y. This definition is illustrated in the example at the end of this section.

Definition 1.3.1 Let x be absolutely continuous on the interval [0,1]. If x satisfies

xi(t) E n n konv f (t,U(x(t), 6) N) = { f (t, x)} = k(x)
6>0 itN=0

for almost every t E (0, 1), we say x is a solution of (1.3.1).

5
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In the next definition, which is equivalent to Definition 1.3.1, we use the

notation introduced in Section 1.1 on p.2. The proof of the equivalence of Definition

1.3.1 and the following Definition can be found in [6], p.203.

Definition 1.3.2 Let x be absolutely continuous on the interval [0,1] and let x

11In. If

mi(t, x) = ms{fi(t, x1, .., x} < < /1/1x{fi(t, x1, x.)} Mi(t, x)

for i = ...,n and for almost every t E (0, 1), then x is a solution of (1.3.1).

Remark 1 Let

k(x) = (14 (x), , let'(x))

then

C [mi(t, x), Mi(t, x)]

for almost every t E (0, 1). Or if we define il/ti(x,t) = max{ lmi(t, x)1, 1Mi(t , x)I} ,

then

14(x) C [.A/12(t, x), Mi(t, x)]

for almost every t E (0, 1). Using vector notation and the symbol cl(Y) for the

closure of Y we get

k(x) C cl(U(0,1.A4(x,t)D, (1.3.2)

that we write

Ikt(x)j< 1.A4(x, t)1 (1.3.3)

for almost every t E (0, 1), where ./14(x, t) = (.A41(x, t), M,,(x,t)).



Example Consider the unforced damped oscillator with dry friction, which

is modeled by the equation

u" 2u' + 3u + sgnu' = 0 (1.3.4)

together with the initial conditions

u(0) = uo, u/(0)

Based on physical intuition we would expect that after some time no motion

occurs. We show that Filippov's solution has the same property.

The equation can be written as a system

U Xi,

Xi == X2,

2 = 2x2 3x1 sgnx2,

or using Filippov's definition

E {x2},

{-2x2 3x1 sgnx2}, when x2 0
2 E

{(-3x1 1, 3x1 + 1)}, when x2 = 0.

Because of the damping both xi and x2 exhibit an exponential decay property.

xi 1/3 , x2 0 if we use the formula for the upper half-plane and x1 1/3,

X2 0 if we use the formula for the lower half-plane. Since x2 is alternating at

some finite time t to we get

Ix1(to)) <1/3, x2(to) = 0.

In a sufficiently small neighborhood of to we have



x'2 <0, for x2 > 0,

x4 > 0, for x2 < 0,

x'2 E {(-3x1 1, 3x1 1)}, for x2 = 0.

So for t > to we have x`2 = 0, x2 = 0, a 0 thus x1 is constant and since

xi u, u is constant; i.e. the particle has stopped at that position at the time

t = to 5.9.

200

150 -

100 -

50 -

0-

-50 -

-100-

-150-

-200 -

-2500 1 2 3 4 5
time t

Figure 1. Graph of a solution of the unforced dry friction equation (1.3.3)

= 0.09
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2. FOURTH ORDER BOUNDARY VALUE PROBLEMS AND
NONLINEAR BEAMS

2.1. INTRODUCTION

The study of boundary value problems for ordinary differential equations

has become very popular in the last few years. However, not too many results are

available for fourth order and higher order problems, which is surprising in contrast

with some of their important applications. An example of a phenomenon governed

by a fourth order partial differential equation is the small transverse displacement

of an elastic beam, see [15] p.195, where the following linear equation is derived:

El
utt

A
ux,xx = kut pg f (x ,t),

t is the time variable, x is the longitudinal variable; E is Young's modulus; I is the

moment of inertia; A is the cross section area; p is the density; g is the acceleration

due to gravity; k is the damping coefficient and f is an external force.

In the remainder of this chapter we deal with the static (time independent

case), we use t as a longitudinal variable rather than as a time variable and we

"reserve" x for other purposes. In the static case the time derivatives vanish, and

assuming the length of the beam is one, we get an ordinary differential equation,

which can be written in the general nonlinear form

u(iv) = f (t, u,u1, u", um), 0 <t <1, (2.1.1)

where now t is the longitudinal variable.

This equation together with various boundary conditions is studied in this

chapter. We assume f E C([0, 1] x R4) and we consider continuous (classical)

9
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solutions, i.e. u E C4([0,1]) such that (2.1.1) is satisfied for all t E [0, 1]. All the

results given in this paper can be generalized for Caratheodory solutions, using the

same technique as in [27] and [23].

The three typical end conditions for the beam are

u(a) = u'(a) = 0, end clamped at a,

u(a) = uu(a) = 0, end simply supported at a,

u(a) = u'''(a) = 0, end free at a,

where a 0 or a = 1.

The boundary conditions studied in this chapter are the physically relevant

pairs of these end conditions, CC, CF, SS and CS, where C, S and F refer to a

clamped, a simply supported and a free end, respectively. For example by CF we

mean

u(0) =- u'(0) = u"(1) = 0'M = 0.

By BC we mean any of these boundary conditions. The relation u E BC means that

u satisfies BC. A beam with one end clamped and one end free is called a cantilever

beam.

In Section 2.3 we prove an existence theorem under no sign or monotonicity

restrictions and under the requirement, that there exists a bounded set, where f is

bounded and where the bound of f depends linearly on the bound of the set. This

theorem applies with some modifications to all of our boundary conditions and for

BC = CF it can be used to establish the existence of nonpositive solutions. Another

theorem which applies to all of the boundary conditions is proved under a Bernstein -

Nagumo like growth condition on f in um, with some additional growth requirements

on the lower derivatives. The additional requirements can be replaced by certain
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sign conditions in the case of both ends simply supported. Some modifications for

the various boundary conditions are required in order to obtain the sharpest possible

results. This section is concluded by two theorems with no growth restrictions on f,

unfortunately, these are applicable only to special boundary conditions. One applies

to BC =CF, and the second one, which is an extension of the results of Rodriguez

and Tineo [26] for the second order Dirichlet problem, applies to BC = SS. This

theorem can be used to establish the existence of nonpositive solutions.

Earlier work [21] establishes existence results for (2.1.1), BC under a Bern-

stein - Nagumo like growth condition on f in u"' and under a monotonicity condition.

Further results are obtained by replacing the Bernstein-Nagumo like conditions by

essentially different quadratic growth rate and integral inequality restrictions.

Existence results for (2.1.1), BC appear in [14] when f splits in a special way

and grows sublinearly in u, u', u", u".

In Section 2.4 we obtain a uniqueness result for BC = CF under a Lipschitz

condition on f, with a restriction on the Lipschitz constants. These restrictions can

be weakened for each of the other boundary conditions. In the case of f depending

only on x and u we get a uniqueness theorem under the assumption that f is non-

increasing in u. When BC = SS and f depends only on t and u" we can assume

that f is nondecreasing in u". The last uniqueness theorem is a generalization of this

result in the sense that it allows f to depend on

It is very easy to verify the assumptions of each theorem for a given right-

hand side of the equation. This is illustrated in the examples.



2.2. THE NONLINEAR ALTERNATIVE FOR BEAMS

First we prove a general existence theorem for nonlinear beams. For details

and related results see [13], [14], [16], [21] and [10]. This theorem will be the main

tool to prove existence results for (2.1.1), BC.

Theorem 2.2.1 (The Nonlinear Alternative for Beams) Assume

D C C4[0,1] is open and bounded, 0 E D, g(t,x,y,z,w, A) e C°([0,1] x IR4 x [0,1])

and g(t,x,y, z, w, 1) = f(t, x, y, z, w). Then either

(I) (2.1.1), BC has a solution u E cl(D) (closure of D)

or

(2) there exists a A E (0,1), such that

u(iv) = Ag(t,u,u`,u",um, A),

BC has a solution u), E a(D) (boundary of D).

Proof. We define DBc = fu ED:ue BC}

: C3[0, 1] C°[0, 1], 0 < A < 1,

by

(ATAu)(t) = Ay(t, u(t), u/(t), u"(t), um(t), A).

NA is a continuous map. Let j : C4Bc q[0,1], where C[0, 1] fu : u E

C3[0,1]andu(0) = 0}, = fu E C4[0,1] : u E BC}, be the natural embed-

ding defined by ju = u. From Arzela-Ascoli Theorem it follows that the map j is

completely continuous. Further we define

L :C;i3c C0[0,1],

12

(2.2.1)



by

Lu(t) = u( 'At).

It is easy to check by a direct calculation that L is invertible. Then

HA L 1NAj

defines a homotopy HA : Cl(DBc) --> CL. It is clear that the fixed points of HA are

precisely the solutions of 2.2.1, BC. By our assumption HA is fixed point free on

o(DBc) for A E (0,1). The complete continuity of j, the invertibility of L and the

continuity of NA imply that the homotopy HA is compact. Since 0 E D and Ho is

the zero map, the theorem now follows from Theorem 1.2.6 where we take po = 0.

2.3. EXISTENCE RESULTS

Remark All of the boundary conditions CC, CF, SS, CS imply that u , u', u", u"'

have at least one zero point in [0,1].

Theorem 2.3.1 Let there exist m,M e R, m, M > 0, such that

m f(t,x,y,z,w)< M (2.3.1)

for

M < w < m, m < z < M, M < y < m, M < x < m. (2.3.2)

Then (p.1.1), CF has a solution u satisfying

M < < m, < u" < M, < < m, M < u < m. (2.3.3)

13



Proof. We apply the nonlinear alternative to the domain

D = fu E C4([0,1]) : < u < m, M < < m, m < u" < M,

M < u'll < m} and to the family of equations

u(iv) = f (t,u,u' ,u" , um), CF.

Then x E OD if

M < < m, m < x" < M, M< x"< < m, for t E [0,1] and

max x(t) = m or min x(t) = M on [0, 1],

M < x < m, m x" < M, M < x" < m, for t E [0, 1] and

max x'(t) = m or min xl(t) = M on [0,1],

M < x < m, M < < m, M < x'" < m, for t E [0, 1] and

max xll(t) = M or min x"(t) = m on [0,1],

M < x < m, M < < m, m < x" < M, for t E [0,1] and

max x'll(t) m or min xm(t) = M on [0, 1].

From (2.3.1) it follows that any solution u cl(D) of

14

Or

Or

or



u(iv) = Ag(t,u,u',u",u", A), CF

for A E (0, 1) satisfies

(iv)< <M.

Further CF implies -M < < m, -m < 4 < M, -M < < m and -Al <

to, < m. Thus there is no solution 'to, on the boundary OD for A E (0,1), the

nonlinear alternative applies and this proves the theorem.

Example The following functions satisfy the hypotheses of Theorem 2.3.1

1 1 1
f = -z cos y -w sin x cos y sin z sin w -hr cos w,

3 3 3

with m = M, where M> 0, and M is arbitrary.

14 1f = -w - cos x,
2 2

with m = M = 1.

1

f =w2-1
-2

cos x,
2

with m M = 1.

Analogous theorems for the other boundary conditions can be stated. Depending on

the locations of the zero points of the solution and its derivatives, conditions (2.3.2)

and (2.3.3) need to be modified. The following lemma will be further used in the

cases when the solution or some of its derivatives vanish at 0 and 1.

Lemma 2.3.2 Let x E C1[0,1], x(0) = x(1) = 0 and -m < x/(t) < M, where

m, M > O. Then

<L, for t E [0, 1],

where L = m,M(m M)-1. If m = M, then L M12.

lx(t)1

15



it follows that

mt < x(t) < Mt, M(1 t) > x(t) > m(1

for t E [0, I]. By a simple manipulation with (2.3.4) we get

L < x(t) <L.

Since x'(t) is continuous, two of the inequalities (2.3.4) are sharp, we get

L < x(t) <L

and this completes the proof.

Remark For BC = SS, conditions (2.3.2) can be replaced by

K K K KK < w < K, --K < z < y < - -
-4

x <
2 2

where K = max{m,M} and assertions (2.3.3) can be replaced similarly.

For BC = CS we have

K < w < K, K < z < K, K < y < K < x <
2 '

and for BC = CC we have

K KK <w <K, K < z < K < y < x <_ _
2 2 4 4

Proof. From the equalities

x(t) = fo x/(s)ds ,

x(t) = It x/(s)ds

16

(2.3.4)

In both cases assertions (2.3.3) can be replaced by the assertions corresponding to

the replacements of (2.3.2).



The examples given for CF also apply to SS, CS and CC.

Now we show that in Theorem 2.3.1 we can take m = 0. This will allow us to

establish the existence of nonpositive solutions for the case BC =CF.

Lemma 2.3.3 Let there exist c,M E R, and e, M > 0, such that

m < f(t,x,y,z,w)< M

for

M < w < m, m < z < M, < y <m, M < x <m,

where 0 < m < e. Then (2.1.1), CF has a solution u satisfying

M < <0, 0 <u" < M, M <ui <0, M < u <O.

Proof. The proof follows immediately from Theorem 2.3.1.

Theorem 2.3.4 Suppose there exist M E R, M > 0, such that

0< f(t, x, y,z, w) < M

for

M <w < 0, 0 < z < M, M < y <0, M < x < O.

Then (2.1.1), CF has a solution u satisfying

M <um < 0, 0 < u" < M, M <tti < 0, M <u< O.

Proof. For each n E IN there exists (5,2 E R, 0 < 6r, < M such that

< 0< f(t,x,y,z,w)-E < M +

for

M <w < 8,, < z < M, M < y < M < x < Sn

17



From Lemma 2.3.3 it follows that

1
zd,!1)) = f (t,

n,
CF

has a solution un and

M < < 07 0 < u" < M + M < < 0 M 2 < un < 0,n n

for all n E

The sequences (uri)nc°-1. (u,c)1 and (un"),"=1 are uniformly bounded and

equicontinuous on [0, 1]. The sequence (4')1 is uniformly bounded on [0,1]. From

(2.3.5) we get that (u)7,`11 is uniformly bounded, so (u171;),,,°°_, is equicontinuous.

Without loss of generality we may assume by using Arzela - Ascoli lemma that all

four sequences are uniformly convergent on [0,1]. From (2.3.5) it follows that the

function

u(t) = lim u(t) for t E [0,1]n>00

is a solution of (2.1.1), CF and that it satisfies the assertions of the theorem.

Lemma 2.3.5 Suppose p, q, vi, r2 E R, ri,r2 > 0, ri + T2 > 0, p, q > 1, lp +

g E C([0, 1] x R2), h E Lq(ri, r2), w E C([0, Do)) is a positive function and

fo. ds

Jo
= OC.

ig)(S)

Then there exists an r* E (1, oo) such that for any function u E C4([0, 1]) satisfying

BC,

u"( t) <1'2, (2.3.6)

and

101 < w(luml)gliP(t,UlUt)h(ll")(1 111"11)11q (2.3.7)

18

(2.3.5)



for lum(t)I> 1, the estimate

holds on [0, 1].

Proof. The inequalities (2.3.6) and BC imply, that u < max{ri, r2} and

Iu'l max{ri, r2}. We define

go = sup{ Ig(t, u, u') : u satisfies BC and (2.3.6), }

ko 2 11 gol/P .,Lp(0,1)11 h

and

ds
1-2(x) = fo wasp, for x E lR.

Then it follows that, go(t) E L1(0,1), SI is an odd function, 1-2(IFt) = IR, and there

exists an inverse mapping 124. Let u e C4([0,1]) satisfy (2.3.6), (2.3.7) and BC,

then there exists t3 E [0, 1] so that uLi(t3) = 0.

Suppose t3 1 and that there exists t9 G (t3, 1] such that

jum(tg)1 > , (2.3.9)

where

r* = 5-2-1(Q(1) + ko).

Let [al, C [t3, 1] be the maximal interval such that 101(01 > 1 for t E [al, b1] and

19 E [ai, b1]. Let t7, E b1] be such that lum(t,)! = = max {e(t) : a1< t, <

Then by (2.3.7) and the Holder inequality

I:t w(u(iv(tt))0dt < gliP(t,n,ut)h(u")(1 Itt"'Dihdt

19

lum(t)1 < r*, (2.3.8)



1/p< ko = 2 II go 11,,,,(O4)11 h ko-

In the case e(t) > 1 on [cti,42] we get fl(pi) 7(1) < ho, Pi< r* and this is a

contradiction. In the case u"(1) < 1 we get Q(pi) Q(-1) < ho and further

pi > 9-1(k0 9(-1)) = 9-1(k0 9(1)) = This is a contradiction.

Similarly using the fact that

tm _u(iv)(t)Idt < ko,
w du"' (OD

we can get a contradiction for t3 0, tfl E [0, t3) and this completes the proof.

Theorem 2.3.6 Suppose g, w, h, r1, r2, p,q and r* are the same as in Lemma 2.3.5

and

!fit, x, y, z, w)I < w(Iw)glIP(t, x, y)h(z)(1 + w!)

for lud > 1, < z < 7'2) ly1 < max{ri, r2}, Ix! < max{ri, r2}. Further suppose

that

r* < r21- (2.3.11)

Then (2.1.1), BC has a solution u such that lu(i)! < r* for i = 0,1,2,3.

Proof. We apply the nonlinear alternative to the domain D =- {x E

C4( [0, 1]) : I < r* +1, < x" < r2, < max{ri, r2}, Ix! < max{ri, r2}}

and to the family of equations

u(iv) = Af(t,u, u', u", u"i), BC.

From Lemma 2.3.5 it follows that jun < r* for A E (0,1). From BC and (2.3.11) it

follows that ri < u" < r2) 1111 < max{ri, r2}, < max{ri, r2} for A E (0,1).

Thus the nonlinear alternative applies.

20
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Remark We treated all the boundary conditions together and so we used those

inequalities that apply to all of these boundary conditions. However, if the solution

or the derivative vanishes at both endpoints, we can use Lemma 2.3.2 to get better

inequalities.

Remark The growth condition (2.3.10) can be replaced by a one sided growth

condition in the case BC = CF, because the number t3 from the proof of Lemma

2.3.5 can be equal to 1. Lemma 2.3.7 shows that for BC SS, the condition (2.3.11)

can be replaced by (2.3.12) to obtain bounds on u", a' and u.

Lemma 2.3.7 Let u be a solution of

u(iv) = A f (t, u, u', u", um), SS,

for A E (0, 1). Let r1, r2 be the constants from Lemma 2.3.5 Further let u satisfy

(2.3.6),

f(t,x, y, r1, 0) <0 and f (t, x, y, 7-2, 0) > 0, (2.3.12)

for lyl < max{ri, r2}, Ix' < max{ri, 7-2}0, then

< < r2.

Proof. Let t1 E (0, 1) and u"(ti) = r2. Then um (ti) = 0, u()(yi) < 0 and

this is a contradiction. Similarly we get a contradiction for u(ti) = r1 and this

proves the lemma.

Example The hypotheses of Theorem 2.3.6 are satisfied for

f = id((zw2 coo") + 100),
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with r1 = 2 and r2 = 2. Since r* > 1 we must take min{lril, Ir21} > 1. Further

we have

Ifl (z mio )(1 1W1)2'

Now ui awl) = 1 + wi, g 1, h = *(z + 1+0), p = , q = 1,

ko
1f2 1

(Z )dz = 0.404 ,
10f_2 100

fx ds

Jo 1+ 131

ln(lx! + 1)

C2-1(y) 1 for x > 0 and 12(1) ln 2.

So

r* Cr1(in2 + 0.404) eln2+0.404 1 = 1.996 <2 = min{rtl, 1r21}

The proof of Theorem 2.3.6 can be modified by defining

r* = SI-1(52(a) + ko),

where a > 0 , so r* < a and we get no restrictions on the minfiril, r211. For a

special choice of boundary conditions we can use a sharper version of Theorem 2.3.6

as described in the first remark following Theorem 2.3.6.

Now we prove an existence result with no growth restrictions for BC = CF.

Lemma 2.3.8 Suppose g c C({), 1] x 1R4) and that there exist c1, C2 G IR, el, c2 > 0

such that

g(t7x,y,z,c1) <0 and g(t,x,y,z,c2) > 0 (2.3.13)

Cl(x) =

and



for t E [0, (x, y, z) E [c2, c113. Let u be a solution of

u(iv) g(t, u, u', u", um), CF (2.3.14)

such that

c1 < u" < c2, < u < c1 for i = 0, 1, 2. (2.3.15)

Then

c1 < u" < c2, c2 <u <c1 for i = 0,1,2. (2.3.16)

Proof. Let to E (0, 1) and u"'(to) = c2, then u("))(to) = 0 but from (2.3.13) it

follows that u(iv)(to) > 0 and this is a contradiction. If um(0) = c2, then u()(0) < 0

and from (2.3.13) we get a contradiction, so um < c2 on [0,1]. Similarly we can

prove that 0' > c1 on [0, 1]. The sharp inequalities for the lower derivatives and for

the solution follow from CF.

Lemma 2.3.9 Let c1,c2 E lit, c1,c2 > 0 and

f(t,x,y,z,--c1) <0, f(t,x,y,z,c2)> 0 (2.3.17)

for t E [0, 1], (x, y, z) E [c2, cir . Then the function

g(t,x,y,z,w, A) = A[f(t,x,y,z,w)+ (1 A)tv]

satisfies (2.3.13) for A E (0, t E [0,1], (x, y, z) E fc2, c1]3 . For A = 1 we have

g(t,x,y,z,w, 1) = f(t,x,y,z,w).

23

Proof. The lemma follows immediately from the definition of the function g.
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Theorem 2.3.10 Suppose f satisfies (2.3.17), then (2.1.1), CF has a solution that

satisfies (2.3.15).

Proof. We apply the nonlinear alternative to the domain D = {x E
C4([0,1]) : c1 < x" < C2, c2 < x(i) < c1 for i = 0, 1, 2} and the family of

equations

u(") A[f(t,x,y,z,w,)+ (1 A)w], CF. (2.3.18)

From Lemmas 2.3.8 and 2.3.9 it follows, that there are no solutions of (2.3.18) on

the boundary of D for A E (0,1).

Example The hypotheses of Theorem 2.3.10 are satisfied for

f a(t)[xkylzm] 2n+1ew2 + 1,

where a(t) E C([0,1]) is and k,l,m,n are nonnegative integers.

Now we prove an existence result with no growth restrictions for BC = SS.

Lemma 2.3.11 Suppose g E C([0,1[ x IR4) and that there exist 6, C1, c2 E

e, c2 > 0 such that

g(t,x,y,z, 0) < 0 (2.3.19)

for t E [0,1], x E (L/2,L/2), y E (L, L) and z E [e, 0], where L c1c2(c1

c2)-1. Further let u be a solution of

u(iy) = g(t, u, , u", a"°), SS, (2.3.20)

such that u"(t) > e, c1 < e(t) <c2 for t E [0,1]. Then u"(t) > 0 for t E (0,1)

and um(1) < 0 < um(0).
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Proof. Let u be as above and u"(to) = 0, where to E [0,1). If um(to) = 0, then

u(iv)(to) < 0. Thus, under the assumption that um(to) < 0 there exists t1 E (to, 1)

such that u"(ti) <0, minfu"(t) : t E [to, 1)1 u"(ti) and um(ti) = 0. Further from

(2.3.19) we get u(ti) <0 and this is a contradiction, which proves that um (to) > 0

if to E [0,1) and u"(to) = 0. Since u"(0) > 0, there exists t2 E (0, 1] such that

u"(t2) = 0, and u"(t) > 0 for t E (0, t2). By the part of the proof above we have

t2 = 1. If um(1) = 0, then by (2.3.19) u'v(1) < 0. This contradicts the fact that

u"(t) > 0 for t E (0, 1) and proves the lemma.

Lemma 2.3.12 Suppose g E C([0,1]x IR4) and that there exist c1, e2 E IR, c1, c2 > 0

such that

g(t, x, y, z, c1) > 0, g(t, x, y, z, c2) > 0 (2.3.21)

for t E [0, 1], x E (L/2, L/2), y E (L, L), z E [0, L), where L c1c2(c1 e2)-1.

Further let u be a solution of (2.3.20) u"(t) > 0 for t E (0, 1), um(1) < 0 < 01(0)

and < um(t) < c2 for t E [0,1]. Then

c1 < um( t) < c2

for t E [0,1].

Proof. Suppose that um(ti) = c2, where t1 E [0, 1], then t1 < 1 and from

(2.3.19) it follows that u(iv)(ti) > 0. This is a contradiction, so we get u"(t) < e2

for t E [0,1]. Using the same argument we get um(t) > ci for t E [0, 1] and this

completes the proof of the lemma.

Theorem 2.3.13 Let there exist c1,c2 E IR, c1,c2 > 0 such that

f(t,x,y,z,c1) > 0, f(t, x, y, z, c2) > 0 (2.3.22)
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for t E [0,1], x E (L12, LI2), y E (L, L), z E [0, L), where L cic2(ci c2)-1.

Further let

f(t,x,y, 0,0) < 0 (2.3.23)

for t E [0,1], x E (L/2, L/2) and y E (L, L). Then (2.1.1), SS has a solution u

satisfying u E (L/2,0], u' E (L,L), u" E [0, L) and um E c2].

Proof. By the Tietze-Urysohn lemma there exists a continuous function

h : R2 [-1, 1] such that h(0, 0) = 1 and h(z,ci) = h(z,c2) = 1 for z E [0, L].

We define

gn(t,x,y,z,w) f(t,x, y, z,w)+ h(z,w)ln, for n E N.

Then

x,y,0,0) < 1/n <0

for t E [0, 1], x E (L12, LI2), y E n E IN and

yn(t,x,y,z,c1) > 1/n > 0,

gn(t, x, y, c2) > 1/n > 0

for t E [0, x E (L12, LI2), y E ( L, L), z E [0, L), n 6 IN. We define

Dn = { x E C4([0,1]) : LI2 <x < L12, L < < L, < < L, < xi" < c21,

where 1 > en > 0 is such that

gn(t, x, y, z, 0) <0

for t E [0,1], x E (L12, LI2), y E (L, and z E [, 0]. From Lemma 2.3.11

and Lemma 2.3.12 it follows that the boundary value problem



Ov) = Agn, (t , n, , , um) , SS

has no solutions on the boundary of D7, for A > 0. By the nonlinear alternative the

boundary value problem

u(iv) = g n(t , u , , , um), SS (2.3.24)

has a solution un E cl(Un) (closure of Un). The sequences (un)77_1 , (u'n)77 and

(4)77,1 are uniformly bounded and equicontinuous on [0, 1]. The sequence (ttm"')77_1

is uniformly bounded on [0,1]. From (2.3.24) we get that (Wm)77_1 is uniformly

bounded, so (u'n")1 is equicontinuous. Without loss of generality we may assume

by using Arzela-Ascoli theorem that all four sequences are uniformly convergent on

[0,1]. From (2.3.24) and the definition of the function gn it follows that the function

u(t) = lim u(t) for t E [0, 1]

is a solution of (2.1.1), SS and that it satisfies the assertions of the theorem.

Example The hypotheses of Theorem 2.3.13 are satisfied for

f = a(t)[xk yi el] w2n ew2 1,

where a(t) E C([0, 1]) and are nonnegative integers or

f = t x5y3 z4 w14 1.

2.4. UNIQUENESS RESULTS

27

First we recall two lemmas. The proofs of these lemmas can be found in [2]

and [19]. Lemma 2.4.2 is often referred to as Wirtinger's Inequality.
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Lemma 2.4.1 Let u E AC(0,1), u' E L2(0,1) and u(to) = 0, where 0 < to < 1.

Then

u2(t)dt < (2/7r)2 (u' (t))2 dt.

Lemma 2.4.2 Let u E AC(0,1), u' E L2(0,1) and u(0) = u(1) = 0, where 0 < to <

1. Then

1 1

u2 (t)dt < (1/702f0 (u/(t))2dt.

Theorem 2.4.3 Suppose there exist positive constants a, I 3 , 7 and 6 such that

Further, suppose

if (t, Z17 f (t, x2, y2, Z21 W2)1 < x x21 + MY) Y21 + 71z1 z21 + 61W1 W21

(2.4.2)

for any t E [0, 1], xi, yi, z, w E IR, i = 1, 2. Then (2.1.1), CF has at most one

fo

16a 813 4-y 28

7r4
+ + 2 <7r 7T 7r

(2.4.1)

solution.

Proof. Let u1 and u2 be solutions of (2.1.1), CF. If v = u2, then

v(0) = v'(0) = v"(1) = v"(1) = 0. (2.4.3)

We define

1

P ( (v(vv) (t))2 dt)1 I 2

From Lemma 2.4.1 we get the following inequalities:

(11
(vm(t))2dt)112 < 2p/7r,



(io (v"(t))2dt)112 < 4p/7

( (v/(t))2dt)112 < 8p/73,
Jo

1

( (v (t))2dt)'/ 2 5 16p/74.

From (2.4.2) it follows that

16a 83 47 26pp( +3+2+ )

From (2.4.1) and (2.4.3) we get p 0, v(av) = 0, v"' 0, v" = 0, v' = 0, v = 0. and

this proves the uniqueness.

Remark Theorem 2.4.3 holds for any of the other three boundary conditions. Con-

dition (2.4.1) can be weakened by using Lemma 2.4.2 instead of Lemma 2.4.1, when

the solution or some of its derivatives vanish at both endpoints. So for BC = SS

29

we have

If BC =CC, then

and for BC = CS we have

4a 4/3 27 26
+ + + < 1.

4a 4/3 47 26
+ 2 < 1

71" 71- 71

8a 8,3 47 26
+ 2 + <1.

71 71 71

Example The hypotheses of Theorem 2.4.3 are satisfied for

f 50t2 + a sin x + 13 cos y + z +



where

30

For the other boundary conditions we can apply the previous remark and the in-

equality can be weakened.

Theorem 2.4.4 Suppose f E C([0,1] x R2) and

712

(f(t, xl, Yi) f (t, x2, Y2))(X1 x2) 5_ (yi y2)2 (2.4.4)

for any t E [0,1], xi, yi E Ift, i = 1,2. Then the boundary value problem

u(iv) = f(t,u,u/), BC (2.4.5)

has at most one solution.

Proof. Let u1 and u2 be solutions to (2.4.5). If v = u2, then v satisfies

BC and

veiv) f(i, u1, 74) - f (t, u21 U12) = 0.

Multiplication of the above equation by v, integration from 0 to 1 and Lemma 2.4.1

yield:

0 = v(")vdt (f(t,u1,14) f(t, u2,u12))(ui u2)dt

2 1

/01 V(iv)Vdt (e 1)2dt= dt -71
o

(e)2di
4 (-.)

72fl
(-0)11)2 + (2,1)2)dt <0.

4

Using Fourier series (see [2] and [19]), we get

16a 80 47
2

26
1.

74



= A sin(lr(t + to)),
2

where to E [0,1] and v'(to) = 0. BC implies that vi(t) = 0 and v(t) = 0 for t E [0,1]

and this proves the theorem.

Example Assume f(t,x,y) satisfies the hypotheses of the mean value theorem. For

=-- y2 condition (2.4.4) becomes

(f(t, x1, y1) f (t, Yi))(xi x2) _5_

and this is true if fx(t,x, y) < 0 for any (t, x, y) E [0,1] x R2. By the mean value

theorem for yi y2 condition (2.4.4) is equivalent to

(x1 x2)2 - X2 72
+ f5(t,x0,Yo) < 0,xo, yo)

(Yi Y2)2 Yi Y2 4

where xo E x2], Yo E [Yi, y2]. This is satisfied if fx(t,x, y) < 0 and

(fy(t,x,y))2 712f,(t,x, y) < 0,

for any (t,x,y) E [0,1] x R2. For f = x + sin y we have (cos y)2 72(-1) 5_ 0,

thus by the above argument the function satisfies the hypotheses of Theorem 2.4.4.

Theorem 2.4.5 Suppose f E C([0, 1] x R) and

(f(t, zi) f(t, z2))(z1 z2) >. 0 (2.4.6)

for any t E E lit, i 1,2. Then the boundary value problem

u(") f(t,a"), SS (2.4.7)

31

has at most one solution.



Proof. Let ui and u2 be solutions to (2.4.7). If v = u2, then v satisfies

SS and

-v(iv) + f f (t,u) = 0.

Multiplying the above equation by v" and integrating from 0 to 1, we get

1 1

0 = f vav)v"dt ( f (t , f (t , un)(u'l' undt
cl

> v(")v"dt = (vm)2 dt > 0.

Thus, v"1 = 0, v" = 0, v' = 0, v = 0 and this proves the theorem.

Example The hypotheses of Theorem 2.4.5 are satisfied for

f -= t2 .arn zn, where m and n are odd, positive integers.

Remark In Theorem 2.4.4 we could let f depend formally on all the variables, but

nothing would be gained, since condition (2.4.4) requires f to depend only on t, x

and y. Similarly for Theorem 2.4.5 condition (2.4.6) requires f to depend only on t

and z.

Remark The following theorem shows that condition (2.4.6) in Theorem 2.4.5 can

be weakened, but we obtain a weaker result.

Theorem 2.4.6 Suppose f E C([0,1] x IR) and

(f (t, zi) f (t, z2))(zi .z2) > )2,72 (2.4.8)

32

for any t E [0,1], zi E R, i = 1,2. Then any two solutions of the boundary value

problem (2.4.7) differ by A sin 7X, where A E R.
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Proof Let ui and u2 be solutions of (2.4.7). If v = ui u2, then similarly as

in the proofs of Theorem 2.4.4 and Theorem 2.4.5 we obtain

fo ((vm)2 72(v")2)dt = 0.

Using Fourier series and the Parseval equality, we get v = A sin 71X (see [2] and [19])

and this proves the theorem.

Example The hypotheses of Theorem 2.4.6 are satisfied for

f = t72 cos z.

Theorem 2.4.7 Suppose h E C[0,1] and

f(t, z1,wi) f(t, z2, w2) + h(t)Iwi w21> 0 (2.4.9)

for any t E [0, I], zi, w E IR, i 1,2 and z1 > z2. Then the boundary value problem

u(") f(, , u" , ti"'), SS (2.4.10)

has at most one solution.

Proof. Let u1 and u2 be solutions to (2.4.10) and set v 7/1 u2. Then v

satisfies SS. We assume v"(t)> 0 on (a, i3) c (0, I). Further from (2.4.9) we get

v(") h(t) Ivn > 0

and

((expq h(s)sgn(vm(s))ds)vili(t))1 > 0. (2.4.11)

Suppose there existed a to e (0, 1) such that v"(to > 0 and let (a, ,3) be the maximal

interval containing to on which v"(t) > 0. Then v"(ce) v"(,3) 0, v"'(a) > 0,
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v"V) < 0 and there exists a t1 E (a, 0) such that vm(ti) = 0. By integrating

(2.4.11) from a to t1 and from t1 to 0, we get vm(a) > 0, v"(,3) > 0 and this is a

contradiction. So v"(t) < 0 on [0,1].

If v"(t) <0 on (a, /(3) c (0,1), then v"(t) > 0 on (a,13) c (0,1) and the

same argument as above implies v"(t) < 0 on [0,1]. Thus, v"(t) = 0 on [0, 1]. SS

implies that v(t) = 0 on [0,1] and this completes the proof of the theorem.

Example The hypotheses of Theorem 2.4.7 are satisfied for

f = t2 zn tw, where m and n are odd, positive integers.

Remark In Theorem 2.4.7 we could let f depend formally on all the variables, but

just like in the case of Theorems 2.4.4, 2.4.5 and 2.4.6, nothing would be gained.
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3. BOUNDARY VALUE PROBLEMS WITH DISCONTINUITIES IN
THE SPATIAL VARIABLE AND DRY FRICTION

3.1. INTRODUCTION

The results presented in this chapter were motivated by the dry friction

equation, in particular by the question of the existence of periodic solutions for

this equation. The dry friction phenomenon, which is also known as the stick-slip

phenomenon, occurs very frequently in many technical problems. First we prove an

existence result for the periodic boundary value problem (PBVP):

f (t, x), x E (3.1.1)

x(0) = x(1) (3.1.2)

where f fn), x = (x1, ..., xri). Further we prove an existence theorem for

the second order scalar periodic boundary value problem:

u" = f (t, u, u`), eIt (3.1.3)

u(0) = u(l), u1(0) = u/(1). (3.1.4)

Applications to the dry friction equation are also presented. In addition we also

prove an existence theorem for the second order Dirichlet problem.

In this chapter we assume f to be measurable, but make no continuity re-

quirements on the function f. We use Filippov's definition of a solution, which is

defined in Chapter I, Section 1.3. For further reference and details see [6].
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A standard approach to boundary value problems with discontinuities in the

spatial variable is to solve the problem on each side of the discontinuity separately

and then try to match these solutions. A totally different approach is used here.

Using Filippov's theory, we reformulate the BVP's as differential inclusions and then

apply the existence theorems proved in Section 3.3 and in [12] to obtain existence

results for the PBVP and for the Dirichlet Problem,

3.2. THE NONLINEAR ALTERNATIVES FOR BOUNDARY VALUE
PROBLEMS FOR DIFFERENTIAL INCLUSIONS

In this section we state two versions of the nonlinear alternative for differen-

tial inclusions. The proof is given in [12] and it is based on a set-valued analogue

of a classical result of Leray and Schauder, which had been proved in [5]. First we

introduce some notation and give the necessary definitions.

Let k > 0 and [k] = {0,1, . . . , k}. Given a bounded set A C (1r,11), let

1,A1 = : a E Al. Let C1)' fu E Ck[0, 1] : u(0) = 01. For each i E [k 1]

let gi : Ck_1([0, 1], Ir) Er be a continuous linear form such that there exists

Ck-i ({0, 1], R) R, and g(0(x)v) = :q(0(x))v for each real-valued function

Ck-1 and v E Rn. Define

B = {u E Ck-1 : gi(u) = 0, i E [k 1])} , and = fu E C : u E B} .

We define a linear operator A : C by Ay = y(k). If X is a subset of a Banach

space E, then Kv(X) is the family of all compact, convex, nonempty subsets of X.

Definition 3.2.1 Let p > 1. A set valued function F : [0,1] x lRkn Kv(Rn) ;

an L P-Caratheodory function provided:

(a) the map x F(t, x) is upper semicontinuous for all t E [0,1];
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the map t F(t,x) is measurable for all x c Rkn

for each r > 0 there exists lir E L[0,1] such that lx1 < r

1F(t,x)15_ hr(t) for almost alit E [0, 1].

Theorem 3.2.2 (Nonlinear alternative for regular problems) Consider an

LP-Caratheodory function F and the family of problems

(1,-1)1, x c B,x(k) c A{Fet,x,x,,..,x

for )E [0, 1] .

(A) Let U be a bounded, open set in gr with 0 E U. Then either

(3.2.1)

x E x E B, (3.2.2)

has a solution in cl(U), the closure of LT, or (3.2.1) has a solution on OU, the

boundary of U, for some A E (0, 1) .

(B) Suppose there exists a constant M such that for any A E (0,1) and any solution

x to (3.2.1) we have lxik_i < M. Then (3.2.2) has a solution.

Proof. See [12].

Theorem 3.2.3 (Nonlinear alternative for problems in resonance)

Consider an LP-Caratheodory function F and the family of problems

x(k) ax E A[F(t, x, x',. ,x(k-1)) ax], x E B, (3.2.3)

for A E [0, 1], where a 0 is fixed and is not an eigenvalue of A.

Let U be a bounded, open set in Cr with 0 E U. Then either (3.2.2) has a

solution in cl(U), the closure of U, or (3.2.3) has a solution on OU, the boundary

of U, for some A E (0,1).

Suppose there exists a constant M such that for any A E (0,1) and any solution

x to (3.2.3) we have ixik_i < M. Then (3.2.2) has a solution.



Proof. See [12].

3.3. EXISTENCE THEOREMS FOR BOUNDARY VALUE PROB-
LEMS FOR DIFFERENTIAL INCLUSIONS

In this section we recall two theorems on differential inclusions from [12]

and we prove an existence theorem for periodic solutions to a second order scalar

differential inclusion. The Nonlinear Alternatives from Section 3.2 are used to prove

these theorems.

Theorem 3.3.1 (Periodic problem for inclusions) Let F(t, x) : [0, x RTh

Kv(lRn) be LP-Caratheodory and consider the problem

x' E F (t , x), x(0) = x(1), (3.3.1)

where F satisfies

x F(t,x)< 0* for all Ixt> r, for some fixed r> 0. (3.3.2)

Then (3.3.1) has a solution.

Proof. See [12].

Theorem 3.3.2 (Periodic problem for second order scalar inclusions) Let

F(t,x): [0,1] X R2 KV (IR) be an LP-Caratheodory function. Further let

1F(t, y, z) ay zg(y)1<C, (3.3.3)

for all y, z E IR, where ei,C E lR, C> 0, 0 < c < 72 and g E C°(1R). Then

n" E F(t,u,u'), u(0) = u(1), u'(0) = 1/(1), (3.3.4)

has at least one solution.

38
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Proof. The proof is an application of the nonlinear alternative for problems

in resonance, Theorem 3.2.3. We need to establish a priori bounds independent of

A for the C1[0,1] norm of the solutions to

U" au E A[F (t , u, u') au], u(0) u(l), u'(0) u'(1), (3.3.5)

where A E (0, 1), and a 0 is fixed. Since c < 72 we can see that a is not an

eigenvalue of the associated homogeneous problem. Let u be a solution of the family

(3.3.5), where 0 < A < 1. Then

u" A(w au) + au, u(0) u(1), ti,1(0) u`(1), (3.3.6)

where w(t) E F (t , u, u') for almost every t E (0,1) and w(t) is measurable. The ex-

istence of the function w is a consequence of Kuratowski-Ryll-Nardzewski theoremt;

see [1] for Kuratowski-Ryll-Nardzewski theorem. We integrate (3.3.6) from 0 to 1

and use the identity fol u' g(u)dt 0 to get

0 = a I udt A f (w au)dt = af udt + A f (w au g (u)))dt

This implies that
1 AC C

udt1 < lay

and for some to E (0, 1) we have

1 C
lu(to) 1 = If° udt1 <

Further, by the Holder inequality we have

172(01 lu(to)1 f lui (s)ld 10,1 + f1 jut (s)rds)
to

(3.3.7)

This argument is frequently used in the theory of differential inclusions; see [9],
[8], [12] and [17].
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for t E [0,1]. Now we find an estimate for the L2 norm of u'. We multiply (3.3.6) by

u and integrate from 0 to 1 to get

fo (U
1 1

1)2dt = a
I1

u2dt + A I (wu au2 g(u) )dt. (3.3.8)

Here we integrated by parts on the left hand side of the equation and on the right

hand side of the equation we used the identity

jo1 f1
g(u)u'udt = u(1)G(u(1)) u(0)G(u(0)) G(u)u' dt = 0,

where dG(u) = g. From (3.3.7), (3.3.8) and from the Wirtinger inequality for periodic

functions, we obtain

11 C

a
2

12L112dt 5_ jai u2 dt + AC luldt <
2

dt + A ll AC(jf1 1u' dW
o

j -

7i-2 0 0

(3.3.9)

Ilu'I1L2(o,1) < 1, then we have the desired estimate, so we assumeHu L2(o,i) > 1.ill

After a simple manipulation with (3.3.9) we get

o

11//11L2(o,i) K,

where
C(C ai)7r2K= >0.
lal(72 lcd)

Here we used the assumption al < 712. From (3.3.7) it follows that

lu(t)1 < + K , for t e [0,1].

led

Finally, we need an estimate on u'. We multiply (3.3.6) by u" and integrate from 0

to 1 to get

Jo

1(u")2dt = jo (auu" + A(wu" auu"))dt = a 1 (u1)2 dt + A fo auu")dt.

(3.3.10)



From (3.3.3), (3.3.10) and the Holder inequality, it follows that

i 1 i
Jo (0)2 at < ial Ii juirdt + ACI !u"Icit + A if u"y° g(u)dt <

o o o

CYK2+ACI luldt+ AM/ lulluildt 5_ aK2 +C(/ lu"12dt)1 +KM(/' lu"I2 aW ,
o o o o

where M = max{g(u) : lul < ,,,-1 + K}. If 11011L2(0,1) <1, then we have the desired

estimate, so we assume 11011L2(0,1) > 1 to obtain

11°1112(0J) (aK2 + C + KM)11011L2(o,1)

and

< L,

where L = aK +C + KM. Since there exists t1 E (0,1) such that 721(ti) = 0, the

fundamental theorem of calculus and Holder inequality yield

lu'(t)1 u"(s)ds < Ilu"IlL2(0,1) L for t E [0, 1],
ti

and the required a priori bounds are established. This proves the theorem.

Theorem 3.3.3 (Dirichlet Problem for Inclusions) Let

F [0, x 1R2 -f Kv(Rn)

be LP-Caratheodory and consider the problem

x" E F (t , x , x'), x(0) = x(1) = 0, (3.3.11)

with F(t,x,x) = G(t,x,x) + H(t,x,x). Further let z = (zi,z2), z1, z2 E IRn, and

z1 G(t,z) _? 0 for all (t,z) E [0,1] x R2n,

IG(t,z)I c(t, zi)1z212 d(t,zi) where c(t,zi), d(t,zi) are bounded on

bounded sets,

I H (t, z)1 < L(Izir + z2r) for some a E [0, 1], /3 E [0, 1), L E R and

L > 0. Then the system (3.3.11) has at least one solution.

Proof. See [12].

41
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3.4. EXISTENCE THEOREMS FOR BOUNDARY VALUE PROB-
LEMS FOR DIFFERENTIAL EQUATIONS WITH DISCONTINU-
ITIES IN THE SPATIAL VARIABLE

In this section we apply the results of the previous section to boundary value

problems with discontinuities in the spatial variable. By solutions, we mean the

Filippov solutions defined in Section 1.3.

Theorem 3.4.1 (Periodic problem for Filippov solutions) Suppose f(t,x) is

measurable in [0,1] x IV and suppose further that for any bounded, closed domain

D C [0, 1] x Itn, there exists an integrable function B(t), which may depend on D,

such that

f (t , x)1 < B (t) (3.4.1)

almost everywhere in D. Moreover, assume that for all (to, x0) E [0, 1] x Rn, there

exist 61, 82> 0 and a function C(t): [to 6i,to + 61] IR such that

If (t , x)i < C(t) (3.4.2)

for (t,x) E [to 81,t0 x cl(U(xo, 82)) = cl(U(to,xo, 61, 82)) (clY is the closure

of Y) , where at the endpoints, we consider appropriate one-sided neighborhoods.

Finally, suppose there is an r > 0 such that for every x, x > r there exists an

> 0, < lx1 r such that

x f(t,y)< 0 (3.4.3)

for y E U(x,e) N, where ,a(N) = 0. Then the periodic boundary value problem

x° = f (t, x), x E R71 (3.4.4)

has a solution.

x(0) = x(1) (3.4.5)
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Proof. To establish the result we apply Theorem 3.3.1. First we prove that

k(x) is upper semicontinuous for all t E [0,1] as a function of x. We can write

k(x) = n n konv f (t, II(x, 1/n) N).
n=1,.., pN=0

We define an open set

(kt(x), =- {y E R d(y,, kt(x)) < c}.

Further we define

= {Rn (kt(x), 6)1 n konv f (t,U(x, 1/n) N)
pN=0

for n E IN. From (3.4.2) it follows that there exists an No E IN such that for n > No,

Kr, is a compact set. Since Kr, C Kn_i, there exists an no E IN such that Kno =

otherwise

nKno0
nEN

and this is a contradiction. If z E U(x, 1/2n0) then U(z, 1/2n0) C U(x, 1/no) so

kt(z) C n konv f (t,U(z 1) N) C konv f (t,U(x, 1) N) C Q(kt(x), e).
AN=0 2n0 pN=0 nO

The above inclusion implies that k(x) is upper semicontinuous for all t E [0, l] as a

function of x.

From the results given in [20] (see Remark 2) it follows that k(x) is measur-

able for all x E 1Rn as a function of t.

Now we show that for each r > 0, there exists an integrable function 12740

such that if 1z1 < r, then lict(z)1 < hr(t) for almost all t E (0,1). Since D =

[0,1] x [r,r] is bounded we can apply (1.3.3) and (3.4.1) to get

lict(z)1 Im(z, < hr(t)
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for almost every t E (0, 1), where hr(t) is integrable. In order to apply Theorem

3.3.1 it remains to prove

x k(x) < 0

for all ly > r and for some fixed r > 0. From (3.4.3) it follows that there exists

> 0 such that

x f(t,U(x, N) <0,

where ,u(N) = 0 and this means that f (t,U ( , ) N) is a subset of the half plane

P = {y : x y 0} so

konv f (t,U(x, 6) N) C P

and

k(x) -= n n konv f (t,U(x, 6) N) C P.
6>0 /4N)-0

The last inclusion is equivalent to x k(x) < 0. Now the theorem follows from

Theorem 3.3.1.

Remark 2 Observe that the upper semicontinuity in x for almost all t E

[0, 1] for k(x) would follow from the weaker assumption: for all xo E En and almost

every to E [0,1], there exists 6> 0 and C> 0 such that If (to, x)1 < C for x <6.

However, to apply Theorem 3.3.1 and Theorem 18.6.3, [20] the stronger assumption

of the theorem is used to guarantee upper semicontinuity of k(x) in x for all t E [0,1]

and the measurability of k(x) in t for all x E Ir. See also Remark 3.

Remark 3 The hypotheses of Theorem 3.4.1 and the results given in [20]

imply that k(x) is measurable for all x E IR.72 as a function of t. In particular this
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follows from Theorem 18.6.3, P. 351, where under the assumption (3.4.2) it is shown

that a certain multifunction E constructed from f is a Scorza Dragoni functiont

(Definition 18.5.3). In Appendix 18.8. and 18.9. it is shown that E = kt(x). From

Theorem A18.5.11 it follows that any Scorza Dragoni function is measurable as a

function of t for all x E 1Rn.

However, in most applications we deal with functions f (t, x) which exhibit

only jump type discontinuities, as in the case of the dry friction equation. Thus,

we could consider f (t, x) to be such that k(x) is measurable for all x E lRn as a

function of t, which is usually an easily verifiable condition. If we were to make this

additional assumption , we could avoid referring to the technical proofs in [20].

Remark 4 Condition (3.4.3) becomes

x f (t, x) <0

at all points where f is continuous. In a neighborhood of a point of discontinuity,

x, condition (3.4.3) requires the function f to take values within the half plane

P = {y : x y < 0}. We can neglect sets of measure zero.

Definition 3.4.2 We say u xl is a Filippov solution of

u" = f(t,u,u'), u(0) u(1), tti(0) = u/(1), (3.4.6)

if (xi,x2) is a Filippov solution of

X = X2,

ILet the set Gc1RxEr be open and E G --> Kv(Rn). We say that E is a Scorza
Dragoni function if for every 6 > 0 there exists a measurable set A, C R such that
/./(R A,) <e and F restricted to G n (A, x IFC) is upper semicontinuous.



x"2. f(1,xi,x2),

xi(0) xi(1), x2(0) = x2(1).

Theorem 3.4.3 (Second order scalar periodic problem for Filippov solu-

tions) Suppose f(t,y,z) is measurable in [0,1] x IR2 and suppose further that for any

bounded, closed domain D C [0, 1] X 1Rn there exists an integrable function, B(t),

which can depend on D, such that

If(t,y,z)i < B(t) (3.4.7)

almost everywhere in D. Moreover, assume that for all (t,y,i) E [0, 1] x 1112 there

exist 81, 82 > 0 and a function C(t): [5 61, > IR such that

C(t) (3.4.8)

for ((t, y, z) E [1 8i,t+ x cl(U((, 82)) (clY is the closure of Y, where at the

endpoints, we consider appropriate one-sided neighborhoods. Finally, suppose that

for each (y, z) E 1R2 there exists an c> 0 such that

sup If (t, z") ay zg(y)1<C, (3.4.9)

(xfor (Thi) E U((y,z), e )) ERN2 , where 1i(N) = 0 and a,C and g are like in Theorem

3.3.2. Then the periodic boundary value problem

u" = u, u'), u(0) = u(1), u/(0) = u/(1), (3.4.10)

where u E R, has a solution.

Proof. To establish the result we apply Theorem 3.3.2. By the same argument

as in the proof of Theorem 3.4.1 we get that

K { f (t , x1, x2)} n n konv f (t, U ((xi, x2), N),
6>0 ti(N)=-0
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where f is a function satisfying (3.4.7), (3.4.8) is an LP-Cara,theodory function. Let

(h = col(x2, f (t, xl, x2)), where col(x2, f (t, x1, x2) is the column vector with compo-

nents x2 and f (t, xi, x2), then

K {h(t, x2)} n n konvh(t , U ((xi, x2),) N) = col(x2, K (t, X21)
8>0 ti(N)=0

SO (3.4.10) is equivalent to

u" E K{f(t,u,ut)}, n(0) = u(1), u/(0) = u'(1).

From (3.4.9) it follows that K{f(t,x, y)} satisfies (3.3.3), so Theorem 3.3.2 applies

and this completes the proof.

Theorem 3.4.4 (Dirichlet Problem for Filippov solutions) Let f : [0,1] X

R2n Rn be measurable in [0, 1] X 1112n and suppose for any bounded closed domain

D C [0,1] x IR2n, there exists an integrable function B(t), which can depend on D,

such that

If (t, x)1 B(t)

almost everywhere in D. For all (to, xo) E [0, 1] x IR2n there exist Si, 62 > 0 and a

function C : [to 81, to + Si] > TR such that

If (t, x)I

for (t, x) E [to Si, to + Si] x cl(U (xo, 82)) = cl(U (to, xo, 81, 82)).

Further let z = z2), z1,z2 E

f(t,z) = g(t, h(t,z),
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g(t,y) >0 for all (t,z) E [0,11 x IR2n and y E U(z,c) N, ,a(N) = 0

for some c> 0,

Ig(t, z)I < c(t , zi)12'212 d(t, zi.) where c(t , d(t, zi) are bounded on

bounded sets,

ih(t, z)1 < 1z2r) for some a E [0,1], ) E [0,1) and L > 0.

Then the boundary value problem

x" = f (t, E Rn

x(0) = x(1) = 0

has at least one solution.

Proof. The proof is the same as that of Theorem 3.4.1 and Theorem 3.4.3 but

instead of using Theorem 3.3.1 and Theorem 3.3.2 we use Theorem 3.3.3 and we

define solutions analogously as in Definition 3.4.2.

3.5. APPLICATIONS TO THE DRY FRICTION EQUATION

Application of Theorem 3.4.1

Theorem 3.4.1 is applicable to the dry friction equation

uil bu' cu ksgnui (3.5.1)

where b, c, k E IR, b, c, k> 0, e(t) is a measurable 1-periodic function with

sup je(t) 1 = M.
tErt

(1) If u = xl, we can rewrite this equation as a system in the following way:



X2 Xi,

x'2 =-- (1 b)(x2 x1) cx1 ksgn(x2 x1) + e(t).

Condition (3.4.3) then becomes

(b 1)4 (c b)xix2) lx21(k M) <0

for all x1, x2 such that 4+ 4 > 7-2 for some fixed r E IR. By completing the square

we get
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c b

1 + 2 x2)2 (b (c b)2 )x22 <0.

If b> 1 and c E (b 1, b 1) then there exists r E IR, which depends

on b, c, k and M, such that (3.5.2) is satisfied for x + 4 > r2 and by Theorem 1

there exists a 1-periodic solution. Moreover, the proof of Theorem 5 [12] gives the

apriori estimate x? + 4 < r2 so we get

u2 (u' u)2 < r2.

If k < M , then there does not exist a constant solution.

(2) By the above discussion there exists a 1-periodic solution of the equation

u" 2u' + 3u sgnul = 2 sin 27t. (3.5.3)

(3.5.2) becomes

_ 12) 3 2

2 4X2 `-)1X21 <0,

This inequality holds for example if Xi2 + X22 > 25, so we get the bound

u2 (u' u)2 <25

and since k < M we have no constant solutions.

(3.5.2)
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(3) An example of the unforced damped oscillator with dry friction is given

in Chapter I, Section 1.3.

Application of Theorem 3.4.3

Theorem 3.4.3 is applicable to a more general dry friction equation with the following

nonlinearities:

u" b(uI) c(u) ksgnut = e(t), (3.5.4)

Or

u" d(u)u/ c(u) ksgnut e(t), (3.5.5)

where k E IR, , k > 0, b,c and g are nonlinear functions, e is a measurable 1-periodic

function.

(1) Consider the equation

u" b(u') c(u) ksgnul = e(t),

where b, c are continuous functions and 6(0 is a 1-periodic measurable function with

sup I c(t) I = Al.
tER

Condition (3.4.9) becomes:

b(z) c(y) ksgnz e(t) ay z g (y) <

b(z) zg(y) + c(y) ayl le(t) < C.

If there exist 13, 7, C1, C2 E IR., 0 < < 712, such that

lb(z) i3z1 (3.5.6)

le(y)--yyl C2,
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for all y, z E IR, then we can take C = C1 + C2 M k and condition (3.4.9) is

satisfied. We considered g(y) = 13, a = . Thus, our theorem applies for example

to the equation

u" 2u' ')2 + 3u ue-(u)2 sgnut = 2 sin 27t. (3.5.7)

The graph and the phase diagram of equation (3.5.7) is in Figures 4 and 5. We can

see that the amplitude has increased compared to equation (3.5.3). This is due to

the decreased damping and decreased stiffness of the spring. We can observe similar

phenomena also in examples (2) and (3) that follow.

If we replace b(x') by x'd(x) then we need an estimate on

zd(Y) *01,

and this vanishes if we take g = d. Thus, our theorem applies for example to the

equation

ull 2(u2 + 1)u' + 3u ue-(u)2 sgnut = 2 sin 27rt. (3.5.8)

We can also consider a combination of the cases (1) and (2) of the form

u" b(u') d(u)u/ c(u) ksgnut =

where b(z) satisfies (3.5.6). The function g = d 43. So our theorem applies also

to the equation

u" ute±1)2 2(u2 + 1)u' + 3u ue-(u)2 sgnut = 2 sin 27t. (3.5.9)
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