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Nodal methods which are used to calculate reactor transients,

control rod patterns, and fuel pin powers are investigated. The 3-D nodal

code, STORM, has been modified to perform these calculations.

Several numerical examples lead to the following conclusions: (1) By

employing a thermal leakage-to-absorption ratio11 (TLAR) approximation for

the spatial shape of the thermal fluxes for the 3-D Langenbuch-Maurer-

Werner (LMW) and the superpronipt critical transient problems, the

convergence of the conventional two-group scheme is accelerated. The

resulting computing time is reduced eight to fourteen times while

maintaining computational accuracy. The TLAR acceleration scheme assumes

that even if the thermal leakage rate and absorption rate varies

significantly in a given node, the ratio of those two changes little

during a small time step; (2) By employing the steepest-ascent hill

climbing search with heuristic strategies, Optimum Control Rod Pattern

Searcher (OCRPS) is developed for solving control rod positioning problem

in BWRs. Using the method of approximation programming the objective

function and the nuclear and thermal-hydraulic constraints are modified as

heuristic functions that guide the search. The test calculations have

demonstrated that, for the first cycle of the Edwin Hatch Unit #2 reactor,



OCRPS shows excellent performance for finding a series of optimum control

rod patterns for six burnup steps during the operating cycle. Computing

costs are modest even if the initial guess patterns have extremely

deteriorated core characteristics; and (3) For the modified two-

dimensional EPRI-9R problem, the least square second-order polynomial flux

expansion method was demonstrated to be computationally about 30 times

faster than a fine-mesh finite difference calculation in order to achieve

comparable accuracy for pin powers. The basic assumption of this method

is that the reconstructed flux can be expressed as a product of an

assembly form function and a second-order polynomial function. The

assembly form function is calculated by solving an assembly criticality

calculation. The polynomial function is determined by minimizing the

least-squares difference between the intra-nodal quantities obtained from

the global two-dimensional coarse-mesh nodal solutions and those obtained

from the evaluation of the polynomial function.
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NODAL METHODS FOR CALCULATING NUCLEAR REACTOR

TRANSIENTS, CONTROL ROD PATTERNS, AND FUEL PIN POWERS

Chapter 1

INTRODUCTION

The efficient and safe operation of a nuclear power plant represents

the major challenge to nuclear reactor design/operation engineers. The

prediction of the performance of a nuclear reactor is essential to this

task.

The reactor design/operation engineer is called upon to provide the

essential physics information required in reactor design, operation, and

control. Several characteristics of the reactor must be established to

ensure that the reactor can be started up, operated at a steady state over

its entire operating lifetime, and shut down as needed in a safe and

economic manner. Some of the parameters and phenomena, which must be

predicted with sufficient accuracy, are the spatial distribution of the

power generation throughout the operational period, the positioning of

control rods within the core as required for control of the nuclear

reactor, and the time-dependent behavior of the spatial power distribution

during off-normal and accident situations.

For the demonstration of prediction accuracy of such problems, it is

frequently sufficient to know the average flux and power produced in

certain subregions of a reactor. In these instances it is an enormous

waste of effort and economy to go through the detailed multi-dimensional

models furnished by finite-difference techniques with small mesh spacing.

Therefore, so-called "nodal methods have been designed to compute only

the average flux and power values in predetermined subregions.
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The remainder of this dissertation discusses the computationally

efficient nodal methods used to calculate reactor transients, control rod

patterns, and fuel pin powers and the results that have been obtained.

The dissertation is presented in three major parts of which the first,

second, and third part are Chapter 2, 3, and 4, respectively. Chapter 2

describes the thermal leakage-to-absorption ratio acceleration scheme for

solving reactor kinetics. A search technique using a heuristic method for

generation of optimum control rod pattern is depicted in Chapter 3.

Chapter 4 presents a polynomial flux expansion method for reconstruction

of fuel pin powers.



Chapter 2

AN EFFICIENT COMPUTATIONAL TECHNIQUE

FOR THERMAL REACTOR TRANSIENTS

2.1 Introduction

An important aspect in the design and safe operation of a nuclear

reactor is the behavior of a reactor during a transient, or non steady-

state condition. Efforts to answer safety questions which arise in

conjunction with actual and hypothetical accident scenarios often require

the knowledge of multi-dimensional transient power distributions.

The accurate prediction of reactor behavior is costly because it

involves the determination of a multi-dimensional power distribution

throughout a large and often geometrically complicated core. Even if it

is possible to determine the group diffusion theory parameters that

accurately predict the average group fluxes within small, explicitly

represented regions such as homogenized fuel cells, control rods, burnable

poison lumps, etc., the solution of the corresponding group diffusion

equations is expensive. The detailed description of a thermal reactor can

easily involve a million mesh points and several energy groups. For

problems of these magnitudes, time-dependent group-diffusion calculations

based on a finite difference approximation are unmanageable.

Because of this situation, the problem is usually decomposed into

two classes of methods. The first class of methods determines the

equivalent homogenized group-diffusion theory parameters representing

fairly large subregions such as an entire fuel assembly. The author will

not address the many problems associated with homogenization technique

3
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[1,2,3], but rather approach the task of determining the spatial power

distribution within a reactor which has been partitioned into

"homogenized" regions. The equivalent homogenized diffusion theory

parameters for each region are assumed to be known.

The second class of methods circumscribes the technique of how to

solve actually the reactor kinetics equations with the equivalent

homogenized group-diffusion theory parameters. Many solution methods are

presently available to the nuclear reactor community. A complete

description of each of these methods is too lengthy to be included in this

review. Instead, only the most widely used methods are summarized in this

section.

In finite difference schemes [4,5,6,7], low order difference

approximations are used to represent the leakage term. These finite

difference methods possess several advantages over most other schemes.

For example, these methods are conceptually simple and the resulting

algebraic equations are such that only adjacent nodes are coupled by the

spatial leakage terms. The most important property of the finite

difference technique is that it can be shown to converge to the exact

solution of the multi-group diffusion equations as the mesh spacing

becomes increasingly small. The only real disadvantage of the finite

difference schemes is that very fine spatial meshes which result in

computer memory storage problems and huge execution time are required to

achieve acceptable accuracy.

In past years, many researchers have applied finite element

techniques [8,9,10] to solve the multi-group diffusion equations. In the

finite element methods, the spatial shapes of the multi-group fluxes are
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represented as polynomials over large homogeneous regions. The finite

element schemes also converge to the exact solution of the multi-group

diffusion equations as the mesh spacing becomes increasingly small. The

major disadvantage is that the coupling of the finite element equations is

much more extensive than with the finite difference equations.

In nodal methods [11,12,13,14], the quantities of interest are

usually the group-dependent neutron fluxes averaged over large spatial

subregions(nodes) and the neutron currents averaged over the faces of the

nodes. Determining the coupling constants that relate the current flowing

from one node to its neighbor to the average fluxes of these two neighbors

is an important matter. The difficulty with the nodal methods is that the

relationship between the node-averaged fluxes and the face-averaged

currents must be obtained. Once the relationship between them is

specified, nodal equations with a structure similar to finite difference

equations can be constructed.

Many space- and time-differencing methods for solving the time-

dependent(kinetic) multi-group diffusion equations are available. These

methods include, quasistatic method [15,16], adiabatic method [17],

synthesis method [18], prompt-jump approximation [19,20], and matrix

splitting method [21,22,23,24,25,26,27].

In the quasistatic method, the spatial- and time-dependent flux

vector is separated into a product of the shape function that is slowly

varying with time, I(r,t), and a more rapidly varying amplitude, T(t).

The main idea in the quasistatic method is that a low-order approximation

with large integration time steps can be used for the calculation of the

shape function whereas a high-order approximation with a small integration
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time step is used for the calculation of the amplitude function.

Most transients and accidents of importance in LWR safety analyses

are relatively slow compared to the neutron life time. It is therefore

reasonable to assume that during a transient the time retardation in the

shape of the precursor distribution may be ignored so that the neutron

flux goes immediately to its equilibrium value. This is the basis of the

so-called "adiabatic approximation" [28]. With this assumption, the

neutron flux distribution in a given time may be determined from a

modified steady-state calculation. The adiabatic method is different from

the quasistatic method in which the time derivative of the amplitude

function appears in the shape function.

In the synthesis method, the flux is expanded into a series of time

dependent modes with time dependent coefficients. The precomputed

expansion functions are obtained over large regions of the reactor. These

methods offer the largest reduction in the number of spatial unknowns.

The unfortunate drawback of the synthesis methods is that there is no

systematic procedure for choosing the expansion functions. Furthermore,

rigorous error bounds on the synthesized solutions do not exist. This

lack of error bounds has limited wide use of the synthesis method.

Quasistatic method, adiabatic method, and synthesis method are

characterized by relatively small computational time requirements.

However, these methods are also known by a lack of definitive error bounds

on the final solution.

For reactor power transients dominated by delayed neutrons, the

prompt-jump approximation is widely used in the numerical study of the

point kinetics equations since it permits the use of large iterative time
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steps. But the success of multi-dimensional and multi-group reactor

kinetics model is not yet known.

As computational capabilities increase, direct solution techniques

which use finite differencing in time and space become practical for

multi-dimensional calculations.

The WIGLE [6], TWIGL [7], and GAKIN [29] methods represent

successful application of direct solution methods to the one- and two-

dimensional problems, respectively. The TWIGL program uses a Gauss-Seidel

iteration for the inner iteration and a cyclic Chebyshev polynomial method

for the outer iteration.

The GAKIN method has been extended to two- and three-dimensional

space-kinetics equations in conjunction with the alternating direction

implicit (ADI) method [21,22] as well as alternating direction explicit

(ADE) method [23]. The major advantage of the multi-dimensional version

of the GAKIN method is that it does not require the two loops of iterative

schemes as in the standard methods. In other words, one time step needs

only one sweep of grid points, so the computing time for one time step is

shorter than the standard implicit method. The numerical study shows,

however, that the multi-dimensional version of the GAKIN method for fast

transient calculations needs much smaller time steps than the standard

implicit method.

Alternating direction implicit and alternating direction explicit

are parts of a general class of matrix splitting methods. These methods

consist of two kind of sweeps: one inverting horizontally from the bottom

to top rows for half time steps, another inverting vertically from the

leftmost to the rightmost column for next time step. A modification of
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ADI, ADI-B [241, which closely resembles the Tt4IGL scheme results in

block-tridiagonal difference equations that are amendable to noniterative

solution techniques. It has been proved that the accuracy of ADI and ADE

methods can be greatly improved by the application of a transform of

variables known as the exponential transformation [23,25]. The numerical

study performed by the author of the method shows that the scheme is

stable for all the problems tested and the computing time is three to ten

times faster than the TWIGL scheme on the same accuracy basis for a

specific class of problem tested. For a more difficult class of problems

the running time was equivalent to the TWIGL scheme because the ADI-B

scheme requires a much smaller time step if the transient is fast and the

flux distribution is complicated. Alternating direction checkerboard

(ADC) [26] and locally one-dimensional (LOD) [27] methods are also parts

of a general class of matrix splitting methods. The sweeps of these

methods are different from both ADI methods and ADE methods.

The objective of this study is to develop computationally efficient

numerical methods for solving the two group, multi-dimensional transient

neutron diffusion equations with moderator and fuel temperature feedback.

By employing an approximation for the spatial shape of the thermal

fluxes(which is called 'thermal leakage-to-absorption ratio

approximation11), the convergence of the iteration scheme can be

accelerated and the resulting computing time can be greatly reduced while

maintaining computational accuracy.

This study discusses the thermal leakage-to-absorption ratio

acceleration scheme, hereafter referred to as TLAR acceleration scheme,

for solving the two-group, multi-dimensional reactor kinetics equations
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and the results that have been obtained. rn Section 2.2, the derivations

of the finite difference nodal diffusion equations are presented. In

Section 2.3, the TLAR acceleration scheme is discussed. The thermal-

hydraulic feedback model is included in Section 2.4. Results of a

benchmark problem are discussed in Section 2.5. Finally, a summary of

this investigation and recommendations for future research are given in

Section 2.6.
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2.2 Neutronics Model

The reactor power distribution is calculated by using a model

representing the reactor as a group of geometrically identical nodes. A

node is defined as a homogeneous nuclear property volume whose boundaries

are specified by mesh lines. Mesh lines are chosen to lie between fuel

assemblies and along the core periphery.

The power distribution calculation is based on a finite difference

approximation to the kinetics equations. Fluxes are calculated at the

center of each node. An averaging scheme is then used to calculate node

averaged fluxes. The power distribution is calculated from the node

average flux distributions.

2.2.1 Formulation of Difference Equations for Two-Group

Diffusion Equations

In most situations encountered in the analysis of LWR's, it is

sufficient to model the neutronics behavior of the reactor by a low order

approximation to the formally exact neutron transport equation. The most

frequently used of these approximations is the two-group neutron diffusion

theory. The general two-group diffusion theory equations are derived

from a fundamental conservation law which states that the rate of change

of neutron density is equal to the rate at which neutrons are produced

minus the rate at which they are absorbed or escape within a volume of

interest. For this model, the set of time- and space-dependent coupled

partial differential equations for which the two-group diffusion and

delayed precursor equations are sought can be written as:



where

v1 at"1 (f, t) V.1)1 (1, t) V41 (f, t)

ri' t)41(f, t) + (i-3) [v141(i, t)

--42(f,t) = V.D2(f,t)V42(i,t)

a2' t)42(f, t) s12' t)41(f, t)

-Cd(.?,t) = Pd[vEfl4l(r,t)

+v12(r,t)c2(r,t)] -AdCd(r,t),
d= 1,2,.. .,DG.

vf2(r,t)2(r,t)] +dCd(f,t)
(2.2.1.a)

(2.2.1.b)

(2.2.1 .c)

11

= fast and thermal fluxes

Cd = density of delayed neutron precursor in family d

v1, v2 = fast and thermal neutron speeds

D1, D2 = fast and thermal diffusion coefficients

= fast removal cross section ( = + si )

a1 = fast absorption cross section

s12 =fast slowing down cross section

a2 = thermal absorption cross section

Vfj Vf2 = fast and thermal LI-fission cross section

DG = total number of delayed neutron precursor families

= decay constant for delayed neutron precursor family d

= fractional yield of delayed neutron precursor family d

$ = total fractional yield of delayed neutron precursors per

fission.
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The static solution to Eqs.(2.2.1) is obtained by assuming that the

reactor is in a "critical" configuration. That is, all of the properties

of the reactor are independent of time and hence all of the time

derivatives of Eqs.(2.2.1) are identically zero. The static solution to

Eqs.(2.2.1) is obtained by varying v(mean number of neutrons emitted per

fission) such that a nontrivial solution to the static two-group equations

exi sts.

If the distribution of material properties in space and time, the

initial fast and thermal flux distributions in space, and the boundary

conditions are specified, a unique solution to Eqs.(2.2.1) exists. The

two most widely used boundary conditions applied to the outer surface of

the reactor core are that the neutron flux or the incoming neutron current

for each energy group is identically zero. At any internal surfaces,

continuity of neutron flux and current are imposed for each energy group.

The global reactor problem is treated in three-dimensional Cartesian

geometry, where x, y, and z represent the three coordinate directions.

The spatial domain is subdivided into a regular array of nodes. The mesh

point is placed at the center of the node of height d, width d, and depth

d, as shown in Figure 2.2.1.

The time-difference form of Eqs.(2.2.1) is obtained by discretizing

the continuous time domain into a sequence of absolute time values to,

t1,..., t,..., t1 where to and t1 are the initial and final time,

respectively. The time dependent quantities and space dependent

quantities can be symbolized by using superscript, n, and subscript, i,

respectively. Thus, for example, refers to the fast flux at node i and

time t. We then approximate the time derivative for each time interval
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Figure 2.2.1 Three-Dimensional Mesh Description in X-Y-Z Geometry

13



At = t.1 - t as

where

,-.n+1 ç,fl
'-di -di

na. -F1
at1

where F represents or Cd. The delayed neutron precursor terms are

central differenced over this time interval as

Cdi = - (C121 + C1) (2.2.3)

By using Eqs.(2.2.2) and (2.2.3), the implicit form of the Eq.(2.2.1.c)

can be written as

n+1 .n+1 ifl+1 fl+1
Pd(vf1iq)11 +V4f2i4)2iAt12

,-,fl+1
. / '-di '-d1

2

Equation (2.2.4) can be rearranged to obtain

i-At
2

Ldi
i-At

2

n+1 n+1 çfl+l n+1+BA t12 (vf1411 ) /

(2.2.2)

(2.2.4)

(2.2.5)

14



Again by using Eqs.(2.2.2) and (2.2.3), the implicit form of the

Eq.(2.2.1.a) can be written as

4n+
11j - - V'D' V4' V fl+4fl+1

tn ii '-'r1zf'1i

+1 n1 Vn1 n1
+ (1-n) [vE1111 +vf2d?2I

DG d ' ,.,fl- Ldi -dj1L.i 2d=1

Equation (2.2.5) can be substituted into Eq.(2.2.7) to obtain

n1 n
n1 'çifl+l . n.-11 1i 1i - V.Df'V1 r1i1i.tn

n1(1-p) [v111 +vE4]
DG A 2

2
+

1 +
d= 1

2

Vn1 +1 V1 n+1+Bt (v1j41j +Vf221 ) ]

Performing some subsequent rearrangement yields

n1
1 ii -4i ifl1 n1- V.DV4' - r1i1i
i

tn

'ifl+1 j+ V1 n-1+ (1B') [v11 ]

DG

d=1

2

n
di

(2.2.7)

(2.2.8)

(2.2.9)

15

Pd
(2.2.6)

1 + t
2



where

DO DO
IdB'= B1 =

d=i d=i
2

Similarly, the implicit form of the Eq.(2.2.1.b) can be written as

n+1 n
1 4)21 42i

=
;;

fl1A1 iflf1 An1a2iW2i +_aS12iP1i

In order to obtain the time dependent spatial finite-differenced

two-group diffusion equations, we integrate Eqs.(2.2.5), (2.2.9), and

(2.2.11) over a node volume V.

In general, integration of the leakage term is accomplished by first

transforming the volume integral to a surface integral by means of Green's

theorem

f VDV4) dv DV4) dS. (2.2.12)

The surface integral is carried out over the six faces of the node.

Evaluation of the flux gradient at the interface is easily

understood by considering a one-dimensional case where two-mesh points, i

and i+1, are separated by a distance, d, and equidistant from a mesh line

separating two regions. The region to the left of the mesh line has

diffusion coefficient D1, and that region to the right has D11.

(2.2.10)

(2.2.11)

16
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Using difference approximations, the continuity of the neutron

current of the node interface gives

-

-D 2

d i+i d

V41

-

D1c +

13+ D-1 1+1

=
4i+1i)

D+D+1
2

(2.2.13)

and refer to the fluxes at point i, the mesh line, and point

i+1, respectively. The flux at the interface is given by

(2.2.14)

Using this expression, the flux gradient at the interface can be

written in terms of ç5, and

(2.2.15)

Finally, the time dependent spatial finite-differenced two-group

difference equations for mesh point i become

n+i n
1 4 -4

- rii'Vii

6 T+l fl+i

-E
L11 £Jlm

n+i n-s-i
m=i 131j +Dim

A

2

çifl+i.fl1i ni-i,n+i+ (1-B') [v11p1 +VLaf2jcp2j ]

n
Cdi

I.k1 Afl+i\9ii 'Pim

dm

2

Am

vi

(2.2.16)



and

where

Am = area of boundary between mesh point i

and adjacent mesh point m,

Vm = volume associated with mesh point i,

dm = distance between mesh point i and

adjacent mesh point m.

The summation is over all six nodes adjacent to node i, as shown in Figure

2.2.1.

Since all transient problems are assumed to start from a steady

state, the initial precursor concentration terms at node i are calculated

by the steady state relation

n+1
1 4i 42i

6 r1
t-'2i 1-'21n

n+1 n+1
m=1 D2 4D2m

i.&n+1 A.fl1
W2i 4'2m

d
2

E fl1.kfl1 n+1 kfl+1- a2iW2i + s121'V1i

1
2 n

Ldi )Cdj

2

ifl+1 n-I-i+B t (vf1d1 +vL2)

0
Cdi = (vE111+v2141)

Am

vi
(2.2.17)

(2.2.5)
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(2.2.18)

V2 tn



[u1] [4w] = [w21 [42] + [zr]

{u2] [42] = [wi] [4l + [z21

(2.2.19)
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At each time step n, Eqs.(2.2..16) and (2.2.17) each constitute a set

of inhomogeneous algebraic equations. These equations may be written as

two coupled matrix equations

where both [] and [2] are column vectors composed of a number of

components equal to the number of spatial solution points; [u1] and [U2]

are matrices representing the finite difference formulas; [w1] and [w2] are

diagonal matrices and [z1] and {z2] are known vectors.

The standard numerical solution method to solve Eq.(2.2.19) involves

two kinds of iterative schemes: inner iterations and outer iterations.

The direct inversions of Eq.(2.2.19) is not practical for the multi-

dimensional case because [u1] and [u2] in Eq.(2.2.19) are not tridiagonal.

A fission source overrelaxation (FSOR) or a Chebyshev polynomial

method is necessary for Eq.(2.2.19) and is called the "outer iteration".

Each outer iteration needs the solution of the left sides of Eq.(2.2.19)

whenever the right sides are given. The iterative scheme to solve the

inhomogeneous problem is called the "inner iteration". The Gauss-Seidel

scheme for the inner iteration and FSOR for the outer iteration will be

used for both the steady state and transient solutions.

Finally, Eq.(2.2.16) and Eq.(2.2.17) can be recast into a form more

convenient for performing flux iterations. That is,



where,

6
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(2.2.20)

(2.2.21)

(2.2.22)

m=1, . . . ,6 (2.2.23)

(2.2.24)

(2.2.25)

m=1, . . . (2.2.26)
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(2.2.27)

2.2.2 Node Average Power Calculation

A coarse mesh diffusion theory model tends to predict current

densities poorly at node interfaces. This is particularly true if there

is a large difference between the diffusion coefficients of the two

adjacent nodes or if the node is on the core periphery. This can lead to

a fairly large error in the prediction of power distribution. In an

effort to reduce this error Borresen's averaging scheme {30] is employed.

In Borresen's scheme the node flux calculations are improved by the

introduction of special weight factors determined by off-line

calculations. The node average fast flux, is calculated as a weighted

average of the midpoint flux,
,
in that node and the flux values on the

interfaces to the six neighboring nodes,

4 2

1I + 2 C1 + r (2.2.28)

j=1 k-i

where

(2.2.29)



where

where

Cl
1a1

12a1+4 (1a1) (r+2)

a1 = input weight factor for fast flux.

Similarly, the node average thermal flux, 2i' is calculated as

4 2

2B24)21 2C2 ( 4i + r (2.2.32)
j=l k=l
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(2.2.30)

B2

C2

3a2

3a2-'- (1a2) (r2)

1a2
12a2+4 (1-a2) (r+2)

(2.2.33)

(2.2.34)

LLX
(2.2.31)

= interface fast flux between node i and j in

horizontal plane,

= interface fast flux between node i and k in

vertical plane,



A description of the transient solution algorithm for the finite-

differenced two-group diffusion equations is outlined below:
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- interface thermal flux between node I and j

in horizontal plane,

2i = interface thermal flux between node i and k

in vertical plane,

where

a2 = input weight factor for thermal flux.

Two different values for the weight factors, a1 and a2, are used to

calculate the node averaged fast and thermal fluxes. Borresen recommends

0.3 and 0.7 for the fast and thermal groups, respectively.

Finally, the power distribution is obtained from the node averaged

flux distributions,

P1 = + vf2121) , (2.2.35)

where

ER = conversion factor determined by reactor power.

2.2.3 Transient Solution Algorithm for the Two-Group

Diffusion Equations

The full set of temporally- and spatially-discretized diffusion

equations are given by Eq.(2.2.20) and (2.2.21). To advance the solution

from one time step to the next requires that many of the elements of the

coefficient matrix be updated because of feedback effects. Hence, these

matrix elements must be recalculated at each time step. The detailed

thermal-hydraulic feedback mechanism will be discussed later in Section

2.4.
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Choose the times(t0, t1,.,., t,..., t) which partition the

transient problem.

Calculate the steady state fluxes []° {2}° and precursor

densities [Cd]°.

Obtain {J° and {2]0 with Eq.(2.2.28) and Eq.(2.2.32).

Obtain {P]° with Eq.(2.2.35).

Alter cross sections to correspond to transient conditions such

as control rod position change and/or feedback effects at time

trl+1

Solve Eq.(2.2.20) and Eq.(2.2.21) iteratively for

respectively.

Obtain [Cd]1 at time t with Eq.(2.2.5).

Obtain [i]1 and [2]1 with Eq.(2.2.28) and Eq.(2.2.32).

Obtain
[pJn1

with Eq.(2.2.35).

Repeat step 5-9 for each time step until the end of the last

time domain.

The iterative scheme described above step 6 is similar to that of

solving the steady state two-group diffusion equation. Equations (2.2.20)

and (2.2.21) are solved using the inner-outer iteration technique.

IA 1n+1 r.
LW1J ' L'Pi '
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2.3 Thermal Leakage-to-Absorption Ratio Acceleration Method

In Section 2.2, the temporally- and spatially-discretized nodal

diffusion equations were obtained for solving the two-group diffusion

equations. In this section, the two-group finite difference kinetics

equations with TLAR acceleration scheme will be derived and an algorithm

for solving these kinetics equations will be presented.

2.3.1 Formulation

Since the modified one-group diffusion theory scheme [30,31,32] runs

remarkably faster than the two-group diffusion theory scheme, the modified

one-group method has been widely used for the analysis of static and

transient problems. However, it has been shown that the computational

accuracy of the modified one-group method appears a bit deteriorated in

transient applications [31,32]. This is due to the simplicity of the

neglecting the thermal leakage effect. Therefore, the modified-one group

method may not be valid for problems in which the thermal flux gradients

between nodes are severe, and the thermal neutron diffusion has a

significant space-time effect.

The inclusion of the thermal neutron diffusion effect is a key to

improve the accuracy of modified one-group diffusion theory compared to

that of two-group diffusion theory. Since the thermal neutron leakage

rate is directly related to the thermal neutron shape function which is

invariant or slowly varying during transient with small time step, a new

method can be proposed assuming that even if the thermal leakage rate and

absorption rate varies significantly in a given node, the ratio of those

two changes little during that period. Even in a region where rapid flux
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changes occur such as after a control rod motion, the change in thermal

leakage to absorption ratio is limited to the fairly small region around

the moved rod. Since the thermal leakage terms in nodal balance equations

are generally small in magnitude compared to the absorption terms, the

errors introduced by this assumption are generally quite acceptable. The

basic assumption of this method is that:

R(i,t) = R(,t) , t=t-t (2.3.1.a)

where

-v'D2 (f, t) v2 (f, t)R(f, t)
Ea2(11 t)42(12, t)

-vD2 (f, t) v2 (f, t)R(f, t) Za2(I t)42(f, t)

(2.3.1.b)

(2.3.1.c)

and R denotes the ratio of the thermal leakage to the absorption rate.

The use of Eq.(2.3.1) leads to

-vD2 (-' t) v42 (' t) =

R(1, t) a2' t)42 (, t)
(2.3.2)

Substitution of Eq.(2.3.2) into the right side of Eq.(2.2.1.b) yields the

simplified thermal group flux,



where

n+1 n
1 2i 2i - (1R) a2i2i'çfl+1 n1-1

V2 Jt -
ifl+1+ '-s12iPLL

6

m=1

ni-i ni-i / n n
°21 D2m P2i42rn) 4m
n+1 ,-n+i viD2 +1J2m

2

Ena21'4'2i

Substituting Eq.(2.3.4) into the fast group equation, Eq.(2.2.16), yields

the finite-difference approximation for the fast group,

(2.3.4)

(2.3.5)
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13
C) = {1R(f, t)J E82(r, t)42(f, t)

(2.3.3)
Z5121 t)41(f, t)

The finite-difference approximation for the thermal group can be written

as:



1 &fl+i
6 fl+1 fl+i / fl+ n+i

i Wij D11 Dim 41m
v At m=i iin+i 11+1

- Zn+1A'n+irl i'Vi I
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V f2i
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n+11 + (1R1) a2iV2 L t

+ (1 R)

1J '+'2i

(2.3.6)
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The finite-difference approximation for the precursor group is the same as

Eq. (2.2.5).

The mathematical structure of above equation is almost identical to

the finite-difference modified one-group equation except that the former

includes the R known from the previous time step calculations. The

numerical solution for [02] of Eq.(2.3.4) needs neither inner nor outer

iterations. Once we have the solution for [O] by solving Eq.(2.3.6) then

the solution for [02] is straight forward. Even if the solution of

Eqs.(2.3.4) and (2.3.6) reveal errors, they can be used as initial guess

solutions for the two-group method described in Section 2.2.1 in order to

accelerate the convergence of the iteration.
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2.3.2 Transient Solution Algorithm for the Two-Group Diffusion

Equations Using a Thermal Leakage-to-Absorption Ratio

Acceleration Method

By employing the strategy of the acceleration scheme, the transient

solution algorithm described in Section 2.2.3 is modified and summarized

as follows:

Choose the times(t0, t1,..., t,..., t1) which partition the

transient problem.

Calculate the steady state fluxes [i]0, [2]0, and precursor

densities [Cd]°.

Obtain []° and [Ø2J° with Eq.(2.2.28) and Eq.(2.2.32).

Obtain [P]° with Eq.(2.2.35).

Alter cross sections to correspond to transient conditions such

as control rod position change and/or feedback effects at time

tn+1.

Solve Eq. (2.3.5) for [RJ.

Solve Eq.(2.3.6) iteratively for

Solve Eq.(2.3.4) for [2]1+1.

Using solutions obtained in step 6b and 6c as initial guess

solutions, solve Eq.(2.2.20) and Eq.(2.2.21) iteratively for

[ØJI1+1
and [2]1, respectively.

Obtain {CdJrl at time t1 with Eq.(2.2.5).

Obtain
[]n+1

and [2]1 with Eq.(2.2.28) and Eq.(2.2.32).

Obtain
[p]I1+l

with Eq.(2.2.35).

Repeat step 5-9 for each time step until the end of the last

time domain.
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2.4 Thermal-hydraulic Feedback Mod

The important thermal-hydraulic parameters which describe the state

of the reactor core and plant are coolant mass flow, steam quality, void

fraction, coolant temperature, fuel rod temperature, system pressure, and

the thermodynamic properties of the coolant fluid. In nuclear reactors,

the variation of output power affects the temperature of both coolant and

fuel. The density of coolant in turn affects the power. Thus a thermal-

hydraulic feedback calculation is linked to the neutronics model. This is

an iterative process by which new nodal nuclear properties are calculated

as a function of the thermal-hydraulic parameters.

A closed-channel thermal-hydraulic model is used to estimate the

effects of moderator and fuel temperature and moderator density on the

nodal neutron flux distribution. Each axial string of nodes is considered

a thermal-hydraulic channel, and there are as many axial zones as there

are planes.

A minimum departure from nuclear boiling (MDNBR) calculation has

also been included in the thermal-hydraulic model and will be discussed in

this section.

2.4.1 Heat Balance Equations

Our interest, at present, is not so much in accurate solutions to

realistically coupled neutronic, thermal-hydraulic problems, but rather in

accurate neutronic solutions to problems with feedback effects.

Therefore, the use of a complicated thermal-hydraulic model such as COBRA

[33] to test the transient nodal method with feedback appears unnecessary.

The much simpler single lumped parameter model such as TWIGL is used as
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the fundamental feedback mechanism for testing the neutronics solution

methods.

In a single lumped parameter model, the fuel rod cell is divided

into two fuel and coolant control volume regions within which we desire to

know the average fuel temperature Tf, the average coolant temperature T,

and the average coolant enthalpy h. The equations describing the time

behavior of Tf, I, and h in a given region are

where

fl1 n+1 7,fl+1 fl fl fl -,-,n1 ,7-,fl+1pfi Cj .Lfj PfCflTrI /1112+1 ii idVf1
tn q fj V1

n1 n'
TT P1 c

ci

superscripts n = time indices

subscripts i = space indices

Pf = density of fuel

= density of coolant

Cf = specific heat of fuel

c = specific heat of coolant

Vf = vol ume of fuel

= vol ume of cool ant

III
qf = volumetric heat generation rate in fuel

R = thermal resistance of the fuel pin cell

,12+1 n
ci Pdidici

tn

,.7-,n+1 ,-7-.,n+1iti ij
$fl + 1

rho h' +th ---- 1 F1--
2 2

/ (2.4.1)

(2.4.2)



n+1 ,n+1
1 11+ 1--
2 2

2

By using Eq.(2.4.3), the Eq.(2.4.2) can be written as

-(pcV)1 Cl
,7-,fl+1 ,,-,fl+1ifj .Lc1

(2.4.3)

(2.4.4)

-2(h2-h'1)i-4

Equations (2.4.1) and (2.4.4) are solved for each control volume

region only after the node average fluxes, Ø have been obtained and

used to form q'. For the sake of simplicity, the Eqs.(2.4.1) and (2.4.4)

are solved using a fully-implicit temporal differencing scheme, with the

same temporal mesh as the neutronic equations. Following evaluation of

the core-wide fuel and coolant temperatures, the coolant density is

calculated assuming uniform pressure throughout the reactor core.
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= mass flow rate of coolant

h1,2 = rate of heat removal due to core coolant flow

'k h.112 = rate at which the heat content of nodes located lower in

the core is being swept into the node of interest due to

core coolant flow.

In Eq.(2.4.2) the amount of direct heating of the coolant caused by gamma

attenuation and neutron moderation is ignored.

The node average coolant enthalpy h at the end of the time step of

length At,., can be obtained by a straight line interpolation:
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The power distribution is used to generate the quality of each

region through summation of enthalpy from the inlet of region to the node

of interest. The bulk coolant properties are then estimated through the

use of the standard water property tables and various correlations. Two

enthalpy regimes are considered: (a) single-phase forced convection and

(b) bulk boiling of the coolant. For the first, the bulk coolant

temperature is calculated from the table of enthalpy versus temperature,

while for the second case, it is taken as the saturation temperature. For

the bulk boiling case, the void fraction is calculated directly from the

quality, and the coolant density is derived from the void content and the

specific volumes of water and steam, while for the nonboiling case, the

coolant density is calculated directly from the specific volume of water.

A. Steam Quality and Void Fraction

The quality, x, of the active coolant in a flow channel is

calculated from

where

h = coolant enthalpy (Btu/lbm)

hsat = enthalpy of saturated water

hf9 = heat of vaporization.

The void fraction of a node is calculated from the average node quality

using Bankoff correlation [34].



a=O fo.rxO
a- x forx>O

VfC [x-1-- (1-x)]
Pg

where

= specific volume of saturated water

= specific volume of saturated steam

C0 = 1/[0.71 + 0.0001 p (psia)].

The density of two-phase mixture, p, can be related to the void fraction

by

p = (1 - a) Pf + a Pg

where

Pf = density of saturated water

p9 = density of saturated steam.

B. DNBR Calculation

Fuel elements must operate safely below the critical heat flux since

a heat flux in excess of the DNBR (Departure From Nucleate Boiling) may

result in fuel-element cladding failure.

For the range of interest for pressurized water reactors, the W-3

correlation [35] is applied to the burnout analysis of rod bundles.

qDNB,EU
= 106 * [(2.022 - 0.0004302 p) (0.1722 -

0.0000984 p)*exp((18.77 - 0.004129 p) x}]

* [(0.1484 - 1.596x + 0.1729x!xI) G/106 +

1.037]
* [1.157 - 0.869x]

* [0.2664 0.8357 exp(-3.151 De)]

* [0.8258 + 0.000794 (hsat - h)]
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where

qDB,EU = equivalent uniform channel

DNB heat flux, Btu/hr-ft2

p = pressure, psia (between 1000 and 2300 psia)

x = quality (between -0.15 and 0.15)

G = mass flux, lbm/hr-ft2 (between 0.5*106

and 5*106 lbm/hr-ft2

h = enthalpy, Btu/lbm (inlet h > 400 Btu/lbm)

De = channel equivalent diameter, in.

(between 0.2 and 0.7 in).

For a nonuniform heat flux, the above correlation is modified by

employing a correction factor

= qD8,EU / F

where

= DNB heat flux for the nonuniformly-heated channel

and

cj q (z)exp{-c(1D-z)]dz
F- °

11101 [1-exp(-clD)l

where

7.9
c = 0.44 (1 - xDNB) / (G/106)172 in.1.

= channel length at which DNB takes place, in.

II

qioca = heat flux at 1DNB' Btu/hr-ft2

z = variable distance from channel entrance, in.

XDNB = quality at DNB.
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The DNB ratio is calculated from

DNBR = qDNB, / q0cai

2.4.2 Treatment of Cross Section Feedback

The cross sections averaged over a volume element depend on

different local core thermal-hydraulic parameters, such as moderator

density, fuel temperature, and moderator temperature. Knowing the cross

section values at the nominal point, the transient behavior of the cross

section can then be represented as a function of the derivatives of

thermal-hydraulic parameters from the nominal point cross section values.

Feedback from the thermal-hydraulic equations to the neutronic equations

is accomplished by assuming that all macroscopic cross sections vary

linearly with moderator temperature, moderator density, and the square

root of the fuel temperature. The dependence of the cross section on the

thermal-hydraulic parameter is approximated by the inclusion of the first

derivative of the cross section in the following manner:

where

1

+ Ap + AT ATf2
ap 3T C

(2.4.5)
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p0, T0, TfQ = nominal moderator density, moderator temperature, and

fuel temperature

Ap = p - p0 = change in density from nominal value

AT = T - T0 = change in moderator temperature from nominal value
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AT112 = T1t2 TV2 = change in square root of fuel temperature fromf f 'fO

nominal value

3/0p = change in cross section with moderator density

8/3T = change in cross section with moderator temperature

3/aT'2 = change in cross section with square root of

fuel temperature.

Since our objective is to provide a simple but reasonably accurate

means of feedback without precisely modeling the behavior of cross

sections, the linear functional form of the cross sections is assumed to

be valid over the entire range of thermal-hydraulic variables. Therefore,

if the partial derivative of the macroscopic cross sections are known, the

thermal-hydraulic feedback model can be completely specified. The cross

section derivative terms in Eq.(2.4.5) are precalculated from cross

sections and are included as part of the cross section data. The (Ap, ATE,

AT'2) terms are derived from a heat balance calculation for each node and

are updated during each feedback pass.

The variation of fuel temperature mainly affects the fast

absorption, fission, and slowing down cross sections. Then, from

Eq.(2.4.5), the neutron parameters can be represented as
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(2.4.6)
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where the last term on the right side of each expression is the specified

variation of the neutron parameters that is initiated by human contro'

intervention.
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2.5 Results

The spatially- and temporally-discretized two-group finite

difference diffusion equations developed in Section 2.2, the TLAR

acceleration method derived in Section 2.3, and the thermal-hydraulic

model detailed in Section 2.4 are incorporated into a computer code,

hereafter referred to as OSUTRAN (Oregon State University Transient Code).

This computer code solves two- and three-dimensional, two-group diffusion

theory problems. The OSUTRAN program uses Gauss-Seidel iteration for the

inner iteration and fission source overrelaxation method for the outer

iteration.

OSUTRAN is written in Lahey EM/32 FORTRAN77 compiler. All

computations reported in this study were performed on a COMPAQ DESKPRO

386/25 personal computer.

In order to test OSUTRAN for a transient problem, some perturbation

of the critical configuration must be made to initiate a transient. This

perturbation can take any of several forms.

Perhaps the simplest mechanism for including a transient in a

critical reactor is to alter the position of the control rods. In the

method described in Section 2.2, control rod motions are modeled as

spatially-uniform changes in macroscopic cross sections within individual

nodes. This restriction is necessary since the spatial coupling

coefficients of Section 2.2 are obtained only for the case of uniform

material properties within a node.

For the sake of simplicity, the cross sections for a partially-

rodded node can be assumed to be the volume-weighted averages of the

fully-rodded and fully-unrodded nodal cross sections. This approximation
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will be erroneous, unless the neutron flux is spatially flat within the

node. In cases of where the flux is not spatially flat, the solution may

result in over or under prediction of the differential control rod worth.

Despite this shortcoming of the control rod model, it is incorporated into

the transient neutronics model.

The thermal-hydraulic model discussed in Section 2.4 allows two

additional mechanisms for inducing transients. Both the reactor coolant

inlet temperature and the coolant flow rate can be altered as a function

of time to induce a transient.

In this section the TIAR acceleration method is applied to a three-

dimensional LWR benchmark problem and a superprompt critical transient

problem. Appendix A presents the power calculation subroutine which uses

the TLAR acceleration method. The results of benchmark test calculations

are presented to demonstrate the overall computational efficiency of TLAR

acceleration method in comparison with a conventional two-group scheme.

2.5.1 The 3-D LMW Transient Problem

The 3-D LMW (Langenbuch-Maurer-Werner) test problem [36] is a

simplified LWR, shown in Figure 2.5.1. The problem is modeled with two

neutron energy groups, six delayed precursor groups, and quarter-core

symmetry. The reactor has two-zone core containing 77 fuel assemblies

with widths of 20 cm. The core is reflected both radially and axially

by 20 cm of water, and the active core height is 160 cm. Five control

rods are parked in the upper axial reflector, and four control rods are

inserted from the upper reflector to the axial midplane of the core.

The two-group diffusion theory parameters for each fuel assembly are



Reactor Horizontal Cross Section:
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Figure 2.5.1 Geometry of the LMW Reactor



Vertical Cross Section for Initial Control Rod Positions:

Figure 2.5.1 Geometry of the [MW Reactor (continued)
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Vertical Cross Section for Final Control Rod Positions:

Figure 2.5.1 Geometry of the [MW Reactor (continued)

43



Table 2.5.1 Macroscopic Cross Sections and Other Input Data

Material Properties:

ii = 2.5
v1= 1.25 x cm/sec
v2= 2.5 x cm/sec

Energy Conversion Factor:

3.204 x 10 W-sec/fission

Delayed Neutron Data:

Perturbation:

Control rod group 1 removed at 3.0 cm/s, 0 26.666 S

Control rod group 2 inserted at 3.0 cm/s, 7.5 t 47.5 S
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Mate-

rial

Group D
g

(cm) (cm1)
sg'g
(cm')

Lifg
(cm')

1 1 1.423913 0.01040206 0.01755550 0.006477691
2 0.356306 0.08766217 0.0 0. 1127328

2 1 1.423913 0.01095206 0. 01755550 0.006477691
2 0.356306 0.09146217 0.0 0. 1127328

3 1 1.425611 0.01099263 0. 01717768 0.007503284
2 0.350574 0.09925634 0.0 0.1378004

4 1 1.634227 0.002660573 0.02759693 0.0
2 0.264002 0.04936351 0.0 0.0

Precursor group, d Ad(sec)

I 0. 000247 0. 0127

2 0.0013845 0. 0317

3 0. 001222 0.115
4 0.0026455 0.311

5 0. 000832 1.40
6 0. 000169 3.87
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summarized in Table 2.5.1. The perturbation information is also found in

Table 2.5.1. The transient is initiated by withdrawing a bank of four

partially-inserted control rods at a rate of 3 cm per second.

Subsequently, a bank of five control rods (initially parked in the upper

reflector) is inserted at a rate of 3 cm per second. The resulting

transient is followed for 60 seconds.

Prior to examination of the actual transient solution accuracy and

computational efficiency it is enlightening to investigate the sensitivity

of the transient nodal solution to various parameters such as the number

of inner iteration per outer iteration and convergence criteria.

Experience shows that the convergence criteria for inner iterations

may not be too strict. If the number of inner iterations per outer

iteration is smaller, the number of outer iterations is increased.

However, there is no guideline for an optimal convergence criteria with

which the overall computing time is minimized. In light of this

experience, the general practice of performing one inner iteration per

outer iteration has been adopted.

Six OSUTRAN solutions with and without the TLAR acceleration scheme

to the LMW test problem are displayed in Table 2.5.2 through 2.5.4 along

with the reference solution of CUBBOX {36J calculations. These

calculations for quarter core geometry employed a convergence criterion of

for the outer iteration, mesh sizes of 10 cm for both radial and axial

directions (2340 meshes), and time step sizes of 1.0, 0.5, and 0.125

seconds. The CUBBOX calculation uses mesh sizes of 10 cm for 0 10

cm, 0 10 cm in radial direction, and 20 cm elsewhere (350 meshes)

and time step size At = 0.125 second.



Table 2.5.2 Core Power versus Time for the 3-0 LMW Test Problem
(Time Step Size At = 1.0 sec)

aAverage Power Density in W/cc
bReference Solution with Time Step Size of 0.125 sec
CComputing Time in Minutes on COMPAQ DESKPRO 386/25 PC
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Core Average Power Densities (% Error)a

Time
(sec)

With-
Acceleration

Without-
Acceleration ReferenceD

0.0 150.0 ( 0.0
)

150.0
( 0.0 ) 150.0

1.0 151.50 (-0.58) 151.42 (-0.64) 152.39

2.0 154.61 (-0.59) 154.51 (-0.66) 155.54

5.0 168.87 ( 0.47) 168.65 (-0.08) 168.79

10.0 201.48 ( 0.18) 201.06 (-0.02) 201.11

15.0 236.83 (-1.17) 236.14 (-1.46) 239.63

20.0 257.50 (-0.97) 256.60 (-1.32) 260.03

25.0 246.68 (-0.85) 246.38 (-0.97) 248.79

30.0 209.79 (-0.70) 209.68 (-0.75) 211.26

40.0 126.19 ( 0.58) 126.18 ( 0.57) 125.46

50.0 79.20
(

2.76) 79.22
(

2.79) 77.07

60.0 61.09 ( 3.64) 61.12
(
3.70) 58.94

CPUC 11.8 170.3 -



Table 2.5.3 Core Power versus Time for the 3-D LMW Test Problem
(Time Step Size At = 0.5 sec)

aAverage Power Density in W/cc
bReference Solution with Time Step Size of 0.125 sec
CComputing Time in Minutes on COMPAQ DESKPRO 386/25 PC
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Core Average Power Densities (% Error)a

Time
(sec)

With-

Acceleration
Without-
Acceleration Referenceb

0.0 150.0 ( 0.0 )
150.0

( 0.0 ) 150.0

1.0 152.15 (-0.15) 152.04 (-0.23) 152.39

2.0 156.01
( 0.30) 155.80 ( 0.17) 155.54

5.0 169.68 ( 0.53) 169.14
( 0.21) 168.79

10.0 202.25 ( 0.57) 201.52 ( 0.20) 201.11

15.0 237.63 (-0.83) 236.63 (-1.25) 239.63

20.0 258.34 (-0.65) 257.10 (-1.13) 260.03

25.0 247.42 (-0.55) 246.90 (-0.76) 248.79

30.0 210.39 (-0.41) 210.08 (-0.56) 211.26

40.0 126.51
(

0.83) 126.41 ( 0.76) 125.46

50.0 79.40
( 3.02) 79.34

( 2.94) 77.07

60.0 61.25 ( 3.92) 61.22
( 3.87) 58.94

CPUC 22.3 266.6 -



Table 2.5.4 Core Power versus Time for the 3-D LMW Test Problem
(Time Step Size At = 0.125 sec)

aAverage Power Density in W/cc
bReference Solution with Time Step Size of 0.125 sec
cComputing Time in Minutes on COMPAQ DESKPRO 386/25 PC
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Core Average Power Densities (% Error)a

Time
(sec)

With-

Acceleration
Without-
Acceleration Referenceb

0.0 150.0
( 0.0

) 150.0 ( 0.0 ) 150.0

1.0 153.58
( 0.78) 153.50 ( 0.73) 152.39

2.0 156.96 ( 0.91) 156.72 (
0.76) 155.54

5.0 170.44 ( 0.98) 170.10 ( 0.78) 168.79

10.0 202.95 ( 0.91) 202.42 ( 0.65) 201.11

15.0 238.37 (-0.53) 237.57 (-0.86) 239.63

20.0 258.05 (-0.76) 258.04 (-0.76) 260.03

25.0 248.17 (-0.25) 247.79 (-0.40) 248.79

30.0 211.00 (-0.12) 210.78 (-0.23) 211.26

40.0 126.87 ( 1.12) 126.81
( 1.08) 125.46

50.0 79.62
(

3.31) 79.59 ( 3.27) 77.07

60.0 61.42
( 4.21) 61.40

( 4.17) 58.94

CPUC 75.7 625.0 -
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If one compares the solutions using TLAR acceleration to the

solutions without TLAR acceleration, the maximum discrepancies are less

than 0.33%, 0.48%, and 0.39% for time step sizes At = 0.125 , 0.5, and 1.0

second, respectively. The discrepancies are believed to come from the

nature of the "iterative" solution method. Even for the same convergence

criterion (1O) the solutions which use TLAR acceleration have different

histories of convergence from the solutions without TLAR acceleration.

However, there is no reason to believe that one solution is superior to

the other. If a smaller convergence criterion value is used, the

discrepancies would be decreased further. This was considered to be

unnecessary at this time.

When compared to CUBBOX solutions, the errors of the 1.0 and 0.5

second time step OSUTRAN solutions (with or without TLAR acceleration) are

slightly less than those of the 0.125 second time step solutions (with or

without TLAR acceleration). However, the 1.0 and 0.5 second time step

solutions are not better temporally-converged than the 0.125 second time

step solution. Hence, in order to compare the accuracy of the OSUTRAN

solution method, the 0.125 second time step calculation is to be compared

to a CUBBOX reference solution. These results indicate that the OSUTRAN

solution is quite accurate during most of transient and has a maximum

error in mean power density of about 4.2% at the end of transient. The

reason for the apparent discrepancy seems to come mainly from control rod

cusping effects. OSUTRAN models the cross sections for a partially-rodded

nodes as the volume averages of the partially-rodded and partially-

unrodded nodal cross sections whereas CUBBOX can model more precisely the

partially-inserted control rods.
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Comparisons between the solutions with and without TLAR acceleration

show that when TLAR acceleration is employed, the computing time of the

conventional two-group scheme can be reduced eight to fourteen times

without sacrificing the computational accuracy. The TLAR acceleration

scheme can be applied to not only the finite-difference method which is

used for OSUTRAN but for various nodal methods in an attempt to reduce

computing time.

2.5.2 Superprompt Critical Transient Problem

A superprompt critical transient from low power is induced by the

rapid withdrawal of an asymmetric peripheral control rod. This problem is

a quarter-core BWR kinetics problem with two neutron energy groups and two

delayed neutron precursor families. The horizontal cross sections of a

reactor quadrant is shown in Figure 2.5.2. The reactor has four-zone core

containing fuel assemblies with widths of 15 cm. The core is reflected

both radially and axially by 30 cm of water, and the active core height is

300 cm.

The transient is initiated by withdrawing control rod (R) as shown

in Figure 2.5.2 at a rate of 150 cm per second. The resulting transient

is followed for 3 seconds.

The feedback model is specified fully by two relations:

1. adiabatic heatup

w[f1(r,t)1(r,t) + f2(,t)2(,t) J =T(,t)
at



Reactor Horizontal Cross Section:
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2. Doppler feedback

air,t) = 31(?,O) [1 +i(/T(,t) - IT0

where TL,t) is the fuel temperature, and w, -y, and T0 are known constants.

A complete problem description is contained in Table 2.5.5.

Two OSUTRAN solutions with and without the TLAR acceleration scheme

to this problem are displayed in Table 2.5.6. A plot of total reactor

power density as a function of time (solutions with the TLAR acceleration

scheme), is shown in Figure 2.5.3. These calculations employed a

convergence criterion of i0 for the outer iteration, mesh sizes of 15 cm

for radial and 30 cm for axial directions, respectively. Variable time

step sizes have been employed to this problem. The time step sizes are

defined as follows:

Time Interval Time Step Size
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If one compares the solutions using TLAR acceleration to the

solutions without TLAR acceleration, the maximum discrepancy is not

greater than 0.38% for power peaks and minimum. The discrepancies for

average and peak fuel temperature are less than 0.1%. These results

indicate that when TLAR acceleration is employed, the computing time of

the conventional two-group scheme can be reduced 9.3 times while

maintaining computational accuracy.

0.0 0.5 s 25 ms

0.5 t 0.6 s 10 ms

0.6 0.7 s 2.5 ms

0.7 0.8 s 1.25 ms

0.8 0.95 s 1.0 ms

0.95 1.0 s 2.5 ms

1.0 2.0 s 20 ms

2.0 3.0 s 25 ms.



Table 2.5.5 Two-Group Constants and Other Input Data

Material Properties:

ii = 2.43
v1= 3.0 x 10 cm/sec
v2= 3.0 x i0 cm/sec

Energy Conversion Factor:

3.204 x 10h1 W-sec/fission

Delayed Neutron Data:

Precursor group, d

1

2

Adiabatic Feedback Data:

(LI = 3.83 x 10h1 °K cm3

= 2.8 x i0 OKI2

T0 = 300 °K

Transient Initial Conditions:

Mean power density at t = 0, 106 W/cc
Fuel temperature at t = 0, 300 °K

Perturbation:

Control rod (R) removed at 150 cm/s, 0 2.0 s

0. 0054

0. 00 1087

Xd(sec)

0. 0654

1.35
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Mate-

rial

Group D9

(cm)

ag

(cm1)
sgg
(cm')

Lif9
(cm1)

1 1 1.255 0.008252 0.02533 0.004602
2 0.211 0.1003 0.0 0.1091

2 1 1.268 0.007181 0.02767 0.004609
2 0.1902 0.07047 0.0 0.08675

1 1.259 0.008002 0.02617 0.004663
2 0.2091 0.08344 0.0 0.1021

4 1 1.259 0.008002 0.02617 0.004663
2 0.2091 0.073324 0.0 0.1021

5 1 1.257 0.0006034 0.04754 0.0

2 0.1592 0.01911 0.0 0.0



Table 2.5.6 Summary of Results for the Superprompt
Critical Transient Problem

aRelative Error Between the Solutions with and without

with acceleration - without acceleration
TLAR acceleration (-

. )
without acceleration

bComputing Time in minutes on COMPAQ DESKPRO 386/25 PC

54

With-
Acceleration

Without-
Acceleration

Relative
Error

(%)a

Time to first peak (s) 0.849 0.849
Power at first peak

(W/cc) 5736.5 5730.2 0.11

Time to first minimum
(s) 0.939 0.939

Power at first minimum
(W/cc) 103.2 103.4 -0.19

Time to second peak (s) 1.400 1.400

Power at second peak
(W/cc) 291.1 290.0 0.38

Power at t = 3.0 s
(W/cc) 69.1 69.2 -0.14

Average fuel
temperature at
t = 3.0 s (°K) 951.7 952.1 0.04

Peak assembly fuel
temperature at
t = 3.0 s (°K) 4071.4 4074.4 0.07

CPUb 66.5 618.1
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2.6 Conclusions

The objective of this study was to develop an accurate and

computationally efficient method for solving the time-dependent, multi-

dimensional, two-group neutron diffusion equations with feedback.

Comparisons with conventional two-group scheme indicate that the TLAR

acceleration scheme is approximately one order of magnitude more

computationally efficient in transient applications.

Thus, the TLAR acceleration scheme has been demonstrated to be

highly efficient for multi-dimensional, two-group, transient LWR analysis.

This scheme is an appealing solution tool for various nodal methods

currently used in design and analysis of LWRs.

2.6.1 Recommendations for Future Improvements

During the course of this research, many interesting topics have

been left unsolved. This section contains a brief description of these

potential research areas.

In order to reduce the prediction error of a power

distribution which, in particular, comes from low order

difference approximations for the leakage term, a more

accurate nodal scheme such as the "discontinuity factor

method' would be advised. In this case discontinuity factors

for each node must be obtained for each time step.

If the validity of TLAR acceleration scheme is proved, the

TLAR acceleration scheme will be computationally more

efficient for multi-group problems than two-group problems.

For multi-group problems there is a need to investigate the
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scope of all thermal groups to which the TLAR acceleration

scheme can be effectively applied.

3 The control rod cusping problem requires additional work.

Representing the space-dependence of the cross sections within

a node seems overwhe1mngly complicated. If one determines

the equivalent homogenized parameters which properly predict

control rod effects in partially-rodded nodes, the rod cusping

problem could be solved without employing space-dependent

cross sections.
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Chapter 3

AUTOMATED CONTROL ROD PROGRAMMING IN BOILING WATER REACTOR

USING SEARCH TECHNIQUE

3.1 Introduction

Nuclear fuel management has been defined as the collection of

practices and principles required for the planning, scheduling, refueling,

and safe operations of nuclear power plants while seeking to minimize

total plant and system costs through the timely procurement of nuclear

fuel and related services. It can be divided into two major subareas:

out-of-core management and in-core management. Out-of-core fuel

management focuses major efforts on contracting and purchasing services

such as conversion, enrichment, fabrication, and spent fuel disposal. On

the other hand, in-core fuel management attempts to optimize nuclear fuel

utilization within the reactor core in order to meet the required

licensing and operational constraints and still maintain an economic

advantage.

In the case of boiling water reactor (BWR) in-core fuel management,

one of the most important tasks is to determine the control rod patterns

that maximize the cycle length under various operational constraints. A

BWR is equipped with 100 to 200 control rods that are gradually withdrawn

from the core during operation to compensate for reactivity variations.

Control rod patterns which include the depth distributions of these rods

determines the power and burnup distribution in the core. The power and

the burnup distribution control is one of the major concerns due to the

economic and safety requirements of reactors. If it is possible to attain

61
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higher burnups for the fuels discharged from the core by means of a

control rod programming, considerable reduction of power generation cost

can be achieved in a nuclear power plant. The control rod

insertion/withdrawal policy is determined to keep the actual power shape

as close to the target distribution as possible. The target power

distribution is uniquely determined to yield the maximum cycle energy with

a given fuel loading pattern.

Various techniques have been devised and applied to solve the

problems of power distribution control. In early years, control rod

programs were generated by trial-and-error methods. Programs were

repeatedly set up and tested using a core burnup simulator such as FLARE

[1] until a core-management engineer found the results satisfactory. Such

an empirical approach required lots of manpower and computing time, and

sometimes produced solutions which were far from an optimum.

Many researchers have been trying to apply optimization techniques

to this problem. Terney and Fenech [2] solved the problem of determining

an optimal sequence of control rod patterns for a two-region cylindrical

core by using dynamic programming. Wade and Terney [3] modeled the design

and operation of a nuclear reactor as an optimal control problem by

applying the maximum principle of a distributed parameter system to a one-

dimensional core. Motoda and Kawai [4] introduced a concept of phase-

space analysis in which general relationships among control rods, power

distribution, burnup, and cycle length were given geometrical meaning for

a two-region core. Snyder and Lewis [5] applied dynamic programming to

solve a one-dimensional axial control problem of the BWR for various cost

functions. Motoda [6,7] applied a method of approximation programming



(MAP) [8] to a one-dimensional multiregion slab reactor to optimi the

control rod density and the fuel loading pattern simultaneously. Since

these papers commonly simplify the core model, the degrees of control rod

freedom, and the variations of rod density, it is difficult to obtain a

control rod pattern for an actual three-dimensional core on the basis of

these analyses.

It is essential that a three-dimensional model is used as a tool for

core-management engineers. In recent years, a complete three-dimensional

core model has been adopted for control rod programming. Various formal

optimization procedures have been applied to this problem. Kawai et al.

[9] applied the MAP technique for generation of a long-term control rod

program algorithm in which the optimization problem is decomposed into

multiple intermediate-term programs. Hayase and Motoda [10] improved the

performance of the Kawai et al.'s work by implementing heuristics that

were derived from accumulated experience. In this heuristic method the

control rods are always split into two deep and shallow subgroups, and the

rods within each subgroup are moved in the same direction and over the

same distance. Tokumasu et al. [11] developed a mathematical programming

method as an alternative to the MAP. This technique is constructed of a

dual feasible direction (DFD) algorithm [12]. The DFD method determines

the direction of control rod movement at the approximate solution to

obtain a better approximated solution.

This chapter presents an efficient search technique for the

generation of optimum control rod patterns that can be applied to the

actual core-management of a BWR. In Section 3.2, the background of the

optimum control rod positioning problem is presented. The use of the
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steepest-ascent hill climbing search technique as a solution method is

discussed in Section 3.3. Results of test problems are included in

Section 3.4. Finally, a summary of this investigation and recommendations

for future research are given in Section 3.5.

3.2 Formalization for Optimum Control Rod Positioning Problem

3.2.1 Control Rod Programming

Control rod programming is a general term used for techniques in

which the amount of control rod withdrawal for actual operation is

determined. This program is found by considering both changes in nuclear

and thermohydraulic characteristics of the core following fuel burnup and

maximization of the cycle length. Control rod programming is very simple

in a pressurized water reactor since the reactor usually operates with all

rods essentially fully withdrawn. This is not the case in a BWR since

chemical shim control is not used; therefore a substantial number of

control rods are present in the core for most of core life.

The fuel loading pattern of the first cycle of the Edwin Hatch Unit

#2 reactor [13] was used as a reference for the control rod programming.

Its pertinent information can be found in Table 3.2.1. It consists of 548

fuel bundles and 137 control rods.



Nominal thermal output
Incore coolant flow rate
Nominal system pressure
Coolant saturation temperature
Average heat flux
Core inlet enthalpy
Active coolant flow area per assembly
Active fuel length
Assembly lattice
Maximum thermal output
Average thermal output
Number of fuel bundle
Number of control rods

2436 MW

7.7x107 lbm/hr
1035.0 psia
548.8 °F

145060. Btu/hr-ft2
526.9 Btu/lbm
15.82 in2

150. in

8x8
13.4 kW/ft
5.38 kW/ft

548

137
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Table 3.2.1 Design data for Edwin I. Hatch Nuclear Plant Unit #2

The core configuration of the reference reactor is shown in Figure

3.2.1. The control rods, which are cruciform types, are designated by a

'+' sign in Figure 3.2.1. In practice, about one-third of the control

rods are placed in the periphery as P group rods and are usually withdrawn

except during a nuclear scram. The remaining control rods are grouped

into A and B rods (designated by A and B in Figure 3.2.1). When control

rods in one group are partially inserted and are effectively in control,

those in the other group are completely withdrawn. Thus, if the rods in

group A are inserted, the reactor is said to be operating in the "A-

pattern." The "B-pattern" is defined in the same way as the "A-pattern."

The core is modeled as a one-fourth core with mirror symmetry.

In control rod programming, control rod patterns are examined by

dividing one cycle into a set of periods. Figure 3.2.2 illustrates

various kinds of control rod programs. At each of these periods, the

sequence of control rod patterns is changed from A to B or B to A. This

is done to flatten the exposure distribution.



Figure 3.2.1 Control Rod Position and Fuel Loading Pattern
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Figure 3.2.2 Classification of Control Rod Programming
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During the period, the control rods are gradually withdrawn to compensate

for reactivity depletion. Intermediate-term programming refers to the

power distribution control over this time period. The intermediate

pattern changes for one cycle are called long-term programming. The

intermediate-term programming determines the actual amount of control rod

withdrawal according to the operational program chosen for the long-term

programming. The period for the intermediate-term programming is usually

1 to 3 months. For the long-term programming economy throughout the cycle

must be considered.

In addition to the programs mentioned above, there are other kinds

of rod programs for startup and pattern changes. All these short-term

problems can be solved separately from the long-term problem by

considering instantaneous operational constraints.

The depletion of a reactor and corresponding movement of control

rods can be thought of as a multistage decision process in which the

control rod is withdrawn at the end of each depletion period to make the

reactor critical for the next step. The process may be visualized as in

Figure 3.2.3.
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PPF1 PPF2 PPFN1 PPFN

ML HG MLHGR2 MLHGRN1 MLHGRN

MCHFR1 MCHFR2 MCHFRN1 MCHFRN

AR2 A R

PPFN = Power peaking factor in the Nth stage

MLHGRN = Maximum linear heat generation ratio in the Nth stage

MCHFRN = Minimum critical heat flux ratio in the Nth stage

SN = State at the end of the Nth stage

ARN = Control rod motion for criticality in the Nth stage

Figure 3.2.3 Control Rod Programming Stages

The process begins at the beginning-of-life (BOL), at which time the

state of the reactor is S. Then poison is removed, denoted by AR1, which

results in rod motions, in order to bring the reactor to criticality. In

the critical configuration, flux, power, maximum linear heat generation

rate (MLHGR) and minimum critical heat flux ratio (MCHFR) calculations can

be made and the core reactivity depleted to the stage S1. Then control

rods are removed again (AR2) to return the reactor to criticality and the

procedure is repeated to the end-of-life (ELO). The problem is to choose

the optimum sequence AR1, AR2, .., ARM, satisfying the constraints, which

maximize the cycle length.

EOL

SN
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3.2.2 Optimization

The problem of optirnizatin of the control rod pattern is formulated

in order to find values of control variables such as rod positions that

maximize the cycle length within the given constraints. The cycle length

is a function of both state and control variables. The interrelations

between them are determined by the system equations. Mathematically, the

optimum control simply means that an objective function is minimized or

maximized. Control rod pattern optimization is often performed using core

performance indices that indirectly represent the power costs. The

performance index may vary depending on the characteristics of the

problem. The cycle length is the figure-of-merit [14] which is closely

related to performance index for the control rod programming length.

Haling [15] demonstrated that the cycle length could be extended if the

actual power distribution was kept as close to the target distribution as

possible. Thus the average of the squared difference sum between the

actual power distribution, denoted by P, and the target power

distribution, denoted by H, is chosen as the objective function in order

to evaluate the effectiveness of the control rod pattern. The

optimization problem is formulated as

minlinize J(R) (PJk-HJk)2 /L (3.2.1)
ijk

subject to nuclear and thermal-hydraulic constraints, where 3(R) is the

objective function of control rod pattern R, L is the total number of

reactor nodes, and i, j, and k designate node numbers for x, y, and z

axes, respectively.



3.2.3.1 Nuclear Constraints

A reactor must be critical during steady-state operation:

'target- )(P') 'target
+ E

where

= effective multiplication factor,

= tolerance factor.
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3.2.3 Constraints

The most important task of the fuel cycle engineer is probably the

evaluation of the power production capability of a reactor during each

operating cycle. The evaluation of the power production capability

requires the integration of many technical disciplines. A determination

of acceptable fuel operating limits requires a knowledge of fuel failure

mechanisms and the operating conditions that can lead to fuel failure.

The relationship between these mechanisms and the primary system operating

conditions is evaluated using the thermal and hydraulic characteristics of

the reactor, as well as the core neutronics characteristics.

All light water reactors have specified operating limits that are

established to assure integrity of the first fission product barrier,

i.e., the fuel and its cladding. There are generally two operating

constraints of importance to BWR's: nuclear and thermal-hydraulics

constraints.

(3.2.2)



72

3.2.3.2 Thermal-hydraulic Constraints

Many fuel operating limits are directly related to the maximum

linear power density of the fuel rod. For a given fuel rod diameter, the

peak fuel temperature, the surface heat flux, the decay heat generation

rate, and the stored thermal energy are proportional or approximately

proportional to linear heat generation rate of the fuel rod. The linear

heat generation rate (LHGR) is a direct measure of the thermal performance

of a fuel rod. It must be less than a prescribed maximum linear heat

generation rate (MLHGR) at all locations:

LHGR(R) MLHGRtarget (3.2.3)

A second operating limit in a BWR is the surface heat flux. If a

certain value is exceeded, the fuel rod surface is enveloped in a steam

blanket, the surface heat transfer coefficient is degraded, and the clad

temperature increases significantly above its normal operating value.

This value of heat flux is called the "critical heat flux" and it is a

complex function of fuel geometry, coolant pressure, coolant heat content,

coolant flow rate, and power distribution. The critical heat flux ratio

(CHFR) is defined as the ratio of critical heat flux to actual heat flux.

The CHFR must be greater than a prescribed minimum critical heat flux

ratio (MCHFR) value at all locations:

CHFR(R) MCHFRtarget (3.2.4)

The above constraints are usually part of the technical

specifications for a plant, and are therefore not subject to change

without an amendment to the operating license.
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3.2.3.3 Control Rod Movement Constraints

In addition to the operating limits described above, another

constraint frequently occurs when some of control rods are stuck;

stuck rod position: fixed.

3.2.4 Control Variables in System Equation

The system equations for control rod programming are determined by

any three-dimensional BWR simulator which has a power-void iteration

feature and which gives the power distribution, LHGR, and CHFR of each

fuel rod corresponding to a given control rod pattern. The core state is

determined by the flow rate, heat content, and pressure of the coolant, as

well as the control rod pattern. However, only the control rod pattern is

chosen as the control variable for the control rod program because the

other variables are always fixed at their prescribed design values during

normal operation.

3.2.5 Space-Time Decomposition

The number of control rods which are inserted during steady-state

operation is 49 for both the A-pattern and B-pattern in the reference

reactor. It is reasonable to postulate that one-eighth core symmetry is

preserved during operation. In such a case the number of rods in a

quarter core reduces to 10 for the A-pattern or 8 for the B-pattern.

Normally the average burnup in the cycle is 6 GWD/T, and the control rod

pattern is changed at every 1 GWD/T interval. This requires about six

different control rod patterns per cycle.

If the control rod pattern is solved for a given cycle, the number
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of unknown variables (the position values for each of the rods) is 54 (3

A-patterns per cycle times 10 rods per A-pattern plus 3 B-patterns per

cycle times 8 rods per B-pattern). If we consider such a large number of

unknown variables altogether, the system becomes very complex. A small

amount of control rod movement affects criticality and power distribution

of the core at present and future times. To relieve this complexity, the

space-time problem is composed of two stages: outer loop optimization and

inner loop optimization, as shown in Figure 3.2.4. The outer ioop

optimization modifies the time-invariant target power distribution to

minimize the control rods which are left in the core at the end of cycle.

The inner loop optimization determines the control rod positions which

minimize the mean square error of the power distribution from the target

power distribution at each burnup step. The inner loop optimization in

which time dependence is eliminated reduces the overall problem to six

small control rod pattern problems in which solutions are computed for

three A-patterns and three B-patterns. Thus, in this study, emphasis will

be placed on the inner loop optimization method.

3.2.6 Target Power Distribution

A very useful and widely applied principle of in-core fuel

management and control management is the Haling principle [15]. The

Haling principle states that there is a particular time-invariant power

shape and control strategy to realize the consistent power and burnup

distributions at the end of cycle. This power and burnup distribution is

called Haling distribution. In an actual BWR core it is impossible to

realize the Haling distribution, since the control rods are inserted from



Current core state

Target power
distribution

Determination of
optimized control
rod positions

Yes

Remaining 'N Yes

rods at EOC

Outer loop optimization

Inner loop optimization

No

Burnup calculation

Revised target
power distribution

Figure 3.2.4 Flow Chart of Control Rod Programming
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the bottom of the core and there is rio complete freedom in a three-

dimensional sense to distribute any amount of negative reactivity at any

place. It has also been revealed [4,7] that the Haling principle is not

always optimum but is usually near optimum. The Haling solution can,

however, be used as a target power distribution when planning control rod

patterning strategy.

The Haling distribution corresponding to a given initial fuel

distribution can be obtained by estimating an initial power shape and

iterating between power shape and exposure distribution.

3.2.7 BWR Simulator

The analysis of the burnup dependent static behavior of a reactor

core plays an important role in a control rod patterning problem. A BWR

simulator must have the ability to predict this behavior. For this

purpose, STORM {16] will be used. The code calculates three-dimensional

quarter core power distributions for a BWR, using a two-group diffusion

theory model. STORM accounts for the mutual interactions between the

power, fuel exposure, coolant flow, coolant void fraction, and equilibrium

xenon distributions. Control rod effects are also included. The Haling

solution option calculates the target power distribution for an operating

cycle.

The input to STORM consists primarily of a description of the core

geometry and fuel loading, control rod placement, core thermal-hydraulic

parameters, and tables of void and exposure dependent cross sections of

the fuel. Output includes the predicted core power distribution,

effective multiplication factor, coolant flow and void fraction
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distribution, power peaking factor, LHGR, CHFR, and the exposure

distribution at the end of each burnup step.

3.3 Steepest-Ascent Hill Climbing Method

3.3.1 Search Method

There is no definite solution to the control rod patterning problem.

An acceptable control rod pattern is determined by investigating many

trial solutions. The number of distinct control rod patterns a given

reactor may assume is given by

tN (3.3.1)

where

N = number of control rods in use during operation

p = the number of control rod positions in the axial direction

= notch values

t = number of unique control rod patterns.

When only considering the control rods which fill a quarter core (N=15 for

A-pattern or N=16 for B-pattern) and the notch values (p=24) the total

number of possible patterns is on the order of 2415 to 2416 !. The optimum

solution could be never found from this many combinations. It is

possible, however, to formulate a problem solving methodology to direct

the search and constrain the number of alternative patterns which are

considered. Thus the method, although no longer guaranteed to find the

best answer, will find a very good answer.

Direct search in the control rod patterning problem is an iterative

procedure of control rod pattern generation, evaluation, and selection

that guides the solution to find the control rod pattern which best
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minimizes the objective function within various constraints. The direct

search method employs heuristics to direct the search and constraints to

limit the number of configurations considered. These heuristics and

constraints applied on top of a general-purpose search method provide the

intelligence of the search. The search method used here is known as the

steepest-ascent hill climbing method [17] and is classified as a weak

search method [18].

Steepest-ascent hill climbing is a variant of generate-and-test in

which feedback from the test procedure is used to help the generator

decide which direction to move in the search space. At each step of the

steepest-ascent hill climbing search process, we select the most promising

stage from the list of the stages which can be generated from the current

state.

For the control rod patterning problem, the test function in a

generate-and-test procedure is the solution of the BWR simulator; this

solution requires a huge amount of computing time. However, if the test

function is augmented with a heuristic function that provides a good

estimate of how close a given state is to a goal state, then the test

procedure can rely on the test function instead of running BWR simulator.

This is particularly nice because often the computation of the heuristic

function can be done with very little computing time.

The history of steepest-ascent hill climbing search as it proceeds

from an initial control rod pattern to each succeeding pattern

configuration may be imagined as a graph containing nodes corresponding to

states (Figure 3.3.1). The nodes of this state space graph are linked

together by arcs that represent the moves that transform one control rod
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pattern to another. Initially there is only one node. This node is

expanded to generate three new nodes. The heuristic function, which, in

this example, is an estimate of the minimum critical heat flux ratio of a

given node, is applied to each of these new nodes. Since node B is the

most promising, it is expanded next, producing two successor nodes, E and

F. At the next step, F will be expanded, since it is the most promising.

This process continues until a solution is found.

Figure 3.3.1 A Steepest-Ascent Hill Climbing Search Step

3.3.2 System Equations

Since only the control rod pattern is chosen as the control variable

for the control rod program, the state of a BWR core for a given fuel

distribution can be described as a function of control rod depth. The

number of control rods belonging to one control rod pattern is divided

into n elements and the rod depth of each element in that pattern is
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denoted by r. Thus one control rod pattern is represented by a set of rod

depths r. For an actual core, r takes inter notch value of between 0 and

24, which indicates that control rod is fully withdrawn and fully

inserted, respectively. Using rod depth quantities as input variables,

the reactor state can be expressed as

C = f(R) (3.3.2)

where

C = reactor condition vector, (c1, c2, .., c)

R = control rod depth vector, (r1, r2, .., r)

where the superscript 2 stands for the parameters 3, ), LHGR, and CHFR in

Eqs. (3.2.1) through (3.2.4). Once the core nominal quantities such as

core flow, core inlet temperature, etc. are selected for analysis, control

rod patterns are described by these input variables, and all relevant

output variables are expressed by elements of C in Eq. (3.3.1).

3.3.3 Control Rod Pattern Generator

The control rod pattern generator applies all possible control rod

moves to a particular control rod pattern and thereby generates successor

control rod patterns. Unless the moves are restricted, the search space

is unmanageable. A reasonable use of heuristics and constraints on the

moves can result in considerable reductions in the search. By specifying

one-eighth core symmetry and only one notch position change for each

control rod move, all the possible successor control rod patterns can be

examined within a reasonable amount of time and the search space can be

greatly diminished. For example, the total number of successor control

rod patterns generated at each search step is reduced to at most 310
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(59059) instead of 2415 and
38

(6561) inscad f 2416 for the A- and B-

patterns, respectively.

3.3.4 Control Rod Pattern Tester

The control rod pattern tester uses heuristic strategies to select

the most appropriate pattern from the list of the control rod patterns,

which are created by the control rod pattern generator by evaluating the

reactor condition vector. The heuristic strategies will be discussed

later in this section.

The reactor condition vector which contains the performance index

function (J(R)) and the constraint functions (A, LHGR(R), CHFR(R)) is a

nonlinear function of the control rod depth. The behavior of these

functions with the change in the control rod pattern R is obtained only by

the core simulator and is not given explicitly. However, due to simulator

computing time it is practically impossible to solve for these functions

when the core simulator is used exclusively.

According to simulations, however, those functions vary linearly

with at least one or two notch changes of each control rod depth. It can

be therefore assumed that linearity exists for the small number of notch

changes of multiple control rods. From this assumption the simulation for

the test procedure can be converted into a linearized problem using the

MAP technique. The following approximation is used for this purpose:

C = C0 + VC(R0)t (R - R0) (3.3.3)

where subscript 0 refers to a current value, V stands for the gradient

over the rod depth vector, and superscript t denotes the transpose of a

vector.
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A search using sensitivity data, which is the measure of the

dependence of each element of reactor condition vector on the depth change

of each rod, greatly reduces the number of simulator runs needed for the

test procedure. By changing the rod depth r one by one around a reference

control rod pattern (current pattern in search space) independently,

sensitivity data can be obtained using the simulator:

S = Ac / Ar (3.3.4)

where superscript 2 stands for J, A, LHGR, and CHFR. Since the notch

change of the each control rod depth, Arm, is set to ±1 ('+' sign refers

to rod insertion while '-' sign stands for rod withdrawal) and the total

number of control rods per pattern is denoted by N, a total of 2N

simulations are required for obtaining sensitivity data. If the

simulation solutions of the current reference pattern are used as initial

guess solutions for sensitivity calculations, the convergence of the

simulation scheme can be accelerated, and the total computing time can be

greatly reduced.

Using Eqs. (3.3.3) and (3.3.4), the objective function and the

nuclear and thermal-hydraulic constraints can be modified as heuristic

functions that guide the search by evaluating each individual state. For

rod depth change Ar the heuristic functions are given as

J = SAr,., + (3.3.5)

A = SAr A0 (3.3.6)
n =1
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where is the total number of monitoring points. These monitoring

points, i.e., the number of nodes, is 3360: 140 fuel bundles (for ½ core)

x 24 axial segments (notches). However, the constraints need only be

monitored at points where the thermal margin is small. This can cause

considerable reduction in the test procedure. Such monitoring points are

determined at a reference control rod pattern. Nodes where normalized

power density is greater than half of peak value or where the CHFR is less

than 3.0 are selected as monitoring points. On the average monitoring

points can be reduced to half by this selection process. The critical

points for LHGR and CHFR of the resulting power shape are very likely to

lie in these monitoring points.

The steepest-ascent hill climbing method usually searches for the

direction that shows the greatest improvements for all of the heuristic

functions combined. Such improvements are the combination of the

fractional improvements of each heuristic function. The weights given to

individual heuristic functions are chosen in such a way that the value of

the heuristic functions at a given node in the search process gives as

good an estimate as possible of whether that node is on the desired path

to a solution.

N
LRGRm

MLHGR=rnax{
n =1

S Ar,, + LHGR0}, m=1,2, . ..,M1, (3.3.7)

N
CHERm

MCHFR=niin{
n =1

S,, Ar + CHFR0}, m=1,2, . . .,M (3.3.8)
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The steepest-ascent hill climbing is composed of four heuristic

search strategies. Each strategy is activated depending on thermal-

hydraulic constraints values of current reference control rod pattern

denoted by Rref If a strategy fails to generate a pattern, an alternate

strategy is applied to continue to search. The alternate strategy is used

as a way of dealing with problems such as local maxima, plateaus, or

ridges that can happen in hill climbing. The four search strategies are

summarized as follows:

1. Search strategy I

Condition: MLHGR(Rref) > MLHGR9 and MCHFR(Rref) <

Search direction: The direction that shows the greatest

improvements for MLHGR as long as the nuclear

constraint is satisfied and the radial and

axial power peaks are reduced.

Background: As a general rule, 3 is reduced and MCHFR is

increased as PPF, which is proportional to MLHGR,

is reduced. However, reduction of PPF sometimes

deteriorates MCHFR. Since MCHFR usually occurs in

the upper part of the assembly at which the

integrated assembly power is greatest, the steam

quality is high, and the critical heat flux is small,

a reduction in radial and axial power peaks tends to

improve MCHFR.

Alternate strategy: none.

Further explanation for the search direction is necessary. Using

Eqs.(3.3.3) and (3.3.4) the radial and axial power distributions, denoted



85

by Pr and respectively, are modified as heuristic functions that

determine the radial and axial power peaks referred to PPr and pp1,

respectively.

For rod depth change Ar the heuristic functions for the PPr and pp

are given as

N
Pr

PPr111{ Sn 1Ar + pr0' iJ =1,2, . . , IJ
fl r

N
P k

pp=niax{ S, Ar + k1,2, . . . ,K

n =1

(:3 . 3 . 9)

(3.3.10)

where IJ and K are the total monitoring points in radial and axial

directions, respectively.

Search strategy II

Condition: MLHGR(Rref) < MLHGR9 and MCHFR(Rref) < MCHFRtarget

Search direction: The direction that shows the greatest

improvements for MCHFR as long as the nuclear

and MLHGR constraints are satisfied.

Background: Generally, J is reduced as MCHFR is reduced.

Alternate strategy: strategy I.

Search strategy III

Condition: MLHGR(Rref) > MLHGRtarget and MCHFR(Rref) > MCHFRtg:

Search direction: The direction that shows the greatest

improvements for MLHGR as long as the nuclear

and MCHFR constraints are satisfied.

Background: Generally, J is reduced as MLHGR is reduced.
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Alternate strategy: strategy II.

4. Search strategy IV

Condition: MLHGR(Rref) < MLHGRtg and MCHFR(Rref) > MCHFRg

Search direction: The direction that shows the greatest

improvements for J as long as all constraints

are satisfied.

Background: Since all constrints are satisfied, J is minimized.

Alternate strategy: strategy III.

The heuristic search method based on these strategies is extensively

used in guiding the search for the optimum solution. Depending on the

type of strategy, the search is made in the direction of maximum

improvement for a particular heuristic function as long as other heuristic

functions are improved or satisfied.

3.3.5 Search Solution Algorithm

Employing the control rod pattern generate-and-test procedure which

was described before, the overall optimization procedure illustrated in

Figure 3.3.2 consists of the following steps:

Select an initial control rod pattern, R = (r10, r20, .., r0).

Calculate sensitivity data using the simulator (Eq. 3.3.4) and

changing the control rod depth r : r - r + Arm.

Generate new control rod patterns by changing the control rod

depth r : - + Arm.

Test patterns by applying the proper strategies discussed before.

Check that the selected control rod pattern is unique.

Shift the reference rod pattern to the new one : R0 - R) + AR0.
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Run three-dimensional simulator.

Repeat steps 2 to 7 until a suboptimal solution is found.

In relation to procedure 4, more explanation would be necessary. If a

particular strategy fails to find any control rod pattern that satisfies

the conditions listed, then the nuclear constraint is temporally relaxed

and the search is made to find alternative control rod pattern with the

relaxed nuclear constraint. After the alternative pattern is found, the

nuclear constraint recovers its initial setting value. For Strategy I

constraints on radial and axial power peaks are also relaxed if it fails

with relaxed nuclear constraints.
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3.4 Results

A computer code, Optimum Control Rod Pattern Searcher (OCRPS), has

been developed for the generation of an optimum control rod pattern for a

given fuel loading pattern. This code employs heuristic search strategies

discussed before and data from the reference BWR. OCRPS is written in

Lahey EM/32 FORTRAN77 compiler. Appendix B presents the sensitivity data

calculation, control rod pattern generation, and control rod pattern

evaluation subroutines. All computations reported in this study were

performed on a COMPAQ DESKPRO 386/25 personal computer.

In order to test OCRPS for a control rod problem, a guess of the

control rod pattern must be made to initiate the search. This initial

pattern can take any form but the choice of initial patterns affects the

solution performance. The initial control rod pattern can be determined

arbitrarily, but reasonable estimates from accumulated experiences can

facilitate the overall convergence.

Without the benefit of any reasonable estimate from previous

experience, the initial control rod pattern is selected in a way that all

control rods are inserted the same distance in the core to satisfy only

the nuclear constraint. This preparation for initial rod pattern can be

easily done by several simulator runs.

For examining the validity of the OCRPS, test calculations are

performed on the reference core along with the constraints and the design

data listed in Table 3.4.1. Two different values, 0.003 and 0.005, are

used for the normal and relaxed tolerance factors for nuclear constraint,

respectively. Tolerance factors for radial and axial power peaking are

0.03 and 0.05, respectively.



Table 3.4.1 Constraint and Tolerance Data

Power peaking factor 2.2
MLHGR 13.4 kW/ft
MCHFR 1.9

Nuclear tolerance factor
0003a

or
0005b

Radial power peaking tolerance factor 0.03
Axial power peaking tolerance factor 0.05

alnitial tolerance value
bRelaxed tolerance value

Using data listed above and initial guess patterns, a series of the

optimum control rod pattern of six exposure steps (5, 6, 7, 8, 9, and 10

GWD/T) are illustrated in Fig. 3.4.1 through 3.4.6. Two-group cross

section data were available for 0, 5, and 10 GWD/T burnups [19].

Unfortunately, cross sections for 0 GWD/T burnup were not suitable for

test calculations since criticality could not be achieved with these cross

section data. It would seem that the cross section data were not

generated properly. However, the accuracy of cross section is not

extremely important for the nature of this research.

Instead, cross sections for 5 and 10 GWD/T burnups were used for

test calculations. Two-group cross sections for 6, 7, 8, and 9 GWD/T

burnups were obtained by linear interpolation. Insertion depth for each

rod is given for a quarter core using a conventional notch unit. The

optimization is performed for a given burnup step, and no coupled effects

between burnup steps are considered. The convergence of J, PPF, and MCHFR

are also illustrated in Figure 3.4.1 through 3.4.6. The convergence of

MLHGR is equivalent to that of PPF. The iterative search procedure with

sequential improvements in the control rod pattern has been found to

converge rapidly. In general, as the search goes on, the 3 is improved

and the other two parameters are also improved and finally satisfy
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5.0 GWD/T: A-pattern
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Figure 3.4.1 Example of Search Process of OCRPS (5.0 GWD/T)
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6.0 GWD/T: B-iattern
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Figure 3.4.3 Example of Search Process of OCRPS (7.0 GWD/T)
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8.0 GWO/T: B-pattern
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9.0 GWD/T: A-pattern
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10.0 GWD/T: B-pattern

>2
1.5

0.5

0
0 2 6 8 10 12 14 16 18

Search number

Figure 3.4.6 Example of Search Process of OCRPS (10.0 GWD,/T)

96

(Guess)

16 16 16

(Optimum)

16 18

16 16

16 16

16

16

16 0

0 17

10

3

6 16

16

6 16

16

16 > 18 17

10 0

0

24:

0: fufl out
full in

kW/ft

1.0030
2.0062
10.793
2.3819
0.1776

kW/ft

A = 1.0001
PPF = 4.5132
MLHGR = 24.281
MCHFR = 1.1017
J = 1.9550 J

A =

PPF =

MLHGR =
MCHFR =

=

4.5

PPF

3.5 MCHFR

-*-
J

3

2.5



97

constraints as expected.

The above examples show that the steepest-ascent hill climbing

method using heuristic search strategies works well when started from an

unfeasible initial guess pattern. Most of initial control rod patterns

have extremely deteriorated J as well as PPF and MCHFR. For example the

J of the initial control rod pattern for 10.0 GWD/T burnup is 1.9950,

which means that on the average the difference between initial pattern

power distribution and target power distribution for each node is 1.3982

(T1.995O). This method always finds a optimum solution. No oscillation

or divergence of solution has been observed.

Table 3.4.2 lists )., PPF, MLHGR, MCHFR, and J of the optimum control

rod pattern for each burnup step. Table 3.4.2 also summarizes total

number of search steps, the total computation time required for obtaining

the optimum control rod pattern, for calculating sensitivity data,

generating and testing patterns, and running the 3-D simulator.

As can be seen in Table 3.4.2, more than 76% of the overall

computation time is spent on calculating sensitivity data. The total

computation required for generating and testing A-patterns is much greater

than B-patterns. This is due to the size of the search space.

The overall computing time for obtaining a series of optimum control

rod patterns is 3112 minutes (51.9 hrs). Since one simulator run requires

approximately 2.93 minutes, the overall computing time is equivalent to

1062 simulator runs.

The overall computing time (3112 minutes) is estimated to be

equivalent to 41.5 minutes on a CRAY XMP/SE, which is about 70 times fast

than a COMPAQ DESKPRO 386/25 personal computer. This shows that running
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OCRPS on a CRAY XMP/SE can result in substantial savings in engineering

man-hours.

Table 3.4.2 Summary of Results of the Optimum Control Rod Pattern

*

kW/ft

Total Number of Search Steps
Total Computation Time for Calculating Sensitivity Data (Mm.)
Total Computation Time for Generating and Testing Patterns (Mm.)
Total Computation Time for Simulator Runs (Mm.)
Overall Computing Time for Obtaining Optimum Control Rod Pattern
(= (b) + (c) + (d)) (Mm.)

The largest and smallest mean differences between the optimum

control rod pattern power distribution and the corresponding target power

distribution for each node ([J) are 0.4593 at 8.0 GWD/T burnup and 0.3608

at 9.0 GWD/T burnup, respectively. This indicates that the power

distributions of the optimum patterns fit target power distributions well.

Burnup (GWD/T) Overall
Burnup

5.0 6.0 7.0 8.0 9.0 10.0 Steps

Control

Rod Al Bl A2 B2 A3 B3

Pattern

A 1.0039 0.9952 0.9976 1.0025 1.0045 1.0030
PPF 2.1985 2.0159 2.1368 2.1668 1.9449 2.0062

MLHGR* 11.828 10.845 11.496 11.657 10.464 10.793
MCHFR 2.0463 2.0653 1.9120 1.9298 1.9992 2.3819

J 0.1692 0.1448 0.2046 0.2110 0.1302 0.1776
0.4113 0.3805 0.4523 0.4593 0.3608 0.4214

(a) 8 19 11 16 23 16 93

(b) 244. 456. 332. 335. 677. 329. 2373.

(c) 86. 13. 53. 16. 288. 9. 465.

(d) 23. 58. 31. 47. 66. 49. 274.

(e) 353. 527. 416. 398. 1031. 387. 3112.
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3.5 Conclusions

The objective of this study was to develop an efficient method for

solving control rod positioning problem in BWRs. By using the steepest-

ascent hill climbing search with heuristic strategies, a practical

solution method, OCRPS, is developed.

The test calculations have demonstrated that, for the reference BWR,

OCRPS shows excellent performance for finding a series of optimum control

rod patterns for six burnup steps during an operating cycle. Computing

costs are modest even if the initial guess patterns have extremely

deteriorated core characteristics. Thus, OCRPS has proven to be an

appealing solution tool for in-core fuel management of BWRs.

The report is not a final evaluation of OCRPS; evaluation of the

code should continue as more control rod pattern applications are

attempted.

3.5.1 Recommendations for Future Improvements

During the course of this research, many interesting topics have not

been investigated. This section contains a brief description of these

research areas.

1. Computation time can be reduced further. More than 76% of the

time is spent on calculating sensitivity data using the 3-D

simulator. Improved methods should obtain the perturbed power

distribution to a small change of control rod position in less

time. In particular, if the TLAR acceleration scheme can be used

to calculate the perturbed power distribution, the computing time
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will be greatly reduced.

Much of the information accumulated throughout operating

experience and theoretical work should be utilized in heuristic

rules for the search strategy in order to facilitate the search

process by discarding non-optimum paths without exploring them.

An expert system which has an interactive graphics environment

and an explanation capability can be developed to provide a user

with a trace or display of system operation.
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Chapter 4

A POLYNOMIAL FLUX EXPANSION METHOD

FOR PIN POWER RECONSTRUCTION

4.1 Introduction

Finite difference methods are commonly used as a standard

computational technique for calculation of the spatial power distribution

required for the design and analysis of light water reactors. However,

the real disadvantage of finite difference methods is that very fine

spatial meshes are required to achieve acceptable accuracy. Thus, even

with present-day high speed digital computers, the finite difference fine-

mesh calculation remains prohibitively expensive for large water reactors.

In recent years, more sophisticated theoretical methods have been

developed. In particular, the nodal equivalence theory devised by Koebke,

K. [1] and later modified by Smith, K., et. al. [2], has been demonstrated

to be at least two orders of magnitude more computationally efficient than

finite difference schemes.

In many reactor calculations, global quantities such as keff and

average assembly power distributions are of primary importance. In such

a case, coarse-mesh nodal methods become more attractive than fine-mesh

finite difference methods.

However, several reactor studies such as the determination of power

peaking factors or thermal-hydraulic analysis of the hottest channels in

an assembly, require detailed knowledge of pin-cell powers. Coarse-mesh

nodal methods cannot be directly and efficiently applied to calculate this

detailed information. A fundamental drawback of conventional coarse-mesh

103
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nodal methods is the loss of detailed flux and power distributions within

the coarse-mesh nodes. In order to enlarge the scope of the nodal

schemes, there are strong incentives to develop computationally efficient

methods to calculate fine-mesh point fluxes and powers from a global nodal

solution.

Several methods to reconstruct, from nodal solutions, the fine-mesh

flux and power, have been developed by Koebke, K., et. al. [3,4,5], Smith,

K., et. al. [6,7], Jonsson, A., et. al. [8], and Liu, Y. S., et. al. [9].

These methods are based on the assumption that the fine-mesh point flux

(heterogeneous flux) can be expressed as the product of an intra-nodal

flux distribution and an assembly form function. The difference between

reconstruction methods arises primarily from the approximations used to

construct the intra-nodal flux distributions and the manners in which the

assembly form function is obtained.

The objective of this study is to develop an accurate and

computationally efficient method for reconstructing two-dimensional fine-

mesh flux shapes and power distributions from coarse-mesh nodal solutions.

By employing an approximation for the spatial shape of the intra-nodal

flux distributions, the least square second-order polynomial flux

expansion method is developed for the reconstruction of fine-mesh flux and

power distributions. The basic assumption of this method is that the

reconstructed flux can be expressed as a product of an assembly form

function and a second-order polynomial function which represents the

intra-nodal flux distribution. The assembly form function is calculated

by solving an assembly criticality calculation. The polynomial function

is determined by minimizing the least-squares difference between the
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intra-nodal quantities obtained from the global two-dimensional coarse-

mesh nodal solutions and those obtained from the evaluation of the

polynomial function.

This study discusses the method and results of polynomial flux

expansion for reconstruction of fine-mesh flux and power distributions in

a two-dimensional core. In Section 4.2, the derivation of the two-

dimensional polynomial flux expansion method is presented. Section 4.3

presents the accuracy and computational efficiency of the polynomial flux

expansion method when applied to the two-dimensional PWR benchmark

problem. Finally, a summary of this investigation and recommendations for

future research are given in Section 4.4.
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4.2 Derivation of the Two-Dimensional Flux Reconstruction Method

In this section, a method for reconstruction of flux shapes from

two-dimensional reactor geometry is discussed. This method is capable of

calculating fine-mesh, two-dimensional flux distribution and thus the

reactor pointwise power distribution.

Within any reactor node, the reconstructed flux may be expressed as

the product of a second-order polynomial function and an assembly form

function. The assembly form function is obtained by a series of local

fine-mesh, two-dimensional criticality calculations. The coefficients of

the second-order polynomial will be obtained by the node volume averaged

flux, the 4 face-integrated fluxes, and the 4 face-integrated currents.

The unknown polynomial coefficients are determined by forcing the 9 iritra-

nodal quantities to match by a least-square approximation the

corresponding values of the polynomial.

4.2.1 Global Reactor Analysis

The Boltzmann transport equation governs the neutron population

behavior inside a nuclear reactor. Unfortunately, for realistic reactor

configurations, an exact solution of the transport equation is

prohibitively time intensive, therefore, approximations of the transport

equation are normally used. For light water reactors, multigroup neutron

diffusion theory is the most widely used of these approximate methods.

For this model, the static multigroup neutron diffusion equation can be

written as



VSDg(f)V4g(f) +Etg(f)g(f) =

/ (f)]4gi(f)ig sgg
g'=l

g=1,2, . . .,G

where

= neutron flux in group g

D9 = diffusion coefficient for group g

tg = total cross section for group g

= v-fission cross section for group g

sg'g = group-transfer cross section

= eigenvalue

= fission neutron spectrum in group g

g, g' = energy groups.

(4.2.1)
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4.2.2 Derivation of the Two-Dimensional

Polynomial Flux Expansion Method

The global reactor problem is treated in two-dimensional Cartesian

geometry, where x and y represent the two coordinate directions. The

reactor spatial domain, DR, is first partitioned into large rectangles,

called nodes. Each node is specified by the indices (i,j) corresponding

to thecenter of node. The coordinates of nodal boundaries in x-direction

is given by x1 and The nodal spatial domain, for node (i,j) is

defined by

= ( x E [x,x+] and E [y,2,y+12] ). (4.2.2)

The basic assumption of the two dimensional second-order polynomial

method is that within any nodal spatial domain D, and for neutron group
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g, the reconstructed flux (x,y) can be expressed as the product of a

two-dimensional assembly form function, b(x,y) and a second-order

polynomial function, p(x,y). Thus,

(x,y) = (x,y) . p(x,y) (4.2.3)

where

(x,y) = reconstructed(locai heterogeneous flux) function for

group g and node (i,j)

(x,y) = assembly(heterogeneous) form function for group g and

node(i ,j)

p(x,y) = second-order polynomial function(global homogenized flux

distribution) for group g and node (i,j).

The reconstructed power distribution is then calculated from the

group-wise reconstructed flux, (x,y), and v-fission cross sections:

where

G = total number of energy groups

r(x,y) = reconstructed pin power in node.

The assembly function, (x,y), can be obtained by solving the

multigroup neutron diffusion equation by a fine-mesh, two-dimensional

assembly criticality calculation with appropriate boundary conditions.

The usual choice for assembly calculations is zero net current at the

boundary. Such fine-mesh criticality calculations can be performed with

an existing finite difference computer code, for example, 2DB [10J.

G
ii

V (X,Yg (x,y)
g=1

(4.2.4)



= rYj/2 j (x1112, y) dy
J y-1/2

s2 * fXi+i/z (x,y112)
X1_112

(4.2.6)

(4.2.7)

log

The polynomial function, ( ,y), can be written as

p(x,y) axmyn (4.2.5)

Since no separability is assumed, there are 6 independent polynomial

coefficients, for each neutron group, g, and node (i,j). Once these

polynomial coefficients are obtained, the reconstructed flux, (x,y), can

be easily computed by using Eqs. (4.2.5), (4.2.4), and (4.2.3). In order

to determine such coefficients, it is required to impose, for each group

and node, 9 intra-nodal conditions on the polynomial function. Since the

intra-nodal flux distribution, in general, can not be expressed by a

finite order of polynomials, the p3(x,y), appearing in Eq.(4.2.5) is an

approximate solution for the intra-nodal flux distribution.

4.2.3 Determination of Polynomial Coefficients

When the intra-nodal flux distribution is given, the face-integrated

flux, face-integrated current, and the node-averaged intra-nodal flux

shown in Figure 4.2.1 can be expressed by the following equations:



YJ+l/2 -

Yj -1/2

1/2

,s1* As2* ,s3*
'P9 'Pg

1s1* 1s2* 1s3*
Jg Ug

,.s2* Js2*
Wg 9

t,s4* 1s4*
g

4--
1s3*

g

= face-integrated fluxes for surfaces

1, 2, 3, and 4, respectively

3s4*
= face-integrated currents for surfaces

1, 2, 3, and 4, respectively
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g
= node-averaged intra-nodal flux

Figure 4.2.1 Nodal Quantities in a Node



where

Wg

1sa*
g

ri.1J2
g

J Yj - / 2

s3*_ fYji/2
Jg j Yj -1/2

s4*_ rxi/2Jg jX - 1/2

= volume of node (i,j)

= face-integrated flux (=1,...,4)

= face-integrated current (a=1,...,4)

4(x,y) = intra-nodal flux distribution

(x11,Y) dy

fX1.i/2
(x, y1112

X1 -1 / 2

JS1cfYi1/2Di
a (x1,y) dy

Yj-l/2 a
g

Js2*_fXi1/2 D2 a
X11/2 Y

a (x1+1/2, ) dyg ox g

a
g g (x,y172)dx

ij*1fXi+l/2 fYj+l/2jj (x,y) dydx
X11/2 Y-:2

)dx (4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)

(4.2.14)



fY:/ pJ
(X+1/2, ) dy

yj-112

g
fYJ.i/2 D3 a- Pg (x11/2,y)dy

dxYy/2

112

= nodeaveraged intra-nodal flux.

Even if detailed information about the intra-nodal flux distribution

is unknown, the face-integrated flux, (a=1, . . . ,4), face-integrated

current,
JSa*

(a=1,...4), and node-averaged intra-nodal flux,
J*

can be

obtained from a global two-dimensional nodal solution, for example, STORM

[11:1.

Since the polynomial function, p(x,y), is an approximate solution

for the intra-nodal flux distribution, (x,y), which is unknown, the

group intra-nodal quantities defined as above can be reproduced for each

group and node by substituting the polynomial function, p(x,y), for

(x,y) into Eq.(4.2.6) through Eq.(4.2.14).

fY+:/2 pi (x11/2,y) dy (4.2.15)

s2 fXi/2 (x,y+1/2) dx (4.2.16)

(4.2.17)

(4.2.19)

s4 fx1.!2 pJ (x,y1/2) dx (4.2.18)



where

sa
= approximate face-integrated flux (a=1,.. .,4)

JSa+
= approximate face-integrated current (c=1,. . .,4)

1J+
= approximate node-averaged intra-nodal flux.

Since the approximate intra-nodal quantities expressed in

[q.(4.2.15) through Eq.(4.2.23) will not exactly be the same as the real

intra-nodal quantities represented in Eq.(4.2.6) through Eq.(4.2.14), we

define the error function as the sum of differences between the real

intra-nodal quantities and the approximate intra-nodal quantities:

9

E = [u - (4.2.24)
k= 1

where

E = error function

fX'+/2 Dii a (x, YJ1/2) dx
1-1/2 Y

aJg - D3 p (x,y112)dxs4+

1 fX2 fYj.1/2 ' (x,y) dydx
Vjj x1_112 Y_i

(4.2.20)
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(4.2.22)

(4.2.23)

J3 +

=i'::'-:'i
(x1112, y) dv (4.2.21)
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= intra-nodal quantities defined in Eq.(4.2.6) through

Eq.(4.2.14), (k=1,.. .,9)

u = intra-nodal quantities defined in Eq.(4.2.15) through

Eq.(4.2.23), (k=1,..,9).

The error function is to be minimized using a least-squares

calculation to determine the polynomial coefficients for each node and

group:

0 (4.2.25)

where m=O,1,2, n=0,1,2, and m+n2.

This procedure minimizes the least-squares difference between the intra-

nodal quantities obtained from the global two-dimensional nodal solutions

and those obtained from the evaluation of the polynomial function. For

each node and group, the minimization of the error results in six linearly

independent equations which can be easily solved for

3E

ii
a grnn
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4.3 Results

In Section 4.2, the two-dimensional second-order flux expansion

method for constructing flux shapes from nodal solutions was derived. In

this section, the results when the second-order polynomial flux expansion

method is applied to a two-dimensional, two-group, reactor benchmark

problem are presented. Appendix C presents the program which calculates

the intra-nodal flux distributions.

The accuracy of the flux reconstruction scheme, when applied to the

two-dimensional benchmark problem is examined by comparing pin power

distributions predicted by this method with those obtained by a

conventional fine-mesh finite difference method.

Since the intra-nodal quantities appearing in Eq.(4.2.6) through

Eq.(4.2.14) obtained by a nodal calculation are input data for

reconstructing the fine-mesh flux, the accuracy of nodal solution affects

the overall efficiency of reconstructing the pin power distribution. To

overcome this difficulty, the input data is assumed to be obtained from

the reference solution.

The numerical solution was obtained using the 2DB computer code.

The fine-mesh local criticality calculations to obtain the assembly form

function were also obtained using 2DB computer code.

4.3.1 The Modified EPRI-9R Benchmark Problem

The EPRI-9R problem models the baffle and reflector regions of

PWR's. In the modified EPRI-9R problem, the baffle region is neglected,

and the geometry of each assembly is also changed for simplicity. Each

assembly consists of 10 x 10 array of homogenized pin cells. The size of
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each assembly and pin cell are 10 cm and 1 cm, respectively. The assembly

heterogeneities, control rods or water holes, are indicated in Figure

4.3.1 by a shaded cell. If an assembly is unrodded, then all the shaded

cells contain water. If an assembly is rodded, then all the shaded cells

contain control rod material. The heterogeneous, two-group cross sections

for the different materials used in this benchmark problem are given in

Table 4.3.1.

The modified EPRI-9R problem consists of 32 fuel assemblies

surrounded by a water reflector. The geometry and boundary conditions of

problem are described in Figure 4.3.2.

4.3.2 The Reference 2DB Solution

For the problem benchmark, a fine-mesh solution was obtained with

one mesh per fuel cell (i.e., 1.0 cm mesh spacing). The node average

power densities obtained from 2DB are shown in Figure 4.3.3. The node

face-integrated fluxes and node face-integrated currents were also

calculated with 2DB. These have not been listed in this study due to the

space required.

4.3.3 Assembly Form Function Calculation

The assembly form function calculation usually can be obtained by

solving a single assembly criticality calculation with a zero current

boundary condition. In addition, the assembly calculations may be

improved by performing a four-assembly bundle calculation which takes into

consideration the intra-nodal currents. This would require at most four

geometric representations for assembly calculations.
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Table 4.3.1 Heterogeneous, Two-Group Cross Sections

Materi al Group D9 ag sgg fg
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(cm) (cm1) (cm1) (cm1)

Cell-i 1 1.500 0.0130 0.0200 0.0065

2 0.400 0.1800 0.0 0.2400

Cell-2 1 1.500 0.0100 0.0200 0.0050

2 0.400 0.1500 0.0 0.1800

water 1 1.700 0.0010 0.0350 0.0

2 0.350 0.0500 0.0 0.0

Control Rod 1 1.113 0.0800 0.0038 0.0

2 0.184 0.9600 0.0 0.0
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Figure 4.3.2 Geometry for the Modified EPRI-9R Problem
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Figure 4.3.3 Core Power Distribution for the Benchmark Problem
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1.711 1.615 1.442 1.209 1.109 0.721

1.615 1.508 1.310 1.085 1.004 0.655

1.442 1.310 1.198 0.958 0.804 0.529

1.209 1.085 0.958 0.727 0.609 0.379

1.109 1.004 0.804 0.609

0.721 0.655 0.529 0.379
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To obtain the assembly form function for assembly types 1, 2, and 3

that are not adjacent to a water reflector, the single assembly of

configurations (a), (b), and (c) of Figure 4.3.4 are used, respectively.

The uppermost left corner of configuration (d) of Figure 4.3.4 is used to

calculate assembly form functions for assemblies neighboring a water

reflector. In order to maintain consistency with the reference solution,

the assembly solutions utilized 100 mesh points (10 x 10) per assembly.

4.3.4 Pin Power Reconstruction Results

Numerical results of the second-order polynomial flux expansion

method for the benchmark problem is displayed in Figure 4.3.5. The first

value in the figure is the node average power density obtained from the

2DB reference solution and the second number is the root-mean-square error

for reconstructed pin powers between 2DB results and the current

reconstruction method. The comparisons are quite good throughout most

nodes and show that pin powers differ by only 1.36% root-mean-square for

the all pins in the core. These results also illustrate that, for

interior nodes, the current scheme predicts pin powers very accurately.

The largest root-mean-square error obtained in the problem examined

appeared at the core periphery node, row 5, column 4 (5,4) and is 3.464%,

where the assembly power is lower and flux gradients are severe.

The pin power distributions for the three assembly positions ((1,1),

(3,3), and (5,4)) are shown in Figure 4.3.6 through 4.3.8. The first,

second, and third numbers in the figures are the 2DB reference solution,

reconstructed pin power, and the relative errors between the two,

respectively. The largest relative errors for the pins in the assembly
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Figure 4.3.4 Assembly Form Function Calculation
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Figure 4.3.5 Comparison of 2DB and Reconstructed Pin
Power Distribution for the Benchmark Problem
(Quarter-Core)
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1.711 1.615 1.442 1.209 1.109 0.721

0.206 0.209 0.228 0.830 0.920 2.206

1.615 1.508 1.310 1.085 1.004 0.655

0.209 0.323 1.056 1.261 1.017 2.105

1.442 1.310 1.198 0.958 0.804 0.529

0.228 1.056 1.302 1.111 0.808 2.328

1.209 1.085 0.958 0.727 0.609 0.379

0.830 1.261 1.111 1.091 3.464 2.863

1.109 1.004 0.804 0.609

0.920 1.017 0.808 3.464

2DB REFERE
0.721 0.655 0.529 0.379 <--- SOLUTION

2.206 2.105 2.328 2.863 <--- ROOT-MEAN-I
ERROR(%)

J=1

2

3

4

5

6
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Figure 4.3.6 Comparison of 2DB and Reconstructed Pin
Power Distribution for the Benchmark Problem
(Assembly Position (1,1))
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1=1 2 3 4 5 6 7 8 9 10

= 1 1.775 1.774 1.775 1.777 1.778 1.773 1 . 762 1 .749 1 . 737 1.729
1 764 1.766 1.770 1.774 1.776 1.771 1 .759 1 .745 1.731 1.719

0.642 0.435 0.279 0.173 0.112 0.097 0.129 0.213 0.351 0.542

2 1.774 1,774 1.779 1.788 1.794 1.789 1.772 1.753 1.738 1 .727

1.766 1.770 1.778 1.788 1.795 1.791 1.773 1.753 1.735 1.721
0.435 0.230 0.079 -0.024 -0.082 -0.099 -0.069 0.014 0.154 0.349

3 1.775 1.779 1.794 1.819 1.845 1 .840 1.803 1.768 1.743 1.729

1.770 1.778 1.795 1.822 1.849 1.844 1.807 1.770 1.743 1.725

0.280 0.079 -0.067 -0.164 -0.219 -0.240 -0.216 -0.135 0.008 0.209

4 1.777 1.788 1.819 1.881 1.973 1.967 1.865 1.792 1.751 1.731

1.774 1.788 1.822 1.886 1.979 1.974 1.871 1.797 1.753 1.729

0.174 -0.023 -0.163 -0.253 -0.308 -0.339 -0,323 -0.239 -0.089 0.121

5 1.778 1.794 1 .845 1.973 0.000 0.000 1.955 1.818 1.758 1 .732

1.776 1.795 1.849 1.979 0.000 0.000 1.963 1.824 1 . 760 1.730
0.114 -0.082 -0.219 -0.308 0.000 0.000 -0.398 -0.301 -0.138 0.082

6 1.773 1.789 1.840 1.967 0.000 0.000 1.950 1.813 1 . 753 1 . 727

1.771 1.791 1.844 1.974 0.000 0.000 1.958 1.819 1.755 1.725
0.098 -0.098 -0.240 -0.339 0.000 0.000 -0.420 -0.307 -0.133 0.095

7 1.762 1.772 1.803 1.865 1.955 1.950 1.848 1.777 1 .736 1.716

1.759 1.773 1.807 1.871 1.963 1.958 1.855 1.781 1 .738 1.714

0.131 -0.068 -0.217 -0.323 -0.398 -0.420 -0.367 -0.246 -0.068 0.163

8 1.749 1.753 1.768 1.792 1.818 1.813 1 . 777 1. 742 1.718 1 . 704

1.745 1 . 753 1.770 1.797 1.824 1.819 1.781 1 .744 1.717 1 . 699

0.214 0.015 -0.135 -0.239 -0.301 -0.307 -0.247 -0.124 0.056 0.288

9 1.737 1.738 1.743 1.751 1.758 1 . 753 1 .736 1.718 1.703 1.693
1.731 1.735 1.743 1.753 1.760 1 . 755 1.738 1.717 1.699 1.685

0.351 0.154 0.008 -0.090 -0.139 -0.134 -0.068 0.055 0.235 0.470

10 1.729 1.727 1.729 1.731 1.732 1.727 1.716 1.704 1.693 1.685
1.719 1.721 1.725 1.729 1.730 1.725 1.714 1.699 1.685 1.673

0.543 0.348 0.208 0.120 0.081 0.094 0.163 0.287 0.469 0. 709

a <--- RECONSTRUCTED PIN POWER DISTRIBUTION
b <--- 2DB REFERENCE SOLUTION
C <--- RELATIVE ERROR(%) ( [(a-b)/b]x100



Figure 4.3.7 Comparison of 2DB and Reconstructed' Pin
Power Distribution for the Benchmark Problem
(Assembly Position (3,3))
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1=1 2 3 4 5 6 7 8 9 10

J = 1 1.629 1.587 1.542 1.496 1.453 1.419 1.392 1.367 1.341 1.311

1.648 1.591 1.547 1.509 1.476 1.447 1.422 1.399 1,376 1.352
-1.154 -0.252 -0.339 -0.892 -1.922 -1.949 -2.142 -2.284 -2.547 -3.022

2 1.587 1.544 1.494 1.441 1.392 1.358 1.338 1.320 1.298 1.270

1.591 1.524 1.470 1.422 1.380 1.351 1.334 1.320 1.303 1.283

-0.252 1.308 1.647 1.382 0.933 0.582 0.343 0.044 -0.406 -1.037

3 1.542 1.494 1.434 1.363 1.294 1.261 1.263 1.263 1.250 1.226

1.547 1.470 1.403 1.335 1.272 1.243 1.246 1.249 1.244 1.229

-0.341 1.646 2.230 2.074 1.669 1.460 1.392 1.068 0.504 -0.250

4 1.496 1.441 1.363 1.253 1.117 1.088 1.159 1.196 1.200 1.182

1.509 1.422 1.335 1.230 1.103 1.074 1.138 1.179 1.191 1.183

-0.895 1.380 2.074 1.846 1.232 1.302 1.818 1.465 0.760 -0.128

5 1.453 1.392 1.294 1.117 0.000 0.000 1.031 1.131 1.154 1.140

1.476 1.380 1.272 1.103 0.000 0.000 1.006 1.113 1.146 1.145

-1,525 0.931 1.668 1.232 0.000 0.000 2.549 1.648 0.670 -0.374

6 1.419 1.358 1.261 1.088 0.000 0.000 1.003 1.099 1.119 1.105
1.447 1.351 1.243 1.074 0.000 0.000 0.976 1.083 1.116 1.115

-1.952 0.580 1.459 1.302 0.000 0.000 2.690 1.440 0.274 -0.878

7 1.392 1.338 1.263 1.159 1,031 1.003 1.065 1.096 1.096 1.076

1.422 1.334 1.246 1.138 1.006 0.976 1.045 1.088 1.101 1.094

-2.144 0.341 1.391 1.818 2.549 2.690 1.848 0.732 -0.429 -1.604

8 1,367 1.320 1.263 1.196 1.131 1.099 1.096 1.090 1.074 1.048

1.399 1.320 1.249 1.179 1.113 1.083 1.088 1.093 1.089 1.076

-2.286 0.043 1.068 1.465 1.649 1.440 0.733 -0.251 -1.356 -2.519

9 1.341 1.298 1.250 1.200 1.154 1.119 1.096 1.074 1.049 1.020

1,376 1.303 1.244 1.191 1.146 1.116 1.101 1.089 1.076 1.058

-2.547 -0.406 0.504 0.761 0.672 0.275 -0.428 -1.355 -2.422 -3.581

10 1.311 1.270 1.226 1.182 1.140 1.105 1.076 1.048 1.020 0.988

1.352 1.283 1.229 1.183 1.145 1.115 1.094 1.076 1.058 1.037

-3.022 -1.036 -0.248 -0.125 -0.371 -0.875 -1.602 -2.517 -3.580 -4.754

a <--- RECONSTRUCTED PIN POWER DISTRIBUTION

b <--- 2DB REFERENCE SOLUTION
C <--- RELATIVE ERROR(%) ( [(a-b)/b]xlOO
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Figure 4.3.8 Comparison of 2DB and Reconstructed Pin
Power Distribution for the Benchmark Problem
(Assembly Position (5,4))
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1=1 2 3 4 5 6 7 8 9 10

= 1 0.720 0.713 0.704 0.691 0.676 0.660 0.647 0.650 0.690 0.805
0.783 0.758 0.733 0.709 0.686 0.665 0.649 0.644 0.662 0.728

-8.101 -5.905 -4.000 -2.446 -1.339 -0.699 -0.208 0.988 4.205 10.639

2 0.703 0.697 0.690 0.680 0.668 0.652 0.637 0.637 0.674 0.787
0.766 0.742 0.720 0.699 0.679 0.659 0.642 0.639 0.666 0.756

-8.274 -6.059 -4.204 -2.745 -1.724 -1.140 -0.795 0J94 1.317 4.049

3 0.687 0.683 0.679 0.676 0.672 0.657 0.634 0.628 0.661 0.769
0.749 0.726 0.708 0.694 0.682 0.663 0.639 0.632 0.661 0.761

-8.238 -5.956 -4.057 -2.562 -1.494 -0.905 -0.699 -0.532 -0,017 1,039

4 0.672 0.670 0.672 0.684 0.708 0.693 0.644 0.623 0.648 0.752
0.730 0.710 0.698 0.699 0.715 0.695 0.645 0.624 0.649 0.150

-8.017 -5.647 -3.680 -2.114 -0.963 -0.299 -0.143 -0.185 -0.134 0.238

5 0.656 0.656 0.666 0.704 0.000 0.000 0.665 0.618 0.635 0.734
0.710 0.692 0.688 0.716 0.000 0.000 0.661 0.615 0.631 0.728

-7.617 -5.173 -3.167 -1.625 0.000 0.000 0.598 0.618 0.591 0.792

6 0.638 0.638 0.648 0.685 0.000 0.000 0.647 0.601 0,618 0.714
0.686 0.668 0.664 0.692 0.000 0.000 0.638 0.591 0.606 0.699

-7.022 -4.527 -2.515 -1.036 0.000 0.000 1.464 1.154 1.902 2.220

7 0.618 0.616 0.618 0.629 0.651 0.637 0.592 0.573 0.597 0.693
0.659 0.639 0.628 0.630 0.645 0.625 0.576 0.555 0,575 0.665

-6.200 -3.658 -1.609 -0.093 0.949 1.886 2.726 3.292 3.697 4.262

8 0.598 0.594 0.590 0.587 0.584 0.570 0.551 0.546 0.575 0.672
0.630 0.609 0.592 0.580 0.570 0.551 0.527 0.518 0.543 0.629

-5.133 -2.525 -0.377 1.294 2.546 3.609 4.546 5.276 5.921 6.780

9 0.578 0.573 0.566 0.558 0.548 0.534 0.522 0.523 0.555 0.651
0.601 0.580 0.560 0.542 0.524 0.505 0.489 0.486 0.511 0.593

-3.818 -1.125 1.156 3.017 4.500 5.724 6.75/ 7.631 8.509 9.683

10 0.560 0.554 0.546 0.536 0.524 0.511 0.501 0.504 0.537 0.631
0.572 0.551 0.530 0.510 0.491 0.473 0.459 0.457 0.482 0.559

-2.256 0.542 2.969 5.020 6.715 8.106 9.264 10.293 11.410 12.917

a <--- RECONSTRUCTED PIN POWER DISTRIBUTION
b <--- 208 REFERENCE SOLUTION
C RELATIVE ERROR(%) ( [(a-b)/b]x100
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positions (1,1), (3,3), and (5,4) are 0.709%, -4.754%, and 12.917%,

respectively, and occur at the corner pins, row 10, column 10.

All computations were performed on a COMPAQ DESKPRO 386/25 personal

computer. The computing times for the second-order polynomial flux

expansion method and the 2DB reference solution are listed in Table 4.3.2.

Table 4.3.2 Summary of Computing Times for the Second-Order
Polynomial Expansion Method and the 2DB Reference
Solution

The cpu time to obtain the assembly function from 2DB local criticality

calculation was about 50.0 seconds. About 9.1 seconds were required to

obtain the coarse-mesh nodal solution.The pin power reconstruction

calculation required approximately 0.8 second per each node. Thus the

total cpu time for pin power reconstruction using the second-order

polynomial flux expansion method was approximately 1.4 minutes. Since the

total execution time for generating the 2DB reference was 45.0 minutes,

the overall reconstruction scheme was demonstrated to be computationally

about 30 times faster than a fine-mesh finite difference calculation in

order to achieve comparable accuracy.

CPU

Second-Order
Polynomial
Expansion
Method

Coarse-Mesh Nodal Solution 9.1 sec

1.4 Mm.Assembly Form Function 50.1 sec

Polynomial Coefficients
Calculations

25.6 sec
(0.8 x 32)

2DB Reference
Solution 45.0 Mm.
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4.4 Conclusions

The objective of this study was to develop an accurate and

computationally efficient method for fine-mesh flux shapes and power

distributions from nodal solutions. From the results presented in Section

4.3, the least square second-order polynomial flux expansion method was

shown to be quite accurate and efficient for reconstructing the reactor

pointwise power when a coarse-mesh nodal solution is known. Thus, the

method developed in this study to calculate pointwise power distributions

has been demonstrated to be a very attractive alternative to the fine-mesh

calculation for the LWR applications.

4.4.1 Recommendations for Future Improvements

During the course of this research, many interesting topics have not

been investigated. This section contains a brief description of these

potential research areas.

1. Additional work is needed for assemblies located at the core

periphery. At the periphery of the core, large errors in the

prediction of fine-mesh powers are due to either intra-nodal

flux shapes assumed to be second-order polynomials or the

assembly form function calculations with zero current boundary

conditions or both. The second-order polynomials could be

partially or totally modified to match accurately the intra-

nodal flux shapes (i.e., sines, sinh's). The coefficient of

these functions could be obtained by methods similar to those

employed to determine the polynomial coefficients. Albedo

boundary conditions can be used in the four-assembly bundle
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calculations rather than zero net current boundary conditions

to treat the reflector effects more precisely.

A scheme to improve the prediction accuracy of pointwise flux

and power could be developed by employing the node corner

point fluxes. These values can be calculated by improving

nodal solution code.

The model is limited to reactor cores with two-dimensional

geometry. Extension to a three-dimensional model would

require extensive program modification, but would extend its

applicability.
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Appendix A

The TLAR Acceleration Method Subroutine

SUBROUTINE RELPWW

C ** RELPOW CALCULATES THE RELATIVE POWER FOR EACH NODE

C ** USING THE R-FACTOR

C ** TRANSIENT CASE
C IMPLICIT, SOURCE OVER-RELAXATION

C

C

COMMON/NUCLER/SIGA1(O:18,O:18,O:2S) ,SIGA2(O:18,O:18,O:25)

$ ,SIGFNU1(O:18,O:18,O:25),SIGFNU2(O:18,O:18,O:2S)

$ ,SIGSI2(D:18,O:18,O:25LSIGR1(O:18,D:18,O:25)
$ ,D1(O: 18,0:18,0:25) 02(0:18,0:18,0:2)

COMMONICOEFF/C1F( 18, 18, 0: 25) ,
C1T( 18, 18, 0: 25)

$ ,C2F(18,18,O:25) ,C2T(18,18O:25)

$ ,C3F(18,18,O:2S) ,C3T(18,18,O:25)

$ ,C4F(18,18,O:2S) ,C4T(18,18,O:25)

$ ,C5F(18,18,O:2S),C5T(18,18,O:25)

$ ,C6F(18,18,O:25) ,C6T(18,18,O:25)

$ ,C7F(18,18,0:25) C7T(18,180:25)
COMMON/CXDATA/CXA1(9,9) ,CXA2(9,9) ,CXF1(9,9) ,CXF2(9,9) ,CXO1(9,9)

1 ,CXD2(9,9) ,CXSC(9,9) ,PPMB,XNHYD,H200EN,CXBMIC,CXBMC

COMMON/DIMEN/NXA,LNXF(0:18),LNX(O:18),AREA,SIZEMAXO,MAXI,MAXFT

$,TESTOT,TESTIN,ALPHA,TFUEL,AA(2) ,CC(2) ,OWATER(2) ,EXTB2(18,2)

$,EXTB4(18,2),SIGAW(2),SIGSLW,CXBMACR,HEIGHT,NZA

C MINIMUM DIMENSIONS ON PHI SHOULD BE PHI(NX+1,NY1-1,HZ+1)

COMMON/ABC/B2(18,18) 84(18,18) ,PNI1(O: 18,0:18,0:25)

$,PHI2(0:18,0:18,0:25),PHIAI(O:18,O:18,O:2S),PH1A2(O:18,O:18,O:25)

$,TF1(18,18,0:25),TF2(18,18,0:25),PHIOLO1(O:18,0:18,0:25)

PHIOLD2(O : 18, 0: 18, 0: 25)

COMMON/CTN/ ICNTRL , NOTCH(0: 18, 0: 18) , WORTH( 18)

CDMMON/DELAYED/BETA(6) ,BTA(6) , SUMBTA,RAMDA(6)

$,CD1(18,18,O:25) ,CD2(18,18,O:25) 003(18,18,0:25)

$,CD4(18,18,O:25),CD5(18,18,0:25),CD6(18,18,O:2S)
COMMON/TRANSNT/OFT1(18,18,O:2S),OFT2(18,18,O:25),SPA(18,18,O:25)
$,ITRAN,IDG,PWRSMO,PWRSMN,VELI,VEL2,HT,TRNTIME,TIMEMAX,PRNTIME,TTM

COMMON/FUEL/ITYPE(0:18,0:18) ,EX(0: 18,0:18)

$,RPOW(18, 18,25) ,RPOWXY(18,18)

C C=COOLANT F=FUEL OLD=OLD TIME BASE=BASE TEMP

REAL KF,KC,MF,LOUF,LOUC,LG,MDNBR

COMMONITH1/PMWTH, H( 18, 18, 25) , TC( 18, 18, 25) , TF( 18, 18, 25)

$,HOLD(18,18,25),TCOLD(18,18,25),TFOLO(18,18,25),QQQ(18,18,25)
$,X(18,18,25),VOID(18,18,25),HFLX(18,18,25),frIONBR

$,TFBASE(18,18,2S),TCBASE(18,18,25),ROU(18,18,25),ROUBASE(18,18,25)
COMMON/T82/PS IA , P ITCH, RCO, RFI, CAR EA, NPINS, DHE IGHT, TFLOW, HF

COMMON/TH3/T IN , TSAT , HIN , HSAT , HFG , AC 1, 4,02

COMMON/TH4/LOUF,LOUC,KF,KC,HG,HC,LG,VF,VG
EQUIVALENCE (NXA,NYA)

COMMON/TEST/0D2(18,18,25),OSIGA2(18,18,25),ZZZ(18,18,25)
C ZZZ(I,J,K)=THERMAL LEAKAGE-TO-ABSORPTION RATIO

DIMENSION PHIO1(O:18,O:18,O:25),R(O:18,O:18,0:2S)

C R(I,J,K)=RESIDUAL OF ITERATION
LOGICAL CONVSR

C

CONVSR=.FALSE.

TRNTIME=O.O
1234 TRNTIME=TRNTIME+HT

TTM=TTM+HT

CALL CSINIT
ITOUT=0
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C

C R1.5 GROUP ROUTINE

DO 6300 K1,NZA
DO 6300 I=1,NYA

DO 6300 3l,LNX(I)
6300 C7F(IJK)=SIGR1(I,J,K)+C1F(I ,JK)±C2F(IJK)+C3E(I,JK)

1 +1./VEL1/HT+C4F(I,3,K)+CSF(IJ,K)+C6F(I,JK)
2 _(1._SUMBTA)*(SIGFNUI(I ,J,K)+SIGFNU2( I ,J,K)*SIGS12(I 3K)

3 /(1./VEL2/HT(1,+ZZZ(I3,K))*SIGA2(I,JK)))

TLFISL=O.

00 3100 K1,NZA
DO 3100 I=1NYA
DO 3100 J=1,LNXF(I)
SPA(I,J,K)=0.

3100 SPA(I,J,K)=SPA(I,J,K)+RAMDA(1)/(1.RAMDA(1)*HT/2. )*CD1(I3,K)

1 +RAMDA(2)/(1.+RAMDA(2)*HT/2. )*CD2(IJK)

2 +RAMDA(3)/(1,+RAMDA(3)*HT/2. )*CO3(IJK)

3 RAMDA(4)/(1HRAMDA(4)*HT/2.)*CD4(I,J,K)

4 RAMDA(5)/(1.+RAMDA(5)*HT/2.)*CO5(IJ,K)

5 RAMDA(6)/(1.+RAMDA(6)HT/2.)*CO6(I,JK)

00 603 K=1NZA
00 603 1=1,NYA

DO 603 3=1LNX(I)
TF1(I,J,K)=SIGFNU1(I,3K)*PHI1(I3K)

TLFISL=TLFISL+TF1(IJK)
OFT1(UJ,K)=PHIOLD1(I3,K)/VEL1/HT+(1._SUMBTA)*SIGFNU2(I,3K)

$ /VEL2/HT*PHIOLD2(I,3K)/(1./VEL2/HT+(1 .+ZZZ(I 3K) )*sIGA2(I 3K))

603 CONTINUE

C

C** SOURCE OVER-RELAXATION ROUTINE

C** CALCULATE ALPHA VALUE

C

IF(.NOT. CONVSR) THEN

ITER=0

OLDSUM=1 E-2O

OLDALP=1.0

ALPHA=1.0

33 SUM=0.

DO 44 K=1,NZA
DO 44 I=1,NYA

DO 44 J=1,LNX(I)
R(I, J,K)= ( C3F( 1,3 ,K) *PHI1( I1,3 K) +C4F( 1,3, K) *PHI1( 1+1,3, K)

_C7F(I,J,K)*PHI1(I,J,K)1SPA(I,J,K)+OFT1(I,3,K)
2 ClF(1,J,K)*PH11(1,J_1,K)4C2F(1 ,J,K)PHt1(1 ,3-4-1,K)

3 1C5F(I,3,K)*PHI1(I,J,K_1)4C6F(I ,J,K)*PHI1(I ,J,K+1) )/C7F(1,3,K)

PHI1(I ,J,K)=PHI1(I ,J,K)-4-R(I,3,K)

44 SUM=SUMR(I,3,K)*R(I,J,K)

RLAMOA=SQRT( SUM/OLDSUM)

ALPHA=2./(1 .+SQRT(ABS(1 -RLANDA)))

OLDSUM=SUM

TEST=ABS( (OLDALP-ALPHA)/ALPHA)

OLDALP=ALPHA

ITER=ITER+1

IF(TEST.GT.1.E-3) GOTO 33

CONVSR=.TRUE.
WRITE(*,*) CONVSR=TRUE' ' ITER=' ITER, ALPHA=' ALPHA

ENDIF

C

C BEGINING OF INNER AND OUTER ITERATIONS

C

191 ITIN=O

192 DO 193 K=1,NZA

DO 193 I=1,NYA

DO 193 3=1,LNX(I)
R(I,J,K)=(C3F(I,J,K)*PHI1(I13,K)+C4F(I ,3K)*PHII(I+1,3,K)
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1 C7F(I,J,K)*PHI1(I,J,K)+SPA(I3K)+OFT1(I 3K)

2 +C1F(I,J,K)*PHI1(I,J1,K)+C2F(I,J,K)*PH11(I 3+1K)

3 C5F(I,3,K)*PHI1(I,3,Kl)C6F(I ,3,K)*PHII(I,3,K+i))/C7F(I J,K)

PHI1(I,J,K)=PHI1(I,J,K)ALPHA*R(I 3K)

193 CONTINUE

ITIN=ITIN1
C IF(ITIN.LT.MAXI) GOTO 192

ITOUT=ITOUTl
C

C CHECK CONVERGENCE AND PRINT OUT

C

TLFIS=O,

195 00 196 K=l,NZA

00 196 l=1,NYA

DO 196 J=1,LNXF(I)

196 TLFIS=TLFISSIGFNU1(I,3,K)*PHI1(1,JK)

TESTO=A8S( (TLFIS-TLFISL)/TLcI2)

TLFISL=TLFIS

250 IF (ITOUT.GE.MAXO) GO TO 255

IF (ITOUTLE.3) GO TO 191

IF (TESTO-TESTOT) 260,260191
255 WRITE(*,*) 'WARNING: MAXMIMUM OUTER ITERATIONS EXCEEOEO. CALCULATI

$ON CONTINUES...

260 DO 153 K=1,NZA

DO 153 I=1,NYA
DO 153 J=1,LNX(I)
PHI2(I ,J,K)=(1./VEL2/HT*PHIOLO2(I ,J,K)+SIGS12(I,J,K)*PHIL(i ,3,K))

$ I(1./VEL2/HT(1.*ZZZ(I,3,K))*SIGA2(I,3,K))

153 CONTINUE

C

C 2 GROUP ROUTINE

00 7300 K=1,NZA

00 7300 I=1,NYA

DO 7300 J=1,LNX(I)

C7F(I,3,K)=SIGRI(I,3,K)CIF(1,3,K)+C2F(I,3,K)+C35(I,3,K)
1 +1./VEL1/HTC4F(I3,K)+C5F(IJ,K)C6F(I,JK)

7300 C7T(I ,J,K)=SIGA2(I,3,K)+C1T(I ,3K)+C2T(I ,3,K)C3T(I 3K)

1 +1./VEL2/HT+C4T(I ,3K)CST(I ,3K)C6T(I 3K)
TLFISL=O.

DO 7603 K=1,NZA
DO 7603 I=1,NYA

DO 7603 3=1,LNX(I)

TF1(I,J, K)=(SIGFNU1( 1,3 , K)*PHI1( 13, K)+S IGFNU2(I,3 , K) *PH12( 1,3 K)

$ *(1_SUMBTA)

TLFISL=TLFISL+TF1(I ,3,K)

OFT1(I,J,K)=PHIOLD1(I ,3,K)/VEL1/HT

7603 OFT2(I,J,K)=PHIOLD2(I,J,K)/VEL2/HT
C

C BEGINING OF INNER AND OUTER ITERATIONS
*****kk

C

ITOUT=O

7191 ITIN=0

7192 DO 7193 K=1,NZA

DO 7193 I=1,NYA

00 7193 J=1,LNX(I)
PHI1(I ,J ,K)=(C3F( 1,3 ,K)*PHI1( I1,3 K)+C4F( 13 K) *PHI1( ,K)

1 TF1(IJ,K)+OFT1(I,J,K)+SPA(I,3K)+C1F(I ,3K)*PHII(I 3-1K)
2 +C2F(I,J,K)*PHI1(1,31,K)C5F(1,3,K)*PHIl(1,3,K_1)
3 +C6F(I,J,K)*PHI1(I,3,K1))/C7F(I,J,K)

7193 CONTINUE

ITIN=ITIN1
IF(ITIN.LT.MAXI) GO TO 7192

C

ITIN=O

IF(ITOUT.EQ.0) GO TO 7787
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C

C
** ACCELERATION BY OVER RELAXATION

C

DO 7753 K=1,NZA

DO 7753 i1,NYA
DO 7753 J1,LNX(I)

7753 TF2(I.J,K)=TF2(I,J,K)ALPHAk(Si5512(I,J,K)*PHI1(I ,JK)-TR2(I ,J,K))
GO TO 7790

7787 DO 7755 K=1,NZA

00 7755 I'1,NYA

00 7755 ,J=1,LNx(t)

7755 TF2(I,J,K)=SIGS12(I,J,K)*PHI1(IJ,K)

7790 CONTINUE

C

7138 00 7153 K=1,NZA

DO 7153 I=1,NYA

DO 7153 J1,LNX(I)
PHI2(I ,J,K)=(C3T(I ,J,K)*PHI2(I_i ,J,K)+C4T(I ,J,K)*PH12(I+1,J,K)

1 +TF2(I,J,K)+OFT2(I,J,K)+C1T(I,j,K)*PHI2(I ,J1K)
2 +C2T(I,J,K)*PHI2(I,3+1,K)C5T(I ,J,K)*PHI2(I,J,K1)

3 +C6T(I,J,K)*PHI2(I,J,Klfl/C7T(I,J,K)

7153 CONTINUE

ITIN=ITIN1
IF (ITIN.LT.MAXI) GO TO 7138

C

ITOUT=ITOUT1
IF (ITOUT.EQ.1) GO TO 7554

C

C ACCELERATION BY OVER RELAXATION

C

DO 7552 K=1,NZA

DO 7552 I=1,NYA

DO 7552 J=1,LNX(I)

7552 TF1(I,J,K)=TF1(I ,JK)4ALPHA*( (SIGFNU1(I ,J,K)*PHI1(I,J,K)

1 +SIGFNU2(I,3,K)*PH12(I,J,K))k(1.SUMBTA)TF1(I,J,K))

GO TO 7558

7554 DO 7556 K=1,NZA

00 7556 I=1,NYA

DO 7556 J=1,LNX(I)

7556 TF1(I,J,K)=(SIGFNU1(I ,J,K)*PHI1(I ,J,K)+SIGFNU2(I J,K)*PHI2( I ,J,K))

1 *(1_SUMBTA)

7558 CONTINUE

C

C CHECK CONVERGENCE AND PRINT OUT OF DATA

C

TLFIS=O.

7195 DO 7196 K=1,NZA
DO 7196 I=1,NYA

DO 7196 J=1,LNXF(I)

7196 TLFIS=TLFIS1(SIGFNU1(I,J,K)*PHI1(I,J,K)

1 SIGFNU2(I,J,K)*PHI2(I,J,K))*(1 .-SUMBTA)

TESTO=ABS( (TLFIS-TLFISL)/TLFIs)

TLFISL=TLFIS

7250 IF (ITOUT.GE.MAXO) GO TO 7255

IF (ITOUT.LE.3) GO TO 7191

IF (TESTO-TESTOT) 7260,7260,7191

7255 WRITE(*,*) 'WARNING: MAXMIMUM OUTER ITERATIONS EXCEEDED. CALCULATI

$ON CONTINUES...

C

7260 TLFIS=O.

DO 350 K=1,NZA
DO 350 I=1,NYA

DO 350 J=1,LNX(I)
RPOW(I,J,K)=PHI1(I,J,K)*SIGFNUI(I,J,K)+PHI2(I,J,K)*SIGFNU2(I,J,K)
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350 TLFIS=TLFIS+RP0W(IJK)

PWRSMN=TLFIS

PRAT IO=PWRSMN/PWRSMO
WRITE(*,970) TRNTIME,PRATIO,ITO'JT,TESTO

C

CALL PRECUSR

C

IF(AMOD((TRNTIME+1.E-5),PRNT1ME) GE, (HT/5.)) GO TO 1234
WRITE(*,420)

C AVGFIS=TOTAL POWER PER SUB-ASSEMBLI

AVGFIS=TLFIS/TFUEL
WRITE 430)

DO 370 I=1,NYA

DO 365 J1,LNXF(I)
RPOWXY(I ,J)=O.

DO 360 K=1,NZA
360 RPOWXY(I,J)=RPOWXY(I,J)4-RPOW(1,J,K)

365 RPOWXY(I ,3)=RPOWXY(I ,J)/AVGFIS

370 WRITE(*,44O) I,(RPOWXY(I,J)kPRATIO,J=1,LNXE(I))

IF((TRNTIME+1.E-5) LI. TIMEMAX) GO TO 1234

RETURN

C

420 FORMAT (I/lOX, RELATIVE POWER FOR 1,3 POSITION
k/)

430 FORMAT(BX, 1 2 3 4 5 5 7

1 8 9 10 11 12 13 14 15',!)

440 FORMATV ,12,2X,17F83)
970 FORMAT(1X, ** TIME=' ,E11.6, SEC 1X, 'P(t)/PO=' ,E11.6,2X,

1 'OUTERS=' ,14, POWER CNV=' ,E1O5,

END
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Appendix B

Optimum Control Rod Pattern Searcher Subroutine

C

SENSITIVITY CALCULATION ROUTINE

C

208 IF (OPEAKN.GT2.2 AND. OMCHFR.LT.1.9) ICASE=1

IF (OPEAKN.LT.2.2 AND. OMCHFR.LT.1.9) ICASE=2

IF (OPEAKN.GT.2.2 AND. OMCHFR.GT.1.9) ICASE=3

IF (OPEAKN.LT.2.2 AND. OMCHFR.GT.1.9) ICASE=4

DO 535 I=1,NMAX
DO 535 M=1,3

SKEFF(I M)=O.

SZJ(I ,M)=O.

DO 536 L=lNODES
SCHFR(I ,ML)=O.

536 SPOWER(I,M,L)=O.

IF (ICASE.EQ.1) THEN
00 537 L=l,NP

537 SPIJ(IML)O.
DO 538 K=1NZ

538 SPZ(I,M,K)=O.
ENDIF

535 CONTINUE

DO 500 M=1,2

IF(M.EQ.1) IDELROD=1

IF(M.EQ2) IDELROD=-1
DO 500 I=l,NMAX

IF(OCTNROD(I).EQNZ AND. M.EQ.1) GOTO 500

IF(OCTNROD(I).EQ.O AND. M.EQ.2) 5010 500

DO 502 IR=1NMAX
502 CTNROO(IR)=OCTNROD(IR)

CTNROD( I )=OCTNROD( I )IDELROD

CALL GNOTCH(GROUP,CTNROD)

DO 303 L=I,NODES

T(L)=OT(L)

F ( L ) =OF ( L)

VOID(L)=OVOID(L)

303 POWER(L)=OPOWER(L)

CALL STG

CALL EDIT (5)

C CALL EDIT (3)

IF (NOVOID) GO TO 234

C CALL EDIT (1)

C CALL EDIT (4)

C CALL EDIT (2)

SKEFF( I ,M)=KEFF-OKEFF

PRINT*, 'KEFF= ,KEFF

PRINT*, SKEFF(IM)=' ,SKEFF(IM)

DO 305 L=1,NODES

SCHFR(I,M,L)=CHFR(L)-OCHFR(L)

305 SPOWER(I ,M,L)=POWER(L)-OPOWER(L)

IF (ICASE.EQ.4) THEN

SZJ(I,M)O.

DO 1306 L=1NODES
1306 SZJ(IM)=SZJ(I,M)+(POWER(L)_PHALING(L))*(P0WER(L)_PHALING(L))

sZJ(I ,M)=SZJ(I ,M)/FLOAT(NODES)-OZJ

ENDIF
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IF (ICASE.EQ.1) THEN

DO 306 L=1,NP

306 SPIJ(I,M,L)=PIJ(L)-OPIJ(L)

DO 307 K=l,NZ
307 SPZ(I,M,L)=PZ(K)-OPZ(K)

ENDIF

500 CONTINUE

C
C************ END OF SENSITIVITY CALCULATION

CALL STRTG(GROUP,NMAX, ICASE)

234 CONTINUE

300 STOP

END

SUBROUTINE STRTG(GROUP,NMAX, ICASEI)

COMMON !HEADR /NTITLE(20), AVEXP, NISTEP

COMMON /CSINP /BUMASK(12), VMASK(3), 021(108), 011(108)

$ ,SAFI(108), SAT!(108), NSFFI(1O8), 05211)108),

$ SOSI(108), IEXPIS IVOPTS 115813

$ KSFTI(108), KSFFI(108), A50

$ DIMTS DINIEX D1MVD NOTCH(!4O),

$ TABSET(3360), iOR1H(3,l23)
INTEGER DIMTS, DIMEX, DIMVD, TABSET

REAL NSFFI, NSFTI, KSFFI, KSFTI

COMMON / FUEL I FTYPE(140), 80(3360), V01B(3360)

INTEGER FTYPE

C

COMMON /NOOAL / DF (3360), Dl (3360), KSFF (3360)

$, KSFT(3350), TFR (3360), NSF1G (3350)

$, 02 (3360), C4 (3360), 06 (3220)

C7 (3360), SOS (3360) 360

CC2 (3360), CC4 (3360), CCS (3220)

$, CC7 (3360), NSFF(3360), NSFT (3360)

C

REAL KSFF, KSFT, NSF1G, NSFF, NSFT

COMMON /GEOM /NODES NP , NOSMNP NX

NZ , NXM1 , GX 62

NCOL (13)

COMMON /BC / AF1, AF3, AF5, AF6, AFQ(13),

$ 8F1, 823, BPS, 826, BPQ(13),

$ All, AT3, AT5, 416, ATQ(13),

$ 811, 813, BT5, 816, BTQ(13)
EQUIVALENCE (AFQ(l), AF2), (AFQ(2), AF4),

$ (BFQ(l), BF2), (BFQ(2), BF4),

$ (ATQ(l), AT2), (ATQ(2), A14),

$ (BTQ(1), 812), (BTQ(2), 814)
COMMON /CONVRG/ MAXI, MAXO, MAXP, EPSO, EPSP, ALPHA, SOP

LOGICAL SOR

C

COMMON /FLUX / POWER(336O), FASTA(3360), THERMA(336O), 2(3360)

COMMON /FLUX2/ KEFF, T(3360),CHFR(3360),MCHFR,IMM,JMM,KMM,LMM

$, PEAKN,IPP,JPP,KPP,LPP

COMMON /PROB I INTTYP, QTRKOR, NONAL, NOCROD, NOVOID, IEDIT(6)

NOXE, FIRST

LOGICAL QIRKOR, NOHAL, NOCROD, NOVOID, NOXE, FIRST

COMMON /WEIGHT/ R, CF, CT, RCF, ROT, BiN, 82N

COMMON /THERMO/ HFG, XIN, AC1, AC2, AC3, AREA, AVFLUX, AVPWR,PSIA

$, Bi(4),B2(4),53(4),CTYPE(140),FLOW(140),TFLOW



PCTPWR

INTEGER CTYPE

COMMON /XENON I PD, PRSA1(108), PRSA2(108), SAXE(108)

REAL MWTH, KEFF, MCHFR

COMMON /CROD /NRODS(6,2), RODIND(140)
INTEGER RODIND
CHARACTER SKIP*6O,GROUP*1

COMMON/SNS/ASMEX(24) ,WORD(20) ,IX)3, 12) ,PHALING(3360) ,OVOID(33C0)

$,OF(3360),OT(336O),OCHFR(3360),CPOWER(3360)SKEFF(1O3)SZJ(1O,3)
$,SPOWER(1O,3,3360),ESPOWER(3360)SCIHER(103,3360)ESCHFR(33c30)
,OP13(14O)OPl(24),SPIJ(1O3,14O)SPL(1O3,24)ESPIJ(14O),ESPK(24)

$,CTNROD(1O) ,OCTNROD(iO) IDELR(1O)

INTEGER CTNROD,OCTNROD

COMMON /PWRIJ/ PIJ(14O)PEAKPIJ, IPIJ,JPIJ,LPIJ,P7(24)PEAKPZ,KPZ
COMMON/OLD/OKEFF , OPEAKN OMCHFR OZi CPKPZ OPKP I J

integer chkpnt(336O) ,chkpt(140)

INTEGER SIC1O) ,SI1,SI2,S13,SI4,S15,S16,S17,S18,S19,SI1O

INTEGER TSOVLY(3 .24)

LOGICAL FLAG

DATA FLAG/.FALSE.I
C

C

IF (ICASE.EQ.1) GOTO 1111

IF (ICASE.EQ.2) GOTO 2222
IF (ICASE.EQ.3) GOTO 3333

IF (ICASE.EQ.4) GOTO 4444

0**** *** ***
C************** PROMISING CONTROL ROD PATTERN GENERATION

C

1111 maxpnt=O

do 1427 i=1nodes
if(opower(i).gt.(opeakn/2j) then
maxpnt=rnaxpnt+1

chkpnt(maxpnt)=i

end if

1427 continue

maxpt=O

do 1428 i=1,np

if(opij(i).gt.(opkpij/2.)) then
niaxpt=nlaxpt +1

chkpt (maxpt ) =

end if

1428 continue
NP1=NP+1

PMAX1=1.E3

EFFKMI N=O. 997

EFFKMAX=1 .003

ICOUNT=O

IF(NMAX.EQ.8) GOTO 1889

IF(NMAX.EQ.10) GOTO 1789

1889 ICOUNT=ICOUNT1
DO 16001 11=1,3

ESKEFF1=OKEFF+SKEFF(1 II)
DO 16002 12=1,3

ESKEFF2=ESKEFF1SKEFF(2, 12)
DO 16003 13=1,3

ESKEFF3=ESKEFF2+SKEFF(3, 13)

DO 16004 14=1,3

ESKEFF4=ESKEFF3SKEFF(4, 14)

DO 16005 15=1,3

ESKEFF5=ESKEFF4SKEFF(5, 15)
DO 16006 16=1,3

ESKEFF6=ESKEFF5+SKEFF(6,I6)
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00 16007 17=1,3

ESKEFF7=ESKEFF6+SKEFF(7, 17)

DO 16008 18=1,3

ESKEFF8=ESKEFF7+SKEFF(8, 18)

IF (ESKEFF8.LT. EFFKMIN OR. ESKEFF8GT. EFFKMAX) GOTO 16008

ESPZ(KPZ)=OPZ(KPz)+SPz(1, I1,KPZ)+SPZ(2,12,KPZ)

$ +SPz(3, 13,KPZ)+SPZ(4, 14,KP7)±SPZ(5, 15,KPZ)

$ +SPZ(6,16,KPz)+sPz(7,I7,KP7)+spz(8,18,Kpz)

IF(ESPZ(KPZ).GT.OPKPZ) GOTO 16008

ESPIJ (LPIJ) =OPIJ ( LP IJ)--SPIJ ( 1, ii, OPIJ)+SPIJ(2, I?, LP IJ)
$ +SPIJ(3,13,LPIJ)+sPIJ(4,14,LPIJ)+SHJJ(5,15,LPIJ)

$ +SPIJ(6,16,LPIJ)+SPIJ(7,I7,LpIJ)+spIJ(8,18,LPIJ)
IF(ESPIJ(LPIJ).GT.OPKPIJ) GOTO 16008

ESPOWER(LPP )=OPOWER(LPP )+SPOWER ( 1, 10, LPP)+SPOWER(2, 12 LPP)
$ SPOWER(3,13,LPP)SPOWER(4,14,LPP)SPOWER(5,I5LPP)
$ SPOWER(6,I6,LPP)+SPOWER(7, I7,LPP)SPOWER(8, 18,LPP)

IF(ESPOWER(LPP) .GT.OPEAKN) 0070 16008
C

00 16100 K=1,NZ

ESPZ(K)=OPZ(K)SPZ(1,I1,K)+SpZ(2, 12K)

$ SPZ(3,I3,K)+SPZ(4, I4,K)562(5, 15K)

$ +SPZ(6, 16,K)+SPZ(7, I7,K)SPZ(8, 18,K)
IF(EsPZ(K).GT.OPKPz) GOTO 16008

16100 CONTINUE

C

00 16102 IJ=chkpt(1),chkpt(maxpt)

ESPIJ(IJ)=OPIJ(IJ)+SPIJ(1, Ii, 13)+SPIJ(2, 12, IJ)

$ +SPI3(3, 13, I3)+SPIJ(4, 14, IJ)SPIJ(5, 15, Ii)

$ +sPIJ(6, 16, IJ)SPIJ(7, 17, IJ)--SPIJ(8, 18, IJ)
IF(ESPIJ(IJLGT.OPKPIJ) GOTO 16008

16102 CONTINUE

C

PMAX2=-2 .0

DO 16104 L=chkpnt(i),chkpnt(maxpnt)

ESPOWER(L)=OPOWER(L)SPOWER(1, I1,L)+SPOWER(2, 12,L)
$ +SPOWER(3,I3,L)SPOWER(4,14,L)+SPOW[R(5,15,L)

$ +SPOWER(6,J6,L)+SPQWER(7, I7,L)+SPOWER(8, 18L)

IF(ESPOWER(L).GT.PMAX2) PMAX2=ESPOWER(L)

16104 CONTINUE

C

IF(PMAX2.LT.OPEAKN.AND.PMAX2 LT. SMAX1) THEN
IF(ABS(ESKEFF8-OKEFF).LE.1E6) GOTO 16008
FLAG=.TRUE.

PMAX1=PMAX2

SI(1)=I1

S1(2)=12

SI(3)=13

SI(4)=14

SI(5)=15

SI(6)=16

SI(7)=I7

SI(8)=18

ENDIF

C

16008 CONTINUE

16007 CONTINUE

16006 CONTINUE
16005 CONTINUE
16004 CONTINUE

16003 CONTINUE

16002 CONTINUE
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16001 CONTINUE

C

GOlD 1575

C

C** END OF PATTERN B

C

1789 ICOUNT=ICOUNT-4-1

DO 17001 11=1,3

ESKEFF1=OKEFF-+-SKEFF(1, Ii)

DO 17002 12=1,3

ESKEFF2=ESKEFF1+SKEFF(2, 12)

DO 17003 13=1,3

ESKEFF3=ESKEFF2SKEFF(3, 13)

DO 17004 14=1,3

ESKEFF4=ESKEFF3SKEFF(4, 14)

DO 17005 15=1,3

ESKEFF5=ESKEFF4+SKEFF(5, 15)

00 17006 16=1,3

ESKEFF6=ESKEFF5-fSKEFF(6, 16)

DO 17007 17=1,3

ESKEFF7=ESKEFF6SKEFF(7 ,17)

00 17008 18=1,3

ESKEFF8=ESKEFF7+SKEFF(8, 18)

DO 17009 19=1,3

ESKEFF9=ESKEFF8+SKEFF(9, 19)

DO 17010 110=1,3

ESKEF1O=ESKEFF9+SKEFF(1O, 110)
C

IF (ESKEF1O.LT. EFFKMIN OR. ESKEF1O.GT. EFFKMAX) GOTO 17010

ESPZ(KPZ)=OPZ(KPZ)+SPZ(1,I1,KPZ)SPZ(2, 12,KPZ)

$ +SPZ(3,13,KPZ)SPZ(4,14,KPZ)+SPZ(515,KPZ)

$ +SPZ(6, I6,KPZ)SPZ(7, 17,KPZ)+SPZ(8, 18,KPZ)

$ +SPZ(9, 19,KPZ)+SPZ(1O, I10,KPZ)

IF(ESPZ(KPZ).GTOPKPZ) GOTO 17010

ESPIJ(LPIJ)=OPIJ(LPIJ)+SPIJ(1,I1,LPIJ)SPIJ(2, 12,LPIJ)

$ +SP1J(3,13,LP1d)--SPIJ(4, 14,tP13)+SPIJ(5, I5,LPIG)

$ +SPIJ(6, I6,LPIJ)+SP1J(7, 17,LPIJ)+SPIJ(8, 18,LPIJ)

$ SPIJ(9, 19,LPIJ)+SPIJ(10, I 10,LPIJ)

IF(ESPIJ(LPIJ).GT.OPKPIJ) GOTO 17010

ESPOWER(LPP)=OPOWER(LPP)-4-SPGWER{1,I1,LPP)±SPOWER)2,I2,LPP)

$ +SPOWER(3,I3,LPP)-+-SPOWER(4, 14,LPP)-4-SPOWER(5, 15,LPP)

$ +SPOWER(6,16,LPP)+SPOWER(7, 7,LPP)+SPOWER(8, 18,LPP)

$ SPOWER(9,19,LPP)+SPOWER(10I10LPP)
IF(ESPOWER(LPP).GTOPEAKN) GOTO 17010

C

DO 17100 K=1,NZ
ESPZ(K)=OPZ(K)+SPZ(1,Ii ,K)SPZ(2, 12,K)

$ +SPZ(3,13,K)+SPZ(4,14,K)+SPZ(5, 15K)

$ +SPZ(616,K)+SPl(7,17,K)+SPZ(8, 18K)

$ +SPZ(9,19,K)+SPZ(1O,I10,K)
IF(ESPZ(KLGT.OPKPZ) GOTO 17010

17100 CONTINUE
C

DO 17102 IJ=chkpt(1),chkpt(maxpt)
ESP1J(1J)=0P1J(1J)+-SPIJ(1,I1, IJ)+sPIJ(2, 12, IJ)

$ +SPIJ(3, 13, IJ)+SPIJ(4, 14, IJ)+SPIJ(5, 15, Ii)

$ SPIJ(6,16,IJ)+SPIJ(7,17,IJ)±SPIJ(8,18,IJ)

$ +SPIJ(9,I9,IJ)+SPIJ(10, 110, Ii)
IF(ESPIJ(IJ).GT.OPKPIJ) GOTO 17010

17102 CONTINUE
C

PMAX2=-2.O
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DO 17104 L=chkpnt(1) ,chkpnt(rnaxpnt)

ESPOWER(L)=0P0WER(L)SP0WER(1I1L)-S?0WER(2I2L)

$ SPOWER(313,L)SPOWER(4, 14L)+SPOWER(5, 15,L)

$ +SPOWER(6,16,L)+SPOWER(7,17L)SPOWER(818,L)

$ +SPOWER(9, 19 jj+SPOWER(10, 110L)

IF(ESPOWER(L).GT.PMAX2) PMAX2=ESPCWER(L)

17104 CONTINUE
IF(PMAX2.LT.OPEAKN.AND.PMAX2.LT.PMAX1) THEN

IF(ABS(ESKEF1O-OKEFF).LE.1.E-6) GOTO 17010

FLAG=.TRUE.

PMAX1=PMAX2

SI(1)=I1

SI(2)I2
SI(3)=13
SI (4)=14

SI (5)I5

SI(6)=16

SI(7)I7
SI (8)=18

SI (9)I9

SI( 10) =110

ENDIF

C

17010 CONTINUE

17009 CONTINUE

17008 CONTINUE

17007 CONTINUE

17006 CONTINUE

17005 CONTINUE

17004 CONTINUE

17003 CONTINUE

17002 CONTINUE

17001 CONTINUE
C

C** END OF PATTERN A

C

1575 DO 1253 I=1,NMAX
IF(SI(I).EQ.1) IDELR(I)=1

IF(SI(I).EQ.2) IDELR(I)=-1
IF(SI(I).EQ.3) IDELR(I)=O

1253 CONTINUE

00 16200 IR=1,NMAX

CTNROO(IR)=OCTNROO(IR)IDELR( IR)
IF(CTNROD(IR).EQ.(NZ+1)) CTNRO[)(IR)=NZ

IF(CTNROD(IR).EQ.-1) CTNRO0(IR)=0
16200 CONTINUE

C

IF(FLAG) THEN

WRITE(82424) GROUPNMAX,ICASE
WRITE(8,2426) (CTNROO(IRLIR=1NMAX)

2424 FORMAT(A1I1OI10)
2426 FORMAT(1O13)

ELSE

IF(ICOUNT.EQ.1) THEN

EFFKM I N=O .995

EFFKMAX=1 .005

IF(NMAX.EQ.8) GOTO 1889

IF(NMAX.EQ.10) GOTO 1789

ENDIF

IF(ICOUNT.EQ,2) THEN

OPKP IJ=OPKP IJO.03

IF(NMAX.EQ.8) GOTO 1889

IF(NMAX.EQ.1O) GOTO 1789
ENDIF

IF(ICOUNT.EQ,3) THEN

146



OPKPZ=OPKPZO.2
IF(NMAX.EQ.8) GOTO 1889

IF(NMAX.EQ.1O) GOlD 1789

ENDIF

IF(ICOUNT.EQ.4) THEN
WRITE(8,*)

' NO MORE SUGGESTION END OF HILL CLIMBING

END IF

ENDIF

C

END OF CONTROL ROD PATTERN GENERATION

C

GOTO 300

C

PROMISING CONTROL ROD PATTERN GENERATION

C

2222 maxpnt=O

do 2427 i=l,nodes

if(ochfr(i).lt.(omchfr+2.) OR. OPOWER(I).GT. (2.2/2.)) then

rnaxpnt=rnaxpnt+1

chkpnt (maxpnt ) =

end if

2427 continue

NP1=NP1
CHFMIN1=-1.E3

EFFKMIN=O .997

EFFKMAX=1 .003

ICDUNT=0

IF(NMAX.EQ.8) GOTO 2889
IF(NMAX.EQ.10) GOTO 2789

2889 ICOUNT=ICOUNT+1
DO 26001 11=1,3

ESKEFF1=OKEFF+SKEFF (1, Ii)

DO 26002 12=1,3

ESKEFF2=ESKEFF1+SKEFF(2, 12)
DO 26003 13=1,3

ESKEFF3=ESKEFF2+SKEFF(3, 13)

DO 26004 14=1,3

ESKEFF4=ESKEFF3+SKEFF(4, I4)

DO 26005 15=1,3

ESKEFF5=ESKEFF4SKEFF(5, IS)
DO 26006 16=1,3

ESKEFF6=ESKEFF5SKEFF(6, 16)

DO 26007 17=1,3

ESKEFF7=ESKEFF6+SKEFF(7,17)

DO 26008 18=1,3

ESKEFF8=ESKEFF7+SKEFF(8, 18)

C

IF (ESKEFF8.LT, EFFKMIN OR. ESKEFF8.GT. EFFKMAX) GOTO 26008

E SCHFR ( LMM) =OCFIFR
C
LMM) +SCHFR ( 1, Ii, LMM) +5 CHFR(2, 12 LMM)

$ +SCHFR(3,13,LMM)+SCHFR(4,14,LMM)SCHFR(5,IS,LMM)

$ +SCRFR(6, 16,LMM)+SCHFR(7, 17,LMM)+SCHFR(8, 18,LMM)

IF(ESCHFR(LMM) .LT.OMCHFR) 8010 26008

ESPOWER(LPP)=OPOWER(LPP)SPOWER(1,I1,LPP)SPOWER(2,12,LPP)

$ +SPOWER(3,13,LPP)+SPOWER(4,14LPP)+SPOWER(5I5,LPP)

$ +SPOWER(6,16,LPP)+SPOWER(7, 17,LPP)+SPOWER(8, 18,LPP)

IF(ESP0,4ER(LPP).GT.2.2) GOTO 26008

CHFMIN2=1 .E4

DO 26100 L=chkpnt(1),chkpnt(maxpt)

ESPOWER(L)=OPOWER(L)+SPOWER(1I1L)+SPOWER(2, 12,L)
$ +SPOWER(3,13,L)+SPOWER(4,14,L)+SPOWER(5,I5,L)

$ SPOWER(6, 16,L)+SPOWER(7, 17,L)+SPOWER(8, 18,L)

147

C

C

C



IF(ESPOWER(L).LT2.2) THEN

ESCHFR (L ) =DCHFR ( SCHFR ( 1, Ii, L ) +SC HFR(2, 12, L

$ SCHFR(3,13,L)+SCHFR(4,t4,L)+SCHFR(5, 5,L)

$ +SCHFR(6, 16,L)+SCHFR(7, 17,L)+SCHFR(8,I8,L)

IF(ESCHFR(L)JT.CHFMIN2) CHFMIN2=ESCHFR(L)
END IF

26100 CONTINUE

IF(CHFMIN2.GT.OMCHFR.AND.CHFMIN2.GT.CHFMINI) THEN

IF(ABS(ESKEFF8-OKEFF) .LE1.E6) 0010 26008
FLAG=. TRUE.

CHFMIN1=CHFMIN2

SI(l)=Il
SI(2)'I2
SI(3)=13
SI(4)=14
SI(5)=15
SI (6)=16

SI(fl=17
SI (8)=18

ENDIF
C

26008 CONTINUE

26007 CONTINUE

26006 CONTINUE

26005 CONTINUE
26004 CONTINUE

26003 CONTINUE

26002 CONTINUE

26001 CONTINUE

C

GOTO 2575

C

END OF PATTERN B

C

2789 ICOUNT=ICOUNT+1

DO 27001 11=1,3

ESKEFF1=OKEFFSKEFF(1, Ii)
DO 27002 12=1,3

ESKEFF2=ESKEFF1+SKEFF(2, 12)

DO 27003 13=1,3

ESKEFF3=ESKEFF2+SKEFF(3, 13)

00 27004 14=1,3

ESKEFF4=ESKEFF3SKEFF(4, 14)

DO 27005 15=1,3

ESKEFF5=ESKEFF4SKEFF(5, IS)
DO 27008 16=1,3

ESKEFF6=ESKEFF5SKEFF(6, 16)

DO 27007 17=1,3

ESKEFF7=ESKEFF6+SKEFF(7, 17)

DO 27008 18=1,3

ESKEFF8=ESKEFF7+SKEFF{8, 18.)

DO 27009 19=1,3

ESKEFF9=ESKEFFS+SKEFF(9, 19)

DO 27010 110=1,3

ESKEF1O=ESKEFF9-+-SKEFF(LO, 110)

C

IF (ESKEF1O.LT. EFFKMIN OR. ESKEF10.GT. EFFKMAX) 0010 27010

ESCHFR(LMM)=OCHFR(LMM)+SCHFR( 1,11 ,LMM)+SCHFR(2, 12,LMM)

$ +SCHFR(3,13,LMM)SCHFR(4, I4,LMM)4-SCHFR(5, 15,LMM)

$ SCHFR(6,16,LMM)+SCHFR(7,I7,LMM)+SCHFR(8.18,LMM)

$ SCHFR(9, 19,LMM)+SCHFR(10, 110,LMM)
IF(ESCHFR(LMM).LT.OMCHFR) 6010 27010

ESPOWER(LPP)=OPDWER(LPP)+SPOWER(1,I1.LPP)±SPOWER(2,12,LPP)
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$ SPOWER(3, 13,LPP)SPOWER(4, I4,LPP)--SP0WER(5, 15,LPP)

$ SPOWER(6,16,LPP)+SPOWER(7,17LPP)SP0WER(818,LPP)
$ SPOWER(9I9LPP)+SP0WER(10,I10,LPP)
1F(ESP0ER(LPP).GT.2.2) GOTO 27010

C

CHFMIN2=1 .E4

DO 27100 L=chkpnt(1) chkpnt(rnaxpnt)

$ +SPOWER(3,13,L)+SPOWER(4,14L)SPOWER(5IEL)
$ SPOWER(6,I6,L)+SP0WER(7,I7,L)P0NER,18.L
$ +SPOWER(919,L)+SPOWER(10, 11GL)

IF(ESPOWER(L).LT.2,Z) THEN

ESCHFR(L)=OCHFR(L)3cR(1i1)SCH72,I2L)
$ +SCHFR(3, I3L)SCNFR(4, 14L)+SCHFR(5, 15L)

$ SCHFR(616,L)+SCHFR(7, I7L)--SCHFR(8, 18,L)

$ +SCHFR(9,19L)+SCHFR(1QI1CL)
IF(ESCHFR(L).LT.CHFMIN2) CFM.N2=E0CHFR(L)

ENDIF

27100 CONTINUE

IF(CHFMIN2.GT.OMCHFR.AND.CHFMIN2 .GT.CHFMIN1) THEN

IF(ABS(ESKEF1O-OKEFF).LE.1.E-6) 0070 27010
FLAG=. TRUE.

CHFMIN1=CHFMIN2

SI (1)=I1

St (2) =12

SI(3)=I3

SI(4)=I4
SI( 5) =15

SI(6)=16

SI (7)=17

SI(S) =18

SI(9)=19

SI( 10) =110

ENDIF

C

27010 CONTINUE

27009 CONTINUE

27008 CONTINUE

27007 CONTINUE

27006 CONTINUE

27005 CONTINUE

27004 CONTINUE

27003 CONTINUE

27002 CONTINUE

27001 CONTINUE

C

C END OF PATTERN A

C

2575 DO 2253 1=1,NMAX
IF(SI(I).EQ.1) IDELR(I)=1

IF(SI(I).EQ.2) IDELR(I)=-1
IF(SI(I).EQ.3) IDELR(I)=0

2253 CONTINUE

DO 26200 IR=1,NMAX

CTNROD(IR)=OCTNROD( IR)+IOELR( IR)

IF(CTNROD(IR).EQ.(NZ1)) CTNROO(IR)=NZ

IF(CTNROO(IR).EQ.-1) CTNROD(IR)=0
26200 CONTINUE
C

IF(FLAG) THEN

WRITE(8,2424) GROUP,NMAX,ICASE
WRITE(8,2426) (CTNROD(IR)IR=1NMAx)

ELSE

IF(ICOUNT.EQ.1) THEN

EFFKMI N=O .995
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EFFKMAX=1 005

IF(NMAX.EQ.8) 6010 2889

IF(NMAX.EQ.10) GOTO 2789

ELSE

ICASE=1

ICOUNT=Q

GOTO 1111

ENDIF

ENDIF
C***********

C***** END OF CONTROL ROD PATTERN GENERATION
C

GOTO 300

C

C

PROMISING CONTROL ROD PATTERN GENERATION
C

3333 maxpnt=0

do 3427 i=1,nodes

if(ochfr(i).lt.(omchfr2.) OR. GPOWER(I).GT.(OPEAKN/2.)) ften

rnaxpnt=maxpnt+1

chkpnt (niaxpnt ) =

end if

3427 continue
NPI=NP+-1

PMAX1=1.E3

EFFKMIN=0.997

EFFKMAX=1 .003

ICOUNT=O

IF(NMAX.EQ.8) GOTO 3889

IF(NMAX.EQ.10) GOTO 3789
3889 ICOUNT=ICOUNT+1

DO 36001 11=1,3

ESKEFFI=OKEFFi-SKEFF( 1,11)

DO 36002 12=1,3

ESKEFF2=ESKEFFISKEFF(2, 12)

DO 36003 13=1,3

ESKEFF3=ESKEFF2SKEFF(3, 13)

DO 36004 14=1,3

ESKEFF4=ESKEFF3-i-SKEFF(4, 14)

DO 36005 15=1,3

ESKEFF5=ESKEFF4SKEFF(5, IS)
DO 36006 16=1,3

ESKEFF6=ESKEFF5SKEFF(6, 16)
DO 36007 17=1,3

ESKEFF7=ESKEFF6+SKEFF(7, 17)

DO 36008 18=1,3

ESKEFF8=ESKEFF7+SKEFF(8, 18)

C

IF (ESKEFF8.LT. EFFKMIN OR. ESKEFF8.GT. EFFKMAX) GOTO 36008

ESPOWER(LPP)=OPOWER(LPP)SPOWER(1 Ii LPP)SPOWER(2, 12,LPP)

$ SPOWER(3,13,LPP)+SPOWER(4,14,LPP)SPOWER(5I5,LPP)

$ +SPOWER(6,16,LPP)+SPOWER(7 17,GPP)+SPOWER(8,I8,LPP)
IF(ESPOWER(LPP).GT.OPEAKN) GOTO 36008

ESCHFR(LMM)=OCHFR(LMM)+SCHFR(1,I1LMM)SCHFR(2,12,LMM)

$ +SCHFR(3,13,LMM)+SCHFR(4,14,LMM)+SCHFR(515LMM)
+SCHFR (6 , 16, LMM) SCHFR(7, I!, LMM) +SCNFR(8, 18, LMM

IF(ESCHFR(LMM).LT.1.9) GOTO 36008

PMAX2=-2.O
DO 36100 L=chkpnt(1) ,chkpnt)maxpnt)

ESCHFR(L)=OCHFR(L)SCHFR(1, I1L)+SCHFR(2, 12L)
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$ +SCHFR(3,13,L)+SCF-iFR(4, I4,L)+SCHFR(5,15,L)

$ +SCHFR(6, 16,L)+SCHFR(7, 17[jSCHFR(8, 18,L)
IF(ESCHFR(L).GT.1.9) THEN

ESPOWER(L)=OPOWER(L)+SPOWER(1,I1,L)+SPOWER(2,12b)

$ +SPOWER(3, 13,L)+SPOWER(4, 14,L)+SPOWER(5, 15,L)

$ +SPOWER(6,16,L)+SPOWER(7,17,L)+SRCWER(8,I8,L)

IF(ESPOWER(L).GT.PMAX2) PMAX2=ESPOWER(L)
ENDIF

36100 CONTINUE

IF(PMAX2.LT.OPEAKN AND. PMAX2.LT.FMAX1) THEN

IF(ABS(ESKEFF8-OKEFF).LE.1.E-6) GOTO 36008
FLAG=. TRUE.

PMX1=PMAX2
SI(l)=I1

SI(2)=12

SI(3)=13

S1(4)=14

SI (5)=I5

SI (6)=16

SI(7)=I7

SI(8)=18

ENDIF

C

36008 CONTINUE

36007 CONTINUE

36006 CONTINUE

36005 CONTINUE

36004 CONTINUE

36003 CONTINUE
36002 CONTINUE

36001 CONTINUE
C

GOTO 3575
C

C** END OF PATTERN B
C

3789 ICOUNT=ICOUNT+l

DO 37001 11=1,3

ESKEFF1=OKEFF+SKEFF( 1, Ii)

DO 37002 12=1,3

ESKEFF2=ESKEFF1+SKEFF(2, 12)
DO 37003 I3=1,3

ESKEFF3=ESKEFF2+SKEFF(3, I3)
00 37004 I4=1,3

ESKEFF4=ESKEFF3SKEFF(4, I4)

DO 37005 15=1,3

ESKEFF5=ESKEFF4+SKEFF(5, 15)

DO 37006 I6=l,3

ESKEFF6=ESKEFF5SKEFF(6, I6)
DO 37007 17=1,3

ESKEFF7=ESKEFF6SKEFF(7, 17)
DO 37008 18=1,3

ESKEFF8=ESKEFF7+SKEFF(8, 18)
DO 37009 19=1,3

ESKEFF9=ESKEFF8+SKEEF(9, 19)
DO 37010 I1O=1,3

ESKEF1O=ESKEFF9+SKEFF(10, Ii0)

C

IF (ESKEF1O.LT. EFFKMIN OR. ESKEFIO.GT. EFFKMAX) GOTO 37010
C

ESPOWER(LPP)0POWER(LPP)SP0WER(1,I1,LPP)+SP0WER(2,12,LPP)

$ +SPOWER(3,13,LPP)+SPOWER(4, I4LPP)SPOWER(5,I5LPP)

$ +SPOWER(6,16,LPP)+SPOWER(7I7,LPP)+SPOWER(8,I8,LPP)

$ +SPOWER(9,19,LPP)+SPOWER(10,i10,LPP)
IF(ESPOWER(LPP).GT.2.2) GOTO 37010
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C

E SCHFR ( LMM) =DCHFR ( LMM) +SC HFR ( 1, Ii, LMM) +SCHFR(2, 12 LMM

$ +SCHFR(3, I3,LMM)SCHFR(4, 14,LMM)SCHFR(5, I5LMM)

$ +SCHFR(6,16LMM)SCHRR(7, 17,LMM)+SCHFR(818,LMM)

$ +SCHFR(9I9,LMM)+SCHFR(1O, I10LMM)
IF(ESCHFR(LMM).LT.OMCHFR) 0010 37010

C

PMAX2=-2 .0

DO 37100 L=chkpnt(1) chkpnt(maxpnt)

ESCHFR(L)=OCHFR(L)+SCHFR(1, 11 ,ij+SCHFR(2, 12,L)

$ SCHFR(313,L)SCHFR(4, 14,L)SCHFR(5, 15,L)

$ +SCHFR(6,I6,L)+SCHFR(7, 17L)+SCHFR(8, 18,L)

$ +SCHFR(9 19L)SCHFR(10, IlOL)
IF(ESCHFR(L).GT.1.9) THEN

ESPOWER(L)=OPOWER(L)+SPOWER(1,I1,L)SPOWER(212L)

$ +SPOWER(3, I3L)SPOWER(4, 14,L)+SPOWER(5, 15L)

$ +SPOWER(6 16,L)+SPOWER(7, 17,L)-4-SPOWER(8, 18,L)

$ +SPOWER(9,19,L)SPOWER(1OI1OL)
IF(ESPOWER(L) GTPMAX2) PMAX2=ESPOWER(L)

ENDIF

37100 CONTINUE

IF(PMAX2.LT.OPEAKN AND. PMAX2.LT.PMAX1) THEN

IF(ABS(ESKEFF8-OKEFF).LE.1.E-6) GOTO 37010

FLAG=.TRUE.

PMAX1=PMAX2

SI (1)=I1

SI (2)=I2
SI(3)=13
SI(4)=14
SI(5)=15
SI(6)=16
SI (7)=17
SI(8)=18
SI(9)=19
SI(10)=I10

ENDIF
C

37010 CONTINUE

37009 CONTINUE
37008 CONTINUE

37007 CONTINUE

37006 CONTINUE

37005 CONTINUE

37004 CONTINUE

37003 CONTINUE

37002 CONTINUE

37001 CONTINUE

C

C** END OF PATTERN A

C

3575 DO 3253 I=1NMAX
IF(SI(I).EQ.1) IDELR(I)=1

IF(SI(I).EQ.2) IDELR(I)=-1

IF(SI(I).EQ.3) IDELR(I)=D

3253 CONTINUE

DO 36200 IR=1,NMAX

CTNROD(IR)=OCTNROD(IR)+IDELR( IR)

IF(CTNROD(IR).EQ.(NZ1)) CTNROD(IR)=NZ
IF(CTNROD(IR).EQ.-1) CTNROD(IR)=0

36200 CONTINUE

C

IF(FLAG) THEN
\4RITE(82424) GROUPNMAX, ICASE
WRITE(82426) (CTNROD(IR),IR=1,NMAX)

ELSE
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IF(ICOUNT.EQ.1) THEN

EFFKMI N=O .995

EFFKMAX=1 .005

IF(NMAX.EQ.8) GOTO 3889

IF(NMAX.EQ.1O) GOTO 3789

ELSE

ICASE=2

ICOUNT=O

6010 2222

ENDIF

ENDIF
*k***,k*****

END OF CONTROL ROD PATTERN GENERATION
C**** * **

GOTO 300
C**************

C************** PROMISING CONTROL ROD PATTERN GENERATION
C**** *** * * * *

4444 rnaxpntO
do 4427 i=1,nodes

if(ochfr(i).lt.(ornchfr+2.) OR. OPOWER(I).GT.(OPEAKN/2j) then
maxpnt=maxpnt4-1

chkpnt(rnaxpnt)=i

end if

4427 continue

NP1=NP+1

ZJMIN=1 .E3

EFFKMI N=O .997

EFFKMAX=1 .003

ICOUNI=O

IF(NMAX.EQ.8) GOTO 4889

IF(NMAX.EQ.10) GOTO 4789

4889 ICOUNT=ICOUNI+1

DO 46001 11=1.3

ESKEFF1=OKEFFSKEFF(1,I1)
DO 46002 12=1,3

ESKEFF2=ESKEFF1+SKEFF(2, 12)
DO 46003 13=1,3

ESKEFF3=ESKEFF2SKEFF(3, 13)
DO 46004 14=1,3

ESKEFF4=ESKEFF3+SKEFF(4, 14)

DO 46005 15=1.3

ESKEFF5=ESKEFF4+SKEFF(5, 15)
DO 46006 16=1,3

ESKEFF6=ESKEFF5+SKEFF(6, 16)
DO 46007 17=1,3

ESKEFF7=ESKEFF6+SKEFF(7, 17)

DO 46008 18=1,3

ESKEFF8=ESKEFF7+SKEFF(8, 18)

C

IF (ESKEFF8.L1. EFFKMIN OR. ESKEFF8.GT. EFFKMAX) GOTO 46008

ESP0WER(LPP)=0POWER(LPP)+SPO\4ER(1,I1,LPP)+SPO1ER(2, 12,LPP)

$ SPOWER(3,13,LPP)+SPOWER(4,14LPP)SPOWER(5,15,LPP)

$ +SPOWER(6,16,LPP)+SPOwER(7, 17LPP)+SPCWER(818LPP)
IF(ESPOWER(LPP).GT,2.2) GOTO 46008

ESCHFR( LMM ) =OCHFR ( LMM) +SCHFR ( 1, Ii, LMM) SCHFR(2, I?. L HM)

$ +SCHFR(3,13,LMM)+SCHFR(4, 14,LMM)+SCHFR(5, 15,LMM)

$ +SCHFR(6,16,LMM)+SCHFR(7, I7LMM)+SCHFR(8, 18,LMM)

IF(ESCHFR(LMM).LT.1.9) 6010 46008

DO 46100 L=chkpnt(1) ,chkpnt(maxpnt)

ESCHFR(L)=OCHFR(L)+SCHFR(1, 11 ,L)+SCHFR(2, 12,L)
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$ +SCHFR(3,I3,L)+SCHFR(414,L)+SCHFR(5 15,L)

$ SCHFR(6, 16,L)SCHER(7, 17L)SCHFR(8, 18,L)
IF(ESCHFR(L).LL1.9) 6010 46008
ESPOWER(L)=OPOWER(L)+SPOWER(1, I1,L)+SPCWER(2, 12L)

$ +SPOWER(3,13,L)SPOWER(4, 14 ,ljSPOWER)5, 15,L)

$ +SPOWER(6,16,L)4-SPOWER(7, 17,L)+SPOWER(8, 18,L)

IF(ESPOWER(L).GT.2.2) GOTO 46008

46100 CONTINUE

ESZJ=OZJ+SZJ(l,I1)+SZJ(2, 12)

$ +SZJ(3,13)+SZJ(4,14)+SZJ(5,15)

$ +SZJ(6,I6)SZJ(7,I7)SZi(8, 18)

IF(ESZJ.LT,OZJ AND. ESZJ.LTZJMIN) THEN
IF(ABS(ESKEFF8-OKEFF).LE.1.E-6) 0010 46008

FLAG=.TRUE.

ZJMIN=ESZJ

S1(1)=11

S1(2)=12

SI(3)=13

SI(4)=14

SI(5)=15

S1(6)=16

SI(7)=I7

SIC 8) = 18

ENDIF

C

46008 CONTINUE
46007 CONTINUE

46006 CONTINUE
46005 CONTINUE

46004 CONTINUE

46003 CONTINUE

46002 CONTINUE
46001 CONTINUE

C

GOTO 4575

C

C** END OF PATTERN B
C

4789 ICOUNT=ICOUNT+1

DO 47001 11=1,3

ESKEFF1=OKEFF+SKEFF (1 11)

DO 47002 12=1,3

ESKEFF2=ESKEFF1SKEFF(2, 12)
DO 47003 13=1,3

ESKEFF3=ESKEFF2+SKEFF(3, 13)

DO 47004 14=1,3

ESKEFF4=ESKEFF3SKEFF(4, I4)

DO 47005 15=1,3

ESKEFF5=ESKEFF4+SKEFF(5, IS)

DO 47006 16=1,3
ESKEFF6=ESKEFF5SKEFF(6, 16)

DO 47007 17=1,3

ESKEFF7=ESKEFF6+SKEFF (7, 17)

DO 47008 18=1,3
ESKEFF8=ESKEFF7-+-SKEFF(8, 18)

DO 47009 19=1,3

ESKEFF9=ESKEFF8+SKEFF(9, 19)

DO 47010 110=1,3
ESKEF1O=ESKEFF9+SKEFF(10, 110)

C

IF (ESKEF1O.LT. EFFKMIN OR. ESKEFIO.GT. EFFKMAX) 0010 47010
C

ESPOWER( LPP ) =OPOWER( LPP )+SPOWER ( 1, 11, LPP )±SPOWER(2 12, LPP)

$ +SPOWER(3,13,LPP)SPOWER(4, 14,LPP)+SPOWER(5, 15,LPP)
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$ +SPOWER(6,I6,LPP)+SP0WER(7I7LPP)--SP0WER(8,I8LPP)
$ +SPOWER(9,19,LPP)SPOWER(10I1Q,LPP)
IF(ESPOWER(LPP).GT.2.2) 6010 47010

ESCHFR ( LMM) =OCHFR C LMM)+SCHFR ( 1, Ii, LMM) SCHFR (2 12, LMNI)

$ +SCHFR(3,13,LMM)+SCHFR(4,I4,LNM)+SCHFR(5,I5,LM)

$ +SCHFR(6, 16,LMM)+SCHFR(7, I7,LMM)+SCHFR(8, I8,LMM)

$ +SCHFR(9, 19,LMM)+SCHFR(10, 110 LMM)

IF(ESCHFR(LMMLLTJ.9) GOTO 47010

00 47100 L=chkpnt(1) ,chkpnt(maxpnt)

ESCHFR(L)=OCHFR(L)+SCHFR(1, Il,L)SCHFR(2, 12,0)

$ +SCHFR(3,13,L)sCHFR(4,14[)SCHFR(5,15,L)

$ +SCHFR(616,L)#SCHFR(7, 17,+SCHFE(8,180)

$ +5CHFR(9, 19,L)+SCHFR(10, 110,0)

IF(ESCHFR(L).LT.1.9) 6010 47010
ESPOWER(L)0P0WER(L )+SPOWER ( 1, IlL ) SP0'EP. (2, 12 , 0)

$ +SPOWER(3,13,L)+SPOWER(4, 14,L)+SPOWER(5, 15,0)
$ +SPOWER(5, 16,L)+SPOWER(7, 17,L)+SPCWER(8, 18,L)

$ +SPOWER(9,19,L)+SPO\4ER(10, 110,0)

IF(ESPOWER(L).GT.2.2) 6010 47010
47100 CONTINUE

ESZJ=OZJSZJ(1. I1)SZJ(2, 12)

$ +SZJ(3, I3)SZJ(4, 14)-'-SZJ(S, 15)

$ SZJ(6,16)+SZJ(7, 17)+SZJ(8, 18)
$ SzJ(9,I9)SzJ(1O,Ilo)
IF(ESZJ.LT.OZJ AND. ESZJ.LTZJMIN) THEN
IF(ABS(ESKEFF8-OKEFF).LE.1.E-6) 0010 47010
FLAG=. TRUE.

ZJMI N=ESZJ

SI(1)=I1

SI(2)=I2

SI(3)=13
SI(4)=14

SI( 5) =15

SI (6)=I6

SI(7)=17

SI(8)=I8

SI (9)=I9

SIC 10) =110
ENDIF

C

47010 CONTINUE

47009 CONTINUE

47008 CONTINUE
47007 CONTINUE

47006 CONTINUE
47005 CONTINUE

47004 CONTINUE
47003 CONTINUE

47002 CONTINUE
47001 CONTINUE

C

C** END OF PATTERN A
C

4575 DO 4253 I=1,NMAX

IF(SI(IYEQ.1) IDELR(I)=1
IF(SI(I).EQ.2) IDELR(I)=-1

IF(SI(I).EQ.3) IDELR(I)=0
4253 CONTINUE

DO 46200 IR=1,NMAX
CTNROD(IR)=OCTNROO(IR)+IDELR(IR)
IF(CTNROD(IR).EQ.(NZ1)) CTNROD(IR)=NZ



IF(CTNROD(IR).EQ.-1) CTNROO(IR)=0
46200 CONTINUE

C

IF(FLAG) THEN

WRITE(82424) GROUP,NMAX,ICASE
WRITE(8,2426) (cTNROD(IR),IR=1NMAx)

ELSE

IF(ICOUNT.EQ.1) THEN

EFFKt'iIN=0 .995

EFFKMAX=1 .005

IF(NMAX.EQ.8) GOTO 4889
IF(NMAX.EQ.10) GOTO 4789

ELSE

ICASE=3

ICOUNT=0

GOTO 3333

ENDIF

ENDIF
C***********

END OF CONTROL ROD PATTERN GENERATION

C

GOTO 300

300 RETURN

END
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Appendix C

Intra-nodal Flux Distributions Calculation Subroutine

PROGRAM PF-IILSQ

IMPLICIT REAL*8 (A-H2O-Z)

C LEAST SQUARE FITTING

EXTERNAL FUNCT

DIMENSION A(6,7LU(9), Z(6),C(9,6)G(GLPHI(1O1O)
$ UC(9),CN(1O,1O) ,DX(1O) ,DY(1O)
DATA DX/O.58*1.O,O.5/, DY/O.5,8*1.O,O.5/

OPEN (6 FILE= FAST

OPEN (7 , FILE= THERMAL

OPEN (9 FILE= PHILSQ3 OUT

C

C P,Q = NODAL POSITION OF X, AND Y WHICH IS CLOSEST TO THE ORIGIN

C

READ(*,*) INOOE,JNODE

READ(*,*) PQ,W
WRITE(9*) READ (P,Q) AND WIDTH S PQ,W
P=P+O.5

Q=Q+O.S
w=w-1.0

ICALLS=1
77 IF(ICALLS.GE.3) GOTO 888

IF(ICALLS.EQ.1) THEN
NOUT=6

P=1.E4

Q=1.E4

ENDIF

IF(ICALLS.EQ.2 THEN

NOUT=7

P=1.E6

Q=1 .E6

ENDIF

READ(*,*) D
WRITE(9,*) READ DIFFUSION COEFFICIENTS ? D

READ(*,*) U(1)U(4),U(2)U(3),U(5),U(8)U(6),U(7)U(9)
READ(*,120) ((CN(I,J) J=1,1O),I=1,iO)

C

C RECALCULATE U(1) U(9)

C

U(1)=O.

DO 31 JY=110
31 U(1)=U(1)+CN(1,JY)*DY(JY)

U(2 ) =0.

DO 32 IX=1,1O

32 U(2)=U(2)+CN(IX,1O)*DX(IX)

U(3)=O.

DO 33 JY=1,ID
33 u(3)=U(3)+CN(10,JY)*DY(JY)

U(4)=O.

DO 34 IX=1JO
34 U(4)=U(4)ICN(IX,1)*DX(IX)

U(5)=0.
DO 35 JY=1.10

35 U(5)=U(5)(_D)*(CN(2,3Y)_CN(1,J))*OY(i)

U(6)=O.
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DO 36 IX=1,10
36 U(6)=u(6)+(_D)*(cN(Ix,1o)_cN(Ix,g))kDx(ix)

U (7) =0

DO 37 JY=1,1O

37 U(7)=U(7)(_D)*(CN(lo,Jy)_cN(9JY) )ky(Jy)
U (8) =0.

DO 38 IX=1,1O

38 U(8)=U(8)(_D)*(CN(IX,2)_CN(Ix,1))*ox(Ix)

U(9)=O.

DO 39 IX=1,1O
DO 39 JY=l,1O

39 U(9)=U(9)+CN(IX,JY)/loo.
C

C SET UP MATRIX ELEMENTS
C

C (1,1) =W

C(1,2)=1./2.*((Qw)**2_Q**2)
C(1,3)=P*w

C(1 4)=1./2.*P*((Q+W)**2_Q**2)

C(1 5)=1 /3 *((Qfw)**3_Q**3)
C(1,6)=P*P*w

C(2,1)=W
c(2,2)=w*(Q+w)

C(2 3)=1 /2 *((pw)**2_p**2)
C(2 4)=1./2 *(Q+w)*((p+w)**2_p**2)
C(2 5)=(Q+W)**2*W
C(2,6)=1 /3*( (P+w)**3..P**3)

C(3,1)=W

C(3,2)=1 ./2
*( (Q+)**2_q**2)

C(3,3)=(P+w)*w

C(3 4)=1./2.*(P+W)*((Q+W)**2_Q**2)

C(3 5)=1./3.*((Q+W)**3_Q**3)
c(3,6)=(P+w)**2*w

c(4,1)=W
C(4,2)=W*Q

C(4 3)=1 /2 *((pw)**2_p**2)
C(4,4)=1./2.*Q*((P+w)**a_P**2)

C(4,5)=Q**2*W

C(4,6)=1 ./3.*((PW)**3_P**3)

C(5,1)=0.

C (5 , 2) =0.

C (5,3) =_D*W

C(5,4)=-1 ./2.*D*( (Q+w)**2_Q**2)

c(5, 5) =0.

c(5,6)=_2.*D*P*w

1) =0.

C(6,2)=_D*w

C(6,3)=O.

C(6 4)=-1 /2 *D*((p+W)**2p**2)
C(6,5)=_2.*D*(Q+w)*w

C( 6, 6) =0.

1) =0.

C(7,2)=O.
C(7,3)=_D*w

C(7,4)=_1./2.*D*( (Q+w)**2_o**2)

C(7, 5) =0.

C(7,6)=_2.*D*(P+W)*W

C (8 , 1) =0.

C(8,2)=D*w

C (8,3) =0.

C(8,4)=_1./2.*D*( (pw)**2p**2)
c(8,5)=_2.*o*Q*w

C (8 , 6) =0.

C(9,1)=1.
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C(9 2)=1 /2 /w*((Q+w)**Q*k2)
C(9 3)=1 /2 /W*((PW)**7_P*2)
C(9,4)=1./4./w/w*((P±w)*k2_P**2)*((Q+w)*2_Q2)

C(9 5)=1 /3./W*((Q+W)*k3Q*3)
C(9,6)=1 ./3./W*((P+W)**3_P*3)

C

C

WRITE(9,*)
' INTG. SURFACE FLUXES: ',U(i),U(4),U(2),U(3)

WRITE(9,*)
' INTG. SURFACE CURRENTS:',U(S),U(8),U(6),U(7)

WRITE(9,*)
' NODE AVERAGE FLUX: ' ,U(9)

DO 135 31=1,6

00 135 32=1,6

A(J1 ,32)=O.

DO 135 1=1,9
135 A(J1,J2)=A(J1,J2)4C(1,31)*C(I,32)

DO 136 11=1,6
A(II,7)=O.

DO 136 1=1,9

136 A(I1,7)=A(1I ,7)C(r II)*U(I)

C END OF SETUP

C

C

DO 200 1=1,6
200 WRITE(9,130)

( A(I,3), 3=1,7

130 FORMAT(4(/,8E14.5))
C

CALL SOLVE(6,A,Z)

C

WRITE(9,*) 'CALCULATED LSQ COEFFICIENTS AOO,AO1,AiO,Aii,AO?,A20'

WRJTE(9,120) Z(I), 1=1,6

120 FORMAT((10E13.6))

DO 50 1=1,10

XX=P+W/9. *FQ( 1-1)
DO 50 3=1,10

YY=Q+W/9 FoJ (3-1)
50 PHI(I,3)=FUNCT(XX,YY,Z)

C
WRITE(9,*)

WRITE(9,*)

WRITE(NOUT,*) INODE,JNODE

DO 350 1=1,10

WRITE(NOUT,120) (PHI(I,J),J=1,1O)

WRITE(9,120) (PHI(I,J),J=i,10)
350 WRITE(9,*)

C

DO 1567 1=1,9

UC (I) =0.

DO 1567 3=1,6

1567 UC(J)=UC(1)+C(I,J)*Z(J)

WRITE(9,*)
' KNOWN CALCULATED ERR()'

WRITE(9,*) 'INTG SURFACE-i FLUX: ,U(i),UC(i),(1._UC(1)/U(1))*iOO.

WR1TE(9,*) 'INTO SURFACE-2 FLUX: ,U(4),UC(4),(1._UC(4)/U(4))*100.

WRITE(9,*) 'INTIS SURFACE-3 FLUX: .U(2)UC(2)(i_UC(2)IU(2))*100
WRITE(9,*) 'INTO SURFACE-4 FLUX: ,U(3),UC(3),(i._UC(3)/U(3))kiOO.

IF(ABS(U(5)).LE.1.E-10) THEN

WRITE(9,*) 'INTG SURFACE-i CURRENT:',U(S),UC(S),UC(S)

ELSE

WRITE(9,*) 'INTG SURFACE-i CURRENT:',U(5),UC(5)

$ ,(i.UC(5)/U(5))*1OO.

END IF

IF(ABS(U(8)).LE.1.E-iO) THEN

WRITE(9,*) 'INTO SURFACE-2 CURRENT: ,U(8),UC(8),UC(8)

ELSE
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WRITE(9*) INTG SURFACE-2 CURRENT:',U(8),UC(8)

$ ,(1.UC(8)/U(8))kiOO.

ENDIF

IF(ABS(U(6))LE.1E-1O) THEN
WRITE(9,*) 'INFG SURFACE-3 CURRENT: U(6),UC(6),UC(6)

ELSE

WRITE(9*) 'INTG SURFACE-3 CURRENT: U(6)UC(6)

$ (1.UC(6)/U(6))1OC
ENDIF

IF(ABS(U(7)).LE.1.E-1O) THEN

WRITE(9,*) 'INTG SURFACE-4 CURRENT:U(7)UC(flUC(7)
ELSE

WRITE(9,*) 'INTG SURFACE-4 CURRENL:,U(7YUC7'

$ (iUC fl3*130
ENDIF

WRITE(9,*) 'NODE AVERAGE FLUX: ,U(9),UC(9)
,(LUC(9)/U(9))*1OO.

ICALLS=ICALLS1

C READ(k,65) S1,S2,S3,S4G5S6,3/,S4,S9,S1O

65 F0RMAT(E13.6,/,E13.6,/E13.6,/,E3,6/E13.6

$ ,/,E13.6,/,E13.6,/,E136,/,E13.6/E136)
GOTO 77

888 STOP

END

C

C

C

SU8ROUTINE SOLVE(N,A,Z)

IMPLICIT REAL*8 (A-HO-Z)
DIMENSION A(6,7),Z(6)INDEX(6)
NN=Ni-1

DO 333 I=1,N

Z(I)=O.

INDEX(I)=D.

333 CONTINUE

NP=NN

DET=1.O

00 100 K=1,N

KP=K+1

M=NP-K

D=O.

L=K

DO 30 I=K,N

IF(ABS(A(I,Kfl-D) 303020
20 L=I

INDEX (K)

D=ABS(A(L,K))

3D CONTINUE

IF(L-K) 40,55,40

40 00 50 J=1,NN

D=A(L,J)

A(L,J)=A(K,J)

A(K , J ) =D

50 CONTINUE

55 CONTINUE

WRITE(9,900) A(K,K)

32 IF(A(K,K).EQ.0.) GOTO 200
33 DET=DET*A(K,K)

DO 80 J=KP,NP

A (K, J ) =A (K, J ) /A (K, K)

DO 70 I=KP,N
A(I,J)=A(I,J)_A(K,J)*A(I,K)

70 CONTINUE

80 CONTINUE
100 CONTINUE
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Z(N)=A(N,NP)

DO 120 I=2,N

J=NP-I

JP=J+l

SUM=0.

DO 150 M=JP,N
SUM=SUM_A(J,M)*Z(M)

150 CONTINUE

Z(J)=A(J,NP)+SUM
120 CONTINUE

5010 210

200 CONTINUE

WRITE(9,9O1)
210 CONTINUE

WRITE(9,970) DET
970 FORMAT(/, OET= ,E13.6)

900 FORMATV PIVOT = ,1PE12.5)

901 FORMAT( THE MATRIX IS SINGULAR)
902 FORMATY THE MATRIX AFTER ELIMINATION')

RETURN

END

C

FUNCTION FUNCT(X,Y,Z)

IMPLICIT REAL*8 (A-HO-fl
DIMENSION Z(6)
FUNCT=Z(1)+Z(2)*Y+Z(3)*XZ(4)*X*Y4Z(5)*Y*YZ(6)*XX

C

RETURN

END
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