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For manufacturing and service industries to stay competitive in this rapidly changing, 

globalized world, one of the most important operations, and one that many businesses 

struggle to plan and manage efficiently, is material handling.  There has been a large 

amount of research on various vehicle routing problems (VRPs) in recent decades, but 

relatively less work on certain unique types of VRPs that characterize some specific 

industries. 

This thesis identifies an interesting and new type of VRP with unique characteristics 

in order to serve the needs and goals of the electronics industry. The problem deals 

with two types of customers; some require only delivery, while the others require both 

delivery and installation. There are two different types of vehicles in this problem: 

delivery vehicles and installation vehicles. The delivery vehicle and (if needed) the 

installation vehicle are allowed to visit each customer only once.  There is an 

additional constraint to provide the guaranteed service quality, which is measured by 

the amount of time between the delivery and the installation. A customer must be 

visited by an installation vehicle within the predetermined maximum allowable time 



after the visit by a delivery vehicle. Therefore, it is required that both types of vehicles 

be synchronized for the customers requiring both delivery and installation. The 

problem under consideration is more complicated than other, traditional VRPs that 

have been studied widely in the past, since in this case two different types of vehicles 

must be synchronized.  

A mixed-integer nonlinear programming (MINP) model for this problem is 

formulated. A hierarchical approach using a genetic algorithm (GA) is proposed to 

solve the problem effectively. Various examples are tested to show the effectiveness 

of the proposed hierarchical approach. To demonstrate the robustness of the proposed 

approach, partial factorial experimental design varying the parameters of 

characteristics in the problem is performed using the Taguchi method. In the 

hierarchical approach, an algorithmic limitation is conjectured in which the attempt to 

find the best solution tends to dwell on the local optimal solution, searching only part 

of the entire solution space. In order to tackle the limitation of the hierarchical 

approach and search the entire solution space effectively and efficiently for a global 

optimal solution, an endosymbiotic evolutionary algorithm (EEA), which concurrently 

considers subproblems having cooperative interactions, is considered. Various test 

examples are solved using the EEA, and this method’s efficiency and effectiveness are 

shown by comparing the computational results with the ones from the hierarchical 

approach. A set of problems is solved by the MINP model, the hierarchical approach 

using a genetic algorithm, and the EEA, and solutions from the three approaches are 

compared.   
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1. INTRODUCTION 

In order to survive in this competitive business environment, a company must have an 

appropriate way to handle materials cost-effectively. Especially in the manufacturing industry, 

handling methods for raw materials and work-in-process are as important as the one for final 

products. For material handling activities to satisfy various demands effectively, vehicle 

routing and scheduling has been studied and implemented extensively. In this thesis, a vehicle 

routing problem (VRP) found in the electronics industry, which has unique characteristics of 

material handling, is considered. The problem under consideration and the objectives of the 

thesis are described in the following sections. 

1.1 Problem description 

The electronics industry has recently experienced rapidly emerging changes in its post-sales 

service, i.e., delivery and installation. In the past, local stores were individually responsible for 

these services. However, nowadays electronics manufacturers are increasingly required to 

directly deliver products to their customers and to provide on-site installation. Electronics 

sales via e-commerce, large discount stores, general merchandise stores, and department stores 

are increasing very rapidly while sales via existing local stores are decreasing. Moreover, 

electronics manufacturers are putting intensive efforts into increasing sales through 

professional electronics franchises like Staples (US), OfficeMax (US), Hi-Mart (Korea), and 

other such stores, which do not provide delivery and installation themselves. These trends tend 

to push greater responsibilities for delivery and installation onto electronics manufacturers, 

and the number of direct deliveries from electronics manufacturers to customers continues to 

increase at an explosive pace. 
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Another unique characteristic of the electronics industry has to do with the installation service 

itself. Some products, such as air conditioners, have long required professional installation 

services. Many other new products similarly require both delivery and professional installation; 

these products include wall-mounted televisions, home theaters, washers and dryers, 

refrigerators with a water purifier, special cook-tops, numerical control machines, and 

computer servers.  

Another organizational need makes the task of planning vehicle routing and scheduling more 

complicated. The expense to maintain a nationwide distribution and service network is too 

high to make it practical and economical. Therefore, manufacturers adopt the practice of 

outsourcing the delivery to third parties while maintaining their own service teams or 

commissioning authorized service providers for the installation. 

The VRP under consideration assumes that there exist two types of demands in a complex 

electronics market: one requires the delivery only, and the other requires both delivery and 

installation. To satisfy both types of demands, a single distribution center separately operates 

two different types of vehicles (delivery and installation vehicles). It is assumed that delivery 

vehicles have a limited loading capacity to carry the products and that installation vehicles do 

not. Both types of vehicles start from a single depot at the beginning and return to the depot 

within a specified time. Delivery demands of all customers are known in advance. Based on 

the delivery demands, a set of customers is assigned to a delivery vehicle.  The sum of 

customers’ demands assigned to a single delivery vehicle cannot exceed the loading capacity 

of the delivery vehicle. The delivery vehicle and (if needed) the installation vehicle are 

permitted to visit each customer only once. In addition, there is a constraint to satisfy the 

expected service quality, which is measured as the amount of time between the delivery and 

the installation. It is necessary for the installation vehicle to visit a customer within the 
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predetermined maximum allowable time after the delivery vehicle’s visit to that customer. 

Therefore, the synchronization of both types of vehicles needs to be carefully planned to 

guarantee the promised service quality. Figure 1.1 shows a typical example of the VRP under 

consideration and its potential solution.  

 

Figure 1.1 An example of vehicle routing problems under consideration. 

The example consists of 16 customers, 10 requiring the delivery only (which are represented 

by the filled circles) and 6 requiring both delivery and installation (which are represented by 

the open circles). The solid and dotted lines are the routes of the delivery and installation 

vehicles, respectively. There are three delivery and two installation vehicles in Figure 1.1. The 

arrival times of delivery and installation vehicles are shown next to the customers. Installation 
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vehicles can visit customers earlier than delivery vehicles, causing waiting times for 

installation vehicles at the corresponding customer locations. If installation vehicles visit 

customers later than delivery vehicles, the guaranteed maximum time lapse between delivery 

and installation must be satisfied.  

Traditional VRPs are defined as combinatorial optimization problems, for which it is difficult 

or impossible to obtain optimal solutions through general optimization methods owing to their 

high computational complexity. The VRP under consideration in this thesis is by far more 

complicated than other, traditional VRPs studied widely in the past, since it deals with more 

decision variables and constraints, and the nonlinearity from synchronization requirement adds 

another level of complexity.  

In order to solve the VRP under consideration, three different approaches are introduced in 

this thesis. First, a mathematical model for the VRP is formulated and used to solve test 

problems, using commercially available optimization software. Second, a hierarchical 

approach using a genetic algorithm is proposed to obtain good solutions efficiently in a 

reasonable amount of time. The hierarchical approach divides the VRP of interest into two 

subproblems: the VRP for delivery vehicles in the first stage and the VRP for installation 

vehicles in the second stage. Vehicle routes and schedules for delivery vehicles are determined 

in the first stage; then, based on the results of the first stage, vehicle routes and schedules for 

installation vehicles are determined in the second stage. Various test problems are solved to 

demonstrate the effectiveness of the hierarchical approach. The performance of the 

hierarchical approach is subject to problem characteristics, such as the number of installation 

customers, predetermined service quality, installation time, and fixed cost per vehicle. The 

implications of these characteristics for the problem are studied through the Taguchi method, 

known as one of the more robust design tools. The purpose of the Taguchi method is to show 
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the robustness of the algorithm for the problem with various conditions of the characteristics, 

instead of identifying the optimized process parameters of the proposed algorithm. 

The hierarchical approach has the natural limitation that the solutions in the second stage rely 

on the quality of the solution obtained in the first stage. Since the hierarchical approach may 

not be able to search the solution space of the problem thoroughly, the solutions generated by 

this approach can be local optima. It is thus necessary to develop a method to search the entire 

solution space effectively to find global optima for the corresponding problem. Instead of 

solving the problems hierarchically, methods considering two subproblems at the same time 

have been studied to get over the limitation of the hierarchical approach. Therefore, finally, an 

endosymbiotic evolutionary algorithm (EEA), which concurrently searches partial solution 

spaces for subproblems of the original complex problem, is also proposed to tackle this 

limitation. Various test problems are solved using the proposed EEA to demonstrate its 

effectiveness and efficiency. The computational solutions generated by the aforementioned 

approaches are given to compare the performance of each approach.  

 

1.2 Objectives of the thesis 

The first objective of this thesis is to define a unique and interesting vehicle routing problem, 

found recently in the electronics industry, which requires synchronization of two types of 

vehicles for delivery and installation. The problem under consideration can be divided into 

two subproblems, and each subproblem can be modeled as an existing VRP. Distinct 

characteristics for each subproblem are observed and defined, and the characteristics bridging 

the two subproblems are also defined. 
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The second objective is to develop and validate a mathematical model to solve the VRP under 

consideration with optimality. A mathematical model is formulated as a mixed-integer 

nonlinear programming (MINP) model. The mathematical model can be used to find optimal 

solutions using commercially available software, but it has been found extremely hard to 

determine optimal solutions in a reasonable amount of time. The third objective is to develop a 

hierarchical approach using a genetic algorithm (GA) to effectively solve VRPs of various 

sizes. GAs for the delivery and installation, respectively, are developed to solve the 

subproblems in a reasonable amount of time. The fourth objective is to develop a symbiotic 

evolutionary algorithm to further improve the performance of the hierarchical approach in 

terms of speed or solution quality and to compare its performance with the mathematical 

model and the hierarchical approach. An endosymbiotic evolutionary algorithm (EEA) is 

developed to achieve this objective.   

 

1.3 Organization of the thesis 

This thesis consists of eight chapters. Chapter 1 introduces the problem of interest. Chapter 2 

reviews the literature on existing VRPs, their solution methods (especially GAs), the Taguchi 

method, and the EEA. Since the genetic algorithm is used in the proposed hierarchical 

approach, the procedures and process parameters of GAs are described in detail.  In Chapter 3, 

a mathematical model of the VRP under consideration is formulated and the NP-hardness of 

the problem is described. Chapter 4 proposes a solution methodology of the hierarchical 

approach using a genetic algorithm for the VRP under consideration. Computational results by 

the hierarchical approach using the genetic algorithm are summarized in Chapter 5. Chapter 6 

proposes an endosymbiotic evolutionary algorithm as a novel approach to the VRPs under 
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consideration. The results of various computational experiments by the EEA are provided in 

Chapter 7. Finally, chapter 8 concludes the dissertation with a discussion of the results and 

implications, and introduces ideas for future research.  
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2. LITERATURE REVIEW 

2.1 Vehicle routing problems (VRPs) 

2.1.1 Description of the traditional VRP  

The vehicle routing problem is one of the most important problems in the fields of 

transportation and logistics. However, it is hard to solve this problem since the VRP belongs 

to the category of NP-hard combinatorial optimization problems. The VRP was originally 

introduced by Dantzig and Ramser [1959] and has been widely studied since. Dantzig and 

Ramser described a dispatching problem of gasoline trucks and proposed a mathematical 

model and an algorithmic approach. Fisher [1994] described an extended problem in which a 

vehicle has a series of stops to deliver products to customers. Every customer is assigned to 

exactly one vehicle in a specific order. The capacity of vehicles is also considered to minimize 

the total cost. The traditional VRP consists of a set of customers with known demands at 

predetermined locations and a set of vehicles with a homogeneous capacity. The vehicles start 

from and return to a single depot. The VRP is to serve all customers without any vehicle being 

overloaded, while minimizing the total traveling distance. The traveling distance can be easily 

converted to the traveling time or cost. 

Figure 2.1 shows an example of traditional VRPs consisting of three vehicles, nine customers, 

and a single depot. In Figure 2.1, node 0 in the box denotes the depot, nodes 1 to 9 in circles 

indicate the customers, and the arrows represent vehicle routes for deliveries to customers.  
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Figure 2.1 An example of a traditional VRP with three vehicles, nine customers, and a 

single depot. 

2.1.2 Variations of traditional VRPs  

The basic concept of the VRP is that a fleet of vehicles delivers products from a single depot 

to customers. From this simple concept, variations have emerged for decades. Each variation 

has its own additional constraints or requirements. Some well-known VRPs are explained by 

Toth and Vigo [2002]:  

Capacitated vehicle routing problem (CVRP): The CVRP is the simplest and the most 

studied problem. In the CVRP, all customers have known demands and known locations 

for the delivery. The delivery for a customer cannot be split. In other words, the demand 

of a customer must be satisfied via only one visit. All vehicles are assumed to have the 

same loading capacity. They depart from a single depot at the beginning and return to the 

depot at the end. The service or unloading time at each customer may or may not be 

considered. The objective is to minimize the total traveling distance or time for all 

vehicles to serve all customers.  
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Distance-constrained vehicle routing problem (DVRP): The DVRP is a variant of the 

CVRP. Each route of a vehicle is constrained by a maximum length of distance or time. 

Because of the distance constraint, the total traveling distance in each route cannot 

exceed the maximum prescribed length.  

 

Vehicle routing problem with time windows (VRPTW): The VRPTW is another 

variant of the CVRP. In the VRPTW, the distance constraint may or may not be 

considered. Each customer has a time interval, referred to as a time window. The visit of 

a vehicle to a customer must occur within his or her time window.   In case of early 

arrival at a customer’s location, the vehicle is allowed to wait until the beginning of the 

customer’s time window. The time windows are defined by assuming that all vehicles 

start from a depot at the beginning.  

 

Vehicle routing problem with pickup and delivery (VRPPD): In a VRPPD, vehicles 

are required not only to deliver products to a set of delivery locations, but also to pick 

goods or wastes up at a set of pickup locations. Unlike other VRPs, products to be 

delivered are not provided at the depot; rather, they must be picked up. For multiple 

pickups, the loading capacity of a vehicle must be considered in the problem. Time 

windows for the pickup and the delivery at each location may or may not be considered 

in the problem.  

 

 

Even if a significant amount of research has been done in the area of VRPs, the application of 

their results to actual practice has been confronted with many difficulties due to the limitations 

of the simplified VRP models. Therefore, there have been efforts to understand the real-world 
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constraints and requirements that accompany to specific applications. This research has not 

been limited to a single basic type of the VRPs introduced earlier; rather, these projects have 

tended to contain characteristics of multiple traditional VRP models. For example, Prive et al. 

[2006] suggested a VRP for the distribution of soft drinks and the collection of recyclable 

containers. They considered the heterogeneous vehicle fleet, vehicle capacity, time windows, 

pickup, and delivery. Hence, the corresponding VRP is a combination of the CVRP, VRPTW, 

and VRPPD. Another example is a VRP for school buses. Ripplinger [2005] proposed a rural 

school VRP. The school bus has a limited number of seats, which is a characteristic of the 

CVRP. Each school bus must deliver students within a specific time; this is a characteristic of 

the DVRP. In addition, the school buses do not need to return to school. The route for 

returning to the original location (the depot) is not important in this example. Unlike other 

traditional VRPs, the route of each school bus in this VRP does not make a closed loop but, 

rather, a Hamiltonian loop. Thus, this type of VRPs is called an open vehicle routing problem 

(OVPR) [Repoussis et al., 2007], and the path is a Hamiltonian path. An example of routes in 

an OVRP is illustrated in Figure 2.2. 

 

Figure 2.2 An example of an open vehicle routing problem. 
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2.1.3 Solution methods for VRPs  

The VRP is one of the well-known and most studied combinatorial optimization problems in 

academia and industry. For given VRPs, we need to determine the optimal set of routes to be 

completed by a fleet of vehicles to serve a set of customers. In real life, a VRP can contain 

many complications such as asymmetric distances, stochastic distance, multiple depots, 

heterogeneous vehicles, different time windows of customers, and so on. These potential 

complications make the problem more intractable to solve.  

Since Dantzig and Ramser [1959] proposed a heuristic algorithm for VRPs, more than 

hundreds of papers have been published. Various mathematical models and solution methods 

have been proposed by Mole [1979], Laporte [1992], Desrosiers et al. [1995], Homberger and 

Gehring [2005], Krumke et al. [2008], and Eksioglu et al. [2009]. Ford-Bellman-Moore’s 

algorithm was used to solve the multiple traveling salesman problems (TSPs) with time 

windows by Solomon and Desrosiers [1988]. The problem has also been extended to a vehicle 

routing problem with time windows (VRPTW). Dynamic programming models are suggested 

for VRPTWs by Christofides et al. [1981], Baker [1983], and Dumas et al. [1995]. The set 

partitioning method with a relaxation of linear programming is used to solve a VRPTW by 

Desrochers et al. [1992].  

The VRP is a NP-hard problem, which is hard to solve in a polynomial time [Bodin et al., 

1983]. No optimal algorithm that can solve NP-hard problems in a polynomial time has been 

found [Falkenauer, 1996]. Finding optimal solutions of NP-hard problems is usually very 

time-consuming and sometimes even impossible. Due to this characteristic, it is not realistic to 

use optimal solution methods to solve large problems. As an optimal solution method, the 

branch-and-bound method has been applied to problems with a small number of customers 
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[Pereira et al., 2002], but for problems of large size the computational limitation of memory 

buffers and computing resources exists. Hence, many other approaches based on heuristics, 

approximation algorithms that aim at finding good feasible solutions quickly, have been 

introduced [Laporte et al., 2000; Prescott-Gagnon et al., 2009].  

Many models and algorithms have been proposed to find the optimal solution or near-optimal 

solutions of different types of VRPs. A thorough classification of VRPs was introduced by 

Desrochers et al. [1990]. Laporte and Novert [1987] presented an extensive survey that was 

entirely devoted to exact methods for VRPs. Other surveys were reported by Christofides et al. 

[1979], Magnanti [1981], Bodin et al. [1983], Christofides [1985], Laporte [1992], Golden et 

al. [1995], Fisher [1995], Toth and Vigo [1998], and Golden et al. [1998]. They can be 

broadly divided into two kinds: classical heuristics (mostly between 1960 and 1990) and 

metaheuristics from 1990 onward [Laporte et al., 2000].  

Classical heuristics can in turn be classified into three groups: construction methods, two-

phase methods, and improvement methods [Laporte and Semet, 1999]. Construction methods 

gradually build a feasible solution by selecting arcs, based on minimizing cost. Two-phase 

methods divide the problem into two stages: the first stage involves clustering customers into 

feasible routes while disregarding their order and the second stage constructs routes for each 

cluster. One of these two-phase methods is the sweep algorithm described by Laporte et al. 

[2000]. Improvement methods start with a feasible solution and try to improve it by 

exchanging arcs or nodes within or between the routes. The local search algorithm developed 

by Savelsbergh [1985] and Aarts and Lenstra [1996] belongs to the category of improvement 

heuristics. The advantage of classical heuristics is that they have a polynomial computation 

time [Laporte et al., 2000; Cordeau et al., 2002]. On the other hand, they perform only a 

limited search in the solution space.  
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During the past few decades, various meta-heuristics, such as tabu search (TS), simulated 

annealing (SA), and genetic algorithm (GA), have been applied to solve VRPs quickly and 

effectively [Laporte et al., 2000]. TS and SA move from one solution to another in the 

neighborhood until termination criteria are satisfied. Many different TS heuristics have been 

proposed with varying success. Rochat and Taillard [1995] used a TS heuristic to solve some 

benchmark VRPs. Osman [1993] obtained similar results using a SA. GA maintains a 

population of good solutions that are recombined to produce new solutions. Berger and 

Barkaoui [2003], Jeon et al. [2007], Yu et al. [2011] presented a hybrid genetic algorithm 

(HGA) to solve the VRP. Renaud et al. [1996] reported that such heuristics require substantial 

computing times and several parameter settings. The detail of GA, which is used in both the 

proposed hierarchical approach and endosymbiotic evolutionary algorithm, is described in the 

following sections.  

 

2.2 The genetic algorithm (GA)  

2.2.1 Background of the genetic algorithm 

The theory of natural selection, proposed by Charles Darwin in 1859, states that individuals 

with certain favorable characteristics are more likely to survive in nature and consequently 

pass their characteristics on to their offsprings. Individuals with less favorable characteristics 

will gradually disappear from the population. In nature, the genetic inheritance is stored in 

individual chromosomes made of genes. The characteristics of every organism are controlled 

by the genes, which are passed on to the offspring when the organisms reproduce. 

Occasionally a mutation causes changes in the chromosomes. Due to natural selection, the 
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population will gradually converge toward improvement of the species, as the number of 

individuals having the favorable characteristics increases.  

The GA is a randomized global search algorithm that solves intractable problems by imitating 

genetic processes observed during natural evolution. The “survival of the fittest” nature of this 

algorithm lends itself favorably to being extremely robust in its search for optimality [Gen and 

Cheng, 2000]. Fundamentally, the GA evolves a population of bit strings, chromosomes, or 

individuals, where each individual encodes a solution to a particular problem. This evolution 

takes place through the application of genetic operators, which mimic the phenomena such as 

reproduction and mutation observed in nature. The characteristics of the GA differ from those 

of other heuristics and can be described as follows [Rawlins, 1991; Gen and Cheng, 2000]:  

 The GA works with coding of the solutions instead of the solutions themselves. 

Therefore, a well-designed coding or an efficient representation of the solutions is 

required.  

 The GA searches for good solutions from a group of solutions. This is different from 

other meta-heuristics like the simulated annealing (SA) and the tabu search (TS), which 

start with a single solution and move to another solution by some transitions. Therefore, 

the GA performs a multi-directional search in the solution space, reducing the probability 

of finishing at a local optimum.  

 The GA requires only the objective function value that measures the fitness of 

individuals, while many other algorithms require continuity or differentiability. Many 

real-life examples contain discontinuous search space.  

 The GA is nondeterministic; i.e., it is stochastic in natural decisions, making the GA 

more robust.  

 The GA is a heuristic because it does not know when it has found an optimal solution.  
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2.2.2 Procedure of the genetic algorithm 

The procedure of the traditional GA is described as follows. In the first step, the GA starts 

from a randomly generated initial population, which is a set of solutions. Davis [1987] 

suggested that, for research purposes, much can be learned by initializing a population 

randomly. Moving from a randomly created population to a well-adapted population is a good 

test of the algorithm. Through this step, important features of the final solution will have been 

produced by the search and recombination mechanism of the algorithm, rather than the 

initialization process. In order to generate and search for an optimal solution, a function that 

evaluates the survivability of each solution in the population is required in the initialization 

process. This function is called the fitness function, and it evaluates each solution in 

accordance with its fitness value. The fitness function is the most critical part of the algorithm, 

as it is the one that decides how much time the algorithm takes to find the optimal solution.  

The second step, a reproductive process, allows parent solutions to be randomly selected from 

the population. Typically, a lower selection pressure is indicated at the start of a search in 

favor of wide exploration of the search space, while a higher selection pressure is 

recommended at the end to narrow the search space [Gen and Cheng, 2000]. Offspring 

solutions are made by the reproductive processes using a crossover operator. The offspring 

solutions that are produced inherit some of the characteristics from each parent. Then a 

random mutation is applied to the offsprings with a certain probability. Gen and Cheng [2000] 

proved that the mutation operator can sometimes play a more crucial role than crossover. 

Therefore, the crossover and mutation operators need to be well designed in accordance with 

the problem at hand.  
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Finally, generation update takes place in the third step. The evaluation of the solutions can be 

related to the objective function value. In the VRPs, the total traveling distance and the level 

of violation of any constraint can be considered in the fitness function. Analogous to 

biological processes, offsprings with relatively good fitness levels are more likely to survive 

and reproduce, with the expectation that fitness levels throughout the population will improve 

as they evolve. More details can be found in Reeves [1993].  

 

2.2.3 Encoding method for a solution  

The preliminary component involves choosing the right coding schema for the representation 

of solutions to the problem. Diverse encoding methods have been suggested for different 

problems to provide efficient implementation of GAs. Depending on the symbols used for the 

bits of the individual, the encoding methods can be classified into:  

 Binary encoding uses binary numbers (0 or 1) as the symbols for a bit in an individual. 

This is the most common encoding method because it is easy to create and manipulate. A 

wide range of problems can use binary encoding, one-point crossover, and mutation 

without modification [Davis, 1987]. For efficiency, however the other coding methods 

introduced below are more favorable in the real world.  

 Real number encoding uses real numbers for a bit in an individual. This encoding is 

appropriate for function optimization problems. It has been widely confirmed that real 

number encoding performs better than binary encoding on optimization problems, as 

Eshelman and Schaffer [1993], Michalewicz [1996], and Walters and Smith [1995] 

reported.  
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 Integer or literal permutation encoding is useful for combinatorial optimization 

problems. Since the essence of combinatorial optimization problems is the search for a 

best permutation or combination of items subject to constraints, literal permutation 

encoding can be used for this type of problem. For more complex real-world problems, an 

appropriate data structure encoding is suggested for the bits of an individual in order to 

capture the nature of the problem [Gen and Cheng, 2000].  

 Data structure encoding: According to the computer data structure, encoding methods 

can be classified into two types: one-dimensional encoding and multidimensional 

encoding. In most practices, one-dimensional encoding has been widely used, but some 

complex problems require multidimensional encoding. Cohoon and Paris [1986] used 

two-dimensional encoding for circuit placement problems. Anderson et al. [1991] used a 

two-dimensional grid type of encoding. Lim [2007] used two-dimensional encoding for 

vehicle routing problems with heterogeneous vehicles from multiple depots, allowing 

multiple visits. 

 

2.2.4 Selection  

The selection directs the genetic search toward promising regions in the solution space. 

Population diversity and selective pressure are the two most important factors in the genetic 

search [Michalewicz, 1996]. An increase in selective pressure decreases the population 

diversity, and vice versa; the two factors have a strong inverse relationship. Therefore, it is 

important to maintain the balance when determining a selection method for the GA. Four 

commonly used selection methods are as follows:  
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 Roulette wheel selection: In roulette wheel selection, the probability of being chosen is 

the individual’s fitness divided by the sum of fitness of the whole population. Each 

individual is assigned a slice of a circular roulette wheel, the size of the slice being 

proportional to the individual’s fitness. The wheel is spun N times, where N is the number 

of individuals in the population. On each spin, the individual under the wheel’s marker is 

selected to be in the pool of parents for the crossover.  

 Tournament selection: This selection method randomly chooses a set of individuals and 

picks out the best individual for reproduction among chosen individuals. The number of 

individuals in a competition is called the “tournament size.” A common tournament size is 

two, and this is called a binary tournament. A random number r is then generated between 

0 and 1. If r < k, where k is a parameter between 0 and 1, then the fitter of the two 

individuals is selected to be a parent. Otherwise, the less fit individual is selected. The two 

individuals are then returned to the original population for the next round of selection.  

 Elitism: This is an addition to other selection methods that forces the GA to retain a 

number of good individuals in each generation. Without elitism, good individuals may be 

lost if they are not selected to reproduce or if they are destroyed by crossover or mutation.  

 Scaling: The scaling method has been proposed to prevent premature convergence to local 

optima. The scaling method maps raw fitness values of all individuals in a population to 

the scaled fitness values, which are positive real values. The selection process may be 

performed based on the scaled fitness values. Many scaling methods have been proposed 

in the literature on GAs. Scaling parameters are known to be problem-dependent [Gen and 

Cheng, 2000]. One of the commonly used scaling methods in GAs is linear scaling, which 

adjusts the fitness values of all individuals such that the best individual gets a fixed 
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number of expected offsprings, thus preventing it from reproducing too many times [Gen 

and Cheng, 2000].  

 

2.2.5 Crossover  

An important genetic operator is the crossover, which simulates a reproduction by parents. It 

works on a certain number (occasionally, a pair) of solutions and recombines them in a certain 

way, generating one or more offspring. The offsprings share some of the characteristics from 

the parents through the crossover. In that way, the good characteristics of the current 

generation are passed on to following generations.  

Many different crossover operators have been introduced in the literature. The functionality of 

the crossover depends on the encoding method, and the performance depends on how well it is 

adjusted to the problem. Commonly used crossover methods for VRPs are as follows [Gen 

and Cheng, 2000]:  

 Point crossover: Among point crossovers, one-cut-point crossover is the simplest method. 

It selects one cut-point randomly in an individual, as shown in Figure 2.3. The selected 

point is indicated by an arrow. P1 represents the first parent and P2 represents the second 

parent. The one-cut-point crossover takes the pre-cut section from P1 as a proto-child and 

fills up the offspring by taking in order each legitimate gene from P2 to generate an 

offspring, as shown in Figure 2.3.  
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Figure 2.3 The one-cut-point crossover. 

Two-cut-point and multi-cut-point crossovers are more advanced methods than one-cut-

point crossover. Two-cut-point crossover is illustrated in Figure 2.4, where two points are 

randomly selected at P1 and the genes between two selected points are passed on to the 

offspring. Then, it takes each legitimate gene in the order shown in P2.  

 

Figure 2.4 The two-cut-point crossover. 

Multi-cut-point crossover is more complicated than two-cut-point crossover. The number 

of the cut-points is randomly chosen, and then the cut-points are selected according to the 

chosen number. An example of multi-cut-point crossover is illustrated in Figure 2.4. Four 

points are selected for the cut sections from P1. Then, each legitimate gene is taken in the 

order shown in P2.  

1 1 0 1 0 0 0 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0

P1

P2 P2

Proto-child

Offspring

1 1 0 1

1 1 0 1 1 1 1 0 0

 

1 1 0 1 0 0 0 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0

P1

P2 P2

Proto-child

Offspring

1 0 1

1 1 0 1 1 1 1 0 0
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Figure 2.5 The multi-cut-point crossover. 

 Partial-mapped crossover (PMX): PMX is a variant of two-cut-point crossover for 

binary string representation, and can be used for integer or literal permutation encoding. 

The PMX uses a special repair procedure to resolve the illegitimacy. An illustration of 

PMX is shown in Figure 2.6. Two positions along the genes from both P1 and P2 are 

randomly selected. The sub-genes defined by the two positions are called the mapping 

sections. The mapping section in P1 is copied to the proto-child at the same positions and 

others are copied in order from P2. From the mapping section of P1 and P2, the mapping 

relationship is determined. The genes that are not in the mapping section of P1 are 

changed according to the mapping relationships in the proto-child. Genes without the 

mapping relationship are simply copied in the proto-child.  

 

Figure 2.6 The partial-mapped crossover (PMX). 

 

1 1 0 1 0 0 0 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0

P1

P2 P2

Proto-child

Offspring

1 0 1 0 1

0 1 0 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 8 7 3

5 4 3 4 5 6 8 7 3

2 9 3 4 5 6 8 7 1

P1

P2

Proto-child

Offspring

3↔6

4↔9

5↔2

6↔1
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 Order crossover (OX) can be viewed as a variant of the PMX with a different repair 

procedure. An illustration of OX is shown in Figure 2.7. Sub-genes are taken from P1 by 

randomly choosing two points. The sub-genes are copied into the corresponding position 

of each gene in a proto-child. The corresponding genes in P2 are deleted and the 

remaining genes in P2 are placed into the proto-child from left to right in the same order 

as in P2.  

 

Figure 2.7 The order crossover (OX). 

 Uniform crossover is accomplished by selecting two-parent solutions and randomly 

taking each gene from one parent to form the corresponding position of the child. Uniform 

crossover is illustrated in Figure 2.8. Each gene for the offspring is randomly selected 

from either parent and then copied to the offspring. This process is repeated until all genes 

of the offspring fill up completely.  

 

Figure 2.8 The uniform crossover. 

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 3 8

3 4 5 6

9 2 3 4 5 6 1 7 8

9 2 1 7 8

P1

P2 P2

Proto-child

Offspring

P1

P2

1 2 3 2 1 3 3 2 1

2 2 1 3 3 3 1 1 2 P2

Proto-child

Offspring

1 3 2 3 1

2 2 1 3 3 3 1 1 2

1 2 3 2 3 3 1 1 1
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 Position-based crossover is a variant of uniform crossover for permutation encoding 

together with a repair procedure, which can also be viewed as a variant of the OX where 

the genes are copied inconsecutively. A position-based crossover is illustrated in Figure 

2.9. A set of genes in P1 is selected and copied into the corresponding positions of the 

proto-child. The corresponding genes in P2 are deleted. The remaining genes in P2 are 

placed into the proto-child from left to right in the same order as in P2. 

 

Figure 2.9 The position-based crossover. 

 Order-based crossover is a slight variant of position-based crossover in which the order 

of genes at the selected position of one parent is imposed on the corresponding genes of 

the other parent, as shown in Figure 2.10. 

 

Figure 2.10 The order-based crossover. 
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 Cycle crossover (CX): Like the position-based crossover, CX takes some genes from one 

parent and selects the remaining genes from the other parent. The difference is that the 

genes from the first parent are not selected randomly, and only those genes that create a 

cycle according to the corresponding positions between parents must be selected. CX is 

illustrated in Figure 2.12. The cycle defined by the corresponding positions of genes 

between parents is created. The genes in the cycle to offspring with the corresponding 

positions of P2 are copied into the proto-child. The genes in P2 that are already in the 

cycle are deleted. The offspring is created by copying the remaining genes in P2.  

 

Figure 2.11 The cycle crossover. 

2.2.6 Mutation  

To explore different solutions beyond the neighborhood and avoid local optima, a mutation 

procedure needs to be implemented. In the GA, mutation plays an important role by either 

replacing the individuals lost from the population during the selection process, so that they can 

be tried in a new context, or providing the individuals that were not present in the initial 

population. Commonly used mutation methods are explained as follows [Gen and Cheng, 

2000]:  

1 2 3 4 5 6 7 8 9

5 4 6 9 2 3 7 8 1

1 2 4 5 9

1 2 6 4 5 3 7 8 9

6 3 7 8

P1

P2 P2

Proto-child

Offspring

Cycle:     1→5→2→4→9→1
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 Inversion mutation: The inversion mutation selects two positions within an individual at 

random and then inverts the sub-genes between these two positions, as illustrated in 

Figure 2.12.  

 

Figure 2.12 The inversion mutation. 

 Insertion mutation: The insertion mutation randomly selects a gene and inserts it in a 

random position, as illustrated in Figure 2.13.  

 

Figure 2.13 The insertion mutation. 

 Reciprocal exchange mutation: The reciprocal exchange mutation selects two positions 

at random and then swaps the genes on these positions, as illustrated in Figure 2.14.  

 

Figure 2.14 The reciprocal exchange mutation. 

 Point mutation: The point mutation selects a position at random and changes the gene in 

the position to a certain gene, as illustrated in Figure 2.15.  

 

Figure 2.15 The point mutation. 

1 2 3 4 5 6 7 8 9 1 2 6 5 4 3 7 8 9

1 2 3 4 5 6 7 8 9 1 2 6 5 4 37 8 9

1 2 3 4 5 6 7 8 9 1 2 4 5 6 37 8 9

1 2 3 2 3 1 4 1 2 1 2 2 3 1 41 1 2
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2.2.7 Termination condition  

The GA repeats selecting parents, performing the crossovers, and executing the mutations 

until termination criteria are met. The most frequently used stopping criterion is a maximum 

number of generations [Gen and Chang, 2000]. Another notable termination strategy is the 

population convergence criterion. The GA forces much of the entire population to converge 

to a single solution. When the sum of the deviations among individuals becomes smaller 

than a specified threshold, the algorithm is terminated. The algorithm can also be 

terminated due to a lack of improvement in the best solution over a predetermined number 

of generations. For each criterion, a threshold needs to be carefully selected. Several 

strategies can be used in conjunction with each other. 

 

2.3 The Taguchi method  

To fine-tune the performance of algorithms or processes, many parameters must be set 

carefully. The technique of investigating all possible combinations in experimental conditions 

involving multiple factors is known as Design of Experiment. The method of experimental 

design constitutes the preset values of parameters to obtain the optimized output as it allows 

the designer to determine the significant parameters over the others. The Taguchi method was 

introduced to search effectively for the optimal parameters.  

The Taguchi method for parameter designs is an important tool in the category known as 

robust design. Robust design is an engineering methodology for optimizing the product and 

process conditions that are minimally sensitive to the causes of variations, and that produce 
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high-quality products with low development and manufacturing costs. The orthogonal array 

and the signal-to-noise ratio (SNR) are two major tools used in the Taguchi method. 

Additional details can be found in Taguchi et al. [2000] and Wu [2000].  

The Taguchi method uses matrices called orthogonal arrays to determine which combinations 

of factor levels to use for each experimental run. An orthogonal array is a fractional factorial 

matrix, which assures a balanced comparison of levels of any factor. It is a matrix of numbers 

arranged in rows and columns, where each row represents the level of the factors in each run 

and each column represents a specific factor that can be changed from each run. The symbol 

for three-level orthogonal arrays is Ln(3
k
), where n is the number of experimental runs, 3 is the 

number of levels for each factor, and k is the number of factors. The letter L comes from Latin, 

since the orthogonal arrays were associated with Latin square designs from the outset.  

The SNR is the ratio of the signal over the noise, which measures the strength of signal with 

the existence of noises. The higher SNR means that the process or design is more robust. 

There are several SNRs available depending on the type of characteristics or outputs: nominal-

is-best, smaller-the-better or larger-the-better. Further details can be found in Taguchi et al. 

[2000] and Wu [2000]. Taking the case of the smaller-the-better characteristic, suppose that 

we have a set of experiment runs x1, x2, … , xn. Since the value of the SNR is large for 

favorable situations, the following formulation for the smaller-the-better characteristic is used:  

n
2

10 i

i 1

1
SNR -10 log x

n 

 
  

 
 . 
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Since the objective of VRPs is to minimize the total traveled distance, the smaller-the-better is 

an appropriate measure in this thesis. The proposed GA with different process parameters 

shows different performances. 

 

2.4 The endosymbiotic evolutionary algorithm (EEA) 

A concept of endosymbiotic hypothesis to explain biological theories was proposed by 

Margulis [1981], and it is widely accepted in the area of biology. This concept is used to 

design an endosymbiotic evolutionary algorithm (EEA), which is one of the symbiotic 

evolutionary algorithms rooted at the biological hypothesis used to explain that the 

mitochondria and chloroplasts are the result of years of collaborative evolutions. The concept 

is initiated by the endocytosis of bacteria and blue-green algae, which, instead of becoming 

digested, become symbiotic. It hypothesizes that prokaryotes enter into and become parasitic 

on eukaryotes. The prokaryotes live together in symbiosis and evolve into a eukaryote.  

 

Figure 2.16 The endosymbiotic evolution. 

Figure 2.16, adapted from Campbell et al. [1996], illustrates the concept of endosymbiotic 

evolution. Larger species engulfed smaller ones that continued to live and functioned in the 
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larger host cell. Both are called symbionts, or prokaryotes. They then evolved with this mutual 

assistance into a better form of life, which is called an endosymbiont or eukaryote.  EEA is a 

probabilistic meta-heuristic algorithm that mimics this evolution. 

The EEA is one of symbiotic evolutionary algorithms (SEAs). SEAs have been studied since 

the 1990s and are known as effective tools to solve complex problems in dynamic situations 

where multiple subproblems are interwoven. The original problem is split into subproblems, 

and each subproblem has a population consisting of a set of elements. An element in the 

population for a subproblem can be a part of a complete solution to the original problem. 

Several variants of SEAs have been proposed by Potter [1997], Moriarty and Miikkulainen 

[1997], and Kim et al. [2003]. It was reported that SEAs perform better than hierarchical 

approaches using the genetic algorithm. However, most existing SEAs tend to allow an 

individual entity to evolve independently without considering symbiotic partners, which are, 

as partial solutions to other subproblems in the original problem, evaluated together in the 

fitness function for complete solutions. If two or more cooperative, interacting species evolve 

only in an independent fashion, the deviation of symbiotic partners during the evolution 

increases, hindering consistent searches toward good solutions and resulting in a slow 

convergence. 

In order to overcome this drawback, the endosymbiotic evolutionary algorithm was proposed 

[Kim et al., 2001, 2006]. In EEA, not only does an individual entity evolve independently, but 

symbiotic partners of the entity also are allowed to evolve together. That is, by allowing some 

species to adapt for a certain period without changing their symbiotic partners, the search for 

the solution is performed more efficiently and effectively. In EEA, unlike other SEAs, if a 

species mates with symbiotic partners that highly appreciate the partnership, it evolves with 

them into a better form of life.  
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3. MIXED-INTEGER NONLINEAR PROGRAMMING MODEL  

In this chapter, a mathematical model of the VRP for the delivery and installation is presented. 

The objective of this model is to find the optimal routing and scheduling solution considering 

not only the shortest traveling time of all vehicles but also the smallest cost of vehicles in 

operation. The solution must be able to provide routes of delivery and installation vehicles. 

The problem under consideration is formulated as a mixed-integer nonlinear programming 

(MINP) model, as explained in the following sections.  

3.1 Model assumptions 

The VRP under consideration can be represented as a network, where nodes are customers or 

a single depot and the links are roads linking any pair of nodes. In a network, customers are 

indexed from 1 to N while the index 0 denotes a single depot. Customer i has a known 

demand mi (i = 1, … , N) and its location is known. There is a set of customers, A, requiring 

both delivery and installation (|A |≤ N). There are two types of vehicles, one for delivery and 

one for installation, respectively. The complete list of assumptions used in this thesis is as 

follows: 

 Each vehicle starts from and returns to the depot.  

 The demand of each customer is known. 

 The demand of each customer must be satisfied by a single vehicle. 

 The demand of a customer is less than the capacity of a delivery vehicle. 

 All delivery vehicles have a homogeneous capacity.    

 All installation vehicles have no delivery capacity. 
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 The same amount of installation time is required for every installation customer. 

 The locations of all customers and the depot are known. 

 The traveling time between any pair of locations is known.  

 The traveling time matrix is symmetric. That is, the traveling time from location i to j 

is equal to the traveling time from location j to i.  

 

3.2 Notations 

The parameters and decision variables used in this thesis are as follows: 

Parameters: 

N  Number of customers 

K Number of delivery vehicles 

S  Number of installation vehicles 

A  Set of customers requiring both delivery and installation 

Tij
  

Traveling time between location i and location j 

FCO Fixed cost per vehicle 

Di
  

Demand of the customer at location i 

CAP  Capacity of delivery vehicles 

Ri  Time to complete the installation at location i, iA 

OPT  Available operation time per shift for vehicles 

SVL Maximum allowable time between delivery and installation  

(i.e., service level) 
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Decision Variables: 

xijp 




otherwise  ,0

jlocation   toilocation  from k travels ehicledelivery v  theif  ,1
 

yijq 




otherwise  ,0

jlocation   toilocation  from  travelss on vehicleinstallati  theif  ,1
 

ei
 

Arrival time of the delivery vehicle at location i, iA  

fi
 

Arrival time of the installation vehicle at location i, iA 

wi
 

Waiting time of the installation vehicle at location i, iA 

uip
 

Subtour prevention variables for xijp 

viq
 

Subtour prevention variables for yijq 
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3.3 Mathematical model 

The mathematical model of the VRP under consideration for delivery and installation vehicles 

is given as follows: 

Minimize  Z     

K N N

ij ijp

p 1 i 0 j 0

T x
  


S N N

ij ijq

q 1 i 0 j 0

T y
  


N

i

i=0

w
K N S N

0jk 0js

k=1 j=1 s=1 j=1

FCO( x y )     

Subject to     

 

K N

ijp

p 1 j 1

x
 

   K for i 0  (1) 

 

N

ijp

j 1

x


   1 for i 0, p   (2) 

 

N N

ijp jip

j 1 j 1

x x
 

    0 for i 0, p   (3) 

 

K N

ijp

p 1 j 0

x
 

   1 for i 1 N   (4) 

 

K N

ijp

p 1 i 0

x
 

   1 for j 1 N   (5) 

 

N N

ijp jip

j 0 j 0

x x
 

    0 for i 1 N, p    (6) 

 
N N

i ijp

i 1 j 0

D x
 

 
 
 

  CAP for p  (7) 

 

N N

ij ijp

i 0 j 0

T x
 

 OPT for p  (8) 

 ip jp ijpu u (N 1)x   N for i 0, j 0, i j, p     (9) 

 
N

iip

i 1

x


 0 for i, p   (10) 
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 ijpx  }1,0{  for i, j, p    (11) 

 

S N

ijq

q 1 j 1

y
 

 S for i=0, j A (12) 

 

N

ijq

j 1

y


  1 for i 0, q   (13) 

 

N N

ijq jiq

j 1 j 1

y y
 

  0 for i 0, q   (14) 

 

S N

ijq

q 1 j 0

y
 

 1 for i A (15) 

 

S N

ijq

q 1 i 0

y
 

 1 for j  A (16) 

 

N N

ijq jiq

j 0 j 0

y y
 

  0 for iA,
 q  (17) 

 iq jq ijqv v (N 1)y   N for i 0, j 0, i j, q      (18) 

 
N

iiq

i 1

y


 0 for iA,
 q   (19) 

 ijqy  }1,0{  for i, j, s     (20) 

 0000 rwfe  0  (21) 

 ii ef  SVL for i A (22) 

 i i i iw 0,  w e f    for i A (23) 

  
K N

ijp i ij j

p 1 i 0

x e T e
 

  0 for j   (24) 

  
S N

ijq i i i ij j

q 1 i 0

y f w R T f
 

    0 for j  A (25) 

  
N N

ijq ij i i

i 0 j 0

y T w R
 

  OPT for q   (26) 
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The mathematical model for the VRP under consideration is formulated as a mixed-integer 

nonlinear programming (MINP) model. The objective function of the given MINP consists of 

three parts. The first part of the objective function is the sum of the shortest traveling times of 

the vehicles, which is the major cost in the problem. The second part of the objective function 

is the sum of the waiting time of installation vehicles occurring due to the synchronization of 

two different types of vehicles. The last part is the fixed cost of vehicles in operation. For the 

last part, the fixed cost per vehicle (FCO) can be considered as a certain penalty. The traveling 

distance or the transportation cost can also be used to optimize the model for the different 

purposes.  

The constraints can be classified into three different sets. The first set of constraints concerns 

the VRP for delivery vehicles (constraints (1) through (11)); the second set concerns the VRP 

for installation vehicles (constraints (12) through (20)); and the third set concerns the 

synchronization for both types of vehicles (constraints (21) through (26)). Constraints (1) and 

(12) constrain the numbers of delivery and installation vehicles, respectively, by limiting the 

number of vehicles that can depart from the depot. Constraints (2), (3), (13) and (14) ensure 

that all vehicles must return to the depot. Constraints (4) through (6) require that each 

customer can accept only one visit by a delivery vehicle. Constraints (15) through (17) require 

that each customer who needs the installation service can accept a visit by only one 

installation vehicle. Constraint (7) assures that the sum of demand of all customers on a 

vehicle route cannot exceed the loading capacity of a delivery vehicle. Constraints (8) and (26) 

ensure that the duration of each vehicle’s shift cannot be longer than an available operation 

time per shift for delivery and installation vehicles, respectively. Constraints (9) and (18) 

eliminate the possible subtours. Constraints (11) and (20) define the binary integer decision 

variables which represent the travels of corresponding vehicles between locations. Constraints 
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(21) through (25) guarantee the quality of service by defining the service level for customers 

requiring both delivery and installation.  

In order to ensure fulfillment of the planned service level, which is a unique characteristic of 

the VRP in this thesis, the waiting time of the installation vehicles for the customers requiring 

both delivery and installation has been calculated as well. If an installation vehicle arrives at a 

customer’s location earlier than a delivery vehicle, it needs to wait for the delivery vehicle to 

arrive before installation can start. In addition, an installation vehicle will not necessarily leave 

immediately after the installation at one location; it may stay longer to avoid waiting at the 

next location or so that its driver can make other arrangements. Hence, the waiting time of an 

installation vehicle at customer location i (wi) is defined as the amount of time spent by the 

installation vehicle before or after the installation at location i. This thesis also evaluated 

another mathematical programming model by replacing constraint (23) with a different 

constraint, max{0, ei – fi} – wi = 0, in order to remove the waiting time after the installation at 

a location. Since the third set of constraints includes nonlinear ones, the mathematical 

programming model for the VRP under consideration is more complicated than other 

traditional VRPs.  

  

3.4 Complexity of the problem 

In the computational complexity theory, a traditional VRP is defined as one of NP-hard 

problems. No polynomial time algorithm is known for any NP-hard problem. The 

computational time of a NP-hard problem increases exponentially as the size of the problem 

grows. The traveling salesman problem (TSP), a well-known NP-hard problem [Garey and 
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Johnson, 1979], is a special case of VRPs. In the traditional VRP, there are given numbers of 

customers and vehicles. Each customer has its location and demand, and each vehicle has the 

same loading capacity. If we consider the case of a VRP that has only one vehicle and zero 

demand for all customers, this restricted VRP is exactly the same as a simple TSP. In other 

words, such a VRP is a generalized case of the TSP. Therefore, the traditional VRP is NP-hard 

in a strong sense.     

The MINP for the problem can be viewed as a combined model of two VRPs. One is a VRP 

for delivery vehicles, which shows characteristics of the CVRP, and the other is a VRP for 

installation vehicles, which shows characteristics of the VRPTW. The CVRP is the simplest of 

VRPs, and the VRPTW is an extension of the CVRP. Both of these are traditional types of 

VRPs that have been studied extensively and are defined as NP-hard problems. Additionally, 

the formulated mathematical model contains nonlinear constraints for the relation between two 

VRPs, thereby making the problem more complicated. The problem can be regarded as a 

combination of two NP-hard problems, and hence as NP-hard in a strong sense.  
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4. HIERARCHICAL APPROACH USING THE GENETIC 

ALGORITHM FOR SYNCHRONIZATION OF THE 

DELIVERY AND THE INSTALLATION 

Since the VRP under consideration is one of NP-hard problems, it will be hard to use existing 

mathematical approaches to solve such a problem of large size within polynomial computation 

times. In order to effectively and efficiently find high-quality solutions in a reasonably small 

amount of time, a hierarchical approach using the genetic algorithm is proposed in this chapter. 

4.1 Hierarchical approach to the vehicle routing problem 

The problem under consideration is more complicated than other traditional VRPs because 

there are two different types of vehicles, delivery and installation vehicles, which must be 

synchronized to guarantee the quality of service. Therefore, it is necessary to develop a 

systematic approach not only to find routes and schedules for delivery and installation vehicles 

but also to synchronize both types of vehicles. A search of routes and schedules for delivery 

vehicles and a search of routes and schedules for installation vehicles can be defined as 

subproblems of the original problem. In order to obtain good solutions of the original problem, 

a hierarchical approach dealing with these two subproblems is developed in this thesis. The 

procedure of the proposed hierarchical approach is illustrated in Figure 4.1. 
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Figure 4.1 The procedure of the proposed hierarchical approach. 

The proposed hierarchical approach divides the original problem into two stages, each of 

which contains a subproblem. The subproblem in Stage 1 is a VRP for delivery vehicles, and 

the subproblem in Stage 2 is a VRP for installation vehicles. From the subproblem in Stage 1, 

a set of routes and schedules is generated. The generated set of routes and schedules is a 

partial solution of the original problem and is then used as a part of the input data for the 

subproblem in Stage 2. Based on the partial solution from the subproblem in Stage 1, a set of 

routes and schedules for installation vehicles is determined to solve the subproblem in Stage 2. 

The set of routes and schedules for installation vehicles is the other partial solution of the 

original problem. Therefore, the synchronization of the two types of vehicles is automatically 

completed while solving the subproblem in Stage 2. Finally, the combination of the two partial 

solutions constitutes the solution of the original problem.  

Genetic algorithm (GA):  
VRP for delivery vehicles

Stage 1: VRP for the delivery Stage 2: VRP for the installation

Genetic algorithm (GA):  
VRP for installation vehicles

Installation schedules

Vehicle routes (installation)

Output (Results) :

Delivery customers with demand

Fixed cost per delivery vehicle

Traveling time among customers

Maximum operation time

Input data:

Vehicle routes (delivery)

Vehicle routes (installation)

Final Solution:

Input data:

Service level

Installation customers

Fixed cost per installation vehicle

Traveling time among customers

Maximum operation time

Delivery schedule

Output (Results) :

Delivery schedules

Vehicle routes (delivery)
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The subproblem in Stage 1 has the characteristics of capacitated vehicle routing problems 

(CVRP), which were briefly described in Section 2.2.1. The subproblem assumes that all 

delivery vehicles have an identical loading capacity. They must return to the depot within a 

specific time, called the maximum operation time. The limited loading capacity and the 

maximum operation time need to be considered when customers are assigned to delivery 

vehicles. All customers must be visited only once by a single delivery vehicle. It is assumed in 

this thesis that unloading times for all customers are negligible, though this assumption can be 

modified without loss of generality. Fixed cost per delivery vehicle is considered in the 

proposed algorithm to minimize the number of delivery vehicles in operation, but this factor 

could be omitted. The algorithm for the subproblem in Stage 1 determines routes and 

schedules for delivery vehicles and their arrival times at each customer’s location. The arrival 

times of delivery vehicles at the customers who require both delivery and installation are later 

fed to the subproblem in Stage 2 in order to be considered for synchronization of delivery and 

installation vehicles. 

As mentioned previously, the subproblem in Stage 2 includes the characteristics of the VRP 

with time windows (VRPTW). Unlike the subproblem in Stage 1, the loading capacity of 

installation vehicles is not considered, since the installation requires only the service to be 

rendered, not the goods. Similar to the subproblem in Stage 1, all installation vehicles must 

return to the depot within a specified maximum operation time. Installation vehicles must visit 

all customers who require both delivery and installation. The customers must be visited only 

once, by a single installation vehicle, within a specified time after a delivery vehicle has 

arrived at that customer, so as to fulfill the service guarantee.  This specified time is called the 

service level. Hence, each customer requiring both delivery and installation has a time window 

following delivery within which he or she expects the arrival of an installation vehicle. It is 

assumed that the time windows for all customers are identical, though this provision could be 
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easily relaxed without loss of generality. If an installation vehicle arrives earlier than a 

delivery vehicle at a customer location, the installation vehicle must wait there until it can start 

the installation service. The waiting times of installation vehicles or customers can be 

considered as a penalty. It is assumed that all installation service requires the same amount of 

installation time for each customer. Fixed cost per installation vehicle is considered in the 

proposed algorithm to minimize the number of installation vehicles used. The algorithm for 

the subproblem in Stage 2 determines routes and schedules for all installation vehicles. 

Finally, to complete the solution of the original problem, a set of routes and schedules for all 

delivery and installation vehicles is decided through this hierarchical approach using the 

genetic algorithm. The fitness function in the GA for Stage 1 considers the traveling times and 

fixed costs of all delivery vehicles, while the one for Stage 2 considers the traveling times, 

waiting times, installation times, and fixed costs of all installation vehicles.  

 

4.2 Procedure of the genetic algorithm for subproblems  

The proposed hierarchical approach uses genetic algorithms to solve subproblems in Stages 1 

and 2. As the characteristics of both subproblems are different, the GAs for the subproblems 

have some differences. However, both GAs for the subproblems follow the basic procedure 

illustrated in Figure 4.2. The GA consists of several processes, such as the process for the 

initialization, the fitness function, the selection, the crossover, the mutation, and the local 

search. 
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Figure 4.2  The procedure of the proposed genetic algorithm. 

The GA creates a randomly generated initial population, which is a set of feasible solutions (or 

“individuals”). The randomly generated initial population evolves into a well-adapted 

population over generations. Through the adaptive search and recombination mechanisms, the 

GA obtains high-quality solutions at the end. In order to assess how good the solutions are, a 

function that effectively evaluates the survivability of individuals in the population is required. 

This function is called a fitness function. All solutions in the population are evaluated by the 

fitness function and are ranked according to their fitness values. If a solution has a high fitness 

value, it has more chance to survive in the next generation and to produce offsprings. 

Otherwise, it can be easily eliminated from the population. 
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The problem considered in this thesis consists of two subproblems. Each subproblem has a 

different fitness function. From the population of the current generation, offspring solutions 

for the next generation are produced by the crossover and mutation operations in the algorithm. 

The crossover operation allows parent solutions to be randomly selected from the population 

and to produce offspring solutions which inherit some of the characteristics from them. The 

mutation operation is applied to current solutions with a certain probability to generate mutant 

solutions. The purpose of the mutation operation is to allow the algorithm to avoid local 

optima and to try to search in other directions. Then, a local search procedure is applied to see 

the possibility of improving the best solution in the population. The population continuously 

evolves as these operations are repeated to create the next generation of possible solutions 

until the algorithm meets a certain termination condition.  

In this thesis, the ranking replacement strategy is used to construct the population for the next 

generation in the proposed algorithm (Chu and Beasley, 1998). At the beginning of the 

evolution in each generation, the population at the end of the previous generation is duplicated 

to the population of the current generation. In the course of crossover procedures, newly 

generated offspring competes with all individuals in the current population. That is, let πoffspring 

and πw be the fitness values of the new offspring and the worst individual in the current 

population, respectively. If πoffspring  >  πw, the corresponding offspring will replace the worst 

individual in the current population. 
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4.3 Components of the proposed genetic algorithm 

The GA consists of several components, including the population, the individual, the selection 

operation, the crossover operation, and the mutation operation. Using a different combination 

of components may have an impact on the GA’s performance in terms of algorithm speed and 

solution quality. In the following subsections, the components of the proposed GA are 

described in detail. 

4.3.1 Genetic representations 

The subproblems in Stages 1 and 2 have different characteristics and constraints, which were 

already explained in Section 4.1. As a result there are different genetic representations for the 

two subproblems. Sections 4.3.1.1 and 4.3.1.2 describe their genetic representations, used in 

the proposed GAs for subproblems in Stages 1 and 2, respectively. 

4.3.1.1 Genetic representation of the VRP for delivery vehicles  

The subproblem in Stage 1 can be defined as a CVRP for delivery vehicles. A one-

dimensional array is used to represent an individual or a solution, as shown in Figure 4.3.  

 

Figure 4.3  The genetic representation for the subproblem in Stage 1. 

Numbers in the boxes indicate customers requiring the delivery, whether or not they want the 

installation as well. Since each customer is to be visited by a single delivery vehicle, a 

1 5 7 9 2 4 8 11 10 3 6 12

Delivery

vehicle 1

Delivery

vehicle 2

Delivery

vehicle 3
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customer must be shown only once in the array. The alternating shaded areas in Figure 4.3 

represent different groups of customers served by different delivery vehicles. The decoding 

procedure, which is a part of the fitness function evaluation, for the subproblem in Stage 1 

determines which delivery vehicle visits which customers, along with the visiting sequences 

for each delivery vehicle. A simple greedy method is used in the decoding procedure to assign 

customers to delivery vehicles. In order to identify a group of customers to be served by a 

delivery vehicle, the customers’ demands, the loading capacity of the vehicle, and the 

maximum operation time are considered. 

Figure 4.3 shows an example of a genetic representation and the decoding procedure for the 

subproblem in Stage 1. There are 12 customers requiring the delivery, and the customers are 

served by three delivery vehicles. Let the depot denote the location 0. The routes of three 

delivery vehicles are {0, 1, 5, 7, 9, 0}, {0, 2, 4, 8, 11, 10, 0}, and {0, 3, 6, 12, 0}. The arrival 

times of delivery vehicles at the customer locations are calculated from the routes, using the 

distances between the locations and the possible unloading times. 

4.3.1.2 Genetic representation of the VRP for installation vehicles  

The subproblem in Stage 2 can be defined as a VRPTW for installation vehicles only. A one-

dimensional array is used to represent an individual or a solution for the subproblem in Stage 

2, as shown in Figure 4.4. 

 

Figure 4.4  The genetic representation for the subproblem in Stage 2. 
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Numbers in the boxes indicate customers requiring both delivery and installation. Since the 

customers are to be visited by a single installation vehicle, numbers must appear only once in 

the array. The alternating shaded areas in Figure 4.4 represent different groups of customers 

served by different installation vehicles. The decoding procedure for the subproblem in Stage 

2 determines which installation vehicle visits which customers, along with visiting sequences 

for each installation vehicle. As in the subproblem in Stage 1, a simple greedy method is used 

in the decoding procedure to assign customers to installation vehicles. However, unlike the 

subproblem in Stage1, in order to assign a group of customers to an installation vehicle, the 

time windows for customers requiring installation, as well as the maximum operation time, 

must be considered.  

Figure 4.4 shows an example of the genetic representation and the decoding procedure for the 

subproblem in Stage 2. There are six customers requiring installation, and the customers are 

served by two installation vehicles. Let the depot denote the location 0. The routes of the two 

installation vehicles are {0, 5, 7, 4, 0} and {0, 10, 3, 6, 0}. The arrival times of installation 

vehicles at the customer locations are calculated from the distance between the locations, the 

installation times, and the waiting times. 

 

4.3.2 Initialization, fitness function, and selection  

A population in the GA consists of a set of individuals. The population must be initialized at 

the beginning. In order to generate the initial population, all individuals are randomly 

generated. Each individual in the population must be evaluated by its survivability in the 

problem through a fitness function. The evaluation value of the individual is called the fitness 
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value. The individual having a higher fitness value than others will have a greater chance to 

survive during the evolution in the GA.  

In the subproblem in Stage 1, the sum of traveling times of delivery vehicles, the sum of 

unloading times at customers, and the sum of fixed costs of used delivery vehicles are 

considered to calculate the fitness value of an individual. Let τa,t be the sum of traveling times 

of delivery vehicles in individual a at generation t, Λ be the sum of unloading times at 

customers in individual a, and δa,t be the sum of fixed costs of delivery vehicles used in 

individual a at generation t. According to the assumptions of the problem, the unloading time 

at any customer is identical and the number of customers is known. The sum of unloading 

times at customers (Λ) can be easily calculated and left as a constant, since all individuals 

would have the same value. Therefore, the sum of unloading times can be ignored in the 

evaluation of individuals. The fitness function of individual a at generation t for the 

subproblem in Stage 1 (πa,t) is defined as follows: 

,

, ,

1

( )
a t

a t a t


 


 

 

In the subproblem in Stage 2, the sum of traveling times of installation vehicles, the sum of 

installation times at customers,
 
the sum of waiting times of installation vehicles, and the sum 

of fixed costs of used installation vehicles are considered to calculate the fitness value of an 

individual. Let φb,t be the sum of traveling times of installation vehicles in the individual b at 

generation t, Ι be the sum of installation times at customers in individual b, ωb,t be the sum of 

waiting times of installation vehicles in the individual b at generation t, and γb,t be the sum of 

fixed costs of used installation vehicles in individual b at generation t. The sum of installation 

times at customers (Ι) can be easily calculated and left as a constant, since all individuals have 
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the same value. Therefore, the installation time can be ignored in the evaluation of individuals. 

The fitness function of individual b for the subproblem in Stage 2 (ρb,t) is defined as follows: 
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After the evaluation of all individuals in the population has been completed, the ranking 

replacement strategy is applied to generate the new population. In GAs for both subproblems, 

higher fitness values are more desirable to generate high-quality solutions. 

An appropriate selection method is also one of the important operations in the proposed GA to 

produce offsprings for the next generation. The selection method fundamentally gives a 

greater chance of being chosen for reproduction to individuals having higher fitness values. 

The roulette wheel selection method is used in the algorithm proposed in this thesis. The 

probability for an individual to be selected is calculated as the fitness value of the individual 

divided by the sum of the fitness values of all individuals in the population. The roulette wheel 

selection method is known as an acceptable selection method [Gen and Cheng, 2000].  

 

4.3.3 Crossover  

Crossover is one of the important reproduction procedures in GAs. A hybrid order crossover 

procedure has been implemented to efficiently and effectively reproduce new offsprings from 

two parents in the current population. The proposed crossover operator is a hybrid of the order 

crossover and the one-cut-point crossover, which are both described in Section 2.2.5, 
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respectively. A number of pairs of individuals equal to the size of the population are randomly 

selected by the selection method. The selected pairs may participate or not participate in the 

reproduction. For each pair, a random number between 0 and 1 is generated, and if the number 

is over a given probability, called the crossover rate, then the corresponding pair (P1 and P2) 

proceed to the crossover procedures, which are as follows: 

Step 1: A vehicle is randomly chosen from one parent (P1).  

Step 2: The corresponding genes, which are a series of location indices for the chosen 

vehicle, are copied into an offspring in the same order as they appear in P1, 

and the corresponding genes are deleted from P1.  

Step 3: The remaining genes in P1 are rearranged in order. 

Step 4: A gene is randomly selected from the remaining genes in P1. 

Step 5: The genes in the pre-cut section of P1 are added into the offspring in the same 

order in which they appear in P1. 

Step 6: The indices of already-inherited genes from P1 are deleted in the other parent 

(P2). 

Step 7: The remaining genes in P2 are copied into the offspring in the order in which 

they appear in P2.  

 

Figure 4.5 shows an example of the proposed hybrid crossover operator. The genes (2, 4, 8, 11, 

and 10) for the second vehicle in Parent 1 are copied to the offspring and deleted from P1 

(Steps 1 and 2). Then, remaining genes in P1 are rearranged in the same order, after which the 

gene (9) is randomly selected as a cutting point (Steps 3 and 4).  The genes (1, 5, 7, and 9), the 

pre-cut section of P1, are added into the offspring in the same order as they appear in P1 (Step 

5). The corresponding genes in Parent 2, which are in bold and underlined, are deleted. Finally, 
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all remaining genes in Parent 2 are copied to the offspring in the same order as in Parent 2 

(Step 6 and 7). The genes from the route of the selected vehicle are passed on to the offspring 

without violating any constraint. Therefore, the good genes from the selected parents can be 

preserved in the next generation. However, an offspring that may require more vehicles to 

serve customers can be produced as well.  

 

Figure 4.5  The modified crossover operation. 
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Various crossover operators were tried to obtain the best performance.  Overly complicated 

operators might restrict the random evolutions and take too much computational time. It is 

thus best to use simple, effective operators. When only the order crossover operator was used 

in the proposed GA, a premature convergence to local optima was observed. Individuals in the 

final population have different genetic representations but the same assignment of customers 

to vehicles. The proposed hybrid crossover operator improves both the inheritance from 

parents and the diversity of the population, while avoiding the premature convergence of the 

population. 

 

4.3.4 Mutation  

For the mutation procedure, an exchange mutation operator is used to prevent individuals in 

the population from becoming too similar to each other and the GA from settling down at a 

local optimum. Some individuals are randomly selected at a given probability, called mutation 

rate. The exchange mutation operator selects two genes randomly from an individual and 

exchanges them. Figure 4.6 shows an example of the exchange mutation. Two genes (7 and 4) 

are randomly selected in the original individual, and their locations are swapped in the mutant.  

 

Figure 4.6  An example of the exchange mutation operation. 

1 5 7 9 2 4 8 11 10 3 6 12
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Individual

1 5 4 9 2 7 8 11 10 3 6 12
Mutant
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4.3.5 Local search  

If the optimal solution of the problem is in the complex solution space, it is sometimes 

difficult to find good solutions with the GA, which is a general meta-heuristic algorithm. 

Therefore, in many heuristic algorithms for combinatorial optimization problems, including 

VRPs, local search methods are employed to improve the solution quality according to the 

characteristics of the problem and to increase the performance of the algorithms. To improve 

the quality of solutions for those complex problems, various local search procedures have 

been studied and implemented along with the GA (Freisleben & Merz, 1996; Prins, 2004). 

The proposed algorithm employs the 2-opt exchange local search procedure to improve the 

routes of each vehicle by untangling the twisted routes. The 2-opt exchange local search 

procedure is a well-known local search method. The operator of the 2-opt exchange local 

search procedure searches for a better solution among the neighbors of the current best 

individual. To probe among the neighbors, the local search operator extracts a set of genes that 

represent the route of the first vehicle in the best individual. The operator selects two genes in 

the route and then inverts the sub-genes between these two genes. All possible combinations 

that can be generated by selecting a pair of genes in the route are considered to find better 

solutions. When the local search procedure completely finishes searching better routes in a set 

of genes for the first vehicle, the best route of the first vehicle is copied to a new individual. 

Then, a set of genes for the route of the next vehicle is considered. Finally, if the fitness value 

of the new individual produced by the local search operation is better than the fitness value of 

the best individual in the current population, the new individual is admitted to the population 

in place of the worst individual in the population. An example of a 2-opt move operation is 

shown in Figure 4.7.  
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Figure 4.7  The 2-opt exchange local search. 

In Figure 4.7, the route of a vehicle is {0, 1, 2, 3, 4, 5, 6, 0}. The proposed local search 

operation selects genes 3 and 5 and then inverts the sub-genes between two genes. Finally, the 

proposed local search operation finds a better route for the vehicle, namely {0, 1, 2, 5, 4, 3, 6, 

0}. 

 

4.3.6 Termination conditions 

The proposed GA terminates when the number of generations reaches a specified limit or no 

improvement of the best solution is observed over a specified number of generations, which is 

defined as the improvement interval. The individual with the highest fitness value in the final 

generation is interpreted as the best known solution to the problem. 
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5. COMPUTATIONAL EXPERIMENTS OF THE 

HIERARCHICAL APPROACH USING THE GENETIC 

ALGORITHM 

The proposed hierarchical approach using the genetic algorithm was implemented to 

effectively solve the VRP under consideration and programmed in Visual Basic programming 

language with the Microsoft Visual Studio.NET Framework version 1.1. Computational 

results of the hierarchical approach using the genetic algorithm are compared with results of 

the MINP model, which was implemented and solved by Lingo version 10.0, a commercially 

available optimization software for non-linear programming models. Computational 

experiments were carried out on a personal computer with 3.4 GHz Pentium 4 CPU and 2.0 

GB RAM. 

 

5.1 Effectiveness of the hierarchical approach using the genetic 

algorithm 

5.1.1 Comparison of the MINP approach and the hierarchical approach 

using the genetic algorithm  

In order to show the effectiveness of the proposed hierarchical approach using the genetic 

algorithm, two test problems were tried by the MINP approach and the hierarchical approach 

using the genetic algorithm. The results from these two approaches were compared.  
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Two test problems, V-d6-i3 and V-d8-i4, were randomly generated. In V-d6-i3, there are 6 

customers requiring the delivery while 3 customers require the installation as well. In V-d8-i4, 

there are 8 customers requiring the delivery while 4 customers require the installation as well. 

Table 5.1 shows the details of the problem parameters used to generate two test problems 

randomly.  

Table 5.1  The problem parameters for two test problems. 

Parameters V-d6-i3 V-d8-i4 

Number of customers 6 8 

Number of customers for installation 3 4 

Amount of customers’ demands  2-10 2-10 

Number of delivery vehicles 3 3 

Capacity of a delivery vehicle  20 20 

Number of installation vehicles 2 2 

Service level (min) 60 60 

Maximum operation time (min) 480 480 

Fixed cost per vehicle (min/vehicle) 100 100 

 

In addition, the hierarchical approach using the genetic algorithm has used the algorithmic 

parameters listed in Table 5.2 to solve test problems and show its effectiveness. The GAs for 

the subproblems in Stages 1 and 2 used the same parameters during the operation. 
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Table 5.2  Algorithmic parameters of the genetic algorithm. 

Parameters Values 

Size of the population 100 

Crossover rate 0.8 

Mutation rate 0.1 

Maximum number of generations 5,000 

Improvement interval 200 

 

 

The MINP approach and the hierarchical approach using the genetic algorithm were applied to 

the two test problems, and the results are given in Table 5.3. The MINP approach solved the 

test problems to generate optimal solutions, which became the target values to demonstrate the 

effectiveness of the hierarchical approach using the genetic algorithm. Since the VRP under 

consideration is an NP-hard problem, the calculation time of the MINP approach would be 

exponentially increased as the size of the problem grows. In the MINP approach, V-d6-i3 and 

V-d8-i4 contain 144 and 344 variables, respectively. Lingo takes 452 seconds to obtain the 

optimal solution of V-d6-i3 and 283 hours to obtain the optimal solution of V-d8-i4. Hence, if 

the size of the problem grows bigger than V-d8-i4, it would be extremely hard or time-

consuming to find the optimal solutions using the MINP approach. 

Unlike the MINP approach, the proposed hierarchical approach using the genetic algorithm 

finds high-quality solutions in a reasonable amount of time. Practically, the hierarchical 

approach obtains optimal or good solutions of the test problems in just a few seconds. Table 

5.3 shows the sum of traveling times of delivery and installation vehicles for two test 

problems from the MINP approach and the hierarchical approach using the genetic algorithm.  
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Table 5.3  The results of two approaches for small test problems. 

Problem name 
MINP approach with 

Lingo 

The hierarchical 

approach using GA 

V-d6-i3 238.42 238.42 

V-d8-i4 371.47 377.01 

 

Both approaches provide same results for V-d6-i3 but different results for V-d8-i4. The 

hierarchical approach using the genetic algorithm found the same solution for V-d6-i3 that the 

MINP models found, so that the solution is equal to the optimal solution. However, the 

hierarchical approach using the genetic algorithm obtained a different solution from the 

optimal solution obtained by the MINP approach. The gap between the solutions from the two 

approaches may occur because of the characteristics of the hierarchical approach. The final 

solution of the hierarchical approach consists of two partial solutions from two subproblems in 

Stages 1 and 2. Since the partial solution of the subproblem in Stage 2 depends on the partial 

solution of the subproblem in Stage 1, the proposed algorithm may not be able to search for 

the solutions efficiently.  Therefore, the partial solution of the subproblem in Stage 1, which 

covers the deliveries, is regarded as a local optimum in the original problem. Due to the fact 

that the hierarchical approach obtains the final solution based on a local optimum, the final 

solutions for the original problem are not necessarily a global optimum. Unfortunately, this is 

a natural limitation of the proposed hierarchical approach.  For reference, the Lingo program 

code of the MINP approach for V-d6-i3 is presented in Table A.1 of Appendix A. 
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5.1.2 Computational results for a large problem 

The hierarchical approach using the genetic algorithm is proposed to solve the VRP under 

consideration, with variables of any size, in a reasonable amount of time. This section 

summarizes computational experiments of the hierarchical approach using the genetic 

algorithm for a test problem of large size. For this purpose, a test problem of relatively large 

size, V-d100-i50-a, was randomly generated. In V-d100-i50, there are 100 customers requiring 

the delivery while 50 customers require the installation as well. All customers are randomly 

located in a 100x100 bounded square field, and a single depot is located in the center (50, 50) 

of the field. Other parameters of the test problem and algorithmic parameters of the GAs for 

the subproblems in Stage 1 and 2 are shown in Table 5.4.   

Table 5.4  Problem parameters and algorithmic parameters. 

Parameters Values 

Amount of customers’ demands  2-6 

Capacity of a delivery vehicle  20 

Service level (min) 60  

Installation time (min) 10  

Fixed cost per vehicle (min/vehicle) 100  

Size of the population 200 

Crossover rate 0.8 

Mutation rate 0.05 

Maximum number of generations 10,000 

Improvement interval 1000 
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Due to the stochastic properties of the evolutionary algorithm, the average performance of the 

algorithm is our interest. Therefore, the experiments were performed as described in this 

paragraph. The GA for the subproblem in Stage 1 solved the test problem five times. Let V-

d100-i50-a(1) through V-d100-i50-a(5) be the results of the five runs, respectively. Figure 5.1 

shows the progress of the five runs from the GA for the subproblem in Stage 1. Lines in the 

figure represent the changes of the value of the best solution during the evolution. As the 

number of generation increases, the value of the best solution of the GA for the subproblem in 

Stage 1 decreases. As the algorithm evolves from the first to the thousandth generation, the 

value of the best solution for the algorithm rapidly drops down.  Then, the good solution for 

the subproblem in Stage 1 is found after approximately 2,500
 
generations.  

   

Figure 5.1 Results of the subproblem in Stage 1. 

Hence, the GA for the subproblem in Stage 1 obtains five solutions. Each solution contains 

different arrival times of delivery vehicles at customers' locations. Based on the arrival times 
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of delivery vehicles in each solution, the time windows for the installations are determined. 

The time windows are one of the important, unique factors required to synchronize the two 

types of vehicles; they are fed to the GA for the subproblem in Stage 2 as a part of the input 

data. Therefore, five different sets of time windows for the customers requiring installation are 

generated from the results of Stage 1, V-d100-i50-a(1) through V-d100-i50-a(5).  

Using the five sets of time windows, five sets of input data for the GA for the subproblem in 

Stage 2 were prepared and fed into the GA for the subproblem in Stage 2 five times each to 

again obtain the average performance. Figure 5.2 through 5.6 show the results of the GA for 

the subproblem in Stage 2 with the five input data. The five lines in each figure represent the 

five runs of the GA for the subproblem in Stage 2 with a set of input data, which were 

prepared using a single result from the GA for the subproblem in Stage 1. Lines in each figure 

represent the changes of the value of the best solution during the evolution. As the number of 

generations increases, the value of the best solution for the GA for the subproblem in Stage 2 

decreases. As the algorithm evolves from the first to the 500th generation, the best fitness 

value of the algorithm rapidly drops down.  A good solution for the subproblem in Stage 2 is 

found after approximately 700
 
generations.  
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Figure 5.2  Results of the subproblem in Stage 2 based on V-d100-i50-a(1). 

  

   

Figure 5.3  Results of the subproblem in Stage 2 based on V-d100-i50-a(2). 
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Figure 5.4  Results of the subproblem in Stage 2 based on V-d100-i50-a(3). 

 

   

Figure 5.5  Results of the subproblem in Stage 2 based on V-d100-i50-a(4). 

7000

8000

9000

10000

0 500 1000 1500

V
al

u
e 

o
f 

b
es

t 
so

lu
ti

o
n

(A
rb

it
a

ry
 u

n
it

s)

Number of generation

From V-d100-i50-a(3)

V-d100-i50-a(3-1)

V-d100-i50-a(3-2)

V-d100-i50-a(3-3)

V-d100-i50-a(3-4)

V-d100-i50-a(3-5)

7000

8000

9000

10000

0 500 1000 1500

V
al

u
e 

o
f 

b
es

t 
so

lu
ti

o
n

(A
rb

it
a

ry
 u

n
it

s)

Number of generation

From V-d100-i50-a(4)

V-d100-i50-a(4-1)

V-d100-i50-a(4-2)

V-d100-i50-a(4-3)

V-d100-i50-a(4-4)

V-d100-i50-a(4-5)



64 

 

   

Figure 5.6  Results of the subproblem in Stage 2 based on V-d100-i50-a(5). 
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Table 5.5  Results of GAs on V-d100-i50-a. 

Experiments  
Subproblem in 

Stage 1 

Subproblem in 

Stage 2 

Original problem 

(Stages 1+ 2) 

1 

4140.03 

7304.43 11444.46 

2 7591.71 11731.74 

3 7334.92 11474.95 

4 7505.58 11645.61 

5 7496.76 11636.79 

6 

4029.14 

7355.62 11384.76 

7 7509.45 11538.59 

8 7307.80 11336.94 

9 7323.06 11352.20 

10 7308.49 11337.63 

11 

3971.28 

7313.23 11284.51 

12 7276.10 11247.38 

13 7270.78 11242.06 

14 7272.49 11243.77 

15 7288.16 11259.44 

16 

4030.77 

7206.32 11237.09 

17 7215.20 11245.97 

18 7218.96 11249.73 

19 7433.16 11463.93 

20 7370.35 11401.12 

21 

3976.87 

7245.86 11222.73 

22 7457.32 11434.19 

23 7237.73 11214.60 

24 7433.15 11410.02 

25 7204.65     11181.52(*) 
(*)

 The best solution obtained by the proposed hierarchical approach 

 

In Table 5.3, the best solution of the original problem is not equal to the sum of the best 

solutions for each subproblem in Stages 1 and 2. The best solution value of the subproblem in 

Stage 1 is 3971.28, the value used for the third set of experiments (experiments 11-15). The 

routes and schedules of delivery vehicles from this experiment were fed to the subproblem in 

Stage 2, but the best solution for the original problem did not use this best solution for the 

subproblem in Stage 1. Rather, the best solution for the original problem was achieved in 

experiment 25. Considering these computational experiments, it is necessary to develop a way 
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to consider the tradeoff between the two subproblems in order to obtain the best possible 

solution of the original problem. 

 

5.2 Robustness of the hierarchical approach  

In practice, the VRP under consideration would have case-specific problem parameters 

reflecting the situation. Some problem parameters may have great impacts on the performance 

and effectiveness of the proposed algorithm as well as on the solutions of the VRP under 

consideration. The impacts of the problem parameters on the performances and solutions may 

not be identical, either. Significant degradation in the performance of the proposed algorithm 

resulting from variation of the problem parameters is not desirable. In other words, the robust 

algorithm is desirable even if the problem characteristic varies. In order to verify the 

robustness of the proposed algorithm, the Taguchi method was used to generate an orthogonal 

combination of the experiments. The purpose of applying the Taguchi method in this section 

is to show the robustness of the proposed algorithm for the problem with various conditions 

rather than optimizing the process parameters. 

5.2.1 Design of experiments by the Taguchi method 

Experimental design experiments using the Taguchi method were conducted using the 

“orthogonal array,” within which all experiments are balanced with respect to all control 

factors while still requiring the minimum number of experiments to be performed. The 

Taguchi method is a derivative of the fractional factorial design method. In this section, the L9 

orthogonal array for four factors with each at three levels is used. The four control factors in 
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this section are the ratio of installations to deliveries (factor A), the service level (factor B), 

the installation time (factor C), and the fixed cost per vehicle (factor D). The ratio of 

installations to deliveries is determined by the customers’ demands. Three different ratios are 

considered; 10%, 30%, and 50%. The service level is generally predetermined by the service 

policy of the company. The better the quality of service required, the smaller is the permissible 

service level. It is clear that more installation vehicles will be required to satisfy the demands 

of customers requring the installation in narrower time windows. Three service levels are 

considered: 60, 120, and 180 minutes. An identical installation time for all customers 

requiring the installation is assumed in the VRP under consideration. The installation time 

may be determined according to the recommended installation time of the products. That is, it 

is assumed that different amounts of installation times are required for different types of 

products. However, for simplicity, a single predetermined installation time is applied to all 

installations in these sample problems. Three different installation times are considered: 10, 35, 

and 60 minutes. Finally, the fixed cost per vehicle may have an impact on the performance 

and the solutions as well. When the fixed cost per vehicle is high, reducing the number of 

vehicles  may be more important in order to find the best solution. The fixed cost per vehicle 

is converted to a certain amount of time as a penalty in the problem modeling. Three different 

fixed costs per vehicle are used: 50, 100, and 150 minutes per vehicle. Table 5.6 summarizes 

the four factors and their levels. 

Table 5.6  Four factors for the Taguchi method. 

Factor Level 

A: Ratio of installations to deliveries (%) A1 = 10, A2 = 30, A3 = 50 

B: Service level (min) B1 = 60, B2 = 120, B3 = 180 

C: Installation time (min) C1 = 10, C2 = 35, C3 = 60 

D: Fixed cost per vehicle (min/vehicle) D1 = 50, D2 = 100, D3 = 150 
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Based on these four factors and three levels of each factor, an L9 orthogonal array is used to 

generate the nine sets of experimental conditions. Table 5.7 shows the L9 orthogonal array and 

nine experimental runs with the experimental conditions.  

Table 5.7  The L9 orthogonal array and the nine runs with the experimental conditions. 

L9 (3
4
) Orthogonal array Actual values 

Run no. A B C D 

Ratio of 

installations 

to deliveries 

(%) 

Service 

level (min) 

Installation 

time (min) 

Fixed cost 

per vehicle 

(min/vehicle) 

1 1 1 1 1 10 60 10 50 

2 1 2 2 2 10 120 35 100 

3 1 3 3 3 10 180 60 150 

4 2 1 2 3 30 60 35 150 

5 2 2 3 1 30 120 60 50 

6 2 3 1 2 30 180 10 100 

7 3 1 3 2 50 60 60 100 

8 3 2 1 3 50 120 10 150 

9 3 3 2 1 50 180 35 50 

A = Ratio of installation customers (%), B= Service Level (min) 

C=Installation time (min), D= Fixed cost per vehicle (min/vehicle) 

 

In order to generate test problems randomly, the problem parameters listed in Table 5.8 have 

been used. 

Table 5.8 The problem parameters of the test problems in this section. 

Parameters Values 

Field size 100×100 

Location of the single depot (50,50) 

Locations of customers Random 

Amount of demands 2-10 

Loading capacity of a delivery vehicle 20 
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The hierarchical approach using the genetic algorithm solved the test problem under the 

identical conditions, using the algorithmic parameters given in Table 5.9. The identical 

algorithm parameters were applied to the GAs for the subproblems in Stages 1 and 2. 

Table 5.9  The algorithm parameters for the experiment. 

Parameters Value 

Size of the population 200 

Crossover rate 0.8 

Mutation rate 0.05 

Maximum number of generations 10,000 

Improvement interval 1,000 

 

 

5.2.2 Results of the experiments with regard to robustness 

In each run of Table 5.7, five test problems were generated randomly and solved using the 

identical algorithmic parameters. As mentioned before, the hierarchical approach using the 

genetic algorithm consists of two stages. It is important to understand that the robustness of 

the proposed algorithm is proved only when the average performances are robust. Hence, in 

Stage 1, five test problems were solved five times each. The five test problems (V-d100-i10-a 

through V-d100-i10-e) were solved five times each for run number 1 in Table 5.7, resulting in 

25 solutions. After Stage 1, five solutions per problem were obtained. These solutions were 

then fed to the GA for the subproblem in Stage 2 as a part of the input data. Then, the GA for 

the subproblem in Stage 2 solved, five times each, the subproblems based on input data from 

the end of Stage 1. Thus, each run in Table 5.7 produced 125 solutions. Therefore, 1,125 
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solutions of the original problem were obtained through the nine experimental runs. The 

results of these 1,125 solutions are reported in Tables B.1 through B.9 in Appendix B. 

The results of the solutions from the experiments are normalized for analysis because the 

control factors themselves may have a direct impact on the solutions. The sum of the average 

traveling time per customer requiring delivery from the subproblem in Stage 1 and the average 

traveling time per customer requiring installation from the subproblem in Stage 2 is used for 

this Taguchi analysis as the normalized signal. Since the objective of the VRP under 

consideration is to find the shortest traveling times of all vehicles while satisfying all 

customers’ demands, the smaller result is more desirable in the Taguchi analysis.  

Let yi be the normalized signal from the experiment i. The signal-to-noise ratio (SNR) for this 

smaller-the-better problem is calculated as 

SNR = -10 log10 
21

iy
n

 
 
 
  

By ANOVA, the relative contributions of each considerable factor are calculated in Table 5.10. 

The relative contributions of the four control factors used in this Taguchi analysis are fairly 

similar. The most significant factor is the ratio of customers requiring installation (factor A), 

which impacts 32.83 % on the results of the experiment. The service level and the installation 

time impacts 25.37% and 28.97%, respectively, which are not much less than the contribution 

of the ratio of customers requiring installation. The least significant factor is the fixed cost per 

vehicle. If all solutions for the same problem contained the same number of vehicles, the 

contribution of the fixed cost per vehicle must be zero. Therefore, the fact that this factor does 
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have some impact shows that there are solutions that use different numbers of vehicles.  

However, the impact of this factor is smaller than that of the other three factors. 

It is concluded that the proposed algorithm solves the VRP under consideration consistently 

well even with the existence of various settings of four control factors, which are problem 

parameters as well. 

Table 5.10  Taguchi analysis for the robustness of the proposed algorithm. 

 Levels A B C D 

S/N 

1 -124.524 -123.877 -115.747 -116.934 

2 -118.071 -118.637 -120.112 -120.456 

 
-116.783 -116.865 -123.52 -121.988 

Relative contribution (%) 32.83 25.37 28.98 12.81 
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5.3 Conclusion of the hierarchical approach using the genetic 

algorithm 

The hierarchical approach using genetic algorithm was proposed to effectively solve the VRP 

under consideration. The approach divides the original problem into two subproblems. The 

subproblems were defined as a VRP for delivery vehicles and a VRP for installation vehicles. 

For each subproblem, an efficient genetic representation, an appropriate method to construct 

the population, and a set of genetic operators were proposed and developed.  

In order to show the effectiveness of the hierarchical approach using the genetic algorithm, the 

computational results from the hierarchical approach using the genetic algorithm and the 

MINP model were compared. In the experiment of two small test problems, the hierarchical 

approach achieved optimality for one test problem and a relatively good solution for the other. 

It is important to note that a small increase of the problem size resulted in an excessive 

increase in computational time for the MINP model. The hierarchical approach efficiently 

found good solutions to the larger test problem in a reasonable amount of time, while the 

MINP approach could not find even a feasible solution. It is extremely hard to find the optimal 

solution of a large problem with the MINP approach, even if a great amount of calculation 

time is provided.  

It is also observed that the hierarchical approach exposes its natural limitation. The result of 

the subproblem in Stage 2, the routes and schedules of installation vehicles, entirely depends 

on the results of the subproblem in Stage 1, the routes and schedules of delivery vehicles, 

since the time windows for the installation vehicles’ arrival at customers requiring the 

installation are determined by the results of the subproblem in Stage 1. Due to the hierarchical 

approach, the best solution of the subproblem in Stage 1 may hinder the subproblem in Stage 
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2 to find better solutions in the solution space of the original problem. In other words, the best 

solution of the subproblem in Stage 1 does not guarantee the global optimality. Furthermore, 

the solution space that can be searched by the hierarchical approach is restricted. In order to 

consider two subproblems at the same time, an advanced evolutionary algorithm, known as the 

endosymbiotic evolutionary algorithm, is considered in the next chapter. 
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6. ENDOSYMBIOTIC EVOLUTIONARY ALGORITHM FOR 

SYNCHRONIZATION OF THE DELIVERY AND THE 

INSTALLATION  

The hierarchical approach using the genetic algorithm was proposed in Chapter 4 to 

effectively solve the VRP under consideration. However, since subproblems created from the 

original problem cannot be considered simultaneously during the solution process, the 

hierarchical approach has a natural flaw. As mentioned in Chapter 4, the hierarchical approach 

breaks down the original problem into two subproblems and solves them one by one. The 

subproblem in Stage 1 is solved independently, and then the output from the subproblem in 

Stage 1 is fed into the subproblem in Stage 2 as a part of the input data. Hence, the solution 

space where the hierarchical approach can search is restricted by the result of the subproblem 

in Stage 1. In order to consider the original problem as a whole and to search the solution 

space with less limitation, an endosymbiotic evolutionary algorithm (EEA) for the VRP under 

consideration is presented in this chapter.  

 

6.1 Endosymbiotic evolutionary algorithm for the vehicle routing 

problem under consideration 

The EEA is one type of symbiotic evolutionary algorithm (SEA) that can consider multiple 

subproblems at the same time. When the original problem is interwoven by multiple 

subproblems and we want to solve the original problem as a whole instead of considering 

them individually, SEAs such as the EEA can be a good option to search for the solutions of 

multiple subproblems concurrently. The SEAs consider each subproblem along with its 
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symbiotic partners, which are corresponding subproblems, in the original problem during the 

evolution. The concurrent consideration of subproblems may reduce the probability that the 

algorithm dwells on the local optima. The SEAs try to produce good solutions in balance 

among cooperative subproblems.  

The EEA maintains multiple different populations, each of which is composed of a set of 

corresponding symbiotic partners for each subproblem.  The EEA for the VRP under 

consideration breaks down the original problem into two different subproblems and one 

combined subproblem; one is the VRP for delivery vehicles, another is the VRP for 

installation vehicles, and the last is the VRP considering both delivery and installation 

vehicles. Hence, three distinct populations (POP-D, POP-I, and POP-DI) for two subproblems 

and a combined subproblem are maintained. The populations for the subproblems regarding 

delivery and installation vehicles in the proposed EEA are referred as POP-D and POP-I, 

respectively. These two populations play the roles of corresponding symbionts in the 

endosymbiotic theory, and individuals in those populations represent partial solutions of the 

original problem. Both populations evolve in such a direction that corresponding symbionts 

from both populations cooperate with each other to find the better solutions to the original 

problem.  Since individuals in POP-D and POP-I are merely partial solutions, only when 

corresponding symbionts are combined appropriately and feasibly into the endosymbionts 

does evaluation of the solutions to the original problem become possible. 

The population POP-DI plays the role of the endosymbiont in this algorithm. An 

endosymbiont carries the genes of all symbionts, which are partial solutions. Therefore, 

individuals in POP-DI represent solutions to the original problem. The individuals in POP-DI 

compete for survival with new offsprings that are generated through the mating of individuals 

from POP-D and POP-I. Eventually, POP-DI evolves toward a better population that contains 
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better individuals in terms of the original problem. Figure 6.1 shows the concept of the 

proposed EEA. 

 

Figure 6.1  The concept of the proposed EEA. 

In the algorithm, individuals in POP-D and POP-I are separately working as partial solutions 

but cooperate with each other while evolving. Furthermore, individuals in POP-DI, 

representing solutions of the original problem, compete with those created by combination of 

individuals from POP-D and POP-I. In order to improve the search efficiency, the algorithm 

uses localized interactions among the populations instead of randomized and scattered 

interactions. The hierarchical approach does not have any interaction between populations, 

which work as pools of potential solutions; however, the EEA needs appropriate interactions 

for the cooperation and the competition among populations to obtain even better solutions. 
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Thus, topological locations of corresponding individuals or symbionts for the interactions are 

defined as follows.  

Each population forms a two-dimensional structure of toroidal grid with the same number of 

individuals, and individuals in the population are mapped into the cells of the grid. An 

individual in the population has its own location index (x, y) and is surrounded by 8 neighbor 

individuals. The individual has corresponding individuals in the same geographical location at 

the toroidal grids of other two populations.  Hence, when an arbitrary location (i, j) is selected 

at a generation, the neighborhoods of individuals including (i, j) at center of the 3×3 grid and 8 

neighbor individuals in the POP-D, POP-I, and POP-DI are generated as NDij, NIij, and NDIij, 

respectively. Only the individuals in these three sets of neighborhoods are considered for 

the interactions among the three populations at the generation. Figure 6.2 shows an 

example of toroidal grids with individuals at the cells and a neighborhood around 

individual (i, j).  

  

Figure 6.2  A toroidal grid and a neighborhood.  

Individual (i, j)
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The neighborhoods of NDij from POP-D and NIij from POP-I cooperate to find a good 

solution of the problem. Since each neighborhood contains 9 individuals, 81 (9×9) 

combinations are considerable as the candidate solutions of the problem. The best 

combination among them is compared with the current best solution in the algorithm that 

competes with 9 individuals in NDIij from POP-DI as well. Based on the interactions 

among the sets of neighborhoods, the parallel search with partial solutions from POP-D and 

POP-I in the subproblems and the integrated search with entire solutions from POP-DI in the 

original problem are carried out simultaneously in all generations. The details of the proposed 

EEA are described in Table 6.1. In Step 5, populations follow the GA processes explained in 

the next section.   

 

Table 6.1  The procedures of the proposed EEA. 

Step 1: Initialization: Generate individuals in of POP-D, POP-I and POP-DI, 

randomly. Set best solution value, fbest = -∞. 

Step 2: Construction of neighbors: Select an arbitrary location (i, j) and set up 

the neighborhoods, NDij, NIij, and NDIij, in each population. 

Step 3: Cooperation between subproblems: 

Step 3.1: Evaluate the fitness of all possible combinations that can be 

produced by the concatenation of individuals in NDij and NIij. Step 3.2: 

Let dpip be the best combination among those evaluated in Step 3.1, 

which becomes a candidate endosymbiont. If f(dpip) > fbest, then update  

fbest = f(dpip) and keep dpip as the current solution. 

Step 4: Competition between entire problem and the best solution: 

Step 4.1. Evaluate the fitness of individuals in NDIij and label the 

individuals with the best and the worst fitness as div and diw, 
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respectively. If f(div) > fbest, then update fbest = f(div) and keep div as the 

current solution. 

Step 4.2. If f(dpip) > f(diw) , then replace diw with dpip in NDIij. The 

symbionts, dp and ip, remain in POP-D and POP-I, respectively. 

Step 5: Evolution: Perform the evolution of individuals in POP-D, POP-I and 

POP-DI. 

Step 6: If the termination criteria of evolution are met, then stop. Otherwise, go 

back to Step 2 and repeat the process. 

 

 6.2 Genetic representations and operations 

As already mentioned, in the proposed EEA not only the population for the entire problem but 

also the populations for the subproblems evolve to find better solutions through competition 

and cooperation. The populations in the proposed EEA go through their own GA operations to 

evolve. A population contains a set of individuals that are generated randomly in a certain 

genetic representation. Each population might require its unique genetic representation for the 

corresponding problem. Genetic representations for individuals are very important because 

they are domain-specific and have large impacts on the performance of the genetic evolution. 

Genetic representations and genetic operations for the subproblems and the entire problem 

under consideration in this thesis are described in the following subsections. 
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6.2.1 Genetic representations and operations for the subproblems 

Genetic representations for POP-D and POP-I in the proposed EEA use identical genetic 

representations, i.e., the one-dimensional array, as in the hierarchical approach using the 

genetic algorithm that is proposed in Section 4.3.1. Figure 6.3 illustrates the genetic 

representation of an individual for POP-D.   

 

Figure 6.3  The genetic representation for POP-D. 

Let N be the number of customers for the VRP under consideration and ni be the number of 

customers who will be assigned and served by delivery vehicle i. An individual consists of N 

genes (g1, g2, …, gN) in Figure 6.3(a). The genes contain the indices of customers requiring 

delivery. Since each customer is to be visited by only one delivery vehicle, the index of a 

customer must be shown only once in the genetic representation. The decoding procedure 

determines the routes and schedules of delivery vehicles in operation. In order to assign 

customers to delivery vehicles, the algorithm’s greedy method considers the customers’ 

demand, the loading capacity of delivery vehicles, and the maximum operation time. After the 

decoding process, the individual is interpreted as Figure 6.3(b). A set of customers, indicated 

by genes from 
1 _1gv  to 

1 1_gv n , is allocated to the first delivery vehicle (v1). The remaining 

g1 g2 g3 g4 g5 … gN-2 gN-1 gN

gv1_1 … gv1_n1 gv2_1 … gv2_n2 gv3_1 … gv3_n3 …

(a) Gene representation before decoding

(b) Gene representation after decoding
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customers are assigned to other delivery vehicles in a similar manner. The alternating shades 

in Figure 6.2(b) represent groups of customers served by different delivery vehicles.  

The genetic representation for POP-I is developed in a similar manner. As in the genetic 

representation for POP-D, a greedy method has been used to assign customers to installation 

vehicles. However, unlike the genetic representation of the subproblem for the delivery, the 

greedy method considers the arriving time of delivery vehicles for customers, the installation 

service time per customer, the service level, and the maximum operation time. 

A pair of individuals from POP-D and POP-I is required to make a complete solution for the 

original problem, because an individual from either subproblem is only a partial solution to the 

original problem. In the hierarchical approach, the GA for each subproblem has its own fitness 

function. In other words, there are two fitness functions in the approach; one assesses 

individuals in the subproblem for the delivery, and the other assesses individuals in the 

subproblem for the installation. However, the EEA has a single fitness function that requires a 

completely formed solution for the original problem. Therefore, an individual solution from 

either subproblem is not complete to be evaluated separately.  

For the fitness value of a completely formed solution, which consists of individuals from both 

POP-D and POP-I, the traveling times of delivery vehicles and their fixed costs are first 

calculated for the individual from POP-D. While the traveling times of delivery vehicles are 

calculated, the arrival times of delivery vehicles at customers are also determined. Based on 

the arrival time of delivery vehicles at customers, the time windows for the arrival of 

installation vehicles and their fixed costs are calculated for the individual taken from POP-I. 

Then the traveling schedules of installation vehicles are determined, including the traveling 

times and waiting times of installation vehicles. Let  τi be the sum of traveling times of 
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delivery vehicles that are included in individual i of POP-D; φi,j
 
be the sum of traveling times 

of installation vehicles in individual j of POP-I (which are calculated based on the information 

on individual i of POP-D); ωi,j
 
be the sum of waiting times of installation vehicles in 

individual j of POP-I (again calculated based on individual i of POP-D); δi be the sum of fixed 

costs of delivery vehicles under operation in individual i of POP-D; γi,j
 
be the sum of fixed 

costs of installation vehicles under operation in individual j of POP-I; Λ be the sum of 

unloading times by delivery vehicles at all customers; and Ι be the sum of installation times at 

customers requiring the installation. Since traveling times between any pair of customers are 

known, the traveling times of vehicles can be calculated from vehicles’ visiting sequences. As 

mentioned previously, the waiting time occurs only when an installation vehicle arrives at a 

customer before a delivery vehicle arrives there, and it is calculated as the time lapse from the 

arrival of the installation vehicle to the completion of the unloading from the delivery vehicle. 

Fixed costs of delivery and installation vehicles are also computed by multiplying the known 

fixed cost per vehicle times the number of vehicles in operation. The sum of unloading times 

at customers (Λ) and the sum of installation times at customers (Ι) can be ignored since they 

are constants that can be omitted. Therefore, the fitness function for a combination of the 

individual i from POP-D and the individual j from POP-I , ,i j , is defined as follows: 

,

, , ,

1

( )
i j

i i j i j i i j


    


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The hybrid order crossover operation and the exchange mutation operation, which were 

described in Sections 4.3 and 4.4, are used for the subproblems of the delivery and the 

installation. The proposed hybrid order crossover operation has been successfully 

implemented to effectively reproduce new offsprings for the next generation from two parents 
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in the current generation. The proposed crossover operation considers both the inheritance 

from parents to offsprings and the diversity of individuals in the population, while avoiding a 

premature convergence of the population. The proposed exchange mutation operation prevents 

the evolution of the EEA from dwelling at potential local optima by generating effective 

mutants.  

 

6.2.2 Genetic representation and operations for the entire problem 

This section describes the characteristics of the individuals in POP-DI. An individual in POP-

DI is a candidate solution for the original problem and consists of two different genomes; one 

has an identical form of the individual in POP-D, and the other has an identical form of the 

individual in POP-I. Therefore, an individual in POP-DI is a completely formed solution for 

the VRP under consideration in this thesis. Two genomes for the delivery and the installation 

are concatenated in a row. The genome for the delivery is placed at the head of the individual 

and is followed by the genome for the installation. An example of individuals for the POP-DI 

is shown in Figure 6.4. The genome at the head and the genome at the tail use identical genetic 

representations of the subproblems for the delivery and the installation, which are explained in 

Section 4.3.1 and Section 6.2.1, respectively. 

 

Figure 6.4  The genetic representation for an individual in POP-DI. 
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The individual shown in Figure 6.4 indicates that the corresponding genetic representation 

provides the routes for three delivery and two installation vehicles. The concatenation of two 

different genomes results in a one-dimensional array, but two separate genomes within an 

individual in POP-DI are heterogeneous. Therefore, the genetic operations for POP-DI are 

carried out separately in two-fold: one for the head and the other for the tail. The hybrid order 

crossover operation, which has been explained earlier, is executed over the head and then over 

the tail. The exchange mutation operation also needs to be performed in two-fold in a similar 

way. A detailed description of this operation is omitted to avoid redundancy. 

The fitness of an individual in POP-DI is evaluated sequentially over the head and the tail. The 

genome at the head is decoded to generate schedules and routes for delivery vehicles. Based 

on the schedules for delivery vehicles, the genome at the tail is decoded to generate schedules 

and routes for installation vehicles. Finally, the integrated schedules and routes for both types 

of vehicles become the complete solution of the individual in POP-DI. From the schedules and 

the routes of delivery and installation vehicles, the sum of traveling times of delivery vehicles, 

the sum of traveling times of installation vehicles, and the sum of waiting times of installation 

vehicles are calculated.  Furthermore, from the results of the decoding procedure, the number 

of delivery and installation vehicles to be used is also determined.  

The evaluation of the fitness values for individuals in POP-DI is conducted in a similar 

manner to those for POP-D and POP-I in Section 6.2.1. Let γk,
 
be the sum of traveling times of 

delivery vehicles from the genome at the head of individual k, φk
 
be the sum of traveling times 

of installation vehicles from the genome at the tail of individual k, ωk,t
 
 be the sum of waiting 

times of installation vehicles in individual k, δk be the sum of fixed costs of delivery vehicles 

in operation in individual k, γk
 
be the sum of fixed costs of installation vehicles in operation in 

individual k, Λ be the sum of unloading times by delivery vehicles for all customers, and Ι be 
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the sum of installation times at customers requiring installation. Since traveling times between 

any pairs of customers are known, the traveling times of vehicles can be calculated from 

vehicles’ visiting sequences. As already noted, waiting time occurs only when an installation 

vehicle arrives at a customer before a delivery vehicle arrives there, and it is calculated as the 

time lapse from the arrival of the installation vehicle to the completion of the unloading from 

the delivery vehicle. Fixed costs of delivery and installation vehicles are also computed by 

multiplying the known fixed cost per vehicle times the number of vehicles in operation. The 

sum of unloading times at all customers (Λ) and the sum of installation times at customers 

requiring the installation (Ι) are constant and can be omitted. The fitness of the individual k in 

POP-DI (
k ) is defined as follows. 
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The fitness function for the original problem is designed to reduce not only the sum of 

traveling times of all vehicles but also the sum of waiting times of the installation vehicles 

while evolving. 

 

6.2.3 Initialization of the populations 

An EEA, which considers the cooperation of its subproblems and the competition among 

individual evolutions and cooperative evolutions simultaneously, is proposed to more 

effectively search the solution space of the VRP under consideration than the hierarchical 

approach. Since the proposed EEA not only conducts an effective and efficient search in 

global solution space but also considers a balanced evolution of subproblems’ solution space, 
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it requires more calculation time to find high-quality solutions then the hierarchical approach. 

The fitness evaluation in the proposed EEA requires a complete solution for the problem, 

which consists of two partial solutions (for the delivery and the installation). The complete 

solution can be simply chosen from POP-DI or created by the concatenation of partial 

solutions from POP-D and POP-I. The genetic representations of individuals in the 

subproblems and the entire problem were already detailed in Sections 4.3.1 and 6.2.1.  

Any individual in the algorithm forms a one-dimensional array.  An individual in POP-D or 

the delivery portion of an individual in POP-DI contains a sequence of customer numbers 

requiring delivery. Since each customer is to be visited by a single delivery vehicle, a 

customer must be shown only once in the array. The customers’ demands, the loading capacity 

of the vehicle, and the maximum operation time are considered simultaneously to decode the 

solution of the delivery portion. An individual of POP-I or the installation portion of an 

individual in POP-DI contains a sequence of customer numbers requiring installation as well. 

As in the delivery portion, a customer must be shown only once in the solution. The delivery 

schedules for customers from the delivery portion, the size of time windows for the 

installation, and the maximum operation time are considered together to decode the solution of 

the installation portion.  

In the hierarchical approach, the subproblem for delivery vehicles is solved by first finding the 

best possible sequence of customers to be assigned to a set of delivery vehicles, considering 

the visiting sequence and the loading capacity of vehicles. Then these assignments are fed into 

the subproblem for installation vehicles as part of the input data. Therefore, the subproblem 

for installation vehicles is automatically subject to a single set of assignments for delivery 

vehicles. Due to the nature of this hierarchical approach, the calculation time for each 

subproblem is proportional to the number of genes in the individuals. Hence, both initial 
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populations for the two subproblems have been randomly generated without any special 

consideration. 

However, the proposed EEA combines the individuals from POP-D and POP-I (more exactly, 

from NDij and NIij) to evaluate their fitness. For each individual in POP-D (or POP-I), the 

EEA creates and considers a number of combinations simultaneously, along with the 

corresponding symbiotic partners in POP-I (or POP-D, respectively). Hence, a significant 

increase in the calculation time for initial evolutions of either POP-D and POP-I is reported. 

To overcome these time-consuming combinatorial operations in the proposed algorithm, a 

simple local search is used to produce an initial POP-D with better individuals. This local 

search generates good individuals with shorter traveling times of delivery vehicles, so the 

EEA shows a faster convergence toward optimal solutions. It is applied to initial solutions in 

POP-D and the delivery portion of initial solutions in POP-DI. Initial solutions in POP-I and 

the installation portion of initial solutions in POP-DI are randomly generated without any 

local search. 

The proposed local search for delivery vehicles proceeds as follows. To generate an initial 

solution for delivery vehicles, a customer is randomly selected and assigned to a delivery 

vehicle.  From this customer, the nearest customer not already assigned to any delivery vehicle 

is selected and assigned to the current vehicle of our concern, as far as the vehicle can 

accommodate the demand of the selected customer and complete all assigned deliveries in the 

maximum operation time. If the demand of the selected customer exceeds the remaining 

capacity of the delivery vehicle of concern, the selected customer is assigned to a new vehicle 

and the process continues until all customers are assigned for a delivery. 
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The proposed local search for the initialization of the POP-D and POP-DI improves the 

convergence speed significantly by avoiding the time-consuming search for unnecessary 

combinations of symbiotic partners in the proposed EEA. The initial solutions created by the 

proposed local search produce geographical clusters of customers, and its fitness values are 

higher on average than those of randomly generated individuals. 

 

6.2.4 Termination condition 

The proposed EEA terminates when the number of generations reaches a specified maximum 

number. The individual with has the highest fitness in the final generation is interpreted as the 

best known solution to the problem. The best known solution to the original problem can be 

obtained from either the best individual in POP-DI or the best combination of two individuals 

in POP-D and POP-I. 
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7. COMPUTATIONAL EXPERIMENTS FOR THE 

ENDOSYMBIOTIC EVOLUTIONARY ALGORITHM  

The proposed EEA was implemented to solve the VRP under consideration and programmed 

in Visual Basic language with the Microsoft Visual Studio.NET Framework 1.1 version. 

Computational results of the EEA were compared with those obtained by the MINP model and 

the hierarchical approach using the genetic algorithm. The MINP model was implemented and 

solved by Lingo version 10.0, commercially available optimization software for nonlinear 

programming models, and the hierarchical approach using the genetic algorithm was 

programmed in Visual Basic programming language. All computational experiments were 

carried out on a personal computer with 3.4 GHz Pentium 4 CPU and 2.0 GB RAM. 

7.1 Effectiveness of the proposed endosymbiotic evolutionary 

algorithm 

The EEA has been proposed to facilitate an efficient search in a wider solution space of the 

VRP that is the subject of this study, while considering the balance of the two subproblems in 

the algorithm at the same time. In order to show the effectiveness of the proposed EEA, two 

test problems previously solved by the MINP approach and the hierarchical approach have 

been attempted by the proposed EEA as well. The results from three approaches are compared 

in this section. The MINP approach and the hierarchical approach were described in Chapters 

3 and 5, respectively. Furthermore, the proposed EEA provides some results for test problems 

of larger sizes, which cannot be solved by the MINP approach.   
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7.1.1 Comparison of the results of small problems from the MINP 

model and the endosymbiotic evolutionary algorithm  

As already mentioned, only test problems of small sizes can be solved by the MINP approach.  

For purposes of comparison, two test problems (V-d6-i3 and V-d8-i4) were attempted using 

the proposed EEA to show its effectiveness. Those test problems have already been described 

in Section 5.1.1, where we demonstrated the effectiveness of the hierarchical approach. In V-

d6-i3, there are six customers requiring the delivery while three customers require installation 

as well. In V-d8-i4, there are eight customers requiring the delivery while four customers 

require installation as well. The details of the problem parameters used to generate two test 

problems have already been described in Table 5.1 and are thus omitted here. The proposed 

EEA uses the algorithm parameters listed in Table 7.1 to solve test problems and show its 

effectiveness. Both genetic operations for POP-D, POP-I and POP-DI use the identical 

parameters during the operation. 

Table 7.1  Parameters of the EEA for the test problems. 

Parameter Value 

Size of the population 100 (10×10) 

Crossover rate 0.8 

Mutation rate 0.1 

Maximum number of generations 2,000 

 

Since the VRP under consideration is an NP-hard problem, the calculation time using the 

MINP approach increases exponentially as the size of the problem grows. By way of reference, 

the MINP approach for V-d8-i4 required 283 hours to obtain the optimal solution even when 
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the state-of-the-art optimization software, Lingo, was used. However, the proposed EEA finds 

high-quality solutions in a reasonable amount of time.  

Table 7.2 shows the sum of the traveling times of delivery and installation vehicles in the best 

solutions from the MINP approach, the hierarchical approach, and the proposed EEA. In 

contrast to the hierarchical approach, the proposed EEA successfully obtains the optimal 

solutions for both test problems, as only the MINP approach achieved the optimality 

previously. The hierarchical approach could not achieve the optimality at all times. In this 

study, there is a gap between the best solutions from the hierarchical approach and the optimal 

solution for V-d8-i4. This gap may be caused by the natural limitation of the hierarchical 

approach, as discussed in Section 5.1.1. 

Table 7.2  The results of two small test problems. 

Test problem  
The MINP 

model  

The proposed 

EEA 

The hierarchical 

approach  

V-d6-i3 238.42 238.42 238.42 

V-d8-i4 371.47 371.47 377.01 

 

 

7.1.2 Endosymbiotic evolutionary algorithm with larger problems 

The EEA is proposed to effectively solve not only small problems but also large problems in a 

reasonable amount of time. This section summarizes computational experiments using the 

proposed EEA for problems of medium size (V-d30-i10) and large size (V-d100-i50). In these 

two test problems, all customers are randomly located in a 100x100 bounded square field and 
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a single depot is located in the center (50, 50) of the field. Other problem parameters of the 

test problems and algorithmic parameters of the proposed EEA are shown in Table 7.3. The 

genetic operations for POP-D, POP-I and POP-DI have used the identical crossover rates and 

mutation rates throughout the course of the algorithm. 

Table 7.3  The parameters of the EEA for problems of larger sizes. 

Parameter Value 

Amount of demands 2-6 

Loading capacity of a delivery vehicle 20 

Service level (min) 60  

Installation time (min) 10  

Fixed cost per vehicle (min/vehicle) 100  

Size of the population 100 (10×10) 

Crossover rate 0.8 

Mutation rate 0.1 

Maximum number of 

generations 

V-d30-i10 3,000 

V-d100-i50 10,000 

 

V-d30-i10 consists of 30 customers requiring the delivery while 10 customers require the 

installation. Due to the stochastic properties of the evolutionary algorithm, the average 

performance of the algorithm is our interest. The proposed EEA solved the test problem five 

times, and the progress of these five trials of the EEA for V-d30-i10 is illustrated in Figure 7.1. 

Lines in the figure represent the change in the best solutions during the evolution. As the 

number of generations increases, the score of the best solution of the algorithm decreases. As 

the proposed EEA evolves through the first 1,000 generations, the score of the best fitness 
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value of the algorithm drops rapidly. A good solution is found in approximately 1,200
 

generations.  

  

Figure 7.1  Five progresses of the best solutions for V-d30-i10. 

Figure 7.2 shows the routes of delivery and installation vehicles as decoded from one of the 

best solutions by the EEA. This solution requires eight delivery vehicles and three installation 

vehicles to satisfy all constraints and restrictions of the test problem. The sum of the traveling 

times of delivery and installation vehicles is 1062.98. The routes from and to the depot are 

omitted for simplicity in Figure 7.2. 
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Figure 7.2  Routes of vehicles in the best solution for V-d30-i10. 

A test problem of large size, V-d100-i50, consists of 100 customers requiring delivery while 

50 customers require installation. The algorithmic parameters in Table 7.3 have been used for 

this problem as well. In this experiment, the EEA solved the test problem 10 times to obtain 

an unbiased average performance, since it is more complicated and harder to solve than the 

smaller problems. The progresses of 10 trials for V-d100-i50 by the proposed EEA are 

illustrated in Figure 7.3. Lines in the figure represent the change of the value of the best 

solutions during the evolution. As the algorithm evolves through its first 4,000 generations, 

the value of the best solution rapidly drops down.  In most trials, the proposed EEA found a 

good solution within approximately 5,000
 
generations. As Figure 7.3 shows, trial 7 provided 

the best results among the ten trials.  
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Figure 7.3 Ten results of the test problem V-d100-i50. 

Section 5.2.1 showed the results of the hierarchical approach using the genetic algorithm for 

V-d100-i50. Since the hierarchical approach solves the test problem in two stages, the final 

solutions for the original problem cannot be obtained until the subproblem in Stage 2 has been 

completely solved. The EEA and the hierarchical approach have different structures and 

procedures to solve the VRP under consideration. Hence, in order to compare the performance 

of the two different approaches, the algorithmic parameters in the hierarchical approach were 

modified to solve the problem under similar conditions to those of the proposed EEA. Since 

the EEA for V-d100-i50 finds good solutions within approximately 5,000 generations, the 

maximum number of generations, as the termination condition for the EEA, is set at 5,000 

generations for comparison. The maximum number of generations for each stage in the 

hierarchical approach is constrained at 2,500 generations, respectively, which seems 

reasonable considering the computational experiments in Section 5.2.1. The improvement 
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interval for each subproblem, which is another termination condition for the hierarchical 

approach, is ignored in the test. The identical crossover rates (0.8) and mutation rates (0.1) are 

used for both approaches during the operation.  

 

Figure 7.4 Progresses of the EEA and the hierarchical approach for V-d100. 

Figure 7.4 shows the progress of the best solutions in each generation for V-d100-i50 from the 

EEA and the hierarchical approach. Lines in the figure represent the change in the value of the 

best solution in both approaches during the evolution. Until the 2,500th generation, the 

hierarchical approach does not have any solution of the original problem, as explained in the 

previous paragraph. The hierarchical approach searches for a good solution for the subproblem 

in Stage 1, which is only a partial solution of the original problem. Based on the final partial 

solution from Stage 1, which is the best solution of Stage 1 at the 2,500th generation, the 

hierarchical approach obtains solutions for the original test problem. At the 5,000th generation 

in the hierarchical approach, as shown in Figure 7.4, the final solution of the hierarchical 
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approach for the test problem is determined as the sum of the partial solutions from Stages 1 

and 2. As shown in Figure 7.4, the proposed EEA shows better performance than the 

hierarchical approach. 

 

7.2 Performance of the proposed endosymbiotic evolutionary 

algorithm 

In this section, the computational experiments with problems of various sizes and parameters 

are reported to show the effectiveness and efficiency of the proposed EEA. The problems of 

various sizes and problem parameters were randomly generated for testing purposes. The 

generated problems were solved by the MINP approach, by the hierarchical approach using 

the genetic algorithm, and finally by the proposed EEA. The computational results from the 

three approaches are presented and compared in this section.  

7.2.1 Test problems 

All customers are randomly located in a 100x100 bounded square field and a single depot is 

located in the center (50, 50) of the field. For all test problems, it assumed that the delivery 

demand of each customer is between 2 and 10; the loading capacity of delivery vehicles is 20; 

the installation time and the service level are 10 and 60, respectively; and the maximum 

operation time for both types of vehicles is 480, which can be considered as 8 hours per day. 

Fifteen test problems, including the four test problems used in previous sections, have been 

generated to verify the effectiveness and efficiency of the proposed EEA. The numbers of 

customers and vehicles for each problem are presented in Table 7.4.  
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Table 7.4  Numbers of customers and vehicles for the test problems. 

Problem 

size 

Problem 

number 

Problem 

name 

Configuration 

Number 

of 

customers 

Number of 

installation 

customers 

Number of 

delivery 

vehicles 

Number of 

installation 

vehicles 

Ratio of 

installation 

customers 

Small 

1 V-d6-i3 6 3 2 1 50% 

2 V-d8-i4 8 4 3 2 50% 

3 V-d10-i5 10 5 3 2 50% 

4 V-d12-i6 12 6 4 3 50% 

Medium 

5 V-d30-i10 30 10 8 3 33% 

6 V-d30-i20 30 20 8 4 66% 

7 V-d50-i5 50 5 12 2 10% 

8 V-d50-i10 50 10 13 3 20% 

9 V-d50-i20 50 20 13 5 40% 

Large 

10 V-d80-i8 80 8 20 3 10% 

11 V-d80-i20 80 20 18 5 25% 

12 V-d80-i40 80 40 19 9 50% 

13 V-d100-i10 100 10 22 3 10% 

14 V-d100-i25 100 25 24 7 25% 

15 V-d100-i50 100 50 27 10 50% 

 

The test problems are classified according to the size of the problem; there are four small 

problems, five medium-sized problems, and six large problems. Table 7.5 shows the numbers 

of variables, integer variables, and constraints for the test problems in the MINP model.  

These numbers can be considered as a rough estimate of the complexity of the problems. It is 

natural that the number of variables should increase rapidly as the size of the problem grows.  
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Table 7.5  The number of variables in the MINP model for the test problems. 

Problem 

size 

Problem 

number 

Problem 

name 

Statistics of the MINP model 

Number of 

variables 

Number of 

integer variables 

Number of 

constructions 

Small 

1 V-d6-i3 144 129 132 

2 V-d8-i4 344 325 293 

3 V-d10-i5 498 475 430 

4 V-d12-i6 916 889 782 

Medium 

5 V-d30-i10 8,374 8,321 7,688 

6 V-d30-i20 9,845 9,772 9,041 

7 V-d50-i5 31,957 31,894 30,286 

8 V-d50-i10 34,929 34,856 33,068 

9 V-d50-i20 36,861 36,768 34,824 

Large 

10 V-d80-i8 133,186 133,087 128,568 

11 V-d80-i20 121,966 121,843 117,634 

12 V-d80-i40 141,831 141,668 136,550 

13 V-d100-i10 227,138 227,015 220,754 

14 V-d100-i25 252,284 252,131 244,924 

15 V-d100-i50 304,840 304,637 275,427 

 

7.2.2 Performance comparison 

The test problems were solved by the MINP approach, the hierarchical approach, and the 

proposed EEA. Table 7.6 shows the results of the test problems from these three solution 

methods. The CPU time using the MINP approach was limited to a maximum of two hours, so 

that the Lingo finds the feasible solutions or optimal solutions.  Lingo was not able to obtain a 

feasible solution within two hours on all occasions. Since the hierarchical approach and the 

EEA are meta-heuristic algorithms, they have been tried multiple times for each problem in 

order to obtain the average performance. In the hierarchical approach, for each problem, the 

subproblem in Stage 1 is solved four times and then the subproblem in Stage 2 is solved four 
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times for each result from Stage 1. Hence each test problem has 16 solutions for the 

hierarchical approach. For the EEA, 16 trials are made to make as much computational effort 

as the hierarchical approach. The best solutions and the averages of the 16 solutions are 

summarized in Table 7.6. 

Table 7.6  The performance comparison for the MINP approach, the hierarchical approach 

using the genetic algorithm, and the endosymbiotic evolutionary algorithm. 

Problem 

MINP approach 
Hierarchical approach using 

the genetic algorithm 

Endosymbiotic evolutionary 

algorithm 

Best 

solution 
Remark 

Best 

solution 

Average 

solution 

Standard 

deviation 

Best 

solution 

Average 

solution 

Standard 

deviation 

1 238.42 Optimal 238.42  238.69  0.279 238.42 238.42 0.000 

2 
381.96 

(371.47*) 
Feasible 377.01  392.58 8.812 371.47 371.47 0.037 

3 340.51 Feasible 328.12  331.80  3.801 314.89 317.49 15.149 

4 435.77 Feasible 365.10  368.65  3.802 350.95 356.74 32.138 

5 N/A Unknown 1149.30  1171.27  17.605 1081.76 1178.65 63.296 

6 N/A Unknown 1428.58  1466.34 32.232 1321.83 1385.47 52.925 

7 N/A Unknown 1607.56  1643.53  34.632 1413.44 1449.25 31.540 

8 N/A Unknown 1763.66  1876.23  68.743 1617.09 1674.83 42.214 

9 N/A Unknown 2074.82  2100.72  22.525 1907.06 1988.87 65.769 

10 N/A Unknown 2552.65  2699.44  101.219 2358.51 2454.02 75.289 

11 N/A Unknown 2832.26  2963.08  80.211 2537.11 2632.88 65.175 

12 N/A Unknown 3061.47  3203.59  91.116 2999.86 3142.44 67.203 

13 N/A Unknown 3045.43  3176.53  133.936 2642.29 2713.33 47.469 

14 N/A Unknown 3258.53  3372.02  103.569 3140.25 3221.60 69.835 

15 N/A Unknown 3777.79  3957.88  144.300 3696.68 3914.91 89.420 

 * the local optimal value found after 283 hours  

 
 

 

 
 

 

The MINP approach obtained an optimal solution only for the smallest problem (Problem 1) 

within two hours. During the two-hour CPU time, the MINP approach was able to identify 

feasible solutions for Problems 2, 3 and 4.  For Problem 2, the best solution found in up to two 

hours of CPU time is shown, with the optimal solution shown in parenthesis. As mentioned 

earlier, the optimal solution for Problem 2, the second-smallest one, was obtained after 283 



101 

 

hours of CPU time, which reveals the excessive combinatorial complexity of the problem 

under consideration. For the larger problems (Problems 5 through 15), the MINP approach 

failed to find feasible solutions at all.   

The hierarchical approach and the EEA obtained optimal or near-optimal solutions for all test 

problems. In Problem 1, both the hierarchical approach and the EEA obtained the same 

optimal solution as the MINP approach did. In Problem 2, the EEA found the optimal solution 

that was obtained by the MINP approach after 283 hours of CPU time. As shown in Table 7.6, 

the EEA provided better solutions for all problems than the hierarchical approach. 

7.3 Conclusion of the endosymbiotic evolutionary algorithm 

In this chapter, an EEA was proposed to solve the VRP that has the unique characteristics of 

delivery and installation in the electronics industry. The problem under consideration in this 

thesis contained two subproblems, each of which is defined as a VRP for delivery vehicles and 

a VRP for installation vehicles, respectively. The proposed EEA was designed to deal 

efficiently with both subproblems at the same time. The proposed EEA consists of three 

populations of the same size for two subproblems and the original problem. The algorithm 

searches for good solutions through not only cooperation between partial solutions for two 

subproblems, but also the competition among solutions that are concatenated from the partial 

solutions for subproblems and solutions for the original problem, while the populations for the 

two subproblems and the original problem evolve. In order to improve the effectiveness and 

efficiency of the search, the EEA introduces a concept of neighborhoods in populations and 

localized interactions among the neighborhoods rather than scattered and wide spread 

interactions all over the populations. In the EEA, populations for subproblems and the original 

problem help each other to evolve together toward better solutions. An effective genetic 
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representation, an initial population construction method, and efficient genetic operations were 

proposed and developed in this thesis. 

The proposed EEA simultaneously considers both the synchronization of delivery and 

installation vehicles and the minimization of the objective function. In order to show the 

effectiveness and the efficiency of the proposed EEA, two test problems of small sizes were 

solved by the MINP approach, the hierarchical approach using the genetic algorithm, and the 

EEA, and their computational results were compared. The optimal solutions of these test 

problems were obtained by the MINP approach (though in one case 283 hours of 

computational time were required). The hierarchical approach achieved optimality for one 

case, but the EEA obtained the optimal solutions for both, showing better performance than 

the hierarchical approach.  

In the experiments using test problems of medium and large sizes, the EEA consistently 

produced better solutions than the hierarchical approach. In Section 7.1.2, the convergence 

speed of the proposed EEA for a test problem of large size was studied and compared with 

that of the hierarchical approach. Furthermore, test problems of various sizes were solved by 

three different approaches: the MINP approach, the hierarchical approach using the genetic 

algorithm, and the EEA. The number of variables in the MINP models for those test problems 

demonstrated the complexity of the VRP under consideration. Since the proposed EEA deals 

with subproblems and the original problem at the same time, it can search a wider solution 

space and obtain better solutions than the hierarchical approach in most test problems.  

Based on the computational experiments in this study, it is conjectured that the EEA can be an 

effective way to solve these very complicated problems, which are interwoven with various 

subproblems that can be NP-complete or NP-hard themselves.   
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8. CONCLUSIONS  

In this thesis, a new type of VRP, drawn from the electronics industry, was identified and 

introduced. Since material handling has become more and more important in the competitive 

business environment, electronics manufacturers has extended their involvement in post-sale 

services, including both delivery and installation, to satisfy various customers’ demands. The 

problem under consideration deals with two types of customers: some require only delivery, 

while others require both delivery and installation. In order to satisfy both types of demands, 

two different types of vehicles (delivery and installation vehicles) have been separately 

operated. Delivery vehicles have a limited loading capacity to carry goods, while installation 

vehicles do not carry any goods. All vehicles start from a single depot at the beginning and 

return to the depot within a specific time. Customers are to be visited only once by a single 

delivery vehicle and (if needed) a single installation vehicle. In addition, there is a service 

quality requirement, measured by the time lapse between delivery and installation at a 

customer location. The installation vehicle must visit a customer within the predetermined 

maximum allowable time after the delivery vehicle’s visit to that customer. Therefore, the 

synchronization of both types of vehicles is needed to ensure the guaranteed quality of service 

for customers requiring both delivery and installation. Installation vehicles can visit customers 

earlier than delivery vehicles, resulting in waiting times for installation vehicles at the 

corresponding customer locations. The minimization of the sum of traveling times of all 

vehicles, while maintaining adequate synchronization of delivery and installation vehicles, is a 

main focus in this thesis. Three different approaches have been developed and implemented to 

solve the problem.  
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First, the VRP for the delivery and the installation was clearly defined and mathematically 

formulated by the mixed integer nonlinear programming (MINP) approach. The problem 

under consideration is by far more complicated than traditional VRPs, which are known as 

NP-hard problems, since the problem in this thesis contains two VRPs (one for delivery and 

one for installation vehicles) and the synchronization of both types of vehicles is required 

besides. In particular, this synchronization has introduced nonlinear constraints in the 

mathematical modeling. The MINP approach can be used to generate optimal solutions but, 

due to the complexity of this problem, is able to solve only small test problems whose sizes 

are eight customers or fewer. The solutions obtained by the MINP approach are provided to 

assess the effectiveness and performance of other approaches as optimal solutions. Larger test 

problems cannot be solved within a limited time, since their calculation times exponentially 

increase as the problem sizes grow. 

A hierarchical approach using the genetic algorithm was proposed as the second approach to 

the problem in this thesis. The approach divides the VRP under consideration into two 

subproblems: a VRP for delivery vehicles (Stage 1) and a VRP for installation vehicles (Stage 

2). After a partial solution for delivery vehicles is obtained from the first subproblem in Stage 

1, the other partial solution for installation vehicles is obtained from the second subproblem in 

Stage 2. Since the schedule of delivery vehicles from the subproblem in Stage 1 is fed as a part 

of the input data for the second subproblem in Stage 2, the synchronization requirements are 

automatically achieved during the solution process of the subproblem for installation vehicles 

in Stage 2. The final solution to the original problem can be formed by concatenation of both 

partial solutions of the two subproblems. Genetic algorithms are used to find partial solutions 

of subproblems in both stages.  
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The proposed hierarchical approach solved test problems of small sizes, and their results were 

compared with those achieved by the MINP approach to show the effectiveness and efficiency 

of the hierarchical approach. The optimal or near-optimal solutions of the test problems were 

found in a few seconds by the hierarchical approach. In addition, the approach also solved test 

problems of large sizes with computational ease. The GAs in the hierarchical approach 

quickly obtained high-quality solutions for the subproblems in each stage. According to the 

computational results for the test problems, the proposed hierarchical approach is able to 

generate optimal or near-optimal solutions for test problems of various sizes in a reasonable 

amount of time. However, it was also observed that the hierarchical approach contains a 

natural limitation. The subproblem for installation vehicles cannot be solved without the result 

of the subproblem for delivery vehicles. Due to the hierarchical nature of the proposed 

approach, the partial solution from the subproblem for delivery vehicles may restrict global 

searches for better solutions in the solution space of the problem under consideration. In other 

words, the best solution of the subproblem in Stage 1 does not guarantee global optimality. 

This observation motivated a further search for an approach that could deal with both 

subproblems at the same time. 

As a result of efforts to improve the hierarchical approach, an endosymbiotic evolutionary 

algorithm (EEA) was proposed and developed as the third approach to the VRP under 

consideration. The proposed EEA can solve the problems free of the limitation inherent in the 

hierarchical approach. Unlike the hierarchical approach, the EEA maintains three different 

populations of potential solutions for two subproblems, defined as the VRP for delivery 

vehicles, the VRP for installation vehicles, and the original whole problem (consisting of both 

a solution for delivery vehicles and one for installation vehicles). These three populations 

cooperate with one another to find a good solution of the problem. Through this cooperation, 

best combinations of solutions from subproblems are produced as a complete solution to the 
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original problem and become candidates to be admitted to the population of the original 

problem. A complete solution consists of two sections, one for delivery vehicles and the other 

for installation vehicles.  It can be created from the concatenation of individuals in the 

population for subproblems or from the population for the original problem. The newly 

generated best combination of solutions from symbiotic solutions for subproblems competes 

with the solutions in the population for the original problem. Through this cooperation and 

competition, the EEA tries to search for high-quality solutions in a much wider solution space 

than the hierarchical approach. In order to improve the effectiveness and efficiency of the 

search, the proposed EEA introduces the concept of neighborhoods in populations and 

localized interactions among the neighborhoods rather than scattered and widespread 

interactions among all the solutions in the populations. In the proposed EEA, populations for 

subproblems and the original problem not only use the localized interactions for cooperation 

and competition but also help each other to evolve together toward better solutions. An 

effective genetic representation, an initial population construction method, and efficient 

genetic operations were proposed and developed. 

In order to show the EEA’s ability to find optimal or near-optimal solutions, two test problems 

of small size were solved by the MINP approach, the hierarchical approach using the genetic 

algorithm, and the EEA. The optimal solutions of the test problems were obtained by the 

MINP approach. The proposed hierarchical approach was able to obtain the optimal solution 

for one test problem, while the proposed EEA achieved optimality for both test problems. In 

subsequent experiments with test problems of medium and large sizes, the EEA consistently 

produced better solutions than the hierarchical approach. The convergence speed of the 

proposed EEA for a test problem of large size was studied and compared with that of the 

hierarchical approach in Section 7.1.2. With a given set of conditions, the proposed EEA 

showed faster convergence speed than the hierarchical approach. 
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A set of test problems of various sizes was solved to compare the performance of the proposed 

algorithms. Through the number of variables in the MINP models for the test problems, the 

relative difficulty of the problems was indirectly conjectured. Due to the fact that the VRP 

under consideration is an NP-hard problem, the calculation time for the problems increases 

exponentially as the problem size grows. Thus, it was impossible for the MINP model to 

obtain optimal solutions for the test problems of medium and large sizes in a reasonable time. 

The proposed EEA can search a wider solution space for higher-quality solutions than the 

hierarchical approach, since the EEA deals with both subproblems at the same time. The 

results of a set of test problems using all three approaches were compared. For all test 

problems, the hierarchical approach and the EEA both found good solutions in a reasonable 

amount of time. In most cases, the EEA provided better solutions than the hierarchical 

approach.  

From the VRP under consideration and the approaches to it examined in this thesis, several 

issues can be considered for future research. First of all, the MINP approach was developed to 

find the optimal solution in Chapter 3. However, the calculation time for the approach 

increases exponentially as the problem size grows, since the VRP is defined as an NP-hard 

problem. Even when the test problem consisted of eight customers requiring delivery and four 

customers requiring installation, the MINP approach required unreasonable calculation time to 

obtain the optimal solution. Containing nonlinear constraints is the most critical reason why 

the MINP approach required more calculation time for the problem under consideration. 

Hence, a lower-bounding technique with relaxation of the nonlinear constraints can be an 

issue to efficiently identify optimal solutions for small-size problems. 

Two meta-heuristic algorithms, the hierarchical approach using the genetic algorithm and the 

EEA, were applied to solve the problem. The algorithms consist of several methods and 
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operators, such as the genetic representation method, the initial population construction 

method, the crossover and mutation operators, and so on. The improvement of these 

components can be considered as a research issue. Different genetic operators for the selection, 

the crossover, and the mutation operation can be replaced to the algorithms for better 

performance. In addition, new genetic representation methods can be considered. In this case, 

appropriate fitness functions and suitable genetic operators for the genetic representation 

method may be required.  

Instead of the hierarchical approach using the genetic algorithm and the EEA, other meta-

heuristic algorithms such as the simulated annealing algorithm or ant colony algorithm could 

be applied. A hybrid algorithm containing multiple meta-heuristic algorithms is another 

possibility. It may be worthwhile to apply other algorithms and compare their performance 

with the results attained by the algorithms in this thesis. 

Finally, the problem under consideration in this thesis is a special type of VRP with unique 

characteristics, relevant to the electronics industry. In order to clearly define the VRP, several 

assumptions and restrictions, described in Chapter 3, were used. By relaxing any of these 

assumptions and restrictions or by adding new ones, a more realistic model for this type of 

VRP as a new area of research can be developed. In addition, defining VRPs that represent the 

unique characteristics of other industries and developing appropriate approaches to these 

VRPs could be another valuable area of future research. 
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Appendix A: Mixed-integer nonlinear programming (MINP) model 

Table A.1 Mixed-integer nonlinear programming model for the test problem, V-d6-i3 

MIN =  19.21*X_0_1_1 + 19.21*X_0_1_2 + 9.49*X_0_2_1 + 9.49*X_0_2_2 + 

25.63*X_0_3_1 + 25.63*X_0_3_2 + 20.52*X_0_4_1 + 20.52*X_0_4_2 + 12.04*X_0_5_1 

+ 12.04*X_0_5_2 + 22.67*X_0_6_1 + 22.67*X_0_6_2 + 19.21*X_1_0_1 + 

19.21*X_1_0_2 + 27.66*X_1_2_1 + 27.66*X_1_2_2 + 26.83*X_1_3_1 + 26.83*X_1_3_2 

+ 27.02*X_1_4_1 + 27.02*X_1_4_2 + 23.19*X_1_5_1 + 23.19*X_1_5_2 + 

41.87*X_1_6_1 + 41.87*X_1_6_2 + 9.49*X_2_0_1 + 9.49*X_2_0_2 + 27.66*X_2_1_1 + 

27.66*X_2_1_2 + 33.54*X_2_3_1 + 33.54*X_2_3_2 + 18.03*X_2_4_1 + 18.03*X_2_4_2 

+ 18.68*X_2_5_1 + 18.68*X_2_5_2 + 15.23*X_2_6_1 + 15.23*X_2_6_2 + 

25.63*X_3_0_1 + 25.63*X_3_0_2 + 26.83*X_3_1_1 + 26.83*X_3_1_2 + 33.54*X_3_2_1 

+ 33.54*X_3_2_2 + 45.28*X_3_4_1 + 45.28*X_3_4_2 + 15.03*X_3_5_1 + 

15.03*X_3_5_2 + 39.81*X_3_6_1 + 39.81*X_3_6_2 + 20.52*X_4_0_1 + 20.52*X_4_0_2 

+ 27.02*X_4_1_1 + 27.02*X_4_1_2 + 18.03*X_4_2_1 + 18.03*X_4_2_2 + 

45.28*X_4_3_1 + 45.28*X_4_3_2 + 32.56*X_4_5_1 + 32.56*X_4_5_2 + 31*X_4_6_1 + 

31*X_4_6_2 + 12.04*X_5_0_1 + 12.04*X_5_0_2 + 23.19*X_5_1_1 + 23.19*X_5_1_2 + 

18.68*X_5_2_1 + 18.68*X_5_2_2 + 15.03*X_5_3_1 + 15.03*X_5_3_2 + 32.56*X_5_4_1 

+ 32.56*X_5_4_2 + 25.63*X_5_6_1 + 25.63*X_5_6_2 + 22.67*X_6_0_1 + 

22.67*X_6_0_2 + 41.87*X_6_1_1 + 41.87*X_6_1_2 + 15.23*X_6_2_1 + 15.23*X_6_2_2 

+ 39.81*X_6_3_1 + 39.81*X_6_3_2 + 31*X_6_4_1 + 31*X_6_4_2 + 25.63*X_6_5_1 + 

25.63*X_6_5_2 + 19.21*Y_0_1_1 + 9.49*Y_0_2_1 + 25.63*Y_0_3_1 + 19.21*Y_1_0_1 

+ 27.66*Y_1_2_1 + 26.83*Y_1_3_1 + 9.49*Y_2_0_1 + 27.66*Y_2_1_1 + 

33.54*Y_2_3_1 + 25.63*Y_3_0_1 + 26.83*Y_3_1_1 + 33.54*Y_3_2_1 + w_1_2 + w_2_2 

+ w_3_2 + 100*X_0_1_1 + 100*X_0_1_2 + 100*X_0_2_1 + 100*X_0_2_2 + 100*X_0_3_1 

+ 100*X_0_3_2 + 100*X_0_4_1 + 100*X_0_4_2 + 100*X_0_5_1 + 100*X_0_5_2 + 

100*X_0_6_1 + 100*X_0_6_2 + 100*Y_0_1_1 + 100*Y_0_2_1 + 100*Y_0_3_1; 

  

  

X_0_1_1 + X_0_1_2 + X_0_2_1 + X_0_2_2 + X_0_3_1 + X_0_3_2 + X_0_4_1 + X_0_4_2 

+ X_0_5_1 + X_0_5_2 + X_0_6_1 + X_0_6_2 <= 2; 

  

Y_0_1_1 + Y_0_2_1 + Y_0_3_1 <= 1; 

  

X_0_1_1 + X_0_2_1 + X_0_3_1 + X_0_4_1 + X_0_5_1 + X_0_6_1 <= 1; 

X_0_1_2 + X_0_2_2 + X_0_3_2 + X_0_4_2 + X_0_5_2 + X_0_6_2 <= 1; 

   

   

X_0_1_1 - X_1_0_1 + X_0_2_1 - X_2_0_1 + X_0_3_1 - X_3_0_1 + X_0_4_1 - X_4_0_1 

+ X_0_5_1 - X_5_0_1 + X_0_6_1 - X_6_0_1 = 0; 

X_0_1_2 - X_1_0_2 + X_0_2_2 - X_2_0_2 + X_0_3_2 - X_3_0_2 + X_0_4_2 - X_4_0_2 

+ X_0_5_2 - X_5_0_2 + X_0_6_2 - X_6_0_2 = 0; 

   

   

Y_0_1_1 + Y_0_2_1 + Y_0_3_1 <= 1; 

   

   

Y_0_1_1 - Y_1_0_1 + Y_0_2_1 - Y_2_0_1 + Y_0_3_1 - Y_3_0_1 = 0; 

   

   

X_1_0_1 + X_1_0_2 + X_1_2_1 + X_1_2_2 + X_1_3_1 + X_1_3_2 + X_1_4_1 + X_1_4_2 

+ X_1_5_1 + X_1_5_2 + X_1_6_1 + X_1_6_2 = 1; 

X_2_0_1 + X_2_0_2 + X_2_1_1 + X_2_1_2 + X_2_3_1 + X_2_3_2 + X_2_4_1 + X_2_4_2 

+ X_2_5_1 + X_2_5_2 + X_2_6_1 + X_2_6_2 = 1; 

X_3_0_1 + X_3_0_2 + X_3_1_1 + X_3_1_2 + X_3_2_1 + X_3_2_2 + X_3_4_1 + X_3_4_2 

+ X_3_5_1 + X_3_5_2 + X_3_6_1 + X_3_6_2 = 1; 

X_4_0_1 + X_4_0_2 + X_4_1_1 + X_4_1_2 + X_4_2_1 + X_4_2_2 + X_4_3_1 + X_4_3_2 

+ X_4_5_1 + X_4_5_2 + X_4_6_1 + X_4_6_2 = 1; 

X_5_0_1 + X_5_0_2 + X_5_1_1 + X_5_1_2 + X_5_2_1 + X_5_2_2 + X_5_3_1 + X_5_3_2 

+ X_5_4_1 + X_5_4_2 + X_5_6_1 + X_5_6_2 = 1; 
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X_6_0_1 + X_6_0_2 + X_6_1_1 + X_6_1_2 + X_6_2_1 + X_6_2_2 + X_6_3_1 + X_6_3_2 

+ X_6_4_1 + X_6_4_2 + X_6_5_1 + X_6_5_2 = 1; 

   

   

X_0_1_1 + X_0_1_2 + X_2_1_1 + X_2_1_2 + X_3_1_1 + X_3_1_2 + X_4_1_1 + X_4_1_2 

+ X_5_1_1 + X_5_1_2 + X_6_1_1 + X_6_1_2 = 1; 

X_0_2_1 + X_0_2_2 + X_1_2_1 + X_1_2_2 + X_3_2_1 + X_3_2_2 + X_4_2_1 + X_4_2_2 

+ X_5_2_1 + X_5_2_2 + X_6_2_1 + X_6_2_2 = 1; 

X_0_3_1 + X_0_3_2 + X_1_3_1 + X_1_3_2 + X_2_3_1 + X_2_3_2 + X_4_3_1 + X_4_3_2 

+ X_5_3_1 + X_5_3_2 + X_6_3_1 + X_6_3_2 = 1; 

X_0_4_1 + X_0_4_2 + X_1_4_1 + X_1_4_2 + X_2_4_1 + X_2_4_2 + X_3_4_1 + X_3_4_2 

+ X_5_4_1 + X_5_4_2 + X_6_4_1 + X_6_4_2 = 1; 

X_0_5_1 + X_0_5_2 + X_1_5_1 + X_1_5_2 + X_2_5_1 + X_2_5_2 + X_3_5_1 + X_3_5_2 

+ X_4_5_1 + X_4_5_2 + X_6_5_1 + X_6_5_2 = 1; 

X_0_6_1 + X_0_6_2 + X_1_6_1 + X_1_6_2 + X_2_6_1 + X_2_6_2 + X_3_6_1 + X_3_6_2 

+ X_4_6_1 + X_4_6_2 + X_5_6_1 + X_5_6_2 = 1; 

   

   

X_1_0_1 - X_0_1_1 + X_1_2_1 - X_2_1_1 + X_1_3_1 - X_3_1_1 + X_1_4_1 - X_4_1_1 

+ X_1_5_1 - X_5_1_1 + X_1_6_1 - X_6_1_1 = 0; 

X_2_0_1 - X_0_2_1 + X_2_1_1 - X_1_2_1 + X_2_3_1 - X_3_2_1 + X_2_4_1 - X_4_2_1 

+ X_2_5_1 - X_5_2_1 + X_2_6_1 - X_6_2_1 = 0; 

X_3_0_1 - X_0_3_1 + X_3_1_1 - X_1_3_1 + X_3_2_1 - X_2_3_1 + X_3_4_1 - X_4_3_1 

+ X_3_5_1 - X_5_3_1 + X_3_6_1 - X_6_3_1 = 0; 

X_4_0_1 - X_0_4_1 + X_4_1_1 - X_1_4_1 + X_4_2_1 - X_2_4_1 + X_4_3_1 - X_3_4_1 

+ X_4_5_1 - X_5_4_1 + X_4_6_1 - X_6_4_1 = 0; 

X_5_0_1 - X_0_5_1 + X_5_1_1 - X_1_5_1 + X_5_2_1 - X_2_5_1 + X_5_3_1 - X_3_5_1 

+ X_5_4_1 - X_4_5_1 + X_5_6_1 - X_6_5_1 = 0; 

X_6_0_1 - X_0_6_1 + X_6_1_1 - X_1_6_1 + X_6_2_1 - X_2_6_1 + X_6_3_1 - X_3_6_1 

+ X_6_4_1 - X_4_6_1 + X_6_5_1 - X_5_6_1 = 0; 

X_1_0_2 - X_0_1_2 + X_1_2_2 - X_2_1_2 + X_1_3_2 - X_3_1_2 + X_1_4_2 - X_4_1_2 

+ X_1_5_2 - X_5_1_2 + X_1_6_2 - X_6_1_2 = 0; 

X_2_0_2 - X_0_2_2 + X_2_1_2 - X_1_2_2 + X_2_3_2 - X_3_2_2 + X_2_4_2 - X_4_2_2 

+ X_2_5_2 - X_5_2_2 + X_2_6_2 - X_6_2_2 = 0; 

X_3_0_2 - X_0_3_2 + X_3_1_2 - X_1_3_2 + X_3_2_2 - X_2_3_2 + X_3_4_2 - X_4_3_2 

+ X_3_5_2 - X_5_3_2 + X_3_6_2 - X_6_3_2 = 0; 

X_4_0_2 - X_0_4_2 + X_4_1_2 - X_1_4_2 + X_4_2_2 - X_2_4_2 + X_4_3_2 - X_3_4_2 

+ X_4_5_2 - X_5_4_2 + X_4_6_2 - X_6_4_2 = 0; 

X_5_0_2 - X_0_5_2 + X_5_1_2 - X_1_5_2 + X_5_2_2 - X_2_5_2 + X_5_3_2 - X_3_5_2 

+ X_5_4_2 - X_4_5_2 + X_5_6_2 - X_6_5_2 = 0; 

X_6_0_2 - X_0_6_2 + X_6_1_2 - X_1_6_2 + X_6_2_2 - X_2_6_2 + X_6_3_2 - X_3_6_2 

+ X_6_4_2 - X_4_6_2 + X_6_5_2 - X_5_6_2 = 0; 

   

   

Y_1_0_1 + Y_1_2_1 + Y_1_3_1 = 1; 

Y_2_0_1 + Y_2_1_1 + Y_2_3_1 = 1; 

Y_3_0_1 + Y_3_1_1 + Y_3_2_1 = 1; 

   

   

Y_0_1_1 + Y_2_1_1 + Y_3_1_1 = 1; 

Y_0_2_1 + Y_1_2_1 + Y_3_2_1 = 1; 

Y_0_3_1 + Y_1_3_1 + Y_2_3_1 = 1; 

   

   

Y_1_0_1 - Y_0_1_1 + Y_1_2_1 - Y_2_1_1 + Y_1_3_1 - Y_3_1_1 = 0; 

Y_2_0_1 - Y_0_2_1 + Y_2_1_1 - Y_1_2_1 + Y_2_3_1 - Y_3_2_1 = 0; 

Y_3_0_1 - Y_0_3_1 + Y_3_1_1 - Y_1_3_1 + Y_3_2_1 - Y_2_3_1 = 0; 

   

   

5* X_0_1_1 + 4* X_0_2_1 + 8* X_0_3_1 + 4* X_0_4_1 + 7* X_0_5_1 + 6* X_0_6_1 + 

4* X_1_2_1 + 8* X_1_3_1 + 4* X_1_4_1 + 7* X_1_5_1 + 6* X_1_6_1 + 5* X_2_1_1 + 

8* X_2_3_1 + 4* X_2_4_1 + 7* X_2_5_1 + 6* X_2_6_1 + 5* X_3_1_1 + 4* X_3_2_1 + 

4* X_3_4_1 + 7* X_3_5_1 + 6* X_3_6_1 + 5* X_4_1_1 + 4* X_4_2_1 + 8* X_4_3_1 + 
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7* X_4_5_1 + 6* X_4_6_1 + 5* X_5_1_1 + 4* X_5_2_1 + 8* X_5_3_1 + 4* X_5_4_1 + 

6* X_5_6_1 + 5* X_6_1_1 + 4* X_6_2_1 + 8* X_6_3_1 + 4* X_6_4_1 + 7* X_6_5_1 

<= 20; 

5* X_0_1_2 + 4* X_0_2_2 + 8* X_0_3_2 + 4* X_0_4_2 + 7* X_0_5_2 + 6* X_0_6_2 + 

4* X_1_2_2 + 8* X_1_3_2 + 4* X_1_4_2 + 7* X_1_5_2 + 6* X_1_6_2 + 5* X_2_1_2 + 

8* X_2_3_2 + 4* X_2_4_2 + 7* X_2_5_2 + 6* X_2_6_2 + 5* X_3_1_2 + 4* X_3_2_2 + 

4* X_3_4_2 + 7* X_3_5_2 + 6* X_3_6_2 + 5* X_4_1_2 + 4* X_4_2_2 + 8* X_4_3_2 + 

7* X_4_5_2 + 6* X_4_6_2 + 5* X_5_1_2 + 4* X_5_2_2 + 8* X_5_3_2 + 4* X_5_4_2 + 

6* X_5_6_2 + 5* X_6_1_2 + 4* X_6_2_2 + 8* X_6_3_2 + 4* X_6_4_2 + 7* X_6_5_2 

<= 20; 

   

   

19.21 * X_0_1_1 + 9.49 * X_0_2_1 + 25.63 * X_0_3_1 + 20.52 * X_0_4_1 + 12.04 

* X_0_5_1 + 22.67 * X_0_6_1 + 19.21 * X_1_0_1 + 27.66 * X_1_2_1 + 26.83 * 

X_1_3_1 + 27.02 * X_1_4_1 + 23.19 * X_1_5_1 + 41.87 * X_1_6_1 + 9.49 * 

X_2_0_1 + 27.66 * X_2_1_1 + 33.54 * X_2_3_1 + 18.03 * X_2_4_1 + 18.68 * 

X_2_5_1 + 15.23 * X_2_6_1 + 25.63 * X_3_0_1 + 26.83 * X_3_1_1 + 33.54 * 

X_3_2_1 + 45.28 * X_3_4_1 + 15.03 * X_3_5_1 + 39.81 * X_3_6_1 + 20.52 * 

X_4_0_1 + 27.02 * X_4_1_1 + 18.03 * X_4_2_1 + 45.28 * X_4_3_1 + 32.56 * 

X_4_5_1 + 31 * X_4_6_1 + 12.04 * X_5_0_1 + 23.19 * X_5_1_1 + 18.68 * X_5_2_1 

+ 15.03 * X_5_3_1 + 32.56 * X_5_4_1 + 25.63 * X_5_6_1 + 22.67 * X_6_0_1 + 

41.87 * X_6_1_1 + 15.23 * X_6_2_1 + 39.81 * X_6_3_1 + 31 * X_6_4_1 + 25.63 * 

X_6_5_1 <= 480; 

19.21 * X_0_1_2 + 9.49 * X_0_2_2 + 25.63 * X_0_3_2 + 20.52 * X_0_4_2 + 12.04 

* X_0_5_2 + 22.67 * X_0_6_2 + 19.21 * X_1_0_2 + 27.66 * X_1_2_2 + 26.83 * 

X_1_3_2 + 27.02 * X_1_4_2 + 23.19 * X_1_5_2 + 41.87 * X_1_6_2 + 9.49 * 

X_2_0_2 + 27.66 * X_2_1_2 + 33.54 * X_2_3_2 + 18.03 * X_2_4_2 + 18.68 * 

X_2_5_2 + 15.23 * X_2_6_2 + 25.63 * X_3_0_2 + 26.83 * X_3_1_2 + 33.54 * 

X_3_2_2 + 45.28 * X_3_4_2 + 15.03 * X_3_5_2 + 39.81 * X_3_6_2 + 20.52 * 

X_4_0_2 + 27.02 * X_4_1_2 + 18.03 * X_4_2_2 + 45.28 * X_4_3_2 + 32.56 * 

X_4_5_2 + 31 * X_4_6_2 + 12.04 * X_5_0_2 + 23.19 * X_5_1_2 + 18.68 * X_5_2_2 

+ 15.03 * X_5_3_2 + 32.56 * X_5_4_2 + 25.63 * X_5_6_2 + 22.67 * X_6_0_2 + 

41.87 * X_6_1_2 + 15.23 * X_6_2_2 + 39.81 * X_6_3_2 + 31 * X_6_4_2 + 25.63 * 

X_6_5_2 <= 480; 

     

19.21 * Y_0_1_1 + W_0 *  Y_0_1_1 + 9.49 * Y_0_2_1 + W_0 *  Y_0_2_1 + 25.63 * 

Y_0_3_1 + W_0 *  Y_0_3_1 + 29.21 * Y_1_0_1 + W_1 *  Y_1_0_1 + 37.66 * Y_1_2_1 

+ W_1 *  Y_1_2_1 + 36.83 * Y_1_3_1 + W_1 *  Y_1_3_1 + 19.49 * Y_2_0_1 + W_2 *  

Y_2_0_1 + 37.66 * Y_2_1_1 + W_2 *  Y_2_1_1 + 43.54 * Y_2_3_1 + W_2 *  Y_2_3_1 

+ 35.63 * Y_3_0_1 + W_3 *  Y_3_0_1 + 36.83 * Y_3_1_1 + W_3 *  Y_3_1_1 + 43.54 

* Y_3_2_1 + W_3 *  Y_3_2_1 <= 480; 

    

U_1_1 - U_2_1 + 7* X_1_2_1 <= 6; 

U_1_2 - U_2_2 + 7* X_1_2_2 <= 6; 

U_1_1 - U_3_1 + 7* X_1_3_1 <= 6; 

U_1_2 - U_3_2 + 7* X_1_3_2 <= 6; 

U_1_1 - U_4_1 + 7* X_1_4_1 <= 6; 

U_1_2 - U_4_2 + 7* X_1_4_2 <= 6; 

U_1_1 - U_5_1 + 7* X_1_5_1 <= 6; 

U_1_2 - U_5_2 + 7* X_1_5_2 <= 6; 

U_1_1 - U_6_1 + 7* X_1_6_1 <= 6; 

U_1_2 - U_6_2 + 7* X_1_6_2 <= 6; 

U_2_1 - U_1_1 + 7* X_2_1_1 <= 6; 

U_2_2 - U_1_2 + 7* X_2_1_2 <= 6; 

U_2_1 - U_3_1 + 7* X_2_3_1 <= 6; 

U_2_2 - U_3_2 + 7* X_2_3_2 <= 6; 

U_2_1 - U_4_1 + 7* X_2_4_1 <= 6; 

U_2_2 - U_4_2 + 7* X_2_4_2 <= 6; 

U_2_1 - U_5_1 + 7* X_2_5_1 <= 6; 

U_2_2 - U_5_2 + 7* X_2_5_2 <= 6; 

U_2_1 - U_6_1 + 7* X_2_6_1 <= 6; 

U_2_2 - U_6_2 + 7* X_2_6_2 <= 6; 

U_3_1 - U_1_1 + 7* X_3_1_1 <= 6; 
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U_3_2 - U_1_2 + 7* X_3_1_2 <= 6; 

U_3_1 - U_2_1 + 7* X_3_2_1 <= 6; 

U_3_2 - U_2_2 + 7* X_3_2_2 <= 6; 

U_3_1 - U_4_1 + 7* X_3_4_1 <= 6; 

U_3_2 - U_4_2 + 7* X_3_4_2 <= 6; 

U_3_1 - U_5_1 + 7* X_3_5_1 <= 6; 

U_3_2 - U_5_2 + 7* X_3_5_2 <= 6; 

U_3_1 - U_6_1 + 7* X_3_6_1 <= 6; 

U_3_2 - U_6_2 + 7* X_3_6_2 <= 6; 

U_4_1 - U_1_1 + 7* X_4_1_1 <= 6; 

U_4_2 - U_1_2 + 7* X_4_1_2 <= 6; 

U_4_1 - U_2_1 + 7* X_4_2_1 <= 6; 

U_4_2 - U_2_2 + 7* X_4_2_2 <= 6; 

U_4_1 - U_3_1 + 7* X_4_3_1 <= 6; 

U_4_2 - U_3_2 + 7* X_4_3_2 <= 6; 

U_4_1 - U_5_1 + 7* X_4_5_1 <= 6; 

U_4_2 - U_5_2 + 7* X_4_5_2 <= 6; 

U_4_1 - U_6_1 + 7* X_4_6_1 <= 6; 

U_4_2 - U_6_2 + 7* X_4_6_2 <= 6; 

U_5_1 - U_1_1 + 7* X_5_1_1 <= 6; 

U_5_2 - U_1_2 + 7* X_5_1_2 <= 6; 

U_5_1 - U_2_1 + 7* X_5_2_1 <= 6; 

U_5_2 - U_2_2 + 7* X_5_2_2 <= 6; 

U_5_1 - U_3_1 + 7* X_5_3_1 <= 6; 

U_5_2 - U_3_2 + 7* X_5_3_2 <= 6; 

U_5_1 - U_4_1 + 7* X_5_4_1 <= 6; 

U_5_2 - U_4_2 + 7* X_5_4_2 <= 6; 

U_5_1 - U_6_1 + 7* X_5_6_1 <= 6; 

U_5_2 - U_6_2 + 7* X_5_6_2 <= 6; 

U_6_1 - U_1_1 + 7* X_6_1_1 <= 6; 

U_6_2 - U_1_2 + 7* X_6_1_2 <= 6; 

U_6_1 - U_2_1 + 7* X_6_2_1 <= 6; 

U_6_2 - U_2_2 + 7* X_6_2_2 <= 6; 

U_6_1 - U_3_1 + 7* X_6_3_1 <= 6; 

U_6_2 - U_3_2 + 7* X_6_3_2 <= 6; 

U_6_1 - U_4_1 + 7* X_6_4_1 <= 6; 

U_6_2 - U_4_2 + 7* X_6_4_2 <= 6; 

U_6_1 - U_5_1 + 7* X_6_5_1 <= 6; 

U_6_2 - U_5_2 + 7* X_6_5_2 <= 6; 

V_1_1 - V_2_1 + 4* Y_1_2_1 <= 3; 

V_1_1 - V_3_1 + 4* Y_1_3_1 <= 3; 

V_2_1 - V_1_1 + 4* Y_2_1_1 <= 3; 

V_2_1 - V_3_1 + 4* Y_2_3_1 <= 3; 

V_3_1 - V_1_1 + 4* Y_3_1_1 <= 3; 

V_3_1 - V_2_1 + 4* Y_3_2_1 <= 3; 

    

e_0 = 0; 

f_0 = 0; 

w_0 = 0; 

     

19.21* X_0_1_1 + e_0 * X_0_1_1 + 19.21* X_0_1_2 + e_0 * X_0_1_2 + 27.66* 

X_2_1_1 + e_2 * X_2_1_1 + 27.66* X_2_1_2 + e_2 * X_2_1_2 + 26.83* X_3_1_1 + 

e_3 * X_3_1_1 + 26.83* X_3_1_2 + e_3 * X_3_1_2 + 27.02* X_4_1_1 + e_4 * 

X_4_1_1 + 27.02* X_4_1_2 + e_4 * X_4_1_2 + 23.19* X_5_1_1 + e_5 * X_5_1_1 + 

23.19* X_5_1_2 + e_5 * X_5_1_2 + 41.87* X_6_1_1 + e_6 * X_6_1_1 + 41.87* 

X_6_1_2 + e_6 * X_6_1_2 - e_1 = 0; 

9.49* X_0_2_1 + e_0 * X_0_2_1 + 9.49* X_0_2_2 + e_0 * X_0_2_2 + 27.66* 

X_1_2_1 + e_1 * X_1_2_1 + 27.66* X_1_2_2 + e_1 * X_1_2_2 + 33.54* X_3_2_1 + 

e_3 * X_3_2_1 + 33.54* X_3_2_2 + e_3 * X_3_2_2 + 18.03* X_4_2_1 + e_4 * 

X_4_2_1 + 18.03* X_4_2_2 + e_4 * X_4_2_2 + 18.68* X_5_2_1 + e_5 * X_5_2_1 + 

18.68* X_5_2_2 + e_5 * X_5_2_2 + 15.23* X_6_2_1 + e_6 * X_6_2_1 + 15.23* 

X_6_2_2 + e_6 * X_6_2_2 - e_2 = 0; 

25.63* X_0_3_1 + e_0 * X_0_3_1 + 25.63* X_0_3_2 + e_0 * X_0_3_2 + 26.83* 
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X_1_3_1 + e_1 * X_1_3_1 + 26.83* X_1_3_2 + e_1 * X_1_3_2 + 33.54* X_2_3_1 + 

e_2 * X_2_3_1 + 33.54* X_2_3_2 + e_2 * X_2_3_2 + 45.28* X_4_3_1 + e_4 * 

X_4_3_1 + 45.28* X_4_3_2 + e_4 * X_4_3_2 + 15.03* X_5_3_1 + e_5 * X_5_3_1 + 

15.03* X_5_3_2 + e_5 * X_5_3_2 + 39.81* X_6_3_1 + e_6 * X_6_3_1 + 39.81* 

X_6_3_2 + e_6 * X_6_3_2 - e_3 = 0; 

20.52* X_0_4_1 + e_0 * X_0_4_1 + 20.52* X_0_4_2 + e_0 * X_0_4_2 + 27.02* 

X_1_4_1 + e_1 * X_1_4_1 + 27.02* X_1_4_2 + e_1 * X_1_4_2 + 18.03* X_2_4_1 + 

e_2 * X_2_4_1 + 18.03* X_2_4_2 + e_2 * X_2_4_2 + 45.28* X_3_4_1 + e_3 * 

X_3_4_1 + 45.28* X_3_4_2 + e_3 * X_3_4_2 + 32.56* X_5_4_1 + e_5 * X_5_4_1 + 

32.56* X_5_4_2 + e_5 * X_5_4_2 + 31* X_6_4_1 + e_6 * X_6_4_1 + 31* X_6_4_2 + 

e_6 * X_6_4_2 - e_4 = 0; 

12.04* X_0_5_1 + e_0 * X_0_5_1 + 12.04* X_0_5_2 + e_0 * X_0_5_2 + 23.19* 

X_1_5_1 + e_1 * X_1_5_1 + 23.19* X_1_5_2 + e_1 * X_1_5_2 + 18.68* X_2_5_1 + 

e_2 * X_2_5_1 + 18.68* X_2_5_2 + e_2 * X_2_5_2 + 15.03* X_3_5_1 + e_3 * 

X_3_5_1 + 15.03* X_3_5_2 + e_3 * X_3_5_2 + 32.56* X_4_5_1 + e_4 * X_4_5_1 + 

32.56* X_4_5_2 + e_4 * X_4_5_2 + 25.63* X_6_5_1 + e_6 * X_6_5_1 + 25.63* 

X_6_5_2 + e_6 * X_6_5_2 - e_5 = 0; 

22.67* X_0_6_1 + e_0 * X_0_6_1 + 22.67* X_0_6_2 + e_0 * X_0_6_2 + 41.87* 

X_1_6_1 + e_1 * X_1_6_1 + 41.87* X_1_6_2 + e_1 * X_1_6_2 + 15.23* X_2_6_1 + 

e_2 * X_2_6_1 + 15.23* X_2_6_2 + e_2 * X_2_6_2 + 39.81* X_3_6_1 + e_3 * 

X_3_6_1 + 39.81* X_3_6_2 + e_3 * X_3_6_2 + 31* X_4_6_1 + e_4 * X_4_6_1 + 31* 

X_4_6_2 + e_4 * X_4_6_2 + 25.63* X_5_6_1 + e_5 * X_5_6_1 + 25.63* X_5_6_2 + 

e_5 * X_5_6_2 - e_6 = 0; 

     

19.21 * Y_0_1_1 + f_0 * Y_0_1_1 + w_0 * Y_0_1_1 + 37.66 * Y_2_1_1 + f_2 * 

Y_2_1_1 + w_2 * Y_2_1_1 + 36.83 * Y_3_1_1 + f_3 * Y_3_1_1 + w_3 * Y_3_1_1 - 

f_1 = 0; 

9.49 * Y_0_2_1 + f_0 * Y_0_2_1 + w_0 * Y_0_2_1 + 37.66 * Y_1_2_1 + f_1 * 

Y_1_2_1 + w_1 * Y_1_2_1 + 43.54 * Y_3_2_1 + f_3 * Y_3_2_1 + w_3 * Y_3_2_1 - 

f_2 = 0; 

25.63 * Y_0_3_1 + f_0 * Y_0_3_1 + w_0 * Y_0_3_1 + 36.83 * Y_1_3_1 + f_1 * 

Y_1_3_1 + w_1 * Y_1_3_1 + 43.54 * Y_2_3_1 + f_2 * Y_2_3_1 + w_2 * Y_2_3_1 - 

f_3 = 0; 

     

f_1 - e_1 <= 60; 

f_2 - e_2 <= 60; 

f_3 - e_3 <= 60; 

    

w_1 >= 0; 

e_1 - f_1 - w_1 <= 0; 

w_2 >= 0; 

e_2 - f_2 - w_2 <= 0; 

w_3 >= 0; 

e_3 - f_3 - w_3 <= 0; 

     

   

   

@BIN ( X_0_1_1 ); 

@BIN ( X_0_1_2 ); 

@BIN ( X_0_2_1 ); 

@BIN ( X_0_2_2 ); 

@BIN ( X_0_3_1 ); 

@BIN ( X_0_3_2 ); 

@BIN ( X_0_4_1 ); 

@BIN ( X_0_4_2 ); 

@BIN ( X_0_5_1 ); 

@BIN ( X_0_5_2 ); 

@BIN ( X_0_6_1 ); 

@BIN ( X_0_6_2 ); 

@BIN ( X_1_0_1 ); 

@BIN ( X_1_0_2 ); 

@BIN ( X_1_2_1 ); 

@BIN ( X_1_2_2 ); 
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@BIN ( X_1_3_1 ); 

@BIN ( X_1_3_2 ); 

@BIN ( X_1_4_1 ); 

@BIN ( X_1_4_2 ); 

@BIN ( X_1_5_1 ); 

@BIN ( X_1_5_2 ); 

@BIN ( X_1_6_1 ); 

@BIN ( X_1_6_2 ); 

@BIN ( X_2_0_1 ); 

@BIN ( X_2_0_2 ); 

@BIN ( X_2_1_1 ); 

@BIN ( X_2_1_2 ); 

@BIN ( X_2_3_1 ); 

@BIN ( X_2_3_2 ); 

@BIN ( X_2_4_1 ); 

@BIN ( X_2_4_2 ); 

@BIN ( X_2_5_1 ); 

@BIN ( X_2_5_2 ); 

@BIN ( X_2_6_1 ); 

@BIN ( X_2_6_2 ); 

@BIN ( X_3_0_1 ); 

@BIN ( X_3_0_2 ); 

@BIN ( X_3_1_1 ); 

@BIN ( X_3_1_2 ); 

@BIN ( X_3_2_1 ); 

@BIN ( X_3_2_2 ); 

@BIN ( X_3_4_1 ); 

@BIN ( X_3_4_2 ); 

@BIN ( X_3_5_1 ); 

@BIN ( X_3_5_2 ); 

@BIN ( X_3_6_1 ); 

@BIN ( X_3_6_2 ); 

@BIN ( X_4_0_1 ); 

@BIN ( X_4_0_2 ); 

@BIN ( X_4_1_1 ); 

@BIN ( X_4_1_2 ); 

@BIN ( X_4_2_1 ); 

@BIN ( X_4_2_2 ); 

@BIN ( X_4_3_1 ); 

@BIN ( X_4_3_2 ); 

@BIN ( X_4_5_1 ); 

@BIN ( X_4_5_2 ); 

@BIN ( X_4_6_1 ); 

@BIN ( X_4_6_2 ); 

@BIN ( X_5_0_1 ); 

@BIN ( X_5_0_2 ); 

@BIN ( X_5_1_1 ); 

@BIN ( X_5_1_2 ); 

@BIN ( X_5_2_1 ); 

@BIN ( X_5_2_2 ); 

@BIN ( X_5_3_1 ); 

@BIN ( X_5_3_2 ); 

@BIN ( X_5_4_1 ); 

@BIN ( X_5_4_2 ); 

@BIN ( X_5_6_1 ); 

@BIN ( X_5_6_2 ); 

@BIN ( X_6_0_1 ); 

@BIN ( X_6_0_2 ); 

@BIN ( X_6_1_1 ); 

@BIN ( X_6_1_2 ); 

@BIN ( X_6_2_1 ); 

@BIN ( X_6_2_2 ); 

@BIN ( X_6_3_1 ); 
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@BIN ( X_6_3_2 ); 

@BIN ( X_6_4_1 ); 

@BIN ( X_6_4_2 ); 

@BIN ( X_6_5_1 ); 

@BIN ( X_6_5_2 ); 

     

@BIN ( Y_0_1_1 ); 

@BIN ( Y_0_2_1 ); 

@BIN ( Y_0_3_1 ); 

@BIN ( Y_1_0_1 ); 

@BIN ( Y_1_2_1 ); 

@BIN ( Y_1_3_1 ); 

@BIN ( Y_2_0_1 ); 

@BIN ( Y_2_1_1 ); 

@BIN ( Y_2_3_1 ); 

@BIN ( Y_3_0_1 ); 

@BIN ( Y_3_1_1 ); 

@BIN ( Y_3_2_1 ); 

     

@GIN ( w_1 ); 

@GIN ( w_2 ); 

@GIN ( w_3 ); 

     

@GIN ( U_1_1 ); 

@GIN ( U_1_2 ); 

@GIN ( U_2_1 ); 

@GIN ( U_2_2 ); 

@GIN ( U_3_1 ); 

@GIN ( U_3_2 ); 

@GIN ( U_4_1 ); 

@GIN ( U_4_2 ); 

@GIN ( U_5_1 ); 

@GIN ( U_5_2 ); 

@GIN ( U_6_1 ); 

@GIN ( U_6_2 ); 

@GIN ( V_1_1 ); 

@GIN ( V_2_1 ); 

@GIN ( V_3_1 ); 

 

End 
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Appendix B: Taguchi method for the hierarchical approach using 

genetic algorithm 

Table B.1 The results of experiment run no. 1 in the Taguchi method. 

 
 

(Number of installation customers (A) = 10, Service Level (B) =60 min, Installation time (C) 

= 10 min, Fixed cost per installation vehicle (D) = 50) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 689.50 746.65 734.93 733.74 656.88

2 689.50 746.65 734.93 733.74 656.88

3 689.50 746.65 734.93 733.74 656.88

4 689.50 746.65 734.93 733.74 656.88

5 689.50 746.65 734.93 733.74 656.88

6 733.31 847.34 873.28 763.78 694.69

7 733.31 847.34 873.28 763.78 694.69

8 733.31 847.34 873.28 763.78 694.69

9 733.31 847.34 873.28 763.78 694.69

10 733.31 847.34 873.28 763.78 694.69

11 711.43 751.99 892.56 719.96 774.31

12 711.43 751.99 892.56 719.96 774.31

13 711.43 751.99 892.56 719.96 774.31

14 711.43 751.99 892.56 719.96 774.31

15 711.43 751.99 892.56 719.96 774.31

16 798.64 787.11 753.66 577.88 781.51

17 793.89 787.11 753.66 577.88 781.51

18 793.89 787.11 753.66 577.88 781.51

19 793.89 787.11 753.66 577.88 781.51

20 793.89 787.11 753.66 577.88 781.51

21 721.54 772.85 793.68 701.21 826.31

22 721.54 772.85 793.68 701.21 826.31

23 721.54 772.85 793.68 701.21 826.31

24 721.54 772.85 793.68 701.21 826.31

25 721.54 772.85 793.68 701.21 826.31

Average 4051.492 730.124 4185.524 781.188 4200.504 809.622 4121.402 699.314 4038.292 746.740

Stdev 52.638 36.158 25.582 36.873 50.401 64.381 76.467 65.379 40.951 63.055

4085.41

4020.37

4067.32

4037.72

4217.86

4255.20

4217.80

4119.93

4078.15

4043.51

4192.38

4214.14

4078.83

4115.12

3985.26

4055.78

4014.40

4150.07

4167.86

4206.11

4194.87

4208.71

V-d100-i10-a V-d100-i10-b V-d100-i10-c V-d100-i10-d V-d100-i10-e

4086.90 4191.73 3980.64
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Table B.2 The results of experiment run no. 2 in the Taguchi method. 

 

(Number of installation customers (A) = 10, Service Level (B) =120 min, Installation time (C) 

= 35 min, Fixed cost per installation vehicle (D) = 100) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 1048.77 1118.65 1120.28 1115.26 1064.94

2 1048.01 1118.65 1120.28 1115.26 1064.94

3 1048.01 1118.65 1147.22 1115.26 1064.94

4 1048.01 1118.65 1120.28 1115.26 1064.94

5 1048.01 1118.65 1120.28 1115.26 1064.94

6 1093.18 1254.2 1128.91 1131.6 1091.81

7 1093.18 1176.43 1128.91 1131.6 1091.81

8 1093.18 1176.43 1128.91 1131.6 1091.81

9 1093.18 1176.43 1128.91 1131.6 1091.81

10 1094.04 1254.2 1128.91 1131.6 1091.81

11 1072.31 1139.78 1139.39 1090.99 1091.07

12 1074.91 1139.78 1139.39 1090.99 1091.07

13 1072.31 1139.78 1139.39 1090.99 1091.07

14 1072.31 1152.34 1139.39 1090.99 1091.07

15 1072.31 1139.78 1139.39 1090.99 1091.07

16 1136.36 1343.15 1127.63 927.44 1104.42

17 1136.36 1343.15 1127.63 927.44 1109.54

18 1136.36 1343.15 1127.63 927.44 1104.42

19 1136.36 1343.15 1127.63 927.44 1104.42

20 1136.36 1343.15 1127.63 927.44 1104.42

21 1082.75 1157.37 1170.05 1079.76 1155.06

22 1082.75 1148.16 1170.05 1079.76 1155.06

23 1082.75 1148.16 1170.05 1079.76 1155.06

24 1082.75 1148.16 1170.05 1079.76 1155.06

25 1082.75 1148.16 1170.05 1079.76 1155.06

Average 4051.492 1086.691 4185.524 1192.326 4200.504 1138.330 4121.402 1069.010 4038.292 1101.665

Stdev 52.638 29.597 25.582 84.400 50.401 17.601 76.467 74.578 40.951 30.371

4037.72

4055.78 4194.87 4217.80 4214.14 4067.32

4014.40 4208.71 4119.93 4078.83

4115.12 4167.86 4217.86 4043.51 4085.41

3985.26 4206.11 4255.20 4192.38 4020.37

V-d100-i10-a V-d100-i10-b V-d100-i10-c V-d100-i10-d V-d100-i10-e

4086.90 4150.07 4191.73 4078.15 3980.64
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Table B.3 The results of experiment run no. 3 in the Taguchi method. 

 

(Number of installation customers (A) = 10, Service Level (B) =180 min, Installation time (C) 

= 60 min, Fixed cost per installation vehicle (D) = 150) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 1435.74 1518.65 1524.98 1509.15 1475.31

2 1435.74 1518.65 1524.98 1509.15 1475.31

3 1435.74 1518.65 1524.98 1509.15 1475.31

4 1435.74 1518.65 1524.98 1509.15 1475.31

5 1435.74 1518.65 1524.98 1509.15 1483.82

6 1468.18 1533.26 1528.91 1530.89 1511.42

7 1468.18 1533.26 1528.91 1530.89 1511.42

8 1468.18 1533.26 1528.91 1530.89 1511.42

9 1468.18 1533.26 1528.91 1530.89 1511.42

10 1468.18 1533.26 1528.91 1530.89 1511.42

11 1449.91 1539.78 1539.39 1527.18 1472.67

12 1449.91 1539.78 1539.39 1527.18 1472.67

13 1449.91 1539.78 1539.39 1527.18 1472.67

14 1449.91 1539.78 1539.39 1527.18 1472.67

15 1449.91 1539.78 1539.39 1527.18 1472.67

16 1505.7 1769.86 1527.63 1532.69 1469.14

17 1505.7 1769.86 1527.63 1532.69 1469.14

18 1505.7 1769.86 1527.63 1532.69 1469.14

19 1505.7 1769.86 1527.63 1532.69 1469.14

20 1505.7 1769.86 1527.63 1532.69 1469.14

21 1482.75 1548.16 1575.23 1499.83 1551.59

22 1482.75 1557.37 1575.23 1499.83 1538.07

23 1482.75 1548.16 1575.23 1499.83 1551.59

24 1482.75 1548.16 1575.23 1499.83 1538.07

25 1482.75 1548.16 1575.23 1499.83 1538.07

Average 4051.492 1468.456 4185.524 1582.310 4200.504 1539.228 4121.402 1519.948 4038.292 1494.744

Stdev 52.638 25.024 25.582 96.285 50.401 19.040 76.467 13.352 40.951 29.460

4037.72

4055.78 4194.87 4217.80 4214.14 4067.32

4014.40 4208.71 4119.93 4078.83

4115.12 4167.86 4217.86 4043.51 4085.41

3985.26 4206.11 4255.20 4192.38 4020.37

V-d100-i10-a V-d100-i10-b V-d100-i10-c V-d100-i10-d V-d100-i10-e

4086.90 4150.07 4191.73 4078.15 3980.64
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Table B.4 The results of experiment run no. 4 in the Taguchi method. 

 

(Number of installation customers (A) = 30, Service Level (B) =60 min, Installation time (C) 

= 35 min, Fixed cost per installation vehicle (D) = 150) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 3400.61 3422.95 3480.10 3530.77 3211.63

2 3370.10 3464.49 3719.63 3511.09 3224.82

3 3380.45 3671.18 3714.71 3511.09 3236.17

4 3173.01 3422.95 3749.83 3379.02 3229.97

5 3344.49 3439.89 3486.72 3387.13 3211.63

6 3120.51 3739.45 3444.82 3462.45 3207.14

7 3124.36 3907.84 3383.54 3512.94 3386.84

8 3118.45 3727.49 3429.04 3461.72 3438.26

9 3087.99 3740.04 3194.48 3462.45 3421.39

10 3093.10 3727.49 3475.78 3469.93 3395.67

11 3114.58 3466.84 3480.92 3423.51 3564.05

12 3105.76 3472.01 3485.00 3296.40 3357.46

13 3098.90 3663.70 3491.10 3504.81 3563.50

14 3091.16 3729.94 3482.60 3322.04 3557.42

15 3099.91 3649.52 3545.88 3488.07 3358.14

16 3362.61 3800.37 3501.90 3271.55 3230.48

17 3122.86 3536.69 3549.09 3271.55 3254.70

18 3338.78 3536.69 3280.73 3527.19 3235.93

19 3099.56 3546.67 3510.07 3271.55 3230.48

20 3311.44 3628.63 3283.45 3271.55 3254.70

21 3064.63 3561.08 3491.25 3374.94 3194.55

22 3087.46 3561.08 3465.51 3620.12 3189.42

23 3096.04 3789.19 3675.64 3374.43 3216.71

24 3143.21 3560.43 3504.18 3629.53 3204.03

25 3051.73 3561.08 3493.89 3374.94 3011.45

Average 4060.164 3176.068 4275.888 3613.107 4066.491 3492.794 4128.484 3428.430 3987.182 3295.461

Stdev 55.500 119.220 31.764 133.078 37.364 129.797 53.728 106.607 75.886 135.652

4145.00 4325.80 4042.11 4207.26 3873.12

4039.66

4070.10

3967.35

3985.68

4004.77 4284.57 4106.16 4149.02

4056.58 4267.90 4065.32 4065.18

4076.46 4242.68 4018.72 4121.96

4018.01 4258.49 4100.15 4099.00

V-d100-i30-a V-d100-i30-b V-d100-i30-c V-d100-i30-d V-d100-i30-e
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Table B.5 The results of experiment run no. 5 in the Taguchi method. 

 

(Number of installation customers (A) = 30, Service Level (B) =120 min, Installation time (C) 

= 60 min, Fixed cost per installation vehicle (D) = 50) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 3112.68 3432.01 3486.28 3380.07 3277.95

2 3146.69 3358.61 3470.38 3399.76 3264.18

3 3137.82 3429.80 3460.72 3333.32 3264.18

4 3143.61 3442.72 3459.20 3294.20 3264.18

5 3135.26 3459.78 3467.43 3354.04 3264.18

6 3022.46 3415.16 3395.79 3307.88 3233.35

7 3026.36 3411.20 3412.17 3348.18 3247.51

8 3097.94 3443.63 3271.67 3317.45 3249.16

9 3019.46 3473.36 3403.81 3310.59 3242.80

10 3066.21 3447.91 3247.46 3332.54 3237.46

11 3123.00 3372.71 3434.00 3292.70 3376.61

12 3150.94 3414.98 3445.59 3289.57 3393.19

13 3078.27 3425.51 3356.90 3290.47 3423.38

14 3069.92 3405.49 3335.33 3303.97 3368.43

15 3147.34 3407.73 3445.10 3329.91 3385.01

16 3161.24 3350.85 3347.93 3324.66 3175.87

17 3148.79 3491.17 3336.98 3470.12 3294.38

18 3188.00 3468.48 3367.16 3361.50 3299.27

19 3161.27 3466.33 3360.77 3335.32 3269.34

20 3158.10 3534.03 3412.11 3322.78 3190.52

21 3169.00 3511.28 3387.62 3478.01 3272.26

22 3110.39 3408.80 3453.32 3469.05 3298.72

23 3120.51 3536.00 3327.63 3486.05 3273.17

24 3155.86 3559.30 3310.28 3477.90 3285.73

25 3115.09 3544.16 3321.09 3474.59 3214.73

Average 4060.164 3118.648 4275.888 3448.439 4066.491 3388.668 4128.484 3363.384 3987.182 3282.621

Stdev 55.500 47.291 31.764 56.607 37.364 65.862 53.728 69.856 75.886 62.600

4004.77 4284.57 4106.16 4149.02 3967.35

4056.58 4267.90 4065.32 4065.18 3985.68

4076.46 4242.68 4018.72 4121.96 4039.66

4018.01 4258.49 4100.15 4099.00 4070.10

V-d100-i30-a V-d100-i30-b V-d100-i30-c V-d100-i30-d V-d100-i30-e

4145.00 4325.80 4042.11 4207.26 3873.12
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Table B.6 The results of experiment run no. 6 in the Taguchi method. 

 

(Number of installation customers (A) = 30, Service Level (B) =180 min, Installation time (C) 

= 10 min, Fixed cost per installation vehicle (D) = 100) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 1198.74 1287.67 1202.16 1419.63 1189.93

2 1195.71 1184.86 1162.43 1462.39 1247.69

3 1228.11 1216.15 1165.59 1285.75 1251.96

4 1194.26 1266.28 1162.83 1251.94 1157.50

5 1181.57 1236.57 1229.27 1248.54 1170.68

6 1220.22 1276.17 1354.21 1401.83 1150.72

7 1207.69 1263.32 1299.51 1420.68 1197.53

8 1164.25 1283.01 1192.35 1276.82 1156.70

9 1254.70 1256.30 1231.91 1428.92 1166.42

10 1193.14 1388.79 1180.47 1434.71 1165.86

11 1151.88 1231.95 1181.46 1463.15 1286.07

12 1143.59 1351.42 1199.76 1309.25 1289.80

13 1166.82 1190.92 1202.81 1253.47 1252.34

14 1165.85 1193.95 1424.14 1261.93 1256.54

15 1172.58 1361.46 1197.65 1219.14 1225.26

16 1154.30 1363.12 1178.14 1360.81 1250.98

17 1205.39 1269.22 1202.60 1428.65 1169.85

18 1131.96 1363.12 1180.42 1423.26 1177.65

19 1208.94 1258.90 1180.42 1447.02 1177.74

20 1190.32 1270.70 1250.00 1320.98 1183.97

21 1161.39 1298.77 1365.85 1503.11 1147.07

22 1170.05 1210.59 1191.14 1492.44 1182.13

23 1164.16 1230.14 1353.98 1498.61 1197.54

24 1237.14 1230.21 1197.17 1463.88 1236.51

25 1207.88 1237.75 1344.79 1268.76 1178.14

Average 4060.164 1186.826 4275.888 1268.854 4066.491 1233.242 4128.484 1373.827 3987.182 1202.663

Stdev 55.500 30.400 31.764 57.960 37.364 76.094 53.728 93.483 75.886 43.737

4004.77 4284.57 4106.16 4149.02 3967.35

4056.58 4267.90 4065.32 4065.18 3985.68

4076.46 4242.68 4018.72 4121.96 4039.66

4018.01 4258.49 4100.15 4099.00 4070.10

V-d100-i30-a V-d100-i30-b V-d100-i30-c V-d100-i30-d V-d100-i30-e

4145.00 4325.80 4042.11 4207.26 3873.12
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Table B.7 The results of experiment run no. 7 in the Taguchi method. 

 

(Number of installation customers (A) = 50, Service Level (B) =60 min, Installation time (C) 

= 60 min, Fixed cost per installation vehicle (D) = 100) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 7304.427 6817.388 7284.807 6969.718 6956.068

2 7591.708 6969.478 7481.187 6948.618 6943.587

3 7334.917 6819.688 7446.787 6845.928 7053.427

4 7505.577 6991.667 7452.618 7029.297 6954.758

5 7496.757 7002.157 7259.737 7013.528 6979.908

6 7355.618 7184.917 6869.947 6922.817 6833.198

7 7509.447 7282.518 6846.057 6881.768 6784.127

8 7307.797 7117.018 7053.458 6978.377 6805.868

9 7323.057 7031.908 6854.447 6909.388 6797.517

10 7308.488 7189.107 6971.337 6910.277 6956.298

11 7313.227 7126.768 6897.567 6695.857 7054.478

12 7276.098 7095.687 7161.817 6907.388 7059.317

13 7270.797 7140.397 7054.618 6887.488 7254.888

14 7272.428 7180.447 7111.397 6954.868 6831.687

15 7288.157 6930.777 6933.068 6907.027 7039.638

16 7206.317 7360.367 7287.238 7038.397 7066.118

17 7215.197 7384.808 7238.697 6825.887 6892.257

18 7218.957 7336.627 7232.328 6846.147 6827.137

19 7433.157 7183.267 7219.388 6880.807 6828.657

20 7370.347 7292.587 7206.637 6713.288 7048.698

21 7245.857 7208.098 7291.768 7149.847 6634.228

22 7457.316 7173.007 7320.297 7133.017 6628.108

23 7237.728 7173.897 7116.048 7122.107 6657.528

24 7433.147 7135.027 7125.067 7182.627 6611.968

25 7204.647 7135.027 7286.627 7094.458 6660.998

Average 4029.618 7339.247 4263.904 7130.505 4121.846 7160.118 3878.030 6949.957 3901.832 6886.418

Stdev 67.783 108.497 40.394 149.756 55.424 188.078 27.116 125.169 53.921 167.921

3911.76

3883.7

3976.49

4140.03 4235.63 4056.469 3896.27 3827.25

3909.96

4030.77 4233.169 4095.81 3902

3976.87 4327.42 4101.58 3838.47

4029.14 4280.86 4196.24 3891.96

3971.28 4242.44 4159.13 3861.45

V-d100-i50-a V-d100-i50-b V-d100-i50-c V-d100-i50-d V-d100-i50-e



130 

 

 

Table B.8 The results of experiment run no. 8 in the Taguchi method. 

 

(Number of installation customers (A) = 50, Service Level (B) =120 min, Installation time (C) 

= 10 min, Fixed cost per installation vehicle (D) = 150) 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 2500.41 2394.97 2434.02 2110.41 2635.94

2 2490.12 2681.43 2402.62 2340.96 2550.88

3 2502.46 2403.31 2393.19 2352.88 2330.23

4 2460.45 2449.37 2424.41 2132.98 2364.87

5 2474.58 2367.51 2425.28 2363.57 2388.89

6 2365.71 2614.37 2423.67 2314.53 2372.77

7 2334.70 2427.48 2413.73 2367.67 2367.47

8 2439.59 2418.63 2411.05 2316.38 2676.02

9 2366.92 2374.72 2421.80 2331.55 2213.97

10 2385.87 2458.18 2386.02 2404.27 2358.89

11 2377.08 2653.34 2389.65 2170.48 2396.99

12 2390.90 2432.64 2393.90 2389.80 2381.31

13 2428.74 2368.03 2467.88 2164.57 2421.21

14 2169.94 2448.09 2450.40 2153.62 2408.72

15 2385.37 2402.40 2432.95 2346.63 2435.37

16 2404.06 2386.30 2370.59 2416.36 2395.43

17 2170.04 2633.97 2351.35 2417.18 2395.06

18 2443.39 2454.31 2402.08 2385.00 2406.76

19 2411.99 2336.77 2383.39 2378.81 2412.79

20 2444.06 2446.38 2381.03 2433.83 2656.30

21 2748.08 2717.18 2350.07 2437.13 2196.79

22 2708.04 2471.03 2572.68 2364.85 2485.36

23 2671.23 2473.48 2330.45 2165.13 2169.16

24 2552.34 2688.37 2615.68 2446.15 2134.02

25 2437.38 2700.86 2387.41 2647.27 2217.36

Average 4029.618 2442.538 4263.904 2488.125 4121.846 2416.612 3878.030 2334.080 3901.832 2390.902

Stdev 67.783 133.330 40.394 121.963 55.424 62.304 27.116 123.962 53.921 140.078

4030.77 4233.17 4095.81 3902.00 3883.70

3976.87 4327.42 4101.58 3838.47 3976.49

4029.14 4280.86 4196.24 3891.96 3909.96

3971.28 4242.44 4159.13 3861.45 3911.76

V-d100-i50-a V-d100-i50-b V-d100-i50-c V-d100-i50-d V-d100-i50-e

4140.03 4235.63 4056.47 3896.27 3827.25
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Table B.9 The results of experiment run no. 9 in the Taguchi method. 

 

(Number of installation customers (A) = 50, Service Level (B) =180 min, Installation time (C) 

= 35 min, Fixed cost per installation vehicle (D) = 50) 

 

 

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 3480.01 3270.319 3411.619 3311.309 3367.539

2 3336.24 3350.389 3256.629 3280.639 3329.049

3 3408.08 3327.329 3213.999 3238.529 3347.879

4 3508.929 3290.479 3361.49 3382.639 3300.289

5 3450.599 3256.019 3361.229 3344.579 3346.909

6 3457.879 3355.989 3395.179 3197.589 3234.679

7 3341.879 3291.979 3253.03 3331.279 3219.049

8 3431.589 3378.219 3217.669 3295.269 3407.169

9 3353.329 3351.239 3248.639 3296.889 3226.679

10 3226.609 3330.309 3250.669 3291.239 3226.309

11 3365.709 3347.28 3170.739 3203.619 3273.429

12 3357.299 3274.739 3215.789 3210.339 3236.789

13 3373.82 3245.199 3262.429 3279.999 3231.959

14 3272.129 3201.329 3228.189 3266.469 3300.979

15 3335.399 3357.519 3192.869 3286.659 3234.529

16 3315.589 3406.699 3325.539 3330.789 3313.939

17 3287.759 3303.599 3260.919 3229.979 3394.489

18 3296.949 3296.529 3297.469 3385.349 3269.229

19 3359.59 3411.869 3295.909 3311.729 3447.229

20 3283.959 3356.99 3339.839 3192.549 3208.139

21 3416.729 3416.24 3289.019 3273.979 3414.569

22 3363.229 3324.529 3244.479 3362.289 3378.719

23 3322.879 3348.359 3183.309 3219.759 3301.649

24 3305.399 3453.899 3239.01 3509.069 3239.619

25 3331.909 3333.709 3268.499 3413.199 3218.459

Average 4029.618 3359.340 4263.904 3331.230 4121.846 3271.366 3878.030 3297.829 3901.832 3298.771

Stdev 67.783 69.044 40.394 58.465 55.424 64.243 27.116 75.256 53.921 72.570

4030.77 4233.169 4095.81 3902 3883.7

3976.87 4327.42 4101.58 3838.47 3976.49

4029.14 4280.86 4196.24 3891.96 3909.96

3971.28 4242.44 4159.13 3861.45 3911.76

V-d100-i50-a V-d100-i50-b V-d100-i50-c V-d100-i50-d V-d100-i50-e

4140.03 4235.63 4056.469 3896.27 3827.25
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Appendix C: Program code of the Endosymbiotic evolutionary 

algorithm  

The program of the EEA for the VRP under consideration has been programmed in Visual 

Basic language with the Microsoft Visual Studio.NET Framework 1.1 version. The functions 

for the EEA have been programmed as modules. The program consists of 11 files whose 

program codes are as follows. 

 

Figure C.1 The program interface for the EEA (EEA.vb). 
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Table C.1 The program code in EEA.vb. 

Public Class EEA 

 

    'Initialize interface 

    Private Sub EEA_Load(ByVal sender As System.Object, ByVal e As System.Eve

ntArgs) Handles MyBase.Load 

        Randomize(CDec(Now.Millisecond)) 

        chk_POPI.Enabled = False 

        chk_POPD.Enabled = False 

        chk_POPDI.Enabled = False 

        txt_POP_DU.Enabled = False 

    End Sub 

 

 

    'Program start 

    Private Sub Btn_Start_EEA_Click(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles Btn_Start_EEA.Click 

 

        btn_close.Enabled = False 

        Btn_Start_EEA.Enabled = False 

 

        txt_NCD.Enabled = False 

        txt_NCI.Enabled = False 

        txt_XR_D.Enabled = False 

        txt_XR_I.Enabled = False 

        txt_XR_DI.Enabled = False 

        txt_MR_D.Enabled = False 

        txt_MR_I.Enabled = False 

        txt_MR_DI.Enabled = False 

        txt_NMG.Enabled = False 

        txt_NT.Enabled = False 

        txt_NEO.Enabled = False 

 

        'Start EEA program 

        start_EEA()         'Main.vb 

 

        Me.Close() 

 

    End Sub 

 

 

    Private Sub btn_close_Click(ByVal sender As System.Object, ByVal e As Sys

tem.EventArgs) Handles btn_close.Click 

        Me.Close() 

    End Sub 

 

 

    'Option for printing populations 

    Private Sub chk_popchk_CheckedChanged(ByVal sender As System.Object, ByVa

l e As System.EventArgs) Handles chk_popchk.CheckedChanged 

        If chk_popchk.Checked = True Then 

            chk_POPI.Enabled = True 

            chk_POPD.Enabled = True 

            chk_POPDI.Enabled = True 

            txt_POP_DU.Enabled = True 

        Else 

            chk_POPI.Checked = False 

            chk_POPD.Checked = False 

            chk_POPDI.Checked = False 

 

            chk_POPI.Enabled = False 

            chk_POPD.Enabled = False 
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            chk_POPDI.Enabled = False 

            txt_POP_DU.Enabled = False 

        End If 

    End Sub 

 

End Class 
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Table C.2 The program code in Main.vb. 

Module Main 

 

 

    'Definition of Symbiont and Endosymbiont 

    Public Structure Symbiotic_D 

        Dim gene_D() As Integer 

        Dim vehicle_D() As Integer 

        Dim arrival_time_D() As Double 

        Dim travel_time_D As Double 

        Dim fitness_D As Double 

    End Structure 

 

    Public Structure Symbiotic_I 

        Dim gene_I() As Integer 

        Dim vehicle_I() As Integer 

        Dim arrival_time_I() As Double 

        Dim wait_time_I() As Double 

        Dim travel_time_I As Double 

        Dim fitness_I As Double 

    End Structure 

 

    Public Structure Endosymbiotic 

        Dim gene_D() As Integer 

        Dim gene_I() As Integer 

        Dim vehicle_D() As Integer 

        Dim vehicle_I() As Integer 

        Dim arrival_time_D() As Double 

        Dim arrival_time_I() As Double 

        Dim wait_time_I() As Double 

        Dim travel_time_D As Double 

        Dim travel_time_I As Double 

        Dim fitness_DI As Double 

    End Structure 

 

    Structure Location_Index 

        Dim loc_X As Integer 

        Dim loc_Y As Integer 

    End Structure 

 

    Structure Pair 

        Dim p1 As Location_Index 

        Dim p2 As Location_Index 

    End Structure 

 

 

    Public Const BIGM As Double = 999999.999 

    Public sum_entr_sol As Integer = 0 

    Public stop_gen As Integer = 0 

 

 

 

    Sub start_EEA() 

        '========================================= 

        ' Problem variables 

        '========================================= 

 

        'number of customers requiring delivery  

        Dim Num_Customer_D As Integer 

        'number of customers requiring delivery and installation 

        Dim Num_Customer_I As Integer 
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        'capacity of delivery vehicle 

        Dim Capacity_Vehicle_D As Integer 

        'installation time at a customer (service time) 

        Dim Installation_Time_I As Double 

        'service level 

        Dim Service_Level As Double 

        'maximum operation time 

        Dim Max_Operation_Time As Double 

 

        'Distance and Customer Demand 

        Dim Distance(Num_Customer_D, Num_Customer_D) As Double 

        Dim Customer_Demand(Num_Customer_D - 1) As Integer 

 

 

        '========================================= 

        'Algorithm variables 

        '========================================= 

 

        Dim Pop_Size As Integer         'population size 

        Dim Num_Generation As Integer   'maximum # of generation 

 

        'Crossover rate for populations 

        Dim Crossover_Rate_D As Single 

        Dim Crossover_Rate_I As Single 

        Dim Crossover_Rate_DI As Single 

 

        'Mutation rate for populations 

        Dim Mutation_Rate_D As Single 

        Dim Mutation_Rate_I As Single 

        Dim Mutation_Rate_DI As Single 

 

        '3X3 matrix for the neighborhood 

        Dim Nb_D(2, 2) As Symbiotic_D 

        Dim Nb_I(2, 2) As Symbiotic_I 

        Dim Nb_DI(2, 2) As Endosymbiotic 

 

 

        '========================================= 

        'Program variables 

        '========================================= 

 

        Dim best_solution As Endosymbiotic 

        Dim best_comb As Endosymbiotic 

        Dim tNb_D(2, 2) As Symbiotic_D 

 

        Dim max_trial As Integer 

        Dim current_trial As Integer 

        Dim current_generation As Integer = 0 

        Dim loc_Nb As Location_Index 

        Dim Nb_Index(2, 2) As Location_Index 

 

        Dim temp_best_travel As Double 

        Dim temp_fit_DI As Double 

 

        Dim input_file As String = "" 

        Dim temp_file_name As String = "" 

 

        Dim start_time As Date 

        Dim end_time As Date 

        Dim elapsed_time As TimeSpan 

 

        Dim num_offspring As Integer 

        Dim check_pop As Integer 
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        '========================================= 

        'Program functions 

        '========================================= 

 

        'Obtain program parameters from interface(Main.vb) 

        program_setup(Num_Customer_D, Num_Customer_I, Capacity_Vehicle_D, Ins

tallation_Time_I, Service_Level, Max_Operation_Time, Crossover_Rate_D, Crosso

ver_Rate_I, Crossover_Rate_DI, Mutation_Rate_D, Mutation_Rate_I, Mutation_Rat

e_DI, Num_Generation, max_trial, num_offspring, input_file, check_pop, Pop_Si

ze) 

 

        'Define populations 

        Dim POP_D(Pop_Size - 1, Pop_Size - 1) As Symbiotic_D 

        Dim POP_I(Pop_Size - 1, Pop_Size - 1) As Symbiotic_I 

        Dim POP_DI(Pop_Size - 1, Pop_Size - 1) As Endosymbiotic 

 

        'redefine distances and customers' demands 

        ReDim Distance(Num_Customer_D, Num_Customer_D) 

        ReDim Customer_Demand(Num_Customer_D - 1) 

 

        'Data loading from input file (Dt_Input.vb) 

        If read_data(input_file, Customer_Demand, Distance, Num_Customer_D, N

um_Customer_I) = False Then 

            GoTo PROGRAM_END 

        End If 

 

 

        For current_trial = 1 To max_trial 

 

            'Show progress of trial 

            EEA.pgb_trial.Value = current_trial 

 

            current_generation = 0 

            sum_entr_sol = 0 

            temp_best_travel = BIGM 

 

 

            'Initialization of output files (Dt_Output.vb) 

            temp_file_name = Outfile_setup(current_trial, Num_Customer_D, Num

_Customer_I, Pop_Size) 

 

            'Define structure of Populations, Neighborhood, and Best solution

 (Initialization.vb) 

            define_population(POP_DI, POP_D, POP_I, Pop_Size, Num_Customer_D,

 Num_Customer_I) 

            best_solution = define_individual_DI(Num_Customer_D, Num_Customer

_I) 

 

            'Record starting time 

            start_time = Now 

 

            'Generate initial population (Initialization.vb) 

            population_generation_D(POP_D, Pop_Size) 

            population_generation_I(POP_I, Pop_Size) 

            population_generation_DI(POP_DI, Pop_Size) 

 

            'prefix initial solutions (Initialization.vb) 

            fix_solution(POP_D, POP_I, POP_DI, Pop_Size, Distance, Customer_D

emand, Capacity_Vehicle_D) 
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            'Evaluate fitness value of initial population(Fitness.vb) 

            cal_fitness_sub(Pop_Size, POP_D, POP_I, Capacity_Vehicle_D, Insta

llation_Time_I, Service_Level, Max_Operation_Time, Distance, Customer_Demand) 

            cal_fitness_etr(Pop_Size, POP_DI, Capacity_Vehicle_D, Installatio

n_Time_I, Service_Level, Max_Operation_Time, Distance, Customer_Demand) 

 

            'print all fitness values of the initial population (Utility.vb) 

            file_population_check(POP_DI, POP_D, POP_I, Pop_Size, current_gen

eration, loc_Nb, check_pop, temp_file_name) 

 

 

            For current_generation = 1 To Num_Generation 

 

                'Selection of a random location to generate neighborhoods (Co

operation.vb) 

                loc_Nb = random_location(Pop_Size) 

                Nb_Index = set_loc_neighbor(loc_Nb, Pop_Size) 

 

                'Creation of set of neighborhoods (Cooperation.vb) 

                Nb_D = create_neighborhood_D(POP_D, Nb_Index) 

                Nb_I = create_neighborhood_I(POP_I, Nb_Index) 

                Nb_DI = create_neighborhood_DI(POP_DI, Nb_Index) 

 

                'Cooperation between Nb_D and Nb_I (Cooperation.vb) 

                best_comb = cooperation_sub(Nb_D, Nb_I, Installation_Time_I, 

Service_Level, Max_Operation_Time, Distance, Capacity_Vehicle_D, Customer_Dem

and) 

 

                'update best solution with best combination from Nb_D and Nb_

I (Cooperation.vb) 

                best_solution = update_best(best_comb, best_solution) 

 

                'update best solution with Nb_DI (Cooperation.vb) 

                cal_fitness_etr(3, Nb_DI, Capacity_Vehicle_D, Installation_Ti

me_I, Service_Level, Max_Operation_Time, Distance, Customer_Demand) 

                best_solution = update_best_DI(Nb_DI, best_solution) 

 

                'Competition between Nb_DI and best solution (Cooperation.vb) 

                competition(Nb_DI, best_comb) 

 

 

                'Duplicate Nb_D for evolution of Nb_I (Initialization.vb) 

                tNb_D = copy_Nb_D(tNb_D, Nb_D) 

 

                'evolution of Nb_D(Evolution_D.vb) 

                evolve_D(Nb_D, Nb_I, Crossover_Rate_D, Mutation_Rate_D, Capac

ity_Vehicle_D, Max_Operation_Time, Distance, Customer_Demand, _ 

                Installation_Time_I, Service_Level) 

 

                'evolution of Nb_I(Evolution_I.vb) 

                evolve_I(Nb_I, tNb_D, Crossover_Rate_I, Mutation_Rate_I, Max_

Operation_Time, Distance, Customer_Demand, _ 

                Installation_Time_I, Service_Level) 

 

                'evolution of Nb_DI(Evolution_DI.vb) 

                evolve_DI(Nb_DI, Crossover_Rate_DI, Mutation_Rate_DI, Capacit

y_Vehicle_D, Max_Operation_Time, Distance, Customer_Demand, _ 

                Installation_Time_I, Service_Level) 

 

                'Release neighborhoods (Cooperation.vb) 

                release_neighborhood_D(Nb_D, POP_D, Nb_Index) 
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                release_neighborhood_I(Nb_I, POP_I, Nb_Index) 

                release_neighborhood_DI(Nb_DI, POP_DI, Nb_Index) 

 

 

                'Show progress of generation 

                If CInt(current_generation Mod (Num_Generation / 20)) = 0 The

n 

                    EEA.pgb_generation.Value = current_generation 

                End If 

 

 

                'Optional report per generation (Dt_Output.vb) 

                temp_best_travel = generation_record(current_generation, best

_solution, temp_best_travel, temp_file_name, start_time, end_time) 

 

                'print all fitness values of the population (Utility.vb) 

                file_population_check(POP_DI, POP_D, POP_I, Pop_Size, current

_generation, loc_Nb, check_pop, temp_file_name) 

 

 

                'Checking termination conditions (optional) 

                If sum_entr_sol > num_offspring And num_offspring > 0 Then 

 

                    stop_gen = current_generation 

                    current_generation = Num_Generation 

 

                End If 

 

            Next 

 

            'Check running time 

            end_time = Now 

            elapsed_time = end_time.Subtract(start_time) 

 

            'Check final solution 

            temp_fit_DI = best_solution.fitness_DI 

            best_solution = fitness_etr_D(best_solution, Capacity_Vehicle_D, 

Max_Operation_Time, Customer_Demand, Distance) 

            best_solution = fitness_etr_I(best_solution, Installation_Time_I,

 Service_Level, Max_Operation_Time, Distance) 

 

            If temp_fit_DI <> best_solution.fitness_DI Then 

 

                best_solution.fitness_DI = 0.0 

 

            End If 

 

            'Generate final report on output file (Dt_Output.vb) 

            final_report(best_solution, elapsed_time, temp_file_name) 

 

 

        Next 

 

 

PROGRAM_END: 

    End Sub 

 

 

    'Load parameters from program interface 

    Sub program_setup(ByRef Num_Customer_D As Integer, ByRef Num_Customer_I A

s Integer, ByRef Capacity_Vehicle_D As Integer, ByRef Installation_Time_I As 

Double, ByRef Service_Level As Double, ByRef Max_Operation_Time As Double, By

Ref Crossover_rate_D As Double, ByRef Crossover_rate_I As Double, ByRef Cross
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over_rate_DI As Double, ByRef Mutation_rate_D As Double, ByRef Mutation_rate_

I As Double, ByRef Mutation_rate_DI As Double, ByRef Num_Generation As Intege

r, ByRef trial As Integer, ByRef Num_offspring As Integer, ByRef input_file A

s String, ByRef check_pop As Integer, ByRef Pop_size As Integer) 

 

        Try 

            Num_Customer_D = CInt(EEA.txt_NCD.Text) 

            Num_Customer_I = CInt(EEA.txt_NCI.Text) 

            Crossover_rate_D = CDec(EEA.txt_XR_D.Text) 

            Crossover_rate_I = CDec(EEA.txt_XR_I.Text) 

            Crossover_rate_DI = CDec(EEA.txt_XR_DI.Text) 

            Mutation_rate_D = CDec(EEA.txt_MR_D.Text) 

            Mutation_rate_I = CDec(EEA.txt_MR_I.Text) 

            Mutation_rate_DI = CDec(EEA.txt_MR_DI.Text) 

            Num_Generation = CInt(EEA.txt_NMG.Text) 

            trial = CInt(EEA.txt_NT.Text) 

            Num_offspring = CInt(EEA.txt_NEO.Text) 

            Capacity_Vehicle_D = CInt(EEA.txt_CDV.Text) 

            Installation_Time_I = CDec(EEA.txt_IT.Text) 

            Service_Level = CDec(EEA.txt_SL.Text) 

            Max_Operation_Time = CDec(EEA.txt_MOT.Text) 

            check_pop = CInt(EEA.txt_POP_DU.Text) 

            Pop_size = CInt(EEA.txt_popsize.Text) 

 

        Catch ex As Exception 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End Try 

 

        If Num_Customer_D <= 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Num_Customer_I <= 0 Or Num_Customer_I > Num_Customer_D Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Crossover_rate_D <= 0 Or Crossover_rate_D > 1 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Crossover_rate_I <= 0 Or Crossover_rate_I > 1 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Crossover_rate_DI <= 0 Or Crossover_rate_DI > 1 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Mutation_rate_D <= 0 Or Mutation_rate_D > 1 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Mutation_rate_I <= 0 Or Mutation_rate_I > 1 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 
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        If Mutation_rate_DI <= 0 Or Mutation_rate_DI > 1 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Num_Generation <= 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If trial <= 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Num_offspring < 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Capacity_Vehicle_D <= 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Installation_Time_I < 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Service_Level < 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Max_Operation_Time < 0 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        If Pop_size <= 3 Then 

            MessageBox.Show("Input data error") 

            EEA.Close() 

        End If 

 

        input_file = CStr(Num_Customer_D) + "-" + CStr(Num_Customer_I) + "-1

0.txt" 

 

        EEA.pgb_generation.Maximum = Num_Generation 

        EEA.pgb_trial.Maximum = trial 

 

    End Sub 

 

 

 

End Module 
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Table C.3 The program code in Cooperation.vb. 

Module Cooperation 

 

    'Select random location in population 

    Function random_location(ByVal Pop_size As Integer) 

        Dim temp_loc As Location_Index 

 

        temp_loc.loc_X = CInt(Int((Rnd() * Pop_size))) 

        temp_loc.loc_Y = CInt(Int((Rnd() * Pop_size))) 

 

        Return temp_loc 

 

    End Function 

 

 

    'Generate neighborhood in POP-D 

    Function create_neighborhood_D(ByVal POP_D(,) As Symbiotic_D, ByRef Nb_In

dex(,) As Location_Index) 

 

        Dim temp_NB(2, 2) As Symbiotic_D 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_NB(i, j) = POP_D(Nb_Index(i, j).loc_X, Nb_Index(i, j).lo

c_Y) 

            Next 

        Next 

 

        Return temp_NB 

 

    End Function 

 

 

    'Generate neighborhood in POP-I 

    Function create_neighborhood_I(ByVal POP_I(,) As Symbiotic_I, ByRef Nb_In

dex(,) As Location_Index) 

 

        Dim temp_NB(2, 2) As Symbiotic_I 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_NB(i, j) = POP_I(Nb_Index(i, j).loc_X, Nb_Index(i, j).lo

c_Y) 

            Next 

        Next 

 

        Return temp_NB 

 

    End Function 

 

 

    'Generate neighborhood in POP-DI 

    Function create_neighborhood_DI(ByVal POP_DI(,) As Endosymbiotic, ByRef N

b_Index(,) As Location_Index) 

 

        Dim temp_NB(2, 2) As Endosymbiotic 

        Dim i, j As Integer 

 

        For i = 0 To 2 
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            For j = 0 To 2 

                temp_NB(i, j) = POP_DI(Nb_Index(i, j).loc_X, Nb_Index(i, j).l

oc_Y) 

            Next 

        Next 

 

        Return temp_NB 

 

    End Function 

 

 

    'Locations of neighborhood in Toroidal grid 

    Function set_loc_neighbor(ByVal loc_Nb As Location_Index, ByVal Pop_size 

As Integer) 

 

        Dim temp_nb_set(2, 2) As Location_Index 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If i = 0 Then 

                    temp_nb_set(i, j).loc_X = (loc_Nb.loc_X + (Pop_size - 1))

 Mod Pop_size 

                ElseIf i = 1 Then 

                    temp_nb_set(i, j).loc_X = loc_Nb.loc_X 

                Else 

                    temp_nb_set(i, j).loc_X = (loc_Nb.loc_X + 1) Mod Pop_size 

                End If 

 

                If j = 0 Then 

                    temp_nb_set(i, j).loc_Y = (loc_Nb.loc_Y + (Pop_size - 1))

 Mod Pop_size 

                ElseIf j = 1 Then 

                    temp_nb_set(i, j).loc_Y = loc_Nb.loc_Y 

                Else 

                    temp_nb_set(i, j).loc_Y = (loc_Nb.loc_Y + 1) Mod Pop_size 

                End If 

            Next 

        Next 

 

        Return temp_nb_set 

 

    End Function 

 

 

    'Coorperation between two subproblems (Delivery and Installation) 

    Function cooperation_sub(ByRef Nb_D(,) As Symbiotic_D, ByRef Nb_I(,) As S

ymbiotic_I, ByVal Installation_Time_I As Double, _ 

    ByVal Service_Level As Double, ByVal Max_Operation_Time As Double, ByVal 

Distance(,) As Double, ByVal Capacity_Vehicle_D As Integer, _ 

    ByVal Customer_Demand() As Integer) 

 

        'Dim temp_symbiotic_D As Symbiotic_D 

        Dim temp_Indv_I As Symbiotic_I 

        Dim best_comb As Endosymbiotic 

        Dim i, j, u, v As Integer 

        Dim s, t, p, q As Integer 

 

        best_comb = define_individual_DI(Nb_D(0, 0).gene_D.Length, Nb_I(0, 

0).gene_I.Length) 

        best_comb.fitness_DI = 0.0 

 

        For i = 0 To 2 
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            For j = 0 To 2 

 

                'Select individual from Neighborhood D 

                For u = 0 To 2 

                    For v = 0 To 2 

                        'Select individual from Neighborhood I 

                        temp_Indv_I = Nb_I(u, v) 

                        temp_Indv_I = fitness_sub_I(Nb_D(i, j), temp_Indv_I, 

Installation_Time_I, Service_Level, Max_Operation_Time, Distance) 

 

                        If temp_Indv_I.fitness_I > best_comb.fitness_DI Then 

                            best_comb = combine_sub(Nb_D(i, j), temp_Indv_I) 

 

                            'store last index of best combination 

                            s = i 

                            t = j 

                            p = u 

                            q = v 

                        End If 

                    Next 

                Next 

            Next 

        Next 

 

        best_comb = fitness_etr_D(best_comb, Capacity_Vehicle_D, Max_Operatio

n_Time, Customer_Demand, Distance) 

        best_comb = fitness_etr_I(best_comb, Installation_Time_I, Service_Lev

el, Max_Operation_Time, Distance) 

 

        Return best_comb 

 

    End Function 

 

 

    'Make a complet solution from partial solutions in two subproblems 

    Function combine_sub(ByVal Indv_D As Symbiotic_D, ByVal Indv_I As Symbiot

ic_I) 

 

        Dim temp_comb As Endosymbiotic 

        Dim i As Integer 

 

        temp_comb = define_individual_DI(Indv_D.gene_D.Length, Indv_I.gene_I.

Length) 

 

        For i = 0 To Indv_D.gene_D.Length - 1 

            temp_comb.arrival_time_D(i) = Indv_D.arrival_time_D(i) 

            temp_comb.gene_D(i) = Indv_D.gene_D(i) 

            temp_comb.vehicle_D(i) = Indv_D.vehicle_D(i) 

        Next 

 

        temp_comb.travel_time_D = Indv_D.travel_time_D 

 

        For i = 0 To Indv_I.gene_I.Length - 1 

            temp_comb.arrival_time_I(i) = Indv_I.arrival_time_I(i) 

            temp_comb.gene_I(i) = Indv_I.gene_I(i) 

            temp_comb.vehicle_I(i) = Indv_I.vehicle_I(i) 

            temp_comb.wait_time_I(i) = Indv_I.wait_time_I(i) 

        Next 

 

        temp_comb.travel_time_I = Indv_I.travel_time_I 

 

        temp_comb.fitness_DI = Indv_I.fitness_I 
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        Return temp_comb 

 

    End Function 

 

 

    'Divide a complete soltuion into partial solutions for two subproblems 

    Sub separate_sub(ByRef Comb As Endosymbiotic, ByRef Indv_D As Symbiotic_

D, ByRef Indv_I As Symbiotic_I) 

 

        Dim i As Integer 

 

        For i = 0 To Indv_D.gene_D.Length - 1 

            Indv_D.arrival_time_D(i) = Comb.arrival_time_D(i) 

            Indv_D.gene_D(i) = Comb.gene_D(i) 

            Indv_D.vehicle_D(i) = Comb.vehicle_D(i) 

        Next 

 

        Indv_D.travel_time_D = Comb.travel_time_D 

 

        For i = 0 To Indv_I.gene_I.Length - 1 

            Indv_I.arrival_time_I(i) = Comb.arrival_time_I(i) 

            Indv_I.gene_I(i) = Comb.gene_I(i) 

            Indv_I.vehicle_I(i) = Comb.vehicle_I(i) 

            Indv_I.wait_time_I(i) = Comb.wait_time_I(i) 

        Next 

 

        Indv_I.travel_time_I = Comb.travel_time_I 

 

        Indv_I.fitness_I = Comb.fitness_DI 

 

    End Sub 

 

 

    'Update best solution (compare current best solution and solution from PO

P-DI 

    Function update_best(ByRef best_comb As Endosymbiotic, ByRef best_solutio

n As Endosymbiotic) 

 

        If best_comb.fitness_DI > best_solution.fitness_DI Then 

            Return best_comb 

        Else 

            Return best_solution 

        End If 

 

    End Function 

 

 

    'Update best solution (compare current best solution and solutiosn in nei

ghborhood from POP-DI 

    Function update_best_DI(ByRef Nb_DI(,) As Endosymbiotic, ByRef best_solut

ion As Endosymbiotic) 

 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                best_solution = update_best(Nb_DI(i, j), best_solution) 

            Next 

        Next 

 

        Return best_solution 

 

    End Function 
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    'Competition between best combination from the cooperation and individual

s of neighborhood in POP-DI 

    Sub competition(ByRef Nb_DI(,) As Endosymbiotic, ByRef best_comb As Endos

ymbiotic) 

 

        Dim loc_worst_comb As Location_Index 

        Dim temp_fitness As Double 

        Dim i, j As Integer 

 

        temp_fitness = BIGM 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If Nb_DI(i, j).fitness_DI < temp_fitness Then 

                    temp_fitness = Nb_DI(i, j).fitness_DI 

                    loc_worst_comb.loc_X = i 

                    loc_worst_comb.loc_Y = j 

                End If 

            Next 

        Next 

 

        If best_comb.fitness_DI > Nb_DI(loc_worst_comb.loc_X, loc_worst_comb.

loc_Y).fitness_DI Then 

 

            Nb_DI(loc_worst_comb.loc_X, loc_worst_comb.loc_Y) = copy_DI2DI(Nb

_DI(loc_worst_comb.loc_X, loc_worst_comb.loc_Y), best_comb) 

 

        End If 

 

    End Sub 

 

 

    'Release current neighborhoods to populations (POP-D)  

    Sub release_neighborhood_D(ByRef Nb_D(,) As Symbiotic_D, ByRef POP_D(,) A

s Symbiotic_D, ByVal Nb_Index(,) As Location_Index) 

 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                POP_D(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y) = copy_D2D

(POP_D(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y), Nb_D(i, j)) 

            Next 

        Next 

 

    End Sub 

 

 

    'Release current neighborhoods to populations (POP-I)  

    Sub release_neighborhood_I(ByRef Nb_I(,) As Symbiotic_I, ByRef POP_I(,) A

s Symbiotic_I, ByVal Nb_Index(,) As Location_Index) 

 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                POP_I(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y) = copy_I2I

(POP_I(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y), Nb_I(i, j)) 

            Next 

        Next 
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    End Sub 

 

 

    'Release current neighborhoods to populations (POP-DI)  

    Sub release_neighborhood_DI(ByRef Nb_DI(,) As Endosymbiotic, ByRef POP_DI

(,) As Endosymbiotic, ByVal Nb_Index(,) As Location_Index) 

 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                POP_DI(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y) = copy_DI2

DI(POP_DI(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y), Nb_DI(i, j)) 

            Next 

        Next 

 

    End Sub 

 

End Module 
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Table C.4 The program code in Initialization.vb. 

Module Initialization 

 

    'Define Individual Structures (POP-D, POP-I, and POP-DI) 

    Sub define_population(ByRef POP_DI(,) As Endosymbiotic, ByRef POP_D(,) As

 Symbiotic_D, ByRef POP_I(,) As Symbiotic_I, _ 

    ByVal Pop_size As Integer, ByVal Num_Customer_D As Integer, ByVal Num_Cus

tomer_I As Integer) 

 

        define_pop_D(POP_D, Pop_size, Num_Customer_D) 

        define_pop_I(POP_I, Pop_size, Num_Customer_I) 

        define_pop_DI(POP_DI, Pop_size, Num_Customer_D, Num_Customer_I) 

 

    End Sub 

 

    'Define POP-D 

    Sub define_pop_D(ByRef POP_D(,) As Symbiotic_D, ByVal Pop_size As Intege

r, ByVal Num_Customer_D As Integer) 

 

        Dim i, j As Integer 

 

        For i = 0 To Pop_size - 1 

            For j = 0 To Pop_size - 1 

                POP_D(i, j) = define_individual_D(Num_Customer_D) 

            Next 

        Next 

 

    End Sub 

 

 

    'Define individual D  

    Function define_individual_D(ByVal Num_Customer_D As Integer) 

 

        Dim init_ind_D As Symbiotic_D 

        Dim i As Integer 

 

        ReDim init_ind_D.gene_D(Num_Customer_D - 1) 

        ReDim init_ind_D.vehicle_D(Num_Customer_D - 1) 

        ReDim init_ind_D.arrival_time_D(Num_Customer_D - 1) 

 

        For i = 0 To Num_Customer_D - 1 

            init_ind_D.gene_D(i) = 0 

            init_ind_D.vehicle_D(i) = 0 

            init_ind_D.arrival_time_D(i) = 0.0 

        Next 

 

        init_ind_D.travel_time_D = 0.0 

        init_ind_D.fitness_D = 0.0 

 

        Return init_ind_D 

 

    End Function 

 

 

    'Define POP-I 

    Sub define_pop_I(ByRef POP_I(,) As Symbiotic_I, ByVal Pop_size As Intege

r, ByVal Num_Customer_I As Integer) 

 

        Dim i, j As Integer 

 

        For i = 0 To Pop_size - 1 

            For j = 0 To Pop_size - 1 
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                POP_I(i, j) = define_individual_I(Num_Customer_I) 

            Next 

        Next 

 

    End Sub 

 

 

    'Define individual I  

    Function define_individual_I(ByVal Num_Customer_I As Integer) 

 

        Dim init_ind_I As Symbiotic_I 

        Dim i As Integer 

 

        ReDim init_ind_I.gene_I(Num_Customer_I - 1) 

        ReDim init_ind_I.vehicle_I(Num_Customer_I - 1) 

        ReDim init_ind_I.arrival_time_I(Num_Customer_I - 1) 

        ReDim init_ind_I.wait_time_I(Num_Customer_I - 1) 

 

        For i = 0 To Num_Customer_I - 1 

            init_ind_I.gene_I(i) = 0 

            init_ind_I.vehicle_I(i) = 0 

            init_ind_I.arrival_time_I(i) = 0.0 

            init_ind_I.wait_time_I(i) = 0.0 

        Next 

 

        init_ind_I.travel_time_I = 0.0 

        init_ind_I.fitness_I = 0.0 

 

        Return init_ind_I 

 

    End Function 

 

 

    'Define POP-DI 

    Sub define_pop_DI(ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_size As Int

eger, ByVal Num_Customer_D As Integer, _ 

    ByVal Num_Customer_I As Integer) 

        Dim i, j As Integer 

 

        For i = 0 To Pop_size - 1 

            For j = 0 To Pop_size - 1 

                POP_DI(i, j) = define_individual_DI(Num_Customer_D, Num_Custo

mer_I) 

            Next 

        Next 

 

    End Sub 

 

 

    'Define individual DI 

    Function define_individual_DI(ByVal Num_Customer_D As Integer, ByVal Num_

Customer_I As Integer) 

 

        Dim init_ind_DI As Endosymbiotic 

        Dim i As Integer 

 

        ReDim init_ind_DI.gene_D(Num_Customer_D - 1) 

        ReDim init_ind_DI.gene_I(Num_Customer_I - 1) 

        ReDim init_ind_DI.vehicle_D(Num_Customer_D - 1) 

        ReDim init_ind_DI.vehicle_I(Num_Customer_I - 1) 

        ReDim init_ind_DI.arrival_time_D(Num_Customer_D - 1) 

        ReDim init_ind_DI.arrival_time_I(Num_Customer_I - 1) 

        ReDim init_ind_DI.wait_time_I(Num_Customer_I - 1) 



150 

 
 

        For i = 0 To Num_Customer_D - 1 

            init_ind_DI.gene_D(i) = 0 

            init_ind_DI.vehicle_D(i) = 0 

            init_ind_DI.arrival_time_D(i) = 0.0 

        Next 

        init_ind_DI.travel_time_D = 0.0 

 

        For i = 0 To Num_Customer_I - 1 

            init_ind_DI.gene_I(i) = 0 

            init_ind_DI.vehicle_I(i) = 0 

            init_ind_DI.arrival_time_I(i) = 0.0 

            init_ind_DI.wait_time_I(i) = 0.0 

        Next 

 

        init_ind_DI.travel_time_I = 0.0 

        init_ind_DI.fitness_DI = 0.0 

 

        Return init_ind_DI 

 

    End Function 

 

 

    'Generate initial POP-D 

    Sub population_generation_D(ByRef POP_D(,) As Symbiotic_D, ByVal Pop_size

 As Integer) 

 

        Dim i, j, k, rand_gene, temp As Integer 

 

        For i = 0 To Pop_size - 1 

            For j = 0 To Pop_size - 1 

                'put sequential customer index 

                For k = 0 To POP_D(i, j).gene_D.Length - 1 

                    POP_D(i, j).gene_D(k) = k 

                Next 

 

                'suffle the customer index 

                For k = 0 To POP_D(i, j).gene_D.Length - 1 

                    rand_gene = POP_D(i, j).gene_D.Length 

 

                    While (rand_gene = POP_D(i, j).gene_D.Length) 

                        rand_gene = CInt(Int((Rnd() * POP_D(i, j).gene_D.Leng

th))) 

                    End While 

 

                    temp = POP_D(i, j).gene_D(k) 

                    POP_D(i, j).gene_D(k) = POP_D(i, j).gene_D(rand_gene) 

                    POP_D(i, j).gene_D(rand_gene) = temp 

                Next 

            Next 

        Next 

 

    End Sub 

 

 

    'Generate initial POP-I 

    Sub population_generation_I(ByRef POP_I(,) As Symbiotic_I, ByVal Pop_size

 As Integer) 

 

        Dim i, j, k, rand_gene, temp As Integer 

 

        For i = 0 To Pop_size - 1 

            For j = 0 To Pop_size - 1 
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                For k = 0 To POP_I(i, j).gene_I.Length - 1 

                    POP_I(i, j).gene_I(k) = k 

                Next 

 

                For k = 0 To POP_I(i, j).gene_I.Length - 1 

                    rand_gene = POP_I(i, j).gene_I.Length 

 

                    While (rand_gene = POP_I(i, j).gene_I.Length) 

                        rand_gene = CInt(Int((Rnd() * POP_I(i, j).gene_I.Leng

th))) 

                    End While 

 

                    temp = POP_I(i, j).gene_I(k) 

                    POP_I(i, j).gene_I(k) = POP_I(i, j).gene_I(rand_gene) 

                    POP_I(i, j).gene_I(rand_gene) = temp 

                Next 

            Next 

        Next 

 

    End Sub 

 

 

    'Generate initial POP-DI 

    Sub population_generation_DI(ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_

size As Integer) 

 

        Dim i, j, k, rand_gene, temp As Integer 

 

        For i = 0 To Pop_size - 1 

            For j = 0 To Pop_size - 1 

                'Delivery part 

                For k = 0 To POP_DI(i, j).gene_D.Length - 1 

                    POP_DI(i, j).gene_D(k) = k 

                Next 

                For k = 0 To POP_DI(i, j).gene_D.Length - 1 

 

                    rand_gene = POP_DI(i, j).gene_D.Length 

 

                    While (rand_gene = POP_DI(i, j).gene_D.Length) 

                        rand_gene = CInt(Int((Rnd() * POP_DI(i, j).gene_D.Len

gth))) 

                    End While 

 

                    temp = POP_DI(i, j).gene_D(k) 

                    POP_DI(i, j).gene_D(k) = POP_DI(i, j).gene_D(rand_gene) 

                    POP_DI(i, j).gene_D(rand_gene) = temp 

                Next 

 

                'Installation part 

                For k = 0 To POP_DI(i, j).gene_I.Length - 1 

                    POP_DI(i, j).gene_I(k) = k 

                Next 

                For k = 0 To POP_DI(i, j).gene_I.Length - 1 

 

                    rand_gene = POP_DI(i, j).gene_I.Length 

 

                    While (rand_gene = POP_DI(i, j).gene_I.Length) 

                        rand_gene = CInt(Int((Rnd() * POP_DI(i, j).gene_I.Len

gth))) 

                    End While 

 

                    temp = POP_DI(i, j).gene_I(k) 

                    POP_DI(i, j).gene_I(k) = POP_DI(i, j).gene_I(rand_gene) 
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                    POP_DI(i, j).gene_I(rand_gene) = temp 

                Next 

            Next 

        Next 

    End Sub 

 

 

    'Copy functions 

    Function copy_D2D(ByRef Indv_Dt As Symbiotic_D, ByVal Indv_Ds As Symbioti

c_D) 

        ' Indv_Dt : target individual for sub problem D 

        ' Indv_Ds : source individual for sub problem D 

 

        Dim i As Integer 

 

        For i = 0 To Indv_Ds.gene_D.Length - 1 

            Indv_Dt.gene_D(i) = Indv_Ds.gene_D(i) 

            Indv_Dt.arrival_time_D(i) = Indv_Ds.arrival_time_D(i) 

            Indv_Dt.vehicle_D(i) = Indv_Ds.vehicle_D(i) 

        Next 

        Indv_Dt.travel_time_D = Indv_Ds.travel_time_D 

        Indv_Dt.fitness_D = Indv_Ds.fitness_D 

 

        Return Indv_Dt 

 

    End Function 

 

    Function copy_I2I(ByRef Indv_It As Symbiotic_I, ByVal Indv_Is As Symbioti

c_I) 

        ' Indv_It : target individual for sub problem I 

        ' Indv_Is : source individual for sub problem I 

 

        Dim i As Integer 

 

        For i = 0 To Indv_It.gene_I.Length - 1 

            Indv_It.gene_I(i) = Indv_Is.gene_I(i) 

            Indv_It.arrival_time_I(i) = Indv_Is.arrival_time_I(i) 

            Indv_It.vehicle_I(i) = Indv_Is.vehicle_I(i) 

            Indv_It.wait_time_I(i) = Indv_Is.wait_time_I(i) 

        Next 

        Indv_It.travel_time_I = Indv_Is.travel_time_I 

        Indv_It.fitness_I = Indv_Is.fitness_I 

 

        Return Indv_It 

 

    End Function 

 

    Function copy_DI2DI(ByRef Indv_DIt As Endosymbiotic, ByVal Indv_DIs As En

dosymbiotic) 

        ' Indv_DIt : target individual for entire problem DI 

        ' Indv_DIs : source individual for entire problem DI 

 

        Dim i As Integer 

 

        For i = 0 To Indv_DIt.gene_D.Length - 1 

            Indv_DIt.gene_D(i) = Indv_DIs.gene_D(i) 

            Indv_DIt.arrival_time_D(i) = Indv_DIs.arrival_time_D(i) 

            Indv_DIt.vehicle_D(i) = Indv_DIs.vehicle_D(i) 

        Next 

 

        For i = 0 To Indv_DIt.gene_I.Length - 1 

            Indv_DIt.gene_I(i) = Indv_DIs.gene_I(i) 

            Indv_DIt.arrival_time_I(i) = Indv_DIs.arrival_time_I(i) 
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            Indv_DIt.vehicle_I(i) = Indv_DIs.vehicle_I(i) 

            Indv_DIt.wait_time_I(i) = Indv_DIs.wait_time_I(i) 

        Next 

 

        Indv_DIt.travel_time_I = Indv_DIs.travel_time_I 

        Indv_DIt.travel_time_D = Indv_DIs.travel_time_D 

        Indv_DIt.fitness_DI = Indv_DIs.fitness_DI 

 

        Return Indv_DIt 

 

    End Function 

 

    Function copy_Nb_D(ByRef tNb_D(,) As Symbiotic_D, ByVal Nb_D(,) As Symbio

tic_D) 

 

        Dim i, j As Integer 

 

        For i = 0 To 2 

            For j = 0 To 2 

                tNb_D(i, j) = Nb_D(i, j) 

            Next 

        Next 

 

        Return tNb_D 

    End Function 

 

End Module 
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Table C.5 The program code in Fitness.vb. 

Module Fitness 

 

    'Fitness test individuals in subproblems having same location index 

    Sub cal_fitness_sub(ByVal Pop_Size As Integer, ByRef POP_D(,) As Symbioti

c_D, ByRef POP_I(,) As Symbiotic_I, _ 

    ByVal Capacity_Vehicle_D As Integer, ByVal Installation_Time_I As Double,

 ByVal Service_Level As Double, _ 

    ByVal Max_Operation_Time As Double, ByVal Distance(,) As Double, ByVal Cu

stomer_Demand() As Integer) 

 

        Dim i, j As Integer 

 

        For i = 0 To Pop_Size - 1 

            For j = 0 To Pop_Size - 1 

                cal_fitness_sub_indv(POP_D(i, j), POP_I(i, j), Capacity_Vehic

le_D, Installation_Time_I, Service_Level, Max_Operation_Time, Distance, Custo

mer_Demand) 

            Next 

        Next 

 

    End Sub 

 

    'Fitness test a pair of partial solutions from subproblems D & I 

    Sub cal_fitness_sub_indv(ByRef Indv_D As Symbiotic_D, ByRef Indv_I As Sym

biotic_I, ByVal Capacity_Vehicle_D As Integer, _ 

    ByVal Installation_Time_I As Double, ByVal Service_Level As Double, ByVal

 Max_Operation_Time As Double, _ 

    ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer) 

 

        Indv_D = fitness_sub_D(Indv_D, Capacity_Vehicle_D, Max_Operation_Tim

e, Customer_Demand, Distance) 

        Indv_I = fitness_sub_I(Indv_D, Indv_I, Installation_Time_I, Service_L

evel, Max_Operation_Time, Distance) 

 

        Indv_D.fitness_D = Indv_I.fitness_I 

 

        Return 

 

    End Sub 

 

 

    'Part of Fitness function for subproblem D 

    Function fitness_sub_D(ByRef Indv_D As Symbiotic_D, ByVal Capacity_Vehicl

e_D As Integer, ByVal Max_Operation_Time As Double, _ 

    ByVal Customer_Demand() As Integer, ByVal Distance(,) As Double) 

 

        Dim customer_index As Integer 

        Dim vehicle_num As Integer 

        Dim vehicle_load As Integer 

 

        Dim temp_travel As Double 

        Dim total_travel As Double 

 

        customer_index = 0 

        vehicle_num = 1 

 

        vehicle_load = Customer_Demand(Indv_D.gene_D(customer_index)) 

 

        temp_travel = Distance(Indv_D.gene_D.Length, Indv_D.gene_D(customer_i

ndex)) 

        total_travel = Distance(Indv_D.gene_D.Length, Indv_D.gene_D(customer_
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index)) 

        Indv_D.vehicle_D(customer_index) = vehicle_num 

        Indv_D.arrival_time_D(customer_index) = temp_travel 

 

        For customer_index = 0 To Indv_D.gene_D.Length - 2 

 

            If temp_travel + Distance(Indv_D.gene_D(customer_index), Indv_D.g

ene_D(customer_index + 1)) + _ 

            Distance(Indv_D.gene_D(customer_index + 1), Indv_D.gene_D.Length)

 <= Max_Operation_Time And _ 

            vehicle_load + Customer_Demand(Indv_D.gene_D(customer_index + 1))

 <= Capacity_Vehicle_D Then 

 

                vehicle_load = vehicle_load + Customer_Demand(Indv_D.gene_D(c

ustomer_index + 1)) 

                temp_travel = temp_travel + Distance(Indv_D.gene_D(customer_i

ndex), Indv_D.gene_D(customer_index + 1)) 

                total_travel = total_travel + Distance(Indv_D.gene_D(customer

_index), Indv_D.gene_D(customer_index + 1)) 

                Indv_D.vehicle_D(customer_index + 1) = vehicle_num 

                Indv_D.arrival_time_D(customer_index + 1) = temp_travel 

            Else 

                vehicle_load = Customer_Demand(Indv_D.gene_D(customer_index +

 1)) 

                temp_travel = Distance(Indv_D.gene_D.Length, Indv_D.gene_D(cu

stomer_index + 1)) 

                total_travel = total_travel + Distance(Indv_D.gene_D(customer

_index), Indv_D.gene_D.Length) + _ 

                Distance(Indv_D.gene_D.Length, Indv_D.gene_D(customer_index +

 1)) 

 

                vehicle_num = vehicle_num + 1 

 

                Indv_D.vehicle_D(customer_index + 1) = vehicle_num 

                Indv_D.arrival_time_D(customer_index + 1) = temp_travel 

            End If 

        Next 

 

        total_travel = total_travel + Distance(Indv_D.gene_D(Indv_D.gene_D.Le

ngth - 1), Indv_D.gene_D.Length) 

        Indv_D.travel_time_D = total_travel 

 

        Return Indv_D 

 

    End Function 

 

 

    'Part of Fitness function for subproblem I 

    Function fitness_sub_I(ByRef Indv_D As Symbiotic_D, ByRef Indv_I As Symbi

otic_I, ByVal Installation_Time_I As Double, _ 

    ByVal Service_Level As Double, ByVal Max_Operation_Time As Double, ByVal 

Distance(,) As Double) 

 

        Dim arr_time_D(Indv_I.gene_I.Length - 1) As Double 

 

        Dim i As Integer 

        Dim customer_index As Integer 

        Dim vehicle_num As Integer 

        Dim temp_wait As Double 

        Dim temp_travel As Double 

        Dim total_travel As Double 

 

        'Make a time table of delivery vehicles for the installation customer
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s 

        For i = 0 To Indv_D.gene_D.Length - 1 

            If Indv_D.gene_D(i) < Indv_I.gene_I.Length Then 

                arr_time_D(Indv_D.gene_D(i)) = Indv_D.arrival_time_D(i) 

            End If 

        Next 

 

        customer_index = 0 

        vehicle_num = 1 

 

        If Distance(Indv_D.gene_D.Length, Indv_I.gene_I(customer_index)) >= a

rr_time_D(Indv_I.gene_I(customer_index)) Then 

            temp_travel = Distance(Indv_D.gene_D.Length, Indv_I.gene_I(custom

er_index)) 

            total_travel = Distance(Indv_D.gene_D.Length, Indv_I.gene_I(custo

mer_index)) 

            Indv_I.vehicle_I(customer_index) = vehicle_num 

            Indv_I.arrival_time_I(customer_index) = temp_travel 

            Indv_I.wait_time_I(customer_index) = 0.0 

 

            temp_travel += Installation_Time_I 

            total_travel += Installation_Time_I 

        Else 

            temp_wait = arr_time_D(Indv_I.gene_I(customer_index)) - Distance

(Indv_D.gene_D.Length, Indv_I.gene_I(customer_index)) 

            temp_travel = arr_time_D(Indv_I.gene_I(customer_index)) 

            total_travel = arr_time_D(Indv_I.gene_I(customer_index)) 

            Indv_I.vehicle_I(customer_index) = vehicle_num 

            Indv_I.arrival_time_I(customer_index) = temp_travel - temp_wait 

            Indv_I.wait_time_I(customer_index) = temp_wait 

 

            temp_travel += Installation_Time_I 

            total_travel += Installation_Time_I 

        End If 

 

        For customer_index = 0 To Indv_I.gene_I.Length - 2 

            If temp_travel + Distance(Indv_I.gene_I(customer_index), Indv_I.g

ene_I(customer_index + 1)) >= arr_time_D(Indv_I.gene_I(customer_index + 1)) A

nd _ 

            temp_travel + Distance(Indv_I.gene_I(customer_index), Indv_I.gene

_I(customer_index + 1)) <= arr_time_D(Indv_I.gene_I(customer_index + 1)) + Se

rvice_Level And _ 

            temp_travel + Distance(Indv_I.gene_I(customer_index), Indv_I.gene

_I(customer_index + 1)) + Installation_Time_I + Distance(Indv_I.gene_I(custom

er_index + 1), Indv_D.gene_D.Length) <= Max_Operation_Time Then 

 

                temp_travel = temp_travel + Distance(Indv_I.gene_I(customer_i

ndex), Indv_I.gene_I(customer_index + 1)) 

                total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_I.gene_I(customer_index + 1)) 

 

                Indv_I.vehicle_I(customer_index + 1) = vehicle_num 

                Indv_I.arrival_time_I(customer_index + 1) = temp_travel 

                Indv_I.wait_time_I(customer_index + 1) = 0.0 

 

                temp_travel += Installation_Time_I 

                total_travel += Installation_Time_I 

 

            ElseIf temp_travel + Distance(Indv_I.gene_I(customer_index), Indv

_I.gene_I(customer_index + 1)) < arr_time_D(Indv_I.gene_I(customer_index + 

1)) And _ 

            arr_time_D(Indv_I.gene_I(customer_index + 1)) + Installation_Time

_I + Distance(Indv_I.gene_I(customer_index + 1), Indv_D.gene_D.Length) <= Max
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_Operation_Time Then 

 

                temp_wait = arr_time_D(Indv_I.gene_I(customer_index + 1)) - t

emp_travel - Distance(Indv_I.gene_I(customer_index), Indv_I.gene_I(customer_i

ndex + 1)) 

                temp_travel = arr_time_D(Indv_I.gene_I(customer_index + 1)) 

                total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_I.gene_I(customer_index + 1)) + temp_wait 

 

                Indv_I.vehicle_I(customer_index + 1) = vehicle_num 

                Indv_I.arrival_time_I(customer_index + 1) = temp_travel 

                Indv_I.wait_time_I(customer_index + 1) = temp_wait 

 

                temp_travel += Installation_Time_I 

                total_travel += Installation_Time_I 

 

            ElseIf Distance(Indv_D.gene_D.Length, Indv_I.gene_I(customer_inde

x + 1)) >= arr_time_D(Indv_I.gene_I(customer_index + 1)) Then 

 

                vehicle_num = vehicle_num + 1 

 

                temp_travel = Distance(Indv_D.gene_D.Length, Indv_I.gene_I(cu

stomer_index + 1)) 

                total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_D.gene_D.Length) + Distance(Indv_D.gene_D.Length, Indv_I.gene_I

(customer_index)) 

 

                Indv_I.vehicle_I(customer_index + 1) = vehicle_num 

                Indv_I.arrival_time_I(customer_index + 1) = temp_travel 

                Indv_I.wait_time_I(customer_index + 1) = 0.0 

 

                temp_travel += Installation_Time_I 

                total_travel += Installation_Time_I 

            Else 

                vehicle_num = vehicle_num + 1 

 

                temp_wait = arr_time_D(Indv_I.gene_I(customer_index + 1)) - D

istance(Indv_D.gene_D.Length, Indv_I.gene_I(customer_index + 1)) 

                temp_travel = arr_time_D(Indv_I.gene_I(customer_index + 1)) 

                total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_D.gene_D.Length) + Distance(Indv_D.gene_D.Length, Indv_I.gene_I

(customer_index + 1)) + _ 

                temp_wait 

 

                Indv_I.vehicle_I(customer_index + 1) = vehicle_num 

                Indv_I.arrival_time_I(customer_index + 1) = temp_travel 

                Indv_I.wait_time_I(customer_index + 1) = temp_wait 

 

                temp_travel += Installation_Time_I 

                total_travel += Installation_Time_I 

            End If 

        Next 

 

        total_travel = total_travel + Distance(Indv_I.gene_I(Indv_I.gene_I.Le

ngth - 1), Indv_D.gene_D.Length) 

        Indv_I.travel_time_I = total_travel 

        Indv_I.fitness_I = 1 / (Indv_I.travel_time_I + Indv_D.travel_time_D +

 (Indv_D.vehicle_D(Indv_D.gene_D.Length - 1) * 100.0) + (Indv_I.vehicle_I(Ind

v_I.gene_I.Length - 1) * 100.0)) 

 

        Return Indv_I 

 

    End Function 
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    'Fitness test of individuals in POP-DI 

    Sub cal_fitness_etr(ByRef Pop_Size As Integer, ByRef POP_DI(,) As Endosym

biotic, ByVal Capacity_Vehicle_D As Integer, _ 

    ByVal Installation_Time_I As Double, ByVal Service_Level As Double, ByVal

 Max_Operation_Time As Double, ByVal Distance(,) As Double, _ 

    ByVal Customer_Demand() As Integer) 

 

        Dim i, j As Integer 

 

        For i = 0 To Pop_Size - 1 

            For j = 0 To Pop_Size - 1 

                POP_DI(i, j) = fitness_etr_D(POP_DI(i, j), Capacity_Vehicle_

D, Max_Operation_Time, Customer_Demand, Distance) 

                POP_DI(i, j) = fitness_etr_I(POP_DI(i, j), Installation_Time_

I, Service_Level, Max_Operation_Time, Distance) 

            Next 

        Next 

 

    End Sub 

 

 

    'Part of fitness function for delivery portion in individual for POP-DI  

    Function fitness_etr_D(ByRef Indv_DI As Endosymbiotic, ByVal Capacity_Veh

icle_D As Integer, ByVal Max_Operation_Time As Double, ByRef customer_demand

() As Integer, _ 

    ByVal Distance(,) As Double) 

 

        Dim customer_index_D As Integer     'current customer index 

        Dim vehicle_num_D As Integer 

        Dim vehicle_load As Integer 

        Dim temp_travel_D As Double 

        Dim total_travel_D As Double 

 

        customer_index_D = 0 

        vehicle_num_D = 1 

 

        vehicle_load = customer_demand(Indv_DI.gene_D(customer_index_D)) 

        temp_travel_D = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_D(custom

er_index_D)) 

        total_travel_D = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_D(custo

mer_index_D)) 

        Indv_DI.vehicle_D(customer_index_D) = vehicle_num_D 

        Indv_DI.arrival_time_D(customer_index_D) = temp_travel_D 

 

        For customer_index_D = 0 To Indv_DI.gene_D.Length - 2 

 

            If temp_travel_D + Distance(Indv_DI.gene_D(customer_index_D), Ind

v_DI.gene_D(customer_index_D + 1)) + _ 

            Distance(Indv_DI.gene_D(customer_index_D + 1), Indv_DI.gene_D.Len

gth) <= Max_Operation_Time And _ 

            vehicle_load + customer_demand(Indv_DI.gene_D(customer_index_D + 

1)) <= Capacity_Vehicle_D Then 

 

                vehicle_load = vehicle_load + customer_demand(Indv_DI.gene_D

(customer_index_D + 1)) 

                temp_travel_D = temp_travel_D + Distance(Indv_DI.gene_D(custo

mer_index_D), Indv_DI.gene_D(customer_index_D + 1)) 

                total_travel_D = total_travel_D + Distance(Indv_DI.gene_D(cus

tomer_index_D), Indv_DI.gene_D(customer_index_D + 1)) 

                Indv_DI.vehicle_D(customer_index_D + 1) = vehicle_num_D 

                Indv_DI.arrival_time_D(customer_index_D + 1) = temp_travel_D 
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            Else 

 

                vehicle_load = customer_demand(Indv_DI.gene_D(customer_index_

D + 1)) 

                temp_travel_D = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_

D(customer_index_D + 1)) 

                total_travel_D = total_travel_D + Distance(Indv_DI.gene_D(cus

tomer_index_D), Indv_DI.gene_D.Length) + _ 

                Distance(Indv_DI.gene_D.Length, Indv_DI.gene_D(customer_index

_D + 1)) 

 

                vehicle_num_D = vehicle_num_D + 1 

 

                Indv_DI.vehicle_D(customer_index_D + 1) = vehicle_num_D 

                Indv_DI.arrival_time_D(customer_index_D + 1) = temp_travel_D 

 

            End If 

        Next 

 

        total_travel_D = total_travel_D + Distance(Indv_DI.gene_D(Indv_DI.gen

e_D.Length - 1), Indv_DI.gene_D.Length) 

        Indv_DI.travel_time_D = total_travel_D 

 

        Return Indv_DI 

 

    End Function 

 

 

    'Part of fitness function for installation portion in individual for POP-

DI  

    Function fitness_etr_I(ByRef Indv_DI As Endosymbiotic, ByVal Installation

_Time_I As Double, ByVal Service_Level As Double, _ 

    ByVal Max_Operation_Time As Double, ByVal Distance(,) As Double) 

 

        Dim arr_time_D(Indv_DI.gene_I.Length - 1) As Double 

 

        Dim i As Integer 

        Dim temp_wait As Double 

        Dim customer_index_I As Integer 

        Dim vehicle_num_I As Integer 

        Dim temp_travel_I As Double 

        Dim total_travel_I As Double 

 

        'Make a time table of delivery vehicles for the installation customer

s 

        For i = 0 To Indv_DI.gene_D.Length - 1 

            If Indv_DI.gene_D(i) < Indv_DI.gene_I.Length Then 

                arr_time_D(Indv_DI.gene_D(i)) = Indv_DI.arrival_time_D(i) 

            End If 

        Next 

 

        customer_index_I = 0 

        vehicle_num_I = 1 

 

        If Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_index_I)) 

>= arr_time_D(Indv_DI.gene_I(customer_index_I)) Then 

 

            temp_travel_I = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(cu

stomer_index_I)) 

            total_travel_I = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(c

ustomer_index_I)) 

            Indv_DI.vehicle_I(customer_index_I) = vehicle_num_I 
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            Indv_DI.arrival_time_I(customer_index_I) = temp_travel_I 

            Indv_DI.wait_time_I(customer_index_I) = 0.0 

 

            temp_travel_I += Installation_Time_I 

            total_travel_I += Installation_Time_I 

 

        Else 

 

            temp_wait = arr_time_D(Indv_DI.gene_I(customer_index_I)) - Distan

ce(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_index_I)) 

            temp_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I)) 

            total_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I)) 

            Indv_DI.vehicle_I(customer_index_I) = vehicle_num_I 

            Indv_DI.arrival_time_I(customer_index_I) = temp_travel_I - temp_w

ait 

            Indv_DI.wait_time_I(customer_index_I) = temp_wait 

 

            temp_travel_I += Installation_Time_I 

            total_travel_I += Installation_Time_I 

 

        End If 

 

        For customer_index_I = 0 To Indv_DI.gene_I.Length - 2 

 

            If temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I), Ind

v_DI.gene_I(customer_index_I + 1)) >= arr_time_D(Indv_DI.gene_I(customer_inde

x_I + 1)) And _ 

            temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I), Indv_D

I.gene_I(customer_index_I + 1)) <= arr_time_D(Indv_DI.gene_I(customer_index_I

 + 1)) + Service_Level And _ 

            temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I), Indv_D

I.gene_I(customer_index_I + 1)) + Installation_Time_I + Distance(Indv_DI.gene

_I(customer_index_I + 1), Indv_DI.gene_D.Length) <= Max_Operation_Time Then 

 

                temp_travel_I = temp_travel_I + Distance(Indv_DI.gene_I(custo

mer_index_I), Indv_DI.gene_I(customer_index_I + 1)) 

                total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_I(customer_index_I + 1)) 

 

                Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I 

                Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I 

                Indv_DI.wait_time_I(customer_index_I + 1) = 0.0 

 

                temp_travel_I += Installation_Time_I 

                total_travel_I += Installation_Time_I 

 

            ElseIf temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I),

 Indv_DI.gene_I(customer_index_I + 1)) < arr_time_D(Indv_DI.gene_I(customer_i

ndex_I + 1)) And _ 

            arr_time_D(Indv_DI.gene_I(customer_index_I + 1)) + Installation_T

ime_I + Distance(Indv_DI.gene_I(customer_index_I + 1), Indv_DI.gene_D.Length)

 <= Max_Operation_Time Then 

 

                temp_wait = arr_time_D(Indv_DI.gene_I(customer_index_I + 1)) 

- temp_travel_I - Distance(Indv_DI.gene_I(customer_index_I), Indv_DI.gene_I(c

ustomer_index_I + 1)) 

                temp_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I + 

1)) 

                total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_I(customer_index_I + 1)) + temp_wait 

 

                Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I 

                Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I 
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                Indv_DI.wait_time_I(customer_index_I + 1) = temp_wait 

 

                temp_travel_I += Installation_Time_I 

                total_travel_I += Installation_Time_I 

 

            ElseIf Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_in

dex_I + 1)) >= arr_time_D(Indv_DI.gene_I(customer_index_I + 1)) Then 

 

                vehicle_num_I = vehicle_num_I + 1 

 

                temp_travel_I = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_

I(customer_index_I + 1)) 

                total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_D.Length) + Distance(Indv_DI.gene_D.Length, Indv

_DI.gene_I(customer_index_I)) 

 

                Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I 

                Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I 

                Indv_DI.wait_time_I(customer_index_I) = 0.0 

 

                temp_travel_I += Installation_Time_I 

                total_travel_I += Installation_Time_I 

 

            Else 

 

                vehicle_num_I = vehicle_num_I + 1 

 

                temp_wait = arr_time_D(Indv_DI.gene_I(customer_index_I + 1)) 

- Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_index_I + 1)) 

                temp_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I + 

1)) 

                total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_D.Length) + Distance(Indv_DI.gene_D.Length, Indv

_DI.gene_I(customer_index_I + 1)) + _ 

                temp_wait 

 

                Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I 

                Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I 

                Indv_DI.wait_time_I(customer_index_I + 1) = temp_wait 

 

                temp_travel_I += Installation_Time_I 

                total_travel_I += Installation_Time_I 

 

            End If 

        Next 

 

        total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(Indv_DI.gen

e_I.Length - 1), Indv_DI.gene_D.Length) 

        Indv_DI.travel_time_I = total_travel_I 

        Indv_DI.fitness_DI = 1 / (Indv_DI.travel_time_I + Indv_DI.travel_time

_D + (Indv_DI.vehicle_D(Indv_DI.gene_D.Length - 1) * 100.0) + (Indv_DI.vehicl

e_I(Indv_DI.gene_I.Length - 1) * 100.0)) 

 

        Return Indv_DI 

 

    End Function 

 

 

End Module 
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Table C.6 The program code in Improvement.vb. 

Module Improvement 

 

    'Fix initial solutions (main) 

    Sub fix_solution(ByRef POP_D(,) As Symbiotic_D, ByRef POP_I(,) As Symbiot

ic_I, ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_Size As Integer, ByVal Dist

ance(,) As Double, ByVal Customer_Demand() As Integer, ByVal Capacity_Vehicle

_D As Integer) 

 

        fix_solution_D(POP_D, Pop_Size, Distance, Customer_Demand, Capacity_V

ehicle_D) 

        fix_solution_DI(POP_DI, Pop_Size, Distance, Customer_Demand, Capacity

_Vehicle_D) 

 

    End Sub 

 

 

    'Fix initial solutions in subproblem D 

    Sub fix_solution_D(ByRef POP_D(,) As Symbiotic_D, ByVal Pop_Size As Integ

er, ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal Ca

pacity_Vehicle_D As Integer) 

 

        Dim i, j, k, l As Integer 

        Dim temp_gene As Integer 

        Dim temp_dist As Double 

        Dim temp_load As Integer 

        Dim short_gene As Integer 

 

        For i = 0 To Pop_Size - 1 

            For j = 0 To Pop_Size - 1 

                temp_load = 0 

                For k = 0 To POP_D(0, 0).gene_D.Length - 2 

                    temp_dist = 99999999 

                    short_gene = 99999999 

                    temp_load = temp_load + Customer_Demand(POP_D(i, j).gene_

D(k)) 

                    For l = k + 1 To POP_D(0, 0).gene_D.Length - 1 

                        If temp_dist > Distance(POP_D(i, j).gene_D(k), POP_D

(i, j).gene_D(l)) Then 

                            short_gene = l 

                            temp_dist = Distance(POP_D(i, j).gene_D(k), POP_D

(i, j).gene_D(l)) 

                        End If 

                    Next 

 

                    If temp_load + Customer_Demand(POP_D(i, j).gene_D(short_g

ene)) <= Capacity_Vehicle_D Then 

                        temp_gene = POP_D(i, j).gene_D(k + 1) 

                        POP_D(i, j).gene_D(k + 1) = POP_D(i, j).gene_D(short_

gene) 

                        POP_D(i, j).gene_D(short_gene) = temp_gene 

                    Else 

                        temp_load = 0 

                    End If 

                Next 

            Next 

        Next 

 

    End Sub 
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    'Fix initial solutions in POP-DI 

    Sub fix_solution_DI(ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_Size As I

nteger, ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVa

l Capacity_Vehicle_D As Integer) 

 

        Dim i, j, k, l As Integer 

        Dim temp_gene As Integer 

        Dim temp_dist As Double 

        Dim temp_load As Integer 

        Dim short_gene As Integer 

 

 

        For i = 0 To Pop_Size - 1 

            For j = 0 To Pop_Size - 1 

                temp_load = 0 

                For k = 0 To POP_DI(0, 0).gene_D.Length - 2 

                    temp_dist = 99999999 

                    short_gene = 99999999 

                    temp_load = temp_load + Customer_Demand(POP_DI(i, j).gene

_D(k)) 

                    For l = k + 1 To POP_DI(0, 0).gene_D.Length - 1 

                        If temp_dist > Distance(POP_DI(i, j).gene_D(k), POP_D

I(i, j).gene_D(l)) Then 

                            short_gene = l 

                            temp_dist = Distance(POP_DI(i, j).gene_D(k), POP_

DI(i, j).gene_D(l)) 

                        End If 

                    Next 

 

                    If temp_load + Customer_Demand(POP_DI(i, j).gene_D(short_

gene)) <= Capacity_Vehicle_D Then 

                        temp_gene = POP_DI(i, j).gene_D(k + 1) 

                        POP_DI(i, j).gene_D(k + 1) = POP_DI(i, j).gene_D(shor

t_gene) 

                        POP_DI(i, j).gene_D(short_gene) = temp_gene 

                    Else 

                        temp_load = 0 

                    End If 

                Next 

            Next 

        Next 

 

    End Sub 

 

End Module 
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Table C.7 The program code in Evolution_D.vb. 

Module Evolution_D 

 

    'Evolution of Nb_D (main function) 

    Sub evolve_D(ByRef Nb_D(,) As Symbiotic_D, ByRef Nb_I(,) As Symbiotic_I, 

ByVal Crossover_Rate As Single, _ 

    ByVal Mutation_Rate As Single, ByVal Capacity_Vehicle_D As Integer, ByVal

 Max_Operation_Time As Double, _ 

    ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal In

stallation_Time_I As Double, _ 

    ByVal Service_Level As Double) 

 

        Dim temp_Nb_D(2, 2) As Symbiotic_D 

        Dim temp_ind_D As Symbiotic_D 

        Dim temp_ind_I As Symbiotic_I 

 

        Dim selection_set As Pair 

 

        Dim offspring As Symbiotic_D 

        Dim compete_indv As Location_Index 

        Dim rand_value As Double 

        Dim i, j, k As Integer 

 

        Dim num_xover As Integer = 18 

 

 

        'Duplicate Neighborhood D  

        For i = 0 To 2 

            For j = 0 To 2 

                temp_Nb_D(i, j) = define_individual_D(Nb_D(0, 0).gene_D.Lengt

h) 

                temp_Nb_D(i, j) = Nb_D(i, j) 

            Next 

        Next 

 

        'Crossover 

        For i = 0 To num_xover 

            rand_value = Rnd() 

            If rand_value <= Crossover_Rate Then 

                'Create parent set for crossover 

                selection_set = select_pair_D(temp_Nb_D) 

 

                offspring = crossover_D(temp_Nb_D(selection_set.p1.loc_X, sel

ection_set.p1.loc_Y), temp_Nb_D(selection_set.p2.loc_X, _ 

                selection_set.p2.loc_Y)) 

 

                'Select a neighhor to compete with offspring randomly 

                compete_indv = roulette_inverse_D(Nb_D) 

 

                'replace with comparing fitness 

                Nb_D(compete_indv.loc_X, compete_indv.loc_Y) = compare_D(Nb_D

(compete_indv.loc_X, compete_indv.loc_Y), offspring, _ 

                Nb_I(compete_indv.loc_X, compete_indv.loc_Y), Capacity_Vehicl

e_D, Max_Operation_Time, Distance, Customer_Demand, Installation_Time_I, Serv

ice_Level) 

            End If 

        Next 

 

        'Mutation  

        For i = 0 To 2 

            For j = 0 To 2 

                rand_value = Rnd() 
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                If rand_value <= Mutation_Rate Then 

                    k = 0 

                    For k = 0 To 3 

                        temp_ind_D = Nb_D(i, j) 

                        temp_ind_I = Nb_I(i, j) 

 

                        temp_ind_D = mutation_D(temp_ind_D) 

 

                        Nb_D(i, j) = fitness_sub_D(Nb_D(i, j), Capacity_Vehic

le_D, Max_Operation_Time, Customer_Demand, Distance) 

                        Nb_I(i, j) = fitness_sub_I(Nb_D(i, j), Nb_I(i, j), In

stallation_Time_I, Service_Level, Max_Operation_Time, Distance) 

                        Nb_D(i, j).fitness_D = Nb_I(i, j).fitness_I 

 

                        temp_ind_D = fitness_sub_D(temp_ind_D, Capacity_Vehic

le_D, Max_Operation_Time, Customer_Demand, Distance) 

                        temp_ind_I = fitness_sub_I(temp_ind_D, temp_ind_I, In

stallation_Time_I, Service_Level, Max_Operation_Time, Distance) 

                        temp_ind_D.fitness_D = temp_ind_I.fitness_I 

 

                        If temp_ind_D.fitness_D > Nb_D(i, j).fitness_D Then 

                            Nb_D(i, j) = temp_ind_D 

                            Nb_I(i, j) = temp_ind_I 

                            k = 3 

                        Else 

                            k = k + 1 

                        End If 

                    Next 

                End If 

            Next 

        Next 

 

    End Sub 

 

 

    'Create set of parents for crossover 

    Function select_pair_D(ByVal Nb_D(,) As Symbiotic_D) 

 

        Dim selection_set As Pair 

 

        selection_set.p1 = roulette_D(Nb_D) 

        selection_set.p2 = roulette_D(Nb_D) 

 

        While selection_set.p1.loc_X = selection_set.p2.loc_X And selection_s

et.p1.loc_Y = selection_set.p2.loc_Y 

            selection_set.p2 = roulette_D(Nb_D) 

        End While 

 

        Return selection_set 

 

    End Function 

 

 

    'Select good individual with probability 

    Function roulette_D(ByVal Nb_D(,) As Symbiotic_D) 

 

        Dim selected_loc As Location_Index 

        Dim i, j As Integer 

        Dim rand_value As Double 

        Dim temp_cur_fitness As Double 

        Dim temp_sum_fitness As Double 

 

        temp_sum_fitness = 0.0 
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        For i = 0 To 2 

            For j = 0 To 2 

                temp_sum_fitness += Nb_D(i, j).fitness_D 

            Next 

        Next 

 

        rand_value = Rnd() 

        temp_cur_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + (Nb_D(i, j).fitness_D / temp_sum_fitness) Then 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 

                End If 

                temp_cur_fitness += (Nb_D(i, j).fitness_D / temp_sum_fitness) 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 

 

 

    'Select bad individual with probability 

    Function roulette_inverse_D(ByVal Nb_D(,) As Symbiotic_D) 

 

        Dim selected_loc As Location_Index 

 

        Dim i, j As Integer 

        Dim rand_value As Double 

        Dim temp_cur_fitness As Double 

        Dim temp_sum_fitness As Double 

 

        temp_sum_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_sum_fitness += 1 / Nb_D(i, j).fitness_D 

            Next 

        Next 

 

        rand_value = Rnd() 

        temp_cur_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + ((1 / Nb_D(i, j).fitness_D) / temp_sum_fitness) Then 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 

                End If 

                temp_cur_fitness += ((1 / Nb_D(i, j).fitness_D) / temp_sum_fi

tness) 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 
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    'Select worst individual in neighborhood 

    Function select_worst_D(ByVal Nb_D(,) As Symbiotic_D) 

 

        Dim selected_loc As Location_Index 

 

        Dim i, j As Integer 

        Dim temp_fitness As Double 

 

 

        temp_fitness = 0.0 

 

        selected_loc.loc_X = 0 

        selected_loc.loc_Y = 0 

        For i = 0 To 2 

            For j = 0 To 2 

                If Nb_D(i, j).fitness_D > temp_fitness Then 

                    temp_fitness = Nb_D(i, j).fitness_D 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 

                End If 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 

 

 

    'Crossover (2 steps) 

    Function crossover_D(ByVal Nb_D1 As Symbiotic_D, ByVal Nb_D2 As Symbiotic

_D) 

 

        Dim temp_child As Symbiotic_D 

 

        temp_child = xover_hybrid_p1_D(Nb_D1) 

        temp_child = xover_hybrid_p2_D(Nb_D2, temp_child) 

 

        'Add different crossover functions below with "if ~ endif" 

 

        Return temp_child 

 

    End Function 

 

    'Crossover with the parent 1 (step 1) 

    Function xover_hybrid_p1_D(ByVal Nb_D1 As Symbiotic_D) 

 

        Dim temp_child As Symbiotic_D 

 

        Dim temp_gene(Nb_D1.gene_D.Length - 1) As Integer 

        Dim num_vehicle_used As Integer 

        Dim selected_vehicle As Integer 

        Dim temp_count4child As Integer 

        Dim temp_count4remain As Integer 

        Dim one_cut_point As Integer 

 

        Dim i As Integer 

 

        'temp_child = define_individual_D(temp_child, Nb_D1.gene_D.Length) 

        temp_child = define_individual_D(Nb_D1.gene_D.Length) 

 

        'Vehicle selection based crossover 

        num_vehicle_used = Nb_D1.vehicle_D(Nb_D1.gene_D.Length - 1) 
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        selected_vehicle = CInt(Int((Rnd() * (num_vehicle_used - 1))) + 1) 

 

 

        temp_count4child = 0 

        temp_count4remain = 0 

 

        For i = 0 To Nb_D1.gene_D.Length - 1 

            If Nb_D1.vehicle_D(i) = selected_vehicle Then 

                temp_child.gene_D(temp_count4child) = Nb_D1.gene_D(i) 

                temp_count4child += 1 

            Else 

                temp_gene(temp_count4remain) = Nb_D1.gene_D(i) 

                temp_count4remain += 1 

            End If 

        Next 

 

        'One cut point crossover 

         one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1) 

 

        For i = 0 To one_cut_point 

            temp_child.gene_D(temp_count4child) = temp_gene(i) 

            temp_count4child += 1 

        Next 

 

        For i = temp_count4child To Nb_D1.gene_D.Length - 1 

            temp_child.gene_D(i) = -1 

        Next 

 

        Return temp_child 

 

    End Function 

 

 

    'Crossover with the parent 2 (step 2) 

    Function xover_hybrid_p2_D(ByVal Nb_D2 As Symbiotic_D, ByRef temp_child A

s Symbiotic_D) 

 

        Dim i, j, k As Integer 

        Dim plag As Boolean 

 

        For i = 0 To Nb_D2.gene_D.Length - 1 

            plag = False 

 

            If temp_child.gene_D(i) = -1 Then 

                k = 0 

                While temp_child.gene_D(i) = -1 

                    For j = 0 To i - 1 

                        If Nb_D2.gene_D(k) = temp_child.gene_D(j) Then 

                            plag = True 

                        End If 

                    Next 

 

                    If plag Then 

                        plag = False 

                        k += 1 

                    Else 

                        temp_child.gene_D(i) = Nb_D2.gene_D(k) 

                    End If 

                End While 

 

            End If 
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        Next 

 

        Return temp_child 

    End Function 

 

 

    'Decide whether new offspring can enter neighborhood or not 

    Function compare_D(ByRef Indv_D As Symbiotic_D, ByRef offspring As Symbio

tic_D, ByRef Indv_I As Symbiotic_I, ByVal Capacity_Vehicle_D As Integer, _ 

    ByVal Max_Operation_Time As Double, ByVal Distance(,) As Double, ByVal Cu

stomer_Demand() As Integer, ByVal Installation_Time_I As Double, _ 

    ByVal Service_Level As Double) 

 

        Dim temp_Indv_I As Symbiotic_I 

 

        temp_Indv_I = define_individual_I(Indv_I.gene_I.Length) 

 

        temp_Indv_I = copy_I2I(temp_Indv_I, Indv_I) 

        offspring = fitness_sub_D(offspring, Capacity_Vehicle_D, Max_Operatio

n_Time, Customer_Demand, Distance) 

        temp_Indv_I = fitness_sub_I(offspring, temp_Indv_I, Installation_Time

_I, Service_Level, Max_Operation_Time, Distance) 

        offspring.fitness_D = temp_Indv_I.fitness_I 

 

        If offspring.travel_time_D < Indv_D.travel_time_D Then 

            Indv_D = offspring 

            Main.sum_entr_sol = Main.sum_entr_sol + 1 

        End If 

 

        Return Indv_D 

 

    End Function 

 

 

    'Mutation 

    Function mutation_D(ByRef Indv_D As Symbiotic_D) 

 

        Indv_D = mutation_exchange_D(Indv_D) 

 

        'Add different mutation functions below with "if ~ endif" 

 

        Return Indv_D 

 

    End Function 

 

 

    'Mutation (exchange mutation) 

    Function mutation_exchange_D(ByRef Indv_D As Symbiotic_D) 

 

        Dim rand_select_1 As Integer 

        Dim rand_select_2 As Integer 

        Dim temp_gene As Integer 

 

        rand_select_1 = CInt(Int(Rnd() * (Indv_D.gene_D.Length - 1))) 

        rand_select_2 = rand_select_1 

 

        While (rand_select_2 = rand_select_1) 

            rand_select_2 = CInt(Int(Rnd() * (Indv_D.gene_D.Length - 1))) 

        End While 

 

        temp_gene = Indv_D.gene_D(rand_select_1) 

        Indv_D.gene_D(rand_select_1) = Indv_D.gene_D(rand_select_2) 



170 

 
        Indv_D.gene_D(rand_select_2) = temp_gene 

 

        Return Indv_D 

    End Function 

 

End Module 
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Table C.8 The program code in Evolution_I.vb. 

Module Evolution_I 

 

    'Evolution of Nb_I (main function) 

    Sub evolve_I(ByRef Nb_I(,) As Symbiotic_I, ByRef Nb_D(,) As Symbiotic_D, 

ByVal Crossover_Rate As Single, _ 

    ByVal Mutation_Rate As Single, ByVal Max_Operation_Time As Double, ByVal 

Distance(,) As Double, _ 

    ByVal Customer_Demand() As Integer, ByVal Installation_Time_I As Double, 

ByVal Service_Level As Double) 

 

        Dim temp_Nb_I(2, 2) As Symbiotic_I 

 

        Dim temp_ind_I As Symbiotic_I 

 

        Dim selection_set As Pair 

        Dim offspring As Symbiotic_I 

        Dim compete_indv As Location_Index 

        Dim i, j, k As Integer 

 

        Dim num_xover As Integer = 18 

 

 

        'Duplicate Neighborhood I 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_Nb_I(i, j) = define_individual_I(Nb_I(0, 0).gene_I.Lengt

h) 

                temp_Nb_I(i, j) = copy_I2I(temp_Nb_I(i, j), Nb_I(i, j)) 

            Next 

        Next 

 

        'Crossover 

        For i = 0 To num_xover 

            If Rnd() <= Crossover_Rate Then 

                'Create set of parent set for crossover 

                selection_set = select_pair_I(temp_Nb_I) 

 

                offspring = crossover_I(temp_Nb_I(selection_set.p1.loc_X, sel

ection_set.p1.loc_Y), temp_Nb_I(selection_set.p2.loc_X, _ 

                selection_set.p2.loc_Y)) 

 

                'Select a neighhor to compete with offspring randomly 

                compete_indv = roulette_inverse_I(Nb_I) 

 

                compare_I(Nb_I(compete_indv.loc_X, compete_indv.loc_Y), offsp

ring, Nb_D(compete_indv.loc_X, compete_indv.loc_Y), _ 

                Max_Operation_Time, Distance, Installation_Time_I, Service_Le

vel) 

            End If 

        Next 

 

        'Mutation  

        For i = 0 To 2 

            For j = 0 To 2 

                If Rnd() <= Mutation_Rate Then 

                    k = 0 

                    For k = 0 To 3 

                        temp_ind_I = Nb_I(i, j) 

                        temp_ind_I = mutation_I(temp_ind_I) 

 

                        Nb_I(i, j) = fitness_sub_I(Nb_D(i, j), Nb_I(i, j), In
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stallation_Time_I, Service_Level, Max_Operation_Time, Distance) 

 

                        temp_ind_I = fitness_sub_I(Nb_D(i, j), temp_ind_I, In

stallation_Time_I, Service_Level, Max_Operation_Time, Distance) 

 

                        If temp_ind_I.fitness_I > Nb_I(i, j).fitness_I Then 

                            Nb_I(i, j) = temp_ind_I 

                            Nb_D(i, j).fitness_D = temp_ind_I.fitness_I 

                            k = 3 

                        Else 

                            k = k + 1 

                        End If 

                    Next 

                End If 

            Next 

        Next 

 

    End Sub 

 

 

    'Create set of parents for crossover 

    Function select_pair_I(ByVal Nb_I(,) As Symbiotic_I) 

 

        Dim selection_set As Pair 

 

        selection_set.p1 = roulette_I(Nb_I) 

        selection_set.p2 = roulette_I(Nb_I) 

 

        While selection_set.p1.loc_X = selection_set.p2.loc_X And selection_s

et.p1.loc_Y = selection_set.p2.loc_Y 

            selection_set.p2 = roulette_I(Nb_I) 

        End While 

 

        Return selection_set 

 

    End Function 

 

 

    'Select good individual with probability 

    Function roulette_I(ByVal Nb_I(,) As Symbiotic_I) 

 

        Dim selected_loc As Location_Index 

        Dim i, j As Integer 

        Dim rand_value As Double 

        Dim temp_cur_fitness As Double 

        Dim temp_sum_fitness As Double 

 

        temp_sum_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_sum_fitness += Nb_I(i, j).fitness_I 

            Next 

        Next 

 

        rand_value = Rnd() 

        temp_cur_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + (Nb_I(i, j).fitness_I / temp_sum_fitness) Then 

                    selected_loc.loc_X = i 
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                    selected_loc.loc_Y = j 

                End If 

                temp_cur_fitness += (Nb_I(i, j).fitness_I / temp_sum_fitness) 

            Next 

        Next 

 

        Return selected_loc 

    End Function 

 

    ''Select bad individual with probability 

    Function roulette_inverse_I(ByVal Nb_I(,) As Symbiotic_I) 

 

        Dim selected_loc As Location_Index 

 

        Dim i, j As Integer 

        Dim rand_value As Double 

        Dim temp_cur_fitness As Double 

        Dim temp_sum_fitness As Double 

 

        temp_sum_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_sum_fitness += 1 / Nb_I(i, j).fitness_I 

            Next 

        Next 

 

        rand_value = Rnd() 

 

        temp_cur_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + ((1 / Nb_I(i, j).fitness_I) / temp_sum_fitness) Then 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 

                End If 

                temp_cur_fitness += ((1 / Nb_I(i, j).fitness_I) / temp_sum_fi

tness) 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 

 

 

    'Select worst individual in neighborhood 

    Function select_worst_I(ByVal Nb_I(,) As Symbiotic_I) 

 

        Dim selected_loc As Location_Index 

 

        Dim i, j As Integer 

        Dim temp_fitness As Double 

 

 

        temp_fitness = 0.0 

 

        selected_loc.loc_X = 0 

        selected_loc.loc_Y = 0 

        For i = 0 To 2 

            For j = 0 To 2 
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                If Nb_I(i, j).fitness_I > temp_fitness Then 

                    temp_fitness = Nb_I(i, j).fitness_I 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 

                End If 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 

 

    'Crossover (2 steps) 

    Function crossover_I(ByVal Nb_I1 As Symbiotic_I, ByVal Nb_I2 As Symbiotic

_I) 

 

        Dim temp_child As Symbiotic_I 

 

        temp_child = xover_hybrid_p1_I(Nb_I1) 

        temp_child = xover_hybrid_p2_I(Nb_I2, temp_child) 

 

        'Add different crossover functions below with "if ~ endif" 

 

        Return temp_child 

 

    End Function 

 

 

    'Crossover with the parent 1 (step 1) 

    Function xover_hybrid_p1_I(ByVal Nb_I1 As Symbiotic_I) 

 

        Dim temp_child As Symbiotic_I 

 

        Dim temp_gene(Nb_I1.gene_I.Length - 1) As Integer 

        Dim num_vehicle_used As Integer 

        Dim selected_vehicle As Integer 

        Dim temp_count4child As Integer 

        Dim temp_count4remain As Integer 

        Dim one_cut_point As Integer 

 

        Dim i As Integer 

 

        temp_child = define_individual_I(Nb_I1.gene_I.Length) 

 

        'Vehicle selection based crossover 

        num_vehicle_used = Nb_I1.vehicle_I(Nb_I1.gene_I.Length - 1) 

 

        selected_vehicle = CInt(Int((Rnd() * num_vehicle_used - 1)) + 1) 

 

        temp_count4child = 0 

        temp_count4remain = 0 

 

        For i = 0 To Nb_I1.gene_I.Length - 1 

            If Nb_I1.vehicle_I(i) = selected_vehicle Then 

                temp_child.gene_I(temp_count4child) = Nb_I1.gene_I(i) 

                temp_count4child += 1 

            Else 

                temp_gene(temp_count4remain) = Nb_I1.gene_I(i) 

                temp_count4remain += 1 

            End If 

        Next 

 

        'One cut point crossover 
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        one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1) 

 

        For i = 0 To one_cut_point 

            temp_child.gene_I(temp_count4child) = temp_gene(i) 

            temp_count4child += 1 

        Next 

 

        For i = temp_count4child To Nb_I1.gene_I.Length - 1 

            temp_child.gene_I(i) = -1 

        Next 

 

        Return temp_child 

 

    End Function 

 

 

    'Crossover with the parent 2 (step 2) 

    Function xover_hybrid_p2_I(ByVal Nb_I2 As Symbiotic_I, ByRef temp_child A

s Symbiotic_I) 

 

        Dim i, j, k As Integer 

        Dim plag As Boolean 

 

        For i = 0 To Nb_I2.gene_I.Length - 1 

            plag = False 

            If temp_child.gene_I(i) = -1 Then 

                k = 0 

                While temp_child.gene_I(i) = -1 

                    For j = 0 To i - 1 

                        If Nb_I2.gene_I(k) = temp_child.gene_I(j) Then 

                            plag = True 

                        End If 

                    Next 

 

                    If plag Then 

                        plag = False 

                        k += 1 

                    Else 

                        temp_child.gene_I(i) = Nb_I2.gene_I(k) 

                    End If 

                End While 

            End If 

        Next 

 

        Return temp_child 

 

    End Function 

 

     

    'Decide whether new offspring can enter neighborhood or not 

    Function compare_I(ByRef Indv_I As Symbiotic_I, ByRef offspring As Symbio

tic_I, ByRef Indv_D As Symbiotic_D, ByVal Max_Operation_Time As Double, _ 

    ByVal Distance(,) As Double, ByVal Installation_Time_I As Double, ByVal S

ervice_Level As Double) 

 

        offspring = fitness_sub_I(Indv_D, offspring, Installation_Time_I, Ser

vice_Level, Max_Operation_Time, Distance) 

 

        If offspring.fitness_I > Indv_I.fitness_I Then 

            Indv_I = copy_I2I(Indv_I, offspring) 

            Indv_D.fitness_D = offspring.fitness_I 

 

            Main.sum_entr_sol = Main.sum_entr_sol + 1 
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        End If 

 

        Return Indv_I 

 

    End Function 

 

 

    'Mutation 

    Function mutation_I(ByRef Indv_I As Symbiotic_I) 

 

        Indv_I = mutation_exchange_I(Indv_I) 

 

        'Add different mutation functions below with "if ~ endif" 

 

        Return Indv_I 

 

    End Function 

 

 

    'Mutation (exchange mutation) 

    Function mutation_exchange_I(ByRef Indv_I As Symbiotic_I) 

 

        Dim rand_select_1 As Integer 

        Dim rand_select_2 As Integer 

        Dim temp_gene As Integer 

 

        rand_select_1 = CInt(Int(Rnd() * (Indv_I.gene_I.Length - 1))) 

        rand_select_2 = rand_select_1 

 

        While (rand_select_2 = rand_select_1) 

            rand_select_2 = CInt(Int(Rnd() * (Indv_I.gene_I.Length - 1))) 

        End While 

 

        temp_gene = Indv_I.gene_I(rand_select_1) 

        Indv_I.gene_I(rand_select_1) = Indv_I.gene_I(rand_select_2) 

        Indv_I.gene_I(rand_select_2) = temp_gene 

 

        Return Indv_I 

 

    End Function 

 

End Module 
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Table C.9 The program code in Evoltuion_DI.vb. 

Module Evolution_DI 

 

 

    'Evolution of Nb_DI(main function) 

    Sub evolve_DI(ByRef Nb_DI(,) As Endosymbiotic, ByVal Crossover_Rate As Si

ngle, _ 

    ByVal Mutation_Rate As Single, ByVal Capacity_Vehicle_D As Integer, ByVal

 Max_Operation_Time As Double, _ 

    ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal In

stallation_Time_I As Double, _ 

    ByVal Service_Level As Double) 

 

        Dim temp_Nb_DI(2, 2) As Endosymbiotic 

        Dim temp_ind_DI As Endosymbiotic 

 

        Dim selection_set As Pair 

        Dim offspring As Endosymbiotic 

        Dim compete_indv As Location_Index 

        Dim i, j, k As Integer 

 

        Dim num_xover As Integer = 18 

 

        'Duplicate Neighborhood DI 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_Nb_DI(i, j) = define_individual_DI(Nb_DI(0, 0).gene_D.Le

ngth, Nb_DI(0, 0).gene_I.Length) 

                temp_Nb_DI(i, j) = copy_DI2DI(temp_Nb_DI(i, j), Nb_DI(i, j)) 

            Next 

        Next 

 

        'Crossover 

        For i = 0 To num_xover 

            If Rnd() < Crossover_Rate Then 

                'Create parent set for crossover 

                selection_set = select_pair_DI(Nb_DI) 

 

                offspring = crossover_DI(Nb_DI(selection_set.p1.loc_X, select

ion_set.p1.loc_Y), Nb_DI(selection_set.p2.loc_X, _ 

                selection_set.p2.loc_Y)) 

 

                'Select a neighhor to compete with offspring randomly 

                compete_indv = roulette_inverse_DI(Nb_DI) 

 

                compare_DI(Nb_DI(compete_indv.loc_X, compete_indv.loc_Y), off

spring, Capacity_Vehicle_D, Max_Operation_Time, _ 

                Distance, Customer_Demand, Installation_Time_I, Service_Leve

l) 

            End If 

        Next 

 

        'Mutation  

        For i = 0 To 2 

            For j = 0 To 2 

                If Rnd() < Mutation_Rate Then 

                    k = 0 

                    For k = 0 To 3 

                        temp_ind_DI = Nb_DI(i, j) 

                        temp_ind_DI = mutation_DI(temp_ind_DI) 

 

                        temp_ind_DI = fitness_etr_D(temp_ind_DI, Capacity_Veh
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icle_D, Max_Operation_Time, Customer_Demand, Distance) 

                        temp_ind_DI = fitness_etr_I(temp_ind_DI, Installation

_Time_I, Service_Level, Max_Operation_Time, Distance) 

 

                        If temp_ind_DI.fitness_DI > Nb_DI(i, j).fitness_DI Th

en 

                            Nb_DI(i, j) = temp_ind_DI 

                            k = 3 

                        Else 

                            k = k + 1 

                        End If 

                    Next 

                End If 

            Next 

        Next 

 

    End Sub 

 

 

    'Create set of parent for crossover 

    Function select_pair_DI(ByVal Nb_DI(,) As Endosymbiotic) 

 

        Dim selection_set As Pair 

 

        selection_set.p1 = roulette_DI(Nb_DI) 

        selection_set.p2 = roulette_DI(Nb_DI) 

 

        While selection_set.p1.loc_X = selection_set.p2.loc_X And selection_s

et.p1.loc_Y = selection_set.p2.loc_Y 

            selection_set.p2 = roulette_DI(Nb_DI) 

        End While 

 

        Return selection_set 

 

    End Function 

 

 

    'Select good individual with probability 

    Function roulette_DI(ByVal Nb_DI(,) As Endosymbiotic) 

 

        Dim selected_loc As Location_Index 

        Dim i, j As Integer 

        Dim rand_value As Double 

        Dim temp_cur_fitness As Double 

        Dim temp_sum_fitness As Double 

 

        temp_sum_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_sum_fitness += Nb_DI(i, j).fitness_DI 

            Next 

        Next 

 

        rand_value = Rnd() 

        temp_cur_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + (Nb_DI(i, j).fitness_DI / temp_sum_fitness) Then 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 
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                End If 

                temp_cur_fitness += (Nb_DI(i, j).fitness_DI / temp_sum_fitnes

s) 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 

 

 

    'Select bad individual with probability 

    Function roulette_inverse_DI(ByVal Nb_DI(,) As Endosymbiotic) 

 

        Dim selected_loc As Location_Index 

 

        Dim i, j As Integer 

        Dim rand_value As Double 

        Dim temp_cur_fitness As Double 

        Dim temp_sum_fitness As Double 

 

        temp_sum_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                temp_sum_fitness += 1 / Nb_DI(i, j).fitness_DI 

            Next 

        Next 

 

        rand_value = Rnd() 

        temp_cur_fitness = 0.0 

 

        For i = 0 To 2 

            For j = 0 To 2 

                If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + ((1 / Nb_DI(i, j).fitness_DI) / temp_sum_fitness) Then 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 

                End If 

                temp_cur_fitness += ((1 / Nb_DI(i, j).fitness_DI) / temp_sum_

fitness) 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 

 

    'Select worst individual in neighborhood 

    Function select_worst_DI(ByVal Nb_DI(,) As Endosymbiotic) 

 

        Dim selected_loc As Location_Index 

 

        Dim i, j As Integer 

        Dim temp_fitness As Double 

 

        temp_fitness = 0.0 

 

        selected_loc.loc_X = 0 

        selected_loc.loc_Y = 0 

        For i = 0 To 2 

            For j = 0 To 2 

                If Nb_DI(i, j).fitness_DI > temp_fitness Then 
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                    temp_fitness = Nb_DI(i, j).fitness_DI 

                    selected_loc.loc_X = i 

                    selected_loc.loc_Y = j 

                End If 

            Next 

        Next 

 

        Return selected_loc 

 

    End Function 

 

 

    'Crossover (2 steps) 

    Function crossover_DI(ByVal Nb_DI1 As Endosymbiotic , ByVal Nb_DI2 As End

osymbiotic) 

 

        Dim temp_child As Endosymbiotic 

 

        temp_child = xover_hybrid_p1_DI(Nb_DI1) 

        temp_child = xover_hybrid_p2_DI(Nb_DI2, temp_child) 

 

        'Add different crossover functions below with "if ~ endif" 

 

        Return temp_child 

 

    End Function 

 

 

    'Crossover with the parent 1 (step 1) 

    Function xover_hybrid_p1_DI(ByVal Nb_DI1 As Endosymbiotic) 

 

        Dim temp_child As Endosymbiotic 

 

        Dim temp_gene_D(Nb_DI1.gene_D.Length - 1) As Integer 

        Dim temp_gene_I(Nb_DI1.gene_I.Length - 1) As Integer 

 

        Dim num_vehicle_used As Integer 

        Dim selected_vehicle As Integer 

 

        Dim temp_count4child As Integer 

        Dim temp_count4remain As Integer 

        Dim one_cut_point As Integer 

 

        Dim i As Integer 

 

        temp_child = define_individual_DI(Nb_DI1.gene_D.Length, Nb_DI1.gene_

I.Length) 

 

        'Vehicle selection based crossover for part D 

        num_vehicle_used = Nb_DI1.vehicle_D(Nb_DI1.gene_D.Length - 1) 

 

        selected_vehicle = CInt(Int((Rnd() * num_vehicle_used - 1)) + 1) 

 

        temp_count4child = 0 

        temp_count4remain = 0 

 

        For i = 0 To Nb_DI1.gene_D.Length - 1 

            If Nb_DI1.vehicle_D(i) = selected_vehicle Then 

                temp_child.gene_D(temp_count4child) = Nb_DI1.gene_D(i) 

                temp_count4child += 1 

            Else 

                temp_gene_D(temp_count4remain) = Nb_DI1.gene_D(i) 

                temp_count4remain += 1 
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            End If 

        Next 

 

        'One cut point crossover for part D 

        one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1) 

 

        For i = 0 To one_cut_point 

            temp_child.gene_D(temp_count4child) = temp_gene_D(i) 

            temp_count4child += 1 

        Next 

 

        For i = temp_count4child To Nb_DI1.gene_D.Length - 1 

            temp_child.gene_D(i) = -1 

        Next 

 

        'Vehicle selection based crossover for part I 

        num_vehicle_used = Nb_DI1.vehicle_I(Nb_DI1.gene_I.Length - 1) 

 

        selected_vehicle = CInt(Int((Rnd() * num_vehicle_used - 1)) + 1) 

 

        temp_count4child = 0 

        temp_count4remain = 0 

 

        For i = 0 To Nb_DI1.gene_I.Length - 1 

            If Nb_DI1.vehicle_I(i) = selected_vehicle Then 

                temp_child.gene_I(temp_count4child) = Nb_DI1.gene_I(i) 

                temp_count4child += 1 

            Else 

                temp_gene_I(temp_count4remain) = Nb_DI1.gene_I(i) 

                temp_count4remain += 1 

            End If 

        Next 

 

        'One cut point crossover for part I 

        one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1) 

 

        For i = 0 To one_cut_point 

            temp_child.gene_I(temp_count4child) = temp_gene_I(i) 

            temp_count4child += 1 

        Next 

 

        For i = temp_count4child To Nb_DI1.gene_I.Length - 1 

            temp_child.gene_I(i) = -1 

        Next 

 

        Return temp_child 

 

    End Function 

 

 

    'Crossover with the parent 2 (step 2) 

    Function xover_hybrid_p2_DI(ByVal Nb_DI2 As Endosymbiotic, ByRef temp_chi

ld As Endosymbiotic) 

 

        Dim i, j, k As Integer 

        Dim plag As Boolean 

 

        'For part D 

        For i = 0 To Nb_DI2.gene_D.Length - 1 

            plag = False 

            If temp_child.gene_D(i) = -1 Then 

                k = 0 

                While temp_child.gene_D(i) = -1 
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                    For j = 0 To i - 1 

                        If Nb_DI2.gene_D(k) = temp_child.gene_D(j) Then 

                            plag = True 

                        End If 

                    Next 

 

                    If plag Then 

                        plag = False 

                        k += 1 

                    Else 

                        temp_child.gene_D(i) = Nb_DI2.gene_D(k) 

                    End If 

                End While 

            End If 

        Next 

 

        'For part I 

        For i = 0 To Nb_DI2.gene_I.Length - 1 

            plag = False 

            If temp_child.gene_I(i) = -1 Then 

                k = 0 

                While temp_child.gene_I(i) = -1 

                    For j = 0 To i - 1 

                        If Nb_DI2.gene_I(k) = temp_child.gene_I(j) Then 

                            plag = True 

                        End If 

                    Next 

 

                    If plag Then 

                        plag = False 

                        k += 1 

                    Else 

                        temp_child.gene_I(i) = Nb_DI2.gene_I(k) 

                    End If 

                End While 

            End If 

        Next 

 

 

        Return temp_child 

 

    End Function 

 

 

    'Decide whether new offspring can enter neighborhood or not 

    Function compare_DI(ByRef Indv_DI As Endosymbiotic, ByRef offspring As En

dosymbiotic, ByVal Capacity_Vehicle_D As Integer, ByVal Max_Operation_Time As

 Double, _ 

    ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal In

stallation_Time_I As Double, ByVal Service_Level As Double) 

 

        offspring = fitness_etr_D(offspring, Capacity_Vehicle_D, Max_Operatio

n_Time, Customer_Demand, Distance) 

        offspring = fitness_etr_I(offspring, Installation_Time_I, Service_Lev

el, Max_Operation_Time, Distance) 

 

        If offspring.fitness_DI > Indv_DI.fitness_DI Then 

            Indv_DI = offspring 

 

            Main.sum_entr_sol = Main.sum_entr_sol + 1 

        End If 

 

        Return Indv_DI 
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    End Function 

 

     

    'Mutation 

    Function mutation_DI(ByRef Indv_DI As Endosymbiotic) 

 

        Indv_DI = mutation_exchange_DI(Indv_DI) 

 

        'Add different mutation functions below with "if ~ endif" 

 

        Return Indv_DI 

    End Function 

 

 

    'Mutation (exchange mutation) 

    Function mutation_exchange_DI(ByRef Indv_DI As Endosymbiotic) 

 

        Dim rand_select_1 As Integer 

        Dim rand_select_2 As Integer 

        Dim temp_gene As Integer 

 

        'Mutaion for part D 

        rand_select_1 = CInt(Int(Rnd() * (Indv_DI.gene_D.Length - 1))) 

        rand_select_2 = rand_select_1 

 

        While (rand_select_2 = rand_select_1) 

            rand_select_2 = CInt(Int(Rnd() * (Indv_DI.gene_D.Length - 1))) 

        End While 

 

        temp_gene = Indv_DI.gene_D(rand_select_1) 

        Indv_DI.gene_D(rand_select_1) = Indv_DI.gene_D(rand_select_2) 

        Indv_DI.gene_D(rand_select_2) = temp_gene 

 

        'Mutaion for part I 

        rand_select_1 = CInt(Int(Rnd() * (Indv_DI.gene_I.Length - 1))) 

        rand_select_2 = rand_select_1 

 

        While (rand_select_2 = rand_select_1) 

            rand_select_2 = CInt(Int(Rnd() * (Indv_DI.gene_I.Length - 1))) 

        End While 

 

        temp_gene = Indv_DI.gene_I(rand_select_1) 

        Indv_DI.gene_I(rand_select_1) = Indv_DI.gene_I(rand_select_2) 

        Indv_DI.gene_I(rand_select_2) = temp_gene 

 

        Return Indv_DI 

 

    End Function 

 

End Module 
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Table C.10 The program code in Dt_Input.vb. 

Module Dt_Input 

 

    'Load problem variables from input file 

    Function read_data(ByVal input_file As String, ByVal Dmd() As Integer, By

Val Dst(,) As Double, ByVal N_DCustomer As Integer, ByVal N_ICustomer As Inte

ger) 

 

        Dim i, j As Integer 

        Dim check_file As Boolean = True 

        Dim temp_Customer, temp_Check_Installation As Integer 

        Dim temp_Installation_time, temp_Timewindow_start, temp_Timewindow_en

d As Integer 

        Dim temp_Distance As Double 

 

        Try 

            FileOpen(1, input_file, OpenMode.Input) 

        Catch ex As Exception 

            MsgBox("Wrong file name") 

            check_file = False 

            FileClose(1) 

            GoTo END_FUNC 

        End Try 

 

        'read customer demand 

        For i = 0 To N_DCustomer - 1 

            Input(1, temp_Customer) 

 

            If i <> temp_Customer Then 

                MsgBox("Customer Index Incorrect!") 

            End If 

 

            Input(1, Dmd(i)) 

            Input(1, temp_Check_Installation) 

 

            If (i > N_ICustomer - 1 And temp_Check_Installation = 1) Or (i <=

 N_ICustomer - 1 And temp_Check_Installation = 0) Then 

                MsgBox("Installation Customer Index Mismatch!") 

            End If 

 

            'no need 3 value in EEA (only for HGA) 

            Input(1, temp_Installation_time) 

            Input(1, temp_Timewindow_start) 

            Input(1, temp_Timewindow_end) 

        Next 

 

 

        For i = 0 To N_DCustomer 

            Dst(i, i) = 0 

            For j = i + 1 To N_DCustomer 

                Input(1, temp_Distance) 

                Dst(i, j) = temp_Distance 

                Dst(j, i) = temp_Distance 

            Next 

        Next 

 

        FileClose(1) 

 

END_FUNC: 

        Return check_file 

 

    End Function 
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End Module 
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Table C.11 The program code in Dt_Output.vb. 

Module Dt_Output 

 

    'Initialize output file 

    Function Outfile_setup(ByVal current_trial As Integer, ByVal Num_Customer

_D As Integer, ByVal Num_Customer_I As Integer, ByVal Pop_size As Integer) 

 

        Dim temp_file_name As String 

 

        temp_file_name = "OT-" + CStr(Num_Customer_D) + "-" + CStr(Num_Custom

er_I) + "-" + CStr(Pop_size) + "-" + CStr(current_trial) + "-" 

 

        'Delete old file 

        If My.Computer.FileSystem.FileExists(temp_file_name + "Fnl.txt") Then 

            My.Computer.FileSystem.DeleteFile(temp_file_name + "Fnl.txt") 

        End If 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Fina

l solution of this problem " & vbCrLf & vbCrLf, True) 

 

         

        If My.Computer.FileSystem.FileExists(temp_file_name + "Upd.txt") Then 

            My.Computer.FileSystem.DeleteFile(temp_file_name + "Upd.txt") 

        End If 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Upd.txt", "Fitn

ess value at the improved generation " & vbCrLf & vbCrLf, True) 

 

 

        If My.Computer.FileSystem.FileExists(temp_file_name + "Pop-D.txt") Th

en 

            My.Computer.FileSystem.DeleteFile(temp_file_name + "Pop-D.txt") 

        End If 

        If My.Computer.FileSystem.FileExists(temp_file_name + "Pop-I.txt") Th

en 

            My.Computer.FileSystem.DeleteFile(temp_file_name + "Pop-I.txt") 

        End If 

        If My.Computer.FileSystem.FileExists(temp_file_name + "Pop-DI.txt") T

hen 

            My.Computer.FileSystem.DeleteFile(temp_file_name + "Pop-DI.txt") 

        End If 

 

 

 

        Return temp_file_name 

 

    End Function 

 

 

    'Record final results on output file 

    Sub final_report(ByVal best_solution As Endosymbiotic, ByVal elapsed_time

 As TimeSpan, ByVal temp_file_name As String) 

 

        Dim i As Integer 

        Dim temp_result As String 

        Dim temp_wait As Double 

 

        temp_result = "" 

 

 

        'Report for delivery vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Deli

very Vehicles" & vbCrLf & vbCrLf, True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Calc
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uation time : " & CStr(elapsed_time.TotalSeconds.ToString("0.00")) & vbCrLf &

 vbCrLf, True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Gene

 for Delivery Vehicles" & vbCrLf, True) 

 

        'Customer visiting order for delivery vehicles 

        For i = 0 To best_solution.gene_D.Length - 1 

            temp_result = temp_result + CStr(best_solution.gene_D(i)) + " " 

        Next 

 

        'Assigned delivery vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True) 

        temp_result = "" 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Assi

gned Delivery Vehicles" & vbCrLf, True) 

 

        For i = 0 To best_solution.gene_D.Length - 1 

            temp_result = temp_result + CStr(best_solution.vehicle_D(i)) + " 

" 

        Next 

 

        'Arrival times of delivery vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True) 

        temp_result = "" 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Arri

val Delivery Vehicles" & vbCrLf, True) 

 

        For i = 0 To best_solution.gene_D.Length - 1 

            temp_result = temp_result + CStr(best_solution.arrival_time_D(i))

 + " " 

        Next 

 

        'Traveling times of delivery vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True) 

        temp_result = "" 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Trav

eling time of Delivery vehicles" & vbCrLf, True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.travel_time_D) & vbCrLf & vbCrLf & vbCrLf & vbCrLf, True) 

        temp_result = "" 

 

 

        'Report for installation vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Inst

allation Vehicles" & vbCrLf & vbCrLf, True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Gene

 for Installation Vehicles" & vbCrLf, True) 

 

        For i = 0 To best_solution.gene_I.Length - 1 

            temp_result = temp_result + CStr(best_solution.gene_I(i)) + " " 

        Next 

 

        'Assigned installation vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True) 

        temp_result = "" 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Assi

gned Installation Vehicles" & vbCrLf, True) 

 

        For i = 0 To best_solution.gene_I.Length - 1 
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            temp_result = temp_result + CStr(best_solution.vehicle_I(i)) + " 

" 

        Next 

 

        'Arrival times of installation vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True) 

        temp_result = "" 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Arri

val Installation Vehicles" & vbCrLf, True) 

 

        For i = 0 To best_solution.gene_I.Length - 1 

            temp_result = temp_result + CStr(best_solution.arrival_time_I(i))

 + " " 

        Next 

 

        'Waitign times of installation vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True) 

        temp_result = "" 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Wait

ing time Installation Vehicles" & vbCrLf, True) 

        temp_wait = 0.0 

 

        For i = 0 To best_solution.gene_I.Length - 1 

            temp_wait += best_solution.wait_time_I(i) 

            temp_result = temp_result + CStr(best_solution.wait_time_I(i)) + 

" " 

        Next 

 

        'Traveling times of installation vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True) 

        temp_result = "" 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Trav

elling time of Installation vehicles" & vbCrLf, True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.travel_time_I - (10 * best_solution.gene_I.Length) - temp_wai

t) & vbCrLf & vbCrLf & vbCrLf, True) 

        temp_result = "" 

 

        'Traveling time of all vehicles 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Tota

l travelling time" & vbCrLf, True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.travel_time_D + best_solution.travel_time_I - (10 * best_solut

ion.gene_I.Length) - temp_wait) & vbCrLf & vbCrLf, True) 

        'Fitness values of best solutions 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Fitn

ess value" & vbCrLf, True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.fitness_DI), True) 

        'Number of generated offspring so far 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", vbCrL

f & vbCrLf & "Number of entered offspring : ", True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(Main.sum_entr_sol), True) 

        'Number of last generation 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", vbCrL

f & "Last generation : ", True) 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(Main.stop_gen), True) 
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    End Sub 

 

 

    'Report update record for any improvement 

    Function generation_record(ByVal current_generation As Integer, ByVal bes

t_solution As Endosymbiotic, ByRef temp_best_travel As Double, _ 

    ByRef temp_file_name As String, ByVal start_time As Date, ByRef end_time 

As Date) 

 

        Dim sum_wait As Double 

        Dim current_travel As Double 

        Dim i As Integer 

        Dim elapsed_time As TimeSpan 

        Dim sum_installation_time As Double 

 

        sum_installation_time = 10 * best_solution.gene_I.Length 

        sum_wait = 0.0 

 

        For i = 0 To best_solution.gene_I.Length - 1 

            sum_wait += best_solution.wait_time_I(i) 

        Next 

 

        current_travel = best_solution.travel_time_D + best_solution.travel_t

ime_I - sum_installation_time - sum_wait 

 

        'Check the improvement of best solution and report 

        If current_travel < temp_best_travel Then 

            'Update new best solution 

            temp_best_travel = current_travel 

            'Record ending time 

            end_time = Now 

            elapsed_time = end_time.Subtract(start_time) 

            'Record on File  

            update_log(current_generation, temp_best_travel, temp_file_name, 

elapsed_time) 

        End If 

 

        Return temp_best_travel 

 

    End Function 

     

 

    'Record traveling times at certain generation 

    Sub best_record(ByVal current_generation As Integer, ByVal current_travel

 As Double, ByRef temp_file_name As String) 

 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Bst.txt", CStr

(current_generation) & vbTab & CStr(current_travel) _ 

        & vbCrLf, True) 

 

    End Sub 

 

 

    'Record best traveling times at any improvement  

    Sub update_log(ByVal current_generation As Integer, ByVal temp_best_trave

l As Double, ByRef temp_file_name As String, ByVal elapsed_time As TimeSpan) 

 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Upd.txt", CStr

(current_generation) & vbTab & CStr(Main.sum_entr_sol) & vbTab & CStr(temp_be

st_travel) _ 

        & vbTab & CStr(elapsed_time.TotalSeconds.ToString("0.00")) & vbCrLf, 

True) 
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    End Sub 

 

 

    'Print POP-D on file 

    Sub file_population_sub_D(ByVal POP_D(,) As Symbiotic_D, ByVal pop_size A

s Integer, _ 

    ByVal current_generation As Integer, ByVal loc_Nb As Location_Index, ByRe

f temp_file_name As String) 

 

        Dim i, j As Integer 

 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.txt", "Ge

neration: " & CStr(current_generation) & ": " & _ 

        CStr(loc_Nb.loc_X) & " , " & CStr(loc_Nb.loc_Y) & vbCrLf, True) 

 

        For j = 0 To pop_size - 1 

            For i = 0 To pop_size - 1 

                My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.t

xt", Format(POP_D(i, j).fitness_D, "0.00000000") & vbTab, True) 

            Next 

            My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.txt",

 vbCrLf, True) 

        Next 

 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.txt", vbC

rLf & vbCrLf, True) 

 

    End Sub 

 

 

    'Print POP-I on file 

    Sub file_population_sub_I(ByVal POP_I(,) As Symbiotic_I, ByVal pop_size A

s Integer, _ 

    ByVal current_generation As Integer, ByVal loc_Nb As Location_Index, ByRe

f temp_file_name As String) 

 

        Dim i, j As Integer 

 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.txt", "Ge

neration: " & CStr(current_generation) & ": " & _ 

        CStr(loc_Nb.loc_X) & " , " & CStr(loc_Nb.loc_Y) & vbCrLf, True) 

 

        For j = 0 To pop_size - 1 

            For i = 0 To pop_size - 1 

                My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.t

xt", Format(POP_I(i, j).fitness_I, "0.00000000") & vbTab, True) 

            Next 

            My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.txt",

 vbCrLf, True) 

        Next 

 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.txt", vbC

rLf & vbCrLf, True) 

 

    End Sub 

 

 

    'Print POP-DI on file 

    Sub file_population_etr(ByVal POP_DI(,) As Endosymbiotic, ByVal pop_size 

As Integer, ByVal current_generation As Integer, _ 

    ByVal loc_Nb As Location_Index, ByRef temp_file_name As String) 

 

        Dim i, j As Integer 
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        My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.txt", "G

eneration: " & CStr(current_generation) & ": " & _ 

        CStr(loc_Nb.loc_X) & " , " & CStr(loc_Nb.loc_Y) & vbCrLf, True) 

 

        For j = 0 To pop_size - 1 

            For i = 0 To pop_size - 1 

                My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.

txt", Format(POP_DI(i, j).fitness_DI, "0.00000000") & vbTab, True) 

            Next 

            My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.txt

", vbCrLf, True) 

        Next 

 

        My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.txt", vb

CrLf & vbCrLf, True) 

 

    End Sub 

 

 

    'Check population printing 

    Sub file_population_check(ByVal POP_DI(,) As Endosymbiotic, ByVal POP_D

(,) As Symbiotic_D, ByVal POP_I(,) As Symbiotic_I, ByVal pop_size As Integer,

 ByVal current_generation As Integer, _ 

    ByVal loc_Nb As Location_Index, ByVal check_pop As Integer, ByRef temp_fi

le_name As String) 

 

        If EEA.chk_popchk.Checked = True Then 

            If (current_generation Mod check_pop) = 0 Then 

                If EEA.chk_POPD.Checked = True Then 

                    file_population_sub_D(POP_D, pop_size, current_generatio

n, loc_Nb, temp_file_name) 

                End If 

 

                If EEA.chk_POPI.Checked = True Then 

                    file_population_sub_I(POP_I, pop_size, current_generatio

n, loc_Nb, temp_file_name) 

                End If 

 

                If EEA.chk_POPDI.Checked = True Then 

                    file_population_etr(POP_DI, pop_size, current_generation,

 loc_Nb, temp_file_name) 

                End If 

            End If 

        End If 

 

    End Sub 

 

End Module 

 

 


