

AN ABSTRACT OF THE DISSERTATION OF

Kyoung Cheol Kim for the degree of Doctor of Philosophy in Industrial Engineering

presented on May 13, 2011.

Title: Vehicle Routing and Scheduling with Delivery and Installation

Abstract approved: ___

 Sundar Atre

For manufacturing and service industries to stay competitive in this rapidly changing,

globalized world, one of the most important operations, and one that many businesses

struggle to plan and manage efficiently, is material handling. There has been a large

amount of research on various vehicle routing problems (VRPs) in recent decades, but

relatively less work on certain unique types of VRPs that characterize some specific

industries.

This thesis identifies an interesting and new type of VRP with unique characteristics

in order to serve the needs and goals of the electronics industry. The problem deals

with two types of customers; some require only delivery, while the others require both

delivery and installation. There are two different types of vehicles in this problem:

delivery vehicles and installation vehicles. The delivery vehicle and (if needed) the

installation vehicle are allowed to visit each customer only once. There is an

additional constraint to provide the guaranteed service quality, which is measured by

the amount of time between the delivery and the installation. A customer must be

visited by an installation vehicle within the predetermined maximum allowable time

after the visit by a delivery vehicle. Therefore, it is required that both types of vehicles

be synchronized for the customers requiring both delivery and installation. The

problem under consideration is more complicated than other, traditional VRPs that

have been studied widely in the past, since in this case two different types of vehicles

must be synchronized.

A mixed-integer nonlinear programming (MINP) model for this problem is

formulated. A hierarchical approach using a genetic algorithm (GA) is proposed to

solve the problem effectively. Various examples are tested to show the effectiveness

of the proposed hierarchical approach. To demonstrate the robustness of the proposed

approach, partial factorial experimental design varying the parameters of

characteristics in the problem is performed using the Taguchi method. In the

hierarchical approach, an algorithmic limitation is conjectured in which the attempt to

find the best solution tends to dwell on the local optimal solution, searching only part

of the entire solution space. In order to tackle the limitation of the hierarchical

approach and search the entire solution space effectively and efficiently for a global

optimal solution, an endosymbiotic evolutionary algorithm (EEA), which concurrently

considers subproblems having cooperative interactions, is considered. Various test

examples are solved using the EEA, and this method’s efficiency and effectiveness are

shown by comparing the computational results with the ones from the hierarchical

approach. A set of problems is solved by the MINP model, the hierarchical approach

using a genetic algorithm, and the EEA, and solutions from the three approaches are

compared.

© Copyright by Kyoung Cheol Kim

May 13, 2011

All Rights Reserved

Vehicle Routing and Scheduling with Delivery and Installation

By

Kyoung Cheol Kim

A DISSERTATION

Submitted to

Oregon State University

In partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented May 13, 2011

Commencement June 2011

Doctor of Philosophy dissertation of Kyoung Cheol Kim presented on May 13, 2011

APPROVED:

__ ___ ___ ___ ___ ___ ___ __

Major Professor, representing Industrial Engineering

__ ___ ___ ___ ___ ___ ___ __

Head of the School of Mechanical, Industrial, & Manufacturing Engineering

__ ___ ___ ___ ___ ___ ___ __

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my dissertation to any reader

upon request.

__ ___ ___ ___ ___ ___ ___ __

Kyoung Cheol Kim, Author

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Sundar Atre, for his excellent

guidance and concern, and for providing me with an excellent atmosphere for the completion

of my research at Oregon State University. I am also deeply thankful to my former advisor, Dr.

Shiwoo Lee, whose continuous encouragement, from the preliminary stage to the conclusion

of the project, enabled me to develop an understanding of the subject.

My gratitude extends to my committee members, Dr. Kenneth H. Funk and Dr. Thinh Nguyen

for their constant encouragement and useful feedback, which have been of the greatest help at

all times. Additionally, I am thankful to Dr. J. Antonio Torres for serving as the Graduate

Council Representative (GCR) for a while. I also thank Dr. Lech Muszynski for being my

GCR for the final defense.

I thank my close friends Sejoon Park, Hyunpae Lim, Juthamas Choomlucksana, Behrouz

Behmardi, and Weerakit Denkaew for their constant support and encouragement.

Finally, I would like to thank my parents, Kiseong and Soonja Kim, for their help and support

throughout my life. Special gratitude is due also to my brothers, Kyounghoon and

KyoungJoon Kim, and their families for their loving support. I would like to extend my

appreciation to Peter and June Nam for their encouragement. I would also like to thank my

parents in law, Jongkyu Kim and Junghee Ha. They were always supporting me and

encouraging me with their best wishes. I would like to dedicate this thesis to my wife,

Haengim, and my daughter, Michelle (Jeongsun), for their love, patience, and understanding

as they allowed me to spend most of my time on this thesis.

https://exmail.oregonstate.edu/owa/?ae=Item&t=IPM.Note&a=New&to=weerakit_dk%40hotmail.com&nm=Weerakit+Denkaew

TABLE OF CONTENTS

 Page

1. INTRODUCTION .. 1

1.1 Problem description .. 1

1.2 Objectives of the thesis ... 5

1.3 Organization of the thesis ... 6

2. LITERATURE REVIEW ... 8

2.1 Vehicle routing problems (VRPs) ... 8

2.1.1 Description of the traditional VRP ..8

2.1.2 Variations of traditional VRPs ..9

2.1.3 Solution methods for VRPs ...12

2.2 The genetic algorithm (GA) .. 14

2.2.1 Background of the genetic algorithm ..14

2.2.2 Procedure of the genetic algorithm ...16

2.2.3 Encoding method for a solution ..17

2.2.4 Selection ..18

2.2.5 Crossover ..20

2.2.6 Mutation ..25

2.2.7 Termination condition ...27

2.3 The Taguchi method ... 27

2.4 The endosymbiotic evolutionary algorithm (EEA) ... 29

TABLE OF CONTENTS (Continued)

 Page

3. MIXED-INTEGER NONLINEAR PROGRAMMING MODEL 31

3.1 Model assumptions ... 31

3.2 Notations ... 32

3.3 Mathematical model ... 34

3.4 Complexity of the problem ... 37

4. HIERARCHICAL APPROACH USING THE GENETIC ALGORITHM FOR

SYNCHRONIZATION OF THE DELIVERY AND THE INSTALLATION 39

4.1 Hierarchical approach to the vehicle routing problem .. 39

4.2 Procedure of the genetic algorithm for subproblems .. 42

4.3 Components of the proposed genetic algorithm ... 45

4.3.1 Genetic representations ...45

4.3.2 Initialization, fitness function, and selection ...47

4.3.3 Crossover ..49

4.3.4 Mutation ..52

4.3.5 Local search ..53

4.3.6 Termination conditions ...54

5. COMPUTATIONAL EXPERIMENTS OF THE HIERARCHICAL APPROACH

USING THE GENETIC ALGORITHM .. 55

5.1 Effectiveness of the hierarchical approach using the genetic algorithm 55

TABLE OF CONTENTS (Continued)

 Page

5.1.1 Comparison of the MINP approach and the hierarchical approach using the

genetic algorithm..55

5.1.2 Computational results for a large problem ..59

5.2 Robustness of the hierarchical approach ... 66

5.2.1 Design of experiments by the Taguchi method ...66

5.2.2 Results of the experiments with regard to robustness69

5.3 Conclusion of the hierarchical approach using the genetic algorithm 72

6. ENDOSYMBIOTIC EVOLUTIONARY ALGORITHM FOR SYNCHRONIZATION

OF THE DELIVERY AND THE INSTALLATION ... 74

6.1 Endosymbiotic evolutionary algorithm for the vehicle routing problem under

consideration ... 74

6.2 Genetic representations and operations... 79

6.2.1 Genetic representations and operations for the subproblems80

6.2.2 Genetic representation and operations for the entire problem83

6.2.3 Initialization of the populations ..85

6.2.4 Termination condition ...88

7. COMPUTATIONAL EXPERIMENTS FOR THE ENDOSYMBIOTIC

EVOLUTIONARY ALGORITHM .. 89

7.1 Effectiveness of the proposed endosymbiotic evolutionary algorithm 89

TABLE OF CONTENTS (Continued)

 Page

7.1.1 Comparison of the results of small problems from the MINP model and the

endosymbiotic evolutionary algorithm ..90

7.1.2 Endosymbiotic evolutionary algorithm with larger problems91

7.2 Performance of the proposed endosymbiotic evolutionary algorithm 97

7.2.1 Test problems ..97

7.2.2 Performance comparison ...99

7.3 Conclusion of the endosymbiotic evolutionary algorithm .. 101

8. CONCLUSIONS .. 103

BIBLIOGRAPHY... 109

APPENDICES .. 115

Appendix A: Mixed-integer nonlinear programming (MINP) model 116

Appendix B: Taguchi method for the hierarchical approach using genetic algorithm ... 123

Appendix C: Program code of the Endosymbiotic evolutionary algorithm 132

LIST OF FIGURES

Figure Page

Figure 1.1 An example of vehicle routing problems under consideration. 3

Figure 2.1 An example of a traditional VRP with three vehicles, nine customers, and a single

depot. .. 9

Figure 2.2 An example of an open vehicle routing problem. ... 11

Figure 2.3 The one-cut-point crossover. ... 21

Figure 2.4 The two-cut-point crossover. ... 21

Figure 2.5 The multi-cut-point crossover. .. 22

Figure 2.6 The partial-mapped crossover (PMX). .. 22

Figure 2.7 The order crossover (OX).. 23

Figure 2.8 The uniform crossover. ... 23

Figure 2.9 The position-based crossover. ... 24

Figure 2.10 The order-based crossover... 24

Figure 2.11 The cycle crossover. .. 25

Figure 2.12 The inversion mutation. ... 26

Figure 2.13 The insertion mutation. ... 26

Figure 2.14 The reciprocal exchange mutation. ... 26

Figure 2.15 The point mutation. ... 26

Figure 2.16 The endosymbiotic evolution. ... 29

Figure 4.1 The procedure of the proposed hierarchical approach. ... 40

LIST OF FIGURES (Continued)

Figure Page

Figure 4.2 The procedure of the proposed genetic algorithm. ... 43

Figure 4.3 The genetic representation for the subproblem in Stage 1. 45

Figure 4.4 The genetic representation for the subproblem in Stage 2. 46

Figure 4.5 The modified crossover operation. ... 51

Figure 4.6 An example of the exchange mutation operation. .. 52

Figure 4.7 The 2-opt exchange local search. ... 54

Figure 5.1 Results of the subproblem in Stage 1. ... 60

Figure 5.2 Results of the subproblem in Stage 2 based on V-d100-i50-a(1). 62

Figure 5.3 Results of the subproblem in Stage 2 based on V-d100-i50-a(2). 62

Figure 5.4 Results of the subproblem in Stage 2 based on V-d100-i50-a(3). 63

Figure 5.5 Results of the subproblem in Stage 2 based on V-d100-i50-a(4). 63

Figure 5.6 Results of the subproblem in Stage 2 based on V-d100-i50-a(5). 64

Figure 6.1 The concept of the proposed EEA. ... 76

Figure 6.2 A toroidal grid and a neighborhood. .. 77

Figure 6.3 The genetic representation for POP-D. .. 80

Figure 6.4 The genetic representation for an individual in POP-DI. 83

Figure 7.1 Five progresses of the best solutions for V-d30-i10. .. 93

Figure 7.2 Routes of vehicles in the best solution for V-d30-i10. ... 94

LIST OF FIGURES (Continued)

Figure Page

Figure 7.3 Ten results of the test problem V-d100-i50. .. 95

Figure 7.4 Progresses of the EEA and the hierarchical approach for V-d100. 96

LIST OF TABLES

Table Page

Table 5.1 The problem parameters for two test problems. .. 56

Table 5.2 Algorithmic parameters of the genetic algorithm. ... 57

Table 5.3 The results of two approaches for small test problems. ... 58

Table 5.4 Problem parameters and algorithmic parameters. .. 59

Table 5.5 Results of GAs on V-d100-i50-a. .. 65

Table 5.6 Four factors for the Taguchi method. .. 67

Table 5.7 The L9 orthogonal array and the nine runs with the experimental conditions. 68

Table 5.8 The problem parameters of the test problems in this section. 68

Table 5.9 The algorithm parameters for the experiment.. 69

Table 5.10 Taguchi analysis for the robustness of the proposed algorithm. 71

Table 6.1 The procedures of the proposed EEA. ... 78

Table 7.1 Parameters of the EEA for the test problems. .. 90

Table 7.2 The results of two small test problems. ... 91

Table 7.3 The parameters of the EEA for problems of larger sizes. .. 92

Table 7.4 Numbers of customers and vehicles for the test problems. 98

Table 7.5 The number of variables in the MINP model for the test problems. 99

Table 7.6 The performance comparison for the MINP approach, the hierarchical approach

using the genetic algorithm, and the endosymbiotic evolutionary algorithm. 100

LIST OF APPENDIX FIGURES

Table Page

Figure C.1 The program interface for the EEA (EEA.vb). ... 132

LIST OF APPENDIX TABLES

Table Page

Table A.1 Mixed-integer nonlinear programming model for the test problem, V-d6-i3 116

Table B.1 The results of experiment run no. 1 in the Taguchi method. 123

Table B.2 The results of experiment run no. 2 in the Taguchi method. 124

Table B.3 The results of experiment run no. 3 in the Taguchi method. 125

Table B.4 The results of experiment run no. 4 in the Taguchi method. 126

Table B.5 The results of experiment run no. 5 in the Taguchi method. 127

Table B.6 The results of experiment run no. 6 in the Taguchi method. 128

Table B.7 The results of experiment run no. 7 in the Taguchi method. 129

Table B.8 The results of experiment run no. 8 in the Taguchi method. 130

Table B.9 The results of experiment run no. 9 in the Taguchi method. 131

Table C.1 The program code in EEA.vb. ... 133

Table C.2 The program code in Main.vb. ... 135

Table C.3 The program code in Cooperation.vb. ... 142

Table C.4 The program code in Initialization.vb. ... 148

Table C.5 The program code in Fitness.vb. .. 154

Table C.6 The program code in Improvement.vb. .. 162

Table C.7 The program code in Evolution_D.vb. ... 164

Table C.8 The program code in Evolution_I.vb. .. 171

Table C.9 The program code in Evoltuion_DI.vb. ... 177

LIST OF APPENDIX TABLES (Continued)

Table Page

Table C.10 The program code in Dt_Input.vb. ... 184

Table C.11 The program code in Dt_Output.vb. .. 186

1

1. INTRODUCTION

In order to survive in this competitive business environment, a company must have an

appropriate way to handle materials cost-effectively. Especially in the manufacturing industry,

handling methods for raw materials and work-in-process are as important as the one for final

products. For material handling activities to satisfy various demands effectively, vehicle

routing and scheduling has been studied and implemented extensively. In this thesis, a vehicle

routing problem (VRP) found in the electronics industry, which has unique characteristics of

material handling, is considered. The problem under consideration and the objectives of the

thesis are described in the following sections.

1.1 Problem description

The electronics industry has recently experienced rapidly emerging changes in its post-sales

service, i.e., delivery and installation. In the past, local stores were individually responsible for

these services. However, nowadays electronics manufacturers are increasingly required to

directly deliver products to their customers and to provide on-site installation. Electronics

sales via e-commerce, large discount stores, general merchandise stores, and department stores

are increasing very rapidly while sales via existing local stores are decreasing. Moreover,

electronics manufacturers are putting intensive efforts into increasing sales through

professional electronics franchises like Staples (US), OfficeMax (US), Hi-Mart (Korea), and

other such stores, which do not provide delivery and installation themselves. These trends tend

to push greater responsibilities for delivery and installation onto electronics manufacturers,

and the number of direct deliveries from electronics manufacturers to customers continues to

increase at an explosive pace.

2

Another unique characteristic of the electronics industry has to do with the installation service

itself. Some products, such as air conditioners, have long required professional installation

services. Many other new products similarly require both delivery and professional installation;

these products include wall-mounted televisions, home theaters, washers and dryers,

refrigerators with a water purifier, special cook-tops, numerical control machines, and

computer servers.

Another organizational need makes the task of planning vehicle routing and scheduling more

complicated. The expense to maintain a nationwide distribution and service network is too

high to make it practical and economical. Therefore, manufacturers adopt the practice of

outsourcing the delivery to third parties while maintaining their own service teams or

commissioning authorized service providers for the installation.

The VRP under consideration assumes that there exist two types of demands in a complex

electronics market: one requires the delivery only, and the other requires both delivery and

installation. To satisfy both types of demands, a single distribution center separately operates

two different types of vehicles (delivery and installation vehicles). It is assumed that delivery

vehicles have a limited loading capacity to carry the products and that installation vehicles do

not. Both types of vehicles start from a single depot at the beginning and return to the depot

within a specified time. Delivery demands of all customers are known in advance. Based on

the delivery demands, a set of customers is assigned to a delivery vehicle. The sum of

customers’ demands assigned to a single delivery vehicle cannot exceed the loading capacity

of the delivery vehicle. The delivery vehicle and (if needed) the installation vehicle are

permitted to visit each customer only once. In addition, there is a constraint to satisfy the

expected service quality, which is measured as the amount of time between the delivery and

the installation. It is necessary for the installation vehicle to visit a customer within the

3

predetermined maximum allowable time after the delivery vehicle’s visit to that customer.

Therefore, the synchronization of both types of vehicles needs to be carefully planned to

guarantee the promised service quality. Figure 1.1 shows a typical example of the VRP under

consideration and its potential solution.

Figure 1.1 An example of vehicle routing problems under consideration.

The example consists of 16 customers, 10 requiring the delivery only (which are represented

by the filled circles) and 6 requiring both delivery and installation (which are represented by

the open circles). The solid and dotted lines are the routes of the delivery and installation

vehicles, respectively. There are three delivery and two installation vehicles in Figure 1.1. The

arrival times of delivery and installation vehicles are shown next to the customers. Installation

0:42*

Depot

1:12*

1:29*

0:27*

0:20*

0:30*

0:38*

0:52*

0:51*

1:13*

1:21*

0:44*

0:51*

1:07*

1:26*

1:44*

0:32**

1:21**

1:48**
0:27**

1:31**

0:57**

Customers requiring

delivery-only

Route for delivery vehicles

Customers requiring

both delivery and installation

Route for installation vehicles

* Arrival time of a delivery vehicle

** Arrival time of an installation vehicle

• Service level is 0:30

4

vehicles can visit customers earlier than delivery vehicles, causing waiting times for

installation vehicles at the corresponding customer locations. If installation vehicles visit

customers later than delivery vehicles, the guaranteed maximum time lapse between delivery

and installation must be satisfied.

Traditional VRPs are defined as combinatorial optimization problems, for which it is difficult

or impossible to obtain optimal solutions through general optimization methods owing to their

high computational complexity. The VRP under consideration in this thesis is by far more

complicated than other, traditional VRPs studied widely in the past, since it deals with more

decision variables and constraints, and the nonlinearity from synchronization requirement adds

another level of complexity.

In order to solve the VRP under consideration, three different approaches are introduced in

this thesis. First, a mathematical model for the VRP is formulated and used to solve test

problems, using commercially available optimization software. Second, a hierarchical

approach using a genetic algorithm is proposed to obtain good solutions efficiently in a

reasonable amount of time. The hierarchical approach divides the VRP of interest into two

subproblems: the VRP for delivery vehicles in the first stage and the VRP for installation

vehicles in the second stage. Vehicle routes and schedules for delivery vehicles are determined

in the first stage; then, based on the results of the first stage, vehicle routes and schedules for

installation vehicles are determined in the second stage. Various test problems are solved to

demonstrate the effectiveness of the hierarchical approach. The performance of the

hierarchical approach is subject to problem characteristics, such as the number of installation

customers, predetermined service quality, installation time, and fixed cost per vehicle. The

implications of these characteristics for the problem are studied through the Taguchi method,

known as one of the more robust design tools. The purpose of the Taguchi method is to show

5

the robustness of the algorithm for the problem with various conditions of the characteristics,

instead of identifying the optimized process parameters of the proposed algorithm.

The hierarchical approach has the natural limitation that the solutions in the second stage rely

on the quality of the solution obtained in the first stage. Since the hierarchical approach may

not be able to search the solution space of the problem thoroughly, the solutions generated by

this approach can be local optima. It is thus necessary to develop a method to search the entire

solution space effectively to find global optima for the corresponding problem. Instead of

solving the problems hierarchically, methods considering two subproblems at the same time

have been studied to get over the limitation of the hierarchical approach. Therefore, finally, an

endosymbiotic evolutionary algorithm (EEA), which concurrently searches partial solution

spaces for subproblems of the original complex problem, is also proposed to tackle this

limitation. Various test problems are solved using the proposed EEA to demonstrate its

effectiveness and efficiency. The computational solutions generated by the aforementioned

approaches are given to compare the performance of each approach.

1.2 Objectives of the thesis

The first objective of this thesis is to define a unique and interesting vehicle routing problem,

found recently in the electronics industry, which requires synchronization of two types of

vehicles for delivery and installation. The problem under consideration can be divided into

two subproblems, and each subproblem can be modeled as an existing VRP. Distinct

characteristics for each subproblem are observed and defined, and the characteristics bridging

the two subproblems are also defined.

6

The second objective is to develop and validate a mathematical model to solve the VRP under

consideration with optimality. A mathematical model is formulated as a mixed-integer

nonlinear programming (MINP) model. The mathematical model can be used to find optimal

solutions using commercially available software, but it has been found extremely hard to

determine optimal solutions in a reasonable amount of time. The third objective is to develop a

hierarchical approach using a genetic algorithm (GA) to effectively solve VRPs of various

sizes. GAs for the delivery and installation, respectively, are developed to solve the

subproblems in a reasonable amount of time. The fourth objective is to develop a symbiotic

evolutionary algorithm to further improve the performance of the hierarchical approach in

terms of speed or solution quality and to compare its performance with the mathematical

model and the hierarchical approach. An endosymbiotic evolutionary algorithm (EEA) is

developed to achieve this objective.

1.3 Organization of the thesis

This thesis consists of eight chapters. Chapter 1 introduces the problem of interest. Chapter 2

reviews the literature on existing VRPs, their solution methods (especially GAs), the Taguchi

method, and the EEA. Since the genetic algorithm is used in the proposed hierarchical

approach, the procedures and process parameters of GAs are described in detail. In Chapter 3,

a mathematical model of the VRP under consideration is formulated and the NP-hardness of

the problem is described. Chapter 4 proposes a solution methodology of the hierarchical

approach using a genetic algorithm for the VRP under consideration. Computational results by

the hierarchical approach using the genetic algorithm are summarized in Chapter 5. Chapter 6

proposes an endosymbiotic evolutionary algorithm as a novel approach to the VRPs under

7

consideration. The results of various computational experiments by the EEA are provided in

Chapter 7. Finally, chapter 8 concludes the dissertation with a discussion of the results and

implications, and introduces ideas for future research.

8

2. LITERATURE REVIEW

2.1 Vehicle routing problems (VRPs)

2.1.1 Description of the traditional VRP

The vehicle routing problem is one of the most important problems in the fields of

transportation and logistics. However, it is hard to solve this problem since the VRP belongs

to the category of NP-hard combinatorial optimization problems. The VRP was originally

introduced by Dantzig and Ramser [1959] and has been widely studied since. Dantzig and

Ramser described a dispatching problem of gasoline trucks and proposed a mathematical

model and an algorithmic approach. Fisher [1994] described an extended problem in which a

vehicle has a series of stops to deliver products to customers. Every customer is assigned to

exactly one vehicle in a specific order. The capacity of vehicles is also considered to minimize

the total cost. The traditional VRP consists of a set of customers with known demands at

predetermined locations and a set of vehicles with a homogeneous capacity. The vehicles start

from and return to a single depot. The VRP is to serve all customers without any vehicle being

overloaded, while minimizing the total traveling distance. The traveling distance can be easily

converted to the traveling time or cost.

Figure 2.1 shows an example of traditional VRPs consisting of three vehicles, nine customers,

and a single depot. In Figure 2.1, node 0 in the box denotes the depot, nodes 1 to 9 in circles

indicate the customers, and the arrows represent vehicle routes for deliveries to customers.

9

Figure 2.1 An example of a traditional VRP with three vehicles, nine customers, and a

single depot.

2.1.2 Variations of traditional VRPs

The basic concept of the VRP is that a fleet of vehicles delivers products from a single depot

to customers. From this simple concept, variations have emerged for decades. Each variation

has its own additional constraints or requirements. Some well-known VRPs are explained by

Toth and Vigo [2002]:

Capacitated vehicle routing problem (CVRP): The CVRP is the simplest and the most

studied problem. In the CVRP, all customers have known demands and known locations

for the delivery. The delivery for a customer cannot be split. In other words, the demand

of a customer must be satisfied via only one visit. All vehicles are assumed to have the

same loading capacity. They depart from a single depot at the beginning and return to the

depot at the end. The service or unloading time at each customer may or may not be

considered. The objective is to minimize the total traveling distance or time for all

vehicles to serve all customers.

0

2

1

5
6

8 9

3
4

7

Route for

Vehicle 2

Route for

Vehicle 3

Route for

Vehicle 1

10

Distance-constrained vehicle routing problem (DVRP): The DVRP is a variant of the

CVRP. Each route of a vehicle is constrained by a maximum length of distance or time.

Because of the distance constraint, the total traveling distance in each route cannot

exceed the maximum prescribed length.

Vehicle routing problem with time windows (VRPTW): The VRPTW is another

variant of the CVRP. In the VRPTW, the distance constraint may or may not be

considered. Each customer has a time interval, referred to as a time window. The visit of

a vehicle to a customer must occur within his or her time window. In case of early

arrival at a customer’s location, the vehicle is allowed to wait until the beginning of the

customer’s time window. The time windows are defined by assuming that all vehicles

start from a depot at the beginning.

Vehicle routing problem with pickup and delivery (VRPPD): In a VRPPD, vehicles

are required not only to deliver products to a set of delivery locations, but also to pick

goods or wastes up at a set of pickup locations. Unlike other VRPs, products to be

delivered are not provided at the depot; rather, they must be picked up. For multiple

pickups, the loading capacity of a vehicle must be considered in the problem. Time

windows for the pickup and the delivery at each location may or may not be considered

in the problem.

Even if a significant amount of research has been done in the area of VRPs, the application of

their results to actual practice has been confronted with many difficulties due to the limitations

of the simplified VRP models. Therefore, there have been efforts to understand the real-world

11

constraints and requirements that accompany to specific applications. This research has not

been limited to a single basic type of the VRPs introduced earlier; rather, these projects have

tended to contain characteristics of multiple traditional VRP models. For example, Prive et al.

[2006] suggested a VRP for the distribution of soft drinks and the collection of recyclable

containers. They considered the heterogeneous vehicle fleet, vehicle capacity, time windows,

pickup, and delivery. Hence, the corresponding VRP is a combination of the CVRP, VRPTW,

and VRPPD. Another example is a VRP for school buses. Ripplinger [2005] proposed a rural

school VRP. The school bus has a limited number of seats, which is a characteristic of the

CVRP. Each school bus must deliver students within a specific time; this is a characteristic of

the DVRP. In addition, the school buses do not need to return to school. The route for

returning to the original location (the depot) is not important in this example. Unlike other

traditional VRPs, the route of each school bus in this VRP does not make a closed loop but,

rather, a Hamiltonian loop. Thus, this type of VRPs is called an open vehicle routing problem

(OVPR) [Repoussis et al., 2007], and the path is a Hamiltonian path. An example of routes in

an OVRP is illustrated in Figure 2.2.

Figure 2.2 An example of an open vehicle routing problem.

12

2.1.3 Solution methods for VRPs

The VRP is one of the well-known and most studied combinatorial optimization problems in

academia and industry. For given VRPs, we need to determine the optimal set of routes to be

completed by a fleet of vehicles to serve a set of customers. In real life, a VRP can contain

many complications such as asymmetric distances, stochastic distance, multiple depots,

heterogeneous vehicles, different time windows of customers, and so on. These potential

complications make the problem more intractable to solve.

Since Dantzig and Ramser [1959] proposed a heuristic algorithm for VRPs, more than

hundreds of papers have been published. Various mathematical models and solution methods

have been proposed by Mole [1979], Laporte [1992], Desrosiers et al. [1995], Homberger and

Gehring [2005], Krumke et al. [2008], and Eksioglu et al. [2009]. Ford-Bellman-Moore’s

algorithm was used to solve the multiple traveling salesman problems (TSPs) with time

windows by Solomon and Desrosiers [1988]. The problem has also been extended to a vehicle

routing problem with time windows (VRPTW). Dynamic programming models are suggested

for VRPTWs by Christofides et al. [1981], Baker [1983], and Dumas et al. [1995]. The set

partitioning method with a relaxation of linear programming is used to solve a VRPTW by

Desrochers et al. [1992].

The VRP is a NP-hard problem, which is hard to solve in a polynomial time [Bodin et al.,

1983]. No optimal algorithm that can solve NP-hard problems in a polynomial time has been

found [Falkenauer, 1996]. Finding optimal solutions of NP-hard problems is usually very

time-consuming and sometimes even impossible. Due to this characteristic, it is not realistic to

use optimal solution methods to solve large problems. As an optimal solution method, the

branch-and-bound method has been applied to problems with a small number of customers

13

[Pereira et al., 2002], but for problems of large size the computational limitation of memory

buffers and computing resources exists. Hence, many other approaches based on heuristics,

approximation algorithms that aim at finding good feasible solutions quickly, have been

introduced [Laporte et al., 2000; Prescott-Gagnon et al., 2009].

Many models and algorithms have been proposed to find the optimal solution or near-optimal

solutions of different types of VRPs. A thorough classification of VRPs was introduced by

Desrochers et al. [1990]. Laporte and Novert [1987] presented an extensive survey that was

entirely devoted to exact methods for VRPs. Other surveys were reported by Christofides et al.

[1979], Magnanti [1981], Bodin et al. [1983], Christofides [1985], Laporte [1992], Golden et

al. [1995], Fisher [1995], Toth and Vigo [1998], and Golden et al. [1998]. They can be

broadly divided into two kinds: classical heuristics (mostly between 1960 and 1990) and

metaheuristics from 1990 onward [Laporte et al., 2000].

Classical heuristics can in turn be classified into three groups: construction methods, two-

phase methods, and improvement methods [Laporte and Semet, 1999]. Construction methods

gradually build a feasible solution by selecting arcs, based on minimizing cost. Two-phase

methods divide the problem into two stages: the first stage involves clustering customers into

feasible routes while disregarding their order and the second stage constructs routes for each

cluster. One of these two-phase methods is the sweep algorithm described by Laporte et al.

[2000]. Improvement methods start with a feasible solution and try to improve it by

exchanging arcs or nodes within or between the routes. The local search algorithm developed

by Savelsbergh [1985] and Aarts and Lenstra [1996] belongs to the category of improvement

heuristics. The advantage of classical heuristics is that they have a polynomial computation

time [Laporte et al., 2000; Cordeau et al., 2002]. On the other hand, they perform only a

limited search in the solution space.

14

During the past few decades, various meta-heuristics, such as tabu search (TS), simulated

annealing (SA), and genetic algorithm (GA), have been applied to solve VRPs quickly and

effectively [Laporte et al., 2000]. TS and SA move from one solution to another in the

neighborhood until termination criteria are satisfied. Many different TS heuristics have been

proposed with varying success. Rochat and Taillard [1995] used a TS heuristic to solve some

benchmark VRPs. Osman [1993] obtained similar results using a SA. GA maintains a

population of good solutions that are recombined to produce new solutions. Berger and

Barkaoui [2003], Jeon et al. [2007], Yu et al. [2011] presented a hybrid genetic algorithm

(HGA) to solve the VRP. Renaud et al. [1996] reported that such heuristics require substantial

computing times and several parameter settings. The detail of GA, which is used in both the

proposed hierarchical approach and endosymbiotic evolutionary algorithm, is described in the

following sections.

2.2 The genetic algorithm (GA)

2.2.1 Background of the genetic algorithm

The theory of natural selection, proposed by Charles Darwin in 1859, states that individuals

with certain favorable characteristics are more likely to survive in nature and consequently

pass their characteristics on to their offsprings. Individuals with less favorable characteristics

will gradually disappear from the population. In nature, the genetic inheritance is stored in

individual chromosomes made of genes. The characteristics of every organism are controlled

by the genes, which are passed on to the offspring when the organisms reproduce.

Occasionally a mutation causes changes in the chromosomes. Due to natural selection, the

15

population will gradually converge toward improvement of the species, as the number of

individuals having the favorable characteristics increases.

The GA is a randomized global search algorithm that solves intractable problems by imitating

genetic processes observed during natural evolution. The “survival of the fittest” nature of this

algorithm lends itself favorably to being extremely robust in its search for optimality [Gen and

Cheng, 2000]. Fundamentally, the GA evolves a population of bit strings, chromosomes, or

individuals, where each individual encodes a solution to a particular problem. This evolution

takes place through the application of genetic operators, which mimic the phenomena such as

reproduction and mutation observed in nature. The characteristics of the GA differ from those

of other heuristics and can be described as follows [Rawlins, 1991; Gen and Cheng, 2000]:

 The GA works with coding of the solutions instead of the solutions themselves.

Therefore, a well-designed coding or an efficient representation of the solutions is

required.

 The GA searches for good solutions from a group of solutions. This is different from

other meta-heuristics like the simulated annealing (SA) and the tabu search (TS), which

start with a single solution and move to another solution by some transitions. Therefore,

the GA performs a multi-directional search in the solution space, reducing the probability

of finishing at a local optimum.

 The GA requires only the objective function value that measures the fitness of

individuals, while many other algorithms require continuity or differentiability. Many

real-life examples contain discontinuous search space.

 The GA is nondeterministic; i.e., it is stochastic in natural decisions, making the GA

more robust.

 The GA is a heuristic because it does not know when it has found an optimal solution.

16

2.2.2 Procedure of the genetic algorithm

The procedure of the traditional GA is described as follows. In the first step, the GA starts

from a randomly generated initial population, which is a set of solutions. Davis [1987]

suggested that, for research purposes, much can be learned by initializing a population

randomly. Moving from a randomly created population to a well-adapted population is a good

test of the algorithm. Through this step, important features of the final solution will have been

produced by the search and recombination mechanism of the algorithm, rather than the

initialization process. In order to generate and search for an optimal solution, a function that

evaluates the survivability of each solution in the population is required in the initialization

process. This function is called the fitness function, and it evaluates each solution in

accordance with its fitness value. The fitness function is the most critical part of the algorithm,

as it is the one that decides how much time the algorithm takes to find the optimal solution.

The second step, a reproductive process, allows parent solutions to be randomly selected from

the population. Typically, a lower selection pressure is indicated at the start of a search in

favor of wide exploration of the search space, while a higher selection pressure is

recommended at the end to narrow the search space [Gen and Cheng, 2000]. Offspring

solutions are made by the reproductive processes using a crossover operator. The offspring

solutions that are produced inherit some of the characteristics from each parent. Then a

random mutation is applied to the offsprings with a certain probability. Gen and Cheng [2000]

proved that the mutation operator can sometimes play a more crucial role than crossover.

Therefore, the crossover and mutation operators need to be well designed in accordance with

the problem at hand.

17

Finally, generation update takes place in the third step. The evaluation of the solutions can be

related to the objective function value. In the VRPs, the total traveling distance and the level

of violation of any constraint can be considered in the fitness function. Analogous to

biological processes, offsprings with relatively good fitness levels are more likely to survive

and reproduce, with the expectation that fitness levels throughout the population will improve

as they evolve. More details can be found in Reeves [1993].

2.2.3 Encoding method for a solution

The preliminary component involves choosing the right coding schema for the representation

of solutions to the problem. Diverse encoding methods have been suggested for different

problems to provide efficient implementation of GAs. Depending on the symbols used for the

bits of the individual, the encoding methods can be classified into:

 Binary encoding uses binary numbers (0 or 1) as the symbols for a bit in an individual.

This is the most common encoding method because it is easy to create and manipulate. A

wide range of problems can use binary encoding, one-point crossover, and mutation

without modification [Davis, 1987]. For efficiency, however the other coding methods

introduced below are more favorable in the real world.

 Real number encoding uses real numbers for a bit in an individual. This encoding is

appropriate for function optimization problems. It has been widely confirmed that real

number encoding performs better than binary encoding on optimization problems, as

Eshelman and Schaffer [1993], Michalewicz [1996], and Walters and Smith [1995]

reported.

18

 Integer or literal permutation encoding is useful for combinatorial optimization

problems. Since the essence of combinatorial optimization problems is the search for a

best permutation or combination of items subject to constraints, literal permutation

encoding can be used for this type of problem. For more complex real-world problems, an

appropriate data structure encoding is suggested for the bits of an individual in order to

capture the nature of the problem [Gen and Cheng, 2000].

 Data structure encoding: According to the computer data structure, encoding methods

can be classified into two types: one-dimensional encoding and multidimensional

encoding. In most practices, one-dimensional encoding has been widely used, but some

complex problems require multidimensional encoding. Cohoon and Paris [1986] used

two-dimensional encoding for circuit placement problems. Anderson et al. [1991] used a

two-dimensional grid type of encoding. Lim [2007] used two-dimensional encoding for

vehicle routing problems with heterogeneous vehicles from multiple depots, allowing

multiple visits.

2.2.4 Selection

The selection directs the genetic search toward promising regions in the solution space.

Population diversity and selective pressure are the two most important factors in the genetic

search [Michalewicz, 1996]. An increase in selective pressure decreases the population

diversity, and vice versa; the two factors have a strong inverse relationship. Therefore, it is

important to maintain the balance when determining a selection method for the GA. Four

commonly used selection methods are as follows:

19

 Roulette wheel selection: In roulette wheel selection, the probability of being chosen is

the individual’s fitness divided by the sum of fitness of the whole population. Each

individual is assigned a slice of a circular roulette wheel, the size of the slice being

proportional to the individual’s fitness. The wheel is spun N times, where N is the number

of individuals in the population. On each spin, the individual under the wheel’s marker is

selected to be in the pool of parents for the crossover.

 Tournament selection: This selection method randomly chooses a set of individuals and

picks out the best individual for reproduction among chosen individuals. The number of

individuals in a competition is called the “tournament size.” A common tournament size is

two, and this is called a binary tournament. A random number r is then generated between

0 and 1. If r < k, where k is a parameter between 0 and 1, then the fitter of the two

individuals is selected to be a parent. Otherwise, the less fit individual is selected. The two

individuals are then returned to the original population for the next round of selection.

 Elitism: This is an addition to other selection methods that forces the GA to retain a

number of good individuals in each generation. Without elitism, good individuals may be

lost if they are not selected to reproduce or if they are destroyed by crossover or mutation.

 Scaling: The scaling method has been proposed to prevent premature convergence to local

optima. The scaling method maps raw fitness values of all individuals in a population to

the scaled fitness values, which are positive real values. The selection process may be

performed based on the scaled fitness values. Many scaling methods have been proposed

in the literature on GAs. Scaling parameters are known to be problem-dependent [Gen and

Cheng, 2000]. One of the commonly used scaling methods in GAs is linear scaling, which

adjusts the fitness values of all individuals such that the best individual gets a fixed

20

number of expected offsprings, thus preventing it from reproducing too many times [Gen

and Cheng, 2000].

2.2.5 Crossover

An important genetic operator is the crossover, which simulates a reproduction by parents. It

works on a certain number (occasionally, a pair) of solutions and recombines them in a certain

way, generating one or more offspring. The offsprings share some of the characteristics from

the parents through the crossover. In that way, the good characteristics of the current

generation are passed on to following generations.

Many different crossover operators have been introduced in the literature. The functionality of

the crossover depends on the encoding method, and the performance depends on how well it is

adjusted to the problem. Commonly used crossover methods for VRPs are as follows [Gen

and Cheng, 2000]:

 Point crossover: Among point crossovers, one-cut-point crossover is the simplest method.

It selects one cut-point randomly in an individual, as shown in Figure 2.3. The selected

point is indicated by an arrow. P1 represents the first parent and P2 represents the second

parent. The one-cut-point crossover takes the pre-cut section from P1 as a proto-child and

fills up the offspring by taking in order each legitimate gene from P2 to generate an

offspring, as shown in Figure 2.3.

21

Figure 2.3 The one-cut-point crossover.

Two-cut-point and multi-cut-point crossovers are more advanced methods than one-cut-

point crossover. Two-cut-point crossover is illustrated in Figure 2.4, where two points are

randomly selected at P1 and the genes between two selected points are passed on to the

offspring. Then, it takes each legitimate gene in the order shown in P2.

Figure 2.4 The two-cut-point crossover.

Multi-cut-point crossover is more complicated than two-cut-point crossover. The number

of the cut-points is randomly chosen, and then the cut-points are selected according to the

chosen number. An example of multi-cut-point crossover is illustrated in Figure 2.4. Four

points are selected for the cut sections from P1. Then, each legitimate gene is taken in the

order shown in P2.

1 1 0 1 0 0 0 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0

P1

P2 P2

Proto-child

Offspring

1 1 0 1

1 1 0 1 1 1 1 0 0

1 1 0 1 0 0 0 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0

P1

P2 P2

Proto-child

Offspring

1 0 1

1 1 0 1 1 1 1 0 0

22

Figure 2.5 The multi-cut-point crossover.

 Partial-mapped crossover (PMX): PMX is a variant of two-cut-point crossover for

binary string representation, and can be used for integer or literal permutation encoding.

The PMX uses a special repair procedure to resolve the illegitimacy. An illustration of

PMX is shown in Figure 2.6. Two positions along the genes from both P1 and P2 are

randomly selected. The sub-genes defined by the two positions are called the mapping

sections. The mapping section in P1 is copied to the proto-child at the same positions and

others are copied in order from P2. From the mapping section of P1 and P2, the mapping

relationship is determined. The genes that are not in the mapping section of P1 are

changed according to the mapping relationships in the proto-child. Genes without the

mapping relationship are simply copied in the proto-child.

Figure 2.6 The partial-mapped crossover (PMX).

1 1 0 1 0 0 0 1 0

0 1 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 0

P1

P2 P2

Proto-child

Offspring

1 0 1 0 1

0 1 0 1 1 1 0 1 0

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 8 7 3

5 4 3 4 5 6 8 7 3

2 9 3 4 5 6 8 7 1

P1

P2

Proto-child

Offspring

3↔6

4↔9

5↔2

6↔1

23

 Order crossover (OX) can be viewed as a variant of the PMX with a different repair

procedure. An illustration of OX is shown in Figure 2.7. Sub-genes are taken from P1 by

randomly choosing two points. The sub-genes are copied into the corresponding position

of each gene in a proto-child. The corresponding genes in P2 are deleted and the

remaining genes in P2 are placed into the proto-child from left to right in the same order

as in P2.

Figure 2.7 The order crossover (OX).

 Uniform crossover is accomplished by selecting two-parent solutions and randomly

taking each gene from one parent to form the corresponding position of the child. Uniform

crossover is illustrated in Figure 2.8. Each gene for the offspring is randomly selected

from either parent and then copied to the offspring. This process is repeated until all genes

of the offspring fill up completely.

Figure 2.8 The uniform crossover.

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 3 8

3 4 5 6

9 2 3 4 5 6 1 7 8

9 2 1 7 8

P1

P2 P2

Proto-child

Offspring

P1

P2

1 2 3 2 1 3 3 2 1

2 2 1 3 3 3 1 1 2 P2

Proto-child

Offspring

1 3 2 3 1

2 2 1 3 3 3 1 1 2

1 2 3 2 3 3 1 1 1

24

 Position-based crossover is a variant of uniform crossover for permutation encoding

together with a repair procedure, which can also be viewed as a variant of the OX where

the genes are copied inconsecutively. A position-based crossover is illustrated in Figure

2.9. A set of genes in P1 is selected and copied into the corresponding positions of the

proto-child. The corresponding genes in P2 are deleted. The remaining genes in P2 are

placed into the proto-child from left to right in the same order as in P2.

Figure 2.9 The position-based crossover.

 Order-based crossover is a slight variant of position-based crossover in which the order

of genes at the selected position of one parent is imposed on the corresponding genes of

the other parent, as shown in Figure 2.10.

Figure 2.10 The order-based crossover.

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 8 3

2 5 6 9

4 2 1 7 5 6 8 3 9

4 1 7 8 3

P1

P2 P2

Proto-child

Offspring

1 2 3 4 5 6 7 8 9

5 4 6 9 2 1 7 8 3

2 5 6 9

2 4 5 6 9 1 7 8 3

4 1 7 8 3

P1

P2 P2

Proto-child

Offspring

25

 Cycle crossover (CX): Like the position-based crossover, CX takes some genes from one

parent and selects the remaining genes from the other parent. The difference is that the

genes from the first parent are not selected randomly, and only those genes that create a

cycle according to the corresponding positions between parents must be selected. CX is

illustrated in Figure 2.12. The cycle defined by the corresponding positions of genes

between parents is created. The genes in the cycle to offspring with the corresponding

positions of P2 are copied into the proto-child. The genes in P2 that are already in the

cycle are deleted. The offspring is created by copying the remaining genes in P2.

Figure 2.11 The cycle crossover.

2.2.6 Mutation

To explore different solutions beyond the neighborhood and avoid local optima, a mutation

procedure needs to be implemented. In the GA, mutation plays an important role by either

replacing the individuals lost from the population during the selection process, so that they can

be tried in a new context, or providing the individuals that were not present in the initial

population. Commonly used mutation methods are explained as follows [Gen and Cheng,

2000]:

1 2 3 4 5 6 7 8 9

5 4 6 9 2 3 7 8 1

1 2 4 5 9

1 2 6 4 5 3 7 8 9

6 3 7 8

P1

P2 P2

Proto-child

Offspring

Cycle: 1→5→2→4→9→1

26

 Inversion mutation: The inversion mutation selects two positions within an individual at

random and then inverts the sub-genes between these two positions, as illustrated in

Figure 2.12.

Figure 2.12 The inversion mutation.

 Insertion mutation: The insertion mutation randomly selects a gene and inserts it in a

random position, as illustrated in Figure 2.13.

Figure 2.13 The insertion mutation.

 Reciprocal exchange mutation: The reciprocal exchange mutation selects two positions

at random and then swaps the genes on these positions, as illustrated in Figure 2.14.

Figure 2.14 The reciprocal exchange mutation.

 Point mutation: The point mutation selects a position at random and changes the gene in

the position to a certain gene, as illustrated in Figure 2.15.

Figure 2.15 The point mutation.

1 2 3 4 5 6 7 8 9 1 2 6 5 4 3 7 8 9

1 2 3 4 5 6 7 8 9 1 2 6 5 4 37 8 9

1 2 3 4 5 6 7 8 9 1 2 4 5 6 37 8 9

1 2 3 2 3 1 4 1 2 1 2 2 3 1 41 1 2

27

2.2.7 Termination condition

The GA repeats selecting parents, performing the crossovers, and executing the mutations

until termination criteria are met. The most frequently used stopping criterion is a maximum

number of generations [Gen and Chang, 2000]. Another notable termination strategy is the

population convergence criterion. The GA forces much of the entire population to converge

to a single solution. When the sum of the deviations among individuals becomes smaller

than a specified threshold, the algorithm is terminated. The algorithm can also be

terminated due to a lack of improvement in the best solution over a predetermined number

of generations. For each criterion, a threshold needs to be carefully selected. Several

strategies can be used in conjunction with each other.

2.3 The Taguchi method

To fine-tune the performance of algorithms or processes, many parameters must be set

carefully. The technique of investigating all possible combinations in experimental conditions

involving multiple factors is known as Design of Experiment. The method of experimental

design constitutes the preset values of parameters to obtain the optimized output as it allows

the designer to determine the significant parameters over the others. The Taguchi method was

introduced to search effectively for the optimal parameters.

The Taguchi method for parameter designs is an important tool in the category known as

robust design. Robust design is an engineering methodology for optimizing the product and

process conditions that are minimally sensitive to the causes of variations, and that produce

28

high-quality products with low development and manufacturing costs. The orthogonal array

and the signal-to-noise ratio (SNR) are two major tools used in the Taguchi method.

Additional details can be found in Taguchi et al. [2000] and Wu [2000].

The Taguchi method uses matrices called orthogonal arrays to determine which combinations

of factor levels to use for each experimental run. An orthogonal array is a fractional factorial

matrix, which assures a balanced comparison of levels of any factor. It is a matrix of numbers

arranged in rows and columns, where each row represents the level of the factors in each run

and each column represents a specific factor that can be changed from each run. The symbol

for three-level orthogonal arrays is Ln(3
k
), where n is the number of experimental runs, 3 is the

number of levels for each factor, and k is the number of factors. The letter L comes from Latin,

since the orthogonal arrays were associated with Latin square designs from the outset.

The SNR is the ratio of the signal over the noise, which measures the strength of signal with

the existence of noises. The higher SNR means that the process or design is more robust.

There are several SNRs available depending on the type of characteristics or outputs: nominal-

is-best, smaller-the-better or larger-the-better. Further details can be found in Taguchi et al.

[2000] and Wu [2000]. Taking the case of the smaller-the-better characteristic, suppose that

we have a set of experiment runs x1, x2, … , xn. Since the value of the SNR is large for

favorable situations, the following formulation for the smaller-the-better characteristic is used:

n
2

10 i

i 1

1
SNR -10 log x

n 

 
  

 
 .

29

Since the objective of VRPs is to minimize the total traveled distance, the smaller-the-better is

an appropriate measure in this thesis. The proposed GA with different process parameters

shows different performances.

2.4 The endosymbiotic evolutionary algorithm (EEA)

A concept of endosymbiotic hypothesis to explain biological theories was proposed by

Margulis [1981], and it is widely accepted in the area of biology. This concept is used to

design an endosymbiotic evolutionary algorithm (EEA), which is one of the symbiotic

evolutionary algorithms rooted at the biological hypothesis used to explain that the

mitochondria and chloroplasts are the result of years of collaborative evolutions. The concept

is initiated by the endocytosis of bacteria and blue-green algae, which, instead of becoming

digested, become symbiotic. It hypothesizes that prokaryotes enter into and become parasitic

on eukaryotes. The prokaryotes live together in symbiosis and evolve into a eukaryote.

Figure 2.16 The endosymbiotic evolution.

Figure 2.16, adapted from Campbell et al. [1996], illustrates the concept of endosymbiotic

evolution. Larger species engulfed smaller ones that continued to live and functioned in the

30

larger host cell. Both are called symbionts, or prokaryotes. They then evolved with this mutual

assistance into a better form of life, which is called an endosymbiont or eukaryote. EEA is a

probabilistic meta-heuristic algorithm that mimics this evolution.

The EEA is one of symbiotic evolutionary algorithms (SEAs). SEAs have been studied since

the 1990s and are known as effective tools to solve complex problems in dynamic situations

where multiple subproblems are interwoven. The original problem is split into subproblems,

and each subproblem has a population consisting of a set of elements. An element in the

population for a subproblem can be a part of a complete solution to the original problem.

Several variants of SEAs have been proposed by Potter [1997], Moriarty and Miikkulainen

[1997], and Kim et al. [2003]. It was reported that SEAs perform better than hierarchical

approaches using the genetic algorithm. However, most existing SEAs tend to allow an

individual entity to evolve independently without considering symbiotic partners, which are,

as partial solutions to other subproblems in the original problem, evaluated together in the

fitness function for complete solutions. If two or more cooperative, interacting species evolve

only in an independent fashion, the deviation of symbiotic partners during the evolution

increases, hindering consistent searches toward good solutions and resulting in a slow

convergence.

In order to overcome this drawback, the endosymbiotic evolutionary algorithm was proposed

[Kim et al., 2001, 2006]. In EEA, not only does an individual entity evolve independently, but

symbiotic partners of the entity also are allowed to evolve together. That is, by allowing some

species to adapt for a certain period without changing their symbiotic partners, the search for

the solution is performed more efficiently and effectively. In EEA, unlike other SEAs, if a

species mates with symbiotic partners that highly appreciate the partnership, it evolves with

them into a better form of life.

31

3. MIXED-INTEGER NONLINEAR PROGRAMMING MODEL

In this chapter, a mathematical model of the VRP for the delivery and installation is presented.

The objective of this model is to find the optimal routing and scheduling solution considering

not only the shortest traveling time of all vehicles but also the smallest cost of vehicles in

operation. The solution must be able to provide routes of delivery and installation vehicles.

The problem under consideration is formulated as a mixed-integer nonlinear programming

(MINP) model, as explained in the following sections.

3.1 Model assumptions

The VRP under consideration can be represented as a network, where nodes are customers or

a single depot and the links are roads linking any pair of nodes. In a network, customers are

indexed from 1 to N while the index 0 denotes a single depot. Customer i has a known

demand mi (i = 1, … , N) and its location is known. There is a set of customers, A, requiring

both delivery and installation (|A |≤ N). There are two types of vehicles, one for delivery and

one for installation, respectively. The complete list of assumptions used in this thesis is as

follows:

 Each vehicle starts from and returns to the depot.

 The demand of each customer is known.

 The demand of each customer must be satisfied by a single vehicle.

 The demand of a customer is less than the capacity of a delivery vehicle.

 All delivery vehicles have a homogeneous capacity.

 All installation vehicles have no delivery capacity.

32

 The same amount of installation time is required for every installation customer.

 The locations of all customers and the depot are known.

 The traveling time between any pair of locations is known.

 The traveling time matrix is symmetric. That is, the traveling time from location i to j

is equal to the traveling time from location j to i.

3.2 Notations

The parameters and decision variables used in this thesis are as follows:

Parameters:

N Number of customers

K Number of delivery vehicles

S Number of installation vehicles

A Set of customers requiring both delivery and installation

Tij

Traveling time between location i and location j

FCO Fixed cost per vehicle

Di

Demand of the customer at location i

CAP Capacity of delivery vehicles

Ri Time to complete the installation at location i, iA

OPT Available operation time per shift for vehicles

SVL Maximum allowable time between delivery and installation

(i.e., service level)

33

Decision Variables:

xijp




otherwise ,0

jlocation toilocation from k travels ehicledelivery v theif ,1

yijq




otherwise ,0

jlocation toilocation from travelss on vehicleinstallati theif ,1

ei

Arrival time of the delivery vehicle at location i, iA

fi

Arrival time of the installation vehicle at location i, iA

wi

Waiting time of the installation vehicle at location i, iA

uip

Subtour prevention variables for xijp

viq

Subtour prevention variables for yijq

34

3.3 Mathematical model

The mathematical model of the VRP under consideration for delivery and installation vehicles

is given as follows:

Minimize Z

K N N

ij ijp

p 1 i 0 j 0

T x
  


S N N

ij ijq

q 1 i 0 j 0

T y
  


N

i

i=0

w
K N S N

0jk 0js

k=1 j=1 s=1 j=1

FCO(x y)  

Subject to

K N

ijp

p 1 j 1

x
 

  K for i 0 (1)

N

ijp

j 1

x


  1 for i 0, p  (2)

N N

ijp jip

j 1 j 1

x x
 

   0 for i 0, p  (3)

K N

ijp

p 1 j 0

x
 

  1 for i 1 N  (4)

K N

ijp

p 1 i 0

x
 

  1 for j 1 N  (5)

N N

ijp jip

j 0 j 0

x x
 

   0 for i 1 N, p   (6)

N N

i ijp

i 1 j 0

D x
 

 
 
 

  CAP for p (7)

N N

ij ijp

i 0 j 0

T x
 

 OPT for p (8)

 ip jp ijpu u (N 1)x   N for i 0, j 0, i j, p    (9)

N

iip

i 1

x


 0 for i, p  (10)

35

 ijpx  }1,0{ for i, j, p   (11)

S N

ijq

q 1 j 1

y
 

 S for i=0, j A (12)

N

ijq

j 1

y


  1 for i 0, q  (13)

N N

ijq jiq

j 1 j 1

y y
 

  0 for i 0, q  (14)

S N

ijq

q 1 j 0

y
 

 1 for i A (15)

S N

ijq

q 1 i 0

y
 

 1 for j A (16)

N N

ijq jiq

j 0 j 0

y y
 

  0 for iA,
 q (17)

 iq jq ijqv v (N 1)y   N for i 0, j 0, i j, q     (18)

N

iiq

i 1

y


 0 for iA,
 q  (19)

 ijqy  }1,0{ for i, j, s    (20)

 0000 rwfe  0 (21)

 ii ef  SVL for i A (22)

 i i i iw 0, w e f   for i A (23)

  
K N

ijp i ij j

p 1 i 0

x e T e
 

  0 for j  (24)

  
S N

ijq i i i ij j

q 1 i 0

y f w R T f
 

    0 for j A (25)

  
N N

ijq ij i i

i 0 j 0

y T w R
 

  OPT for q  (26)

36

The mathematical model for the VRP under consideration is formulated as a mixed-integer

nonlinear programming (MINP) model. The objective function of the given MINP consists of

three parts. The first part of the objective function is the sum of the shortest traveling times of

the vehicles, which is the major cost in the problem. The second part of the objective function

is the sum of the waiting time of installation vehicles occurring due to the synchronization of

two different types of vehicles. The last part is the fixed cost of vehicles in operation. For the

last part, the fixed cost per vehicle (FCO) can be considered as a certain penalty. The traveling

distance or the transportation cost can also be used to optimize the model for the different

purposes.

The constraints can be classified into three different sets. The first set of constraints concerns

the VRP for delivery vehicles (constraints (1) through (11)); the second set concerns the VRP

for installation vehicles (constraints (12) through (20)); and the third set concerns the

synchronization for both types of vehicles (constraints (21) through (26)). Constraints (1) and

(12) constrain the numbers of delivery and installation vehicles, respectively, by limiting the

number of vehicles that can depart from the depot. Constraints (2), (3), (13) and (14) ensure

that all vehicles must return to the depot. Constraints (4) through (6) require that each

customer can accept only one visit by a delivery vehicle. Constraints (15) through (17) require

that each customer who needs the installation service can accept a visit by only one

installation vehicle. Constraint (7) assures that the sum of demand of all customers on a

vehicle route cannot exceed the loading capacity of a delivery vehicle. Constraints (8) and (26)

ensure that the duration of each vehicle’s shift cannot be longer than an available operation

time per shift for delivery and installation vehicles, respectively. Constraints (9) and (18)

eliminate the possible subtours. Constraints (11) and (20) define the binary integer decision

variables which represent the travels of corresponding vehicles between locations. Constraints

37

(21) through (25) guarantee the quality of service by defining the service level for customers

requiring both delivery and installation.

In order to ensure fulfillment of the planned service level, which is a unique characteristic of

the VRP in this thesis, the waiting time of the installation vehicles for the customers requiring

both delivery and installation has been calculated as well. If an installation vehicle arrives at a

customer’s location earlier than a delivery vehicle, it needs to wait for the delivery vehicle to

arrive before installation can start. In addition, an installation vehicle will not necessarily leave

immediately after the installation at one location; it may stay longer to avoid waiting at the

next location or so that its driver can make other arrangements. Hence, the waiting time of an

installation vehicle at customer location i (wi) is defined as the amount of time spent by the

installation vehicle before or after the installation at location i. This thesis also evaluated

another mathematical programming model by replacing constraint (23) with a different

constraint, max{0, ei – fi} – wi = 0, in order to remove the waiting time after the installation at

a location. Since the third set of constraints includes nonlinear ones, the mathematical

programming model for the VRP under consideration is more complicated than other

traditional VRPs.

3.4 Complexity of the problem

In the computational complexity theory, a traditional VRP is defined as one of NP-hard

problems. No polynomial time algorithm is known for any NP-hard problem. The

computational time of a NP-hard problem increases exponentially as the size of the problem

grows. The traveling salesman problem (TSP), a well-known NP-hard problem [Garey and

38

Johnson, 1979], is a special case of VRPs. In the traditional VRP, there are given numbers of

customers and vehicles. Each customer has its location and demand, and each vehicle has the

same loading capacity. If we consider the case of a VRP that has only one vehicle and zero

demand for all customers, this restricted VRP is exactly the same as a simple TSP. In other

words, such a VRP is a generalized case of the TSP. Therefore, the traditional VRP is NP-hard

in a strong sense.

The MINP for the problem can be viewed as a combined model of two VRPs. One is a VRP

for delivery vehicles, which shows characteristics of the CVRP, and the other is a VRP for

installation vehicles, which shows characteristics of the VRPTW. The CVRP is the simplest of

VRPs, and the VRPTW is an extension of the CVRP. Both of these are traditional types of

VRPs that have been studied extensively and are defined as NP-hard problems. Additionally,

the formulated mathematical model contains nonlinear constraints for the relation between two

VRPs, thereby making the problem more complicated. The problem can be regarded as a

combination of two NP-hard problems, and hence as NP-hard in a strong sense.

39

4. HIERARCHICAL APPROACH USING THE GENETIC

ALGORITHM FOR SYNCHRONIZATION OF THE

DELIVERY AND THE INSTALLATION

Since the VRP under consideration is one of NP-hard problems, it will be hard to use existing

mathematical approaches to solve such a problem of large size within polynomial computation

times. In order to effectively and efficiently find high-quality solutions in a reasonably small

amount of time, a hierarchical approach using the genetic algorithm is proposed in this chapter.

4.1 Hierarchical approach to the vehicle routing problem

The problem under consideration is more complicated than other traditional VRPs because

there are two different types of vehicles, delivery and installation vehicles, which must be

synchronized to guarantee the quality of service. Therefore, it is necessary to develop a

systematic approach not only to find routes and schedules for delivery and installation vehicles

but also to synchronize both types of vehicles. A search of routes and schedules for delivery

vehicles and a search of routes and schedules for installation vehicles can be defined as

subproblems of the original problem. In order to obtain good solutions of the original problem,

a hierarchical approach dealing with these two subproblems is developed in this thesis. The

procedure of the proposed hierarchical approach is illustrated in Figure 4.1.

40

Figure 4.1 The procedure of the proposed hierarchical approach.

The proposed hierarchical approach divides the original problem into two stages, each of

which contains a subproblem. The subproblem in Stage 1 is a VRP for delivery vehicles, and

the subproblem in Stage 2 is a VRP for installation vehicles. From the subproblem in Stage 1,

a set of routes and schedules is generated. The generated set of routes and schedules is a

partial solution of the original problem and is then used as a part of the input data for the

subproblem in Stage 2. Based on the partial solution from the subproblem in Stage 1, a set of

routes and schedules for installation vehicles is determined to solve the subproblem in Stage 2.

The set of routes and schedules for installation vehicles is the other partial solution of the

original problem. Therefore, the synchronization of the two types of vehicles is automatically

completed while solving the subproblem in Stage 2. Finally, the combination of the two partial

solutions constitutes the solution of the original problem.

Genetic algorithm (GA):
VRP for delivery vehicles

Stage 1: VRP for the delivery Stage 2: VRP for the installation

Genetic algorithm (GA):
VRP for installation vehicles

Installation schedules

Vehicle routes (installation)

Output (Results) :

Delivery customers with demand

Fixed cost per delivery vehicle

Traveling time among customers

Maximum operation time

Input data:

Vehicle routes (delivery)

Vehicle routes (installation)

Final Solution:

Input data:

Service level

Installation customers

Fixed cost per installation vehicle

Traveling time among customers

Maximum operation time

Delivery schedule

Output (Results) :

Delivery schedules

Vehicle routes (delivery)

41

The subproblem in Stage 1 has the characteristics of capacitated vehicle routing problems

(CVRP), which were briefly described in Section 2.2.1. The subproblem assumes that all

delivery vehicles have an identical loading capacity. They must return to the depot within a

specific time, called the maximum operation time. The limited loading capacity and the

maximum operation time need to be considered when customers are assigned to delivery

vehicles. All customers must be visited only once by a single delivery vehicle. It is assumed in

this thesis that unloading times for all customers are negligible, though this assumption can be

modified without loss of generality. Fixed cost per delivery vehicle is considered in the

proposed algorithm to minimize the number of delivery vehicles in operation, but this factor

could be omitted. The algorithm for the subproblem in Stage 1 determines routes and

schedules for delivery vehicles and their arrival times at each customer’s location. The arrival

times of delivery vehicles at the customers who require both delivery and installation are later

fed to the subproblem in Stage 2 in order to be considered for synchronization of delivery and

installation vehicles.

As mentioned previously, the subproblem in Stage 2 includes the characteristics of the VRP

with time windows (VRPTW). Unlike the subproblem in Stage 1, the loading capacity of

installation vehicles is not considered, since the installation requires only the service to be

rendered, not the goods. Similar to the subproblem in Stage 1, all installation vehicles must

return to the depot within a specified maximum operation time. Installation vehicles must visit

all customers who require both delivery and installation. The customers must be visited only

once, by a single installation vehicle, within a specified time after a delivery vehicle has

arrived at that customer, so as to fulfill the service guarantee. This specified time is called the

service level. Hence, each customer requiring both delivery and installation has a time window

following delivery within which he or she expects the arrival of an installation vehicle. It is

assumed that the time windows for all customers are identical, though this provision could be

42

easily relaxed without loss of generality. If an installation vehicle arrives earlier than a

delivery vehicle at a customer location, the installation vehicle must wait there until it can start

the installation service. The waiting times of installation vehicles or customers can be

considered as a penalty. It is assumed that all installation service requires the same amount of

installation time for each customer. Fixed cost per installation vehicle is considered in the

proposed algorithm to minimize the number of installation vehicles used. The algorithm for

the subproblem in Stage 2 determines routes and schedules for all installation vehicles.

Finally, to complete the solution of the original problem, a set of routes and schedules for all

delivery and installation vehicles is decided through this hierarchical approach using the

genetic algorithm. The fitness function in the GA for Stage 1 considers the traveling times and

fixed costs of all delivery vehicles, while the one for Stage 2 considers the traveling times,

waiting times, installation times, and fixed costs of all installation vehicles.

4.2 Procedure of the genetic algorithm for subproblems

The proposed hierarchical approach uses genetic algorithms to solve subproblems in Stages 1

and 2. As the characteristics of both subproblems are different, the GAs for the subproblems

have some differences. However, both GAs for the subproblems follow the basic procedure

illustrated in Figure 4.2. The GA consists of several processes, such as the process for the

initialization, the fitness function, the selection, the crossover, the mutation, and the local

search.

43

Figure 4.2 The procedure of the proposed genetic algorithm.

The GA creates a randomly generated initial population, which is a set of feasible solutions (or

“individuals”). The randomly generated initial population evolves into a well-adapted

population over generations. Through the adaptive search and recombination mechanisms, the

GA obtains high-quality solutions at the end. In order to assess how good the solutions are, a

function that effectively evaluates the survivability of individuals in the population is required.

This function is called a fitness function. All solutions in the population are evaluated by the

fitness function and are ranked according to their fitness values. If a solution has a high fitness

value, it has more chance to survive in the next generation and to produce offsprings.

Otherwise, it can be easily eliminated from the population.

No

Start

End

Initialization

Fitness function

Input data

Current population

Crossover

Mutation

Local Search

Termination

condition

Selection

Yes

The final solution

44

The problem considered in this thesis consists of two subproblems. Each subproblem has a

different fitness function. From the population of the current generation, offspring solutions

for the next generation are produced by the crossover and mutation operations in the algorithm.

The crossover operation allows parent solutions to be randomly selected from the population

and to produce offspring solutions which inherit some of the characteristics from them. The

mutation operation is applied to current solutions with a certain probability to generate mutant

solutions. The purpose of the mutation operation is to allow the algorithm to avoid local

optima and to try to search in other directions. Then, a local search procedure is applied to see

the possibility of improving the best solution in the population. The population continuously

evolves as these operations are repeated to create the next generation of possible solutions

until the algorithm meets a certain termination condition.

In this thesis, the ranking replacement strategy is used to construct the population for the next

generation in the proposed algorithm (Chu and Beasley, 1998). At the beginning of the

evolution in each generation, the population at the end of the previous generation is duplicated

to the population of the current generation. In the course of crossover procedures, newly

generated offspring competes with all individuals in the current population. That is, let πoffspring

and πw be the fitness values of the new offspring and the worst individual in the current

population, respectively. If πoffspring > πw, the corresponding offspring will replace the worst

individual in the current population.

45

4.3 Components of the proposed genetic algorithm

The GA consists of several components, including the population, the individual, the selection

operation, the crossover operation, and the mutation operation. Using a different combination

of components may have an impact on the GA’s performance in terms of algorithm speed and

solution quality. In the following subsections, the components of the proposed GA are

described in detail.

4.3.1 Genetic representations

The subproblems in Stages 1 and 2 have different characteristics and constraints, which were

already explained in Section 4.1. As a result there are different genetic representations for the

two subproblems. Sections 4.3.1.1 and 4.3.1.2 describe their genetic representations, used in

the proposed GAs for subproblems in Stages 1 and 2, respectively.

4.3.1.1 Genetic representation of the VRP for delivery vehicles

The subproblem in Stage 1 can be defined as a CVRP for delivery vehicles. A one-

dimensional array is used to represent an individual or a solution, as shown in Figure 4.3.

Figure 4.3 The genetic representation for the subproblem in Stage 1.

Numbers in the boxes indicate customers requiring the delivery, whether or not they want the

installation as well. Since each customer is to be visited by a single delivery vehicle, a

1 5 7 9 2 4 8 11 10 3 6 12

Delivery

vehicle 1

Delivery

vehicle 2

Delivery

vehicle 3

46

customer must be shown only once in the array. The alternating shaded areas in Figure 4.3

represent different groups of customers served by different delivery vehicles. The decoding

procedure, which is a part of the fitness function evaluation, for the subproblem in Stage 1

determines which delivery vehicle visits which customers, along with the visiting sequences

for each delivery vehicle. A simple greedy method is used in the decoding procedure to assign

customers to delivery vehicles. In order to identify a group of customers to be served by a

delivery vehicle, the customers’ demands, the loading capacity of the vehicle, and the

maximum operation time are considered.

Figure 4.3 shows an example of a genetic representation and the decoding procedure for the

subproblem in Stage 1. There are 12 customers requiring the delivery, and the customers are

served by three delivery vehicles. Let the depot denote the location 0. The routes of three

delivery vehicles are {0, 1, 5, 7, 9, 0}, {0, 2, 4, 8, 11, 10, 0}, and {0, 3, 6, 12, 0}. The arrival

times of delivery vehicles at the customer locations are calculated from the routes, using the

distances between the locations and the possible unloading times.

4.3.1.2 Genetic representation of the VRP for installation vehicles

The subproblem in Stage 2 can be defined as a VRPTW for installation vehicles only. A one-

dimensional array is used to represent an individual or a solution for the subproblem in Stage

2, as shown in Figure 4.4.

Figure 4.4 The genetic representation for the subproblem in Stage 2.

5 7 4 10 3 6

Installation

vehicle 1

Installation

vehicle 2

47

Numbers in the boxes indicate customers requiring both delivery and installation. Since the

customers are to be visited by a single installation vehicle, numbers must appear only once in

the array. The alternating shaded areas in Figure 4.4 represent different groups of customers

served by different installation vehicles. The decoding procedure for the subproblem in Stage

2 determines which installation vehicle visits which customers, along with visiting sequences

for each installation vehicle. As in the subproblem in Stage 1, a simple greedy method is used

in the decoding procedure to assign customers to installation vehicles. However, unlike the

subproblem in Stage1, in order to assign a group of customers to an installation vehicle, the

time windows for customers requiring installation, as well as the maximum operation time,

must be considered.

Figure 4.4 shows an example of the genetic representation and the decoding procedure for the

subproblem in Stage 2. There are six customers requiring installation, and the customers are

served by two installation vehicles. Let the depot denote the location 0. The routes of the two

installation vehicles are {0, 5, 7, 4, 0} and {0, 10, 3, 6, 0}. The arrival times of installation

vehicles at the customer locations are calculated from the distance between the locations, the

installation times, and the waiting times.

4.3.2 Initialization, fitness function, and selection

A population in the GA consists of a set of individuals. The population must be initialized at

the beginning. In order to generate the initial population, all individuals are randomly

generated. Each individual in the population must be evaluated by its survivability in the

problem through a fitness function. The evaluation value of the individual is called the fitness

48

value. The individual having a higher fitness value than others will have a greater chance to

survive during the evolution in the GA.

In the subproblem in Stage 1, the sum of traveling times of delivery vehicles, the sum of

unloading times at customers, and the sum of fixed costs of used delivery vehicles are

considered to calculate the fitness value of an individual. Let τa,t be the sum of traveling times

of delivery vehicles in individual a at generation t, Λ be the sum of unloading times at

customers in individual a, and δa,t be the sum of fixed costs of delivery vehicles used in

individual a at generation t. According to the assumptions of the problem, the unloading time

at any customer is identical and the number of customers is known. The sum of unloading

times at customers (Λ) can be easily calculated and left as a constant, since all individuals

would have the same value. Therefore, the sum of unloading times can be ignored in the

evaluation of individuals. The fitness function of individual a at generation t for the

subproblem in Stage 1 (πa,t) is defined as follows:

,

, ,

1

()
a t

a t a t


 


 

In the subproblem in Stage 2, the sum of traveling times of installation vehicles, the sum of

installation times at customers,

the sum of waiting times of installation vehicles, and the sum

of fixed costs of used installation vehicles are considered to calculate the fitness value of an

individual. Let φb,t be the sum of traveling times of installation vehicles in the individual b at

generation t, Ι be the sum of installation times at customers in individual b, ωb,t be the sum of

waiting times of installation vehicles in the individual b at generation t, and γb,t be the sum of

fixed costs of used installation vehicles in individual b at generation t. The sum of installation

times at customers (Ι) can be easily calculated and left as a constant, since all individuals have

49

the same value. Therefore, the installation time can be ignored in the evaluation of individuals.

The fitness function of individual b for the subproblem in Stage 2 (ρb,t) is defined as follows:

,

, , ,

1

()
b t

b t b t b t


  


  

After the evaluation of all individuals in the population has been completed, the ranking

replacement strategy is applied to generate the new population. In GAs for both subproblems,

higher fitness values are more desirable to generate high-quality solutions.

An appropriate selection method is also one of the important operations in the proposed GA to

produce offsprings for the next generation. The selection method fundamentally gives a

greater chance of being chosen for reproduction to individuals having higher fitness values.

The roulette wheel selection method is used in the algorithm proposed in this thesis. The

probability for an individual to be selected is calculated as the fitness value of the individual

divided by the sum of the fitness values of all individuals in the population. The roulette wheel

selection method is known as an acceptable selection method [Gen and Cheng, 2000].

4.3.3 Crossover

Crossover is one of the important reproduction procedures in GAs. A hybrid order crossover

procedure has been implemented to efficiently and effectively reproduce new offsprings from

two parents in the current population. The proposed crossover operator is a hybrid of the order

crossover and the one-cut-point crossover, which are both described in Section 2.2.5,

50

respectively. A number of pairs of individuals equal to the size of the population are randomly

selected by the selection method. The selected pairs may participate or not participate in the

reproduction. For each pair, a random number between 0 and 1 is generated, and if the number

is over a given probability, called the crossover rate, then the corresponding pair (P1 and P2)

proceed to the crossover procedures, which are as follows:

Step 1: A vehicle is randomly chosen from one parent (P1).

Step 2: The corresponding genes, which are a series of location indices for the chosen

vehicle, are copied into an offspring in the same order as they appear in P1,

and the corresponding genes are deleted from P1.

Step 3: The remaining genes in P1 are rearranged in order.

Step 4: A gene is randomly selected from the remaining genes in P1.

Step 5: The genes in the pre-cut section of P1 are added into the offspring in the same

order in which they appear in P1.

Step 6: The indices of already-inherited genes from P1 are deleted in the other parent

(P2).

Step 7: The remaining genes in P2 are copied into the offspring in the order in which

they appear in P2.

Figure 4.5 shows an example of the proposed hybrid crossover operator. The genes (2, 4, 8, 11,

and 10) for the second vehicle in Parent 1 are copied to the offspring and deleted from P1

(Steps 1 and 2). Then, remaining genes in P1 are rearranged in the same order, after which the

gene (9) is randomly selected as a cutting point (Steps 3 and 4). The genes (1, 5, 7, and 9), the

pre-cut section of P1, are added into the offspring in the same order as they appear in P1 (Step

5). The corresponding genes in Parent 2, which are in bold and underlined, are deleted. Finally,

51

all remaining genes in Parent 2 are copied to the offspring in the same order as in Parent 2

(Step 6 and 7). The genes from the route of the selected vehicle are passed on to the offspring

without violating any constraint. Therefore, the good genes from the selected parents can be

preserved in the next generation. However, an offspring that may require more vehicles to

serve customers can be produced as well.

Figure 4.5 The modified crossover operation.

1 5 7 9 2 4 8 11 10 3 6 12

6 9 3 2 4 1 5 10 7 8 12 11

2 4 8 11 10

P1

P2

Offspring

6 9 3 2 4 1 5 10 7 8 12 11

P1

P2

Offspring

a. Vehicle selection

b. One-cut-point selection

c. Final offspring

P1

Offspring

1 5 7 9 3 6 12

2 4 8 11 10 1 5 7 9

3 6 12

6 9 3 2 4 1 5 10 7 8 12 11

2 4 8 11 10 1 5 7 9 6 3 12

P2

52

Various crossover operators were tried to obtain the best performance. Overly complicated

operators might restrict the random evolutions and take too much computational time. It is

thus best to use simple, effective operators. When only the order crossover operator was used

in the proposed GA, a premature convergence to local optima was observed. Individuals in the

final population have different genetic representations but the same assignment of customers

to vehicles. The proposed hybrid crossover operator improves both the inheritance from

parents and the diversity of the population, while avoiding the premature convergence of the

population.

4.3.4 Mutation

For the mutation procedure, an exchange mutation operator is used to prevent individuals in

the population from becoming too similar to each other and the GA from settling down at a

local optimum. Some individuals are randomly selected at a given probability, called mutation

rate. The exchange mutation operator selects two genes randomly from an individual and

exchanges them. Figure 4.6 shows an example of the exchange mutation. Two genes (7 and 4)

are randomly selected in the original individual, and their locations are swapped in the mutant.

Figure 4.6 An example of the exchange mutation operation.

1 5 7 9 2 4 8 11 10 3 6 12
Original

Individual

1 5 4 9 2 7 8 11 10 3 6 12
Mutant

Individual

53

4.3.5 Local search

If the optimal solution of the problem is in the complex solution space, it is sometimes

difficult to find good solutions with the GA, which is a general meta-heuristic algorithm.

Therefore, in many heuristic algorithms for combinatorial optimization problems, including

VRPs, local search methods are employed to improve the solution quality according to the

characteristics of the problem and to increase the performance of the algorithms. To improve

the quality of solutions for those complex problems, various local search procedures have

been studied and implemented along with the GA (Freisleben & Merz, 1996; Prins, 2004).

The proposed algorithm employs the 2-opt exchange local search procedure to improve the

routes of each vehicle by untangling the twisted routes. The 2-opt exchange local search

procedure is a well-known local search method. The operator of the 2-opt exchange local

search procedure searches for a better solution among the neighbors of the current best

individual. To probe among the neighbors, the local search operator extracts a set of genes that

represent the route of the first vehicle in the best individual. The operator selects two genes in

the route and then inverts the sub-genes between these two genes. All possible combinations

that can be generated by selecting a pair of genes in the route are considered to find better

solutions. When the local search procedure completely finishes searching better routes in a set

of genes for the first vehicle, the best route of the first vehicle is copied to a new individual.

Then, a set of genes for the route of the next vehicle is considered. Finally, if the fitness value

of the new individual produced by the local search operation is better than the fitness value of

the best individual in the current population, the new individual is admitted to the population

in place of the worst individual in the population. An example of a 2-opt move operation is

shown in Figure 4.7.

54

Figure 4.7 The 2-opt exchange local search.

In Figure 4.7, the route of a vehicle is {0, 1, 2, 3, 4, 5, 6, 0}. The proposed local search

operation selects genes 3 and 5 and then inverts the sub-genes between two genes. Finally, the

proposed local search operation finds a better route for the vehicle, namely {0, 1, 2, 5, 4, 3, 6,

0}.

4.3.6 Termination conditions

The proposed GA terminates when the number of generations reaches a specified limit or no

improvement of the best solution is observed over a specified number of generations, which is

defined as the improvement interval. The individual with the highest fitness value in the final

generation is interpreted as the best known solution to the problem.

0

1

2

54

3

6

0

1

2

54

3

6

1 2 3 4 5 6 1 2 5 4 3 6

55

5. COMPUTATIONAL EXPERIMENTS OF THE

HIERARCHICAL APPROACH USING THE GENETIC

ALGORITHM

The proposed hierarchical approach using the genetic algorithm was implemented to

effectively solve the VRP under consideration and programmed in Visual Basic programming

language with the Microsoft Visual Studio.NET Framework version 1.1. Computational

results of the hierarchical approach using the genetic algorithm are compared with results of

the MINP model, which was implemented and solved by Lingo version 10.0, a commercially

available optimization software for non-linear programming models. Computational

experiments were carried out on a personal computer with 3.4 GHz Pentium 4 CPU and 2.0

GB RAM.

5.1 Effectiveness of the hierarchical approach using the genetic

algorithm

5.1.1 Comparison of the MINP approach and the hierarchical approach

using the genetic algorithm

In order to show the effectiveness of the proposed hierarchical approach using the genetic

algorithm, two test problems were tried by the MINP approach and the hierarchical approach

using the genetic algorithm. The results from these two approaches were compared.

56

Two test problems, V-d6-i3 and V-d8-i4, were randomly generated. In V-d6-i3, there are 6

customers requiring the delivery while 3 customers require the installation as well. In V-d8-i4,

there are 8 customers requiring the delivery while 4 customers require the installation as well.

Table 5.1 shows the details of the problem parameters used to generate two test problems

randomly.

Table 5.1 The problem parameters for two test problems.

Parameters V-d6-i3 V-d8-i4

Number of customers 6 8

Number of customers for installation 3 4

Amount of customers’ demands 2-10 2-10

Number of delivery vehicles 3 3

Capacity of a delivery vehicle 20 20

Number of installation vehicles 2 2

Service level (min) 60 60

Maximum operation time (min) 480 480

Fixed cost per vehicle (min/vehicle) 100 100

In addition, the hierarchical approach using the genetic algorithm has used the algorithmic

parameters listed in Table 5.2 to solve test problems and show its effectiveness. The GAs for

the subproblems in Stages 1 and 2 used the same parameters during the operation.

57

Table 5.2 Algorithmic parameters of the genetic algorithm.

Parameters Values

Size of the population 100

Crossover rate 0.8

Mutation rate 0.1

Maximum number of generations 5,000

Improvement interval 200

The MINP approach and the hierarchical approach using the genetic algorithm were applied to

the two test problems, and the results are given in Table 5.3. The MINP approach solved the

test problems to generate optimal solutions, which became the target values to demonstrate the

effectiveness of the hierarchical approach using the genetic algorithm. Since the VRP under

consideration is an NP-hard problem, the calculation time of the MINP approach would be

exponentially increased as the size of the problem grows. In the MINP approach, V-d6-i3 and

V-d8-i4 contain 144 and 344 variables, respectively. Lingo takes 452 seconds to obtain the

optimal solution of V-d6-i3 and 283 hours to obtain the optimal solution of V-d8-i4. Hence, if

the size of the problem grows bigger than V-d8-i4, it would be extremely hard or time-

consuming to find the optimal solutions using the MINP approach.

Unlike the MINP approach, the proposed hierarchical approach using the genetic algorithm

finds high-quality solutions in a reasonable amount of time. Practically, the hierarchical

approach obtains optimal or good solutions of the test problems in just a few seconds. Table

5.3 shows the sum of traveling times of delivery and installation vehicles for two test

problems from the MINP approach and the hierarchical approach using the genetic algorithm.

58

Table 5.3 The results of two approaches for small test problems.

Problem name
MINP approach with

Lingo

The hierarchical

approach using GA

V-d6-i3 238.42 238.42

V-d8-i4 371.47 377.01

Both approaches provide same results for V-d6-i3 but different results for V-d8-i4. The

hierarchical approach using the genetic algorithm found the same solution for V-d6-i3 that the

MINP models found, so that the solution is equal to the optimal solution. However, the

hierarchical approach using the genetic algorithm obtained a different solution from the

optimal solution obtained by the MINP approach. The gap between the solutions from the two

approaches may occur because of the characteristics of the hierarchical approach. The final

solution of the hierarchical approach consists of two partial solutions from two subproblems in

Stages 1 and 2. Since the partial solution of the subproblem in Stage 2 depends on the partial

solution of the subproblem in Stage 1, the proposed algorithm may not be able to search for

the solutions efficiently. Therefore, the partial solution of the subproblem in Stage 1, which

covers the deliveries, is regarded as a local optimum in the original problem. Due to the fact

that the hierarchical approach obtains the final solution based on a local optimum, the final

solutions for the original problem are not necessarily a global optimum. Unfortunately, this is

a natural limitation of the proposed hierarchical approach. For reference, the Lingo program

code of the MINP approach for V-d6-i3 is presented in Table A.1 of Appendix A.

59

5.1.2 Computational results for a large problem

The hierarchical approach using the genetic algorithm is proposed to solve the VRP under

consideration, with variables of any size, in a reasonable amount of time. This section

summarizes computational experiments of the hierarchical approach using the genetic

algorithm for a test problem of large size. For this purpose, a test problem of relatively large

size, V-d100-i50-a, was randomly generated. In V-d100-i50, there are 100 customers requiring

the delivery while 50 customers require the installation as well. All customers are randomly

located in a 100x100 bounded square field, and a single depot is located in the center (50, 50)

of the field. Other parameters of the test problem and algorithmic parameters of the GAs for

the subproblems in Stage 1 and 2 are shown in Table 5.4.

Table 5.4 Problem parameters and algorithmic parameters.

Parameters Values

Amount of customers’ demands 2-6

Capacity of a delivery vehicle 20

Service level (min) 60

Installation time (min) 10

Fixed cost per vehicle (min/vehicle) 100

Size of the population 200

Crossover rate 0.8

Mutation rate 0.05

Maximum number of generations 10,000

Improvement interval 1000

60

Due to the stochastic properties of the evolutionary algorithm, the average performance of the

algorithm is our interest. Therefore, the experiments were performed as described in this

paragraph. The GA for the subproblem in Stage 1 solved the test problem five times. Let V-

d100-i50-a(1) through V-d100-i50-a(5) be the results of the five runs, respectively. Figure 5.1

shows the progress of the five runs from the GA for the subproblem in Stage 1. Lines in the

figure represent the changes of the value of the best solution during the evolution. As the

number of generation increases, the value of the best solution of the GA for the subproblem in

Stage 1 decreases. As the algorithm evolves from the first to the thousandth generation, the

value of the best solution for the algorithm rapidly drops down. Then, the good solution for

the subproblem in Stage 1 is found after approximately 2,500

generations.

Figure 5.1 Results of the subproblem in Stage 1.

Hence, the GA for the subproblem in Stage 1 obtains five solutions. Each solution contains

different arrival times of delivery vehicles at customers' locations. Based on the arrival times

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000

V
al

u
e

o
f

b
es

t
so

lu
ti

o
n

(A
rb

it
ra

ry
 u

n
it

s)

Number of generation

V-d100-i50-a(1)

V-d100-i50-a(2)

V-d100-i50-a(3)

V-d100-i50-a(4)

V-d100-i50-a(5)

61

of delivery vehicles in each solution, the time windows for the installations are determined.

The time windows are one of the important, unique factors required to synchronize the two

types of vehicles; they are fed to the GA for the subproblem in Stage 2 as a part of the input

data. Therefore, five different sets of time windows for the customers requiring installation are

generated from the results of Stage 1, V-d100-i50-a(1) through V-d100-i50-a(5).

Using the five sets of time windows, five sets of input data for the GA for the subproblem in

Stage 2 were prepared and fed into the GA for the subproblem in Stage 2 five times each to

again obtain the average performance. Figure 5.2 through 5.6 show the results of the GA for

the subproblem in Stage 2 with the five input data. The five lines in each figure represent the

five runs of the GA for the subproblem in Stage 2 with a set of input data, which were

prepared using a single result from the GA for the subproblem in Stage 1. Lines in each figure

represent the changes of the value of the best solution during the evolution. As the number of

generations increases, the value of the best solution for the GA for the subproblem in Stage 2

decreases. As the algorithm evolves from the first to the 500th generation, the best fitness

value of the algorithm rapidly drops down. A good solution for the subproblem in Stage 2 is

found after approximately 700

generations.

62

Figure 5.2 Results of the subproblem in Stage 2 based on V-d100-i50-a(1).

Figure 5.3 Results of the subproblem in Stage 2 based on V-d100-i50-a(2).

7000

8000

9000

10000

0 500 1000 1500

V
al

u
e

o
f

b
es

t
so

lu
ti

o
n

(A
rb

it
a

ry
 u

n
it

s)

Number of generation

From V-d100-i50-a(1)

V-d100-i50-a(1-1)

V-d100-i50-a(1-2)

V-d100-i50-a(1-3)

V-d100-i50-a(1-4)

V-d100-i50-a(1-5)

7000

8000

9000

10000

0 500 1000 1500

V
al

u
e

o
f

b
es

t
so

lu
ti

o
n

(A
rb

it
a

ry
 u

n
it

s)

Number of generation

From V-d100-i50-a(2)

V-d100-i50-a(2-1)

V-d100-i50-a(2-2)

V-d100-i50-a(2-3)

V-d100-i50-a(2-4)

V-d100-i50-a(2-5)

63

Figure 5.4 Results of the subproblem in Stage 2 based on V-d100-i50-a(3).

Figure 5.5 Results of the subproblem in Stage 2 based on V-d100-i50-a(4).

7000

8000

9000

10000

0 500 1000 1500

V
al

u
e

o
f

b
es

t
so

lu
ti

o
n

(A
rb

it
a

ry
 u

n
it

s)

Number of generation

From V-d100-i50-a(3)

V-d100-i50-a(3-1)

V-d100-i50-a(3-2)

V-d100-i50-a(3-3)

V-d100-i50-a(3-4)

V-d100-i50-a(3-5)

7000

8000

9000

10000

0 500 1000 1500

V
al

u
e

o
f

b
es

t
so

lu
ti

o
n

(A
rb

it
a

ry
 u

n
it

s)

Number of generation

From V-d100-i50-a(4)

V-d100-i50-a(4-1)

V-d100-i50-a(4-2)

V-d100-i50-a(4-3)

V-d100-i50-a(4-4)

V-d100-i50-a(4-5)

64

Figure 5.6 Results of the subproblem in Stage 2 based on V-d100-i50-a(5).

Finally, from the hierarchical approach using the genetic algorithm for the subproblems in

Stages 1 and 2, 25 final solutions were obtained. For simplicity, Table 5.3 shows a summary

of the 25 experimental results. The table consists of final solutions for the subproblems in

Stages 1 and 2 and for the original problem, which is naturally the sum of the solutions from

both subproblems.

7000

8000

9000

10000

0 500 1000 1500

V
al

u
e

o
f

b
es

t
so

lu
ti

o
n

(A
rb

it
a

ry
 u

n
it

s)

Number of generation

From V-d100-i50-a(5)

V-d100-i50-a(5-1)

V-d100-i50-a(5-2)

V-d100-i50-a(5-3)

V-d100-i50-a(5-4)

V-d100-i50-a(5-5)

65

Table 5.5 Results of GAs on V-d100-i50-a.

Experiments
Subproblem in

Stage 1

Subproblem in

Stage 2

Original problem

(Stages 1+ 2)

1

4140.03

7304.43 11444.46

2 7591.71 11731.74

3 7334.92 11474.95

4 7505.58 11645.61

5 7496.76 11636.79

6

4029.14

7355.62 11384.76

7 7509.45 11538.59

8 7307.80 11336.94

9 7323.06 11352.20

10 7308.49 11337.63

11

3971.28

7313.23 11284.51

12 7276.10 11247.38

13 7270.78 11242.06

14 7272.49 11243.77

15 7288.16 11259.44

16

4030.77

7206.32 11237.09

17 7215.20 11245.97

18 7218.96 11249.73

19 7433.16 11463.93

20 7370.35 11401.12

21

3976.87

7245.86 11222.73

22 7457.32 11434.19

23 7237.73 11214.60

24 7433.15 11410.02

25 7204.65 11181.52(*)
(*)

 The best solution obtained by the proposed hierarchical approach

In Table 5.3, the best solution of the original problem is not equal to the sum of the best

solutions for each subproblem in Stages 1 and 2. The best solution value of the subproblem in

Stage 1 is 3971.28, the value used for the third set of experiments (experiments 11-15). The

routes and schedules of delivery vehicles from this experiment were fed to the subproblem in

Stage 2, but the best solution for the original problem did not use this best solution for the

subproblem in Stage 1. Rather, the best solution for the original problem was achieved in

experiment 25. Considering these computational experiments, it is necessary to develop a way

66

to consider the tradeoff between the two subproblems in order to obtain the best possible

solution of the original problem.

5.2 Robustness of the hierarchical approach

In practice, the VRP under consideration would have case-specific problem parameters

reflecting the situation. Some problem parameters may have great impacts on the performance

and effectiveness of the proposed algorithm as well as on the solutions of the VRP under

consideration. The impacts of the problem parameters on the performances and solutions may

not be identical, either. Significant degradation in the performance of the proposed algorithm

resulting from variation of the problem parameters is not desirable. In other words, the robust

algorithm is desirable even if the problem characteristic varies. In order to verify the

robustness of the proposed algorithm, the Taguchi method was used to generate an orthogonal

combination of the experiments. The purpose of applying the Taguchi method in this section

is to show the robustness of the proposed algorithm for the problem with various conditions

rather than optimizing the process parameters.

5.2.1 Design of experiments by the Taguchi method

Experimental design experiments using the Taguchi method were conducted using the

“orthogonal array,” within which all experiments are balanced with respect to all control

factors while still requiring the minimum number of experiments to be performed. The

Taguchi method is a derivative of the fractional factorial design method. In this section, the L9

orthogonal array for four factors with each at three levels is used. The four control factors in

67

this section are the ratio of installations to deliveries (factor A), the service level (factor B),

the installation time (factor C), and the fixed cost per vehicle (factor D). The ratio of

installations to deliveries is determined by the customers’ demands. Three different ratios are

considered; 10%, 30%, and 50%. The service level is generally predetermined by the service

policy of the company. The better the quality of service required, the smaller is the permissible

service level. It is clear that more installation vehicles will be required to satisfy the demands

of customers requring the installation in narrower time windows. Three service levels are

considered: 60, 120, and 180 minutes. An identical installation time for all customers

requiring the installation is assumed in the VRP under consideration. The installation time

may be determined according to the recommended installation time of the products. That is, it

is assumed that different amounts of installation times are required for different types of

products. However, for simplicity, a single predetermined installation time is applied to all

installations in these sample problems. Three different installation times are considered: 10, 35,

and 60 minutes. Finally, the fixed cost per vehicle may have an impact on the performance

and the solutions as well. When the fixed cost per vehicle is high, reducing the number of

vehicles may be more important in order to find the best solution. The fixed cost per vehicle

is converted to a certain amount of time as a penalty in the problem modeling. Three different

fixed costs per vehicle are used: 50, 100, and 150 minutes per vehicle. Table 5.6 summarizes

the four factors and their levels.

Table 5.6 Four factors for the Taguchi method.

Factor Level

A: Ratio of installations to deliveries (%) A1 = 10, A2 = 30, A3 = 50

B: Service level (min) B1 = 60, B2 = 120, B3 = 180

C: Installation time (min) C1 = 10, C2 = 35, C3 = 60

D: Fixed cost per vehicle (min/vehicle) D1 = 50, D2 = 100, D3 = 150

68

Based on these four factors and three levels of each factor, an L9 orthogonal array is used to

generate the nine sets of experimental conditions. Table 5.7 shows the L9 orthogonal array and

nine experimental runs with the experimental conditions.

Table 5.7 The L9 orthogonal array and the nine runs with the experimental conditions.

L9 (3
4
) Orthogonal array Actual values

Run no. A B C D

Ratio of

installations

to deliveries

(%)

Service

level (min)

Installation

time (min)

Fixed cost

per vehicle

(min/vehicle)

1 1 1 1 1 10 60 10 50

2 1 2 2 2 10 120 35 100

3 1 3 3 3 10 180 60 150

4 2 1 2 3 30 60 35 150

5 2 2 3 1 30 120 60 50

6 2 3 1 2 30 180 10 100

7 3 1 3 2 50 60 60 100

8 3 2 1 3 50 120 10 150

9 3 3 2 1 50 180 35 50

A = Ratio of installation customers (%), B= Service Level (min)

C=Installation time (min), D= Fixed cost per vehicle (min/vehicle)

In order to generate test problems randomly, the problem parameters listed in Table 5.8 have

been used.

Table 5.8 The problem parameters of the test problems in this section.

Parameters Values

Field size 100×100

Location of the single depot (50,50)

Locations of customers Random

Amount of demands 2-10

Loading capacity of a delivery vehicle 20

69

The hierarchical approach using the genetic algorithm solved the test problem under the

identical conditions, using the algorithmic parameters given in Table 5.9. The identical

algorithm parameters were applied to the GAs for the subproblems in Stages 1 and 2.

Table 5.9 The algorithm parameters for the experiment.

Parameters Value

Size of the population 200

Crossover rate 0.8

Mutation rate 0.05

Maximum number of generations 10,000

Improvement interval 1,000

5.2.2 Results of the experiments with regard to robustness

In each run of Table 5.7, five test problems were generated randomly and solved using the

identical algorithmic parameters. As mentioned before, the hierarchical approach using the

genetic algorithm consists of two stages. It is important to understand that the robustness of

the proposed algorithm is proved only when the average performances are robust. Hence, in

Stage 1, five test problems were solved five times each. The five test problems (V-d100-i10-a

through V-d100-i10-e) were solved five times each for run number 1 in Table 5.7, resulting in

25 solutions. After Stage 1, five solutions per problem were obtained. These solutions were

then fed to the GA for the subproblem in Stage 2 as a part of the input data. Then, the GA for

the subproblem in Stage 2 solved, five times each, the subproblems based on input data from

the end of Stage 1. Thus, each run in Table 5.7 produced 125 solutions. Therefore, 1,125

70

solutions of the original problem were obtained through the nine experimental runs. The

results of these 1,125 solutions are reported in Tables B.1 through B.9 in Appendix B.

The results of the solutions from the experiments are normalized for analysis because the

control factors themselves may have a direct impact on the solutions. The sum of the average

traveling time per customer requiring delivery from the subproblem in Stage 1 and the average

traveling time per customer requiring installation from the subproblem in Stage 2 is used for

this Taguchi analysis as the normalized signal. Since the objective of the VRP under

consideration is to find the shortest traveling times of all vehicles while satisfying all

customers’ demands, the smaller result is more desirable in the Taguchi analysis.

Let yi be the normalized signal from the experiment i. The signal-to-noise ratio (SNR) for this

smaller-the-better problem is calculated as

SNR = -10 log10
21

iy
n

 
 
 


By ANOVA, the relative contributions of each considerable factor are calculated in Table 5.10.

The relative contributions of the four control factors used in this Taguchi analysis are fairly

similar. The most significant factor is the ratio of customers requiring installation (factor A),

which impacts 32.83 % on the results of the experiment. The service level and the installation

time impacts 25.37% and 28.97%, respectively, which are not much less than the contribution

of the ratio of customers requiring installation. The least significant factor is the fixed cost per

vehicle. If all solutions for the same problem contained the same number of vehicles, the

contribution of the fixed cost per vehicle must be zero. Therefore, the fact that this factor does

71

have some impact shows that there are solutions that use different numbers of vehicles.

However, the impact of this factor is smaller than that of the other three factors.

It is concluded that the proposed algorithm solves the VRP under consideration consistently

well even with the existence of various settings of four control factors, which are problem

parameters as well.

Table 5.10 Taguchi analysis for the robustness of the proposed algorithm.

 Levels A B C D

S/N

1 -124.524 -123.877 -115.747 -116.934

2 -118.071 -118.637 -120.112 -120.456

-116.783 -116.865 -123.52 -121.988

Relative contribution (%) 32.83 25.37 28.98 12.81

72

5.3 Conclusion of the hierarchical approach using the genetic

algorithm

The hierarchical approach using genetic algorithm was proposed to effectively solve the VRP

under consideration. The approach divides the original problem into two subproblems. The

subproblems were defined as a VRP for delivery vehicles and a VRP for installation vehicles.

For each subproblem, an efficient genetic representation, an appropriate method to construct

the population, and a set of genetic operators were proposed and developed.

In order to show the effectiveness of the hierarchical approach using the genetic algorithm, the

computational results from the hierarchical approach using the genetic algorithm and the

MINP model were compared. In the experiment of two small test problems, the hierarchical

approach achieved optimality for one test problem and a relatively good solution for the other.

It is important to note that a small increase of the problem size resulted in an excessive

increase in computational time for the MINP model. The hierarchical approach efficiently

found good solutions to the larger test problem in a reasonable amount of time, while the

MINP approach could not find even a feasible solution. It is extremely hard to find the optimal

solution of a large problem with the MINP approach, even if a great amount of calculation

time is provided.

It is also observed that the hierarchical approach exposes its natural limitation. The result of

the subproblem in Stage 2, the routes and schedules of installation vehicles, entirely depends

on the results of the subproblem in Stage 1, the routes and schedules of delivery vehicles,

since the time windows for the installation vehicles’ arrival at customers requiring the

installation are determined by the results of the subproblem in Stage 1. Due to the hierarchical

approach, the best solution of the subproblem in Stage 1 may hinder the subproblem in Stage

73

2 to find better solutions in the solution space of the original problem. In other words, the best

solution of the subproblem in Stage 1 does not guarantee the global optimality. Furthermore,

the solution space that can be searched by the hierarchical approach is restricted. In order to

consider two subproblems at the same time, an advanced evolutionary algorithm, known as the

endosymbiotic evolutionary algorithm, is considered in the next chapter.

74

6. ENDOSYMBIOTIC EVOLUTIONARY ALGORITHM FOR

SYNCHRONIZATION OF THE DELIVERY AND THE

INSTALLATION

The hierarchical approach using the genetic algorithm was proposed in Chapter 4 to

effectively solve the VRP under consideration. However, since subproblems created from the

original problem cannot be considered simultaneously during the solution process, the

hierarchical approach has a natural flaw. As mentioned in Chapter 4, the hierarchical approach

breaks down the original problem into two subproblems and solves them one by one. The

subproblem in Stage 1 is solved independently, and then the output from the subproblem in

Stage 1 is fed into the subproblem in Stage 2 as a part of the input data. Hence, the solution

space where the hierarchical approach can search is restricted by the result of the subproblem

in Stage 1. In order to consider the original problem as a whole and to search the solution

space with less limitation, an endosymbiotic evolutionary algorithm (EEA) for the VRP under

consideration is presented in this chapter.

6.1 Endosymbiotic evolutionary algorithm for the vehicle routing

problem under consideration

The EEA is one type of symbiotic evolutionary algorithm (SEA) that can consider multiple

subproblems at the same time. When the original problem is interwoven by multiple

subproblems and we want to solve the original problem as a whole instead of considering

them individually, SEAs such as the EEA can be a good option to search for the solutions of

multiple subproblems concurrently. The SEAs consider each subproblem along with its

75

symbiotic partners, which are corresponding subproblems, in the original problem during the

evolution. The concurrent consideration of subproblems may reduce the probability that the

algorithm dwells on the local optima. The SEAs try to produce good solutions in balance

among cooperative subproblems.

The EEA maintains multiple different populations, each of which is composed of a set of

corresponding symbiotic partners for each subproblem. The EEA for the VRP under

consideration breaks down the original problem into two different subproblems and one

combined subproblem; one is the VRP for delivery vehicles, another is the VRP for

installation vehicles, and the last is the VRP considering both delivery and installation

vehicles. Hence, three distinct populations (POP-D, POP-I, and POP-DI) for two subproblems

and a combined subproblem are maintained. The populations for the subproblems regarding

delivery and installation vehicles in the proposed EEA are referred as POP-D and POP-I,

respectively. These two populations play the roles of corresponding symbionts in the

endosymbiotic theory, and individuals in those populations represent partial solutions of the

original problem. Both populations evolve in such a direction that corresponding symbionts

from both populations cooperate with each other to find the better solutions to the original

problem. Since individuals in POP-D and POP-I are merely partial solutions, only when

corresponding symbionts are combined appropriately and feasibly into the endosymbionts

does evaluation of the solutions to the original problem become possible.

The population POP-DI plays the role of the endosymbiont in this algorithm. An

endosymbiont carries the genes of all symbionts, which are partial solutions. Therefore,

individuals in POP-DI represent solutions to the original problem. The individuals in POP-DI

compete for survival with new offsprings that are generated through the mating of individuals

from POP-D and POP-I. Eventually, POP-DI evolves toward a better population that contains

76

better individuals in terms of the original problem. Figure 6.1 shows the concept of the

proposed EEA.

Figure 6.1 The concept of the proposed EEA.

In the algorithm, individuals in POP-D and POP-I are separately working as partial solutions

but cooperate with each other while evolving. Furthermore, individuals in POP-DI,

representing solutions of the original problem, compete with those created by combination of

individuals from POP-D and POP-I. In order to improve the search efficiency, the algorithm

uses localized interactions among the populations instead of randomized and scattered

interactions. The hierarchical approach does not have any interaction between populations,

which work as pools of potential solutions; however, the EEA needs appropriate interactions

for the cooperation and the competition among populations to obtain even better solutions.

POP-D

POP-I

POP-DI

NDij

NIij

NDIij

Cooperation

Symbiotic

partner

Competition

Subproblems

Entire problem

NDij

NIij

NDIij

POP-D

POP-I

POP-DI

k th generation k+1 th generation

Evolution of POP-D

Evolution of POP-I

Evolution of POP-DI

Evolution of POP-D

Evolution of POP-I

Evolution of POP-DI

77

Thus, topological locations of corresponding individuals or symbionts for the interactions are

defined as follows.

Each population forms a two-dimensional structure of toroidal grid with the same number of

individuals, and individuals in the population are mapped into the cells of the grid. An

individual in the population has its own location index (x, y) and is surrounded by 8 neighbor

individuals. The individual has corresponding individuals in the same geographical location at

the toroidal grids of other two populations. Hence, when an arbitrary location (i, j) is selected

at a generation, the neighborhoods of individuals including (i, j) at center of the 3×3 grid and 8

neighbor individuals in the POP-D, POP-I, and POP-DI are generated as NDij, NIij, and NDIij,

respectively. Only the individuals in these three sets of neighborhoods are considered for

the interactions among the three populations at the generation. Figure 6.2 shows an

example of toroidal grids with individuals at the cells and a neighborhood around

individual (i, j).

Figure 6.2 A toroidal grid and a neighborhood.

Individual (i, j)

78

The neighborhoods of NDij from POP-D and NIij from POP-I cooperate to find a good

solution of the problem. Since each neighborhood contains 9 individuals, 81 (9×9)

combinations are considerable as the candidate solutions of the problem. The best

combination among them is compared with the current best solution in the algorithm that

competes with 9 individuals in NDIij from POP-DI as well. Based on the interactions

among the sets of neighborhoods, the parallel search with partial solutions from POP-D and

POP-I in the subproblems and the integrated search with entire solutions from POP-DI in the

original problem are carried out simultaneously in all generations. The details of the proposed

EEA are described in Table 6.1. In Step 5, populations follow the GA processes explained in

the next section.

Table 6.1 The procedures of the proposed EEA.

Step 1: Initialization: Generate individuals in of POP-D, POP-I and POP-DI,

randomly. Set best solution value, fbest = -∞.

Step 2: Construction of neighbors: Select an arbitrary location (i, j) and set up

the neighborhoods, NDij, NIij, and NDIij, in each population.

Step 3: Cooperation between subproblems:

Step 3.1: Evaluate the fitness of all possible combinations that can be

produced by the concatenation of individuals in NDij and NIij. Step 3.2:

Let dpip be the best combination among those evaluated in Step 3.1,

which becomes a candidate endosymbiont. If f(dpip) > fbest, then update

fbest = f(dpip) and keep dpip as the current solution.

Step 4: Competition between entire problem and the best solution:

Step 4.1. Evaluate the fitness of individuals in NDIij and label the

individuals with the best and the worst fitness as div and diw,

79

respectively. If f(div) > fbest, then update fbest = f(div) and keep div as the

current solution.

Step 4.2. If f(dpip) > f(diw) , then replace diw with dpip in NDIij. The

symbionts, dp and ip, remain in POP-D and POP-I, respectively.

Step 5: Evolution: Perform the evolution of individuals in POP-D, POP-I and

POP-DI.

Step 6: If the termination criteria of evolution are met, then stop. Otherwise, go

back to Step 2 and repeat the process.

 6.2 Genetic representations and operations

As already mentioned, in the proposed EEA not only the population for the entire problem but

also the populations for the subproblems evolve to find better solutions through competition

and cooperation. The populations in the proposed EEA go through their own GA operations to

evolve. A population contains a set of individuals that are generated randomly in a certain

genetic representation. Each population might require its unique genetic representation for the

corresponding problem. Genetic representations for individuals are very important because

they are domain-specific and have large impacts on the performance of the genetic evolution.

Genetic representations and genetic operations for the subproblems and the entire problem

under consideration in this thesis are described in the following subsections.

80

6.2.1 Genetic representations and operations for the subproblems

Genetic representations for POP-D and POP-I in the proposed EEA use identical genetic

representations, i.e., the one-dimensional array, as in the hierarchical approach using the

genetic algorithm that is proposed in Section 4.3.1. Figure 6.3 illustrates the genetic

representation of an individual for POP-D.

Figure 6.3 The genetic representation for POP-D.

Let N be the number of customers for the VRP under consideration and ni be the number of

customers who will be assigned and served by delivery vehicle i. An individual consists of N

genes (g1, g2, …, gN) in Figure 6.3(a). The genes contain the indices of customers requiring

delivery. Since each customer is to be visited by only one delivery vehicle, the index of a

customer must be shown only once in the genetic representation. The decoding procedure

determines the routes and schedules of delivery vehicles in operation. In order to assign

customers to delivery vehicles, the algorithm’s greedy method considers the customers’

demand, the loading capacity of delivery vehicles, and the maximum operation time. After the

decoding process, the individual is interpreted as Figure 6.3(b). A set of customers, indicated

by genes from
1 _1gv to

1 1_gv n , is allocated to the first delivery vehicle (v1). The remaining

g1 g2 g3 g4 g5 … gN-2 gN-1 gN

gv1_1 … gv1_n1 gv2_1 … gv2_n2 gv3_1 … gv3_n3 …

(a) Gene representation before decoding

(b) Gene representation after decoding

81

customers are assigned to other delivery vehicles in a similar manner. The alternating shades

in Figure 6.2(b) represent groups of customers served by different delivery vehicles.

The genetic representation for POP-I is developed in a similar manner. As in the genetic

representation for POP-D, a greedy method has been used to assign customers to installation

vehicles. However, unlike the genetic representation of the subproblem for the delivery, the

greedy method considers the arriving time of delivery vehicles for customers, the installation

service time per customer, the service level, and the maximum operation time.

A pair of individuals from POP-D and POP-I is required to make a complete solution for the

original problem, because an individual from either subproblem is only a partial solution to the

original problem. In the hierarchical approach, the GA for each subproblem has its own fitness

function. In other words, there are two fitness functions in the approach; one assesses

individuals in the subproblem for the delivery, and the other assesses individuals in the

subproblem for the installation. However, the EEA has a single fitness function that requires a

completely formed solution for the original problem. Therefore, an individual solution from

either subproblem is not complete to be evaluated separately.

For the fitness value of a completely formed solution, which consists of individuals from both

POP-D and POP-I, the traveling times of delivery vehicles and their fixed costs are first

calculated for the individual from POP-D. While the traveling times of delivery vehicles are

calculated, the arrival times of delivery vehicles at customers are also determined. Based on

the arrival time of delivery vehicles at customers, the time windows for the arrival of

installation vehicles and their fixed costs are calculated for the individual taken from POP-I.

Then the traveling schedules of installation vehicles are determined, including the traveling

times and waiting times of installation vehicles. Let τi be the sum of traveling times of

82

delivery vehicles that are included in individual i of POP-D; φi,j

be the sum of traveling times

of installation vehicles in individual j of POP-I (which are calculated based on the information

on individual i of POP-D); ωi,j

be the sum of waiting times of installation vehicles in

individual j of POP-I (again calculated based on individual i of POP-D); δi be the sum of fixed

costs of delivery vehicles under operation in individual i of POP-D; γi,j

be the sum of fixed

costs of installation vehicles under operation in individual j of POP-I; Λ be the sum of

unloading times by delivery vehicles at all customers; and Ι be the sum of installation times at

customers requiring the installation. Since traveling times between any pair of customers are

known, the traveling times of vehicles can be calculated from vehicles’ visiting sequences. As

mentioned previously, the waiting time occurs only when an installation vehicle arrives at a

customer before a delivery vehicle arrives there, and it is calculated as the time lapse from the

arrival of the installation vehicle to the completion of the unloading from the delivery vehicle.

Fixed costs of delivery and installation vehicles are also computed by multiplying the known

fixed cost per vehicle times the number of vehicles in operation. The sum of unloading times

at customers (Λ) and the sum of installation times at customers (Ι) can be ignored since they

are constants that can be omitted. Therefore, the fitness function for a combination of the

individual i from POP-D and the individual j from POP-I , ,i j , is defined as follows:

,

, , ,

1

()
i j

i i j i j i i j


    


       .

The hybrid order crossover operation and the exchange mutation operation, which were

described in Sections 4.3 and 4.4, are used for the subproblems of the delivery and the

installation. The proposed hybrid order crossover operation has been successfully

implemented to effectively reproduce new offsprings for the next generation from two parents

83

in the current generation. The proposed crossover operation considers both the inheritance

from parents to offsprings and the diversity of individuals in the population, while avoiding a

premature convergence of the population. The proposed exchange mutation operation prevents

the evolution of the EEA from dwelling at potential local optima by generating effective

mutants.

6.2.2 Genetic representation and operations for the entire problem

This section describes the characteristics of the individuals in POP-DI. An individual in POP-

DI is a candidate solution for the original problem and consists of two different genomes; one

has an identical form of the individual in POP-D, and the other has an identical form of the

individual in POP-I. Therefore, an individual in POP-DI is a completely formed solution for

the VRP under consideration in this thesis. Two genomes for the delivery and the installation

are concatenated in a row. The genome for the delivery is placed at the head of the individual

and is followed by the genome for the installation. An example of individuals for the POP-DI

is shown in Figure 6.4. The genome at the head and the genome at the tail use identical genetic

representations of the subproblems for the delivery and the installation, which are explained in

Section 4.3.1 and Section 6.2.1, respectively.

Figure 6.4 The genetic representation for an individual in POP-DI.

1 5 7 9 2 4 8 11 10 3 6 12

Delivery

vehicle 1

Delivery

vehicle 2

Delivery

vehicle 3

5 7 4 10 3 6

Installation

vehicle 1

Installation

vehicle 2

Delivery routes Installation routes

84

The individual shown in Figure 6.4 indicates that the corresponding genetic representation

provides the routes for three delivery and two installation vehicles. The concatenation of two

different genomes results in a one-dimensional array, but two separate genomes within an

individual in POP-DI are heterogeneous. Therefore, the genetic operations for POP-DI are

carried out separately in two-fold: one for the head and the other for the tail. The hybrid order

crossover operation, which has been explained earlier, is executed over the head and then over

the tail. The exchange mutation operation also needs to be performed in two-fold in a similar

way. A detailed description of this operation is omitted to avoid redundancy.

The fitness of an individual in POP-DI is evaluated sequentially over the head and the tail. The

genome at the head is decoded to generate schedules and routes for delivery vehicles. Based

on the schedules for delivery vehicles, the genome at the tail is decoded to generate schedules

and routes for installation vehicles. Finally, the integrated schedules and routes for both types

of vehicles become the complete solution of the individual in POP-DI. From the schedules and

the routes of delivery and installation vehicles, the sum of traveling times of delivery vehicles,

the sum of traveling times of installation vehicles, and the sum of waiting times of installation

vehicles are calculated. Furthermore, from the results of the decoding procedure, the number

of delivery and installation vehicles to be used is also determined.

The evaluation of the fitness values for individuals in POP-DI is conducted in a similar

manner to those for POP-D and POP-I in Section 6.2.1. Let γk,

be the sum of traveling times of

delivery vehicles from the genome at the head of individual k, φk

be the sum of traveling times

of installation vehicles from the genome at the tail of individual k, ωk,t

 be the sum of waiting

times of installation vehicles in individual k, δk be the sum of fixed costs of delivery vehicles

in operation in individual k, γk

be the sum of fixed costs of installation vehicles in operation in

individual k, Λ be the sum of unloading times by delivery vehicles for all customers, and Ι be

85

the sum of installation times at customers requiring installation. Since traveling times between

any pairs of customers are known, the traveling times of vehicles can be calculated from

vehicles’ visiting sequences. As already noted, waiting time occurs only when an installation

vehicle arrives at a customer before a delivery vehicle arrives there, and it is calculated as the

time lapse from the arrival of the installation vehicle to the completion of the unloading from

the delivery vehicle. Fixed costs of delivery and installation vehicles are also computed by

multiplying the known fixed cost per vehicle times the number of vehicles in operation. The

sum of unloading times at all customers (Λ) and the sum of installation times at customers

requiring the installation (Ι) are constant and can be omitted. The fitness of the individual k in

POP-DI (
k) is defined as follows.

1

()
k

k k k k k


    


      

The fitness function for the original problem is designed to reduce not only the sum of

traveling times of all vehicles but also the sum of waiting times of the installation vehicles

while evolving.

6.2.3 Initialization of the populations

An EEA, which considers the cooperation of its subproblems and the competition among

individual evolutions and cooperative evolutions simultaneously, is proposed to more

effectively search the solution space of the VRP under consideration than the hierarchical

approach. Since the proposed EEA not only conducts an effective and efficient search in

global solution space but also considers a balanced evolution of subproblems’ solution space,

86

it requires more calculation time to find high-quality solutions then the hierarchical approach.

The fitness evaluation in the proposed EEA requires a complete solution for the problem,

which consists of two partial solutions (for the delivery and the installation). The complete

solution can be simply chosen from POP-DI or created by the concatenation of partial

solutions from POP-D and POP-I. The genetic representations of individuals in the

subproblems and the entire problem were already detailed in Sections 4.3.1 and 6.2.1.

Any individual in the algorithm forms a one-dimensional array. An individual in POP-D or

the delivery portion of an individual in POP-DI contains a sequence of customer numbers

requiring delivery. Since each customer is to be visited by a single delivery vehicle, a

customer must be shown only once in the array. The customers’ demands, the loading capacity

of the vehicle, and the maximum operation time are considered simultaneously to decode the

solution of the delivery portion. An individual of POP-I or the installation portion of an

individual in POP-DI contains a sequence of customer numbers requiring installation as well.

As in the delivery portion, a customer must be shown only once in the solution. The delivery

schedules for customers from the delivery portion, the size of time windows for the

installation, and the maximum operation time are considered together to decode the solution of

the installation portion.

In the hierarchical approach, the subproblem for delivery vehicles is solved by first finding the

best possible sequence of customers to be assigned to a set of delivery vehicles, considering

the visiting sequence and the loading capacity of vehicles. Then these assignments are fed into

the subproblem for installation vehicles as part of the input data. Therefore, the subproblem

for installation vehicles is automatically subject to a single set of assignments for delivery

vehicles. Due to the nature of this hierarchical approach, the calculation time for each

subproblem is proportional to the number of genes in the individuals. Hence, both initial

87

populations for the two subproblems have been randomly generated without any special

consideration.

However, the proposed EEA combines the individuals from POP-D and POP-I (more exactly,

from NDij and NIij) to evaluate their fitness. For each individual in POP-D (or POP-I), the

EEA creates and considers a number of combinations simultaneously, along with the

corresponding symbiotic partners in POP-I (or POP-D, respectively). Hence, a significant

increase in the calculation time for initial evolutions of either POP-D and POP-I is reported.

To overcome these time-consuming combinatorial operations in the proposed algorithm, a

simple local search is used to produce an initial POP-D with better individuals. This local

search generates good individuals with shorter traveling times of delivery vehicles, so the

EEA shows a faster convergence toward optimal solutions. It is applied to initial solutions in

POP-D and the delivery portion of initial solutions in POP-DI. Initial solutions in POP-I and

the installation portion of initial solutions in POP-DI are randomly generated without any

local search.

The proposed local search for delivery vehicles proceeds as follows. To generate an initial

solution for delivery vehicles, a customer is randomly selected and assigned to a delivery

vehicle. From this customer, the nearest customer not already assigned to any delivery vehicle

is selected and assigned to the current vehicle of our concern, as far as the vehicle can

accommodate the demand of the selected customer and complete all assigned deliveries in the

maximum operation time. If the demand of the selected customer exceeds the remaining

capacity of the delivery vehicle of concern, the selected customer is assigned to a new vehicle

and the process continues until all customers are assigned for a delivery.

88

The proposed local search for the initialization of the POP-D and POP-DI improves the

convergence speed significantly by avoiding the time-consuming search for unnecessary

combinations of symbiotic partners in the proposed EEA. The initial solutions created by the

proposed local search produce geographical clusters of customers, and its fitness values are

higher on average than those of randomly generated individuals.

6.2.4 Termination condition

The proposed EEA terminates when the number of generations reaches a specified maximum

number. The individual with has the highest fitness in the final generation is interpreted as the

best known solution to the problem. The best known solution to the original problem can be

obtained from either the best individual in POP-DI or the best combination of two individuals

in POP-D and POP-I.

89

7. COMPUTATIONAL EXPERIMENTS FOR THE

ENDOSYMBIOTIC EVOLUTIONARY ALGORITHM

The proposed EEA was implemented to solve the VRP under consideration and programmed

in Visual Basic language with the Microsoft Visual Studio.NET Framework 1.1 version.

Computational results of the EEA were compared with those obtained by the MINP model and

the hierarchical approach using the genetic algorithm. The MINP model was implemented and

solved by Lingo version 10.0, commercially available optimization software for nonlinear

programming models, and the hierarchical approach using the genetic algorithm was

programmed in Visual Basic programming language. All computational experiments were

carried out on a personal computer with 3.4 GHz Pentium 4 CPU and 2.0 GB RAM.

7.1 Effectiveness of the proposed endosymbiotic evolutionary

algorithm

The EEA has been proposed to facilitate an efficient search in a wider solution space of the

VRP that is the subject of this study, while considering the balance of the two subproblems in

the algorithm at the same time. In order to show the effectiveness of the proposed EEA, two

test problems previously solved by the MINP approach and the hierarchical approach have

been attempted by the proposed EEA as well. The results from three approaches are compared

in this section. The MINP approach and the hierarchical approach were described in Chapters

3 and 5, respectively. Furthermore, the proposed EEA provides some results for test problems

of larger sizes, which cannot be solved by the MINP approach.

90

7.1.1 Comparison of the results of small problems from the MINP

model and the endosymbiotic evolutionary algorithm

As already mentioned, only test problems of small sizes can be solved by the MINP approach.

For purposes of comparison, two test problems (V-d6-i3 and V-d8-i4) were attempted using

the proposed EEA to show its effectiveness. Those test problems have already been described

in Section 5.1.1, where we demonstrated the effectiveness of the hierarchical approach. In V-

d6-i3, there are six customers requiring the delivery while three customers require installation

as well. In V-d8-i4, there are eight customers requiring the delivery while four customers

require installation as well. The details of the problem parameters used to generate two test

problems have already been described in Table 5.1 and are thus omitted here. The proposed

EEA uses the algorithm parameters listed in Table 7.1 to solve test problems and show its

effectiveness. Both genetic operations for POP-D, POP-I and POP-DI use the identical

parameters during the operation.

Table 7.1 Parameters of the EEA for the test problems.

Parameter Value

Size of the population 100 (10×10)

Crossover rate 0.8

Mutation rate 0.1

Maximum number of generations 2,000

Since the VRP under consideration is an NP-hard problem, the calculation time using the

MINP approach increases exponentially as the size of the problem grows. By way of reference,

the MINP approach for V-d8-i4 required 283 hours to obtain the optimal solution even when

91

the state-of-the-art optimization software, Lingo, was used. However, the proposed EEA finds

high-quality solutions in a reasonable amount of time.

Table 7.2 shows the sum of the traveling times of delivery and installation vehicles in the best

solutions from the MINP approach, the hierarchical approach, and the proposed EEA. In

contrast to the hierarchical approach, the proposed EEA successfully obtains the optimal

solutions for both test problems, as only the MINP approach achieved the optimality

previously. The hierarchical approach could not achieve the optimality at all times. In this

study, there is a gap between the best solutions from the hierarchical approach and the optimal

solution for V-d8-i4. This gap may be caused by the natural limitation of the hierarchical

approach, as discussed in Section 5.1.1.

Table 7.2 The results of two small test problems.

Test problem
The MINP

model

The proposed

EEA

The hierarchical

approach

V-d6-i3 238.42 238.42 238.42

V-d8-i4 371.47 371.47 377.01

7.1.2 Endosymbiotic evolutionary algorithm with larger problems

The EEA is proposed to effectively solve not only small problems but also large problems in a

reasonable amount of time. This section summarizes computational experiments using the

proposed EEA for problems of medium size (V-d30-i10) and large size (V-d100-i50). In these

two test problems, all customers are randomly located in a 100x100 bounded square field and

92

a single depot is located in the center (50, 50) of the field. Other problem parameters of the

test problems and algorithmic parameters of the proposed EEA are shown in Table 7.3. The

genetic operations for POP-D, POP-I and POP-DI have used the identical crossover rates and

mutation rates throughout the course of the algorithm.

Table 7.3 The parameters of the EEA for problems of larger sizes.

Parameter Value

Amount of demands 2-6

Loading capacity of a delivery vehicle 20

Service level (min) 60

Installation time (min) 10

Fixed cost per vehicle (min/vehicle) 100

Size of the population 100 (10×10)

Crossover rate 0.8

Mutation rate 0.1

Maximum number of

generations

V-d30-i10 3,000

V-d100-i50 10,000

V-d30-i10 consists of 30 customers requiring the delivery while 10 customers require the

installation. Due to the stochastic properties of the evolutionary algorithm, the average

performance of the algorithm is our interest. The proposed EEA solved the test problem five

times, and the progress of these five trials of the EEA for V-d30-i10 is illustrated in Figure 7.1.

Lines in the figure represent the change in the best solutions during the evolution. As the

number of generations increases, the score of the best solution of the algorithm decreases. As

the proposed EEA evolves through the first 1,000 generations, the score of the best fitness

93

value of the algorithm drops rapidly. A good solution is found in approximately 1,200

generations.

Figure 7.1 Five progresses of the best solutions for V-d30-i10.

Figure 7.2 shows the routes of delivery and installation vehicles as decoded from one of the

best solutions by the EEA. This solution requires eight delivery vehicles and three installation

vehicles to satisfy all constraints and restrictions of the test problem. The sum of the traveling

times of delivery and installation vehicles is 1062.98. The routes from and to the depot are

omitted for simplicity in Figure 7.2.

1000

1100

1200

1300

1400

1500

0 500 1000 1500 2000 2500 3000

T
ra

v
el

in
g

 t
im

e
o

f
v

eh
ic

le
s

(A
rb

it
ra

ry
 u

n
it

s)

Number of generation

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

94

Figure 7.2 Routes of vehicles in the best solution for V-d30-i10.

A test problem of large size, V-d100-i50, consists of 100 customers requiring delivery while

50 customers require installation. The algorithmic parameters in Table 7.3 have been used for

this problem as well. In this experiment, the EEA solved the test problem 10 times to obtain

an unbiased average performance, since it is more complicated and harder to solve than the

smaller problems. The progresses of 10 trials for V-d100-i50 by the proposed EEA are

illustrated in Figure 7.3. Lines in the figure represent the change of the value of the best

solutions during the evolution. As the algorithm evolves through its first 4,000 generations,

the value of the best solution rapidly drops down. In most trials, the proposed EEA found a

good solution within approximately 5,000

generations. As Figure 7.3 shows, trial 7 provided

the best results among the ten trials.

0

20

40

60

80

100

0 20 40 60 80 100

Depot

Customer requiring delivery

Customer requiring delivery and

installation

Route of a delivery vehicle

Route of an installation vehicle

95

Figure 7.3 Ten results of the test problem V-d100-i50.

Section 5.2.1 showed the results of the hierarchical approach using the genetic algorithm for

V-d100-i50. Since the hierarchical approach solves the test problem in two stages, the final

solutions for the original problem cannot be obtained until the subproblem in Stage 2 has been

completely solved. The EEA and the hierarchical approach have different structures and

procedures to solve the VRP under consideration. Hence, in order to compare the performance

of the two different approaches, the algorithmic parameters in the hierarchical approach were

modified to solve the problem under similar conditions to those of the proposed EEA. Since

the EEA for V-d100-i50 finds good solutions within approximately 5,000 generations, the

maximum number of generations, as the termination condition for the EEA, is set at 5,000

generations for comparison. The maximum number of generations for each stage in the

hierarchical approach is constrained at 2,500 generations, respectively, which seems

reasonable considering the computational experiments in Section 5.2.1. The improvement

3000

3500

4000

4500

5000

5500

6000

0 2000 4000 6000 8000 10000

T
ra

v
el

in
g

 t
im

e
o
f

v
eh

ic
le

s
(A

rb
it

a
ry

 u
n

it
s)

Number of generation

Trial 1

Trial 2

Trial 3

Trial 4

Trial 5

Trial 6

Trial 7

Trial 8

Trial 9

Trial 10

96

interval for each subproblem, which is another termination condition for the hierarchical

approach, is ignored in the test. The identical crossover rates (0.8) and mutation rates (0.1) are

used for both approaches during the operation.

Figure 7.4 Progresses of the EEA and the hierarchical approach for V-d100.

Figure 7.4 shows the progress of the best solutions in each generation for V-d100-i50 from the

EEA and the hierarchical approach. Lines in the figure represent the change in the value of the

best solution in both approaches during the evolution. Until the 2,500th generation, the

hierarchical approach does not have any solution of the original problem, as explained in the

previous paragraph. The hierarchical approach searches for a good solution for the subproblem

in Stage 1, which is only a partial solution of the original problem. Based on the final partial

solution from Stage 1, which is the best solution of Stage 1 at the 2,500th generation, the

hierarchical approach obtains solutions for the original test problem. At the 5,000th generation

in the hierarchical approach, as shown in Figure 7.4, the final solution of the hierarchical

3000

3500

4000

4500

5000

5500

6000

0 1000 2000 3000 4000 5000

T
ra

ve
li
n

g
tim

e
o

f
ve

hi
c

le
s

(A
rb

it
a
ri

ry
 u

n
it

s
)

Number of generation

Hierarchical
approach
EEA

97

approach for the test problem is determined as the sum of the partial solutions from Stages 1

and 2. As shown in Figure 7.4, the proposed EEA shows better performance than the

hierarchical approach.

7.2 Performance of the proposed endosymbiotic evolutionary

algorithm

In this section, the computational experiments with problems of various sizes and parameters

are reported to show the effectiveness and efficiency of the proposed EEA. The problems of

various sizes and problem parameters were randomly generated for testing purposes. The

generated problems were solved by the MINP approach, by the hierarchical approach using

the genetic algorithm, and finally by the proposed EEA. The computational results from the

three approaches are presented and compared in this section.

7.2.1 Test problems

All customers are randomly located in a 100x100 bounded square field and a single depot is

located in the center (50, 50) of the field. For all test problems, it assumed that the delivery

demand of each customer is between 2 and 10; the loading capacity of delivery vehicles is 20;

the installation time and the service level are 10 and 60, respectively; and the maximum

operation time for both types of vehicles is 480, which can be considered as 8 hours per day.

Fifteen test problems, including the four test problems used in previous sections, have been

generated to verify the effectiveness and efficiency of the proposed EEA. The numbers of

customers and vehicles for each problem are presented in Table 7.4.

98

Table 7.4 Numbers of customers and vehicles for the test problems.

Problem

size

Problem

number

Problem

name

Configuration

Number

of

customers

Number of

installation

customers

Number of

delivery

vehicles

Number of

installation

vehicles

Ratio of

installation

customers

Small

1 V-d6-i3 6 3 2 1 50%

2 V-d8-i4 8 4 3 2 50%

3 V-d10-i5 10 5 3 2 50%

4 V-d12-i6 12 6 4 3 50%

Medium

5 V-d30-i10 30 10 8 3 33%

6 V-d30-i20 30 20 8 4 66%

7 V-d50-i5 50 5 12 2 10%

8 V-d50-i10 50 10 13 3 20%

9 V-d50-i20 50 20 13 5 40%

Large

10 V-d80-i8 80 8 20 3 10%

11 V-d80-i20 80 20 18 5 25%

12 V-d80-i40 80 40 19 9 50%

13 V-d100-i10 100 10 22 3 10%

14 V-d100-i25 100 25 24 7 25%

15 V-d100-i50 100 50 27 10 50%

The test problems are classified according to the size of the problem; there are four small

problems, five medium-sized problems, and six large problems. Table 7.5 shows the numbers

of variables, integer variables, and constraints for the test problems in the MINP model.

These numbers can be considered as a rough estimate of the complexity of the problems. It is

natural that the number of variables should increase rapidly as the size of the problem grows.

99

Table 7.5 The number of variables in the MINP model for the test problems.

Problem

size

Problem

number

Problem

name

Statistics of the MINP model

Number of

variables

Number of

integer variables

Number of

constructions

Small

1 V-d6-i3 144 129 132

2 V-d8-i4 344 325 293

3 V-d10-i5 498 475 430

4 V-d12-i6 916 889 782

Medium

5 V-d30-i10 8,374 8,321 7,688

6 V-d30-i20 9,845 9,772 9,041

7 V-d50-i5 31,957 31,894 30,286

8 V-d50-i10 34,929 34,856 33,068

9 V-d50-i20 36,861 36,768 34,824

Large

10 V-d80-i8 133,186 133,087 128,568

11 V-d80-i20 121,966 121,843 117,634

12 V-d80-i40 141,831 141,668 136,550

13 V-d100-i10 227,138 227,015 220,754

14 V-d100-i25 252,284 252,131 244,924

15 V-d100-i50 304,840 304,637 275,427

7.2.2 Performance comparison

The test problems were solved by the MINP approach, the hierarchical approach, and the

proposed EEA. Table 7.6 shows the results of the test problems from these three solution

methods. The CPU time using the MINP approach was limited to a maximum of two hours, so

that the Lingo finds the feasible solutions or optimal solutions. Lingo was not able to obtain a

feasible solution within two hours on all occasions. Since the hierarchical approach and the

EEA are meta-heuristic algorithms, they have been tried multiple times for each problem in

order to obtain the average performance. In the hierarchical approach, for each problem, the

subproblem in Stage 1 is solved four times and then the subproblem in Stage 2 is solved four

100

times for each result from Stage 1. Hence each test problem has 16 solutions for the

hierarchical approach. For the EEA, 16 trials are made to make as much computational effort

as the hierarchical approach. The best solutions and the averages of the 16 solutions are

summarized in Table 7.6.

Table 7.6 The performance comparison for the MINP approach, the hierarchical approach

using the genetic algorithm, and the endosymbiotic evolutionary algorithm.

Problem

MINP approach
Hierarchical approach using

the genetic algorithm

Endosymbiotic evolutionary

algorithm

Best

solution
Remark

Best

solution

Average

solution

Standard

deviation

Best

solution

Average

solution

Standard

deviation

1 238.42 Optimal 238.42 238.69 0.279 238.42 238.42 0.000

2
381.96

(371.47*)
Feasible 377.01 392.58 8.812 371.47 371.47 0.037

3 340.51 Feasible 328.12 331.80 3.801 314.89 317.49 15.149

4 435.77 Feasible 365.10 368.65 3.802 350.95 356.74 32.138

5 N/A Unknown 1149.30 1171.27 17.605 1081.76 1178.65 63.296

6 N/A Unknown 1428.58 1466.34 32.232 1321.83 1385.47 52.925

7 N/A Unknown 1607.56 1643.53 34.632 1413.44 1449.25 31.540

8 N/A Unknown 1763.66 1876.23 68.743 1617.09 1674.83 42.214

9 N/A Unknown 2074.82 2100.72 22.525 1907.06 1988.87 65.769

10 N/A Unknown 2552.65 2699.44 101.219 2358.51 2454.02 75.289

11 N/A Unknown 2832.26 2963.08 80.211 2537.11 2632.88 65.175

12 N/A Unknown 3061.47 3203.59 91.116 2999.86 3142.44 67.203

13 N/A Unknown 3045.43 3176.53 133.936 2642.29 2713.33 47.469

14 N/A Unknown 3258.53 3372.02 103.569 3140.25 3221.60 69.835

15 N/A Unknown 3777.79 3957.88 144.300 3696.68 3914.91 89.420

 * the local optimal value found after 283 hours

The MINP approach obtained an optimal solution only for the smallest problem (Problem 1)

within two hours. During the two-hour CPU time, the MINP approach was able to identify

feasible solutions for Problems 2, 3 and 4. For Problem 2, the best solution found in up to two

hours of CPU time is shown, with the optimal solution shown in parenthesis. As mentioned

earlier, the optimal solution for Problem 2, the second-smallest one, was obtained after 283

101

hours of CPU time, which reveals the excessive combinatorial complexity of the problem

under consideration. For the larger problems (Problems 5 through 15), the MINP approach

failed to find feasible solutions at all.

The hierarchical approach and the EEA obtained optimal or near-optimal solutions for all test

problems. In Problem 1, both the hierarchical approach and the EEA obtained the same

optimal solution as the MINP approach did. In Problem 2, the EEA found the optimal solution

that was obtained by the MINP approach after 283 hours of CPU time. As shown in Table 7.6,

the EEA provided better solutions for all problems than the hierarchical approach.

7.3 Conclusion of the endosymbiotic evolutionary algorithm

In this chapter, an EEA was proposed to solve the VRP that has the unique characteristics of

delivery and installation in the electronics industry. The problem under consideration in this

thesis contained two subproblems, each of which is defined as a VRP for delivery vehicles and

a VRP for installation vehicles, respectively. The proposed EEA was designed to deal

efficiently with both subproblems at the same time. The proposed EEA consists of three

populations of the same size for two subproblems and the original problem. The algorithm

searches for good solutions through not only cooperation between partial solutions for two

subproblems, but also the competition among solutions that are concatenated from the partial

solutions for subproblems and solutions for the original problem, while the populations for the

two subproblems and the original problem evolve. In order to improve the effectiveness and

efficiency of the search, the EEA introduces a concept of neighborhoods in populations and

localized interactions among the neighborhoods rather than scattered and wide spread

interactions all over the populations. In the EEA, populations for subproblems and the original

problem help each other to evolve together toward better solutions. An effective genetic

102

representation, an initial population construction method, and efficient genetic operations were

proposed and developed in this thesis.

The proposed EEA simultaneously considers both the synchronization of delivery and

installation vehicles and the minimization of the objective function. In order to show the

effectiveness and the efficiency of the proposed EEA, two test problems of small sizes were

solved by the MINP approach, the hierarchical approach using the genetic algorithm, and the

EEA, and their computational results were compared. The optimal solutions of these test

problems were obtained by the MINP approach (though in one case 283 hours of

computational time were required). The hierarchical approach achieved optimality for one

case, but the EEA obtained the optimal solutions for both, showing better performance than

the hierarchical approach.

In the experiments using test problems of medium and large sizes, the EEA consistently

produced better solutions than the hierarchical approach. In Section 7.1.2, the convergence

speed of the proposed EEA for a test problem of large size was studied and compared with

that of the hierarchical approach. Furthermore, test problems of various sizes were solved by

three different approaches: the MINP approach, the hierarchical approach using the genetic

algorithm, and the EEA. The number of variables in the MINP models for those test problems

demonstrated the complexity of the VRP under consideration. Since the proposed EEA deals

with subproblems and the original problem at the same time, it can search a wider solution

space and obtain better solutions than the hierarchical approach in most test problems.

Based on the computational experiments in this study, it is conjectured that the EEA can be an

effective way to solve these very complicated problems, which are interwoven with various

subproblems that can be NP-complete or NP-hard themselves.

103

8. CONCLUSIONS

In this thesis, a new type of VRP, drawn from the electronics industry, was identified and

introduced. Since material handling has become more and more important in the competitive

business environment, electronics manufacturers has extended their involvement in post-sale

services, including both delivery and installation, to satisfy various customers’ demands. The

problem under consideration deals with two types of customers: some require only delivery,

while others require both delivery and installation. In order to satisfy both types of demands,

two different types of vehicles (delivery and installation vehicles) have been separately

operated. Delivery vehicles have a limited loading capacity to carry goods, while installation

vehicles do not carry any goods. All vehicles start from a single depot at the beginning and

return to the depot within a specific time. Customers are to be visited only once by a single

delivery vehicle and (if needed) a single installation vehicle. In addition, there is a service

quality requirement, measured by the time lapse between delivery and installation at a

customer location. The installation vehicle must visit a customer within the predetermined

maximum allowable time after the delivery vehicle’s visit to that customer. Therefore, the

synchronization of both types of vehicles is needed to ensure the guaranteed quality of service

for customers requiring both delivery and installation. Installation vehicles can visit customers

earlier than delivery vehicles, resulting in waiting times for installation vehicles at the

corresponding customer locations. The minimization of the sum of traveling times of all

vehicles, while maintaining adequate synchronization of delivery and installation vehicles, is a

main focus in this thesis. Three different approaches have been developed and implemented to

solve the problem.

104

First, the VRP for the delivery and the installation was clearly defined and mathematically

formulated by the mixed integer nonlinear programming (MINP) approach. The problem

under consideration is by far more complicated than traditional VRPs, which are known as

NP-hard problems, since the problem in this thesis contains two VRPs (one for delivery and

one for installation vehicles) and the synchronization of both types of vehicles is required

besides. In particular, this synchronization has introduced nonlinear constraints in the

mathematical modeling. The MINP approach can be used to generate optimal solutions but,

due to the complexity of this problem, is able to solve only small test problems whose sizes

are eight customers or fewer. The solutions obtained by the MINP approach are provided to

assess the effectiveness and performance of other approaches as optimal solutions. Larger test

problems cannot be solved within a limited time, since their calculation times exponentially

increase as the problem sizes grow.

A hierarchical approach using the genetic algorithm was proposed as the second approach to

the problem in this thesis. The approach divides the VRP under consideration into two

subproblems: a VRP for delivery vehicles (Stage 1) and a VRP for installation vehicles (Stage

2). After a partial solution for delivery vehicles is obtained from the first subproblem in Stage

1, the other partial solution for installation vehicles is obtained from the second subproblem in

Stage 2. Since the schedule of delivery vehicles from the subproblem in Stage 1 is fed as a part

of the input data for the second subproblem in Stage 2, the synchronization requirements are

automatically achieved during the solution process of the subproblem for installation vehicles

in Stage 2. The final solution to the original problem can be formed by concatenation of both

partial solutions of the two subproblems. Genetic algorithms are used to find partial solutions

of subproblems in both stages.

105

The proposed hierarchical approach solved test problems of small sizes, and their results were

compared with those achieved by the MINP approach to show the effectiveness and efficiency

of the hierarchical approach. The optimal or near-optimal solutions of the test problems were

found in a few seconds by the hierarchical approach. In addition, the approach also solved test

problems of large sizes with computational ease. The GAs in the hierarchical approach

quickly obtained high-quality solutions for the subproblems in each stage. According to the

computational results for the test problems, the proposed hierarchical approach is able to

generate optimal or near-optimal solutions for test problems of various sizes in a reasonable

amount of time. However, it was also observed that the hierarchical approach contains a

natural limitation. The subproblem for installation vehicles cannot be solved without the result

of the subproblem for delivery vehicles. Due to the hierarchical nature of the proposed

approach, the partial solution from the subproblem for delivery vehicles may restrict global

searches for better solutions in the solution space of the problem under consideration. In other

words, the best solution of the subproblem in Stage 1 does not guarantee global optimality.

This observation motivated a further search for an approach that could deal with both

subproblems at the same time.

As a result of efforts to improve the hierarchical approach, an endosymbiotic evolutionary

algorithm (EEA) was proposed and developed as the third approach to the VRP under

consideration. The proposed EEA can solve the problems free of the limitation inherent in the

hierarchical approach. Unlike the hierarchical approach, the EEA maintains three different

populations of potential solutions for two subproblems, defined as the VRP for delivery

vehicles, the VRP for installation vehicles, and the original whole problem (consisting of both

a solution for delivery vehicles and one for installation vehicles). These three populations

cooperate with one another to find a good solution of the problem. Through this cooperation,

best combinations of solutions from subproblems are produced as a complete solution to the

106

original problem and become candidates to be admitted to the population of the original

problem. A complete solution consists of two sections, one for delivery vehicles and the other

for installation vehicles. It can be created from the concatenation of individuals in the

population for subproblems or from the population for the original problem. The newly

generated best combination of solutions from symbiotic solutions for subproblems competes

with the solutions in the population for the original problem. Through this cooperation and

competition, the EEA tries to search for high-quality solutions in a much wider solution space

than the hierarchical approach. In order to improve the effectiveness and efficiency of the

search, the proposed EEA introduces the concept of neighborhoods in populations and

localized interactions among the neighborhoods rather than scattered and widespread

interactions among all the solutions in the populations. In the proposed EEA, populations for

subproblems and the original problem not only use the localized interactions for cooperation

and competition but also help each other to evolve together toward better solutions. An

effective genetic representation, an initial population construction method, and efficient

genetic operations were proposed and developed.

In order to show the EEA’s ability to find optimal or near-optimal solutions, two test problems

of small size were solved by the MINP approach, the hierarchical approach using the genetic

algorithm, and the EEA. The optimal solutions of the test problems were obtained by the

MINP approach. The proposed hierarchical approach was able to obtain the optimal solution

for one test problem, while the proposed EEA achieved optimality for both test problems. In

subsequent experiments with test problems of medium and large sizes, the EEA consistently

produced better solutions than the hierarchical approach. The convergence speed of the

proposed EEA for a test problem of large size was studied and compared with that of the

hierarchical approach in Section 7.1.2. With a given set of conditions, the proposed EEA

showed faster convergence speed than the hierarchical approach.

107

A set of test problems of various sizes was solved to compare the performance of the proposed

algorithms. Through the number of variables in the MINP models for the test problems, the

relative difficulty of the problems was indirectly conjectured. Due to the fact that the VRP

under consideration is an NP-hard problem, the calculation time for the problems increases

exponentially as the problem size grows. Thus, it was impossible for the MINP model to

obtain optimal solutions for the test problems of medium and large sizes in a reasonable time.

The proposed EEA can search a wider solution space for higher-quality solutions than the

hierarchical approach, since the EEA deals with both subproblems at the same time. The

results of a set of test problems using all three approaches were compared. For all test

problems, the hierarchical approach and the EEA both found good solutions in a reasonable

amount of time. In most cases, the EEA provided better solutions than the hierarchical

approach.

From the VRP under consideration and the approaches to it examined in this thesis, several

issues can be considered for future research. First of all, the MINP approach was developed to

find the optimal solution in Chapter 3. However, the calculation time for the approach

increases exponentially as the problem size grows, since the VRP is defined as an NP-hard

problem. Even when the test problem consisted of eight customers requiring delivery and four

customers requiring installation, the MINP approach required unreasonable calculation time to

obtain the optimal solution. Containing nonlinear constraints is the most critical reason why

the MINP approach required more calculation time for the problem under consideration.

Hence, a lower-bounding technique with relaxation of the nonlinear constraints can be an

issue to efficiently identify optimal solutions for small-size problems.

Two meta-heuristic algorithms, the hierarchical approach using the genetic algorithm and the

EEA, were applied to solve the problem. The algorithms consist of several methods and

108

operators, such as the genetic representation method, the initial population construction

method, the crossover and mutation operators, and so on. The improvement of these

components can be considered as a research issue. Different genetic operators for the selection,

the crossover, and the mutation operation can be replaced to the algorithms for better

performance. In addition, new genetic representation methods can be considered. In this case,

appropriate fitness functions and suitable genetic operators for the genetic representation

method may be required.

Instead of the hierarchical approach using the genetic algorithm and the EEA, other meta-

heuristic algorithms such as the simulated annealing algorithm or ant colony algorithm could

be applied. A hybrid algorithm containing multiple meta-heuristic algorithms is another

possibility. It may be worthwhile to apply other algorithms and compare their performance

with the results attained by the algorithms in this thesis.

Finally, the problem under consideration in this thesis is a special type of VRP with unique

characteristics, relevant to the electronics industry. In order to clearly define the VRP, several

assumptions and restrictions, described in Chapter 3, were used. By relaxing any of these

assumptions and restrictions or by adding new ones, a more realistic model for this type of

VRP as a new area of research can be developed. In addition, defining VRPs that represent the

unique characteristics of other industries and developing appropriate approaches to these

VRPs could be another valuable area of future research.

109

BIBLIOGRAPHY

Aarts, E., and Lenstra, J. K. (1996). Local search in combinatorial optimization. Springer-

Verlag.

Anderson, C., Jones, K., and Ryan, J. (1991). A two-dimensional algorithm for the ising

problem. Complex Systems, 5, 327-333.

Baker, B. M., and Ayechew, M. A. (2003). A genetic algorithm for the vehicle routing

problem. Computers and Operations Research, 30, 787-800.

Baker, E. K. (1983). An exact algorithm for the time-constrained traveling salesman problem.

Operation Research, 31, 938-945.

Berger, J., and Barkaoui, M. (2003). A new hybrid genetic algorithm for the capacitated

vehicle routing problem. Journal of the Operational Research Society, 41(2), 179-194.

Bodin, L. D., Golden, B. L., and Bender, A. (1983). The state of the art in the routing and

scheduling of vehicles and crews. Computers and Operations Research, 10(2), 79-116.

Bodin, L. D., Golden, B. L., Assad, A. A., and Ball, M. (1983). Routing and scheduling of

vehicles and crews, the state of the art. Computers and Operations Research, 10(2), 63-

212.

Campbell, N. A., Mitchell, L. G., and Reece, J. B. (1996). Biology: Concept and

connections, 2nd.ed. Benjamin/Cummings.

Christofides, N. (1985). Vehicle routing. In The traveling salesman problem: A guided tour

of combinatorial optimization (pp. 431-448). Chichester, UK: John Wiley & Sons.

Christofides, N., Mingozzi, A., and Toth, P. (1979). The vehicle routing problem. In

Combinatorial optimization (pp. 315-338). Chichester, UK: John Wiley & Sons.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBaker%2C+Barrie+M.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bAyechew%2C+M.A.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

110

Christofides, N., Mingozzi, A. and Toth, P. (1981). An algorithm for the time constrained

traveling salesman problem. Report IC-OR, Imperial College of Science and

Technology, London.

Chu, P. C., and Beasley, J.E (1998). Constraint handling in genetic algorithms: the set

partitioning problem. Journal of Heuristics, 4(4), 323-357.

Cohoon, P., and Paris, W. (1986). Genetic placement. Proceedings of the IEEE International

Conference on Computer-Aided Design, 422-425.

Cordeau, J-F., Gendreau, M., Laporte, G., Potvin, J-Y., and Semet, F. (2002). A guide to

vehicle routing heuristics. Journal of the Operational Research Society, 53, 512-522.

Dantzig, G. B., and Ramser, J. H. (1959). The truck dispatching problem. Management

Science, 6, 80-91.

Davis, L. (1987). Genetic algorithms and simulated annealing. Pitman.

Desrochers, M., Desrosiers, J. and Solomon, M. (1992). A New Optimization Algorithm for

the Vehicle Routing Problem with Time Windows. Operation Research, 40, 342-354.

Desrochers, M., Lenstra, J. K., and Savelsbergh, M. W. P. (1990). A classification scheme

for vehicle routing and scheduling problem. Journal of the Operational Research

Society, 46, 322-332.

Desrosiers, J., Dumas, Y., Solomon, M., and Soumis, F. (1995). Time constrained routing

and scheduling. In Network routing. Handbooks in Operations Research and

Management Science, 8, North Holland.

Dumas, Y., Desrosiers, J., Gelinas, E., and Solomon, M. (1995). An optimal algorithm for

the traveling salesman problem with time windows. Operation Research, 43, 367-371.

Eksioglu, B., Vural, A. V., and Reisman, A. (2009). The vehicle routing problem: A

taxonomic review. Computers and Industrial Engineering, 57, 1472-1483.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bVural%2C+Arif+Volkan%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bReisman%2C+Arnold%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

111

Eshelman, L., and Schaffer, J. (1993). Real-coded genetic algorithms and interal-schemata.

In L. Whitley (ed.), Foundations of genetic algorithms (pp. 187-202). San Francisco,

CA: Morgan Kaufmann.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2, 5-30.

Fisher, M. L. (1994). Optimal solution of vehicle routing problems using minimum K-trees.

Operation Research, 42(4), 626-642.

Fisher, M. L. (1995). Vehicle routing. In Network routing. Handbooks in Operations

Research and Management Science, 8, North Holland.

Freisleben, B. and Merz, P. (1996). Genetic local search algorithm for solving symmetric

and asymmetric traveling salesman problems. Proceedings of the IEEE Conference on

Evolutionary Computation, 616-621.

Garey, M. R., and Johnson, D. S. (1979). Computers and intractability: a guide to the theory

of NP-completeness, W.H. Freeman.

Gen, M., and Cheng, R. (2000). Genetic algorithms and engineering optimization. John

Wiley & Sons.

Golden, B. L., and Addad, A. (1995). The vehicle routing problem. In Network routing.

Handbooks in Operations Research and Management Science, 8, North Holland.

Golden, B. L., Wasil, E. A., Kelly, J. P., and Chao, I. M. (1998). Metaheuristics in vehicle

routing. In Fleet Management and Logistics (pp. 33-56). Boston, MA: Kluwer.

Homberger, J., and Gehring, H. (2005). A two–phase hybrid meta-heuristic for the vehicle

routing problem with time windows. European Journal of Operation Research, 162,

220-238.

Jeon, G. W., Leep, H. R., and Shim, J. Y. (2007). A vehicle routing problem solved by using

a hybrid genetic algorithm. Computers and Industrial Engineering, 53, 680-692.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bJeon%2C+Geonwook%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bLeep%2C+Herman+R.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bShim%2C+Jae+Young%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

112

Kim, J. Y., Kim, Y., and Kim, Y. K. (2001). An endosymbiotic evolutionary algorithm for

optimization. Applied Intelligence, 15, 117-130.

Kim, Y. K., Kim, J. Y., and Kim, Y. (2006). An endosymbiotic evolutionary algorithm for

the integration of balancing and sequencing in mixed-model U-lines. European Journal

of Operational Research, 168, 838-852.

Kim, Y. K., Park, K., and Ko, J. (2003). A symbiotic evolutionary algorithm for the

integration of process planning and job shop scheduling. Computers and Operations

Research, 30(8), 1151-1171.

Krumke, S. O., Saliba, S., Vredeveld, T., and Westphal, S. (2008). Approximation

algorithms for a vehicle routing problem. Mathematical Methods of Operations

Research, 68, 333-359.

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate

algorithms. European Journal of Operational Research, 23, 631-640.

Laporte, G., Gendreau, M., Potvin, J-Y., and Semet, F. (2000). Classical and modern

heuristics for the vehicle routing problem. International Transactions in Operational

Research, 7, 285-300.

Laporte, G., and Nobert, Y. (1987). Exact algorithms for the vehicle routing problem. Annals

of Discrete Mathematics, 31, 147-184.

Laporte, G., and Semet, F. (1999). Classical heuristics for the vehicle routing problem.

Technical Report G-98-54, GERAD.

Lim, H. (2007). A genetic algorithm for the vehicle routing problem with heterogeneous

vehicles from multiple depots, allowing multiple visits (Unpublished master’s thesis).

Department of Industrial and Manufacturing Engineering, Oregon State University.

Magnanti, T. L. (1981). Combinatorial optimization and vehicle fleet planning: Perspectives

and prospects. Networks, 11, 179-214.

Margulis, L., (1981). Symbiosis in cell evolution. San Francisco, CA: W. H. Freeman.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bKrumke%2C+Sven+O.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bSaliba%2C+Sleman%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bVredeveld%2C+Tjark%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bVredeveld%2C+Tjark%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

113

Michalewicz, Z., (1996). Genetic algorithm + data structure = evolution programs, 3rd ed.

New York: Springer-Verlag.

Mole, R. H. (1979). A survey of local delivery vehicle routing methodology. Journal of the

Operational Research Society, 30, 245-252.

Moriarty, D. E., and Miikkulainen, R. (1997). Forming neural networks through efficient and

adaptive coevolution. Evolutionary Computation, 5, 373-399.

Osman, I. H. (1993a). Metastrategy simulated annealing and Tabu search algorithms for the

vehicle routing problem. Operation Research, 41, 421-451.

Pereira, F. B., Tavares, J., Machado, P., and Costa, E. (2002). GVR: a new genetic

representation for the vehicle routing problem. Proceedings of the 13th

Irish

International Conference on Artificial Intelligence and Cognitive Science, 95-102.

Potter, M. A. (1997). The design and analysis of a computational model of cooperative

coevolution. (Unpublished doctoral dissertation). George Mason University, Arlington,

VA.

Prescott-Gagnon, E., Desaulniers, G., and Rousseau, L. M. (2009). A branch-and-price-

based large neighborhood search algorithm for the vehicle routing problem with time

windows. Networks, 54, 190-204.

Prive, J., Renaud, J., and Boctor, F. (2006). Solving a vehicle-routing problem arising in

soft-drink distribution. Journal of the Operational Research Society, 57, 1045-1052.

Rawlins, G. J. E. (1991). Foundations of genetic algorithms. Morgan Kaufmann Publishers.

Reeves, C. R. (1993). Modern heuristic techniques for combinatorial problems. Oxford,

England: Blackwell.

Renaud, J., Boctor, F. F., and Laporte, G. (1996). An improved petal heuristic for the vehicle

routing problem. Journal of the Operational Research Society, 47, 329-336.

Repoussis, P. P., Tarantilis, C. D., and Ioannou, G. (2007). The open vehicle routing

problem with time windows. Journal of the Operational Research Society, 58, 355-367.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bPrescott-Gagnon%2C+Eric%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bDesaulniers%2C+Guy%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bDesaulniers%2C+Guy%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bRepoussis%2C+P.P.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bTarantilis%2C+C.D.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bIoannou%2C+G.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

114

Ripplinger, D. (2005). Rural school vehicle routing problem. Transportation Research

Record, 1922, 105-110.

Rochat, Y., and Taillard, E. (1995). Probabilistic diversification and intensification in local

search for vehicle routing. Journal of Heuristics, 1, 147-167.

Savelsbergh, M. (1985). Local search in routing problems with time windows. Annual

Conference of Operation Research, 4, 285-305.

Solomon, M. M., and Desrosiers, J. F. (1988). Time window constrained routing and

scheduling problems. Transportation Science, 22, 1-13.

Taguchi, G., Chowdhury, S., and Taguchi, S. (2000). Robust engineering. New York:

McGraw-Hill.

Toth, P., and Vigo, D. (1998). Exact algorithms for vehicle routing. In Fleet Management

and Logistics (pp. 1-31). Boston: Kluwer.

Toth, P., and Vigo, D. (2002). The vehicle routing problem. SIAM Monographs on Discrete

Mathematics and Applications, Philadelphia, PA: SIAM.

Walters, G. A., and Smith, D. K. (1995). Evolutionary design algorithm for optimal layout of

tree networks. Engineering Optimization, 24, 261-281.

Wu, Y. (2000). Taguchi methods for robust design. New York: ASME.

Yu, B., Yang, Z. Z., and Yao, B. Z. (2011). A hybrid algorithm for vehicle routing problem

with time windows. Expert Systems with Applications, 38, 435-441.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYu%2C+B.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYang%2C+Z.Z.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bYao%2C+B.Z.%7d§ion1=AU&database=1&yearselect=yearrange&sort=yr

115

APPENDICES

116

Appendix A: Mixed-integer nonlinear programming (MINP) model

Table A.1 Mixed-integer nonlinear programming model for the test problem, V-d6-i3

MIN = 19.21*X_0_1_1 + 19.21*X_0_1_2 + 9.49*X_0_2_1 + 9.49*X_0_2_2 +

25.63*X_0_3_1 + 25.63*X_0_3_2 + 20.52*X_0_4_1 + 20.52*X_0_4_2 + 12.04*X_0_5_1

+ 12.04*X_0_5_2 + 22.67*X_0_6_1 + 22.67*X_0_6_2 + 19.21*X_1_0_1 +

19.21*X_1_0_2 + 27.66*X_1_2_1 + 27.66*X_1_2_2 + 26.83*X_1_3_1 + 26.83*X_1_3_2

+ 27.02*X_1_4_1 + 27.02*X_1_4_2 + 23.19*X_1_5_1 + 23.19*X_1_5_2 +

41.87*X_1_6_1 + 41.87*X_1_6_2 + 9.49*X_2_0_1 + 9.49*X_2_0_2 + 27.66*X_2_1_1 +

27.66*X_2_1_2 + 33.54*X_2_3_1 + 33.54*X_2_3_2 + 18.03*X_2_4_1 + 18.03*X_2_4_2

+ 18.68*X_2_5_1 + 18.68*X_2_5_2 + 15.23*X_2_6_1 + 15.23*X_2_6_2 +

25.63*X_3_0_1 + 25.63*X_3_0_2 + 26.83*X_3_1_1 + 26.83*X_3_1_2 + 33.54*X_3_2_1

+ 33.54*X_3_2_2 + 45.28*X_3_4_1 + 45.28*X_3_4_2 + 15.03*X_3_5_1 +

15.03*X_3_5_2 + 39.81*X_3_6_1 + 39.81*X_3_6_2 + 20.52*X_4_0_1 + 20.52*X_4_0_2

+ 27.02*X_4_1_1 + 27.02*X_4_1_2 + 18.03*X_4_2_1 + 18.03*X_4_2_2 +

45.28*X_4_3_1 + 45.28*X_4_3_2 + 32.56*X_4_5_1 + 32.56*X_4_5_2 + 31*X_4_6_1 +

31*X_4_6_2 + 12.04*X_5_0_1 + 12.04*X_5_0_2 + 23.19*X_5_1_1 + 23.19*X_5_1_2 +

18.68*X_5_2_1 + 18.68*X_5_2_2 + 15.03*X_5_3_1 + 15.03*X_5_3_2 + 32.56*X_5_4_1

+ 32.56*X_5_4_2 + 25.63*X_5_6_1 + 25.63*X_5_6_2 + 22.67*X_6_0_1 +

22.67*X_6_0_2 + 41.87*X_6_1_1 + 41.87*X_6_1_2 + 15.23*X_6_2_1 + 15.23*X_6_2_2

+ 39.81*X_6_3_1 + 39.81*X_6_3_2 + 31*X_6_4_1 + 31*X_6_4_2 + 25.63*X_6_5_1 +

25.63*X_6_5_2 + 19.21*Y_0_1_1 + 9.49*Y_0_2_1 + 25.63*Y_0_3_1 + 19.21*Y_1_0_1

+ 27.66*Y_1_2_1 + 26.83*Y_1_3_1 + 9.49*Y_2_0_1 + 27.66*Y_2_1_1 +

33.54*Y_2_3_1 + 25.63*Y_3_0_1 + 26.83*Y_3_1_1 + 33.54*Y_3_2_1 + w_1_2 + w_2_2

+ w_3_2 + 100*X_0_1_1 + 100*X_0_1_2 + 100*X_0_2_1 + 100*X_0_2_2 + 100*X_0_3_1

+ 100*X_0_3_2 + 100*X_0_4_1 + 100*X_0_4_2 + 100*X_0_5_1 + 100*X_0_5_2 +

100*X_0_6_1 + 100*X_0_6_2 + 100*Y_0_1_1 + 100*Y_0_2_1 + 100*Y_0_3_1;

X_0_1_1 + X_0_1_2 + X_0_2_1 + X_0_2_2 + X_0_3_1 + X_0_3_2 + X_0_4_1 + X_0_4_2

+ X_0_5_1 + X_0_5_2 + X_0_6_1 + X_0_6_2 <= 2;

Y_0_1_1 + Y_0_2_1 + Y_0_3_1 <= 1;

X_0_1_1 + X_0_2_1 + X_0_3_1 + X_0_4_1 + X_0_5_1 + X_0_6_1 <= 1;

X_0_1_2 + X_0_2_2 + X_0_3_2 + X_0_4_2 + X_0_5_2 + X_0_6_2 <= 1;

X_0_1_1 - X_1_0_1 + X_0_2_1 - X_2_0_1 + X_0_3_1 - X_3_0_1 + X_0_4_1 - X_4_0_1

+ X_0_5_1 - X_5_0_1 + X_0_6_1 - X_6_0_1 = 0;

X_0_1_2 - X_1_0_2 + X_0_2_2 - X_2_0_2 + X_0_3_2 - X_3_0_2 + X_0_4_2 - X_4_0_2

+ X_0_5_2 - X_5_0_2 + X_0_6_2 - X_6_0_2 = 0;

Y_0_1_1 + Y_0_2_1 + Y_0_3_1 <= 1;

Y_0_1_1 - Y_1_0_1 + Y_0_2_1 - Y_2_0_1 + Y_0_3_1 - Y_3_0_1 = 0;

X_1_0_1 + X_1_0_2 + X_1_2_1 + X_1_2_2 + X_1_3_1 + X_1_3_2 + X_1_4_1 + X_1_4_2

+ X_1_5_1 + X_1_5_2 + X_1_6_1 + X_1_6_2 = 1;

X_2_0_1 + X_2_0_2 + X_2_1_1 + X_2_1_2 + X_2_3_1 + X_2_3_2 + X_2_4_1 + X_2_4_2

+ X_2_5_1 + X_2_5_2 + X_2_6_1 + X_2_6_2 = 1;

X_3_0_1 + X_3_0_2 + X_3_1_1 + X_3_1_2 + X_3_2_1 + X_3_2_2 + X_3_4_1 + X_3_4_2

+ X_3_5_1 + X_3_5_2 + X_3_6_1 + X_3_6_2 = 1;

X_4_0_1 + X_4_0_2 + X_4_1_1 + X_4_1_2 + X_4_2_1 + X_4_2_2 + X_4_3_1 + X_4_3_2

+ X_4_5_1 + X_4_5_2 + X_4_6_1 + X_4_6_2 = 1;

X_5_0_1 + X_5_0_2 + X_5_1_1 + X_5_1_2 + X_5_2_1 + X_5_2_2 + X_5_3_1 + X_5_3_2

+ X_5_4_1 + X_5_4_2 + X_5_6_1 + X_5_6_2 = 1;

117

X_6_0_1 + X_6_0_2 + X_6_1_1 + X_6_1_2 + X_6_2_1 + X_6_2_2 + X_6_3_1 + X_6_3_2

+ X_6_4_1 + X_6_4_2 + X_6_5_1 + X_6_5_2 = 1;

X_0_1_1 + X_0_1_2 + X_2_1_1 + X_2_1_2 + X_3_1_1 + X_3_1_2 + X_4_1_1 + X_4_1_2

+ X_5_1_1 + X_5_1_2 + X_6_1_1 + X_6_1_2 = 1;

X_0_2_1 + X_0_2_2 + X_1_2_1 + X_1_2_2 + X_3_2_1 + X_3_2_2 + X_4_2_1 + X_4_2_2

+ X_5_2_1 + X_5_2_2 + X_6_2_1 + X_6_2_2 = 1;

X_0_3_1 + X_0_3_2 + X_1_3_1 + X_1_3_2 + X_2_3_1 + X_2_3_2 + X_4_3_1 + X_4_3_2

+ X_5_3_1 + X_5_3_2 + X_6_3_1 + X_6_3_2 = 1;

X_0_4_1 + X_0_4_2 + X_1_4_1 + X_1_4_2 + X_2_4_1 + X_2_4_2 + X_3_4_1 + X_3_4_2

+ X_5_4_1 + X_5_4_2 + X_6_4_1 + X_6_4_2 = 1;

X_0_5_1 + X_0_5_2 + X_1_5_1 + X_1_5_2 + X_2_5_1 + X_2_5_2 + X_3_5_1 + X_3_5_2

+ X_4_5_1 + X_4_5_2 + X_6_5_1 + X_6_5_2 = 1;

X_0_6_1 + X_0_6_2 + X_1_6_1 + X_1_6_2 + X_2_6_1 + X_2_6_2 + X_3_6_1 + X_3_6_2

+ X_4_6_1 + X_4_6_2 + X_5_6_1 + X_5_6_2 = 1;

X_1_0_1 - X_0_1_1 + X_1_2_1 - X_2_1_1 + X_1_3_1 - X_3_1_1 + X_1_4_1 - X_4_1_1

+ X_1_5_1 - X_5_1_1 + X_1_6_1 - X_6_1_1 = 0;

X_2_0_1 - X_0_2_1 + X_2_1_1 - X_1_2_1 + X_2_3_1 - X_3_2_1 + X_2_4_1 - X_4_2_1

+ X_2_5_1 - X_5_2_1 + X_2_6_1 - X_6_2_1 = 0;

X_3_0_1 - X_0_3_1 + X_3_1_1 - X_1_3_1 + X_3_2_1 - X_2_3_1 + X_3_4_1 - X_4_3_1

+ X_3_5_1 - X_5_3_1 + X_3_6_1 - X_6_3_1 = 0;

X_4_0_1 - X_0_4_1 + X_4_1_1 - X_1_4_1 + X_4_2_1 - X_2_4_1 + X_4_3_1 - X_3_4_1

+ X_4_5_1 - X_5_4_1 + X_4_6_1 - X_6_4_1 = 0;

X_5_0_1 - X_0_5_1 + X_5_1_1 - X_1_5_1 + X_5_2_1 - X_2_5_1 + X_5_3_1 - X_3_5_1

+ X_5_4_1 - X_4_5_1 + X_5_6_1 - X_6_5_1 = 0;

X_6_0_1 - X_0_6_1 + X_6_1_1 - X_1_6_1 + X_6_2_1 - X_2_6_1 + X_6_3_1 - X_3_6_1

+ X_6_4_1 - X_4_6_1 + X_6_5_1 - X_5_6_1 = 0;

X_1_0_2 - X_0_1_2 + X_1_2_2 - X_2_1_2 + X_1_3_2 - X_3_1_2 + X_1_4_2 - X_4_1_2

+ X_1_5_2 - X_5_1_2 + X_1_6_2 - X_6_1_2 = 0;

X_2_0_2 - X_0_2_2 + X_2_1_2 - X_1_2_2 + X_2_3_2 - X_3_2_2 + X_2_4_2 - X_4_2_2

+ X_2_5_2 - X_5_2_2 + X_2_6_2 - X_6_2_2 = 0;

X_3_0_2 - X_0_3_2 + X_3_1_2 - X_1_3_2 + X_3_2_2 - X_2_3_2 + X_3_4_2 - X_4_3_2

+ X_3_5_2 - X_5_3_2 + X_3_6_2 - X_6_3_2 = 0;

X_4_0_2 - X_0_4_2 + X_4_1_2 - X_1_4_2 + X_4_2_2 - X_2_4_2 + X_4_3_2 - X_3_4_2

+ X_4_5_2 - X_5_4_2 + X_4_6_2 - X_6_4_2 = 0;

X_5_0_2 - X_0_5_2 + X_5_1_2 - X_1_5_2 + X_5_2_2 - X_2_5_2 + X_5_3_2 - X_3_5_2

+ X_5_4_2 - X_4_5_2 + X_5_6_2 - X_6_5_2 = 0;

X_6_0_2 - X_0_6_2 + X_6_1_2 - X_1_6_2 + X_6_2_2 - X_2_6_2 + X_6_3_2 - X_3_6_2

+ X_6_4_2 - X_4_6_2 + X_6_5_2 - X_5_6_2 = 0;

Y_1_0_1 + Y_1_2_1 + Y_1_3_1 = 1;

Y_2_0_1 + Y_2_1_1 + Y_2_3_1 = 1;

Y_3_0_1 + Y_3_1_1 + Y_3_2_1 = 1;

Y_0_1_1 + Y_2_1_1 + Y_3_1_1 = 1;

Y_0_2_1 + Y_1_2_1 + Y_3_2_1 = 1;

Y_0_3_1 + Y_1_3_1 + Y_2_3_1 = 1;

Y_1_0_1 - Y_0_1_1 + Y_1_2_1 - Y_2_1_1 + Y_1_3_1 - Y_3_1_1 = 0;

Y_2_0_1 - Y_0_2_1 + Y_2_1_1 - Y_1_2_1 + Y_2_3_1 - Y_3_2_1 = 0;

Y_3_0_1 - Y_0_3_1 + Y_3_1_1 - Y_1_3_1 + Y_3_2_1 - Y_2_3_1 = 0;

5* X_0_1_1 + 4* X_0_2_1 + 8* X_0_3_1 + 4* X_0_4_1 + 7* X_0_5_1 + 6* X_0_6_1 +

4* X_1_2_1 + 8* X_1_3_1 + 4* X_1_4_1 + 7* X_1_5_1 + 6* X_1_6_1 + 5* X_2_1_1 +

8* X_2_3_1 + 4* X_2_4_1 + 7* X_2_5_1 + 6* X_2_6_1 + 5* X_3_1_1 + 4* X_3_2_1 +

4* X_3_4_1 + 7* X_3_5_1 + 6* X_3_6_1 + 5* X_4_1_1 + 4* X_4_2_1 + 8* X_4_3_1 +

118

7* X_4_5_1 + 6* X_4_6_1 + 5* X_5_1_1 + 4* X_5_2_1 + 8* X_5_3_1 + 4* X_5_4_1 +

6* X_5_6_1 + 5* X_6_1_1 + 4* X_6_2_1 + 8* X_6_3_1 + 4* X_6_4_1 + 7* X_6_5_1

<= 20;

5* X_0_1_2 + 4* X_0_2_2 + 8* X_0_3_2 + 4* X_0_4_2 + 7* X_0_5_2 + 6* X_0_6_2 +

4* X_1_2_2 + 8* X_1_3_2 + 4* X_1_4_2 + 7* X_1_5_2 + 6* X_1_6_2 + 5* X_2_1_2 +

8* X_2_3_2 + 4* X_2_4_2 + 7* X_2_5_2 + 6* X_2_6_2 + 5* X_3_1_2 + 4* X_3_2_2 +

4* X_3_4_2 + 7* X_3_5_2 + 6* X_3_6_2 + 5* X_4_1_2 + 4* X_4_2_2 + 8* X_4_3_2 +

7* X_4_5_2 + 6* X_4_6_2 + 5* X_5_1_2 + 4* X_5_2_2 + 8* X_5_3_2 + 4* X_5_4_2 +

6* X_5_6_2 + 5* X_6_1_2 + 4* X_6_2_2 + 8* X_6_3_2 + 4* X_6_4_2 + 7* X_6_5_2

<= 20;

19.21 * X_0_1_1 + 9.49 * X_0_2_1 + 25.63 * X_0_3_1 + 20.52 * X_0_4_1 + 12.04

* X_0_5_1 + 22.67 * X_0_6_1 + 19.21 * X_1_0_1 + 27.66 * X_1_2_1 + 26.83 *

X_1_3_1 + 27.02 * X_1_4_1 + 23.19 * X_1_5_1 + 41.87 * X_1_6_1 + 9.49 *

X_2_0_1 + 27.66 * X_2_1_1 + 33.54 * X_2_3_1 + 18.03 * X_2_4_1 + 18.68 *

X_2_5_1 + 15.23 * X_2_6_1 + 25.63 * X_3_0_1 + 26.83 * X_3_1_1 + 33.54 *

X_3_2_1 + 45.28 * X_3_4_1 + 15.03 * X_3_5_1 + 39.81 * X_3_6_1 + 20.52 *

X_4_0_1 + 27.02 * X_4_1_1 + 18.03 * X_4_2_1 + 45.28 * X_4_3_1 + 32.56 *

X_4_5_1 + 31 * X_4_6_1 + 12.04 * X_5_0_1 + 23.19 * X_5_1_1 + 18.68 * X_5_2_1

+ 15.03 * X_5_3_1 + 32.56 * X_5_4_1 + 25.63 * X_5_6_1 + 22.67 * X_6_0_1 +

41.87 * X_6_1_1 + 15.23 * X_6_2_1 + 39.81 * X_6_3_1 + 31 * X_6_4_1 + 25.63 *

X_6_5_1 <= 480;

19.21 * X_0_1_2 + 9.49 * X_0_2_2 + 25.63 * X_0_3_2 + 20.52 * X_0_4_2 + 12.04

* X_0_5_2 + 22.67 * X_0_6_2 + 19.21 * X_1_0_2 + 27.66 * X_1_2_2 + 26.83 *

X_1_3_2 + 27.02 * X_1_4_2 + 23.19 * X_1_5_2 + 41.87 * X_1_6_2 + 9.49 *

X_2_0_2 + 27.66 * X_2_1_2 + 33.54 * X_2_3_2 + 18.03 * X_2_4_2 + 18.68 *

X_2_5_2 + 15.23 * X_2_6_2 + 25.63 * X_3_0_2 + 26.83 * X_3_1_2 + 33.54 *

X_3_2_2 + 45.28 * X_3_4_2 + 15.03 * X_3_5_2 + 39.81 * X_3_6_2 + 20.52 *

X_4_0_2 + 27.02 * X_4_1_2 + 18.03 * X_4_2_2 + 45.28 * X_4_3_2 + 32.56 *

X_4_5_2 + 31 * X_4_6_2 + 12.04 * X_5_0_2 + 23.19 * X_5_1_2 + 18.68 * X_5_2_2

+ 15.03 * X_5_3_2 + 32.56 * X_5_4_2 + 25.63 * X_5_6_2 + 22.67 * X_6_0_2 +

41.87 * X_6_1_2 + 15.23 * X_6_2_2 + 39.81 * X_6_3_2 + 31 * X_6_4_2 + 25.63 *

X_6_5_2 <= 480;

19.21 * Y_0_1_1 + W_0 * Y_0_1_1 + 9.49 * Y_0_2_1 + W_0 * Y_0_2_1 + 25.63 *

Y_0_3_1 + W_0 * Y_0_3_1 + 29.21 * Y_1_0_1 + W_1 * Y_1_0_1 + 37.66 * Y_1_2_1

+ W_1 * Y_1_2_1 + 36.83 * Y_1_3_1 + W_1 * Y_1_3_1 + 19.49 * Y_2_0_1 + W_2 *

Y_2_0_1 + 37.66 * Y_2_1_1 + W_2 * Y_2_1_1 + 43.54 * Y_2_3_1 + W_2 * Y_2_3_1

+ 35.63 * Y_3_0_1 + W_3 * Y_3_0_1 + 36.83 * Y_3_1_1 + W_3 * Y_3_1_1 + 43.54

* Y_3_2_1 + W_3 * Y_3_2_1 <= 480;

U_1_1 - U_2_1 + 7* X_1_2_1 <= 6;

U_1_2 - U_2_2 + 7* X_1_2_2 <= 6;

U_1_1 - U_3_1 + 7* X_1_3_1 <= 6;

U_1_2 - U_3_2 + 7* X_1_3_2 <= 6;

U_1_1 - U_4_1 + 7* X_1_4_1 <= 6;

U_1_2 - U_4_2 + 7* X_1_4_2 <= 6;

U_1_1 - U_5_1 + 7* X_1_5_1 <= 6;

U_1_2 - U_5_2 + 7* X_1_5_2 <= 6;

U_1_1 - U_6_1 + 7* X_1_6_1 <= 6;

U_1_2 - U_6_2 + 7* X_1_6_2 <= 6;

U_2_1 - U_1_1 + 7* X_2_1_1 <= 6;

U_2_2 - U_1_2 + 7* X_2_1_2 <= 6;

U_2_1 - U_3_1 + 7* X_2_3_1 <= 6;

U_2_2 - U_3_2 + 7* X_2_3_2 <= 6;

U_2_1 - U_4_1 + 7* X_2_4_1 <= 6;

U_2_2 - U_4_2 + 7* X_2_4_2 <= 6;

U_2_1 - U_5_1 + 7* X_2_5_1 <= 6;

U_2_2 - U_5_2 + 7* X_2_5_2 <= 6;

U_2_1 - U_6_1 + 7* X_2_6_1 <= 6;

U_2_2 - U_6_2 + 7* X_2_6_2 <= 6;

U_3_1 - U_1_1 + 7* X_3_1_1 <= 6;

119

U_3_2 - U_1_2 + 7* X_3_1_2 <= 6;

U_3_1 - U_2_1 + 7* X_3_2_1 <= 6;

U_3_2 - U_2_2 + 7* X_3_2_2 <= 6;

U_3_1 - U_4_1 + 7* X_3_4_1 <= 6;

U_3_2 - U_4_2 + 7* X_3_4_2 <= 6;

U_3_1 - U_5_1 + 7* X_3_5_1 <= 6;

U_3_2 - U_5_2 + 7* X_3_5_2 <= 6;

U_3_1 - U_6_1 + 7* X_3_6_1 <= 6;

U_3_2 - U_6_2 + 7* X_3_6_2 <= 6;

U_4_1 - U_1_1 + 7* X_4_1_1 <= 6;

U_4_2 - U_1_2 + 7* X_4_1_2 <= 6;

U_4_1 - U_2_1 + 7* X_4_2_1 <= 6;

U_4_2 - U_2_2 + 7* X_4_2_2 <= 6;

U_4_1 - U_3_1 + 7* X_4_3_1 <= 6;

U_4_2 - U_3_2 + 7* X_4_3_2 <= 6;

U_4_1 - U_5_1 + 7* X_4_5_1 <= 6;

U_4_2 - U_5_2 + 7* X_4_5_2 <= 6;

U_4_1 - U_6_1 + 7* X_4_6_1 <= 6;

U_4_2 - U_6_2 + 7* X_4_6_2 <= 6;

U_5_1 - U_1_1 + 7* X_5_1_1 <= 6;

U_5_2 - U_1_2 + 7* X_5_1_2 <= 6;

U_5_1 - U_2_1 + 7* X_5_2_1 <= 6;

U_5_2 - U_2_2 + 7* X_5_2_2 <= 6;

U_5_1 - U_3_1 + 7* X_5_3_1 <= 6;

U_5_2 - U_3_2 + 7* X_5_3_2 <= 6;

U_5_1 - U_4_1 + 7* X_5_4_1 <= 6;

U_5_2 - U_4_2 + 7* X_5_4_2 <= 6;

U_5_1 - U_6_1 + 7* X_5_6_1 <= 6;

U_5_2 - U_6_2 + 7* X_5_6_2 <= 6;

U_6_1 - U_1_1 + 7* X_6_1_1 <= 6;

U_6_2 - U_1_2 + 7* X_6_1_2 <= 6;

U_6_1 - U_2_1 + 7* X_6_2_1 <= 6;

U_6_2 - U_2_2 + 7* X_6_2_2 <= 6;

U_6_1 - U_3_1 + 7* X_6_3_1 <= 6;

U_6_2 - U_3_2 + 7* X_6_3_2 <= 6;

U_6_1 - U_4_1 + 7* X_6_4_1 <= 6;

U_6_2 - U_4_2 + 7* X_6_4_2 <= 6;

U_6_1 - U_5_1 + 7* X_6_5_1 <= 6;

U_6_2 - U_5_2 + 7* X_6_5_2 <= 6;

V_1_1 - V_2_1 + 4* Y_1_2_1 <= 3;

V_1_1 - V_3_1 + 4* Y_1_3_1 <= 3;

V_2_1 - V_1_1 + 4* Y_2_1_1 <= 3;

V_2_1 - V_3_1 + 4* Y_2_3_1 <= 3;

V_3_1 - V_1_1 + 4* Y_3_1_1 <= 3;

V_3_1 - V_2_1 + 4* Y_3_2_1 <= 3;

e_0 = 0;

f_0 = 0;

w_0 = 0;

19.21* X_0_1_1 + e_0 * X_0_1_1 + 19.21* X_0_1_2 + e_0 * X_0_1_2 + 27.66*

X_2_1_1 + e_2 * X_2_1_1 + 27.66* X_2_1_2 + e_2 * X_2_1_2 + 26.83* X_3_1_1 +

e_3 * X_3_1_1 + 26.83* X_3_1_2 + e_3 * X_3_1_2 + 27.02* X_4_1_1 + e_4 *

X_4_1_1 + 27.02* X_4_1_2 + e_4 * X_4_1_2 + 23.19* X_5_1_1 + e_5 * X_5_1_1 +

23.19* X_5_1_2 + e_5 * X_5_1_2 + 41.87* X_6_1_1 + e_6 * X_6_1_1 + 41.87*

X_6_1_2 + e_6 * X_6_1_2 - e_1 = 0;

9.49* X_0_2_1 + e_0 * X_0_2_1 + 9.49* X_0_2_2 + e_0 * X_0_2_2 + 27.66*

X_1_2_1 + e_1 * X_1_2_1 + 27.66* X_1_2_2 + e_1 * X_1_2_2 + 33.54* X_3_2_1 +

e_3 * X_3_2_1 + 33.54* X_3_2_2 + e_3 * X_3_2_2 + 18.03* X_4_2_1 + e_4 *

X_4_2_1 + 18.03* X_4_2_2 + e_4 * X_4_2_2 + 18.68* X_5_2_1 + e_5 * X_5_2_1 +

18.68* X_5_2_2 + e_5 * X_5_2_2 + 15.23* X_6_2_1 + e_6 * X_6_2_1 + 15.23*

X_6_2_2 + e_6 * X_6_2_2 - e_2 = 0;

25.63* X_0_3_1 + e_0 * X_0_3_1 + 25.63* X_0_3_2 + e_0 * X_0_3_2 + 26.83*

120

X_1_3_1 + e_1 * X_1_3_1 + 26.83* X_1_3_2 + e_1 * X_1_3_2 + 33.54* X_2_3_1 +

e_2 * X_2_3_1 + 33.54* X_2_3_2 + e_2 * X_2_3_2 + 45.28* X_4_3_1 + e_4 *

X_4_3_1 + 45.28* X_4_3_2 + e_4 * X_4_3_2 + 15.03* X_5_3_1 + e_5 * X_5_3_1 +

15.03* X_5_3_2 + e_5 * X_5_3_2 + 39.81* X_6_3_1 + e_6 * X_6_3_1 + 39.81*

X_6_3_2 + e_6 * X_6_3_2 - e_3 = 0;

20.52* X_0_4_1 + e_0 * X_0_4_1 + 20.52* X_0_4_2 + e_0 * X_0_4_2 + 27.02*

X_1_4_1 + e_1 * X_1_4_1 + 27.02* X_1_4_2 + e_1 * X_1_4_2 + 18.03* X_2_4_1 +

e_2 * X_2_4_1 + 18.03* X_2_4_2 + e_2 * X_2_4_2 + 45.28* X_3_4_1 + e_3 *

X_3_4_1 + 45.28* X_3_4_2 + e_3 * X_3_4_2 + 32.56* X_5_4_1 + e_5 * X_5_4_1 +

32.56* X_5_4_2 + e_5 * X_5_4_2 + 31* X_6_4_1 + e_6 * X_6_4_1 + 31* X_6_4_2 +

e_6 * X_6_4_2 - e_4 = 0;

12.04* X_0_5_1 + e_0 * X_0_5_1 + 12.04* X_0_5_2 + e_0 * X_0_5_2 + 23.19*

X_1_5_1 + e_1 * X_1_5_1 + 23.19* X_1_5_2 + e_1 * X_1_5_2 + 18.68* X_2_5_1 +

e_2 * X_2_5_1 + 18.68* X_2_5_2 + e_2 * X_2_5_2 + 15.03* X_3_5_1 + e_3 *

X_3_5_1 + 15.03* X_3_5_2 + e_3 * X_3_5_2 + 32.56* X_4_5_1 + e_4 * X_4_5_1 +

32.56* X_4_5_2 + e_4 * X_4_5_2 + 25.63* X_6_5_1 + e_6 * X_6_5_1 + 25.63*

X_6_5_2 + e_6 * X_6_5_2 - e_5 = 0;

22.67* X_0_6_1 + e_0 * X_0_6_1 + 22.67* X_0_6_2 + e_0 * X_0_6_2 + 41.87*

X_1_6_1 + e_1 * X_1_6_1 + 41.87* X_1_6_2 + e_1 * X_1_6_2 + 15.23* X_2_6_1 +

e_2 * X_2_6_1 + 15.23* X_2_6_2 + e_2 * X_2_6_2 + 39.81* X_3_6_1 + e_3 *

X_3_6_1 + 39.81* X_3_6_2 + e_3 * X_3_6_2 + 31* X_4_6_1 + e_4 * X_4_6_1 + 31*

X_4_6_2 + e_4 * X_4_6_2 + 25.63* X_5_6_1 + e_5 * X_5_6_1 + 25.63* X_5_6_2 +

e_5 * X_5_6_2 - e_6 = 0;

19.21 * Y_0_1_1 + f_0 * Y_0_1_1 + w_0 * Y_0_1_1 + 37.66 * Y_2_1_1 + f_2 *

Y_2_1_1 + w_2 * Y_2_1_1 + 36.83 * Y_3_1_1 + f_3 * Y_3_1_1 + w_3 * Y_3_1_1 -

f_1 = 0;

9.49 * Y_0_2_1 + f_0 * Y_0_2_1 + w_0 * Y_0_2_1 + 37.66 * Y_1_2_1 + f_1 *

Y_1_2_1 + w_1 * Y_1_2_1 + 43.54 * Y_3_2_1 + f_3 * Y_3_2_1 + w_3 * Y_3_2_1 -

f_2 = 0;

25.63 * Y_0_3_1 + f_0 * Y_0_3_1 + w_0 * Y_0_3_1 + 36.83 * Y_1_3_1 + f_1 *

Y_1_3_1 + w_1 * Y_1_3_1 + 43.54 * Y_2_3_1 + f_2 * Y_2_3_1 + w_2 * Y_2_3_1 -

f_3 = 0;

f_1 - e_1 <= 60;

f_2 - e_2 <= 60;

f_3 - e_3 <= 60;

w_1 >= 0;

e_1 - f_1 - w_1 <= 0;

w_2 >= 0;

e_2 - f_2 - w_2 <= 0;

w_3 >= 0;

e_3 - f_3 - w_3 <= 0;

@BIN (X_0_1_1);

@BIN (X_0_1_2);

@BIN (X_0_2_1);

@BIN (X_0_2_2);

@BIN (X_0_3_1);

@BIN (X_0_3_2);

@BIN (X_0_4_1);

@BIN (X_0_4_2);

@BIN (X_0_5_1);

@BIN (X_0_5_2);

@BIN (X_0_6_1);

@BIN (X_0_6_2);

@BIN (X_1_0_1);

@BIN (X_1_0_2);

@BIN (X_1_2_1);

@BIN (X_1_2_2);

121

@BIN (X_1_3_1);

@BIN (X_1_3_2);

@BIN (X_1_4_1);

@BIN (X_1_4_2);

@BIN (X_1_5_1);

@BIN (X_1_5_2);

@BIN (X_1_6_1);

@BIN (X_1_6_2);

@BIN (X_2_0_1);

@BIN (X_2_0_2);

@BIN (X_2_1_1);

@BIN (X_2_1_2);

@BIN (X_2_3_1);

@BIN (X_2_3_2);

@BIN (X_2_4_1);

@BIN (X_2_4_2);

@BIN (X_2_5_1);

@BIN (X_2_5_2);

@BIN (X_2_6_1);

@BIN (X_2_6_2);

@BIN (X_3_0_1);

@BIN (X_3_0_2);

@BIN (X_3_1_1);

@BIN (X_3_1_2);

@BIN (X_3_2_1);

@BIN (X_3_2_2);

@BIN (X_3_4_1);

@BIN (X_3_4_2);

@BIN (X_3_5_1);

@BIN (X_3_5_2);

@BIN (X_3_6_1);

@BIN (X_3_6_2);

@BIN (X_4_0_1);

@BIN (X_4_0_2);

@BIN (X_4_1_1);

@BIN (X_4_1_2);

@BIN (X_4_2_1);

@BIN (X_4_2_2);

@BIN (X_4_3_1);

@BIN (X_4_3_2);

@BIN (X_4_5_1);

@BIN (X_4_5_2);

@BIN (X_4_6_1);

@BIN (X_4_6_2);

@BIN (X_5_0_1);

@BIN (X_5_0_2);

@BIN (X_5_1_1);

@BIN (X_5_1_2);

@BIN (X_5_2_1);

@BIN (X_5_2_2);

@BIN (X_5_3_1);

@BIN (X_5_3_2);

@BIN (X_5_4_1);

@BIN (X_5_4_2);

@BIN (X_5_6_1);

@BIN (X_5_6_2);

@BIN (X_6_0_1);

@BIN (X_6_0_2);

@BIN (X_6_1_1);

@BIN (X_6_1_2);

@BIN (X_6_2_1);

@BIN (X_6_2_2);

@BIN (X_6_3_1);

122

@BIN (X_6_3_2);

@BIN (X_6_4_1);

@BIN (X_6_4_2);

@BIN (X_6_5_1);

@BIN (X_6_5_2);

@BIN (Y_0_1_1);

@BIN (Y_0_2_1);

@BIN (Y_0_3_1);

@BIN (Y_1_0_1);

@BIN (Y_1_2_1);

@BIN (Y_1_3_1);

@BIN (Y_2_0_1);

@BIN (Y_2_1_1);

@BIN (Y_2_3_1);

@BIN (Y_3_0_1);

@BIN (Y_3_1_1);

@BIN (Y_3_2_1);

@GIN (w_1);

@GIN (w_2);

@GIN (w_3);

@GIN (U_1_1);

@GIN (U_1_2);

@GIN (U_2_1);

@GIN (U_2_2);

@GIN (U_3_1);

@GIN (U_3_2);

@GIN (U_4_1);

@GIN (U_4_2);

@GIN (U_5_1);

@GIN (U_5_2);

@GIN (U_6_1);

@GIN (U_6_2);

@GIN (V_1_1);

@GIN (V_2_1);

@GIN (V_3_1);

End

123

Appendix B: Taguchi method for the hierarchical approach using

genetic algorithm

Table B.1 The results of experiment run no. 1 in the Taguchi method.

(Number of installation customers (A) = 10, Service Level (B) =60 min, Installation time (C)

= 10 min, Fixed cost per installation vehicle (D) = 50)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 689.50 746.65 734.93 733.74 656.88

2 689.50 746.65 734.93 733.74 656.88

3 689.50 746.65 734.93 733.74 656.88

4 689.50 746.65 734.93 733.74 656.88

5 689.50 746.65 734.93 733.74 656.88

6 733.31 847.34 873.28 763.78 694.69

7 733.31 847.34 873.28 763.78 694.69

8 733.31 847.34 873.28 763.78 694.69

9 733.31 847.34 873.28 763.78 694.69

10 733.31 847.34 873.28 763.78 694.69

11 711.43 751.99 892.56 719.96 774.31

12 711.43 751.99 892.56 719.96 774.31

13 711.43 751.99 892.56 719.96 774.31

14 711.43 751.99 892.56 719.96 774.31

15 711.43 751.99 892.56 719.96 774.31

16 798.64 787.11 753.66 577.88 781.51

17 793.89 787.11 753.66 577.88 781.51

18 793.89 787.11 753.66 577.88 781.51

19 793.89 787.11 753.66 577.88 781.51

20 793.89 787.11 753.66 577.88 781.51

21 721.54 772.85 793.68 701.21 826.31

22 721.54 772.85 793.68 701.21 826.31

23 721.54 772.85 793.68 701.21 826.31

24 721.54 772.85 793.68 701.21 826.31

25 721.54 772.85 793.68 701.21 826.31

Average 4051.492 730.124 4185.524 781.188 4200.504 809.622 4121.402 699.314 4038.292 746.740

Stdev 52.638 36.158 25.582 36.873 50.401 64.381 76.467 65.379 40.951 63.055

4085.41

4020.37

4067.32

4037.72

4217.86

4255.20

4217.80

4119.93

4078.15

4043.51

4192.38

4214.14

4078.83

4115.12

3985.26

4055.78

4014.40

4150.07

4167.86

4206.11

4194.87

4208.71

V-d100-i10-a V-d100-i10-b V-d100-i10-c V-d100-i10-d V-d100-i10-e

4086.90 4191.73 3980.64

124

Table B.2 The results of experiment run no. 2 in the Taguchi method.

(Number of installation customers (A) = 10, Service Level (B) =120 min, Installation time (C)

= 35 min, Fixed cost per installation vehicle (D) = 100)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 1048.77 1118.65 1120.28 1115.26 1064.94

2 1048.01 1118.65 1120.28 1115.26 1064.94

3 1048.01 1118.65 1147.22 1115.26 1064.94

4 1048.01 1118.65 1120.28 1115.26 1064.94

5 1048.01 1118.65 1120.28 1115.26 1064.94

6 1093.18 1254.2 1128.91 1131.6 1091.81

7 1093.18 1176.43 1128.91 1131.6 1091.81

8 1093.18 1176.43 1128.91 1131.6 1091.81

9 1093.18 1176.43 1128.91 1131.6 1091.81

10 1094.04 1254.2 1128.91 1131.6 1091.81

11 1072.31 1139.78 1139.39 1090.99 1091.07

12 1074.91 1139.78 1139.39 1090.99 1091.07

13 1072.31 1139.78 1139.39 1090.99 1091.07

14 1072.31 1152.34 1139.39 1090.99 1091.07

15 1072.31 1139.78 1139.39 1090.99 1091.07

16 1136.36 1343.15 1127.63 927.44 1104.42

17 1136.36 1343.15 1127.63 927.44 1109.54

18 1136.36 1343.15 1127.63 927.44 1104.42

19 1136.36 1343.15 1127.63 927.44 1104.42

20 1136.36 1343.15 1127.63 927.44 1104.42

21 1082.75 1157.37 1170.05 1079.76 1155.06

22 1082.75 1148.16 1170.05 1079.76 1155.06

23 1082.75 1148.16 1170.05 1079.76 1155.06

24 1082.75 1148.16 1170.05 1079.76 1155.06

25 1082.75 1148.16 1170.05 1079.76 1155.06

Average 4051.492 1086.691 4185.524 1192.326 4200.504 1138.330 4121.402 1069.010 4038.292 1101.665

Stdev 52.638 29.597 25.582 84.400 50.401 17.601 76.467 74.578 40.951 30.371

4037.72

4055.78 4194.87 4217.80 4214.14 4067.32

4014.40 4208.71 4119.93 4078.83

4115.12 4167.86 4217.86 4043.51 4085.41

3985.26 4206.11 4255.20 4192.38 4020.37

V-d100-i10-a V-d100-i10-b V-d100-i10-c V-d100-i10-d V-d100-i10-e

4086.90 4150.07 4191.73 4078.15 3980.64

125

Table B.3 The results of experiment run no. 3 in the Taguchi method.

(Number of installation customers (A) = 10, Service Level (B) =180 min, Installation time (C)

= 60 min, Fixed cost per installation vehicle (D) = 150)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 1435.74 1518.65 1524.98 1509.15 1475.31

2 1435.74 1518.65 1524.98 1509.15 1475.31

3 1435.74 1518.65 1524.98 1509.15 1475.31

4 1435.74 1518.65 1524.98 1509.15 1475.31

5 1435.74 1518.65 1524.98 1509.15 1483.82

6 1468.18 1533.26 1528.91 1530.89 1511.42

7 1468.18 1533.26 1528.91 1530.89 1511.42

8 1468.18 1533.26 1528.91 1530.89 1511.42

9 1468.18 1533.26 1528.91 1530.89 1511.42

10 1468.18 1533.26 1528.91 1530.89 1511.42

11 1449.91 1539.78 1539.39 1527.18 1472.67

12 1449.91 1539.78 1539.39 1527.18 1472.67

13 1449.91 1539.78 1539.39 1527.18 1472.67

14 1449.91 1539.78 1539.39 1527.18 1472.67

15 1449.91 1539.78 1539.39 1527.18 1472.67

16 1505.7 1769.86 1527.63 1532.69 1469.14

17 1505.7 1769.86 1527.63 1532.69 1469.14

18 1505.7 1769.86 1527.63 1532.69 1469.14

19 1505.7 1769.86 1527.63 1532.69 1469.14

20 1505.7 1769.86 1527.63 1532.69 1469.14

21 1482.75 1548.16 1575.23 1499.83 1551.59

22 1482.75 1557.37 1575.23 1499.83 1538.07

23 1482.75 1548.16 1575.23 1499.83 1551.59

24 1482.75 1548.16 1575.23 1499.83 1538.07

25 1482.75 1548.16 1575.23 1499.83 1538.07

Average 4051.492 1468.456 4185.524 1582.310 4200.504 1539.228 4121.402 1519.948 4038.292 1494.744

Stdev 52.638 25.024 25.582 96.285 50.401 19.040 76.467 13.352 40.951 29.460

4037.72

4055.78 4194.87 4217.80 4214.14 4067.32

4014.40 4208.71 4119.93 4078.83

4115.12 4167.86 4217.86 4043.51 4085.41

3985.26 4206.11 4255.20 4192.38 4020.37

V-d100-i10-a V-d100-i10-b V-d100-i10-c V-d100-i10-d V-d100-i10-e

4086.90 4150.07 4191.73 4078.15 3980.64

126

Table B.4 The results of experiment run no. 4 in the Taguchi method.

(Number of installation customers (A) = 30, Service Level (B) =60 min, Installation time (C)

= 35 min, Fixed cost per installation vehicle (D) = 150)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 3400.61 3422.95 3480.10 3530.77 3211.63

2 3370.10 3464.49 3719.63 3511.09 3224.82

3 3380.45 3671.18 3714.71 3511.09 3236.17

4 3173.01 3422.95 3749.83 3379.02 3229.97

5 3344.49 3439.89 3486.72 3387.13 3211.63

6 3120.51 3739.45 3444.82 3462.45 3207.14

7 3124.36 3907.84 3383.54 3512.94 3386.84

8 3118.45 3727.49 3429.04 3461.72 3438.26

9 3087.99 3740.04 3194.48 3462.45 3421.39

10 3093.10 3727.49 3475.78 3469.93 3395.67

11 3114.58 3466.84 3480.92 3423.51 3564.05

12 3105.76 3472.01 3485.00 3296.40 3357.46

13 3098.90 3663.70 3491.10 3504.81 3563.50

14 3091.16 3729.94 3482.60 3322.04 3557.42

15 3099.91 3649.52 3545.88 3488.07 3358.14

16 3362.61 3800.37 3501.90 3271.55 3230.48

17 3122.86 3536.69 3549.09 3271.55 3254.70

18 3338.78 3536.69 3280.73 3527.19 3235.93

19 3099.56 3546.67 3510.07 3271.55 3230.48

20 3311.44 3628.63 3283.45 3271.55 3254.70

21 3064.63 3561.08 3491.25 3374.94 3194.55

22 3087.46 3561.08 3465.51 3620.12 3189.42

23 3096.04 3789.19 3675.64 3374.43 3216.71

24 3143.21 3560.43 3504.18 3629.53 3204.03

25 3051.73 3561.08 3493.89 3374.94 3011.45

Average 4060.164 3176.068 4275.888 3613.107 4066.491 3492.794 4128.484 3428.430 3987.182 3295.461

Stdev 55.500 119.220 31.764 133.078 37.364 129.797 53.728 106.607 75.886 135.652

4145.00 4325.80 4042.11 4207.26 3873.12

4039.66

4070.10

3967.35

3985.68

4004.77 4284.57 4106.16 4149.02

4056.58 4267.90 4065.32 4065.18

4076.46 4242.68 4018.72 4121.96

4018.01 4258.49 4100.15 4099.00

V-d100-i30-a V-d100-i30-b V-d100-i30-c V-d100-i30-d V-d100-i30-e

127

Table B.5 The results of experiment run no. 5 in the Taguchi method.

(Number of installation customers (A) = 30, Service Level (B) =120 min, Installation time (C)

= 60 min, Fixed cost per installation vehicle (D) = 50)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 3112.68 3432.01 3486.28 3380.07 3277.95

2 3146.69 3358.61 3470.38 3399.76 3264.18

3 3137.82 3429.80 3460.72 3333.32 3264.18

4 3143.61 3442.72 3459.20 3294.20 3264.18

5 3135.26 3459.78 3467.43 3354.04 3264.18

6 3022.46 3415.16 3395.79 3307.88 3233.35

7 3026.36 3411.20 3412.17 3348.18 3247.51

8 3097.94 3443.63 3271.67 3317.45 3249.16

9 3019.46 3473.36 3403.81 3310.59 3242.80

10 3066.21 3447.91 3247.46 3332.54 3237.46

11 3123.00 3372.71 3434.00 3292.70 3376.61

12 3150.94 3414.98 3445.59 3289.57 3393.19

13 3078.27 3425.51 3356.90 3290.47 3423.38

14 3069.92 3405.49 3335.33 3303.97 3368.43

15 3147.34 3407.73 3445.10 3329.91 3385.01

16 3161.24 3350.85 3347.93 3324.66 3175.87

17 3148.79 3491.17 3336.98 3470.12 3294.38

18 3188.00 3468.48 3367.16 3361.50 3299.27

19 3161.27 3466.33 3360.77 3335.32 3269.34

20 3158.10 3534.03 3412.11 3322.78 3190.52

21 3169.00 3511.28 3387.62 3478.01 3272.26

22 3110.39 3408.80 3453.32 3469.05 3298.72

23 3120.51 3536.00 3327.63 3486.05 3273.17

24 3155.86 3559.30 3310.28 3477.90 3285.73

25 3115.09 3544.16 3321.09 3474.59 3214.73

Average 4060.164 3118.648 4275.888 3448.439 4066.491 3388.668 4128.484 3363.384 3987.182 3282.621

Stdev 55.500 47.291 31.764 56.607 37.364 65.862 53.728 69.856 75.886 62.600

4004.77 4284.57 4106.16 4149.02 3967.35

4056.58 4267.90 4065.32 4065.18 3985.68

4076.46 4242.68 4018.72 4121.96 4039.66

4018.01 4258.49 4100.15 4099.00 4070.10

V-d100-i30-a V-d100-i30-b V-d100-i30-c V-d100-i30-d V-d100-i30-e

4145.00 4325.80 4042.11 4207.26 3873.12

128

Table B.6 The results of experiment run no. 6 in the Taguchi method.

(Number of installation customers (A) = 30, Service Level (B) =180 min, Installation time (C)

= 10 min, Fixed cost per installation vehicle (D) = 100)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 1198.74 1287.67 1202.16 1419.63 1189.93

2 1195.71 1184.86 1162.43 1462.39 1247.69

3 1228.11 1216.15 1165.59 1285.75 1251.96

4 1194.26 1266.28 1162.83 1251.94 1157.50

5 1181.57 1236.57 1229.27 1248.54 1170.68

6 1220.22 1276.17 1354.21 1401.83 1150.72

7 1207.69 1263.32 1299.51 1420.68 1197.53

8 1164.25 1283.01 1192.35 1276.82 1156.70

9 1254.70 1256.30 1231.91 1428.92 1166.42

10 1193.14 1388.79 1180.47 1434.71 1165.86

11 1151.88 1231.95 1181.46 1463.15 1286.07

12 1143.59 1351.42 1199.76 1309.25 1289.80

13 1166.82 1190.92 1202.81 1253.47 1252.34

14 1165.85 1193.95 1424.14 1261.93 1256.54

15 1172.58 1361.46 1197.65 1219.14 1225.26

16 1154.30 1363.12 1178.14 1360.81 1250.98

17 1205.39 1269.22 1202.60 1428.65 1169.85

18 1131.96 1363.12 1180.42 1423.26 1177.65

19 1208.94 1258.90 1180.42 1447.02 1177.74

20 1190.32 1270.70 1250.00 1320.98 1183.97

21 1161.39 1298.77 1365.85 1503.11 1147.07

22 1170.05 1210.59 1191.14 1492.44 1182.13

23 1164.16 1230.14 1353.98 1498.61 1197.54

24 1237.14 1230.21 1197.17 1463.88 1236.51

25 1207.88 1237.75 1344.79 1268.76 1178.14

Average 4060.164 1186.826 4275.888 1268.854 4066.491 1233.242 4128.484 1373.827 3987.182 1202.663

Stdev 55.500 30.400 31.764 57.960 37.364 76.094 53.728 93.483 75.886 43.737

4004.77 4284.57 4106.16 4149.02 3967.35

4056.58 4267.90 4065.32 4065.18 3985.68

4076.46 4242.68 4018.72 4121.96 4039.66

4018.01 4258.49 4100.15 4099.00 4070.10

V-d100-i30-a V-d100-i30-b V-d100-i30-c V-d100-i30-d V-d100-i30-e

4145.00 4325.80 4042.11 4207.26 3873.12

129

Table B.7 The results of experiment run no. 7 in the Taguchi method.

(Number of installation customers (A) = 50, Service Level (B) =60 min, Installation time (C)

= 60 min, Fixed cost per installation vehicle (D) = 100)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 7304.427 6817.388 7284.807 6969.718 6956.068

2 7591.708 6969.478 7481.187 6948.618 6943.587

3 7334.917 6819.688 7446.787 6845.928 7053.427

4 7505.577 6991.667 7452.618 7029.297 6954.758

5 7496.757 7002.157 7259.737 7013.528 6979.908

6 7355.618 7184.917 6869.947 6922.817 6833.198

7 7509.447 7282.518 6846.057 6881.768 6784.127

8 7307.797 7117.018 7053.458 6978.377 6805.868

9 7323.057 7031.908 6854.447 6909.388 6797.517

10 7308.488 7189.107 6971.337 6910.277 6956.298

11 7313.227 7126.768 6897.567 6695.857 7054.478

12 7276.098 7095.687 7161.817 6907.388 7059.317

13 7270.797 7140.397 7054.618 6887.488 7254.888

14 7272.428 7180.447 7111.397 6954.868 6831.687

15 7288.157 6930.777 6933.068 6907.027 7039.638

16 7206.317 7360.367 7287.238 7038.397 7066.118

17 7215.197 7384.808 7238.697 6825.887 6892.257

18 7218.957 7336.627 7232.328 6846.147 6827.137

19 7433.157 7183.267 7219.388 6880.807 6828.657

20 7370.347 7292.587 7206.637 6713.288 7048.698

21 7245.857 7208.098 7291.768 7149.847 6634.228

22 7457.316 7173.007 7320.297 7133.017 6628.108

23 7237.728 7173.897 7116.048 7122.107 6657.528

24 7433.147 7135.027 7125.067 7182.627 6611.968

25 7204.647 7135.027 7286.627 7094.458 6660.998

Average 4029.618 7339.247 4263.904 7130.505 4121.846 7160.118 3878.030 6949.957 3901.832 6886.418

Stdev 67.783 108.497 40.394 149.756 55.424 188.078 27.116 125.169 53.921 167.921

3911.76

3883.7

3976.49

4140.03 4235.63 4056.469 3896.27 3827.25

3909.96

4030.77 4233.169 4095.81 3902

3976.87 4327.42 4101.58 3838.47

4029.14 4280.86 4196.24 3891.96

3971.28 4242.44 4159.13 3861.45

V-d100-i50-a V-d100-i50-b V-d100-i50-c V-d100-i50-d V-d100-i50-e

130

Table B.8 The results of experiment run no. 8 in the Taguchi method.

(Number of installation customers (A) = 50, Service Level (B) =120 min, Installation time (C)

= 10 min, Fixed cost per installation vehicle (D) = 150)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 2500.41 2394.97 2434.02 2110.41 2635.94

2 2490.12 2681.43 2402.62 2340.96 2550.88

3 2502.46 2403.31 2393.19 2352.88 2330.23

4 2460.45 2449.37 2424.41 2132.98 2364.87

5 2474.58 2367.51 2425.28 2363.57 2388.89

6 2365.71 2614.37 2423.67 2314.53 2372.77

7 2334.70 2427.48 2413.73 2367.67 2367.47

8 2439.59 2418.63 2411.05 2316.38 2676.02

9 2366.92 2374.72 2421.80 2331.55 2213.97

10 2385.87 2458.18 2386.02 2404.27 2358.89

11 2377.08 2653.34 2389.65 2170.48 2396.99

12 2390.90 2432.64 2393.90 2389.80 2381.31

13 2428.74 2368.03 2467.88 2164.57 2421.21

14 2169.94 2448.09 2450.40 2153.62 2408.72

15 2385.37 2402.40 2432.95 2346.63 2435.37

16 2404.06 2386.30 2370.59 2416.36 2395.43

17 2170.04 2633.97 2351.35 2417.18 2395.06

18 2443.39 2454.31 2402.08 2385.00 2406.76

19 2411.99 2336.77 2383.39 2378.81 2412.79

20 2444.06 2446.38 2381.03 2433.83 2656.30

21 2748.08 2717.18 2350.07 2437.13 2196.79

22 2708.04 2471.03 2572.68 2364.85 2485.36

23 2671.23 2473.48 2330.45 2165.13 2169.16

24 2552.34 2688.37 2615.68 2446.15 2134.02

25 2437.38 2700.86 2387.41 2647.27 2217.36

Average 4029.618 2442.538 4263.904 2488.125 4121.846 2416.612 3878.030 2334.080 3901.832 2390.902

Stdev 67.783 133.330 40.394 121.963 55.424 62.304 27.116 123.962 53.921 140.078

4030.77 4233.17 4095.81 3902.00 3883.70

3976.87 4327.42 4101.58 3838.47 3976.49

4029.14 4280.86 4196.24 3891.96 3909.96

3971.28 4242.44 4159.13 3861.45 3911.76

V-d100-i50-a V-d100-i50-b V-d100-i50-c V-d100-i50-d V-d100-i50-e

4140.03 4235.63 4056.47 3896.27 3827.25

131

Table B.9 The results of experiment run no. 9 in the Taguchi method.

(Number of installation customers (A) = 50, Service Level (B) =180 min, Installation time (C)

= 35 min, Fixed cost per installation vehicle (D) = 50)

Test no. Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

1 3480.01 3270.319 3411.619 3311.309 3367.539

2 3336.24 3350.389 3256.629 3280.639 3329.049

3 3408.08 3327.329 3213.999 3238.529 3347.879

4 3508.929 3290.479 3361.49 3382.639 3300.289

5 3450.599 3256.019 3361.229 3344.579 3346.909

6 3457.879 3355.989 3395.179 3197.589 3234.679

7 3341.879 3291.979 3253.03 3331.279 3219.049

8 3431.589 3378.219 3217.669 3295.269 3407.169

9 3353.329 3351.239 3248.639 3296.889 3226.679

10 3226.609 3330.309 3250.669 3291.239 3226.309

11 3365.709 3347.28 3170.739 3203.619 3273.429

12 3357.299 3274.739 3215.789 3210.339 3236.789

13 3373.82 3245.199 3262.429 3279.999 3231.959

14 3272.129 3201.329 3228.189 3266.469 3300.979

15 3335.399 3357.519 3192.869 3286.659 3234.529

16 3315.589 3406.699 3325.539 3330.789 3313.939

17 3287.759 3303.599 3260.919 3229.979 3394.489

18 3296.949 3296.529 3297.469 3385.349 3269.229

19 3359.59 3411.869 3295.909 3311.729 3447.229

20 3283.959 3356.99 3339.839 3192.549 3208.139

21 3416.729 3416.24 3289.019 3273.979 3414.569

22 3363.229 3324.529 3244.479 3362.289 3378.719

23 3322.879 3348.359 3183.309 3219.759 3301.649

24 3305.399 3453.899 3239.01 3509.069 3239.619

25 3331.909 3333.709 3268.499 3413.199 3218.459

Average 4029.618 3359.340 4263.904 3331.230 4121.846 3271.366 3878.030 3297.829 3901.832 3298.771

Stdev 67.783 69.044 40.394 58.465 55.424 64.243 27.116 75.256 53.921 72.570

4030.77 4233.169 4095.81 3902 3883.7

3976.87 4327.42 4101.58 3838.47 3976.49

4029.14 4280.86 4196.24 3891.96 3909.96

3971.28 4242.44 4159.13 3861.45 3911.76

V-d100-i50-a V-d100-i50-b V-d100-i50-c V-d100-i50-d V-d100-i50-e

4140.03 4235.63 4056.469 3896.27 3827.25

132

Appendix C: Program code of the Endosymbiotic evolutionary

algorithm

The program of the EEA for the VRP under consideration has been programmed in Visual

Basic language with the Microsoft Visual Studio.NET Framework 1.1 version. The functions

for the EEA have been programmed as modules. The program consists of 11 files whose

program codes are as follows.

Figure C.1 The program interface for the EEA (EEA.vb).

133

Table C.1 The program code in EEA.vb.

Public Class EEA

 'Initialize interface

 Private Sub EEA_Load(ByVal sender As System.Object, ByVal e As System.Eve

ntArgs) Handles MyBase.Load

 Randomize(CDec(Now.Millisecond))

 chk_POPI.Enabled = False

 chk_POPD.Enabled = False

 chk_POPDI.Enabled = False

 txt_POP_DU.Enabled = False

 End Sub

 'Program start

 Private Sub Btn_Start_EEA_Click(ByVal sender As System.Object, ByVal e As

 System.EventArgs) Handles Btn_Start_EEA.Click

 btn_close.Enabled = False

 Btn_Start_EEA.Enabled = False

 txt_NCD.Enabled = False

 txt_NCI.Enabled = False

 txt_XR_D.Enabled = False

 txt_XR_I.Enabled = False

 txt_XR_DI.Enabled = False

 txt_MR_D.Enabled = False

 txt_MR_I.Enabled = False

 txt_MR_DI.Enabled = False

 txt_NMG.Enabled = False

 txt_NT.Enabled = False

 txt_NEO.Enabled = False

 'Start EEA program

 start_EEA() 'Main.vb

 Me.Close()

 End Sub

 Private Sub btn_close_Click(ByVal sender As System.Object, ByVal e As Sys

tem.EventArgs) Handles btn_close.Click

 Me.Close()

 End Sub

 'Option for printing populations

 Private Sub chk_popchk_CheckedChanged(ByVal sender As System.Object, ByVa

l e As System.EventArgs) Handles chk_popchk.CheckedChanged

 If chk_popchk.Checked = True Then

 chk_POPI.Enabled = True

 chk_POPD.Enabled = True

 chk_POPDI.Enabled = True

 txt_POP_DU.Enabled = True

 Else

 chk_POPI.Checked = False

 chk_POPD.Checked = False

 chk_POPDI.Checked = False

 chk_POPI.Enabled = False

 chk_POPD.Enabled = False

134

 chk_POPDI.Enabled = False

 txt_POP_DU.Enabled = False

 End If

 End Sub

End Class

135

Table C.2 The program code in Main.vb.

Module Main

 'Definition of Symbiont and Endosymbiont

 Public Structure Symbiotic_D

 Dim gene_D() As Integer

 Dim vehicle_D() As Integer

 Dim arrival_time_D() As Double

 Dim travel_time_D As Double

 Dim fitness_D As Double

 End Structure

 Public Structure Symbiotic_I

 Dim gene_I() As Integer

 Dim vehicle_I() As Integer

 Dim arrival_time_I() As Double

 Dim wait_time_I() As Double

 Dim travel_time_I As Double

 Dim fitness_I As Double

 End Structure

 Public Structure Endosymbiotic

 Dim gene_D() As Integer

 Dim gene_I() As Integer

 Dim vehicle_D() As Integer

 Dim vehicle_I() As Integer

 Dim arrival_time_D() As Double

 Dim arrival_time_I() As Double

 Dim wait_time_I() As Double

 Dim travel_time_D As Double

 Dim travel_time_I As Double

 Dim fitness_DI As Double

 End Structure

 Structure Location_Index

 Dim loc_X As Integer

 Dim loc_Y As Integer

 End Structure

 Structure Pair

 Dim p1 As Location_Index

 Dim p2 As Location_Index

 End Structure

 Public Const BIGM As Double = 999999.999

 Public sum_entr_sol As Integer = 0

 Public stop_gen As Integer = 0

 Sub start_EEA()

 '===

 ' Problem variables

 '===

 'number of customers requiring delivery

 Dim Num_Customer_D As Integer

 'number of customers requiring delivery and installation

 Dim Num_Customer_I As Integer

136

 'capacity of delivery vehicle

 Dim Capacity_Vehicle_D As Integer

 'installation time at a customer (service time)

 Dim Installation_Time_I As Double

 'service level

 Dim Service_Level As Double

 'maximum operation time

 Dim Max_Operation_Time As Double

 'Distance and Customer Demand

 Dim Distance(Num_Customer_D, Num_Customer_D) As Double

 Dim Customer_Demand(Num_Customer_D - 1) As Integer

 '===

 'Algorithm variables

 '===

 Dim Pop_Size As Integer 'population size

 Dim Num_Generation As Integer 'maximum # of generation

 'Crossover rate for populations

 Dim Crossover_Rate_D As Single

 Dim Crossover_Rate_I As Single

 Dim Crossover_Rate_DI As Single

 'Mutation rate for populations

 Dim Mutation_Rate_D As Single

 Dim Mutation_Rate_I As Single

 Dim Mutation_Rate_DI As Single

 '3X3 matrix for the neighborhood

 Dim Nb_D(2, 2) As Symbiotic_D

 Dim Nb_I(2, 2) As Symbiotic_I

 Dim Nb_DI(2, 2) As Endosymbiotic

 '===

 'Program variables

 '===

 Dim best_solution As Endosymbiotic

 Dim best_comb As Endosymbiotic

 Dim tNb_D(2, 2) As Symbiotic_D

 Dim max_trial As Integer

 Dim current_trial As Integer

 Dim current_generation As Integer = 0

 Dim loc_Nb As Location_Index

 Dim Nb_Index(2, 2) As Location_Index

 Dim temp_best_travel As Double

 Dim temp_fit_DI As Double

 Dim input_file As String = ""

 Dim temp_file_name As String = ""

 Dim start_time As Date

 Dim end_time As Date

 Dim elapsed_time As TimeSpan

 Dim num_offspring As Integer

 Dim check_pop As Integer

137

 '===

 'Program functions

 '===

 'Obtain program parameters from interface(Main.vb)

 program_setup(Num_Customer_D, Num_Customer_I, Capacity_Vehicle_D, Ins

tallation_Time_I, Service_Level, Max_Operation_Time, Crossover_Rate_D, Crosso

ver_Rate_I, Crossover_Rate_DI, Mutation_Rate_D, Mutation_Rate_I, Mutation_Rat

e_DI, Num_Generation, max_trial, num_offspring, input_file, check_pop, Pop_Si

ze)

 'Define populations

 Dim POP_D(Pop_Size - 1, Pop_Size - 1) As Symbiotic_D

 Dim POP_I(Pop_Size - 1, Pop_Size - 1) As Symbiotic_I

 Dim POP_DI(Pop_Size - 1, Pop_Size - 1) As Endosymbiotic

 'redefine distances and customers' demands

 ReDim Distance(Num_Customer_D, Num_Customer_D)

 ReDim Customer_Demand(Num_Customer_D - 1)

 'Data loading from input file (Dt_Input.vb)

 If read_data(input_file, Customer_Demand, Distance, Num_Customer_D, N

um_Customer_I) = False Then

 GoTo PROGRAM_END

 End If

 For current_trial = 1 To max_trial

 'Show progress of trial

 EEA.pgb_trial.Value = current_trial

 current_generation = 0

 sum_entr_sol = 0

 temp_best_travel = BIGM

 'Initialization of output files (Dt_Output.vb)

 temp_file_name = Outfile_setup(current_trial, Num_Customer_D, Num

_Customer_I, Pop_Size)

 'Define structure of Populations, Neighborhood, and Best solution

 (Initialization.vb)

 define_population(POP_DI, POP_D, POP_I, Pop_Size, Num_Customer_D,

 Num_Customer_I)

 best_solution = define_individual_DI(Num_Customer_D, Num_Customer

_I)

 'Record starting time

 start_time = Now

 'Generate initial population (Initialization.vb)

 population_generation_D(POP_D, Pop_Size)

 population_generation_I(POP_I, Pop_Size)

 population_generation_DI(POP_DI, Pop_Size)

 'prefix initial solutions (Initialization.vb)

 fix_solution(POP_D, POP_I, POP_DI, Pop_Size, Distance, Customer_D

emand, Capacity_Vehicle_D)

138

 'Evaluate fitness value of initial population(Fitness.vb)

 cal_fitness_sub(Pop_Size, POP_D, POP_I, Capacity_Vehicle_D, Insta

llation_Time_I, Service_Level, Max_Operation_Time, Distance, Customer_Demand)

 cal_fitness_etr(Pop_Size, POP_DI, Capacity_Vehicle_D, Installatio

n_Time_I, Service_Level, Max_Operation_Time, Distance, Customer_Demand)

 'print all fitness values of the initial population (Utility.vb)

 file_population_check(POP_DI, POP_D, POP_I, Pop_Size, current_gen

eration, loc_Nb, check_pop, temp_file_name)

 For current_generation = 1 To Num_Generation

 'Selection of a random location to generate neighborhoods (Co

operation.vb)

 loc_Nb = random_location(Pop_Size)

 Nb_Index = set_loc_neighbor(loc_Nb, Pop_Size)

 'Creation of set of neighborhoods (Cooperation.vb)

 Nb_D = create_neighborhood_D(POP_D, Nb_Index)

 Nb_I = create_neighborhood_I(POP_I, Nb_Index)

 Nb_DI = create_neighborhood_DI(POP_DI, Nb_Index)

 'Cooperation between Nb_D and Nb_I (Cooperation.vb)

 best_comb = cooperation_sub(Nb_D, Nb_I, Installation_Time_I,

Service_Level, Max_Operation_Time, Distance, Capacity_Vehicle_D, Customer_Dem

and)

 'update best solution with best combination from Nb_D and Nb_

I (Cooperation.vb)

 best_solution = update_best(best_comb, best_solution)

 'update best solution with Nb_DI (Cooperation.vb)

 cal_fitness_etr(3, Nb_DI, Capacity_Vehicle_D, Installation_Ti

me_I, Service_Level, Max_Operation_Time, Distance, Customer_Demand)

 best_solution = update_best_DI(Nb_DI, best_solution)

 'Competition between Nb_DI and best solution (Cooperation.vb)

 competition(Nb_DI, best_comb)

 'Duplicate Nb_D for evolution of Nb_I (Initialization.vb)

 tNb_D = copy_Nb_D(tNb_D, Nb_D)

 'evolution of Nb_D(Evolution_D.vb)

 evolve_D(Nb_D, Nb_I, Crossover_Rate_D, Mutation_Rate_D, Capac

ity_Vehicle_D, Max_Operation_Time, Distance, Customer_Demand, _

 Installation_Time_I, Service_Level)

 'evolution of Nb_I(Evolution_I.vb)

 evolve_I(Nb_I, tNb_D, Crossover_Rate_I, Mutation_Rate_I, Max_

Operation_Time, Distance, Customer_Demand, _

 Installation_Time_I, Service_Level)

 'evolution of Nb_DI(Evolution_DI.vb)

 evolve_DI(Nb_DI, Crossover_Rate_DI, Mutation_Rate_DI, Capacit

y_Vehicle_D, Max_Operation_Time, Distance, Customer_Demand, _

 Installation_Time_I, Service_Level)

 'Release neighborhoods (Cooperation.vb)

 release_neighborhood_D(Nb_D, POP_D, Nb_Index)

139

 release_neighborhood_I(Nb_I, POP_I, Nb_Index)

 release_neighborhood_DI(Nb_DI, POP_DI, Nb_Index)

 'Show progress of generation

 If CInt(current_generation Mod (Num_Generation / 20)) = 0 The

n

 EEA.pgb_generation.Value = current_generation

 End If

 'Optional report per generation (Dt_Output.vb)

 temp_best_travel = generation_record(current_generation, best

_solution, temp_best_travel, temp_file_name, start_time, end_time)

 'print all fitness values of the population (Utility.vb)

 file_population_check(POP_DI, POP_D, POP_I, Pop_Size, current

_generation, loc_Nb, check_pop, temp_file_name)

 'Checking termination conditions (optional)

 If sum_entr_sol > num_offspring And num_offspring > 0 Then

 stop_gen = current_generation

 current_generation = Num_Generation

 End If

 Next

 'Check running time

 end_time = Now

 elapsed_time = end_time.Subtract(start_time)

 'Check final solution

 temp_fit_DI = best_solution.fitness_DI

 best_solution = fitness_etr_D(best_solution, Capacity_Vehicle_D,

Max_Operation_Time, Customer_Demand, Distance)

 best_solution = fitness_etr_I(best_solution, Installation_Time_I,

 Service_Level, Max_Operation_Time, Distance)

 If temp_fit_DI <> best_solution.fitness_DI Then

 best_solution.fitness_DI = 0.0

 End If

 'Generate final report on output file (Dt_Output.vb)

 final_report(best_solution, elapsed_time, temp_file_name)

 Next

PROGRAM_END:

 End Sub

 'Load parameters from program interface

 Sub program_setup(ByRef Num_Customer_D As Integer, ByRef Num_Customer_I A

s Integer, ByRef Capacity_Vehicle_D As Integer, ByRef Installation_Time_I As

Double, ByRef Service_Level As Double, ByRef Max_Operation_Time As Double, By

Ref Crossover_rate_D As Double, ByRef Crossover_rate_I As Double, ByRef Cross

140

over_rate_DI As Double, ByRef Mutation_rate_D As Double, ByRef Mutation_rate_

I As Double, ByRef Mutation_rate_DI As Double, ByRef Num_Generation As Intege

r, ByRef trial As Integer, ByRef Num_offspring As Integer, ByRef input_file A

s String, ByRef check_pop As Integer, ByRef Pop_size As Integer)

 Try

 Num_Customer_D = CInt(EEA.txt_NCD.Text)

 Num_Customer_I = CInt(EEA.txt_NCI.Text)

 Crossover_rate_D = CDec(EEA.txt_XR_D.Text)

 Crossover_rate_I = CDec(EEA.txt_XR_I.Text)

 Crossover_rate_DI = CDec(EEA.txt_XR_DI.Text)

 Mutation_rate_D = CDec(EEA.txt_MR_D.Text)

 Mutation_rate_I = CDec(EEA.txt_MR_I.Text)

 Mutation_rate_DI = CDec(EEA.txt_MR_DI.Text)

 Num_Generation = CInt(EEA.txt_NMG.Text)

 trial = CInt(EEA.txt_NT.Text)

 Num_offspring = CInt(EEA.txt_NEO.Text)

 Capacity_Vehicle_D = CInt(EEA.txt_CDV.Text)

 Installation_Time_I = CDec(EEA.txt_IT.Text)

 Service_Level = CDec(EEA.txt_SL.Text)

 Max_Operation_Time = CDec(EEA.txt_MOT.Text)

 check_pop = CInt(EEA.txt_POP_DU.Text)

 Pop_size = CInt(EEA.txt_popsize.Text)

 Catch ex As Exception

 MessageBox.Show("Input data error")

 EEA.Close()

 End Try

 If Num_Customer_D <= 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Num_Customer_I <= 0 Or Num_Customer_I > Num_Customer_D Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Crossover_rate_D <= 0 Or Crossover_rate_D > 1 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Crossover_rate_I <= 0 Or Crossover_rate_I > 1 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Crossover_rate_DI <= 0 Or Crossover_rate_DI > 1 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Mutation_rate_D <= 0 Or Mutation_rate_D > 1 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Mutation_rate_I <= 0 Or Mutation_rate_I > 1 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

141

 If Mutation_rate_DI <= 0 Or Mutation_rate_DI > 1 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Num_Generation <= 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If trial <= 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Num_offspring < 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Capacity_Vehicle_D <= 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Installation_Time_I < 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Service_Level < 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Max_Operation_Time < 0 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 If Pop_size <= 3 Then

 MessageBox.Show("Input data error")

 EEA.Close()

 End If

 input_file = CStr(Num_Customer_D) + "-" + CStr(Num_Customer_I) + "-1

0.txt"

 EEA.pgb_generation.Maximum = Num_Generation

 EEA.pgb_trial.Maximum = trial

 End Sub

End Module

142

Table C.3 The program code in Cooperation.vb.

Module Cooperation

 'Select random location in population

 Function random_location(ByVal Pop_size As Integer)

 Dim temp_loc As Location_Index

 temp_loc.loc_X = CInt(Int((Rnd() * Pop_size)))

 temp_loc.loc_Y = CInt(Int((Rnd() * Pop_size)))

 Return temp_loc

 End Function

 'Generate neighborhood in POP-D

 Function create_neighborhood_D(ByVal POP_D(,) As Symbiotic_D, ByRef Nb_In

dex(,) As Location_Index)

 Dim temp_NB(2, 2) As Symbiotic_D

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 temp_NB(i, j) = POP_D(Nb_Index(i, j).loc_X, Nb_Index(i, j).lo

c_Y)

 Next

 Next

 Return temp_NB

 End Function

 'Generate neighborhood in POP-I

 Function create_neighborhood_I(ByVal POP_I(,) As Symbiotic_I, ByRef Nb_In

dex(,) As Location_Index)

 Dim temp_NB(2, 2) As Symbiotic_I

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 temp_NB(i, j) = POP_I(Nb_Index(i, j).loc_X, Nb_Index(i, j).lo

c_Y)

 Next

 Next

 Return temp_NB

 End Function

 'Generate neighborhood in POP-DI

 Function create_neighborhood_DI(ByVal POP_DI(,) As Endosymbiotic, ByRef N

b_Index(,) As Location_Index)

 Dim temp_NB(2, 2) As Endosymbiotic

 Dim i, j As Integer

 For i = 0 To 2

143

 For j = 0 To 2

 temp_NB(i, j) = POP_DI(Nb_Index(i, j).loc_X, Nb_Index(i, j).l

oc_Y)

 Next

 Next

 Return temp_NB

 End Function

 'Locations of neighborhood in Toroidal grid

 Function set_loc_neighbor(ByVal loc_Nb As Location_Index, ByVal Pop_size

As Integer)

 Dim temp_nb_set(2, 2) As Location_Index

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 If i = 0 Then

 temp_nb_set(i, j).loc_X = (loc_Nb.loc_X + (Pop_size - 1))

 Mod Pop_size

 ElseIf i = 1 Then

 temp_nb_set(i, j).loc_X = loc_Nb.loc_X

 Else

 temp_nb_set(i, j).loc_X = (loc_Nb.loc_X + 1) Mod Pop_size

 End If

 If j = 0 Then

 temp_nb_set(i, j).loc_Y = (loc_Nb.loc_Y + (Pop_size - 1))

 Mod Pop_size

 ElseIf j = 1 Then

 temp_nb_set(i, j).loc_Y = loc_Nb.loc_Y

 Else

 temp_nb_set(i, j).loc_Y = (loc_Nb.loc_Y + 1) Mod Pop_size

 End If

 Next

 Next

 Return temp_nb_set

 End Function

 'Coorperation between two subproblems (Delivery and Installation)

 Function cooperation_sub(ByRef Nb_D(,) As Symbiotic_D, ByRef Nb_I(,) As S

ymbiotic_I, ByVal Installation_Time_I As Double, _

 ByVal Service_Level As Double, ByVal Max_Operation_Time As Double, ByVal

Distance(,) As Double, ByVal Capacity_Vehicle_D As Integer, _

 ByVal Customer_Demand() As Integer)

 'Dim temp_symbiotic_D As Symbiotic_D

 Dim temp_Indv_I As Symbiotic_I

 Dim best_comb As Endosymbiotic

 Dim i, j, u, v As Integer

 Dim s, t, p, q As Integer

 best_comb = define_individual_DI(Nb_D(0, 0).gene_D.Length, Nb_I(0,

0).gene_I.Length)

 best_comb.fitness_DI = 0.0

 For i = 0 To 2

144

 For j = 0 To 2

 'Select individual from Neighborhood D

 For u = 0 To 2

 For v = 0 To 2

 'Select individual from Neighborhood I

 temp_Indv_I = Nb_I(u, v)

 temp_Indv_I = fitness_sub_I(Nb_D(i, j), temp_Indv_I,

Installation_Time_I, Service_Level, Max_Operation_Time, Distance)

 If temp_Indv_I.fitness_I > best_comb.fitness_DI Then

 best_comb = combine_sub(Nb_D(i, j), temp_Indv_I)

 'store last index of best combination

 s = i

 t = j

 p = u

 q = v

 End If

 Next

 Next

 Next

 Next

 best_comb = fitness_etr_D(best_comb, Capacity_Vehicle_D, Max_Operatio

n_Time, Customer_Demand, Distance)

 best_comb = fitness_etr_I(best_comb, Installation_Time_I, Service_Lev

el, Max_Operation_Time, Distance)

 Return best_comb

 End Function

 'Make a complet solution from partial solutions in two subproblems

 Function combine_sub(ByVal Indv_D As Symbiotic_D, ByVal Indv_I As Symbiot

ic_I)

 Dim temp_comb As Endosymbiotic

 Dim i As Integer

 temp_comb = define_individual_DI(Indv_D.gene_D.Length, Indv_I.gene_I.

Length)

 For i = 0 To Indv_D.gene_D.Length - 1

 temp_comb.arrival_time_D(i) = Indv_D.arrival_time_D(i)

 temp_comb.gene_D(i) = Indv_D.gene_D(i)

 temp_comb.vehicle_D(i) = Indv_D.vehicle_D(i)

 Next

 temp_comb.travel_time_D = Indv_D.travel_time_D

 For i = 0 To Indv_I.gene_I.Length - 1

 temp_comb.arrival_time_I(i) = Indv_I.arrival_time_I(i)

 temp_comb.gene_I(i) = Indv_I.gene_I(i)

 temp_comb.vehicle_I(i) = Indv_I.vehicle_I(i)

 temp_comb.wait_time_I(i) = Indv_I.wait_time_I(i)

 Next

 temp_comb.travel_time_I = Indv_I.travel_time_I

 temp_comb.fitness_DI = Indv_I.fitness_I

145

 Return temp_comb

 End Function

 'Divide a complete soltuion into partial solutions for two subproblems

 Sub separate_sub(ByRef Comb As Endosymbiotic, ByRef Indv_D As Symbiotic_

D, ByRef Indv_I As Symbiotic_I)

 Dim i As Integer

 For i = 0 To Indv_D.gene_D.Length - 1

 Indv_D.arrival_time_D(i) = Comb.arrival_time_D(i)

 Indv_D.gene_D(i) = Comb.gene_D(i)

 Indv_D.vehicle_D(i) = Comb.vehicle_D(i)

 Next

 Indv_D.travel_time_D = Comb.travel_time_D

 For i = 0 To Indv_I.gene_I.Length - 1

 Indv_I.arrival_time_I(i) = Comb.arrival_time_I(i)

 Indv_I.gene_I(i) = Comb.gene_I(i)

 Indv_I.vehicle_I(i) = Comb.vehicle_I(i)

 Indv_I.wait_time_I(i) = Comb.wait_time_I(i)

 Next

 Indv_I.travel_time_I = Comb.travel_time_I

 Indv_I.fitness_I = Comb.fitness_DI

 End Sub

 'Update best solution (compare current best solution and solution from PO

P-DI

 Function update_best(ByRef best_comb As Endosymbiotic, ByRef best_solutio

n As Endosymbiotic)

 If best_comb.fitness_DI > best_solution.fitness_DI Then

 Return best_comb

 Else

 Return best_solution

 End If

 End Function

 'Update best solution (compare current best solution and solutiosn in nei

ghborhood from POP-DI

 Function update_best_DI(ByRef Nb_DI(,) As Endosymbiotic, ByRef best_solut

ion As Endosymbiotic)

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 best_solution = update_best(Nb_DI(i, j), best_solution)

 Next

 Next

 Return best_solution

 End Function

146

 'Competition between best combination from the cooperation and individual

s of neighborhood in POP-DI

 Sub competition(ByRef Nb_DI(,) As Endosymbiotic, ByRef best_comb As Endos

ymbiotic)

 Dim loc_worst_comb As Location_Index

 Dim temp_fitness As Double

 Dim i, j As Integer

 temp_fitness = BIGM

 For i = 0 To 2

 For j = 0 To 2

 If Nb_DI(i, j).fitness_DI < temp_fitness Then

 temp_fitness = Nb_DI(i, j).fitness_DI

 loc_worst_comb.loc_X = i

 loc_worst_comb.loc_Y = j

 End If

 Next

 Next

 If best_comb.fitness_DI > Nb_DI(loc_worst_comb.loc_X, loc_worst_comb.

loc_Y).fitness_DI Then

 Nb_DI(loc_worst_comb.loc_X, loc_worst_comb.loc_Y) = copy_DI2DI(Nb

_DI(loc_worst_comb.loc_X, loc_worst_comb.loc_Y), best_comb)

 End If

 End Sub

 'Release current neighborhoods to populations (POP-D)

 Sub release_neighborhood_D(ByRef Nb_D(,) As Symbiotic_D, ByRef POP_D(,) A

s Symbiotic_D, ByVal Nb_Index(,) As Location_Index)

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 POP_D(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y) = copy_D2D

(POP_D(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y), Nb_D(i, j))

 Next

 Next

 End Sub

 'Release current neighborhoods to populations (POP-I)

 Sub release_neighborhood_I(ByRef Nb_I(,) As Symbiotic_I, ByRef POP_I(,) A

s Symbiotic_I, ByVal Nb_Index(,) As Location_Index)

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 POP_I(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y) = copy_I2I

(POP_I(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y), Nb_I(i, j))

 Next

 Next

147

 End Sub

 'Release current neighborhoods to populations (POP-DI)

 Sub release_neighborhood_DI(ByRef Nb_DI(,) As Endosymbiotic, ByRef POP_DI

(,) As Endosymbiotic, ByVal Nb_Index(,) As Location_Index)

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 POP_DI(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y) = copy_DI2

DI(POP_DI(Nb_Index(i, j).loc_X, Nb_Index(i, j).loc_Y), Nb_DI(i, j))

 Next

 Next

 End Sub

End Module

148

Table C.4 The program code in Initialization.vb.

Module Initialization

 'Define Individual Structures (POP-D, POP-I, and POP-DI)

 Sub define_population(ByRef POP_DI(,) As Endosymbiotic, ByRef POP_D(,) As

 Symbiotic_D, ByRef POP_I(,) As Symbiotic_I, _

 ByVal Pop_size As Integer, ByVal Num_Customer_D As Integer, ByVal Num_Cus

tomer_I As Integer)

 define_pop_D(POP_D, Pop_size, Num_Customer_D)

 define_pop_I(POP_I, Pop_size, Num_Customer_I)

 define_pop_DI(POP_DI, Pop_size, Num_Customer_D, Num_Customer_I)

 End Sub

 'Define POP-D

 Sub define_pop_D(ByRef POP_D(,) As Symbiotic_D, ByVal Pop_size As Intege

r, ByVal Num_Customer_D As Integer)

 Dim i, j As Integer

 For i = 0 To Pop_size - 1

 For j = 0 To Pop_size - 1

 POP_D(i, j) = define_individual_D(Num_Customer_D)

 Next

 Next

 End Sub

 'Define individual D

 Function define_individual_D(ByVal Num_Customer_D As Integer)

 Dim init_ind_D As Symbiotic_D

 Dim i As Integer

 ReDim init_ind_D.gene_D(Num_Customer_D - 1)

 ReDim init_ind_D.vehicle_D(Num_Customer_D - 1)

 ReDim init_ind_D.arrival_time_D(Num_Customer_D - 1)

 For i = 0 To Num_Customer_D - 1

 init_ind_D.gene_D(i) = 0

 init_ind_D.vehicle_D(i) = 0

 init_ind_D.arrival_time_D(i) = 0.0

 Next

 init_ind_D.travel_time_D = 0.0

 init_ind_D.fitness_D = 0.0

 Return init_ind_D

 End Function

 'Define POP-I

 Sub define_pop_I(ByRef POP_I(,) As Symbiotic_I, ByVal Pop_size As Intege

r, ByVal Num_Customer_I As Integer)

 Dim i, j As Integer

 For i = 0 To Pop_size - 1

 For j = 0 To Pop_size - 1

149

 POP_I(i, j) = define_individual_I(Num_Customer_I)

 Next

 Next

 End Sub

 'Define individual I

 Function define_individual_I(ByVal Num_Customer_I As Integer)

 Dim init_ind_I As Symbiotic_I

 Dim i As Integer

 ReDim init_ind_I.gene_I(Num_Customer_I - 1)

 ReDim init_ind_I.vehicle_I(Num_Customer_I - 1)

 ReDim init_ind_I.arrival_time_I(Num_Customer_I - 1)

 ReDim init_ind_I.wait_time_I(Num_Customer_I - 1)

 For i = 0 To Num_Customer_I - 1

 init_ind_I.gene_I(i) = 0

 init_ind_I.vehicle_I(i) = 0

 init_ind_I.arrival_time_I(i) = 0.0

 init_ind_I.wait_time_I(i) = 0.0

 Next

 init_ind_I.travel_time_I = 0.0

 init_ind_I.fitness_I = 0.0

 Return init_ind_I

 End Function

 'Define POP-DI

 Sub define_pop_DI(ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_size As Int

eger, ByVal Num_Customer_D As Integer, _

 ByVal Num_Customer_I As Integer)

 Dim i, j As Integer

 For i = 0 To Pop_size - 1

 For j = 0 To Pop_size - 1

 POP_DI(i, j) = define_individual_DI(Num_Customer_D, Num_Custo

mer_I)

 Next

 Next

 End Sub

 'Define individual DI

 Function define_individual_DI(ByVal Num_Customer_D As Integer, ByVal Num_

Customer_I As Integer)

 Dim init_ind_DI As Endosymbiotic

 Dim i As Integer

 ReDim init_ind_DI.gene_D(Num_Customer_D - 1)

 ReDim init_ind_DI.gene_I(Num_Customer_I - 1)

 ReDim init_ind_DI.vehicle_D(Num_Customer_D - 1)

 ReDim init_ind_DI.vehicle_I(Num_Customer_I - 1)

 ReDim init_ind_DI.arrival_time_D(Num_Customer_D - 1)

 ReDim init_ind_DI.arrival_time_I(Num_Customer_I - 1)

 ReDim init_ind_DI.wait_time_I(Num_Customer_I - 1)

150

 For i = 0 To Num_Customer_D - 1

 init_ind_DI.gene_D(i) = 0

 init_ind_DI.vehicle_D(i) = 0

 init_ind_DI.arrival_time_D(i) = 0.0

 Next

 init_ind_DI.travel_time_D = 0.0

 For i = 0 To Num_Customer_I - 1

 init_ind_DI.gene_I(i) = 0

 init_ind_DI.vehicle_I(i) = 0

 init_ind_DI.arrival_time_I(i) = 0.0

 init_ind_DI.wait_time_I(i) = 0.0

 Next

 init_ind_DI.travel_time_I = 0.0

 init_ind_DI.fitness_DI = 0.0

 Return init_ind_DI

 End Function

 'Generate initial POP-D

 Sub population_generation_D(ByRef POP_D(,) As Symbiotic_D, ByVal Pop_size

 As Integer)

 Dim i, j, k, rand_gene, temp As Integer

 For i = 0 To Pop_size - 1

 For j = 0 To Pop_size - 1

 'put sequential customer index

 For k = 0 To POP_D(i, j).gene_D.Length - 1

 POP_D(i, j).gene_D(k) = k

 Next

 'suffle the customer index

 For k = 0 To POP_D(i, j).gene_D.Length - 1

 rand_gene = POP_D(i, j).gene_D.Length

 While (rand_gene = POP_D(i, j).gene_D.Length)

 rand_gene = CInt(Int((Rnd() * POP_D(i, j).gene_D.Leng

th)))

 End While

 temp = POP_D(i, j).gene_D(k)

 POP_D(i, j).gene_D(k) = POP_D(i, j).gene_D(rand_gene)

 POP_D(i, j).gene_D(rand_gene) = temp

 Next

 Next

 Next

 End Sub

 'Generate initial POP-I

 Sub population_generation_I(ByRef POP_I(,) As Symbiotic_I, ByVal Pop_size

 As Integer)

 Dim i, j, k, rand_gene, temp As Integer

 For i = 0 To Pop_size - 1

 For j = 0 To Pop_size - 1

151

 For k = 0 To POP_I(i, j).gene_I.Length - 1

 POP_I(i, j).gene_I(k) = k

 Next

 For k = 0 To POP_I(i, j).gene_I.Length - 1

 rand_gene = POP_I(i, j).gene_I.Length

 While (rand_gene = POP_I(i, j).gene_I.Length)

 rand_gene = CInt(Int((Rnd() * POP_I(i, j).gene_I.Leng

th)))

 End While

 temp = POP_I(i, j).gene_I(k)

 POP_I(i, j).gene_I(k) = POP_I(i, j).gene_I(rand_gene)

 POP_I(i, j).gene_I(rand_gene) = temp

 Next

 Next

 Next

 End Sub

 'Generate initial POP-DI

 Sub population_generation_DI(ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_

size As Integer)

 Dim i, j, k, rand_gene, temp As Integer

 For i = 0 To Pop_size - 1

 For j = 0 To Pop_size - 1

 'Delivery part

 For k = 0 To POP_DI(i, j).gene_D.Length - 1

 POP_DI(i, j).gene_D(k) = k

 Next

 For k = 0 To POP_DI(i, j).gene_D.Length - 1

 rand_gene = POP_DI(i, j).gene_D.Length

 While (rand_gene = POP_DI(i, j).gene_D.Length)

 rand_gene = CInt(Int((Rnd() * POP_DI(i, j).gene_D.Len

gth)))

 End While

 temp = POP_DI(i, j).gene_D(k)

 POP_DI(i, j).gene_D(k) = POP_DI(i, j).gene_D(rand_gene)

 POP_DI(i, j).gene_D(rand_gene) = temp

 Next

 'Installation part

 For k = 0 To POP_DI(i, j).gene_I.Length - 1

 POP_DI(i, j).gene_I(k) = k

 Next

 For k = 0 To POP_DI(i, j).gene_I.Length - 1

 rand_gene = POP_DI(i, j).gene_I.Length

 While (rand_gene = POP_DI(i, j).gene_I.Length)

 rand_gene = CInt(Int((Rnd() * POP_DI(i, j).gene_I.Len

gth)))

 End While

 temp = POP_DI(i, j).gene_I(k)

 POP_DI(i, j).gene_I(k) = POP_DI(i, j).gene_I(rand_gene)

152

 POP_DI(i, j).gene_I(rand_gene) = temp

 Next

 Next

 Next

 End Sub

 'Copy functions

 Function copy_D2D(ByRef Indv_Dt As Symbiotic_D, ByVal Indv_Ds As Symbioti

c_D)

 ' Indv_Dt : target individual for sub problem D

 ' Indv_Ds : source individual for sub problem D

 Dim i As Integer

 For i = 0 To Indv_Ds.gene_D.Length - 1

 Indv_Dt.gene_D(i) = Indv_Ds.gene_D(i)

 Indv_Dt.arrival_time_D(i) = Indv_Ds.arrival_time_D(i)

 Indv_Dt.vehicle_D(i) = Indv_Ds.vehicle_D(i)

 Next

 Indv_Dt.travel_time_D = Indv_Ds.travel_time_D

 Indv_Dt.fitness_D = Indv_Ds.fitness_D

 Return Indv_Dt

 End Function

 Function copy_I2I(ByRef Indv_It As Symbiotic_I, ByVal Indv_Is As Symbioti

c_I)

 ' Indv_It : target individual for sub problem I

 ' Indv_Is : source individual for sub problem I

 Dim i As Integer

 For i = 0 To Indv_It.gene_I.Length - 1

 Indv_It.gene_I(i) = Indv_Is.gene_I(i)

 Indv_It.arrival_time_I(i) = Indv_Is.arrival_time_I(i)

 Indv_It.vehicle_I(i) = Indv_Is.vehicle_I(i)

 Indv_It.wait_time_I(i) = Indv_Is.wait_time_I(i)

 Next

 Indv_It.travel_time_I = Indv_Is.travel_time_I

 Indv_It.fitness_I = Indv_Is.fitness_I

 Return Indv_It

 End Function

 Function copy_DI2DI(ByRef Indv_DIt As Endosymbiotic, ByVal Indv_DIs As En

dosymbiotic)

 ' Indv_DIt : target individual for entire problem DI

 ' Indv_DIs : source individual for entire problem DI

 Dim i As Integer

 For i = 0 To Indv_DIt.gene_D.Length - 1

 Indv_DIt.gene_D(i) = Indv_DIs.gene_D(i)

 Indv_DIt.arrival_time_D(i) = Indv_DIs.arrival_time_D(i)

 Indv_DIt.vehicle_D(i) = Indv_DIs.vehicle_D(i)

 Next

 For i = 0 To Indv_DIt.gene_I.Length - 1

 Indv_DIt.gene_I(i) = Indv_DIs.gene_I(i)

 Indv_DIt.arrival_time_I(i) = Indv_DIs.arrival_time_I(i)

153

 Indv_DIt.vehicle_I(i) = Indv_DIs.vehicle_I(i)

 Indv_DIt.wait_time_I(i) = Indv_DIs.wait_time_I(i)

 Next

 Indv_DIt.travel_time_I = Indv_DIs.travel_time_I

 Indv_DIt.travel_time_D = Indv_DIs.travel_time_D

 Indv_DIt.fitness_DI = Indv_DIs.fitness_DI

 Return Indv_DIt

 End Function

 Function copy_Nb_D(ByRef tNb_D(,) As Symbiotic_D, ByVal Nb_D(,) As Symbio

tic_D)

 Dim i, j As Integer

 For i = 0 To 2

 For j = 0 To 2

 tNb_D(i, j) = Nb_D(i, j)

 Next

 Next

 Return tNb_D

 End Function

End Module

154

Table C.5 The program code in Fitness.vb.

Module Fitness

 'Fitness test individuals in subproblems having same location index

 Sub cal_fitness_sub(ByVal Pop_Size As Integer, ByRef POP_D(,) As Symbioti

c_D, ByRef POP_I(,) As Symbiotic_I, _

 ByVal Capacity_Vehicle_D As Integer, ByVal Installation_Time_I As Double,

 ByVal Service_Level As Double, _

 ByVal Max_Operation_Time As Double, ByVal Distance(,) As Double, ByVal Cu

stomer_Demand() As Integer)

 Dim i, j As Integer

 For i = 0 To Pop_Size - 1

 For j = 0 To Pop_Size - 1

 cal_fitness_sub_indv(POP_D(i, j), POP_I(i, j), Capacity_Vehic

le_D, Installation_Time_I, Service_Level, Max_Operation_Time, Distance, Custo

mer_Demand)

 Next

 Next

 End Sub

 'Fitness test a pair of partial solutions from subproblems D & I

 Sub cal_fitness_sub_indv(ByRef Indv_D As Symbiotic_D, ByRef Indv_I As Sym

biotic_I, ByVal Capacity_Vehicle_D As Integer, _

 ByVal Installation_Time_I As Double, ByVal Service_Level As Double, ByVal

 Max_Operation_Time As Double, _

 ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer)

 Indv_D = fitness_sub_D(Indv_D, Capacity_Vehicle_D, Max_Operation_Tim

e, Customer_Demand, Distance)

 Indv_I = fitness_sub_I(Indv_D, Indv_I, Installation_Time_I, Service_L

evel, Max_Operation_Time, Distance)

 Indv_D.fitness_D = Indv_I.fitness_I

 Return

 End Sub

 'Part of Fitness function for subproblem D

 Function fitness_sub_D(ByRef Indv_D As Symbiotic_D, ByVal Capacity_Vehicl

e_D As Integer, ByVal Max_Operation_Time As Double, _

 ByVal Customer_Demand() As Integer, ByVal Distance(,) As Double)

 Dim customer_index As Integer

 Dim vehicle_num As Integer

 Dim vehicle_load As Integer

 Dim temp_travel As Double

 Dim total_travel As Double

 customer_index = 0

 vehicle_num = 1

 vehicle_load = Customer_Demand(Indv_D.gene_D(customer_index))

 temp_travel = Distance(Indv_D.gene_D.Length, Indv_D.gene_D(customer_i

ndex))

 total_travel = Distance(Indv_D.gene_D.Length, Indv_D.gene_D(customer_

155

index))

 Indv_D.vehicle_D(customer_index) = vehicle_num

 Indv_D.arrival_time_D(customer_index) = temp_travel

 For customer_index = 0 To Indv_D.gene_D.Length - 2

 If temp_travel + Distance(Indv_D.gene_D(customer_index), Indv_D.g

ene_D(customer_index + 1)) + _

 Distance(Indv_D.gene_D(customer_index + 1), Indv_D.gene_D.Length)

 <= Max_Operation_Time And _

 vehicle_load + Customer_Demand(Indv_D.gene_D(customer_index + 1))

 <= Capacity_Vehicle_D Then

 vehicle_load = vehicle_load + Customer_Demand(Indv_D.gene_D(c

ustomer_index + 1))

 temp_travel = temp_travel + Distance(Indv_D.gene_D(customer_i

ndex), Indv_D.gene_D(customer_index + 1))

 total_travel = total_travel + Distance(Indv_D.gene_D(customer

_index), Indv_D.gene_D(customer_index + 1))

 Indv_D.vehicle_D(customer_index + 1) = vehicle_num

 Indv_D.arrival_time_D(customer_index + 1) = temp_travel

 Else

 vehicle_load = Customer_Demand(Indv_D.gene_D(customer_index +

 1))

 temp_travel = Distance(Indv_D.gene_D.Length, Indv_D.gene_D(cu

stomer_index + 1))

 total_travel = total_travel + Distance(Indv_D.gene_D(customer

_index), Indv_D.gene_D.Length) + _

 Distance(Indv_D.gene_D.Length, Indv_D.gene_D(customer_index +

 1))

 vehicle_num = vehicle_num + 1

 Indv_D.vehicle_D(customer_index + 1) = vehicle_num

 Indv_D.arrival_time_D(customer_index + 1) = temp_travel

 End If

 Next

 total_travel = total_travel + Distance(Indv_D.gene_D(Indv_D.gene_D.Le

ngth - 1), Indv_D.gene_D.Length)

 Indv_D.travel_time_D = total_travel

 Return Indv_D

 End Function

 'Part of Fitness function for subproblem I

 Function fitness_sub_I(ByRef Indv_D As Symbiotic_D, ByRef Indv_I As Symbi

otic_I, ByVal Installation_Time_I As Double, _

 ByVal Service_Level As Double, ByVal Max_Operation_Time As Double, ByVal

Distance(,) As Double)

 Dim arr_time_D(Indv_I.gene_I.Length - 1) As Double

 Dim i As Integer

 Dim customer_index As Integer

 Dim vehicle_num As Integer

 Dim temp_wait As Double

 Dim temp_travel As Double

 Dim total_travel As Double

 'Make a time table of delivery vehicles for the installation customer

156

s

 For i = 0 To Indv_D.gene_D.Length - 1

 If Indv_D.gene_D(i) < Indv_I.gene_I.Length Then

 arr_time_D(Indv_D.gene_D(i)) = Indv_D.arrival_time_D(i)

 End If

 Next

 customer_index = 0

 vehicle_num = 1

 If Distance(Indv_D.gene_D.Length, Indv_I.gene_I(customer_index)) >= a

rr_time_D(Indv_I.gene_I(customer_index)) Then

 temp_travel = Distance(Indv_D.gene_D.Length, Indv_I.gene_I(custom

er_index))

 total_travel = Distance(Indv_D.gene_D.Length, Indv_I.gene_I(custo

mer_index))

 Indv_I.vehicle_I(customer_index) = vehicle_num

 Indv_I.arrival_time_I(customer_index) = temp_travel

 Indv_I.wait_time_I(customer_index) = 0.0

 temp_travel += Installation_Time_I

 total_travel += Installation_Time_I

 Else

 temp_wait = arr_time_D(Indv_I.gene_I(customer_index)) - Distance

(Indv_D.gene_D.Length, Indv_I.gene_I(customer_index))

 temp_travel = arr_time_D(Indv_I.gene_I(customer_index))

 total_travel = arr_time_D(Indv_I.gene_I(customer_index))

 Indv_I.vehicle_I(customer_index) = vehicle_num

 Indv_I.arrival_time_I(customer_index) = temp_travel - temp_wait

 Indv_I.wait_time_I(customer_index) = temp_wait

 temp_travel += Installation_Time_I

 total_travel += Installation_Time_I

 End If

 For customer_index = 0 To Indv_I.gene_I.Length - 2

 If temp_travel + Distance(Indv_I.gene_I(customer_index), Indv_I.g

ene_I(customer_index + 1)) >= arr_time_D(Indv_I.gene_I(customer_index + 1)) A

nd _

 temp_travel + Distance(Indv_I.gene_I(customer_index), Indv_I.gene

_I(customer_index + 1)) <= arr_time_D(Indv_I.gene_I(customer_index + 1)) + Se

rvice_Level And _

 temp_travel + Distance(Indv_I.gene_I(customer_index), Indv_I.gene

_I(customer_index + 1)) + Installation_Time_I + Distance(Indv_I.gene_I(custom

er_index + 1), Indv_D.gene_D.Length) <= Max_Operation_Time Then

 temp_travel = temp_travel + Distance(Indv_I.gene_I(customer_i

ndex), Indv_I.gene_I(customer_index + 1))

 total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_I.gene_I(customer_index + 1))

 Indv_I.vehicle_I(customer_index + 1) = vehicle_num

 Indv_I.arrival_time_I(customer_index + 1) = temp_travel

 Indv_I.wait_time_I(customer_index + 1) = 0.0

 temp_travel += Installation_Time_I

 total_travel += Installation_Time_I

 ElseIf temp_travel + Distance(Indv_I.gene_I(customer_index), Indv

_I.gene_I(customer_index + 1)) < arr_time_D(Indv_I.gene_I(customer_index +

1)) And _

 arr_time_D(Indv_I.gene_I(customer_index + 1)) + Installation_Time

_I + Distance(Indv_I.gene_I(customer_index + 1), Indv_D.gene_D.Length) <= Max

157

_Operation_Time Then

 temp_wait = arr_time_D(Indv_I.gene_I(customer_index + 1)) - t

emp_travel - Distance(Indv_I.gene_I(customer_index), Indv_I.gene_I(customer_i

ndex + 1))

 temp_travel = arr_time_D(Indv_I.gene_I(customer_index + 1))

 total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_I.gene_I(customer_index + 1)) + temp_wait

 Indv_I.vehicle_I(customer_index + 1) = vehicle_num

 Indv_I.arrival_time_I(customer_index + 1) = temp_travel

 Indv_I.wait_time_I(customer_index + 1) = temp_wait

 temp_travel += Installation_Time_I

 total_travel += Installation_Time_I

 ElseIf Distance(Indv_D.gene_D.Length, Indv_I.gene_I(customer_inde

x + 1)) >= arr_time_D(Indv_I.gene_I(customer_index + 1)) Then

 vehicle_num = vehicle_num + 1

 temp_travel = Distance(Indv_D.gene_D.Length, Indv_I.gene_I(cu

stomer_index + 1))

 total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_D.gene_D.Length) + Distance(Indv_D.gene_D.Length, Indv_I.gene_I

(customer_index))

 Indv_I.vehicle_I(customer_index + 1) = vehicle_num

 Indv_I.arrival_time_I(customer_index + 1) = temp_travel

 Indv_I.wait_time_I(customer_index + 1) = 0.0

 temp_travel += Installation_Time_I

 total_travel += Installation_Time_I

 Else

 vehicle_num = vehicle_num + 1

 temp_wait = arr_time_D(Indv_I.gene_I(customer_index + 1)) - D

istance(Indv_D.gene_D.Length, Indv_I.gene_I(customer_index + 1))

 temp_travel = arr_time_D(Indv_I.gene_I(customer_index + 1))

 total_travel = total_travel + Distance(Indv_I.gene_I(customer

_index), Indv_D.gene_D.Length) + Distance(Indv_D.gene_D.Length, Indv_I.gene_I

(customer_index + 1)) + _

 temp_wait

 Indv_I.vehicle_I(customer_index + 1) = vehicle_num

 Indv_I.arrival_time_I(customer_index + 1) = temp_travel

 Indv_I.wait_time_I(customer_index + 1) = temp_wait

 temp_travel += Installation_Time_I

 total_travel += Installation_Time_I

 End If

 Next

 total_travel = total_travel + Distance(Indv_I.gene_I(Indv_I.gene_I.Le

ngth - 1), Indv_D.gene_D.Length)

 Indv_I.travel_time_I = total_travel

 Indv_I.fitness_I = 1 / (Indv_I.travel_time_I + Indv_D.travel_time_D +

 (Indv_D.vehicle_D(Indv_D.gene_D.Length - 1) * 100.0) + (Indv_I.vehicle_I(Ind

v_I.gene_I.Length - 1) * 100.0))

 Return Indv_I

 End Function

158

 'Fitness test of individuals in POP-DI

 Sub cal_fitness_etr(ByRef Pop_Size As Integer, ByRef POP_DI(,) As Endosym

biotic, ByVal Capacity_Vehicle_D As Integer, _

 ByVal Installation_Time_I As Double, ByVal Service_Level As Double, ByVal

 Max_Operation_Time As Double, ByVal Distance(,) As Double, _

 ByVal Customer_Demand() As Integer)

 Dim i, j As Integer

 For i = 0 To Pop_Size - 1

 For j = 0 To Pop_Size - 1

 POP_DI(i, j) = fitness_etr_D(POP_DI(i, j), Capacity_Vehicle_

D, Max_Operation_Time, Customer_Demand, Distance)

 POP_DI(i, j) = fitness_etr_I(POP_DI(i, j), Installation_Time_

I, Service_Level, Max_Operation_Time, Distance)

 Next

 Next

 End Sub

 'Part of fitness function for delivery portion in individual for POP-DI

 Function fitness_etr_D(ByRef Indv_DI As Endosymbiotic, ByVal Capacity_Veh

icle_D As Integer, ByVal Max_Operation_Time As Double, ByRef customer_demand

() As Integer, _

 ByVal Distance(,) As Double)

 Dim customer_index_D As Integer 'current customer index

 Dim vehicle_num_D As Integer

 Dim vehicle_load As Integer

 Dim temp_travel_D As Double

 Dim total_travel_D As Double

 customer_index_D = 0

 vehicle_num_D = 1

 vehicle_load = customer_demand(Indv_DI.gene_D(customer_index_D))

 temp_travel_D = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_D(custom

er_index_D))

 total_travel_D = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_D(custo

mer_index_D))

 Indv_DI.vehicle_D(customer_index_D) = vehicle_num_D

 Indv_DI.arrival_time_D(customer_index_D) = temp_travel_D

 For customer_index_D = 0 To Indv_DI.gene_D.Length - 2

 If temp_travel_D + Distance(Indv_DI.gene_D(customer_index_D), Ind

v_DI.gene_D(customer_index_D + 1)) + _

 Distance(Indv_DI.gene_D(customer_index_D + 1), Indv_DI.gene_D.Len

gth) <= Max_Operation_Time And _

 vehicle_load + customer_demand(Indv_DI.gene_D(customer_index_D +

1)) <= Capacity_Vehicle_D Then

 vehicle_load = vehicle_load + customer_demand(Indv_DI.gene_D

(customer_index_D + 1))

 temp_travel_D = temp_travel_D + Distance(Indv_DI.gene_D(custo

mer_index_D), Indv_DI.gene_D(customer_index_D + 1))

 total_travel_D = total_travel_D + Distance(Indv_DI.gene_D(cus

tomer_index_D), Indv_DI.gene_D(customer_index_D + 1))

 Indv_DI.vehicle_D(customer_index_D + 1) = vehicle_num_D

 Indv_DI.arrival_time_D(customer_index_D + 1) = temp_travel_D

159

 Else

 vehicle_load = customer_demand(Indv_DI.gene_D(customer_index_

D + 1))

 temp_travel_D = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_

D(customer_index_D + 1))

 total_travel_D = total_travel_D + Distance(Indv_DI.gene_D(cus

tomer_index_D), Indv_DI.gene_D.Length) + _

 Distance(Indv_DI.gene_D.Length, Indv_DI.gene_D(customer_index

_D + 1))

 vehicle_num_D = vehicle_num_D + 1

 Indv_DI.vehicle_D(customer_index_D + 1) = vehicle_num_D

 Indv_DI.arrival_time_D(customer_index_D + 1) = temp_travel_D

 End If

 Next

 total_travel_D = total_travel_D + Distance(Indv_DI.gene_D(Indv_DI.gen

e_D.Length - 1), Indv_DI.gene_D.Length)

 Indv_DI.travel_time_D = total_travel_D

 Return Indv_DI

 End Function

 'Part of fitness function for installation portion in individual for POP-

DI

 Function fitness_etr_I(ByRef Indv_DI As Endosymbiotic, ByVal Installation

_Time_I As Double, ByVal Service_Level As Double, _

 ByVal Max_Operation_Time As Double, ByVal Distance(,) As Double)

 Dim arr_time_D(Indv_DI.gene_I.Length - 1) As Double

 Dim i As Integer

 Dim temp_wait As Double

 Dim customer_index_I As Integer

 Dim vehicle_num_I As Integer

 Dim temp_travel_I As Double

 Dim total_travel_I As Double

 'Make a time table of delivery vehicles for the installation customer

s

 For i = 0 To Indv_DI.gene_D.Length - 1

 If Indv_DI.gene_D(i) < Indv_DI.gene_I.Length Then

 arr_time_D(Indv_DI.gene_D(i)) = Indv_DI.arrival_time_D(i)

 End If

 Next

 customer_index_I = 0

 vehicle_num_I = 1

 If Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_index_I))

>= arr_time_D(Indv_DI.gene_I(customer_index_I)) Then

 temp_travel_I = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(cu

stomer_index_I))

 total_travel_I = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(c

ustomer_index_I))

 Indv_DI.vehicle_I(customer_index_I) = vehicle_num_I

160

 Indv_DI.arrival_time_I(customer_index_I) = temp_travel_I

 Indv_DI.wait_time_I(customer_index_I) = 0.0

 temp_travel_I += Installation_Time_I

 total_travel_I += Installation_Time_I

 Else

 temp_wait = arr_time_D(Indv_DI.gene_I(customer_index_I)) - Distan

ce(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_index_I))

 temp_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I))

 total_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I))

 Indv_DI.vehicle_I(customer_index_I) = vehicle_num_I

 Indv_DI.arrival_time_I(customer_index_I) = temp_travel_I - temp_w

ait

 Indv_DI.wait_time_I(customer_index_I) = temp_wait

 temp_travel_I += Installation_Time_I

 total_travel_I += Installation_Time_I

 End If

 For customer_index_I = 0 To Indv_DI.gene_I.Length - 2

 If temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I), Ind

v_DI.gene_I(customer_index_I + 1)) >= arr_time_D(Indv_DI.gene_I(customer_inde

x_I + 1)) And _

 temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I), Indv_D

I.gene_I(customer_index_I + 1)) <= arr_time_D(Indv_DI.gene_I(customer_index_I

 + 1)) + Service_Level And _

 temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I), Indv_D

I.gene_I(customer_index_I + 1)) + Installation_Time_I + Distance(Indv_DI.gene

_I(customer_index_I + 1), Indv_DI.gene_D.Length) <= Max_Operation_Time Then

 temp_travel_I = temp_travel_I + Distance(Indv_DI.gene_I(custo

mer_index_I), Indv_DI.gene_I(customer_index_I + 1))

 total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_I(customer_index_I + 1))

 Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I

 Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I

 Indv_DI.wait_time_I(customer_index_I + 1) = 0.0

 temp_travel_I += Installation_Time_I

 total_travel_I += Installation_Time_I

 ElseIf temp_travel_I + Distance(Indv_DI.gene_I(customer_index_I),

 Indv_DI.gene_I(customer_index_I + 1)) < arr_time_D(Indv_DI.gene_I(customer_i

ndex_I + 1)) And _

 arr_time_D(Indv_DI.gene_I(customer_index_I + 1)) + Installation_T

ime_I + Distance(Indv_DI.gene_I(customer_index_I + 1), Indv_DI.gene_D.Length)

 <= Max_Operation_Time Then

 temp_wait = arr_time_D(Indv_DI.gene_I(customer_index_I + 1))

- temp_travel_I - Distance(Indv_DI.gene_I(customer_index_I), Indv_DI.gene_I(c

ustomer_index_I + 1))

 temp_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I +

1))

 total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_I(customer_index_I + 1)) + temp_wait

 Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I

 Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I

161

 Indv_DI.wait_time_I(customer_index_I + 1) = temp_wait

 temp_travel_I += Installation_Time_I

 total_travel_I += Installation_Time_I

 ElseIf Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_in

dex_I + 1)) >= arr_time_D(Indv_DI.gene_I(customer_index_I + 1)) Then

 vehicle_num_I = vehicle_num_I + 1

 temp_travel_I = Distance(Indv_DI.gene_D.Length, Indv_DI.gene_

I(customer_index_I + 1))

 total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_D.Length) + Distance(Indv_DI.gene_D.Length, Indv

_DI.gene_I(customer_index_I))

 Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I

 Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I

 Indv_DI.wait_time_I(customer_index_I) = 0.0

 temp_travel_I += Installation_Time_I

 total_travel_I += Installation_Time_I

 Else

 vehicle_num_I = vehicle_num_I + 1

 temp_wait = arr_time_D(Indv_DI.gene_I(customer_index_I + 1))

- Distance(Indv_DI.gene_D.Length, Indv_DI.gene_I(customer_index_I + 1))

 temp_travel_I = arr_time_D(Indv_DI.gene_I(customer_index_I +

1))

 total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(cus

tomer_index_I), Indv_DI.gene_D.Length) + Distance(Indv_DI.gene_D.Length, Indv

_DI.gene_I(customer_index_I + 1)) + _

 temp_wait

 Indv_DI.vehicle_I(customer_index_I + 1) = vehicle_num_I

 Indv_DI.arrival_time_I(customer_index_I + 1) = temp_travel_I

 Indv_DI.wait_time_I(customer_index_I + 1) = temp_wait

 temp_travel_I += Installation_Time_I

 total_travel_I += Installation_Time_I

 End If

 Next

 total_travel_I = total_travel_I + Distance(Indv_DI.gene_I(Indv_DI.gen

e_I.Length - 1), Indv_DI.gene_D.Length)

 Indv_DI.travel_time_I = total_travel_I

 Indv_DI.fitness_DI = 1 / (Indv_DI.travel_time_I + Indv_DI.travel_time

_D + (Indv_DI.vehicle_D(Indv_DI.gene_D.Length - 1) * 100.0) + (Indv_DI.vehicl

e_I(Indv_DI.gene_I.Length - 1) * 100.0))

 Return Indv_DI

 End Function

End Module

162

Table C.6 The program code in Improvement.vb.

Module Improvement

 'Fix initial solutions (main)

 Sub fix_solution(ByRef POP_D(,) As Symbiotic_D, ByRef POP_I(,) As Symbiot

ic_I, ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_Size As Integer, ByVal Dist

ance(,) As Double, ByVal Customer_Demand() As Integer, ByVal Capacity_Vehicle

_D As Integer)

 fix_solution_D(POP_D, Pop_Size, Distance, Customer_Demand, Capacity_V

ehicle_D)

 fix_solution_DI(POP_DI, Pop_Size, Distance, Customer_Demand, Capacity

_Vehicle_D)

 End Sub

 'Fix initial solutions in subproblem D

 Sub fix_solution_D(ByRef POP_D(,) As Symbiotic_D, ByVal Pop_Size As Integ

er, ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal Ca

pacity_Vehicle_D As Integer)

 Dim i, j, k, l As Integer

 Dim temp_gene As Integer

 Dim temp_dist As Double

 Dim temp_load As Integer

 Dim short_gene As Integer

 For i = 0 To Pop_Size - 1

 For j = 0 To Pop_Size - 1

 temp_load = 0

 For k = 0 To POP_D(0, 0).gene_D.Length - 2

 temp_dist = 99999999

 short_gene = 99999999

 temp_load = temp_load + Customer_Demand(POP_D(i, j).gene_

D(k))

 For l = k + 1 To POP_D(0, 0).gene_D.Length - 1

 If temp_dist > Distance(POP_D(i, j).gene_D(k), POP_D

(i, j).gene_D(l)) Then

 short_gene = l

 temp_dist = Distance(POP_D(i, j).gene_D(k), POP_D

(i, j).gene_D(l))

 End If

 Next

 If temp_load + Customer_Demand(POP_D(i, j).gene_D(short_g

ene)) <= Capacity_Vehicle_D Then

 temp_gene = POP_D(i, j).gene_D(k + 1)

 POP_D(i, j).gene_D(k + 1) = POP_D(i, j).gene_D(short_

gene)

 POP_D(i, j).gene_D(short_gene) = temp_gene

 Else

 temp_load = 0

 End If

 Next

 Next

 Next

 End Sub

163

 'Fix initial solutions in POP-DI

 Sub fix_solution_DI(ByRef POP_DI(,) As Endosymbiotic, ByVal Pop_Size As I

nteger, ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVa

l Capacity_Vehicle_D As Integer)

 Dim i, j, k, l As Integer

 Dim temp_gene As Integer

 Dim temp_dist As Double

 Dim temp_load As Integer

 Dim short_gene As Integer

 For i = 0 To Pop_Size - 1

 For j = 0 To Pop_Size - 1

 temp_load = 0

 For k = 0 To POP_DI(0, 0).gene_D.Length - 2

 temp_dist = 99999999

 short_gene = 99999999

 temp_load = temp_load + Customer_Demand(POP_DI(i, j).gene

_D(k))

 For l = k + 1 To POP_DI(0, 0).gene_D.Length - 1

 If temp_dist > Distance(POP_DI(i, j).gene_D(k), POP_D

I(i, j).gene_D(l)) Then

 short_gene = l

 temp_dist = Distance(POP_DI(i, j).gene_D(k), POP_

DI(i, j).gene_D(l))

 End If

 Next

 If temp_load + Customer_Demand(POP_DI(i, j).gene_D(short_

gene)) <= Capacity_Vehicle_D Then

 temp_gene = POP_DI(i, j).gene_D(k + 1)

 POP_DI(i, j).gene_D(k + 1) = POP_DI(i, j).gene_D(shor

t_gene)

 POP_DI(i, j).gene_D(short_gene) = temp_gene

 Else

 temp_load = 0

 End If

 Next

 Next

 Next

 End Sub

End Module

164

Table C.7 The program code in Evolution_D.vb.

Module Evolution_D

 'Evolution of Nb_D (main function)

 Sub evolve_D(ByRef Nb_D(,) As Symbiotic_D, ByRef Nb_I(,) As Symbiotic_I,

ByVal Crossover_Rate As Single, _

 ByVal Mutation_Rate As Single, ByVal Capacity_Vehicle_D As Integer, ByVal

 Max_Operation_Time As Double, _

 ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal In

stallation_Time_I As Double, _

 ByVal Service_Level As Double)

 Dim temp_Nb_D(2, 2) As Symbiotic_D

 Dim temp_ind_D As Symbiotic_D

 Dim temp_ind_I As Symbiotic_I

 Dim selection_set As Pair

 Dim offspring As Symbiotic_D

 Dim compete_indv As Location_Index

 Dim rand_value As Double

 Dim i, j, k As Integer

 Dim num_xover As Integer = 18

 'Duplicate Neighborhood D

 For i = 0 To 2

 For j = 0 To 2

 temp_Nb_D(i, j) = define_individual_D(Nb_D(0, 0).gene_D.Lengt

h)

 temp_Nb_D(i, j) = Nb_D(i, j)

 Next

 Next

 'Crossover

 For i = 0 To num_xover

 rand_value = Rnd()

 If rand_value <= Crossover_Rate Then

 'Create parent set for crossover

 selection_set = select_pair_D(temp_Nb_D)

 offspring = crossover_D(temp_Nb_D(selection_set.p1.loc_X, sel

ection_set.p1.loc_Y), temp_Nb_D(selection_set.p2.loc_X, _

 selection_set.p2.loc_Y))

 'Select a neighhor to compete with offspring randomly

 compete_indv = roulette_inverse_D(Nb_D)

 'replace with comparing fitness

 Nb_D(compete_indv.loc_X, compete_indv.loc_Y) = compare_D(Nb_D

(compete_indv.loc_X, compete_indv.loc_Y), offspring, _

 Nb_I(compete_indv.loc_X, compete_indv.loc_Y), Capacity_Vehicl

e_D, Max_Operation_Time, Distance, Customer_Demand, Installation_Time_I, Serv

ice_Level)

 End If

 Next

 'Mutation

 For i = 0 To 2

 For j = 0 To 2

 rand_value = Rnd()

165

 If rand_value <= Mutation_Rate Then

 k = 0

 For k = 0 To 3

 temp_ind_D = Nb_D(i, j)

 temp_ind_I = Nb_I(i, j)

 temp_ind_D = mutation_D(temp_ind_D)

 Nb_D(i, j) = fitness_sub_D(Nb_D(i, j), Capacity_Vehic

le_D, Max_Operation_Time, Customer_Demand, Distance)

 Nb_I(i, j) = fitness_sub_I(Nb_D(i, j), Nb_I(i, j), In

stallation_Time_I, Service_Level, Max_Operation_Time, Distance)

 Nb_D(i, j).fitness_D = Nb_I(i, j).fitness_I

 temp_ind_D = fitness_sub_D(temp_ind_D, Capacity_Vehic

le_D, Max_Operation_Time, Customer_Demand, Distance)

 temp_ind_I = fitness_sub_I(temp_ind_D, temp_ind_I, In

stallation_Time_I, Service_Level, Max_Operation_Time, Distance)

 temp_ind_D.fitness_D = temp_ind_I.fitness_I

 If temp_ind_D.fitness_D > Nb_D(i, j).fitness_D Then

 Nb_D(i, j) = temp_ind_D

 Nb_I(i, j) = temp_ind_I

 k = 3

 Else

 k = k + 1

 End If

 Next

 End If

 Next

 Next

 End Sub

 'Create set of parents for crossover

 Function select_pair_D(ByVal Nb_D(,) As Symbiotic_D)

 Dim selection_set As Pair

 selection_set.p1 = roulette_D(Nb_D)

 selection_set.p2 = roulette_D(Nb_D)

 While selection_set.p1.loc_X = selection_set.p2.loc_X And selection_s

et.p1.loc_Y = selection_set.p2.loc_Y

 selection_set.p2 = roulette_D(Nb_D)

 End While

 Return selection_set

 End Function

 'Select good individual with probability

 Function roulette_D(ByVal Nb_D(,) As Symbiotic_D)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim rand_value As Double

 Dim temp_cur_fitness As Double

 Dim temp_sum_fitness As Double

 temp_sum_fitness = 0.0

166

 For i = 0 To 2

 For j = 0 To 2

 temp_sum_fitness += Nb_D(i, j).fitness_D

 Next

 Next

 rand_value = Rnd()

 temp_cur_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + (Nb_D(i, j).fitness_D / temp_sum_fitness) Then

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

 End If

 temp_cur_fitness += (Nb_D(i, j).fitness_D / temp_sum_fitness)

 Next

 Next

 Return selected_loc

 End Function

 'Select bad individual with probability

 Function roulette_inverse_D(ByVal Nb_D(,) As Symbiotic_D)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim rand_value As Double

 Dim temp_cur_fitness As Double

 Dim temp_sum_fitness As Double

 temp_sum_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 temp_sum_fitness += 1 / Nb_D(i, j).fitness_D

 Next

 Next

 rand_value = Rnd()

 temp_cur_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + ((1 / Nb_D(i, j).fitness_D) / temp_sum_fitness) Then

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

 End If

 temp_cur_fitness += ((1 / Nb_D(i, j).fitness_D) / temp_sum_fi

tness)

 Next

 Next

 Return selected_loc

 End Function

167

 'Select worst individual in neighborhood

 Function select_worst_D(ByVal Nb_D(,) As Symbiotic_D)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim temp_fitness As Double

 temp_fitness = 0.0

 selected_loc.loc_X = 0

 selected_loc.loc_Y = 0

 For i = 0 To 2

 For j = 0 To 2

 If Nb_D(i, j).fitness_D > temp_fitness Then

 temp_fitness = Nb_D(i, j).fitness_D

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

 End If

 Next

 Next

 Return selected_loc

 End Function

 'Crossover (2 steps)

 Function crossover_D(ByVal Nb_D1 As Symbiotic_D, ByVal Nb_D2 As Symbiotic

_D)

 Dim temp_child As Symbiotic_D

 temp_child = xover_hybrid_p1_D(Nb_D1)

 temp_child = xover_hybrid_p2_D(Nb_D2, temp_child)

 'Add different crossover functions below with "if ~ endif"

 Return temp_child

 End Function

 'Crossover with the parent 1 (step 1)

 Function xover_hybrid_p1_D(ByVal Nb_D1 As Symbiotic_D)

 Dim temp_child As Symbiotic_D

 Dim temp_gene(Nb_D1.gene_D.Length - 1) As Integer

 Dim num_vehicle_used As Integer

 Dim selected_vehicle As Integer

 Dim temp_count4child As Integer

 Dim temp_count4remain As Integer

 Dim one_cut_point As Integer

 Dim i As Integer

 'temp_child = define_individual_D(temp_child, Nb_D1.gene_D.Length)

 temp_child = define_individual_D(Nb_D1.gene_D.Length)

 'Vehicle selection based crossover

 num_vehicle_used = Nb_D1.vehicle_D(Nb_D1.gene_D.Length - 1)

168

 selected_vehicle = CInt(Int((Rnd() * (num_vehicle_used - 1))) + 1)

 temp_count4child = 0

 temp_count4remain = 0

 For i = 0 To Nb_D1.gene_D.Length - 1

 If Nb_D1.vehicle_D(i) = selected_vehicle Then

 temp_child.gene_D(temp_count4child) = Nb_D1.gene_D(i)

 temp_count4child += 1

 Else

 temp_gene(temp_count4remain) = Nb_D1.gene_D(i)

 temp_count4remain += 1

 End If

 Next

 'One cut point crossover

 one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1)

 For i = 0 To one_cut_point

 temp_child.gene_D(temp_count4child) = temp_gene(i)

 temp_count4child += 1

 Next

 For i = temp_count4child To Nb_D1.gene_D.Length - 1

 temp_child.gene_D(i) = -1

 Next

 Return temp_child

 End Function

 'Crossover with the parent 2 (step 2)

 Function xover_hybrid_p2_D(ByVal Nb_D2 As Symbiotic_D, ByRef temp_child A

s Symbiotic_D)

 Dim i, j, k As Integer

 Dim plag As Boolean

 For i = 0 To Nb_D2.gene_D.Length - 1

 plag = False

 If temp_child.gene_D(i) = -1 Then

 k = 0

 While temp_child.gene_D(i) = -1

 For j = 0 To i - 1

 If Nb_D2.gene_D(k) = temp_child.gene_D(j) Then

 plag = True

 End If

 Next

 If plag Then

 plag = False

 k += 1

 Else

 temp_child.gene_D(i) = Nb_D2.gene_D(k)

 End If

 End While

 End If

169

 Next

 Return temp_child

 End Function

 'Decide whether new offspring can enter neighborhood or not

 Function compare_D(ByRef Indv_D As Symbiotic_D, ByRef offspring As Symbio

tic_D, ByRef Indv_I As Symbiotic_I, ByVal Capacity_Vehicle_D As Integer, _

 ByVal Max_Operation_Time As Double, ByVal Distance(,) As Double, ByVal Cu

stomer_Demand() As Integer, ByVal Installation_Time_I As Double, _

 ByVal Service_Level As Double)

 Dim temp_Indv_I As Symbiotic_I

 temp_Indv_I = define_individual_I(Indv_I.gene_I.Length)

 temp_Indv_I = copy_I2I(temp_Indv_I, Indv_I)

 offspring = fitness_sub_D(offspring, Capacity_Vehicle_D, Max_Operatio

n_Time, Customer_Demand, Distance)

 temp_Indv_I = fitness_sub_I(offspring, temp_Indv_I, Installation_Time

_I, Service_Level, Max_Operation_Time, Distance)

 offspring.fitness_D = temp_Indv_I.fitness_I

 If offspring.travel_time_D < Indv_D.travel_time_D Then

 Indv_D = offspring

 Main.sum_entr_sol = Main.sum_entr_sol + 1

 End If

 Return Indv_D

 End Function

 'Mutation

 Function mutation_D(ByRef Indv_D As Symbiotic_D)

 Indv_D = mutation_exchange_D(Indv_D)

 'Add different mutation functions below with "if ~ endif"

 Return Indv_D

 End Function

 'Mutation (exchange mutation)

 Function mutation_exchange_D(ByRef Indv_D As Symbiotic_D)

 Dim rand_select_1 As Integer

 Dim rand_select_2 As Integer

 Dim temp_gene As Integer

 rand_select_1 = CInt(Int(Rnd() * (Indv_D.gene_D.Length - 1)))

 rand_select_2 = rand_select_1

 While (rand_select_2 = rand_select_1)

 rand_select_2 = CInt(Int(Rnd() * (Indv_D.gene_D.Length - 1)))

 End While

 temp_gene = Indv_D.gene_D(rand_select_1)

 Indv_D.gene_D(rand_select_1) = Indv_D.gene_D(rand_select_2)

170

 Indv_D.gene_D(rand_select_2) = temp_gene

 Return Indv_D

 End Function

End Module

171

Table C.8 The program code in Evolution_I.vb.

Module Evolution_I

 'Evolution of Nb_I (main function)

 Sub evolve_I(ByRef Nb_I(,) As Symbiotic_I, ByRef Nb_D(,) As Symbiotic_D,

ByVal Crossover_Rate As Single, _

 ByVal Mutation_Rate As Single, ByVal Max_Operation_Time As Double, ByVal

Distance(,) As Double, _

 ByVal Customer_Demand() As Integer, ByVal Installation_Time_I As Double,

ByVal Service_Level As Double)

 Dim temp_Nb_I(2, 2) As Symbiotic_I

 Dim temp_ind_I As Symbiotic_I

 Dim selection_set As Pair

 Dim offspring As Symbiotic_I

 Dim compete_indv As Location_Index

 Dim i, j, k As Integer

 Dim num_xover As Integer = 18

 'Duplicate Neighborhood I

 For i = 0 To 2

 For j = 0 To 2

 temp_Nb_I(i, j) = define_individual_I(Nb_I(0, 0).gene_I.Lengt

h)

 temp_Nb_I(i, j) = copy_I2I(temp_Nb_I(i, j), Nb_I(i, j))

 Next

 Next

 'Crossover

 For i = 0 To num_xover

 If Rnd() <= Crossover_Rate Then

 'Create set of parent set for crossover

 selection_set = select_pair_I(temp_Nb_I)

 offspring = crossover_I(temp_Nb_I(selection_set.p1.loc_X, sel

ection_set.p1.loc_Y), temp_Nb_I(selection_set.p2.loc_X, _

 selection_set.p2.loc_Y))

 'Select a neighhor to compete with offspring randomly

 compete_indv = roulette_inverse_I(Nb_I)

 compare_I(Nb_I(compete_indv.loc_X, compete_indv.loc_Y), offsp

ring, Nb_D(compete_indv.loc_X, compete_indv.loc_Y), _

 Max_Operation_Time, Distance, Installation_Time_I, Service_Le

vel)

 End If

 Next

 'Mutation

 For i = 0 To 2

 For j = 0 To 2

 If Rnd() <= Mutation_Rate Then

 k = 0

 For k = 0 To 3

 temp_ind_I = Nb_I(i, j)

 temp_ind_I = mutation_I(temp_ind_I)

 Nb_I(i, j) = fitness_sub_I(Nb_D(i, j), Nb_I(i, j), In

172

stallation_Time_I, Service_Level, Max_Operation_Time, Distance)

 temp_ind_I = fitness_sub_I(Nb_D(i, j), temp_ind_I, In

stallation_Time_I, Service_Level, Max_Operation_Time, Distance)

 If temp_ind_I.fitness_I > Nb_I(i, j).fitness_I Then

 Nb_I(i, j) = temp_ind_I

 Nb_D(i, j).fitness_D = temp_ind_I.fitness_I

 k = 3

 Else

 k = k + 1

 End If

 Next

 End If

 Next

 Next

 End Sub

 'Create set of parents for crossover

 Function select_pair_I(ByVal Nb_I(,) As Symbiotic_I)

 Dim selection_set As Pair

 selection_set.p1 = roulette_I(Nb_I)

 selection_set.p2 = roulette_I(Nb_I)

 While selection_set.p1.loc_X = selection_set.p2.loc_X And selection_s

et.p1.loc_Y = selection_set.p2.loc_Y

 selection_set.p2 = roulette_I(Nb_I)

 End While

 Return selection_set

 End Function

 'Select good individual with probability

 Function roulette_I(ByVal Nb_I(,) As Symbiotic_I)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim rand_value As Double

 Dim temp_cur_fitness As Double

 Dim temp_sum_fitness As Double

 temp_sum_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 temp_sum_fitness += Nb_I(i, j).fitness_I

 Next

 Next

 rand_value = Rnd()

 temp_cur_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + (Nb_I(i, j).fitness_I / temp_sum_fitness) Then

 selected_loc.loc_X = i

173

 selected_loc.loc_Y = j

 End If

 temp_cur_fitness += (Nb_I(i, j).fitness_I / temp_sum_fitness)

 Next

 Next

 Return selected_loc

 End Function

 ''Select bad individual with probability

 Function roulette_inverse_I(ByVal Nb_I(,) As Symbiotic_I)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim rand_value As Double

 Dim temp_cur_fitness As Double

 Dim temp_sum_fitness As Double

 temp_sum_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 temp_sum_fitness += 1 / Nb_I(i, j).fitness_I

 Next

 Next

 rand_value = Rnd()

 temp_cur_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + ((1 / Nb_I(i, j).fitness_I) / temp_sum_fitness) Then

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

 End If

 temp_cur_fitness += ((1 / Nb_I(i, j).fitness_I) / temp_sum_fi

tness)

 Next

 Next

 Return selected_loc

 End Function

 'Select worst individual in neighborhood

 Function select_worst_I(ByVal Nb_I(,) As Symbiotic_I)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim temp_fitness As Double

 temp_fitness = 0.0

 selected_loc.loc_X = 0

 selected_loc.loc_Y = 0

 For i = 0 To 2

 For j = 0 To 2

174

 If Nb_I(i, j).fitness_I > temp_fitness Then

 temp_fitness = Nb_I(i, j).fitness_I

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

 End If

 Next

 Next

 Return selected_loc

 End Function

 'Crossover (2 steps)

 Function crossover_I(ByVal Nb_I1 As Symbiotic_I, ByVal Nb_I2 As Symbiotic

_I)

 Dim temp_child As Symbiotic_I

 temp_child = xover_hybrid_p1_I(Nb_I1)

 temp_child = xover_hybrid_p2_I(Nb_I2, temp_child)

 'Add different crossover functions below with "if ~ endif"

 Return temp_child

 End Function

 'Crossover with the parent 1 (step 1)

 Function xover_hybrid_p1_I(ByVal Nb_I1 As Symbiotic_I)

 Dim temp_child As Symbiotic_I

 Dim temp_gene(Nb_I1.gene_I.Length - 1) As Integer

 Dim num_vehicle_used As Integer

 Dim selected_vehicle As Integer

 Dim temp_count4child As Integer

 Dim temp_count4remain As Integer

 Dim one_cut_point As Integer

 Dim i As Integer

 temp_child = define_individual_I(Nb_I1.gene_I.Length)

 'Vehicle selection based crossover

 num_vehicle_used = Nb_I1.vehicle_I(Nb_I1.gene_I.Length - 1)

 selected_vehicle = CInt(Int((Rnd() * num_vehicle_used - 1)) + 1)

 temp_count4child = 0

 temp_count4remain = 0

 For i = 0 To Nb_I1.gene_I.Length - 1

 If Nb_I1.vehicle_I(i) = selected_vehicle Then

 temp_child.gene_I(temp_count4child) = Nb_I1.gene_I(i)

 temp_count4child += 1

 Else

 temp_gene(temp_count4remain) = Nb_I1.gene_I(i)

 temp_count4remain += 1

 End If

 Next

 'One cut point crossover

175

 one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1)

 For i = 0 To one_cut_point

 temp_child.gene_I(temp_count4child) = temp_gene(i)

 temp_count4child += 1

 Next

 For i = temp_count4child To Nb_I1.gene_I.Length - 1

 temp_child.gene_I(i) = -1

 Next

 Return temp_child

 End Function

 'Crossover with the parent 2 (step 2)

 Function xover_hybrid_p2_I(ByVal Nb_I2 As Symbiotic_I, ByRef temp_child A

s Symbiotic_I)

 Dim i, j, k As Integer

 Dim plag As Boolean

 For i = 0 To Nb_I2.gene_I.Length - 1

 plag = False

 If temp_child.gene_I(i) = -1 Then

 k = 0

 While temp_child.gene_I(i) = -1

 For j = 0 To i - 1

 If Nb_I2.gene_I(k) = temp_child.gene_I(j) Then

 plag = True

 End If

 Next

 If plag Then

 plag = False

 k += 1

 Else

 temp_child.gene_I(i) = Nb_I2.gene_I(k)

 End If

 End While

 End If

 Next

 Return temp_child

 End Function

 'Decide whether new offspring can enter neighborhood or not

 Function compare_I(ByRef Indv_I As Symbiotic_I, ByRef offspring As Symbio

tic_I, ByRef Indv_D As Symbiotic_D, ByVal Max_Operation_Time As Double, _

 ByVal Distance(,) As Double, ByVal Installation_Time_I As Double, ByVal S

ervice_Level As Double)

 offspring = fitness_sub_I(Indv_D, offspring, Installation_Time_I, Ser

vice_Level, Max_Operation_Time, Distance)

 If offspring.fitness_I > Indv_I.fitness_I Then

 Indv_I = copy_I2I(Indv_I, offspring)

 Indv_D.fitness_D = offspring.fitness_I

 Main.sum_entr_sol = Main.sum_entr_sol + 1

176

 End If

 Return Indv_I

 End Function

 'Mutation

 Function mutation_I(ByRef Indv_I As Symbiotic_I)

 Indv_I = mutation_exchange_I(Indv_I)

 'Add different mutation functions below with "if ~ endif"

 Return Indv_I

 End Function

 'Mutation (exchange mutation)

 Function mutation_exchange_I(ByRef Indv_I As Symbiotic_I)

 Dim rand_select_1 As Integer

 Dim rand_select_2 As Integer

 Dim temp_gene As Integer

 rand_select_1 = CInt(Int(Rnd() * (Indv_I.gene_I.Length - 1)))

 rand_select_2 = rand_select_1

 While (rand_select_2 = rand_select_1)

 rand_select_2 = CInt(Int(Rnd() * (Indv_I.gene_I.Length - 1)))

 End While

 temp_gene = Indv_I.gene_I(rand_select_1)

 Indv_I.gene_I(rand_select_1) = Indv_I.gene_I(rand_select_2)

 Indv_I.gene_I(rand_select_2) = temp_gene

 Return Indv_I

 End Function

End Module

177

Table C.9 The program code in Evoltuion_DI.vb.

Module Evolution_DI

 'Evolution of Nb_DI(main function)

 Sub evolve_DI(ByRef Nb_DI(,) As Endosymbiotic, ByVal Crossover_Rate As Si

ngle, _

 ByVal Mutation_Rate As Single, ByVal Capacity_Vehicle_D As Integer, ByVal

 Max_Operation_Time As Double, _

 ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal In

stallation_Time_I As Double, _

 ByVal Service_Level As Double)

 Dim temp_Nb_DI(2, 2) As Endosymbiotic

 Dim temp_ind_DI As Endosymbiotic

 Dim selection_set As Pair

 Dim offspring As Endosymbiotic

 Dim compete_indv As Location_Index

 Dim i, j, k As Integer

 Dim num_xover As Integer = 18

 'Duplicate Neighborhood DI

 For i = 0 To 2

 For j = 0 To 2

 temp_Nb_DI(i, j) = define_individual_DI(Nb_DI(0, 0).gene_D.Le

ngth, Nb_DI(0, 0).gene_I.Length)

 temp_Nb_DI(i, j) = copy_DI2DI(temp_Nb_DI(i, j), Nb_DI(i, j))

 Next

 Next

 'Crossover

 For i = 0 To num_xover

 If Rnd() < Crossover_Rate Then

 'Create parent set for crossover

 selection_set = select_pair_DI(Nb_DI)

 offspring = crossover_DI(Nb_DI(selection_set.p1.loc_X, select

ion_set.p1.loc_Y), Nb_DI(selection_set.p2.loc_X, _

 selection_set.p2.loc_Y))

 'Select a neighhor to compete with offspring randomly

 compete_indv = roulette_inverse_DI(Nb_DI)

 compare_DI(Nb_DI(compete_indv.loc_X, compete_indv.loc_Y), off

spring, Capacity_Vehicle_D, Max_Operation_Time, _

 Distance, Customer_Demand, Installation_Time_I, Service_Leve

l)

 End If

 Next

 'Mutation

 For i = 0 To 2

 For j = 0 To 2

 If Rnd() < Mutation_Rate Then

 k = 0

 For k = 0 To 3

 temp_ind_DI = Nb_DI(i, j)

 temp_ind_DI = mutation_DI(temp_ind_DI)

 temp_ind_DI = fitness_etr_D(temp_ind_DI, Capacity_Veh

178

icle_D, Max_Operation_Time, Customer_Demand, Distance)

 temp_ind_DI = fitness_etr_I(temp_ind_DI, Installation

_Time_I, Service_Level, Max_Operation_Time, Distance)

 If temp_ind_DI.fitness_DI > Nb_DI(i, j).fitness_DI Th

en

 Nb_DI(i, j) = temp_ind_DI

 k = 3

 Else

 k = k + 1

 End If

 Next

 End If

 Next

 Next

 End Sub

 'Create set of parent for crossover

 Function select_pair_DI(ByVal Nb_DI(,) As Endosymbiotic)

 Dim selection_set As Pair

 selection_set.p1 = roulette_DI(Nb_DI)

 selection_set.p2 = roulette_DI(Nb_DI)

 While selection_set.p1.loc_X = selection_set.p2.loc_X And selection_s

et.p1.loc_Y = selection_set.p2.loc_Y

 selection_set.p2 = roulette_DI(Nb_DI)

 End While

 Return selection_set

 End Function

 'Select good individual with probability

 Function roulette_DI(ByVal Nb_DI(,) As Endosymbiotic)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim rand_value As Double

 Dim temp_cur_fitness As Double

 Dim temp_sum_fitness As Double

 temp_sum_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 temp_sum_fitness += Nb_DI(i, j).fitness_DI

 Next

 Next

 rand_value = Rnd()

 temp_cur_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + (Nb_DI(i, j).fitness_DI / temp_sum_fitness) Then

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

179

 End If

 temp_cur_fitness += (Nb_DI(i, j).fitness_DI / temp_sum_fitnes

s)

 Next

 Next

 Return selected_loc

 End Function

 'Select bad individual with probability

 Function roulette_inverse_DI(ByVal Nb_DI(,) As Endosymbiotic)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim rand_value As Double

 Dim temp_cur_fitness As Double

 Dim temp_sum_fitness As Double

 temp_sum_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 temp_sum_fitness += 1 / Nb_DI(i, j).fitness_DI

 Next

 Next

 rand_value = Rnd()

 temp_cur_fitness = 0.0

 For i = 0 To 2

 For j = 0 To 2

 If rand_value > temp_cur_fitness And rand_value <= temp_cur_f

itness + ((1 / Nb_DI(i, j).fitness_DI) / temp_sum_fitness) Then

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

 End If

 temp_cur_fitness += ((1 / Nb_DI(i, j).fitness_DI) / temp_sum_

fitness)

 Next

 Next

 Return selected_loc

 End Function

 'Select worst individual in neighborhood

 Function select_worst_DI(ByVal Nb_DI(,) As Endosymbiotic)

 Dim selected_loc As Location_Index

 Dim i, j As Integer

 Dim temp_fitness As Double

 temp_fitness = 0.0

 selected_loc.loc_X = 0

 selected_loc.loc_Y = 0

 For i = 0 To 2

 For j = 0 To 2

 If Nb_DI(i, j).fitness_DI > temp_fitness Then

180

 temp_fitness = Nb_DI(i, j).fitness_DI

 selected_loc.loc_X = i

 selected_loc.loc_Y = j

 End If

 Next

 Next

 Return selected_loc

 End Function

 'Crossover (2 steps)

 Function crossover_DI(ByVal Nb_DI1 As Endosymbiotic , ByVal Nb_DI2 As End

osymbiotic)

 Dim temp_child As Endosymbiotic

 temp_child = xover_hybrid_p1_DI(Nb_DI1)

 temp_child = xover_hybrid_p2_DI(Nb_DI2, temp_child)

 'Add different crossover functions below with "if ~ endif"

 Return temp_child

 End Function

 'Crossover with the parent 1 (step 1)

 Function xover_hybrid_p1_DI(ByVal Nb_DI1 As Endosymbiotic)

 Dim temp_child As Endosymbiotic

 Dim temp_gene_D(Nb_DI1.gene_D.Length - 1) As Integer

 Dim temp_gene_I(Nb_DI1.gene_I.Length - 1) As Integer

 Dim num_vehicle_used As Integer

 Dim selected_vehicle As Integer

 Dim temp_count4child As Integer

 Dim temp_count4remain As Integer

 Dim one_cut_point As Integer

 Dim i As Integer

 temp_child = define_individual_DI(Nb_DI1.gene_D.Length, Nb_DI1.gene_

I.Length)

 'Vehicle selection based crossover for part D

 num_vehicle_used = Nb_DI1.vehicle_D(Nb_DI1.gene_D.Length - 1)

 selected_vehicle = CInt(Int((Rnd() * num_vehicle_used - 1)) + 1)

 temp_count4child = 0

 temp_count4remain = 0

 For i = 0 To Nb_DI1.gene_D.Length - 1

 If Nb_DI1.vehicle_D(i) = selected_vehicle Then

 temp_child.gene_D(temp_count4child) = Nb_DI1.gene_D(i)

 temp_count4child += 1

 Else

 temp_gene_D(temp_count4remain) = Nb_DI1.gene_D(i)

 temp_count4remain += 1

181

 End If

 Next

 'One cut point crossover for part D

 one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1)

 For i = 0 To one_cut_point

 temp_child.gene_D(temp_count4child) = temp_gene_D(i)

 temp_count4child += 1

 Next

 For i = temp_count4child To Nb_DI1.gene_D.Length - 1

 temp_child.gene_D(i) = -1

 Next

 'Vehicle selection based crossover for part I

 num_vehicle_used = Nb_DI1.vehicle_I(Nb_DI1.gene_I.Length - 1)

 selected_vehicle = CInt(Int((Rnd() * num_vehicle_used - 1)) + 1)

 temp_count4child = 0

 temp_count4remain = 0

 For i = 0 To Nb_DI1.gene_I.Length - 1

 If Nb_DI1.vehicle_I(i) = selected_vehicle Then

 temp_child.gene_I(temp_count4child) = Nb_DI1.gene_I(i)

 temp_count4child += 1

 Else

 temp_gene_I(temp_count4remain) = Nb_DI1.gene_I(i)

 temp_count4remain += 1

 End If

 Next

 'One cut point crossover for part I

 one_cut_point = CInt(Int((Rnd() * (temp_count4remain - 2))) + 1)

 For i = 0 To one_cut_point

 temp_child.gene_I(temp_count4child) = temp_gene_I(i)

 temp_count4child += 1

 Next

 For i = temp_count4child To Nb_DI1.gene_I.Length - 1

 temp_child.gene_I(i) = -1

 Next

 Return temp_child

 End Function

 'Crossover with the parent 2 (step 2)

 Function xover_hybrid_p2_DI(ByVal Nb_DI2 As Endosymbiotic, ByRef temp_chi

ld As Endosymbiotic)

 Dim i, j, k As Integer

 Dim plag As Boolean

 'For part D

 For i = 0 To Nb_DI2.gene_D.Length - 1

 plag = False

 If temp_child.gene_D(i) = -1 Then

 k = 0

 While temp_child.gene_D(i) = -1

182

 For j = 0 To i - 1

 If Nb_DI2.gene_D(k) = temp_child.gene_D(j) Then

 plag = True

 End If

 Next

 If plag Then

 plag = False

 k += 1

 Else

 temp_child.gene_D(i) = Nb_DI2.gene_D(k)

 End If

 End While

 End If

 Next

 'For part I

 For i = 0 To Nb_DI2.gene_I.Length - 1

 plag = False

 If temp_child.gene_I(i) = -1 Then

 k = 0

 While temp_child.gene_I(i) = -1

 For j = 0 To i - 1

 If Nb_DI2.gene_I(k) = temp_child.gene_I(j) Then

 plag = True

 End If

 Next

 If plag Then

 plag = False

 k += 1

 Else

 temp_child.gene_I(i) = Nb_DI2.gene_I(k)

 End If

 End While

 End If

 Next

 Return temp_child

 End Function

 'Decide whether new offspring can enter neighborhood or not

 Function compare_DI(ByRef Indv_DI As Endosymbiotic, ByRef offspring As En

dosymbiotic, ByVal Capacity_Vehicle_D As Integer, ByVal Max_Operation_Time As

 Double, _

 ByVal Distance(,) As Double, ByVal Customer_Demand() As Integer, ByVal In

stallation_Time_I As Double, ByVal Service_Level As Double)

 offspring = fitness_etr_D(offspring, Capacity_Vehicle_D, Max_Operatio

n_Time, Customer_Demand, Distance)

 offspring = fitness_etr_I(offspring, Installation_Time_I, Service_Lev

el, Max_Operation_Time, Distance)

 If offspring.fitness_DI > Indv_DI.fitness_DI Then

 Indv_DI = offspring

 Main.sum_entr_sol = Main.sum_entr_sol + 1

 End If

 Return Indv_DI

183

 End Function

 'Mutation

 Function mutation_DI(ByRef Indv_DI As Endosymbiotic)

 Indv_DI = mutation_exchange_DI(Indv_DI)

 'Add different mutation functions below with "if ~ endif"

 Return Indv_DI

 End Function

 'Mutation (exchange mutation)

 Function mutation_exchange_DI(ByRef Indv_DI As Endosymbiotic)

 Dim rand_select_1 As Integer

 Dim rand_select_2 As Integer

 Dim temp_gene As Integer

 'Mutaion for part D

 rand_select_1 = CInt(Int(Rnd() * (Indv_DI.gene_D.Length - 1)))

 rand_select_2 = rand_select_1

 While (rand_select_2 = rand_select_1)

 rand_select_2 = CInt(Int(Rnd() * (Indv_DI.gene_D.Length - 1)))

 End While

 temp_gene = Indv_DI.gene_D(rand_select_1)

 Indv_DI.gene_D(rand_select_1) = Indv_DI.gene_D(rand_select_2)

 Indv_DI.gene_D(rand_select_2) = temp_gene

 'Mutaion for part I

 rand_select_1 = CInt(Int(Rnd() * (Indv_DI.gene_I.Length - 1)))

 rand_select_2 = rand_select_1

 While (rand_select_2 = rand_select_1)

 rand_select_2 = CInt(Int(Rnd() * (Indv_DI.gene_I.Length - 1)))

 End While

 temp_gene = Indv_DI.gene_I(rand_select_1)

 Indv_DI.gene_I(rand_select_1) = Indv_DI.gene_I(rand_select_2)

 Indv_DI.gene_I(rand_select_2) = temp_gene

 Return Indv_DI

 End Function

End Module

184

Table C.10 The program code in Dt_Input.vb.

Module Dt_Input

 'Load problem variables from input file

 Function read_data(ByVal input_file As String, ByVal Dmd() As Integer, By

Val Dst(,) As Double, ByVal N_DCustomer As Integer, ByVal N_ICustomer As Inte

ger)

 Dim i, j As Integer

 Dim check_file As Boolean = True

 Dim temp_Customer, temp_Check_Installation As Integer

 Dim temp_Installation_time, temp_Timewindow_start, temp_Timewindow_en

d As Integer

 Dim temp_Distance As Double

 Try

 FileOpen(1, input_file, OpenMode.Input)

 Catch ex As Exception

 MsgBox("Wrong file name")

 check_file = False

 FileClose(1)

 GoTo END_FUNC

 End Try

 'read customer demand

 For i = 0 To N_DCustomer - 1

 Input(1, temp_Customer)

 If i <> temp_Customer Then

 MsgBox("Customer Index Incorrect!")

 End If

 Input(1, Dmd(i))

 Input(1, temp_Check_Installation)

 If (i > N_ICustomer - 1 And temp_Check_Installation = 1) Or (i <=

 N_ICustomer - 1 And temp_Check_Installation = 0) Then

 MsgBox("Installation Customer Index Mismatch!")

 End If

 'no need 3 value in EEA (only for HGA)

 Input(1, temp_Installation_time)

 Input(1, temp_Timewindow_start)

 Input(1, temp_Timewindow_end)

 Next

 For i = 0 To N_DCustomer

 Dst(i, i) = 0

 For j = i + 1 To N_DCustomer

 Input(1, temp_Distance)

 Dst(i, j) = temp_Distance

 Dst(j, i) = temp_Distance

 Next

 Next

 FileClose(1)

END_FUNC:

 Return check_file

 End Function

185

End Module

186

Table C.11 The program code in Dt_Output.vb.

Module Dt_Output

 'Initialize output file

 Function Outfile_setup(ByVal current_trial As Integer, ByVal Num_Customer

_D As Integer, ByVal Num_Customer_I As Integer, ByVal Pop_size As Integer)

 Dim temp_file_name As String

 temp_file_name = "OT-" + CStr(Num_Customer_D) + "-" + CStr(Num_Custom

er_I) + "-" + CStr(Pop_size) + "-" + CStr(current_trial) + "-"

 'Delete old file

 If My.Computer.FileSystem.FileExists(temp_file_name + "Fnl.txt") Then

 My.Computer.FileSystem.DeleteFile(temp_file_name + "Fnl.txt")

 End If

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Fina

l solution of this problem " & vbCrLf & vbCrLf, True)

 If My.Computer.FileSystem.FileExists(temp_file_name + "Upd.txt") Then

 My.Computer.FileSystem.DeleteFile(temp_file_name + "Upd.txt")

 End If

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Upd.txt", "Fitn

ess value at the improved generation " & vbCrLf & vbCrLf, True)

 If My.Computer.FileSystem.FileExists(temp_file_name + "Pop-D.txt") Th

en

 My.Computer.FileSystem.DeleteFile(temp_file_name + "Pop-D.txt")

 End If

 If My.Computer.FileSystem.FileExists(temp_file_name + "Pop-I.txt") Th

en

 My.Computer.FileSystem.DeleteFile(temp_file_name + "Pop-I.txt")

 End If

 If My.Computer.FileSystem.FileExists(temp_file_name + "Pop-DI.txt") T

hen

 My.Computer.FileSystem.DeleteFile(temp_file_name + "Pop-DI.txt")

 End If

 Return temp_file_name

 End Function

 'Record final results on output file

 Sub final_report(ByVal best_solution As Endosymbiotic, ByVal elapsed_time

 As TimeSpan, ByVal temp_file_name As String)

 Dim i As Integer

 Dim temp_result As String

 Dim temp_wait As Double

 temp_result = ""

 'Report for delivery vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Deli

very Vehicles" & vbCrLf & vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Calc

187

uation time : " & CStr(elapsed_time.TotalSeconds.ToString("0.00")) & vbCrLf &

 vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Gene

 for Delivery Vehicles" & vbCrLf, True)

 'Customer visiting order for delivery vehicles

 For i = 0 To best_solution.gene_D.Length - 1

 temp_result = temp_result + CStr(best_solution.gene_D(i)) + " "

 Next

 'Assigned delivery vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True)

 temp_result = ""

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Assi

gned Delivery Vehicles" & vbCrLf, True)

 For i = 0 To best_solution.gene_D.Length - 1

 temp_result = temp_result + CStr(best_solution.vehicle_D(i)) + "

"

 Next

 'Arrival times of delivery vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True)

 temp_result = ""

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Arri

val Delivery Vehicles" & vbCrLf, True)

 For i = 0 To best_solution.gene_D.Length - 1

 temp_result = temp_result + CStr(best_solution.arrival_time_D(i))

 + " "

 Next

 'Traveling times of delivery vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True)

 temp_result = ""

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Trav

eling time of Delivery vehicles" & vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.travel_time_D) & vbCrLf & vbCrLf & vbCrLf & vbCrLf, True)

 temp_result = ""

 'Report for installation vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Inst

allation Vehicles" & vbCrLf & vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Gene

 for Installation Vehicles" & vbCrLf, True)

 For i = 0 To best_solution.gene_I.Length - 1

 temp_result = temp_result + CStr(best_solution.gene_I(i)) + " "

 Next

 'Assigned installation vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True)

 temp_result = ""

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Assi

gned Installation Vehicles" & vbCrLf, True)

 For i = 0 To best_solution.gene_I.Length - 1

188

 temp_result = temp_result + CStr(best_solution.vehicle_I(i)) + "

"

 Next

 'Arrival times of installation vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True)

 temp_result = ""

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Arri

val Installation Vehicles" & vbCrLf, True)

 For i = 0 To best_solution.gene_I.Length - 1

 temp_result = temp_result + CStr(best_solution.arrival_time_I(i))

 + " "

 Next

 'Waitign times of installation vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True)

 temp_result = ""

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Wait

ing time Installation Vehicles" & vbCrLf, True)

 temp_wait = 0.0

 For i = 0 To best_solution.gene_I.Length - 1

 temp_wait += best_solution.wait_time_I(i)

 temp_result = temp_result + CStr(best_solution.wait_time_I(i)) +

" "

 Next

 'Traveling times of installation vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", temp_

result & vbCrLf, True)

 temp_result = ""

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Trav

elling time of Installation vehicles" & vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.travel_time_I - (10 * best_solution.gene_I.Length) - temp_wai

t) & vbCrLf & vbCrLf & vbCrLf, True)

 temp_result = ""

 'Traveling time of all vehicles

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Tota

l travelling time" & vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.travel_time_D + best_solution.travel_time_I - (10 * best_solut

ion.gene_I.Length) - temp_wait) & vbCrLf & vbCrLf, True)

 'Fitness values of best solutions

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", "Fitn

ess value" & vbCrLf, True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(best_solution.fitness_DI), True)

 'Number of generated offspring so far

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", vbCrL

f & vbCrLf & "Number of entered offspring : ", True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(Main.sum_entr_sol), True)

 'Number of last generation

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", vbCrL

f & "Last generation : ", True)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Fnl.txt", CStr

(Main.stop_gen), True)

189

 End Sub

 'Report update record for any improvement

 Function generation_record(ByVal current_generation As Integer, ByVal bes

t_solution As Endosymbiotic, ByRef temp_best_travel As Double, _

 ByRef temp_file_name As String, ByVal start_time As Date, ByRef end_time

As Date)

 Dim sum_wait As Double

 Dim current_travel As Double

 Dim i As Integer

 Dim elapsed_time As TimeSpan

 Dim sum_installation_time As Double

 sum_installation_time = 10 * best_solution.gene_I.Length

 sum_wait = 0.0

 For i = 0 To best_solution.gene_I.Length - 1

 sum_wait += best_solution.wait_time_I(i)

 Next

 current_travel = best_solution.travel_time_D + best_solution.travel_t

ime_I - sum_installation_time - sum_wait

 'Check the improvement of best solution and report

 If current_travel < temp_best_travel Then

 'Update new best solution

 temp_best_travel = current_travel

 'Record ending time

 end_time = Now

 elapsed_time = end_time.Subtract(start_time)

 'Record on File

 update_log(current_generation, temp_best_travel, temp_file_name,

elapsed_time)

 End If

 Return temp_best_travel

 End Function

 'Record traveling times at certain generation

 Sub best_record(ByVal current_generation As Integer, ByVal current_travel

 As Double, ByRef temp_file_name As String)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Bst.txt", CStr

(current_generation) & vbTab & CStr(current_travel) _

 & vbCrLf, True)

 End Sub

 'Record best traveling times at any improvement

 Sub update_log(ByVal current_generation As Integer, ByVal temp_best_trave

l As Double, ByRef temp_file_name As String, ByVal elapsed_time As TimeSpan)

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Upd.txt", CStr

(current_generation) & vbTab & CStr(Main.sum_entr_sol) & vbTab & CStr(temp_be

st_travel) _

 & vbTab & CStr(elapsed_time.TotalSeconds.ToString("0.00")) & vbCrLf,

True)

190

 End Sub

 'Print POP-D on file

 Sub file_population_sub_D(ByVal POP_D(,) As Symbiotic_D, ByVal pop_size A

s Integer, _

 ByVal current_generation As Integer, ByVal loc_Nb As Location_Index, ByRe

f temp_file_name As String)

 Dim i, j As Integer

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.txt", "Ge

neration: " & CStr(current_generation) & ": " & _

 CStr(loc_Nb.loc_X) & " , " & CStr(loc_Nb.loc_Y) & vbCrLf, True)

 For j = 0 To pop_size - 1

 For i = 0 To pop_size - 1

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.t

xt", Format(POP_D(i, j).fitness_D, "0.00000000") & vbTab, True)

 Next

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.txt",

 vbCrLf, True)

 Next

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-D.txt", vbC

rLf & vbCrLf, True)

 End Sub

 'Print POP-I on file

 Sub file_population_sub_I(ByVal POP_I(,) As Symbiotic_I, ByVal pop_size A

s Integer, _

 ByVal current_generation As Integer, ByVal loc_Nb As Location_Index, ByRe

f temp_file_name As String)

 Dim i, j As Integer

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.txt", "Ge

neration: " & CStr(current_generation) & ": " & _

 CStr(loc_Nb.loc_X) & " , " & CStr(loc_Nb.loc_Y) & vbCrLf, True)

 For j = 0 To pop_size - 1

 For i = 0 To pop_size - 1

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.t

xt", Format(POP_I(i, j).fitness_I, "0.00000000") & vbTab, True)

 Next

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.txt",

 vbCrLf, True)

 Next

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-I.txt", vbC

rLf & vbCrLf, True)

 End Sub

 'Print POP-DI on file

 Sub file_population_etr(ByVal POP_DI(,) As Endosymbiotic, ByVal pop_size

As Integer, ByVal current_generation As Integer, _

 ByVal loc_Nb As Location_Index, ByRef temp_file_name As String)

 Dim i, j As Integer

191

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.txt", "G

eneration: " & CStr(current_generation) & ": " & _

 CStr(loc_Nb.loc_X) & " , " & CStr(loc_Nb.loc_Y) & vbCrLf, True)

 For j = 0 To pop_size - 1

 For i = 0 To pop_size - 1

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.

txt", Format(POP_DI(i, j).fitness_DI, "0.00000000") & vbTab, True)

 Next

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.txt

", vbCrLf, True)

 Next

 My.Computer.FileSystem.WriteAllText(temp_file_name + "Pop-DI.txt", vb

CrLf & vbCrLf, True)

 End Sub

 'Check population printing

 Sub file_population_check(ByVal POP_DI(,) As Endosymbiotic, ByVal POP_D

(,) As Symbiotic_D, ByVal POP_I(,) As Symbiotic_I, ByVal pop_size As Integer,

 ByVal current_generation As Integer, _

 ByVal loc_Nb As Location_Index, ByVal check_pop As Integer, ByRef temp_fi

le_name As String)

 If EEA.chk_popchk.Checked = True Then

 If (current_generation Mod check_pop) = 0 Then

 If EEA.chk_POPD.Checked = True Then

 file_population_sub_D(POP_D, pop_size, current_generatio

n, loc_Nb, temp_file_name)

 End If

 If EEA.chk_POPI.Checked = True Then

 file_population_sub_I(POP_I, pop_size, current_generatio

n, loc_Nb, temp_file_name)

 End If

 If EEA.chk_POPDI.Checked = True Then

 file_population_etr(POP_DI, pop_size, current_generation,

 loc_Nb, temp_file_name)

 End If

 End If

 End If

 End Sub

End Module

