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ON ERROR-BOUND CONNECTED OPTIMIZED
TRIGONOMETRIC SUBROUTINES

I. INTRODUCTION

A library of standard functions is an important part of any

scientific programming system. Programmers working on scientific

applications constantly use standard programs to evaluate simple

transcendental functions like ex, cos x, and NITe. Because of such

widespread use high performance standards are required of these

routines. The most critical requirements to consider in the design of

these routines are accuracy and speed.

Accuracy levels are directly dependent on the mode and preci-

sion of the arithmetic used in the routine. In some libraries several

evaluation routines are available for a single function so the function

can be evaluated using single, double, and sometimes higher precision

arithmetic. The user selects the appropriate routine depending on the

accuracy desired in the returned value.

The execution time of any function evaluation routine can be re-

duced by increasing its storage requirements, and vice versa. In the

past programmers attempted to achieve a good balance between speed

and core requirements. However with the availability of larger and

larger storage capabilities in present day machines, interest has

shifted to writing very fast routines requiring extensive storage



allocations.

In this paper we discuss the design of SINCOS, a computer pro-

gram which evaluates the sine and cosine functions in a fast and

accurate manner. The program has a variable precision feature which

allows object program execution in different precisions giving it a

variable accuracy capability. SINCOS is written in COMPASS for the

Control Data Corporation's 3300 Computer. Use of an assembly level

language assures efficient code generation.

Since any simple transcendental function can be approximated

by a polynomial

P(x) = a
0
xn + a xn-1 ...+ an -lx + an

of finite degree n, the faster this approximation can be evaluated

the faster the program will run. Obviously low degree polynomial

approximations are desired, as every term saved in the approximation

(1. 1) means time save in program execution. So polynomial approxi-

mation techniques are of considerable importance in designing any

evaluation routines for P(x).

Chapter II is devoted to a discussion of the powerful technique

of polynomial approximation using Chebyshev Polynomials. As we

will see in Chapter IV, these techniques are employed extensively in

the design of SINCOS. Much of the material there is from Lanczos
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[10] and Stiefel [17].

The simplest method of evaluating (1. 1) is to raise x to the

second, third, ... , and nth power, then multiply each power of x

by its corresponding coefficient and add up all the terms. In this way,

for each xi we get P(xi) after carrying out n additions and

2n-1 multiplications. To denote operation counts like these we will

use the convention aM + 13A to mean a multiplications and p

additions.

A much more efficient method is the widely used recurrence

scheme credited to Horner given as follows:

So

P
0

(x) = a
0,

Pr+1
(x) = xPr(x) + a r+1. (1.

p (x) = ( . ((a 0x+a1)x
+ a 2)x +... +a ). (1.3)

This technique requires nM + nA operations for the evaluation of an

arbitrary polynomial of degree n.

Within the last ten years algorithms have been developed by

which an arbitrary polynomial of nth degree can be evaluated with

less than n multiplications, that is more economically than Horner's

scheme. Here we proceed, for the time being at least, on the

assumption that evaluation methods requiring a decreased number of

arithmetic operations over Horner's method (or at least replacing a



multiplication by an addition) are faster to execute. 1

Consider the polynomial

P(x) = x7 + x6 + ...+ 1 =
8x -1

x-1
, (x 1).

4

(1.4)

We can compute this polynomial using only 3M + 2A + 1D opera-

tions as follows:

2pl = x x = x , P 131
4=x , P3 P2 P2 x

p4 = x - 1, p5 = p3 - 1, P(x) = p5/p4.

We expect of course to find other polynomials like (1.4) which can be

handled in a very efficient manner. However these 'easy' polynomials

(and corresponding computing schemes) will not concern us here.

Instead, we are interested in algorithms which can be applied to more

general polynomials. In fact any method will work if certain condi-

tions are imposed on the coefficients.

We will consider computation schemes which evaluate a poly-

nomial P(x) in two stages. In the first stage, by means of opera-

tions confined to the coefficients, the polynomial is transferred to a

special form. In the second stage this transformed polynomial is

evaluated for specific values of its argument. It can happen that the

10f course on machines with no floating point hardware a.ddi
tion often takes about as long to execute as an average multiplication.
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number of operations required by the second stage is less than that

for Horner's scheme. This technique of initially conditioning the coef-

ficients is especially useful in evaluating polynomials used again and

again in function evaluation routines, since the first stage can be done

before hand. From now on when we speak of the number of operations

required to compute a polynomial, we refer to the number of opera-

tions in the second stage only.

In article [1] E. Belaga gives a proof of the impossibility of con-

structing a scheme for computing arbitrary nth degree polynomials

in which the second stage requires less than multiplica-

tions and n additions. We illustrate these techniques with two

examples both of which require a number of operations close to this

minimum bound.

Example 1: (Pan) The polynomial

P 5(x) = a 0x5 + a x4 + a
2

x3 + a
3

x2 + a
4
x + a

5
(1. 5)

can be expressed in the equivalent form

P5(x) = a0{(x+X.1)[(x2+X3)(x2+x+X.2)+ x4] +x5} (1. 6)

Equating coefficients of the corresponding powers of x, we get



al
1 a0 - 1

a
1

(a
2
-a

1
) a1 a

3

2
= +

a 2 ao a
o

0

a2
X X1 - X2

3 a
0

a4
X4 = - X.

2
X3 - X

1
X3

a
5

X = - X1 X
2
X3 - X1

45 a
0

X.

Taking a simple case, let

P 5(x) = 2x5 + 4x4 + 4x
3 + 2x 2 + 2x + 2

then,

X1
'

=1 X2 =1 X3 =0 X4 =1, X.5 =0

and

P5(1) = 2[2(3+1)+0] = 16

P5(1 /2) = 2 {(3/2)[(1 /4)(7/4) +1] +0} = 69/16

etc. Thus if X ..
5

are computed before hand (1.6) can be

evaluated at the expense of only 4M + 6A operations.

Example 2: The 11th degree polynomial given below was

6

(1.7)

used in the IBM 7090 Arcsin routine as an approximation to Arcsin x



rfor 0 < x <
2

[4].

P(x) = x + .166667820x3 + . 0749469671x5 + . 0455206330x7

+ .0239940153x9 + .0424173419x11 (1.8)

Observe that Q(x) = P(x) /x is a 5th degree polynomial in x2

and can be written

where

2 3 4 5Q(x) = a0 +a
1
z+a z +a3z +a

4
z +a 5z

{I(Az+B) +CRAz+B)2+D}(Az+E)+ F, (z = x2) (1. 9)

=
5, ras and Ck = ak/Ak for k = 0,1, 2,3,4.

B can be determined by solving the cubic equation

Then

2
40B3 - 24C 4B

2
+ s(C

3
+C4 B + (C

2
-C

3
C4) = 0.

E = C4 - 4B

C = C3 + 10B2
- 4C 4B

D = C
1

- B 4 - 4B3E - B 2C - 2BCE

F=C
0

-B4 E-B2 CE-DE

The algebra is a little messy but we get finally

(1.10)



P
11

(x) = x{[(X
2
+. 4918761283)X +.3697723067](X +. 6599526040)

where

8

+ .7533057075 }, (1. 11)

2z = x

X1 = .5315066345z

X2 = (X 1-. 0898244458)2

Thus P11(x) is evaluated in 6M + 5A operations.

Before 'economical' methods like these can be used in a function

evaluation routine the conditioning of their respective polynomial

forms must be investigated. If a form is well conditioned the numeri-

cal process of evaluation gives results with accuracies close to that of

normal arithemetic. We are concerned here with the capability of a

particular functional form to define a function with an accuracy com-

parable to that of the coefficients rather than with a systematic growth

of rounding error stimulated by some numerical instability of a par-

ticular function.

If the number of arithmetic operations in an evaluation routine

is denoted by n, we can define a functional form f(x) as badly

conditioned in [a, b] if kth digit floating point arithmetic gives a

value for f(x) with more than r\TIT units of error in the kth signif-

icant digit of the norm If II of f(x) on [a, b].



Using this definition with

b
f =

a

9

(1. 12)

Rice [15] investigated several economical methods applied to over a

100 polynomials (of degree 6 and 7). He found Pan's form to be ill-

conditioned about 50% of the time. In comparison Horner's form was

ill-conditioned in less than 10% of the cases. In fact, Rice finds a

"definite positive correlation between computational efficiency and

ill-conditioning".

Of course coding extended precision or fixed point arithmetic in

some of the intermediate calculations will maintain accuracy. How-

ever, this technique often costs more in time than Horner's scheme

and thus is unsuited for our purposes. In Chapter IV these practical

problems are considered in detail.

Well conditioned economical schemes have been implemented on

the Soviet Computers "Strela", BESM, M-2, M-3, and "Ural", and

have resulted in noteworthy computational savings. For example the

following algorithm is used to reduce the time envolved in computing

a 9th degree polynomial approximation to arc tan z on the Soviet

Computer BESM [11].

arc tan z = z{[(Az2+8)2+C+Az2][(Az2+B)2+1)]-E},



where

A = 0.55505873374

B = -0.65760729852

C = 0,24882437998

D = 0.17504500622

E = -0.58613261827

10

Chapter III gives some motivation behind schemes like the one above,

which returns values of arc tan x correct to ten decimal places.
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II. CHEBYSHEV APPROXIMATION

Consider a sequence of polynomials of increasing degree

P 0(x), P1 (x), P 2(x), . . . , Pn(x), . . .

where the polynomial Pr(x) has exactly the degree r, for all r.

Now suppose we expand a given polynomial Qn(x) in terms of the

polynomials in the polynomial system.

Qn(x) = C0 (x) + C
1
P 1(x) + ...+ Cn

Pn
(x)

Truncating this expansion to form the partial sum

(2. 1)

C
0
P

0
(x) + C

1
P 1(x) + . . . + C mPm (x), with m < n (2. 2)

We get a polynomial of mth degree which may or may not be a good

approximation of the polynomial Qn(x). The success depends on

the proper choice of a polynomial system.

Unfortunately it is in general true that polynomial approxima-

tions for arbitrary functions (e. g., those for Taylor Series expan-

sions) will exhibit an uneven error distribution. Since any arbitrary

interval can be transformed (normalized) to the interval [-1, 1], it

suffices to examine the behavior of functions on the interval [-1, 1]
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to determine their potential value as approximation tools.

We would like a related set of functions which has its maximum

values well distributed on [-1, 1]. Then if we approximate an

arbitrary polynomial using a linear combination of these functions the

error will be distributed evenly over the interval. The cosine func-

tions, cos (1), cos 2cp, ... are the best candidates.

The Chebyshev Polynomials

We can transform the function cos nit on [0, Tr] into an nth

degree polynomial in x on [-1, 1] using the transformation

The polynomials

(I) =
-1

cos x

Tn(x) = cos mp, n = 0, 1, 2, . . .

(2. 3)

(2.4)

expressed in the variable (2.3) are called the Chebyshev Polynomials.

It is clear that,

In general,

T
0
(x) = cos 0 = 1

T 1(x) = cos 1:1)= cos(cos
1x) = x

T 2(x) = cos = cos 24) - sin 21) = 2x 2
- 1

Tn+1(x) = 2xTn(x) - T n-1 (x), (2. 5)
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which follows from the well known trigonometric identity

cos(n+1)4)+ cos(n-1)4 = 2 cos(ncO) cos (I).

The renormalization to the range [0,1] is often useful. This

renormalization can be accomplished by setting

or

cos (I) = 2x - 1 (2. 6)

x = (l+cos (1)) /2 = cos2(.0/2) (2. 7)

Then as 10 varies from 0 to Tr, x varies from 0 to 1. The

shifted. Chebyshev Polynomials Tk(x) (Chebyshev Polynomials ad-

justed to the range [0, 1]) are still defined by

Tk(x) = cos k4' (2. 8)

but expressed now in the variable (2. 7). The recursion relation cor-

responding to (2. 5) is

Tn+1 (x) = 2T
n 1

(x)T (x) - Tn-1 (x) (2. 9)



nxTo develop a general formula for the powers in terms of

T polynomials use the identity

xn = cos2n(q)/2)
(

ici:112+e-i:0/2 2n
2

= 2/4n[cos ( 211 ) cos(n-1).:0+...+( 2n),
1

n * 2n *= 2 /4 [T (x)+ (
n

) Tn-1 (x) +... + ( n
2n

)T0
*1

14

(2. 11)

The following discussion will be limited to the shifted Chebyshev Poly-
*

nomials Tk(x) over the interval [0, 1]. The Chebyshev Polyno-

mials T (x) have analogous properties over the interval [-1,1].

Minimax Properties of the Chebyshev Polynomials

The following 'minimax' property accounts more than any other

for the usefulness of Chebyshev Polynomials in approximation work.

Lemma. Among polynomials of degree n with leading coef-

,1-2n *ficient one, Qn(x) = 2 T (x)

value on [0, 1].

has the least possible maximum

Proof: (by contradiction) It can be seen that Qn(x) attains its

maximum value (alternately ±1 /22n-1) n + 1 times on [0,1].

Call these points x. the T abcissas.

Assume there exists a polynomial Rn(x) of nth degree with
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leading coefficient 1, which has a smaller maximum magnitude than

Q
n(x) on [0, 1]. Let x, be a T abscissa for which

2n-1
Qn(x) = 1 /2 . Then

Similarly if x.
3

Then,

R (x.) - Q (x. ) < 0
n n

is a T abscissa for which Q (x.) = -1 /22n-1

R (x.) - Q (x.) > 0n 3 n

j

It follows that R n(x) Qn(x) is alternately positive and negative and

since there are (n+1) T abscissa points over the interval [0, 1],

the function Rn(x) - Qn(x) has at least n zeros. But since P
n(x)

and Qn(x) both have highest coefficient equal to 1, Rn(x) Q (x)

is a polynomial of degree (n-1), and thus can have n zeros only

if it is identically zero. This contradicts our assumption, therefore

Rn(x) does not exist.

Corollary. In the interval [0,1] a polynomial of nth degree

with leading coefficient an has to assume at least once an absolute

value a /22n-1
n

Suppose now that we want to approximate a polynomial Pn of

nth degree in some interval [a, b]. There exists in general a

unique polynomial Pm of degree < n such that



Max I P - P 1

[a, b] m n

16

(2. 12)

is as small as possible. Then P is called a minimax approxima-

tion of P.
It can be shown that the T expansion has the property that

every partial sum is the minimax approximation of the next partial

sum on [0,1]. Consider a polynomial of nth degree

Q (x)=a
0

+a
1
x+...+a xn (2. 13)

J.

Using (2.11) expand. Qn(x) in terms of the T polynomials to get

Qn(x) = C
0

T
0

(x) + C
1

T
1
(x) + . . . + C

n
T

n
(x).

The partial sums of this expansion are given by

In particular,

and

S (x) =

k=1

C
k

T
k

(x), m = 0,1,2, ... , n.

(2. 14)

(2. 15)

S n-1 (x) = C
0

T
0

(x) + C
1

T
1
(x) + ...+ Cn-1 T n-1 (x) (2. 16)

On(x) - S n-1 (x) = Cn
T n (x)

So in the interval [0,1]

(2. 17)



Qn(x) - Sn-1 (x) < IC n
I
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(2. 18)

That is, if Qn(x) is approximated by S n-1(x) the error is at most

equal to I CnI . From (2. 14) it can be seen that (:)n(x) has highest

coefficient 22n-11C
I

. Now consider Pn-1(x) a polynomial of

degree n-1. Qn(x) - Pn-1(x) is a polynomial of nth degree with

highest coefficient 2
2n-1C

, and according to the corollary above,
n

there exists at least one point y on [0,1] such that

2n-1
2 Cn

Qn(y) Pn-1 (y) >
2
2n-1 Cn (2. 19)

Comparison of (2.18) and (2. 19) implies that Sn_i is a minimax

approximation of Qn(x) by a polynomial of degree n-1 on [0,1].

Similarly Sn-2 (x) is the minimax approximation of S n-1(x)

by a polynomial of degree n-2, and so on. We should add here that

Sn-
2

is certainly not the best approximation of Sn(x) by a poly-

nomial of degree n-2 on [0. 1]. In fact it can be shown, by the

same reasoning as above, that for any polynomial Pn..2 of degree

n- 2, there exists a point y in [0,1] such that

IQn(y) - P I

n- 2
(y)I > C n-1 (2.21)

However while Sn-2 (x) is not the minimax approximation it

is a very good one, especially if we assume that the coefficients
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decrease rapidly in the T expansion (2. 11). And in general if the

expansion is truncated after the mth term, S (x) will be a nearm

minimax approximation of Q (x) by a polynomial of degree m on

[0, 1].

A comparison of the Taylor Series expansion and the Chebyshev

expansion shows that the latter reduces the error of the Taylor

expansion by a factor of

for of 2n-1

2n-1
2 in the range [0,1] (and by a fac-

in the range [ -1, 1] ) making great accuracy possible

even with a small number of terms.

Chebyshev Economization--Telescoping a Power Series

The procedure of telescoping a power series can best be illus-

trated by an example. If we truncate the power series expansion of
Trsin
2
x after the 9th degree term, we get

(Tr
X3+

5 (Tr/2)7 7 (Tr/2)9 9

5!
(2. 22)P (x) = -

/2)3
!

x + x - x + x

The maximum absolute error in the approximation of sin-2 x by

P
9(x)

in [-1,1] is about 3 x 10-5. Using (2. 11) we can expand

(2. 22) into the following Chebyshev series

P9(x) = 1.13364816T
1

- . 13804176T3 + .00448040T5
5

. 00006770T
7

+ . 00000059T
9

(2.23)
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Here we have exactly the same function but rearranged to increase the

convergence. This more rapid convergence allows us to drop terms.

Since I Tk (x)l< 1 in [-1,1] the error caused by dropping a term

is simply the coefficient of that term. We get an upper bound on the

error at any point in the range by adding up the absolute values of the

dropped terms. So that terms T9 and T7 can be dropped without

incurring an error greater than

.6770 x 104 + .59 x 10 6= 6.8 x 10-5.

Rearranging this truncated expansion back into a polynomial in x,

we get

1sin
2
Trx = 0.07185143x5 - . 64210139x

3 + 1.57431708x (2. 24)

a fifth degree polynomial approximation with a maximum absolute

error of 9.8 x 10-5.

A Computer Program to Perform Chebyshev Economization

CHEBY is a computer program designed to perform Chebyshev

economization (i.e. , carry out the process outlined above) on [0, 1].

The program will accept a polynomial of arbitrary degree and a

specification of the maximum tolerable error to be permitted in the

economized polynomial. It outputs the coefficients of the T -expansion

(like (2. 23) for [0, 1]) and the coefficients of the economized



polynomial in x (2. 24).

20

CHEBY proceeds in a way completely analogous to the example

worked above, arranging the numerical work to take advantage of the

cumulative capabilities of the machine.

We can trace through a simple example to see how CHEBY and

its main subroutines (indicated in parenthesis) proceed. Consider

the fourth degree polynomial

P(x) = 1 + x + 2x 2 + 3x
3 + 4x4 (note: 2

2n-1
= 128)

First to cancel out the dinominators in the expressions for the powers

of x in terms of the T polynomials, weigh the coefficients

(WEIGH) from the lowest to highest by the vector

this gives

(256/128, 64/128, 16/128, 4/128 1/128)

(2, 1/2, 1/4, 3/32, 1/32).

Now multiply (MULTIPLY) this row by the coefficients of the explicit

expressions of the powers x (n = 0, , 4) in the following man-

ner (these coefficients are previously computed by POWERS using

(2. 11) and stored contiguously into memory).
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1 2

1 /2 2 1 1 1 /2

1 /4

(1/232

x 6 4 1 3/2 1 1/4

3 /32 20 15 6 1 15/8 45/32 9/32 3/32

70 56 28 8 1 35/16 28/16 7 /8 1 /4 1/32/

And add up the columns to get (ADD)

P(x) = 8.56250T
0

+ 4.65625T
1

+ 1.68750T
2

+ .34375T
3

+ .03125T 4

Now start adding absolute values of the coefficients from right to left

until the sum is as near as possible without exceeding the allowable

error bound, say 1.0 (TRUNCATE). Using (2. 10) compute the coef-
*

ficients of the Tn polynomials for n = 0,1,2 (COEFF) and rear-

range the truncated T expansion back into a polynomial in x as

follows

1/2 4. 28

4.66 x -1 2 = -4.66 9.32

\1.69 .1 -8 8 1.69 -13.52

Adding the columns, we get

P(x) = 1.31 - 4. 20x + 13, 52x 2

13. 52)



22

Determining the Chebyshev Series Coefficients

It is not always possible to use the methods of the previous two

sections to obtain numerical values of the Chebyshev series coeffi-

cients. For example if we start with a Taylor expansion the numeri-

cal work becomes unwieldy near the convergence radius of the Taylor

series, since a very large number of terms is needed at the start.

However other numerical methods are available, two of which are

given below.

If F(x) = akTk, and we want to compute approximate values

for the coefficients ak. Let n be a positive integer and consider

for r = 0,1, .. . the numbers

n
2

Irk
Trk

r
k=0

(2. 25)

Fike [5] shows that for n sufficiently larger than r, the differ-

ence a' - ar is negligibly small (approximately azn-r). So ar'
r

can be used to approximate ar. Of course to use this method we

must have some means of evaluating F(x).

The Bessel functions can often be used to evaluate Chebyshev
Trseries coefficients. For example if sin-4x is given by the

Chebyshev series expansion
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a T (x),
2k+ 1 2k+ 1

it has been shown (Snyder [16]) that

a
2k+1

= (-1)kJ
2k+1

(ir/4),

where J2k+1 is the Bessel function of the first kind of order 2k+1,

and

Jn(x) =

00

r=0

1 Zr+n
r ( 2 x)

r!(r+n)!

Most Tables of Chebyshev series coefficients are compiled using these

methods (e. g. , Vionnet [19] ).

Determining Minimax Approximations Using the Chebyshev
Series Coefficients

As was shown, the polynomial Pn(x) obtained by truncating

the power series

F(x) = akTk (x) (2. 26)

after the term a nTn(x) is usually a near minimax approximation to

F(x) in [-1, 1] (for polynomials of degree n). We would like to

obtain Pn(x) a polynomial of degree n that approximates F(x)
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with a minimum absolute error in [-1, 1].

The coefficients of the Chebyshev series can be used to compute

accurate values for the coefficients of Pn(x) (see Hornecker [7] ).

We illustrate with an example [5]. The polynomial

P6(x) = C
0
T

0
(x) + C

2
T

2
(x) + C

4
T 4(x) + C

6 T 6(x) (2. 27)

1is an approximation to cos
4

TrX in [-1, 1] with

Now let

CO = 1.7032638274

C2 = -. 1464366444

.0019214493

C6
-. 0000099650

1

0
P 6(x) =

2
C T

0 2
(x) + C T

2 6
(x) + C

4
T 4(x) + C T

6
(x)

denote the Chebyshev representation of P 6(x). Very accurate

(2. 28)

* * * *
approximations for CO' C2, C4, C6 can be expressed in terms of

the coefficients Ck of the series (2. 27) as follows:
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C4
2

3C C 2C
1 1 10 12 10 12 10

C
14

2
CO = CO - -

C3
+

C2 2 C8
+ C16

8 8

3
C:; 10

2C 10C12C2 = C2 +
C2

C8
- + C14

8

2
C10 2C4 4C 10C1

10C4 = C4
C

+ C +
12 3

8 C8
8

C10
10 12

2C C
3

C = C + C -
6 6 10 c 2 C8

8

C C
10 14
C8

(2. 29)

Substituting these approximations into (2. 28) and rearranging terms,

we get

and

P
6
(x) = .9999999724 - . 308424253x2 + . 01548499153x4

.0003188805x6

, * 1P6(x) - cos
4
Trx1 < .27577 x 10-7

(2.30)

It is worthwhile to note that the accuracy of the best polynomial

in this case is little better than the truncated. Chebyshev series. In

fact

1cos 4Trx1 < IC
8

1 + IC
10

1 +...

< .27625 x 10 -7



Hornecker shows that if C2r is small compared with C8 for

2r < 8, then the maximum error of the best polynomial of degree 6

is given approximately by

2 2 2 2
C C C

1c 81 l 7" + 2
10 10 12 10 C

2
276 x 107

C8 C
8
C8 C4

+
12

C8
8

26

(2.31)

So the accuracy of the best polynomial often is little better than that

of the truncated Chebyshev series. In fact, far greater gain would

come from the simple inclusion of just one more term in the series.
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III. EVALUATION OF POLYNOMIALS WITH INITIAL
CONDITIONING OF THE COEFFICIENTS

We would like to construct computation schemes which evaluate

general polynomials Pn(x) of degree n in two stages. In the first

stage the coefficients of Pn(x) are manipulated (conditioned), using

operations confined to the coefficients, transferring the polynomial to

a special form. In the second stage this special polynomial is evalu-

ated for specific values of its argument.

It can be shown that for polynomials of general form, it is im-

possible to construct a scheme without initial conditioning of the

coefficients, which is more efficient than Horner's scheme. So we

are interested in schemes where the number of operations required to

evaluate the special polynomial in the second stage is less than that

for Horner's scheme. Two examples of this were cited in the intro-

duction.

Ostrowski 2 has shown that Horner 's scheme minimizes the total

number of operations, counting additions equally with multiplications,

for the evaluation of polynomials of degree <4. So we will only

consider polynomials of degree >4 in this discussion, and it will be

seen that Horner's scheme is never optimal for n > 4.

2Ostrowski, A. M. On Two Problems in Abstract Algebra Con-
nected with Horner's Rule, Studies presented to R. von Mises,
Academic Press, New York 1954, 40-48.
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First we cite two general schemes by which an arbitrary poly-

nomial of degree n with coefficients on the real axis, can be com-

puted using only real numbers. The first and most elementary

algorithm (Knuth [8] ) gives best results for a large class of polyno-

mials of degree 6, 7, or 8 and some of higher order. The second

n+4
2

requires multiplications and n+1 additions for any poly-

nomial of degree n.

Consider the polynomial

Pn(x) = xn + a.
1
x

n-1
+ , + a

_
x + an

where n = 2m. This can be written as

zn + zn- 1 + b 2zn-2 + + bn

with z = y+t, t = (a1-1)/n. Now if the equation

(3. 1)

(3, 2)

am- I + b3 am- 2 + b
5a

m-3
+ . . .+ bn- = A (3.3)

has a real root an, then (applying synthetic division by the quadra-

tic factor (z
2-an)

)

n3P (x) = n2+z +C zn-4+...+C )(z2 -a ) + X (3.4)
n 2 n-2 n n

If no real root exists, apply Horner's rule to get
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n-3 n-4Pn(x) = ((zn-2
+z +b

2z
+...+bn-2 )z+bn-1 )z + bn (3. 5

This process can be repeated on the reduced polynomial until finally

we come to the following

P (x) = (z 2+z+C)(z
-0.4)+X4 (3. 6)

which can be easily computed. Knuth [8] describes this algorithm
1with the auxiliary polynomials g(z) and p ( ) ( 1 = 1, 2, .. , -a-n),

connected by the relations:

z = y + t

g = z z = z2

p
1

=g+z+C

p
2

= p
1

(g-a
4)

+ X4

p3 = p2 (g-a6) + k6 or (p2 z+a6)z + X.6 (3. 7)

etc, the 'or' depending on whether the reduction equations (3. 3) have

real roots or not. The fact that reduction equations of odd degree

always have real roots implies that Horner's method is never optimal

for polynomials of degree >4. In general this scheme requires

n+1 additions and n-r-1 multiplications, where r is the number

of reduction equations having a real root. We take the following

obviously contrived example



P 8(x) = x 8 + x7 + 3x6 + 4x5
- x4 + 2x3

- 3x2 - 4x + 2

t = 0 which simplifies things and the first reduction equation is

a3 + 4a2 + 2a - 4 = 0

Taking the root and applying the squaring rule

P8(z) = (z6 +z 5 +z
4+2z 3 -3z 2 -2z+3)(z2+2) - 4

The next reduction equation

a2 + 2a - 2= 0

has real roots but let's apply Horner's rule twice

P 3(z) = ((z4+z3 +z
2+2z-3)z-2)z + 3

The last reduction equation is

So we have

a + 2 = 0, so 7-- -2 and

P 2(z) = (z
2+z-1)(z2+2)

- 1

P 8(z) = ((((z +z-1)(z 2 +2)-1)z-2)z+3)(z
2+2) - 4

30

(3. 1')

(3.4')

(3. 5')

(3. 6')

which can be evaluated using 5 multiplications and 9 additions (count-

ing z = y+0).
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In order to compute a polynomial Pn(x) of degree n > 5,

Pan [14] constructs the auxiliary polynomials g(x), h (x), and pr(x)

where

g2 = x x x2

h
2 2

+x=x2 +x

= x + X
1

= (g +X.4s-1 )(h +X4s-2) + X4s

(s)
P4s+1 = p 4s-3g

4
+ X.4s+1

P4k+3
= p4k+1 (g

2
+X.

4k4-2)
+ X.

4k+3

Pn(x) =

n

i=0

(s = 1,2,.,.,k)

for n = 4k+1, 4k+3

a xpn_ + an for n = 4k+2, 4k+4

As stated above the second stage of this scheme requires

(3.8)

[n +4n+41
2 -I

multiplications and n+1 additions. The first stage consists of de-

termining the parameters X.. Pan proves the existence of real

values N. . , X n
satisfying the Equations (3.8) when n > 5 and

the coefficients a0, , an lie on the real axis, using the following

result - - stated without proof. If

Q (x) = x4 + x3
+ 131x

2
+ 132x + 133

then there exist real numbers X1, X 2' and X.3 such that

(3. 9)



Q4(x) = (x
2

+x+X
2

)(x 2
+X.1) +

Using this set

2 2 4 3 (s) 2 (s) (s)(x +x+X4s-2)(x +X.4s-1) + X4s =x +x +p2 x +p3 + (34

(s = 1,2, ... ,k)

It suffices to consider the case n = 4k+1

4k+1 (4k+1) 4k (4k+1)P
4k+1

(x) x + a
1 x + a4k+1

(4k3) (k) (k) (k)Real numbers a(14k-3), , a , P2 , ,R4 , 4k +13

be found such that

where

32

(3. 10)

(3.11)

can always

P 4k+1(x) = P 4k-3 (x)(x4+x3+13(k)
2

+ 13
(k)x

+ 13(k) (3.12)
2 3 4

x 4k+1

P4k-3 k-(x) x4k-3 + a(1
4k-3)x4k-4 + ...+ a4(4k

3

3)

Repeating this process for s = k, k-1, , 1 Pan constructs an
(4s+1)iterative process for obtaining the unknown parameters a
9.

(q = 1, ... ,4s+1) from the known coefficients (s) (s) (s)
X4s+1, 13 2 , P3 , P4 ,

a(4s -3)
(1/ = 1,2, . , 4s-3). Now for each s = 1,2, ,k determine

the real variables 4s-3'k4s using Equation (3. 10). Thus

we have the required real functions = X.. (a , , a)
1 1 0 n
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We can follow through the above algorithm with an example.

Take the polynomial

2
P 9(x) = x9 + 3x$ + 5x7 + 7x6 + 9x5 + 9x

4 + 7x3 + 5x + 3x + 1

(3.11')

This can be written in the form

( ( (
P9(x) = P3(x)(x

4
+x

3
+Pz

2) x2
+ P3

)
x + f34

2)
) X.9

(x
5
+2x

4+2x
3+2x +2x+1)(x4

+x
3

+x
2

+x+1 )

(2) (2) (2)
P12 la P3 1, P4

Similarly

, and. X9 = 0.

4 3 (1) 2 (1) (1) + xP 5(x) = P (x)(x +x 4-p2 x x+p )
51

=>

(x+1)(x
4

+x
3

+x
2
+x+1)

(1)
p

2
1, p(l) 1, p(1) 1, and. X

5
= Oa

3

To solve for X X. 3' X
4 we get from (3. 10) with s = 1

21

=>

4 3 2x +x +x +x+1= (x z
+X

3
)(x2+x+X

2)
+ X.4

X = 0 X =
2 3

and (3.101 with s = 2 gives

' 1

(3. 12')

(3. 12 ")

(3. 10')



=>

4 3 2 2 2x +x +x +x+1= (x 4-X7)(x +x+k ) + X8
8

A6 = 0' X7 = 1, X8 = 1.

34

(3.10")

Thus we have found real functions X. = X. (a , a ) for
1 1 0 n

which all the equations of scheme (3. 8) are satisfied. (Note:

1
= a (1)

1
. ) Now for stage 2, i.e. , evaluating the polynomial at spe-

cific values of its argument. For x = 1, we get

Therefore

p0 = 1

P1 = x + X
1

= 2

p(4 1) = (p
0

+x+X.
2

)(p
0

+X3) + X4 = 5

(

P4
2)

(P0 +x+X6)(P +k7) + X = 5

P9 = P5

p(4 1) +
5

= 10

p(2) + X9 = 50
4

P9(1) = a
0

p
9

= 50

a result arrived at after 6M + 10A operations.

The cases n = 4k+2, n = 4k+3, and n = 4k+4 follow easily

from the basic case n = 4k+1. The above k-step procedure of deter-

mining four of the k.' at a time is not usually as practical as direct

evaluation of the n nonlinear equations obtained by equating the



coefficients in all of the equations (3. 8). For example with n = 5.

+P

5
(x) = a 0x5 +a x4 +a

2x
3 a x 2 +a4x + a

5

pl = x +
1

(1) 2
g
4

= (x +X.
3

)(x +x+X
2)

+ X.4

p5 p15 1 4 5

(1)
P5 p5 a0 a0(P1 g4 -X5)

= a {(x+X
1
)[(x2+X

3
)(x2+x+X

2
)+X

4
]+X

5}

= a
0

x(X
2

X
3

+X
1

X
3

+X
4

) + a
0

x2
(X

1
X

2
+X.

3
+k

1
X.

3
) + a

0
x3

(X.
1
+X. +k

3)

+ a
0
x4

(1+X
1

) + a0x5 + a
0

(X
1

X
2X.

+X
1

X.
4

+X.
5

)

Equating like coefficients of (3.14) and (3. 15) we get

a
1

=
1 a0-

al(a 2-a ) a1
X2 =

2
+

aa 0 a0
0

a2
X

3
=

a
0

- X - X
1 2

a4 a5
X - X =--XX.X _XX1 42 3 1 3' 5 ao 1 2 34 a0

35

(3. 14)

(3. 15)

(3.16)
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Belaga [1] has shown that any scheme for evaluating an arbitrary

nth degree polynomial must contain at least [n/2] + 1 multiplica-

tions and n additions. The above scheme requires n+1 additions

and one more than the minimum attainable number of multiplications

for even n. Lifting the restriction on real parameters, Pan [13]

constructs a scheme in which the lower bound on the number of oper-

ations is attained to within one addition (for n = 2r).

Po

p2 = z(z+X.1),

P4 = (P +k2)(P2+z".3) + X.4

2s+2 P2s(P2+X2s+1) X2s+2

Pn(z) =
a

0
p 2r for n = 2r

a
0

zp
2r + an for n = 2r-1

2,3,...,r-1)

(3.17)

In Chapter IV we make considerable use of this scheme and will

need to be able to determine real parameters Xi, An satisfying

all the equations (3. 17) for given values of the coefficients a0,..., an.

In article [13] Pan presents an operator program for the auto-

matic determination of sets of real parameters Xi. He lets

denote the schemes to be constructed, each
MiM.

r' r+2' °'' in -2
1requiring
2
(n+1) + 1 multiplications and from n to n+2 addi-

tions for a given polynomial of power n. It seems natural to select

(s) (s+2) (s) (s)a = a,
(-115)aj-1 (-Xs+1)ai-2'

j 1,2, , s
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the scheme with the least number of additions. However if the pre-

liminary manipulations of the coefficients leads to complex numbers

this scheme is not suitable for computation, and one of the other

schemes M.
r,ir+2' , in-2 must be used.

The following equations are used in Pan's operator program to

determine the parameters X.,.

where

where

(n)
a

ia. 3 = 0,1,...,n
3 a

0

X
1

(n)a1

n-r-2)/2
i .-k
r+23 r

j=0
[n/2]

k
0 for r = 2, 3

r [1 for r = 5

(3. 18)

(3.19)

s = r,r+2,...,n-2 (3.20)

[(s+i)/z] s+l-m

2
(_,s+i)m ass++21-i...m(-vs)i = 0,

m=0 i=m

s = n-2, n-4, r,

a(0
s+1) = 1, Cm = i ! im ! ( -m) !

1

(s) (s+2) (s) s)
a = a, (-Vs)aj-1 (-ks+1)cli-2'

j = 1, 2, ... , s

(3. 21



where

(s+2)
X

s+1
as(s) + Xs+2 = as+2

a(s) a(0 s+1) a (s
1

) = 0; r < s < n-2; s-r even;
0 -

P = xrr

r

j=1

(r) r-j
x

J

x2 + X
1
x + X2 for r = 2,

x3 + X
1
x

2+
X.

2x
for r = 3,

((x 2
+X.

1
x+X.

2
)(x

2
+(X.

1
+1)x+X.

3
)+X.

4)x
+ X5 for r = 5

Using the operator notation of Keetov the algorithm is:

4 6 2 3

Api, A24 A3 P4TA5P6 it A7 9C

where the operators proceed as follows:

38

(3. 22)

(3. 23)

(3. 24)

- Determine a(n), (j = 0, 1, 2, .. . , n)

A2 - Set the value of r; ir,ir+2, , in-2 (if is repeated, dif-

ferent sets of r; ir' ir+2' are used); determine X1in-2

from formula (3. 19); determine u. fromr' r+2'

(3. 20); Set s = n.

A3 - s = s /2; determine



b(s)=
rn

C. =-
1

s+l-m
m (s+2) i-mC. a (-11 s )

s+zi

i=m

i!
m ! (i-m) ! ;
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P4 Go to A2 if Equation (3. 21) has no real roots X
s+1

; otherwise

go to A5.

A5 - Determine the real solution Xs+1 of Equation (3.21); deter-

mine a.(s), j = 1, 2, , s; X s+2

tions (3.23).

P6 - Go to A3 if s > r+2; Go to A7 if s = r.

from the system of Equa-

A7 - Determine X1, X r from (3.23).

- Stop.

We give a simple example with n = 4.

P 4(x) = x4 + x3 + x2 + x + 1

Choose the computing scheme M21 (i.e., r = 2, i2 = 1):

( (Al a
o
4) 1, a (4)

-_ 1, ..., a
4
4)

1.

(
A2 - i

2
= 1, XI = a14) -

j=0

= 1 - 1 = 0, and p.2 = + i2= 1.

(3. 25)



4

3

b(2) cOct(34).
0 1 112/

1=0

(4) (4) (4) 2 (4) 3

a3 a2 (-112) + (.41'2) a0 (-112)

= 1 + 1(-1) + 1(+1) + 1(-1) =

b(2) =
1

i= 1

m=0

(Cl a(4).(-p. )i- 1 = a(4) + 2a
0
4) (-112) = 1 + 2(1)(-1) = -1

2-1 1

m
b

(2)
0m

=> b(z) - k b (2)
0

o 3 1
=> (2)

3
= b

0
(2)

/131 = 0

(2) (2)- Determine al , a
2

, and k4 from (3. 23)

a12) (4) (2) (2)
+ `-112/a0 `-k3)a1

(2)
=

(4) 2 (2)
a2 a2 2)a2

=> (
a(12) = 1 - ao2) = 1 - 1 = 0

(2) (2) anda2 1 al 1

3 2
a(2) + X

4
= a(4

4)
=>

4
= 1

2

2 (2) 2 -i 2 (2) (2) 2- .P2 = x ct.
1

x x + al x
--x +X x+X

2 1 2

1=1

=> k2 = 1

40



So,

and

=>

etc.

X1 = 0 , X.2 = 1, X.3 = 0, X4 = 1

P (x) = (x2
+xX

1+X
)(xz

+xX
1

+x+X. 3) + X4

P4(1) = (1+0+1)(1+0+1+0) + 1 = 5

P4(2) = (4+0+1)(4+0+2+0) + 1 = 31,

41
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IV. IMPLEMENTING SOME SINE AND COSINE
EVALUATION ROUTINES

SINCOS is a computer program designed to evaluate the sine and

cosine functions in a fast and efficient manner. The program has a

variable precision feature which allows object program execution in

different precisions giving it a variable accuracy capability. The

absolute error of the returned value is guaranteed to be within some

maximum bound passed as a parameter by the calling program.

SINCOS is divided into four main subroutines; SIN, COS, SIN3, and.

COS3. SIN and. COS are double precision routines while SIN3 and.

COS3 use triple precision arithmetic.

Using double precision (36 bit mantissias) arithmetic we can

obtain the sine function with a maximum absolute error of 5.5 x 109,

and the cosine accurate to 7.0 x 10-9. To achieve greater accuracies

higher precision routines are needed. Triple precision (48 bit

mantissias) arithmetic gives results with maximum absolute errors

1. 6 x 10-15 and 5.7 x 1014 for the sine and cosine respectively.

SIN4 and COS4, quadriple precision (72 bit mantissias) routines, are

described here but have not been implemented in the present version of

the program. Ideally this precision has the capability of achieving

twenty decimal places of accuracy. It will be convenient to divide our

discussion into two parts--first considering SIN and COS with the
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higher precision routines coming later.

SIN and COS

Since SIN and. COS proceed in an analogous fashion it can be

assumed, unless noted otherwise, that any process described for

SIN(COS) has a counterpart in COS(SIN). Our first task is the reduce

the argument range to the interval [-1, 1] making possible the use

of Chebyshev approximation techniques.

It can be shown that having a polynomial approximation to
1

SIN
2
Trz for -.1 < z < 1 permits the evaluation of SIN x for any x.

Proceed as follows:

Let u = (2/Tr)x, and v = u - 4[(1-4 )(u+1)]. Then, if

v < 1, set z = v; otherwise, set z = 2 - v.

1We claim, (1) -1 < z < 1 and (2) sin Trz = sin x.
2

1 1Proof: sin x = sin
2
Tru = sin

2
Tr v+4[(1)(u+1)])

1 1
= sin(-2 Trv+2Tri_(-4 )(u+1)])

1= sin
2

Try

It is easily seen that -1 < v < 3, therefore

1 ) If v < 1 , then z = v and -1 < z < 1.

2) If v > 1, then z = 2 - v and -1 < z < 1. And

(4. 1)



1 1

2

1sin
2
Trz = sin --Tr(2-v) = sin (Tr- 2 irv)

1= sin
2
-ITV = sin x.

In the subroutine SIN, z is calculated directly using

44

(4. 2)

z = 1 - 141{((2/10x+1)/4}1-21. (4.3)

1Similarly having a polynomial approximation to cos
2
Trz for

-1 < z < 1 permits the evaluation of cos x for any x. Where

z = 141{((2/Tr)x+1)/4}1-21 - 1 (4.4)

Now in order to find minimax polynomial approximations of the

sine and cosine functions on [-co, +00] we start with the Maclaurin

expansions

1 Tr (Tr/21
3

z
3

(Tr/2)
5

z
5

(IT/2)
7

z
7

sin 2 Trz = 2 z - + (4.5)
3! 5! 7!

1 Tr (Tr /2)2z
2

(Tr /2)4z4 (Tr /2)6z6
cos

2
Tr Z =

2
-

2 4! 6!
. . . (4. 6)

[ -1, 1] the series (4. 5) truncated after the term
1will approximate sin
2
irz (and thus sin x for any x) with an

absolute error no greater than 2.0 x 10 7
. Telescoping this truncated

11
z

11
(Tr/2)

11!

series in terms of the Chebyshev polynomials Tk(z) gives
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sin 2Trz = 1. 13364817782T - 0.13807177658T
3

+ 0.00449071424T5
5

- 0.00006770128T
7

+ 0.00000058914T 9- 0°00000000334T 11

(4.7)

The terms in T11, T9, and. T7 can be dropped causing an addi-

tional error no greater than 7.0 x 10-5. Rearranging back into a

polynomial in z we get

P 5(z) = .07185143z 5 - .64210139z3 + 1.57431708z (4. 8)

1This is a very good approximation to sin
2
-11"Z by a fifth degree poly-

nomial. However, we are looking for P 5(z) the best (minimax)

approximation of 1sin
2

Trz by a polynomial of degree 5.

As demonstrated in Chapter II, formulas have been developed

(Hornecker [7]) by means of which very accurate numerical values

for the coefficients of P
5(z)

can be obtained from the coefficients

C
1,

C3, C5 of the Chebyshev series (4.7). If we let

P (z) = C
1T1

+ C 3T + C ,T
5 5

denote the Chebyshev series approximation of P
5(z).

Then

(4. 9)

3 4 2
C9 C

9
C11

C9
C11 C

9
C13

C
1

= C
1

+ - 2 + C
13 3

9 +3 z -
C7 C7

+ C15
2 C7C7 C7 C7

(4. 10)



2
C4

2
C 9C*

C = C - + C + 2 9 - 492 2
13

3 3 C
9

7
11 2

11

7C7 C7

3CC
11*

C = C + C - + 2
C

9

5 5 9
9

c 2 C7
7
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(4. 10)

Substituting the known values Ck (k =1,...,15) we can solve (4. 10)

for the C
k Is and rearranging (4.9) we get

P5(z) = .0727102z 5 - .6432292z3 + 1.5706268z, (4.11)

1the best approximation to sin
2
TrZ by a polynomial of fifth degree,

for I zi < 1.

These methods and others have been used in the past to find
1 1

2
best approximating polynomials to sin

2
Trz and cos Trz

Lyusternik, et al. [11] have compiled and systematized many of the

approximating formulas appearing in the literature, some of which

are reproduced in Tables I and II. The coefficients there are used in

the numerical algorithms which make up SIN and COS.

Now,

P5(z) /z = .0727102z 4
- .6432294z 2 + 1.570794352 (4. 12)

is a second degree polynomial in z
2. Using Horner's rule we get

P5(z) = ((. 0727102z -.6432292) 2 + 1.570794352)z. (4. 13)



Table I. 1
(f(x) = sin 2 Trx).

Power n of
Polynomial

Approximation
Approximation

Error
Computing

Scheme

Values of Coefficients
ao, , an

Values of Parameters
X

1
. . X

n
(if any)

' '

Number of Operations
in Scheme
M A

2 1.1 x 10-4 Homer 0.0727102 2 2

-0. 6432292
1.5706268

3 1.1 x 10-6 Horner -0. 004362476 3 3

0. 079487663
-0. 645920978
1.570794852

4 S. 5 x 10-9 0.00015148419 -15. 9265787407 5
1

-0. 00467376557 327. 8793687059
(3.17) 0.07968967928 -39. 54931896929

-0. 64596371106 23336. 78037853
1.57079631847

1.3 x 10
-8

(3.8) - 0.00000341817225 -47. 871 77461 7 4 6

0. 0001602171 3430 -43123. 906284
-0. 00468162023910 44541. 393704
0.07969958728630 19231201 41. 3

-0. 64596409264401 110662978.0
1. 57079632662143



1Table II. (f(x) = cos 2 irx).

Power n of
Polynomial

Approximation
Approximation

Error
Computing

Scheme

Values of Coefficients
ao, , an

Values of Parameters
X1, . ,X (if any)

Number of Operations
in Scheme
M A

2 5. 9 x 10-4 Horner 0. 2239903 2

-1. 2227967
0. 9994032

-8
4 5. 0 x 10 M2

2
0.00085811 -1 2. 62575311 3

-0.02081046 441. 1 248973
(3.17) 0. 25365065 -292. 3165656

-1. 23369819 130113. 4667
0. 99999995

S 7.0 x 10-9 (3.8) -0. 0000237888 -39. 575 72891 4447 4 6

0.0009176703 -24693. 987676860
-0. 0208626564 25610. 558310990
0.2536693147 633492228. 40278

-1. 2337005336 421 22620. 748651
0. 9999999998
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And P
5

is evaluated at the expense of 4M + 2A operations. Sim-
ac

ilarly P 7(z) is computed with 5M + 3A operations.

Consider

P
9
(z)/z = .00015148419z 8

- .004673765572z 6
+ . 07 96 896 7 9 2 8 2 z

4

- .64596371106z 2 + 1.57079631847 (4. 14)

1

a fourth degree polynomial in z
2 = y, which approximates sin --Trz

2

(-1 < z < 1) with a maximum absolute error of 55 x 10-10. Using the

computing scheme (3.17) we can evaluate this polynomial in 6M + 5A

operations as follows:

P9(z) = .00015148419z{(y 2
+y-X.

1
+X

2
)(y +yX

1
+y+X

3
)+ X4}

where

X1 = -15.9265787407

X2 = 327.7983687059

X3 = -39.54931896929

X4 = 23336.78037853.

(4. 15)

The parameters
1

... X
4

were determined using the operator

program (3.24) with r = 2 and i
2

= 1. (M),
1

Finally scheme (3. 8) is used to evaluate



P
11

(z)/z = -.00000341817225z 10 + .00016021713430z
8

- . 00468162023910z6 + . 07969958728630z4

- .64596409264401z 2 + 1.57079632662143

a fifth degree polynomial in z2 = y. So we write

50

(4. 16)

P 11(z) = -.00000341817225z{(y+X
1

)[(y2+X
) (y +y+X

2
)+X

4
+ X5} (4. 17)

The parameters

(3. 16).

X
1,

, X5 are determined using the formulas

X
1

= -47.871774617

X
2

= -43123.906284

A3 T 44541.393704

X
4

= 1923120141.3

X
5

= 110662998.0

Tables I and II summarize the approximating polynomials and

corresponding solution schemes of SIN and. COS. The operation counts

refer to the requirements of the particular scheme only. In each case,

SIN requires two additional multiplications to perform the transforma-

tion

P(z) = z 0(y), where y = z2 (4.18)

while COS needs one additional multiplication to perform the change

of variable y =
2
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The program considers the accuracy requested by the user and

finds the lowest degree approximating polynomial capable of achieving

that accuracy. A variety of factors determine the error produced in

evaluating a particular polynomial on a computer.

The CDC 3300 represents a double precision floating point num-

ber internally with 36 bits of fraction. Thus an ideal function evalua-

tion routine should give results with a maximum absolute error of
-magnitude 236. That is if C(x) denotes for any value of x the

correct value of cos x and C*(x) is the returned value of an ideal

COS routine, the following should hold:

I C(x) - C*(x)J < 2-36 z 10 -10 (4. 19)

Since the computations are performed in the quasi-arithmetic of

the computer, results are often contaminated with rounding error in

excess of the bound (4.19)3 Propagation of roundoff error is most

damaging at points where the function is unstable. In COS the first

step is to compute y = (2/Tr)x. Actually what we get is y* an

approximation to y. Let

8 = Y*-Y
y

be the relative error in y*. Then

(4. 20)

30n the CDC 3300 roundoff error is approximately 101 x 10 .
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y* = y(6+1) = (2/Tr)x(6+1). (4. 21)

So to find cos x, COS evaluates

1cos
2
Try* = cos x(64-1). (4. 22)

Thus the rounding error in y* has the same effect as a small change

in the original argument x. This change is most significant at

points where cos x 1is unstable (e.g , at Tr).

Consider the computation of

(Z Tr1.570790000 = cos (-2 Tr - .0000063267...)

using ten digit arithmetic. The first step is to find

y* (2/T01.570790000.

(4. 23)

Suppose that the relative error in y* is .1 x 10 -10, that is a change

of 1 in the last digit. Then the machine evaluates cos 1.570790001

instead of 1.570790000 and we see

whereas,

cos 1.570790001 = .0000063257887

cos 1.570790000 = .0000063267949

So trying to compute cos 1.570790000 accurate to ten significant

digits using strictly ten digit (floating point) arithmetic is not possible.
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Naturally if the range-reduction calculations are performed in

higher precision arithmetic the rounding error can be restrained con-

siderably. However, for our purposes, it is impractical to do so as it

would require a difficult transition from double to triple precision

arithmetic. The cost in time would wipe out tenfold any gains from

the economical evaluation methods. This technique is most useful in

single precision routines with range reduction calculations easily done

in double precision.

The economical methods used here were chosen because they

are well conditioned for the approximating polynomials in SIN and

COS. That is the polynomial forms in each scheme define the function

with an accuracy comparable to the coefficients. Considering our re-

marks in the introduction, we take comparable to mean no more than

Nri-c+ r units of error in the kth significant digit of the norm

of f(x) on [-1, 1]. Where a polynomial approximation with an

absolute error of r units in the kth digit is used, and n is the

number of arithmetic operations performed (assuming kth digit

floating point arithmetic capability).

To see this consider Pan's scheme as used to evaluate the 9th

11 f 11

1
degree approximating polynomial (4. 14) for sin

2
Tr z

2
P(z) = .00015148419z{(y +yk +X. )(y +yk+y+X. )+X.

1 1 3 4

z -= -1,

(4. Z4)

where y = z 2, = .01, and kl, , X.4 are as given in (4.15) . The
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calculation proceeds as follows:

1

+ y 2

T1

+ A2
2

T2

T
1

+ y

+ X.3

-.159265787407

+. 0001
-. 159165787407

+327.7983687059
327.6391029185

-. 149165787407

-39.54931896929
T

3
-39.69848475669

T2 T -13006.8524027669

+ X
4 +23336.18037853

T4 10329.92797577 (4.25)

P(. 1) = .000015148419 T = .1564344652 (rounded to 10 digits)

whereas the true value is,

1P(. 1) = sin
2
Tr (. 1) = sin 9 = . 1 5643 446 5 0 ...

So we have an error of 2 units in the tenth decimal place.

The scheme requires 5A + 5M = 10 operations and the

1
approximating polynomial (4. 14) gives sin Trz with a maximum

absolute error of 5.5 x 10-9. However at z = . 1 (4. 14) is accurate

to ten decimal digits. Thus we would accept any value with an error
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of less than N/10 = 3.16 units in the tenth decimal place.

Clearly error suppression occurs above as the least significant

digits of each intermediate product are ignored in an immediate

summing with a larger number. The fact that -1 < z < 1 assures

these products will always be the smaller of the two. Horner's

scheme when applied to our approximating polynomials has a similar

effect (in fact values are often accurate to the full precision of the

calculations) since the polynomial coefficients decrease rapidly in

magnitude and the range is restricted to [ -1, 1].

There can remain one important drawback to implementing even

these well conditioned methods. On machines with only one floating

point arithmetic register the time saved in executing a reduced num-

ber of arithmetic operations often is wiped out by the necessity of

storing and retrieving intermediate results. The CDC 3300, the

machine on which this program is run, is a case in point. Store

instructions (3.8 p.sec) take about one third as long to execute as an

average floating point addition (11 p.sec). Thus counts of arithmetic

operations alone are not at all sufficient in estimating the relative

speeds of different evaluation methods. In fact the 'economical'

methods described thus far are (at least for low degree polynomials)

almost never as fast as Horner's method on the CDC 3300. The fol-

lowing table, based on the execution times published by the respective

companies, compares several of the methods used here (times given
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in p.sec).

Degree Method. CDC 3300
T

IBM 360/75

4 Horner 108. 12.48

4 (3.17), M2

1
118.2 11.23

5 Horner 135.0 15.50

5 (3.17), M2 138.0 13.44
0

5 (3.8) 154.0 14.37

6 Horner 162. 18.52

6 (3.17), M10 163.8 15.31

6 (3.8) 181. 17.5

And it can be seen that 'economical' methods are only advantages on

machines with multiple arithmetic registers.

SIN3 and COS3

SIN3 and COS3 are evaluation routines using triple precision

arithmetic. It is clear that the user sacrifices speed here in order

to obtain greater accuracies. This is due mainly to the limitations of

the machine being used (i.e. , single arithmetic register with no

extended precision hardware).

It can be shown that having a polynomial approximation to

sin 1

4
1

7TZ and cos 4 Trz for -1 < z < 1 permits the evaluation of

sin x and cos x for any x. For example to find cos 240, let

z = .666... and
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1cos 240 = - sin
4

Trz = - sin 30 = - .

The first ten coefficients of the Chebyshev series expansions
1for cos 14Trz and sin 4

Trz were calculated to 24 decimal places by

Vionnet [19]. From these minimax polynomial approximation for
1 1 1

sin 4 Trz and cos 4 Trz are found as before for sin 2Trz and

1cos
2
TrZ.

Let

1sin
4
Trz = 0. 7263756767T1 - 0. 0194200290T3

+ 0.0001516929T
5

- 0.0000005606T 7

CP
7

(z) = C
1
T + C 3T + C5T + 7T

(4. 26)

(4. 27)

be a Chebyshev series approximation to P7(z) a polynomial which

1approximates sin 7-1Trz with minimax absolute error in [-1, 1]

(for polynomials of degree < 7). Now using the formulas of

Hornecker [7].

C
+ 3

C 2C11C11 C13
c

15
C

1
= C

1
-

3
C9 Cz C9

9

3
C11 C11 C13

C3 = C3 + - 2 + C15
C9

C9

C

2 4 2
C11 C11 C11 C13 C11 C15

C
*=

C - + C + 2 - 4 + 2
5 5 C9 13 3

C2
C9

C9
9

(4. 28)



C13
C7 = C7 +C 7_1

-
11 13

9
9

And rounding to 10 decimal places

C1 = 0.7263756767

C3 = -0.0194200290

C5 = 0.0001516929

C7 = -0.0000005606

This example is interesting because to 10 decimal places
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(4. 28)

C
1

= C1, , C
7

= C7. So the accuracy of the best possible polyno

mial approximation is no better than the truncated Chebshev series

(4. 26) unless extended precision is used to represent the coefficients

and perform the calculations.

This follows from the remarks made at the end of Chapter II.

In fact the maximum error of the best polynomial approximation of

degree 7 is given approximately by

C11 C
13

2 Z

11IC91{1+
C

+

C9 C9

C2
13

} =
C9

12 x 10 8 (4. 29)

whereas the absolute value of the truncation error in (4. 26) cannot be

greater than



1c 91 + 1c 111 + 1c 131 + .120701 ... x 108.
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Tables III and. IV summarize the approximating polynomials and

corresponding solution schemes of SIN3 and COS3, as well as some

proposed methods which could be implemented in higher precision

routines.

In the case of 6th degree polynomials (P6) the scheme

(3. 8) is actually applied to a polynomial p5 where

P6 a0x p5 + a6.

If we denote

p5 = aIx 5 +a1x4 +a'x3 +a'x 2
+ a., x +

5 0
alx4

3 5

(4. 30)

(4. 31)

then clearly al() = 1 and the equations (3. 16) can be simplified as

follows:

X = a°
1

- 1
1

2 1 2 1 1
= al(al-al) + a' - a 3'

X3 = al2 - X2

=a'-XX -XX
4 1 3 23

XS a; X1X23 X1)`4

For example we have

(4. 32)



Table III. (f(x) = sin -4 Trx).

Power n of
Polynomial

Approximation
Approximation

Error
Computing

Scheme

Values of Coefficients
a ... , a0' n

Values of Parameters

1
, ,

n

Number of Operations
in Scheme
M A

4

5

1.7 x 10-12

-15
1. 6 x 10

M1
2

(3.17)

(3.8)

0.0000003085630
-0. 0000365714167

0.0024903924781
-0. 0807455118150
0. 7853981633788

-0. 0000000017347987

-59.760858722530
10787.503271213

-6228.1658273871
6.9731700587889

-181. 6167385875952063

3

4

5

0.0000003133336833 -2405341. 757322552383
- 0.0000365761873953 2426607.196290946814
0.0024903945652995 5837306874943.196260

-0. 0807455121876694 88041311079.7904
0.7853981633974265

-18
6 1. 2 x 10 (3.8) 0.0000000000068723070 5 7

0.0000000017571336497 -256. 6832297654921411
0.0000003133616020111 -6401944. 657074794301

- 0.0000365762041465937 6447799. 070733526369
0.0024903945701852502 41280470233822. 88046

-0. 0807455121882800902 506089259785. 87
0.7853981633974482911



1Table IV. (f(x) 4-, cos
4

-rrx).

Power n of
Polynomial

Approximation
Approximation

Error
Computing

Scheme

Values of Coefficients

a0"."an
Values of Parameters

X. X.;

Number of Operations
in Scheme
M A

4

5

-11
4. 7 x 10

5.7 x 10
-14

141
2

(3.17)

(3.8)

0.000003529804
-0. 000325938600
0.015854325237

-0. 308425135160
0. 999999999953

-0.000000024268543
0.000003590475595

-46. 66950402911
22771. 3247524

- 20411.13819954
4. 65071 958357

-1 48. 94771960558159
-1 356083. 7065525327

3

4

5

6

-0. 000325991 687588 1369665. 3390273788
0. 015854344197125 1857597567058. 0802

-0. 308425137530042 32238352946. 95482
0. 999999999999944

6 4.8 x 10 -17 (3.8) 0.000000000113654754 - 217.52862211113492006 5 7

-0.000000024609507280 -4019938. 9827487099133
0.000003590859180060 4051 750. 9590615881 234

- 0.000325991886483649 1628881 24961 78. 450338

0. 015854344243741571 21 935 418 9306. 77765431

-0. 30842513753403 783 7
0. 99999999999999995 3



1

cos-i-Trz =7 0.000000000113654754y
6

- 0.000000024609507280y

+ 0.000003590859180060y4 0.000325991886483649y
3

+ 0.015854344243741571y - 0.308425137534037837y

+ 0.999999999999999953, (y = z2)

Setting the right hand side above equal to a0y p5 + a6 gives

216. 52862211113492006y4 + 31594.447690767075172y
3

2868264. 4149108712162y2 + 139495654. 03785547765y

- 2713702037. 7875072168

62

And using (4.32), with these coefficients, we get the parameters

Xi, , X5 given in Table IV. The approximating polynomial is cal-

culated in the following manner:

1 -cos rrz = a y{(y+X. )[(y+X.
3

)(y 2
+y-i-X

2
)+X

4
j-FX.

5
+ a6

0 1

which requires 6M + 7A operations (counting the change of variable

z = y2) and gives results with a maximum absolute error of

4.8 x 10-17.
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INPUT POLYNOMIAL
1+0X1-0.5X2+0X3+0.0416666666X4+0X5-0.0013888888X6+0X7+0.0000248015X8

COEFFICIENTS OF THE CHEBYSHEV EXPANSION
+1.647169571
-.2322992839
-.05371504891
+.002458275682
+.0002821392458
-.000007714166552
-5.873425537E-007
+1.211010742E-008
+7.568817138E-010

COEFFICIENTS OF THE REARRANGED POLYNOMIAL
+1.000000000
- 1.015042217E-011
-.4999999999
+1.030286966E-012
+.04166666660
- 1.172395514E-013
-.001388888800
+0.000000000
+0.00002480150000

MAXIMUM ABSOLUTE ERROR = 0.0000000001

INPUT POLYNOMIAL

INPUT POLYNOMIAL
1-1X1+1X2-1X3+1X4-1X5+1X6

COEFFICIENTS OF THE CHEBYSHEV EXPANSION
+1.630859375
-.05468750000
+.1635742187
+.05078125000
+.02050781250
+.003906250000
+.0004882812500

COEFFICIENTS OF THE REARRANGED POLYNOMIAL
+1.000000000
-1.000000000
+1.000000000
- 1.000000000
+1.000000000
- 1.000000000
+1.000000000

MAXIMUM ABSOLUTE ERROR = 0.0002

INPUT POLYNOMIAL
1-1X1+1X2-1X3+1X4-1X5+1X6

COEFFICIENTS OF THE CHEBYSHEV EXPANSION
1+0X1-0.5X2+0X3+0.0416666666X4+0X5-0.0013888888X6+0X7+0.0000248015X8

COEFFICIENTS OF THE CHEBYSHEV EXPANSION

+1.630859375
-.05468750000
+.1635742187
+.05078125000

+1.647169571 +.02050781250
-.2322992839 +.003906250000
-.05371504891 +.0004882812500
+.002458275682
+.0002821392458
-.000007714166552 COEFFICIENTS OF THE REARRANGED POLYNOMIAL
-5.873425537E-007 +.9995117187
+1.211010742E-008 -.9648437500
+7.568817138E-010 +.5898437500

+.7500000000
-2.375000000

COEFFICIENTS OF THE REARRANGED POLYNOMIAL +2.000000000
+1.000000598
-.00094337858368
-.4994896781
-.002202691617
+.093949653275

MAXIMUM ABSOLUTE ERROR = 0.0000009

MAXIMUM ABSOLUTE ERROR = 0.0005



SIN 30, +-.0001
INPUT POLYNOMIAL
.1254.0125X4.00125X24.000125X3+.0000125X4+.00000125X5+.000010125X6
+.0000100125X7+.00010000125X8

COEFFICIENTS OF THE CHEBYSHEV EXPANSION
+.2635231382
+.006939628554
+.0001827484164
+.000004812485046
+1.267234802E-007

+.50016270115

SIN 150, +- .0000001

+.50000002862

SIN -30, +- .00000000000001

+3.334045410E-009 -.5000000000000041
+8.697519766E-011
+2.136230468E-012
+3.114697265E-014 SIN 390, 4-.000000001

+.5000000000072790
COEFFICIENTS OF THE REARRANGED POLYNOMIAL
+.1750010532
+.01249983935 COS 30, 4-.0005
+.001251263106
+.0001215583105 +.86602379417
+.00001622060547

COS 150, 4-.000001
MAXIMUM A9SOLUTE ERROR = 0.000000009

-.86602541603

COS 90, 4-.000000009 COS -30, +- .0000000000001

+5.995319074E-009

cos go, 4-.0000000001

+7.86294386E-011

-.8660254037844290

cos 0, +- .0000001

+.99999999970

COS 89, 4-.00000009
COS 0, 4-.0000000000001

+.01745241187
+.9999999999999981

COS 89, 4-.100000000001
SIN 45, 4-.000001

+.1174524064371980
+.70710663143

COS 51, +- .000000000001
SIN 225, 4-.000001

-.0174524064370416
-.70710663143

SIN -45, +- .00000000001

-.7071067811865487
LOGOFF ON

TIME 8.147 SECONDS MFFILKS 24 COST $1.95 ON


