
AN ABSTRACT OF THE THESIS OF

Herkimer John Gottfried for the degree of Master of Science in Computer Science

presented on December 9, 1996. Title: Graphical Definitions: Expanding Spreadsheet

Languages through Direct Manipulation and Gestures.

Abstract approved:

Margaret M. Burnett

Until now, attempts to extend the one-way constraint evaluation model of the

spreadsheet paradigm to support complex objects, such as colored circles or user-

defined types, have led to approaches featuring either a direct way of creating objects

graphically or strong compatibility with the spreadsheet paradigm, but not both. This

inability to conveniently go beyond numbers and strings without straying outside the

spreadsheet paradigm has been a limiting factor in the applicability of spreadsheets. In

this thesis we present a technique that removes this limitation, allowing complex objects

to be programmed directlyand in a manner that fits seamlessly within the spreadsheet

paradigmusing direct manipulation and gestures. We also present the results of an

empirical study which suggests that programmers can use this technique to program

complex objects faster and with fewer errors. The graphical definitions technique not

only expands the applicability of spreadsheet languages, it also adds to their support for

exploratory programming and to their scalability.



C Copyright by Herkimer John Gottfried
 

December 9, 1996
 

All Rights Reserved
 



Graphical Definitions:
 

Expanding Spreadsheet Languages
 

through Direct Manipulation and Gestures
 

by 

Herkimer John Gottfried 

A THESIS
 

submitted to
 

Oregon State University
 

in partial fulfillment of 

the requirements for the 

degree of 

Master of Science 

Completed December 9, 1996
 

Commencement June 1997
 



Master of Science thesis of Herkimer John Gottfried presented on December 9, 1996

APPROVED:

Major Profqpor, representing Computer Science

Chair of Department of Computer Science

Dean of Gradu School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Redacted for privacy

Redacted for privacy



ACKNOWLEDGMENT 

We would like to thank the members of our research group, in particular John 

Atwood, Rebecca Walpole, and Sherry Yang, for their work on the Forms/3 

implementation and for their feedback on graphical definitions. Special thanks go to 

Shikha Ghosh Gottfried and Judy Hays for their help in testing the empirical study, and 

to the subjects of the study for their participation. 

This work was supported in part by Hewlett-Packard and by the National 

Science Foundation under grant CCR-9308649 and an NSF Young Investigator Award. 



Table of Contents
 

Page 

1. Introduction 1
 

1.1 Organization of this Thesis 2
 

1.2 Design Goals 2
 

2. Related Work 4
 

2.1 Spreadsheet Languages 4
 

2.2 Demonstrational Systems 6
 

3. Programming Graphical Objects Directly 8
 

3.1 Introduction to Forms/3 8
 

3.2 How are Graphical Definitions Used? 9
 

3.3 Graphical Definitions are Consistent with the Value Rule 12
 

3.4 Using Gestures with User-Defined Types 13
 

4. The Semantics of Graphical Definitions 15
 

4.1 Graphical Types in Forms/3 15
 

4.2 Graphical Definitions for Built-In Types 16
 

4.3 Example: Defining a Binary Tree 18
 

4.4 Defining New Gestures 20
 

5. Other Contributions of the Approach 25
 

5.1 Gesture Spaces 25
 

5.2 Exploratory Programming 26
 

5.3 Scalability 29
 

6. Empirical Study 31
 

6.1 Details of the Empirical Study Procedure 31
 

6.2 Subjects 32
 



Table of Contents, Continued 

Page 

6.3 Programs 33
 

6.4 Results 38
 

6.5 Analysis of Programming Difficulties 43
 

6.6 Summary of Results 45
 

7. Implementation 47
 

8. Conclusion 48
 

References 49
 

Appendices 52
 

Appendix A. Empirical Study Materials 53
 

Appendix B. Source Code 65
 



List of Figures
 

Page
 

3-1. A portion of a form used to define a circle in Forms/3 9
 

3-2. The indirect approach 10
 

3-3. A visualization of population data 10
 

3-4. Defining the circle for cell city 11
 

3-5. Defining the circle for cell town 12
 

3-6. The programmer clicks on the search tree to set the context for the gesture 14
 

4-1. A tree definition form 19
 

4-2. Defining gesture semantics 22
 

4-3. Using graphical definitions to insert a new element into a tree 23
 

5-1. Using gestures to explore a binary tree 28
 

6-1. Population program (before programming) 34
 

6-2. Programming the population program using the copying technique 35
 

6-3. The output of the completed tree program 36
 

6-4. Defining formulas for the tree program using the copying technique 37
 



List of Tables
 

Page
 

4-1. Gesture attributes 17
 

4-2. Formulas defined by drawing gestures and clicking on gesture icons for built-in
 
types 17
 

4-3. Formulas defined by direct manipulation of an existing object a 18
 

4-4. The semantics of formula specifications 21
 

4-5. Formulas defined by drawing gestures and clicking on gesture icons for user-

defined types 22
 

5-1. Programmers perform fewer actions using graphical definitions 30
 

6-1. Summary of subject backgrounds 33
 

6-2. Program correctness 39
 

6-3. Program completion time (detail, in order of program completion time) 40
 

6-4. Program completion time (summary) 41
 

6-5. The subjects' preferred method of using graphical definitions 41
 

6-6. User reaction to graphical definitions 43
 

6-7. Correlation between cloning on the population program and correctness on the
 
tree program 44
 

6-8. Difficulties encountered on tree program 45
 

6-9. Number of subjects who made conceptual errors on the tree program 45
 



List of Appendix Figures
 

Page
 

A-1. The output of the completed population program 56
 

A-2. The output of the completed tree program 59
 



Graphical Definitions: 
Expanding Spreadsheet Languages 

through Direct Manipulation and Gestures 

1. Introduction 

In recent years, many new graphical techniques have been developed to support 

the use of graphical objects. Of particular note are the contributions of demonstrational 

programming research, which have brought straightforward, graphical techniques for 

creating and working with graphical objects to both end-users and programmers. 

Unfortunately however, users of spreadsheets have been left out of these advances, and 

still find themselves stranded in a highly textual world with limited abilities to incorporate 

graphical objects into their computations. 

We set out to correct this problem. Our goal was to incorporate graphical objects 

into spreadsheets in a way that would fit seamlessly within the one-way constraint model 

of the spreadsheet paradigm. Further, we wanted our approach, like most other features 

found in spreadsheets, to be applicable to all users of spreadsheet languages. That is, we 

wanted to support the simple, built-in graphical objects likely to be used by ordinary end-

users, in a way general enough to also support the complex, user-defined objects needed 

by programmers. 

In this thesis we present such an approach. It allows both simple and complex 

objects to be defined graphically in a spreadsheet language using direct manipulation and 

gestures. We call these direct manipulations and gestures graphical definitions to 

emphasize that they are a declarative way to define formulas for cells in a graphical 

manner. The contributions of the graphical definitions approach are that (1) it is the first 

approach that provides fully declarative, graphical support for working directly with 

objects in a way that fits seamlessly within the spreadsheet paradigm; (2) it adds to both 

the support for exploratory programming and to the scalability of spreadsheet languages; 
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and (3) it contributes gesture spaces, a technique that takes a step forward in the 

practicality of programming with gestures. 

1.1 Organization of this Thesis 

We begin with a discussion of the design goals of our approach. In Chapter 2, we 

review related work, evaluating other systems with regard to these design goals. In 

Chapter 3 we provide a brief introduction to the Forms/3 spreadsheet language in which 

our approach is prototyped, along with examples of how our technique might be used by 

end-users and by programmers. In Chapter 4 we present the formal semantics of graphical 

definitions. We describe other contributions of the approach in Chapter 5. We present the 

results of an empirical study in Chapter 6, and we conclude in Chapter 7. 

1.2 Design Goals 

We use the term spreadsheet languages to refer to all systems that follow the 

spreadsheet paradigm, from commercial spreadsheets to more sophisticated systems 

whose computations are defined by one-way constraints in the cells' formulas. By "fitting 

seamlessly within the spreadsheet paradigm," we mean that the approach follows the 

declarative, one-way constraint paradigm of spreadsheets, emphasizing that it should 

follow the value rule for spreadsheets, which states that a cell's value is defined solely by 

the formula explicitly given it by the user [8]. The characteristic of seamlessness within the 

spreadsheet paradigm was one of our two primary design goals. 

Our other primary design goal was directness, a term we will use to mean 

following the principles advocated by Shneiderman; by Hutchins, Hollan, and Norman; 

and by Nardi. The term direct manipulation was coined by Shneiderman [19, 20], who 

describes three principles of direct manipulation systems: continuous representation of the 

objects of interest, physical actions or presses of labeled buttons instead of complex 
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syntax, and rapid incremental reversible operations whose effect on the object of interest is 

immediately visible. 

Hutchins, Hollan, and Norman [7] expand upon these notions, suggesting that the 

degree to which a user interface feels direct is inversely proportional to the cognitive 

effort needed to use the interface. They describe directness as having two aspects. The 

first aspect is the distance between one's goals and the actions required by the system to 

achieve those goals. In traditional spreadsheet programming, this distance is fairly small 

because there is a well-understood, one-one mapping from each operator and term in the 

goal to the formula that must be specified (e.g., from the goal "add A and B" to the 

formula "A + B"). The second aspect is a feeling of direct engagement, "the feeling that 

one is directly manipulating the objects of interest." Nardi [18] sees direct engagement as 

a critical element in spreadsheets, emphasizing freedom from low-level programming 

minutiae in favor of task-specific operations. Direct engagement has been largely absent 

from prior approaches to supporting graphics in spreadsheet languages. 
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2. Related Work 

Our approach is most closely related to research in spreadsheet languages and 

demonstrational systems. 

2.1 Spreadsheet Languages 

Microsoft Excel [13] and other commercial spreadsheets provide the capability to 

display simple graphics and charts in spreadsheets. However, these graphical objects are 

strictly output mechanisms rather than first-class objects. They cannot be values of cells, 

other cells' values cannot depend on them, and only the charts (not the other kinds of 

graphics) can be dependent on other cells in the spreadsheet. Furthermore, these 

spreadsheets do not allow users to extend the set of graphical objects that are supported. 

In some spreadsheets, it is possible to gain some graphical support for objects through the 

use of macro languages and incorporation of state-modifying programming languages, but 

these approaches violate the spreadsheet value rule. Macros violate it because a macro 

stored in one group of cells actually changes other cells' formulas during executionthe 

spreadsheet equivalent of self-modifying programs. 

Although some research spreadsheet languages have used graphical techniques, 

they have not achieved the combination of generality and directness that we sought for the 

spreadsheet paradigm. For example, NoPumpG [11] and NoPumpII [25] are simple 

spreadsheet languages designed to support interactive graphics. The design goal of these 

systems was to provide the capability to create low-level graphical primitives while adding 

as little as possible to the basic spreadsheet paradigm. Thus, NoPumpG and NoPumpII 

include some built-in graphical types that may be instantiated using cells and formulas, and 

support limited (built-in) manipulations for these objects, but do not support complex or 

user-defined objects. 

Penguims [5] is an environment based on the spreadsheet model for specifying user 

interfaces. Its goal is to allow interactive user interfaces to be created with little or no 
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explicit programming. This work is similar to ours in its support for abstractionit 

provides the capability to collect cells together into objectsbut it also introduces several 

new concepts that violate the spreadsheet model, such as interactor objects that can 

modify the formula of other cells, and imperative code similar to macros. Penguims 

provides the capability to build interactive user interfaces, but this programming is still 

done indirectly by defining formulas for cells. 

Action Graphics [6] is a spreadsheet language for graphics animations. It provides 

some support for complex objects, such as the ability to group cells into "composite cells," 

but does not provide the directness we sought. Also, animation in Action Graphics is 

performed through functions that cause side-effects; thus, this approach violates the 

spreadsheet value rule. 

Smedley, Cox, and Byrne [21] have incorporated the visual programming language 

Prograph and user interface objects into a conventional spreadsheet in order to provide 

spreadsheet users with a graphical interface for input and feedback. However, like 

Penguims, this approach does not follow the value rule because user interface objects can 

modify the formulas of other cells. Also, although the Prograph approach to spreadsheets 

adds the ability to incorporate graphical objects into spreadsheets, it does not make 

programming them more direct. 

Wilde's WYSIWYC spreadsheet [26] aims to improve traditional spreadsheet 

programming by making cell formulas visible and by making the visible structure of the 

spreadsheet match its computational structure. Although this work is similar to ours in its 

attempt to emphasize the task-specific operations of spreadsheet languages, Wilde focuses 

on the visual representation of the resulting program rather than on the means of 

specifying it, and does not address graphical types. 

C32 [17] is a spreadsheet language that uses graphical techniques along with 

inference to specify constraints in user interfaces. Unlike the other spreadsheet languages 

described, C32 is not a full-fledged spreadsheet language; rather, it is a front-end to the 

underlying textual language Lisp used in the Garnet user interface development 

environment [16]. C32 is a way of viewing constraints, but does not itself feature the 

graphical creation and manipulation of graphical objects. Instead, this function is 
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performed by the demonstrational system Lapidary [23], which is another part of the 

Garnet package. The combination of C32 and Lapidary (and the other portions of the 

Garnet package) features strong support for direct manipulation of built-in graphical user 

interface objects, but not for any other kinds of objects, which must be written and 

manipulated in Lisp. 

2.2 Demonstrational Systems 

Our work is also related to research on demonstrational programming by direct 

manipulation of objects, such as Chimera [9], KidSim [22], Mondrian [12], TRIP3 [14], 

and IMAGE [15]. Of these, the most closely related to our work are those featuring a 

declarative approach. KidSim [22] is a demonstrational system that uses direct 

manipulation to specify declarative graphical rewrite rules. Although the approach used in 

KidSim is similar to ours in its emphasis on directness, it does not provide the kind of 

flexible, declarative specification of objects and attributes that we sought for a full-

featured, spreadsheet-based approach. 

The two-way constraint-based systems TRIP3 [14] and IMAGE [15] use direct 

manipulation as a means of specifying relations declaratively; in these systems a visual 

example defines a relationship between the application data and its visual representation. 

However, like many demonstrational systems, their approach uses inference to determine 

this relation rather than having the relation be specified explicitly by the programmer. 

Although our system shares with inferential languages the property that concrete examples 

are used in programming, our approach avoids using inference to derive the logic [27]. 

Also, the purpose of TRIP3 and IMAGE is to provide a visual interface to textual 

programming languages, while our approach attempts to extend the power of the 

spreadsheet without involving any other programming language. 

Furthermore, two-way constraints are not completely compatible with the 

spreadsheet paradigm because they violate the spreadsheet value rule. To see why, 

imagine specifying the formula for cell X to be a box whose width is a reference to cell W 
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(whose formula is cell A plus cell B). If the user then selects and stretches the box in X, 

what does that mean for cells W, A, and B? If any of these are automatically changed, the 

value rule is violated for the changed cell(s); if they are not changed, the two-way nature 

of the constraints is not being maintained. 
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3. Programming Graphical Objects Directly 

3.1 Introduction to Forms/3 

We have prototyped our approach in the spreadsheet language Forms/3 [1, 2], and 

the examples in this thesis are presented in that language. Programs in Forms/3 consist of 

forms (similar to sheets in commercial spreadsheets) that contain cells whose values are 

defined by their formulas. In addition to traditional spreadsheet cells, Forms/3 supports 

both built-in graphical types and user-defined graphical types. Built-in types are provided 

in the language implementation but are otherwise identical to user-defined types. 

Attributes of a type are defined by formulas in groups of cells, and an instance of a type is 

the value of an ordinary cell that can be referenced just like any other cell. For example, 

the built-in circle object shown in Figure 3-1 is defined by cells defining its radius, line 

thickness, color, and other attributes. 

The straightforward approach used in [2] to program graphical types is to make a 

copy of the definition form for each new instance of the type, specify formulas for each 

object's attributes, and then reference the new objects (see Figure 3-2). However, 

although this approach satisfies the value rule, it is a very indirect way of specifying 

graphical objects, because the process of specifying the object bears little resemblance to 

the object itself, violating the principles of directness advocated by Nardi and by Hutchins, 

Hollan, and Norman. The graphical definitions technique presented in this thesis solves 

this problem of indirectness, extending the approach of [2] to support the direct style that 

characterizes spreadsheets. 
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Figure 3-1. A portion of a form used to define a circle in Forms/3. The circle in cell 
newCircle is defined by the other cells, which define its attributes. A user can view and 
specify spreadsheet formulas by clicking on the formula tabs (13); radio buttons and popup 
menus can be used to specify constant formulas. 

3.2 How are Graphical Definitions Used? 

To introduce graphical definitions, we consider tasks that a traditional spreadsheet 

user might be interested in performing, but that are difficult to do or are beyond the 

capabilities of current spreadsheets. One such task is displaying a graphical representation 

of data, using domain-specific visualization rules. Figure 3-3 shows such a visualization 

that a population analyst might wish to specify in a spreadsheet language. The program 

categorizes population data into cities, towns, and villages, and represents each with a 

differently sized black circle. The population analyst can use our approach to define these 

graphical objects using direct manipulation and gestures. 
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Figure 3-2. The indirect approach. A new circle is defined by copying the circle definition 
form and specifying formulas for some of its attributes (radius and fillForeColor in this 
example). The circle can be used in a program by referencing cell newCircle. This thesis 
presents a more direct approach that allows complex objects to be programmed using 
direct manipulation and gestures, rather than by copying forms and defining formulas. 
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Figure 3-3. A visualization of population data. 
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Simple graphical objects such as circles can be defined by drawing a gesture in the 

shape of the object, and can be sized by directly manipulating the object. To define the 

large city circle for the visualization program, the population analyst first draws a circle 

gesture (Figure 3-4(a)). This defines the cell's formula to be a reference to cell newCircle 

on a copy of the built-in circle definition form whose radius formula is defined to be the 

radius of the drawn circle gesture. However, the circles in the program are to be solid 

black. Because there are no graphical definitions to specify fill color, the population 

analyst clicks on the circle to display its definition form, and then defines the formula for 

cell fillForeColor (Figure 3-4(b)). 

Formula for: city
 

...f.WS6
 

Formula for: city Accept 

Graphics 7 

0 
Undo E=I Display 

box circ 

Graphics Area: 

I GREEN 
wan 
YELLOW 

box cicc line maim 
PURPLE 

114SUPP 

(b)(a) 

Figure 3-4. Defining the circle for cell city. (a) The population analyst first draws a circle 

gesture to define the circle. (b) After clicking on the circle to display its definition form, 

the population analyst defines the fillForeColor formula via a popup menu. 

The circles for cells town and village can be defined in the same way, or they can 

be defined by graphically specifying how they are different from the city circle, which 

already has the fillForeColor attribute defined. To define the town circle using the latter 

technique, the population analyst clicks on cell city instead ofdrawing a new circle. This 
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displays the circle in the formula edit window so that it can be manipulated (Figure 3-5). 

The population analyst then resizes the circle to define the town circle, which has all of the 

attributes of the city circle except its radius. 

EratT-Formuhtz CI Enter furn404% 

Formula for: town hccept Formula for: town MEI 
cit.y1 753-primitiveCircle:someCircle 

Undo Redo Clone Display Undo Redo Clone Display 

Graphics Area: Graphics Area: 

C) C 
box circ line box clic line 

(a) (b) 

Figure 3-5. Defining the circle for cell town. (a) The population analyst clicks on cell city 
to display the large city circle. (b) The population analyst directly manipulates the circle to 
define the smaller town circle, which has the black color and other attributes of the original 
circle. 

3.3 Graphical Definitions are Consistent with the Value Rule 

Note that a graphical definition defines a reference to a new object, not a 

modification of an existing object. If direct manipulation were to modify the existing 

object, this would override the formulas of the cells that define its attributes, which would 

violate the spreadsheet value rule. 

Instead, a graphical definition defines the creation of a copy of the definition form 

for the object (recall Figure 3-1), in which the cell formulas are defined to be the same as 

those that define the original object, except for any formulas defined by the manipulation 
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itself. Thus, direct manipulation of a circle specifies a new circle whose radius is defined to 

be the radius of the manipulated circle, and whose other attributes are defined by the same 

formulas as on the original circle's definition form. This borrows from declarative textual 

languages the idea that the application of an operation to an object results in a new object, 

and is key to enabling the graphical definitions approach to fit seamlessly within the 

spreadsheet paradigm. 

3.4 Using Gestures with User-Defined Types 

Even traditionally abstract types are graphical if a programmer chooses to think of 

them as such. To demonstrate the generality of our approach, we show in this section how 

graphical definitions can be used even in a traditional data processing example, such as a 

binary search. 

Suppose the programmer wants to develop the binary search algorithm using a 

binary tree that was previously implemented by some other programmer. The user-defined 

tree type contains operations to insert a new element into a tree, report the top element of 

the tree, and report the left and right subtrees. The tree implementor has also defined 

gestures, which are automatically displayed, to perform these operations (Figure 3-6(3)). 

The gestures allow the low-level details of the tree implementation to be abstracted away, 

letting the programmer of the search algorithm perform tree operations without explicitly 

copying the tree definition form, defining new formulas for cells on the definition form, or 

explicitly referencing those cells. 
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CI-Entereormat 

searchTreel 

Undo Redo 
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Figure 3-6. The programmer clicks on the (1) search tree to set the (2) context for the 
gesture. (3) Iconic representations of the tree gestures are automatically displayed. (4) The 
programmer then draws a gesture to reference the left subtree. 

To program the search algorithm, the programmer can use graphical definitions to 

access different elements of the search tree. For instance, if the top element of the tree is 

greater than the search element, the search algorithm is called recursively on the left 

subtree. (Recursion is supported in Forms/3 by referencing cells on copies of the form 

being defined, which are then automatically generalized using a deductive technique [27].) 

The programmer can define a formula to access the left subtree by clicking on the search 

tree cell and drawing the left gesturea line pointing down to the left (Figure 3-6). This 

direct action defines a formula that is equivalent to that defined by copying the tree 

definition form, defining the formula for cell inputTree on that form to be a reference to 

the search tree, and referencing cell lefts. However, unlike the actions of copying the form 

and writing textual formulas, this gesture corresponds directly to the programmer's intent: 

"I want that tree's left subtree." 

The tree definition form and formal semantics of graphical definitions will be discussed in 
detail in the next chapter. 
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4. The Semantics of Graphical Definitions 

4.1 Graphical Types in Forms/3 

Graphical definitions build upon previous work on graphical types in the 

spreadsheet paradigm [2]. The central philosophy of this work was that in a spreadsheet 

language, all on-screen cells' values are displayed, and therefore all types are in some 

sense graphical. Graphical types can be used to create such diverse applications as event-

based programs [1], inventory tracking [2], a desktop analog clock application [24], 

exception handling [24], and algorithm animation [3]. 

In keeping with the philosophy that all types are graphical, in this work a type is 

the 4-tuple: (components, operations, graphical representations, interactive behaviors). In 

this model, there is no theoretical distinction between built-in and user-defined types; both 

are defined by the above 4-tuples. The only distinction is implementation; that is, whether 

the type's implementation has already been provided by the language implementor. We 

have extended the operations of a graphical type to include the graphical definitions 

defined for the type, which will be discussed further in sections 4.2 and 4.4. 

To define a new type, a programmer uses a type definition form which, following 

the spreadsheet paradigm, consists of cells with formulas. The type definition form is the 

aspect of this work that graphical definitions directly affect. The form contains two 

distinguished cells: an abstraction box, which defines the structure of the type as the 

composition of its attributes (the first element of the 4-tuple); and an image cell, whose 

formula defines the type's appearance(s) (the third element of the 4-tuple). The operations 

and interactive behaviors are specified by additional abstraction boxes and ordinary (non­

distinguished) cells on the form, in addition to the graphical definitions. An object's 

appearance is entirely flexible and can be based on its attributes, as demonstrated in the 

circle example. Each type has its own type definition form, and each object (instance of 

the type) has its own copy of the type definition form, upon which different formulas can 

be defined to allow individual differences among the objects. A discussion of information 
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hiding and other type-related issues is omitted here, since it does not impact the graphical 

definitions technique presented in this thesis. 

The circle form (Figures 3-1 and 3-2) is one example of a type definition form; 

because circles are a built-in type, the circle form is provided in the language 

implementation. By specifying formulas for the attribute cells, a new instance of a circle is 

defined in the abstraction box newCircle. Information about the instance of the type can be 

obtained by referencing cells on the definition form such as radius and lineForeColor. 

4.2 Graphical Definitions for Built-In Types 

We have implemented graphical definitions for the built-in types box, circle, and 

line. Graphical definitions allow these graphical objects to be instantiated and manipulated 

using gestures and direct manipulation, as shown in the example of Chapter 3. We have 

defined a gesture for each of these types, and a programmer can instantiate a new instance 

of the type by drawing the gesture or clicking on the gesture icon displayed in the formula 

edit window (recall Figure 3-4a). This action defines a formula that is a reference to an 

abstraction box on a copy of the definition form for the graphical type; the formal 

semantics of the defined formula are shown in Tables 4-1 and 4-2. The formulas for some 

of the cells on this definition form are defined by the attributes of the gesture itself: for 

instance, the circle gesture defines a reference to the abstraction box on a copy of the 

circle definition form in which the formula for cell radius is defined to be the radius of the 

drawn circle gesture. For objects that are instantiated by clicking on the gesture icon 

rather than by drawing a gesture, the defined formula is simply a reference to the 

abstraction box on the type definition form (with default formulas for the cells' formulas). 
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Gesture Attribute Value 

width co 

height 11 

radius p 

dx 

dy kv 

Table 4-1. Gesture attributes. The above notation is used in the tables in this chapter. An 
instance of a gesture is defined by the attributes and values shown in the table. 

Graphical Action Formula 
Type 

circle draw gesture primitiveCircle(radius(v-p):someCircle 

click on gesture icon primitiveCircle (radiusq r 25) :someCircle 

box draw gesture primitiveB ox(widthcgr' co, heightii):someBox 

click on gesture icon primitiveBox (widtlfr 50 ,heighrr- 50) :someBox 

line draw gesture primitiveLine(de/taxar, deltayv- w):newLine 

click on gesture icon primitiveLine (deltax(w- 50 ,deltay v 50) :someLine 

Table 4-2. Formulas defined by drawing gestures and clicking on gesture icons for built-in 
types. The formula notation is FC(DefList):RC, where FC is a copy of definition form F, 
DefList is a list of formula definitions for each cell that is defined differently on form FC 
than on F, and RC is the cell to be referenced on FC. The notation for each element of 
DefList is (X'R=. a), denoting that cell X has the formula a. 

A new graphical object can also be created by directly manipulating an existing 

instance of the type, such as stretching the endpoint of a line or the edge of a circle. These 

manipulations, like the gestures described above, specify a reference to an abstraction box 

on a copy of the definition form for the graphical object. However, the formulas for all of 

the cells on the new definition form will be the same as those on the definition form for the 
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object being manipulated, except for those formulas that depend on the attributes of the 

gesture itself (Table 4-3). 

Graphical Type Manipulation Formula 

circle stretch edge of circle primitiveCircle(radiusw'p, 
cellvcr'cella):someCircIe 

box stretch corner of box primitiveBox(widthc), 
heightcri, cellycz-cella):soineBox 

line stretch line endpoint primitiveLine(de/taro-t 
deltayr° y cellvar cell,c):someLine 

Table 4-3. Formulas defined by direct manipulation of an existing graphical object cc. The 
notation cell vz.- cella denotes that for all cells X not specified explicitly in the table, the 
formula for cell X on FC is the same as the formula for cell X on E, where Fa is the 
definition form for object a. 

4.3 Example: Defining a Binary Tree 

For user-defined types, the programmer creates the type definition form, placing 

cells and abstraction boxes on it as needed and defining their formulas. Programmers will 

often use more than one abstraction box, placing an input abstraction box, other cells for 

input specifications and output information, and one or more output abstraction boxes on 

the definition form. Each abstraction box for a particular type definition form must contain 

the same set of cells, although they may have different formulas. 

For example, a tree definition form (Figure 4-1) might contain an input abstraction 

box intended to contain an incoming tree, an input cell for an element to be inserted into 

the tree, and an output abstraction box that defines a tree into which the new element has 

been inserted. Other cells providing operations for the tree (such as the predicate reporting 

whether the incoming tree is empty, and a cell reporting the root element) are also usually 
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present. For graphical definitions to be possible with such a type, a programmer needs a 

way to specify the set of graphical definitions for the type, enabling their use for purposes 

such as the binary search algorithm of the previous section. 
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Figure 4-1. A tree definition form. The cells inside the abstraction boxes are by definition 
"hidden," and cannot be accessed by cells outside this form. The implementor of the tree 
has provided access cells such as empty? and top to report the values of the attributes of 
the incoming tree. The formula tabs on cells newElement and inputTree signify that these 
cells are intended for input. The formulas that define the cell values are not shown. 
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4.4 Defining New Gestures 

The first step in specifying the set of graphical definitions for a user-defined type is 

to specify the set of gestures that are applicable to the type. In our implementation, 

gestures are defined and trained using the Agate gesture recognizer [10], which is part of 

the Garnet environment. The programmer presses a button on the type definition form to 

start Agate, and then types the name of a gesture and draws a few examples of the 

gesture. Miniature gesture icons are automatically displayed at the top of the type 

definition form when Agate is exited. 

After defining a gesture for the type, the programmer specifies the gesture's 

semantics. These specify the formula that will be defined when the gesture is drawn. For 

instance, the new tree gesture at the top of Figure 4-1 specifies a reference to cell new Tree 

on a copy of the tree definition form, in which the formula for cell newElement is the 

element to be inserted into the tree, and the formula for the abstraction box inputTree is a 

reference to the tree being manipulated. 

To define the semantics of a gesture, the programmer specifies two things: the cell 

to be referenced, and formula specifications for each of the input cells on the definition 

form. (Because the formula for the input abstraction box is always a reference to the 

object being manipulated, its formula is defined automatically.) There are four types of 

formula specification (defined formally in Tables 4-4 and 4-5): 

A gesture attribute formula specification for a cell means that the formula 

depends on some attribute of the gesture itself, such as its height, width or 

radius. For example, a programmer defining a gesture for a sectionHeading 

user-defined type to be used for formatting text might define the gesture 

attribute formula specification "height" for cell size (Figure 4-2a(1)). 

A same formula specification for a cell means that the formula for the cell 

on the new definition form is the same as that on the definition form of the 

object being manipulated (Figure 4-2a(2)). 

A constant formula specification depends only on the name of the gesture, 

and defines the new formula for the cell completely (Figure 4-2a(3)). 
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An askUser formula specification means that the user will be asked to 

specify the formula for the cell after the gesture is drawn. The new tree 

gesture (Figure 4-2b) defines an askUser formula specification for cell 

newElement. When the gesture is drawn, a dialog box will be opened 

asking the user to enter a formula for cell newElement (Figure 4-3). 

Type of formula Permissible Formula defined for cell X 
specification values 

height' 1 

width (D 

gesture attribute radius p 

dx 

dy w 

same same X, 

constant anything same as formula 
specification value 

askUser ask "string" anything (defined by user) 

Table 4-4. The semantics of formula specifications. This table defines the formula that is 
defined for cell X on form FC when gesture G is applied to some graphical object a, 
where a is defined by definition form Fa, and the formula specification for cell Xis given 
in the table. For the askUser formula specification, the keyword ask is followed by the 
prompt "string" that will be displayed when the user is asked to enter the formula. 

Agate provides many (17) primitive gesture attributes such as minX, maxX, and initial-
sin, from which ours are defined. It would be simple to add more to our list (such as 
angle, perhaps), but the current set has been sufficient for our purposes. 
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Action Formula 

draw gesture, click on gesture icon FC(13,3-a, cellvarformulaSpecv):x 

Table 4-5. Formulas defined by drawing gestures and clicking on gesture icons for user-
defined types. This table defines the formula that is defined by applying a graphical 
definition to some graphical object a. In the above notation, 13 and x represent the input 
abstraction box and cell to be referenced, respectively, on definition form Fa. x is defined 
by the gesture's semantics. The notation cell vcrformulaSpec v denotes that for all cells X 

other than 13, the formula for cell X on FC is defined by the formula specification for cell 
X, as defined in Table 4-4. 

a Defining 'Bold' gesture for &ratio/II-leading 

1 Cell to be referenced: 
LformattedText 

2 
SIZE: height 
STRING: same 

3 
STYLE: Bold 

(a) 

o
 

Denning 'new. Sesture tar Tree 

Cell to be referenced:
 

NEWELEMENT: ask "Enter the new element"
 

(b) 

Figure 4-2. Defining gesture semantics. (a) The bold sectionHeading gesture defines a 
reference to cell formattedText on a copy of the sectionHeading definition form in which 
(i) the formula for cell size is defined to be the height of the drawn gesture, (2) string is 
defined to be the same as the string formula for the sectionHeading object being 
manipulated, and (3) style is the constant "Bold". (b) The new tree gesture defines a 
reference to cell new Tree on a copy of the tree definition form whose newElement formula 
is to be entered by the user. 
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Figure 4-3. Using graphical definitions to insert a new element into a tree. (a) The 
programmer draws the new gesture. (b) After drawing the gesture, the programmer is 
prompted for the element to be inserted. (c) The resulting formula is a reference to a new 
copy of the tree definition form in which cell newElement has the formula 3 and cell 
inputTree is a reference to the original tree. 
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In addition to specifying gestures that manipulate an existing object, the 

programmer can specify a gesture to instantiate a new instance of the type that is not 

derived from any other instance of the type. The programmer presses the "top-level 

gesture" button on the type's definition form to edit the gesture, and specifies a new 

gesture whose name is the name of the type. This gesture is automatically added to the set 

of gestures understood by the top-level gesture recognizer. 

Top-level gestures are important to the consistency of the approach for two 

reasons. First, they allow user-defined types to be instantiated with the same directness 

that is provided for built-in types. Second, they provide the same interface for instantiating 

new graphical objects as for manipulating them. 
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5. Other Contributions of the Approach 

Here we elaborate on significant aspects of the approach that have not been 

covered fully in the rest of this thesis. 

5.1 Gesture Spaces 

Several researchers [4, 10] have discussed the need for context-dependent 

gestures. Landay and Myers [10] identify this as a problem to be solved: "The system 

needs a way to map the same gesture into multiple meanings based on the context." Our 

approach solves this problem by making the set of gestures recognized by the gesture 

classifier depend on the context of the formula being edited. 

By partitioning the gestures into different gesture spaces (a concept similar to 

name spaces in programming languages), gestures need only be distinct within a specific 

context. For example, the top-level gestures and type-specific gestures may overlap. This 

allows the same gestures to be reused in different contexts, while eliminating possible 

ambiguities over the meaning of a gesture. Thus, the set of allowable gestures for any 

context remains relatively small and recognizable even for large programs. 

In the work of Gross and Do [4], as in ours, gestures are only applicable in certain 

contexts, but in their system the context is inferred and may not yet be defined at the time 

a particular gesture is drawn, and thus the meaning of the gesture may be ambiguous. 

Such ambiguities may be left unresolved until further information is added by the user . 

Since their system is intended to support conceptual and creative design, ambiguity may be 

an advantage because it supports the designer's creativity by allowing specific design 

choices to be deferred until some later time. In contrast, our approach is intended for 

programming, which is not compatible with ambiguity, and uses scope rules to determine 

the unique context which is current. 

These scope rules, which determine which gestures are applicable, are simple. If 

the formula being edited is a reference to an instance of a user-defined type or to a cell on 
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a user-defined type definition form, then the set of gestures for that typeand only those 

gestureswill be recognized. Otherwise, the recognized gestures are the set of top-level 

gestures. 

One problem that programmers in any programming language face is that of 

remembering the permissible operations on an object, and this problem is exacerbated if 

the operations are invisible gestures that must be memorized. Our approach addresses this 

problem by displaying miniature icons of the allowable gestures (and their names) for the 

current context. These icons document the set of allowable operations, and can even be 

used as an alternative means of specifying gestures: rather than drawing a gesture, a 

programmer can click on a gesture icon. The partitioning of the gestures into different 

gesture spaces along with the automatic display of the allowable gestures contributes to 

the practicality of our approach, keeping the set of operations permissible at any one time 

small, recognizable, and visible. 

5.2 Exploratory Programming 

One popular use of spreadsheets is in investigating "what-if' scenarios, in which 

users experiment with different formulas for cells to see what values they produce for 

other cells. Our approach extends this support for exploratory programming to graphical 

objects. By exploratory programming, we mean allowing the programmer to interactively 

gesture and directly manipulate objects, immediately see the effects of these manipulations, 

and use this feedback to perform further manipulations. This is supported by our approach 

in a number of ways that work together to satisfy Shneiderman's third principle of direct 

manipulation: rapid incremental reversible operations whose effect on the object of interest 

is immediately visible [20]. 

Because the result of applying a graphical definition to an object is a new object to 

which further manipulations may be applied, our approach provides incremental 

operations. The new object defined by a graphical definition is immediately displayed and 

manipulable, so the effects of such manipulations are immediately visible. And because 
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graphical definitions define declarative formulas for cells rather than performing any state 

modification, it is trivial to provide reversible operationsjust revert to the previous 

formula for the cell. We have added undo and redo buttons in the formula edit window 

that allow the programmer to easily and quickly undo (or redo) the effects of any graphical 

definition. 

Exploratory programming can aid in understanding and debugging complex data 

structures. For instance, consider the binary tree. The implementor of the tree type might 

test the correctness of the implementation by creating a tree, inserting a few new elements, 

and then accessing the top element and left and right subtrees to ensure that they are 

correct; or a programmer wishing to use the type in a program might perform similar 

actions in order to better understand how to use the tree. Without graphical definitions, 

this process is straightforward but somewhat tedious: the programmer defines formulas for 

cells inputTree and newElement, creates another tree, defines its inputTree formula to be a 

reference to cell newTree from the previous form, and so on. With graphical definitions, 

the programmer simply draws a tree gesture, a few new gestures, and then explores the 

tree by drawing top, left, and right gestures (Figure 5-1). Explorations like this for even a 

small tree with just a few elements would require the creation of several forms and the 

definition of several formulas, whereas gestures provide the same functionality more 

quickly, more directly, and with more flexibility. 
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Figure 5-1. Using gestures to explore a binary tree. (a) The programmer draws a left 
gesture to show the left subtree. (b) The subtree is immediately displayed, and the 
programmer can draw another gesture to show its left subtree. (c) The resulting subtree 
(the single element 3) is now shown. (d) The programmer has pressed the undo button to 
revert to the previous formula, and can now explore the right subtree or perform other 
manipulations. 
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5.3 Scalability 

Another practical contribution of our approach is that it allows the screen real 

estate and memory usage of a spreadsheet program to be reduced significantly, thus 

helping make spreadsheet languages more suitable for building large applications. To 

consider a small example, building the population visualization program shown in Figure 

3-3 without graphical definitions would have required the programmer to copy the circle 

definition form and define the radius formula for each circle, as well as to define a 

reference to the circle from the population form, whereas graphical definitions required 

only a single copy of the definition form to define the fill color for the first circle. 

Although each graphical object specified with a graphical definition is defined by a 

definition form behind the scenes, only the graphical object itself is explicitly displayed 

onscreen; its definition form is only shown if the programmer elects to display it by 

clicking on the object. Because so many fewer visual components need to be constructed, 

displayed, and redrawn, supporting the programmer's manipulations requires less screen 

real estate, memory, and computation time. 

Perhaps even more important to the programmer is that graphical definitions 

reduce the amount of work required to create programs containing graphical objects 

(Table 5-1). Without graphical definitions, the programmer would have to copy type 

definition forms and create formulas defining the network of relationships among the cells 

on those forms. (Forms/3's multiple forms are similar to commercial spreadsheets' linked 

spreadsheets whose cells reference one another.) But with graphical definitions, 

programming with graphical objects is elevated from such low-level programming 

minutiae to the task-specific operations represented by each gesture. 



Actions needed to create graphical objects without graphical definitions 
To create these graphical # formulas # gestures # cells # off -form cells # type definition 

objects defined referenced referenced forms copied 

3 circles (population program) 9 N/A 3 3 3 

n circles (population program) 3n N/A n n n 
3-element search tree 6 N/A 3 3 3 

n-element search tree 2n N/A n n n 

Actions needed to create graphical objects with graphical definitions 
To create these graphical # formulas # gestures # cells # off -form cells # type definition 

objects defined referenced referenced forms copied 
3 circles (population program) 4 3 2 0 1 

n circles (population program) n+ 1 n n- 1 0 1 

3-element search tree 1 4 0 0 0 

n-element search tree 1 n+ 1 0 0 0 

Table 5-1. Programmers perform fewer actions using graphical definitions; in some cases the reduction is as much as a factor of n. Of 
particular importance is the reduction in the more complex programming actions; that is, those that require multiple forms (linked 
spreadsheets), shown in the two rightmost columns. 
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6. Empirical Study 

In order to obtain empirical data on the usefulness of our approach, we conducted 

a user study. Among the questions we hoped to answer were the following: 

Do graphical definitions help programmers construct correct programs? 

Do graphical definitions help programmers construct programs more 

quickly? 

Do programmers using graphical definitions prefer to draw gestures or 

click on gesture icons? 

Do programmers enjoy using graphical definitions? 

The study was conducted one subject at a time at the author's workstation. Each 

subject was given an introduction to Forms/3 programming, followed by instruction on 

how to create boxes using either graphical definitions or the "copying" technique shown in 

Figure 3-2. The subject was then asked to use the newly learned technique to create 

several colored circles in a larger program. This was followed by instruction in the second 

technique and a second programming task using user-defined types. 

The study was counter-balanced with regard to the programming method involved; 

that is, each subject completed one of the programs using graphical definitions and the 

other using the copying technique. The same program was always performed first, which 

may have given the second program a learning advantage. However, because we did not 

assume that the problems were of equal difficulty, this did not affect the validity of the 

results. The data produced by the study included post-question and post-test 

questionnaires as well as notes and observations taken by the author during the study. 

6.1 Details of the Empirical Study Procedure 

The subjects were first given a brief hands-on introduction to Forms/3 in which 

they learned how to define simple formulas and reference cells in formulas. They were 

then taught how to create a box of a particular size and color using either graphical 
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definitions or by copying the built-in box form and defining formulas for cells on that 

form. Half of the subjects were taught the copying technique, and the other half were 

taught graphical definitions. Each subject was given an information sheet describing the 

steps they took in constructing the example programs used in the instruction. They were 

allowed to refer to this information sheet when working on their assigned programs. They 

were then asked to complete a small program which required them to create three colored 

circles using the technique they had been taught (see Section 6.3). Upon completion of the 

program, they answered a questionnaire about their academic experience, previous 

exposure to Forms/3, and their confidence in the correctness of their solution. 

They were then shown how to program using the user-defined binary tree type 

described in Section 4.3, either by making copies of the tree definition form and defining 

formulas for cells on those forms (if they had previously been taught graphical definitions), 

or using graphical definitions (if they had previously been taught the copying technique). 

They were then asked to instantiate a tree with several elements and reference its left 

subtree using the technique they had just been taught (see Section 6.3). After finishing this 

program, they were given another questionnaire in which they were asked questions about 

the tree problem as well as questions comparing the two problems and techniques. 

Appendix A contains all of the instructional materials and questionnaires used in the study. 

6.2 Subjects 

The subjects in the study were 20 computer science graduate students at Oregon 

State University. A summary of the subject backgrounds is shown in Table 6-1. Most of 

the subjects had little or no previous exposure to Forms/3. Two of them had done a small 

amount of Forms/3 programming in a visual programming course one and a half years 

earlier, but had not used graphical definitions or user-defined types. Four of the subjects 

were new or former members of our research group with little programming experience in 

Forms/3. Only one of these four had used graphical definitions previously, although 

several had seen it in demos. The subjects were assigned to one of the two groups 
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randomly, except that the four from our research group were intentionally divided evenly 

between the groups to reduce possible bias that might occur if they were placed in the 

same group. There turned out to be no significant correlation between performance in this 

study and previous experience with Forms/3 (Fisher's exact test, p=0.406). 

60% of the subjects in the study were Master's students, and the remaining 40% 

were Ph.D. students. Performance in the study was independent of degree status (Fisher's 

exact test, p=0.392). The students included both first year students (35%) and advanced 

students; performance was also independent with regard to number of years of graduate 

study (Fisher's exact test, p=0.474). 

Degree Status Years at OSU Forms/3 experience 

MS, Ph.D. mean, median Never used it, Used it 

Graphical definitions first 6, 4 1.90, 2 9, 1 

Copying technique first 6, 4 2.90, 2 

Cumulative 12, 8 2.40, 2 15, 5 

Table 6-1. Summary of subject backgrounds. Performance on the study was independent 
with regard to degree status, years of graduate study and prior Forms/3 experience. 

6.3 Programs 

6.3.1 Population program 

The first program completed by the subjects in the study is shown in Figure 6-1. In 

this program the subjects were to redefine the formulas for cells city, town, and village 

from textual representations to the graphical representations of black circles. Programming 

this with graphical definitions required the subject to draw a circle gesture or click on the 
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circle gesture icon to define the first circle, resize the circle if necessary, display the 

circle's definition form by clicking the middle mouse button, and define the formula for the 

fillForeColor cell. The remaining circles could be programmed in the same way, or they 

could be programmed by clicking on the first circle and then resizing it to create a new 

circle, as described in Section 3.2. 

Figure 6-1. Population program (before programming). The subjects were asked to 
redefine the formulas of cells city, town, and village. 

Programming the population program using the copying technique required the 

subject to make a copy of the primitiveCircle form for each circle and then define formulas 

for cells radius and fillForeColor (Figure 6 -2). 



35 

Portland 450000 

Eugene 120000 

Corvallis 55000 

Albany 25000 Village 

ovation 
1020-1Wingh WeiTIR 

rat': I BLACK 11 

Formula for: village Accept Cancel Clear 

1020-primitiveCircle:newCirclel 

I BLACK II WHITE 

ineroreCo
 

I BLACK 

i11F0te0CiI: 
tot i4act4cP,, 

Figure 6-2. Programming the population program using the copying technique. Each circle 
is defined by a copy of the primitiveCircle form on which formulas for cells radius and 
fillForeColor have been defined. 

6.3.2 Tree program 

In the second program, the subjects were asked to define the formulas for two 

cells: one that instantiates a tree containing three elements, and the other that reports the 

left subtree of that tree, as shown in Figure 6-3. To define the formula for cell binTree 
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using the copying technique, the subject made several copies of the tree form, defined 

formulas for the newElement and inputTree cells on these forms, and referenced the 

new Tree cell on the final copy of the form (see Figure 6-4). To define the formula for cell 

left, the subject made another copy of the Tree form, defined the inputTree formula to be 

a reference to cell bin Tree, and referenced cell left on that form. To define the formula for 

cell binTree using graphical definitions, the subject drew the top-level tree gesture or 

clicked on the tree gesture icon, then drew three new gestures and entered the values for 

each of the elements in the tree. To define the formula for cell left, the subject clicked on 

cell binTree and drew the left gesture (refer to Figure 3-6 for a similar example). 

0 trooDuimPte 

Figure 6-3. The output of the completed tree program. 
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Figure 6-4. Defining formulas for the tree program using the copying technique. The 
forms 1396-Tree, 1525-Tree, and 1691-Tree are used to construct the tree shown in cell 
treeExample:binTree. The other form (2887-Tree) is used to report information about the 
tree in cell binTree; in this case, its left subtree. 

A common error in this problem using the copying technique occurred in defining 

the formula for cell left Tree. Many subjects defined this formula to be a reference to cell 

newTree[left] on the third copy of the form (1691-Tree in Figure 6-4) rather than 

referencing cell left on a new form (2887-Tree) whose inputTree formula is a reference to 

cell binTree. Although this formula produces the correct answer, it violates the 

information hiding rules of Forms/3 by accessing private data in the tree abstraction box. 
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Our implementation of Forms/3 does not enforce these information hiding rules; however, 

the better solution (and the one taught to the subjects) is the one shown in Figure 6-4. 

6.4 Results 

We will discuss the results from the study as they relate to the questions listed at 

the beginning of this chapter. 

6.4.1 Do graphical definitions help programmers construct correct programs? 

A summary of the correctness results is shown in Table 6-2. All subjectsboth 

those using graphical definitions and those using the copying techniquewere able to 

complete the population program correctly. This is not particularly surprising since the 

formulas defined in this program were quite simple and the colored circles used in the 

program provided the subjects with a visual indication of the correctness of their formulas. 

Significantly more subjects were able to complete the tree program correctly using 

graphical definitions than the copying technique (Fisher's exact test, p=0.03). Whereas 

90% of the subjects using graphical definitions completed the program correctly, only 

40% of the subjects using the copying technique did so. These results produced a 

significant difference in the cumulative results. The cumulative results show that 

significantly more programs were completed correctly with graphical definitions than with 

the copying technique (Fisher's exact test, p=0.05). 
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Population Tree Total 
% %n % n n 

Graphical Correct 10 100% 9 90% 19 95% 

Definitions Incorrect 0 0% 1 10% 1 5% 

Copying Correct 10 100% 4 40% 14 70% 

Technique Incorrect 0 0% 6 60% 6 30% 

Total Correct 20 100% 13 65% 33 82.5% 

Incorrect 0 0% 7 35% 7 17.5% 

Table 6-2. Program correctness. All subjects were able to complete the population 
problem correctly. 65% of the subjects completed the tree program correctly: 90% of the 
subjects who used graphical definitions, and 40% of the subjects who used the copying 
technique. 

6.9.2 Do graphical definitions help programmers construct programs more quickly? 

We measured the amount of time it took each subject to complete each program. 

Both programs were completed significantly faster using graphical definitions (population: 

Mann-Whitney test, p<.02; tree: Mann-Whitney, p<.002). These results were the most 

dramatic for the tree program. In fact, each of the subjects who used graphical definitions 

completed the tree program faster than any of the subjects who used the copying 

technique on that program. Table 6-3 and Table 6-4 contain detailed and summary results. 
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Subject Population Technique Subject Tree Technique 
# time # time 

11 75 Graphical Definitions 2 60 Graphical Definitions 

7 95 Graphical Definitions 6 60 Graphical Definitions 

13 135 Graphical Definitions 12 75 Graphical Definitions 

17 160 Graphical Definitions 10 90 Graphical Definitions 

4 240 Copying 4 105 Graphical Definitions 

19 240 Graphical Definitions 18 105 Graphical Definitions 

15 285 Graphical Definitions 14 120 Graphical Definitions 

3 300 Graphical Definitions 8 180 Graphical Definitions 

6 300 Copying 20 255 Graphical Definitions 

9 300 Graphical Definitions 16 300 Graphical Definitions 

1 330 Graphical Definitions 13 330 Copying 

8 420 Copying 7 390 Copying 

5 435 Graphical Definitions 17 390 Copying 

10 450 Copying 19 450 Copying 

2 555 Copying 3 480 Copying 

12 600 Copying 11 540 Copying 

16 615 Copying 9 600 Copying 

20 705 Copying 15 720 Copying 

18 825 Copying 5 870 Copying 

14 840 Copying 1 900 Copying 

Table 6-3. Program completion time (detail, in order of program completion time). All 
times are in seconds. Both programs were completed significantly faster using graphical 
definitions than with the copying technique. 
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Population Tree Both 

mean median sd mean median sd mean 

Graphical Definitions 235.5 262.5 115.9 135.0 105.0 83.4 370.5 

Copying 555.0 577.5 204.3 567.0 510.0 202.2 1122.0 

Table 6-4. Program completion time (summary). All times are in seconds. Note that 
median and standard deviation are not meaningful in the rightmost column (Both) because 
no single subject was assigned both programs using either graphical definitions or the 
copying technique. 

6.4.3 Do programmers prefer to draw gestures or click on gesture icons when using 
graphical definitions? 

We were also interested in determining which graphical definitions input technique 

the subjects preferred, and whether this depended on the problem they had solved using 

graphical definitions. We asked the question, "When you used gestures, did you prefer to 

draw the gesture or click on the gesture icon?" The possible answers to this question on 

the questionnaire were drawing the gesture, clicking on the gesture icon, or using both 

techniques. A little over half of the subjects (55%) said they preferred to click on the 

gesture icon, while most of the others said they preferred to use both techniques (x2=7.90, 

df=2, p<.02). Only one subject preferred solely to draw the gesture (Table 6-5). 

Problem done using graphical definitions 

Population Tree TOTAL 

draw 0 1 1 

Preferred method click 7 4 11 

both 3 5 8 

Table 6-5. The subjects' preferred method of using graphical definitions. 
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A greater, although not statistically significant, number of subjects who used 

graphical definitions in the population program preferred solely to click compared to those 

who used graphical definitions in the tree program (Fisher's exact test, p=0.18). We can 

speculate that this apparent trend may be related to difficulties some subjects encountered 

in drawing circle gestures in the population program and box gestures in the preceding 

training. Several subjects in this group had significant difficulty in using the mouse to draw 

gestures at all, and others initially drew gestures that were incorrectly recognized by the 

gesture recognizer as boxes or lines. This may have contributed to some subjects' 

reluctance to use the circle gestures in the population program. These gesture recognition 

errors did not occur with the tree gestures, which, unlike the circle gesture, all consisted 

of straight line segments. More experimentation would be useful to explore these results 

further. 

6.4.4 Do programmers enjoy using graphical definitions? 

In the post-test questionnaire we asked two questions pertaining to this question: 

"If you were able to choose either approach to use on a third problem, which would you 

use?" and "Which problem did you feel more comfortable working on?" A majority of 

subjects who specified a preference, although not statistically significant (69%, f=2.25, 

df=1, p<0.14), said they would choose graphical definitions to use on a third problem. A 

significant majority of subjects (79%, x2-6.37, df=1, p<0.02) said they felt more 

comfortable on the problem on which they used graphical definitions. As we would 

expect, the answers to these two questions were highly correlated (Fisher's exact test, 

p=0.004). See Table 6-6. 
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More comfortable on program using 

Graphical Copying (No answer) Total 
Definitions 

Would rather Graphical Definitions 10 0 1 11 

use on a third Copying 1 4 0 5 

program No preference 4 0 0 4 

Total 15 4 1 20 

Table 6-6. User reaction to graphical definitions. 

6.5 Analysis of Programming Difficulties 

In order to be able to perform a more detailed analysis of these results, we also 

looked at some of the difficulties the subjects encountered while working on the programs. 

One surprising result we discovered was that, in the population program, many of the 

subjects using graphical definitions did not take full advantage of the capabilities of 

graphical definitions. Although with graphical definitions the subjects could first define a 

black circle for cell city and then define the black circles for cells town and village entirely 

by direct manipulation (we refer to this as "cloning" in Table 6-7 below), only slightly 

more than half of the subjects (56%) used this technique. The others used graphical 

definitions to define a circle of the correct size, but then had to display the circle's 

definition form to define the formula for its finForeColor cell. This required more work 

and time than cloning, and may have indicated a partial lack of understanding of graphical 

definitions. Subjects who mastered the cloning technique tended to do significantly better 

on the population program (Mann-Whitney test, p<.01). They also performed better on 

the tree program (Mann-Whitney, p<.10). This may be an indication that, even for built-in 

types, the benefits of graphical definitions may increase for advanced programmers as 

opposed to graphical definitions being a tool useful only to novices. 
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Population program 

Used cloning Didn't use cloning 

Tree Correct 4 0 

program Incorrect 2 4 

Table 6-7. Correlation between cloning on the population program and correctness on the 
tree program. The subjects who used cloning on the population program tended to do 
better on the tree program as well. 

On the tree program, only one subject using graphical definitions (10%) had any 

problems in defining the formulas for cell binTree, and only one (10%) had difficulty with 

cell left. The subjects using the copying technique, on the other hand, encountered several 

difficulties. When instantiating the tree, several subjects made errors in defining the 

relationships between cells on the various copies of the tree definition form. Many of these 

errors were later corrected, in part because the subjects could see that the formulas they 

had defined were not producing the results they expected. However, in defining the 

formula for cell left, this continuous immediate feedback may actually have contributed to 

some errors: a few subjects defined incorrect formulas (such as creating a new tree with 

the elements 3 and 8) that looked correct but did not define the correct relationship. Table 

6-8 contains a more detailed summary of the difficulties the subjects encountered on this 

problem. 

In Table 6-9 we consider the number of subjects who made conceptual errors such 

as the ones described above on the tree program. Significantly more errors were made 

when the subjects used the copying technique than when they used graphical definitions 

(Fisher's exact test, p--0.001). These results, along with Table 6-2, suggest that in addition 

to helping programmers construct ultimately correct programs, graphical definitions can 

also help programmers make fewer errors along the way. This may be because graphical 

definitions are so closely related to the task-specific operations defined for the graphical 

type; they allow the programmer to concentrate on the task to be done rather than on the 
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low-level details of copying forms and defining formulas for cells, activities in which the 

study subjects made numerous errors. 

binTree left entire program 

(number of subjects) 

Graphical none 9 9 8 

Definitions minor 1 0 1 

major 0 1 1 

none 3 3 2 

Copying minor 3 2 3 

major 4 5 5 

Table 6-8. Difficulties encountered on tree program. This table shows a categorization of 
the number of subjects who encountered difficulties as they were defining formulas for 
cells binTree and left in the tree program. Minor difficulties consisted of incorrect 
formulas that were quickly discovered and corrected. Major difficulties included numerous 
minor errors or errors that were never corrected. 

Programs with errors Programs without errors 

Graphical definitions 2 8 

Copying 8 2 

Table 6-9. Number of subjects who made conceptual errors on the tree program. 

6.6 Summary of Results 

We obtained the following results from the study. First, using graphical definitions 

subjects completed significantly more programs correctly than with the copying technique, 
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and they had fewer difficulties in completing the programs. Second, subjects completed 

the programs faster using graphical definitions than with the copying technique. Third, 

most subjects seemed to prefer clicking on gesture icons to drawing gestures, although 

many subjects used both techniques. Fourth, the subjects were more comfortable using 

graphical definitions than the copying technique. These results demonstrate the usefulness 

of graphical definitions, and show that graphical definitions can be an effective technique 

for constructing programs with graphical types. 
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7. Implementation 

The work described in this thesis has been implemented in our Forms/3 research 

prototype, which runs on Sun and Hewlett-Packard color workstations using Harlequin 

Common Lisp and the Garnet user interface development environment [16]. The gesture 

training facility is provided by Garnet's Agate package [10]. 

The major functions in the Lisp code used to implement graphical definitions in 

Forms/3 are shown in Appendix B. 
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8. Conclusion 

Spreadsheets have traditionally been limited to supporting only the simplest of 

textual types, namely numbers and strings. Prior attempts to remove this limitation have 

resulted in a number of interesting approaches, but none of them have featured a seamless 

fit within the one-way constraint model of the spreadsheet paradigm while still satisfying 

the principles of directness advocated by Shneiderman; by Hutchins, Hollan, and Norman; 

and by Nardi. 

The graphical definitions described in this thesis solve this problem. Among the 

other benefits of graphical definitions are the following: 

The contextual display of the gestures valid for the formula being edited 

and the use of gesture spaces to keep the number of such operations 

manageable eliminate the need for the programmer to memorize gestures, 

solving a common problem of gestural interfaces. 

Support for exploratory programming is enhanced, because graphical 

definitions have immediate effects and can be experimented with rapidly 

(using only a few mouse strokes) and reversibly. 

Program scalability is increased because fewer system resources are 

required, and because with graphical definitions programmers can specify 

fewer formulas and fewer cell references than are required without 

graphical definitions, sometimes reducing these actions by as much as a 

factor of n. 

We have also evaluated graphical definitions in an empirical study. The results of 

this study show that programmers using graphical definitions can construct programs with 

graphical types faster and with fewer errors than with a less direct technique. 

Most important, this work demonstrates that direct manipulation and gestures can 

be used to specify formulas in a spreadsheet language in a way that is entirely compatible 

with the spreadsheet value rule, allowing graphical types to be promoted to first-class 

status in spreadsheet languages. 
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Appendix A. Empirical Study Materials 

A.1 Introduction to Forms/3 

This is the script that was read to all subjects as their introduction to Forms/3. They were 
instructed to perform the actions described in the script. 

This study has two parts in which you'll be doing some programming in the 

spreadsheet-based visual programming language Forms/3. Before each section, you'll be 

given instructions on how to complete the task that I'll ask you to do. 

For the first part, I'll give you a brief hands-on introduction to programming in 

Forms/3, and then demonstrate one way of programming graphical objects such as boxes 

and circles. I'll then ask you to modify an existing program to use these graphical objects. 

In Forms/3, programming is done by defining formulas for cells which are placed 

on windows called forms, such as the "demoForm" you see here. For these examples, you 

won't be creating any new cells, but you will be defining formulas for existing cells. To 

define a formula for a cell, double click on the formula tab shown in the bottom right hand 

corner of the cell. Go ahead and define the formula of cell X to be the number 15. (Post 

the formula) 

We can reference this cell in another formula. To define the formula for cell Y to 

be X, either type the name of the cell, or click on the cell. Go ahead and do this. Now, if 

we change Xs formula, Ys value changes as well. For instance, change Xs formula to 10. 

Press the "Clear" button to erase the current formula. 
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A.2 Group 1 (graphical definitions first) 

A.2.1 Introduction to graphical definitions for built-in graphical objects 

This was read to the subjects who programmed the population program using graphical 
definitions. 

Graphical objects can be created and manipulated by gestures. For instance, to 

define the formula for cell aBox to be a box, first double click on the formula tab, and then 

either draw a gesture in the shape of a box or click on the box gesture icon. Go ahead and 

do this. The box can be resized by grabbing and dragging its corners. 

Circles are resized by dragging the top right, bottom right, etc., and lines are 

stretched by dragging their endpoints. 

These graphical objects are actually defined by built-in definition forms that 

contain cells. To display the definition form for an object, click on it with the middle 

mouse button. Then press the accept button to close the formula edit window. If we define 

new formulas for the cells on the primitiveBox form, the box changes. For instance, to 

make the box a solid color, define a formula for the fillForeColor cell. Make the box 

green. alit diSplay or accept) 

New objects can also be created from existing objects. For instance, to create a 

box that is just like some other box but smaller, click on the existing box while editing the 

new formula, and resize it to the desired size. This defines a new box that has all of the 

attributes of the original box except its size. Define the formula for anotherBox to be a 

green box that is smaller than the green box you just created. 

Are there any questions before you start the first program? 
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A.2.2 Information sheet for population program using the copying technique 

This was given to the subjects for their reference during the introduction above and while 
they were completing the population program. 

to define a formula for a cell: 

double click on the formula tab 

to refer to another cell in a formula: 

click on that cell while editing the formula 

to create a new box: 

double click on the formula tab to bring up the formula edit 

window. 

draw the box gesture or click on the box gesture icon. 

to resize a box: 

drag the corners of the box to the desired size. 

to display the box definition form: 

press the middle mouse button in the graphics area 

to make the box solid green: 

define a formula for the fillForeColor cell on the primitiveBox 

form. 

to create a new (different sized) box from another box: 

click on the box. 

stretch the box to the desired size. 

A.2.3 Population program 

This was read to all subjects prior to beginning the population program. 

Now I'd like you to use the approach you've just learned to program circles in the 

following program. This is a visualization of population data for various cities. Different 

sized cities are represented by the strings "city", "town", and "village". I'd like you to 

change these strings to a graphical representation of solid black circles of varying sizes, as 
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shown in this figure (see Figure A-1). You will need to replace the formulas for these 

three cells with formulas that represent black circles of approximately the size shown here, 

using the approach to programming graphical objects that I've just demonstrated. 

Portland 450000
 

Eugene 120000
 

Corvallis 55000
 

Albany 25000
 

J 

town village
 

Figure A-1. The output of the completed population program. This handout was given to 
the subjects prior to beginning the population program. 
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A.2.4 Introduction to the copying technique for user-defined graphical objects 

This was read to the subjects who programmed the tree program using the copying 
technique. 

In this example, you're going to create a small binary tree, using a user-defined 

Tree data type that has already been created. This tree is defined by a form similar to the 

built-in primitiveBox form you saw earlier. 

To define a new tree, the first thing you'll do is make a copy of the Tree form. To 

do this, first select the Tree form in the list and then press the "Copy Form" button. The 

Tree form contains several "abstraction boxes", which contain cells. These are used for 

data abstraction, and are similar to structs in C. To create a new tree, define a formula for 

the newElement cell. The abstraction box new Tree now represents a tree containing the 

new element. This tree can be used in a program by referencing the newTree cell on this 

form. Let's do this now: create a tree with the element 10, and define the formula for 

a Tree on the treeDemo form to be a reference to this tree. 

We can create a new tree that is exactly like another tree but with some change 

(such as a new element) by defining a formula for the inputTree abstraction box. For 

instance, to create a tree that is the same as the first tree but with the element 5 added to 

it, first copy the Tree form, then define the formula for the inputTree abstraction box on 

this form to be a reference to the new Tree cell on the previous tree's definition form. Now 

define the formula 5 for the newElement cell. The new Tree abstraction box is now a tree 

just like the previous tree but with the element 5 added. We can now define the formula 

for anotherTree to be a reference to the new Tree abstraction box on this form. 

The tree form also contains other cells to perform operations on the tree. For 

instance, if we define a new tree just like the one in the anotherTree cell, we can access its 

top element and left and right subtrees. Define the formula for cell tree Top to be the top 

element of the tree defined in cell anotherTree by copying the Tree form, defining the 

formula for cell inputTree to be anotherTree, and defining the formula for cell tree Top to 

be the top cell on the Tree form. 

Are there any questions before you start the second program? 
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A.2.5 Information sheet for tree program using graphical definitions 

This was given to the subjects for their reference during the introduction above and while 
they were completing the tree program. 

to define a new tree with the element 10: 

select the Tree form 

press the "Copy Form" button 

define the formula '10' for the newElement cell 

reference the newTree cell of the Tree form 

to define a new tree with the element 5 added to an existing tree: 

select the Tree form 

press the "Copy Form" button 

define the formula for the inputTree cell to reference the existing 

tree 

define the formula '5' for the newElement cell 

reference the newTree cell of the Tree form 

to access the top element of an existing tree 

select the Tree form 

press the "Copy Form" button 

define the formula for the inputTree cell to reference the existing 

tree 

reference the top cell of the Tree form 

A.2.6 Tree program 

This was read to all subjects prior to beginning the tree program. 

Now I'd like you to use the approach you've just learned to complete the following 

exercise. Define the formula for cell binTree on the treeExample form to be a binary tree 

with the elements 15, 3, and 8. Define the formula for leftTree to be the left subtree of 

binTree (see Figure A-2). 
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Figure A-2. The output of the completed tree program. This handout was given to the 
subjects prior to beginning the tree program. 

A.3 Group 2 (copying technique first) 

A.3.1 Introduction to the copying technique for built-in graphical objects 

This was read to the subjects who programmed the population program using the copying 
technique. 

Programming with graphical objects is done similarly, with a few new concepts. 

For instance, the first step in creating a box is to make a copy of the built-in box form. 

This is done by first selecting the primitiveBox form and then pressing the "Copy Form" 

button. Go ahead and do this now. The box in cell someBox is defined by the formulas of 

cells on this form. If we define new formulas for these cells, the box changes. For instance, 
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make the box narrower by changing the formula for the width cell to 40. Go ahead and do 

this. The width cell changes to white to signify that it has been changed. 

This box can be used in a program by referencing it in a formula. Define the aBox 

cell on the demoForm to be a reference to the box you have just created. 

Other cells on the box form affect other attributes of the box. To make the box a 

solid color, define a formula for the fillForeColor cell. Make the box green. 

Are there any questions before you start the first program? 

A.3.2 Information sheet for population program using the copying technique 

This was given to the subjects for their reference during the introduction above and while 
they were completing the population program. 

to define a formula for a cell: 

double click on the formula tab 

to refer to another cell in a formula: 

click on that cell while editing the formula 

to create a new box: 

select the primitiveBox form 

press the "Copy Form" button 

to make the box solid green: 

define a formula for the fillForeColor cell on the primitiveBox 

form. 

A.3.3 Population program 

The instructions for the population program for this group were identical to those 

given in section A.2.3. 
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A.3.4 Introduction to graphical definitions for user-defined graphical objects 

This was read to the subjects who programmed the tree program using graphical 
definitions. 

In this example, you're going to create a small binary tree, using a user-defined 

Tree data type that has already been created. Although a tree is defined by a form similar 

to the built-in primitiveBox form you saw earlier, we will be programming the tree using 

gestures rather than by copying forms. 

To define a cell's formula to be a tree, first double click on the cell's formula tab as 

before. Then either draw the Tree gesture (a capital T), or click on the Tree gesture icon. 

This defines the formula for the cell to be an empty tree. You can now define a new 

formula that represents an operation on the tree. The displayed gesture icons signify the 

operations that have been defined for the tree. 

To create a tree with a new element added, draw the New gesture or click on the 

New gesture icon. You will be asked to enter the new element. Enter the value 10. Press 

the "Accept" button. The formula for cell aTree is a tree with the single element 10. 

A new tree can be created from an existing tree. For instance, to define cell 

anotherTree to be a new tree with the element 5 added to the tree you just created, first 

double click on the formula tab for anotherTree. Then click on cell aTree. Now draw the 

New gesture, and enter the value 5. And we can perform more operations on this new 

tree, such as adding another element to it, say 8. 

Other operations on the tree are performed in the same manner. To define treeTop 

to be the top element of the tree you just created, click on the anotherTree cell while 

editing the formula for treeTop, then draw the Top gesture. 

Are there any questions before you start the second program? 
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A.3.5 Information sheet for tree program using graphical definitions 

This was given to the subjects for their reference during the introduction above and while 
they were completing the tree program. 

to create a new tree with the element 10: 

double click on the formula tab to bring up the formula edit 

window. 

draw the "Tree" gesture or click on the "tree" gesture icon. 

draw the "New" gesture or click on the "new" gesture icon. 

enter the value 10. 

to define a new tree with the element 5 added to an existing tree: 

double click on the formula tab to bring up the formula edit 

window. 

click on the tree 

draw the "New" gesture or click on the "new" gesture icon. 

enter the value 5. 

to access the top element of an existing tree: 

double click on the formula tab to bring up the formula edit 

window. 

click on the tree 

draw the "Top" gesture or click on the "top" gesture icon. 

A. 3.6 Tree program 

The instructions for the tree program for this group were identical to those given 

in section A.2.6. 
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A.4 Questionnaires 

Questionnaire 1 was given to the subjects after they completed the first program. 
Questionnaire 2 was given to the subjects after they completed the second program. 

A.4.1 Questionnaire 1 

Subject #: 

Answer these questions after finishing the first part 

1. How many years have you been at OSU? 

1st year 2nd year 3rd year other (specify) 

2. Are you a Master's or PhD student? 

Master's PhD Unsure 

3. Describe your experience with Forms/3. 

Never heard of it Know a little, but haven't used it 

Have used it a little Have used it a lot 

4. Did you do the first program using gestures or by copying the primitiveCircle form? 

gestures copying 

5. Did you think that your solution to the problem was correct? 

yes no not sure 

6. How confident were you of your results on this problem? Why? 

very confident somewhat confident not confident 
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A.4.2 Questionnaire 2 

Subject #: 

Answer these questions after finishing the second part 

1. Did you do the second program using gestures or by copying the primitiveCircle form? 

gestures copying 

2. Did you think that your solution to the problem was correct? 

yes no not sure 

3. How confident were you of your results on this problem? Why? 

very confident somewhat confident not confident 

4. Which problem did you feel more comfortable working on? Why? 

population tree 

5. If you were able to choose either approach to use on a third problem, which would you 

use? Why? 

gestures copying 

6. When you used gestures, did you prefer to draw the gesture or 

click on the gesture icon? 

draw the gesture click on the icon used both 

7. Any other comments? 

THANK YOU VERY MUCH FOR YOUR PARTICIPATION! 
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Appendix B. Source Code 

B.1 gesture.lisp 

The file gesture.lisp contains the definitions of the gesture class and 

gestureTableEntry structure. These structures store information about user-defined 

gestures and the semantics of these gestures. This file also contains functions to 

manipulate these structures. The most important functions are shown below. 

B.1.1 gesture class 

(deferrals gesture (displayable)
 
((id :accessor displayable-id :initarg :id :initform nil)
 
(name :accessor displayable-name :initarg :name
 

:initform nil)
 
(attributeList :accessor displayable-attributeList
 

:initarg :attributeList :initform nil)
 

(:documentation "Gesture class.")
 

B.1.2 gestureTableEntry struct 

(defstruct gestureTableEntry
 
(vadtName nil)
 
(gestureName nil)
 
(returnCell nil)
 
(items nil)
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B.1.3 gesture-create-constr-list 

;;;
 

;;; gesture-create-constr-list
 
;;
 

;;; creates a constr-list and returns the selected cell from a
 
;; gesture that contains the appropriate cell fmlas for
 
;;; theVADTType.
 

NOTE: only supports direct fmlas: cell defined by
 
single attrib.
 

;; theAttribs is (list (cellName, logicalVal))
 
;; returns (list (celllD, absoluteVal))
 

(defun gesture-create-constr-list (theVADTType gesture)
 
(let* ((theEntry (find-gestureTableEntry theVADTType
 

(displayable-name gesture)))
 

(theAttribs (if theEntry
 
(gestureTableEntry-items theEntry)))
 

(returnCell (if theEntry
 
(gestureTableEntry-returnCell theEntry)))
 

(model (formtable-find theVADTType))
 
tempConstrList val win)
 

(setf win (car (gv (displayable-win model) :child)))
 
(setf tempConstrList
 

(mapcar r(lambda (attrib)
 
(setf val (read-from-string (cadr attrib)))
 
(if (not (equalp 'same val)!
 
(progn
 

(if (not (stringp val))
 
(if (equalp val 'ask)
 

(setf val (get-val-from-prompt
 
(subseq (cadr attrib) 4)
 
(car attrib)))
 

(setf val (displayable-getAttribute val
 
(displayable-attributeList
 

gesture)))))
 
(if (null val)
 

(setf val (parse-formula-string
 
(cadr attrib) win)))
 

(if (not (null val))
 
(cons (car
 

(displayable-getNameEntry model
 
(format nil "-a" (car attrib))))
 

(list '<- val)))
 
)))
 

theAttribs))
 
(values (remove-if #'null tempConstrList) returnCell)
 

))
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B.1.4 edit-gesture-attributes 

(defun edit-gesture-attributes (theVADTType gestureName)
 
(let* ((title (format nil "Defining '-a' gesture for -a"
 

gestureName theVADTType))
 
(model (formtable-find theVADTType))
 
(currentEntry (find-gestureTableEntry
 

theVADTType gestureName))
 
;; the currently defined attributes
 
(currentAttributes (if currentEntry
 

(gestureTableEntry-items currentEntry)))
 
(currentReturnCell (if currentEntry
 

(gestureTableEntry-returnCell
 
currentEntry)))
 

(allCells (remove-if #'null
 
(displayable-mapcells
 
r(lambda (cellid cell)
 

(if (not (or (roobj-formulatab-hidden?
 
(displayable-object cell))
 

(string-equal cellid
 
(displayable-absBoxId
 

model))))
 
(roobj-name (displayable-object cell))))
 

(displayable-celltable model))))
 
(returnCells (sort
 

(stable-merge-no-dups
 
(list theVADTType)
 
(remove-if #'null
 

(displayable-mapcells
 
#1(lambda (cellid cell)
 

(declare (ignore cellid))
 
(if (roobj-formulatab-hidden?
 

(displayable-object cell))
 
(roobj-name (displayable-object
 

cell))))
 
(displayable-celltable model)))
 

#'string-equal #'string-lessp) #'string-lessp))
 
(allCellAttributes (mapcar #'(lambda (cellName)
 

(list (read-from-string cellname)
 
"same"))
 

allCells))
 
allAttributes returnCellListObj returnCell)
 

(setf returnCell (if currentReturnCell currentReturnCell
 
(let* ((absBoxIds
 

(remove-if #'null
 
(displayable-mapcells
 
#'(lambda (cellid cell)
 

(if (typep cell 'absBox)
 
cellid))
 

(displayable-cellTable
 
model)))))
 

(roobj-name (displayable-object
 
(displayable-getCell
 

model
 
(if (= 2 (length absBoxIds))
 

(car (remove-if #'(lambda (cellid)
 
(string-equal
 

(displayable- absBoxld model)
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cellid)) absBoxIds))
 
(displayable-absBoxId model))))))))
 

(setf currentAttributes (sort currentAttributes
 
#'(lambda (a b) (string-lessp (car a)
 

(car b)))))
 
(setf allCellAttributes (sort allCellAttributes
 

#'(lambda (a b) (string-lessp (car a)
 
(car b)))))
 

;; combine both sets of attributes
 
(setf allAttributes (stable-merge-no-dups
 

currentAttributes allCellAttributes
 
#1(lambda (a b) (string-equal (car a) 

(car b))) 
#'(lambda (a b) (string-lessp (car a) 

(car b))))) 

;; re-sort so that "same" comes last
 
(setf allAttributes (stable-sort (copy-list allAttributes)
 

#'(lambda (a b) (and (not (string-equal "same" a))
 
(string-equal "same" b))) :key #'cadr))
 

(setf returnCellListObj (create-instance nil
 
gg:option-button
 

(:items returnCells)
 
(:label "")
 
(:initial-item returnCell)))
 

(setf allAttributes (cons '("Cell to be referenced"
 
,returnCellListObj)
 
allAttributes))
 

(s-value $GestureEditor :vadtType theVADTType)
 
(s-value $GestureEditor :gestureName gestureName)
 
(gg:pop-up-win-change-items $GestureEditor allAttributes
 

200 200 title T)
 

B.1.5 define-gesture 

(defun define-gesture (an-interactor final-obj-over)
 
(declare (ignore an-interactor))
 
(agate:do-go
 
:initial-classifier (gv final-obj-over :parent :classifier)
 
:initial-examples (gv final-obj-over :parent :items)
 
:final-function #'(lambda (filename classifier examples
 

saved trained)
 
(declare (ignore filename saved trained))
 
(let* ((win (gv final-obj-over :window))
 

(agg (displayable-aggregate win))
 
gestAgg)
 

(setf gestAgg
 
(displayable-gestureIconAgg win))
 

(opal:remove-component agg
 
(displayable-gestureIconAgg win))
 

(setf gestAgg
 
(create-instance nil opal:aggregadget
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Gesture")
 

(:parts
 
'((:topLevel ,opal:text
 

(:left ,(o-formula
 
(+ 10
 

(opal:gvl-sibling :topLevelBorder
 
:left))))
 

(:top 10)
 
(:font ,opal:default-font)
 
(:string "Top-Level
 

(:toplevelborder ,opal:rectangle
 
(:left ,(o-formula
 

(+ (opal:gvl-sibling :icons :left)
 
(opal:gvl-sibling :icons
 

:width))))
 
(:top 0)
 
(:height 50)
 
(:width 110))
 

(:icons ,(create-instance nil
 
$GestureIconAgg
 
(:classifier classifier)
 
(:items examples)))))
 

(:interactors
 
'((:addTop ,inter:button-interactor
 

(:window ,(o-formula
 
(gv-local :self :operates-on
 

:window)))
 
(:active T)
 
(:start-event :any-mouseDown)
 
(:start-where ,(o-formula
 

(list :in (gvl :operates-on
 
:topLevelBorder))))
 

(:final-function
 
, #'define toplevel- gesture))))
 

))
 

(displayable-set-gestureIconAgg win
 
gestAgg)
 

(opal:add-component agg gestAgg)
 
))
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B.1.6 define-toplevel-gesture 

(defun define-toplevel-gesture (an-interactor final-obj-over)
 
(declare (ignore an-interactor final-obj-oyer))
 
(agate:do-go
 
:initial-classifier $GestureClassifier
 
:initial-examples $GestureExamples
 
:final-function #'(lambda (filename classifier examples
 

saved trained)
 
(declare (ignore filename saved trained))
 
(setf $GestureClassifier classifier)
 
(setf $GestureExamples examples))
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B.2 formulaDM.lisp 

The file formulaDMlisp contains functions to support the use of direct 

manipulation for editing formulas. The functions that are specifically related to graphical 

definitions are shown below. 

B.2.1 handle-gesture 

;;;
 

;;; handle-gesture
 
;;
 

(defun handle-gesture (gesture-name attribs)
 
(if (or (null attribs)
 

(< 9 (+ (abs (- (inter:gest-attributes-minx attribs)
 
(inter:gest-attributes-maxx attribs)))
 

(abs (- (inter:gest-attributes-miny attribs)
 
(inter:gest-attributes-maxy attribs))))))
 

(let* ((tempFormulaText (gv $FormulaGadget :formulaText))
 
(newFormulaString nil))
 

(gv tempFormulaText :string)
 
(gv tempFormulaText :cursor-index)
 
(case (gv $FormulaGadget :drawObj)
 

(:userDefined
 
(if (null gesture-name)
 

(format T "Gesture not recognized")
 
(let* ((tempFormDrawWindow
 

(gv (formula-tab-get-obj
 
(gv $FormulaWindow :formulaTab))
 

:parent :window))
 
(parsed-formula (parse-formula-string
 

(gv tempFormulaText :string)
 
tempFormDrawWindow))
 

modelForm theFmla theCell theVADTType
 
theGesture selectCell tempConstr)
 

(if (cellref-p parsed-formula)
 
(progn
 
(multiple-value-setq
 

(modelForm theFmla theCell)
 
(formula-model parsed-formula
 

tempFormDrawWindow))
 
(setf theVADTType
 

(displayable-name
 
(formtable-find modelForm)))
 

(setf theGesture
 
(make-gesture gesture-name attribs))
 

(multiple-value-setq (tempConstr selectCell)
 
(gesture-create-constr-list
 
theVADTType theGesture))
 

(if (typep (formtable-find modelForm)
 
'VADTForm)
 

(if selectCell ;; a recognized gesture
 
(progn
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;; need to create a constr entry for the
 
;; distinguished absBox unless the formula
 
;; already refers to the model's
 
;; distinguished absBox
 
(if (not (and (string-equal
 

(cellref-form (car
 
(cellrefs-replace-constr-names-by-ids
 

(list parsed-formula))))
 
(displayable-id (formtable-find modelForm)))
 

(string-equal
 
(cellref-cellID parsed-formula)
 
(displayable- absBoxlD
 
(formtable-find modelForm))))
 

;; need to get a ref to an absBox. if theCell
 
;; is an absBox or evaluates to an absDycon
 
;; (demand if necessary), then use it
 
;; otherwise, get the distinguished absBox
 

(let* (absBoxConstr theValue)
 
(if (typep theCell 'absBox)
 

(setf absBoxConstr
 
'((,(displayable-absBoxID
 

(formtable-find modelForm))
 
<- ,parsed-formula)))
 

(progn
 
(if (null
 

(displayable-object theCell))
 
(setf theValue
 

(displayable-cell-demand
 
theCell
 
(formtable-find modelForm)))
 

(setf theValue
 
(roobj-value
 
(displayable-object theCell))))
 

(if (typep theValue 'absDycon)
 
(setf absBoxConstr
 

'((,(displayable-absBoxID
 
(formtable-find modelForm))
 

<- ,parsed-formula)))
 
(setf absBoxConstr
 
'((,(displayable-absBoxID
 

(formtable-find modelForm))
 
<- ,(make-cellref modelForm
 

(displayable- absBoxlD
 
(formtable-find
 

modelForm)
 
)))))
 

) ) )
 

(setf tempConstr
 
(merge-constr-lists
 
(constr-name-list
 
(unravel-self-refs
 

(make-constr-name :list absBoxConstr)
 
(displayable-title
 
(displayable-parent
 
tempFormDrawWindow))))
 

tempConstr))
 
))
 

(setf newFormulaString
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(make-vadt-ref-fmla modelForm tempConstr
 
selectCell)))
 

(format T "Gesture not defined for -a-%"
 
theVADTType))
 

(setf newFormulaString
 
(make-prim-ref-fmla modelForm tempConstr
 

(gv tempFormulaText :string)))) 

(T 

;; else 
(break "error no

))) 

t a cellref in handle-gesture")) 

(if (null attribs)
 
(setf newFormulaString
 

(if (string-equal gesture-name "BOX")
 
"box 50 50"
 

(if (string-equal gesture-name "CIRC")
 
"circle 25"
 

(if (string-equal gesture-name "LINE")
 
"line 50 50"
 
(if (formtable-find gesture-name)
 

(format nil " -a: --a" gesture-name
 
(roobj-name (displayable-object
 
(displayable-getcell
 
(formtable-find gesture-name)
 
(displayable-absBoxID
 

(formtable-find gesture-name))))))
 
(format nil "Form for gesture -a not found"
 

gesture-name))
 
))))
 

;; else, attribs not null
 
(let* ((gesture
 

(make-gesture gesture-name attribs)))
 
(setf newFormulaString
 

(if (string-equal gesture-name "BOX")
 
(format nil "box -a -a"
 

(displayable-getAttribute 'width
 
(displayable-attributeList gesture))
 

(displayable-getAttribute 'height
 
(displayable-attributeList gesture)))
 

(if (string-equal gesture-name "CIRC")
 
(format nil "circle -a"
 
(displayable-getAttribute 'radius
 
(displayable-attributeList gesture)))
 

(if (string-equal gesture-name "LINE")
 
(format nil "line -a -a"
 
(displayable-getAttribute 'dx
 

(displayable-attributeList gesture))
 
(displayable-getAttribute 'dy
 

(displayable-attributeList gesture)))
 
(if (string-equal gesture-name "NIL")
 

(format T "Sorry, gesture not recognized-%")
 
(if (formtable-find gesture-name)
 

(format nil "-a:-a" gesture-name
 
(roobj-name (displayable-object
 
(displayable-getcell
 
(formtable-find gesture-name)
 
(displayable- absBoxlD
 

(formtable-find gesture-name))))))))))))
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(if newFormulaString
 
(progn
 

(s-value tempFormulaText :string newFormulaString)
 
(s-value tempFormulaText :cursor-index
 

(length newFormulaString))
 
(display-graphical-formula)
 
))
 

B.2.2 create-graphical-formula 

; ; ; 
;;; create-graphical-formula
 
;;
 

;;; objType is :drawRect, :drawCircle, or :drawLine;
 
;;; return fmlaString
 

(defun create-graphical-formula (objType obj-being-changed
 
final-points)
 

(let* (newFormulaString w h)
 
(case objType
 

(:drawRect
 
(setf w (third final-points))
 
(setf h (fourth final-points))
 
(setf newFormulaString (format nil "box -a -a" w h)))
 

(:drawCircle
 
(setf w (third final-points))
 
(setf h (fourth final-points))
 
(setf newFormulaString (format nil "circle -a"
 

(round (/ (max w h) 2)))))
 

(:drawLine
 
(progn
 

(setf w (- (third final-points)
 
(first final-points)))
 

(setf h (- (fourth final-points)
 
(second final-points)))
 

;; move to upper left corner of gesture window
 
(if (<= 0 (* w h)) ; both coordinates have same sign
 
(s-value obj-being-changed :points
 
(list 10
 

(+ 10 (gv $FormulaGadget :gestureBorder :top))
 
(+ 10 (abs w))
 

(+ 10 (abs h) (gv $FormulaGadget :gestureBorder
 
:top))))
 

(s-value obj-being-changed :points
 
(list 10
 
(+ 10 (abs h)
 

(gv $FormulaGadget :gestureBorder :top))
 
(+ 10 (abs w))
 
(+ 10 (gv $FormulaGadget :gesturE?order :top)))))
 

(setf newFormulaString
 
(format nil "line -a -a" w h))))
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)
 

newFormulaString)
 

B.2.3 handle-userDefined-formula 

(defun handle-userDefined-formula (theForm theFmla
 
obj-being-changed final-points)
 

;; the new formula for this cell is theFmla;
 
;; its model is theForm.
 

(let* (newCopy newFormulaString)
 
(case (car theFmla)
 

(make-boxDycon
 
(case (length theFmla)
 

(3
 

(setf newFormulaString (create-graphical-formula
 
:drawRect obj-being-changed final-points))
 

) 

(4
 

(setf newCopy (form-create-from-constr-list
 
theForm
 

'(("Box50" <- ,(gv obj-being-changed :width))
 
("Box51" <- obj-being-changed :height)))))
 

(setf newFormulaString (format nil "-a:someBox"
 
(displayable-id newCopy)))
 

) 

(T
 

(break "unknown box parameters"))
 
))
 

(make-circleDycon
 
(case (length theFmla)
 

(2
 

(setf newFormulaString {create-graphical-formula
 
:drawCircle obj-being-changed final-points)))
 

(3
 

(setf newCopy (form-create-from-constr-list
 
theForm
 
'(("Circle50" <­
,(round (/ (gv obj-being-changed :height) 2))
 

))))
 

(setf newFormulaString (format nil "-a:someCircle"
 
(displayable-id newCopy)))
 

(T
 

(break "unknown circle parameters")))
 
)
 

(make-lineDycon
 
(case (length theFmla)
 

(3
 

(setf newFormulaString (create-graphical-formula
 
:drawLine obj-being-changed final-points)))
 

(4
 

(setf newCopy (form-create-from-constr-list
 
theForm
 

'(("Line50" <- ,(- (gv obj-being-changed :x2)
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(gv obj-being-changed :x1)))
 
("Line51" <- ,(- (gv obj-being-changed :y2)
 

(gv obj-being-changed :y1)))
 
)))
 

(setf newFormulaString (format nil "-a:someLine"
 
(displayable-id newCopy)))
 

(T
 

(break "unknown line parameters")
 
))
 

(abscompose
 
(format T
 

"Working on DM (RESIZE) of a VADT (Not yet implemented)")
 
(let* ((theVADTType (displayable-name
 

(formtable-find theForm))))
 
(setf newFormulaString
 

(make-vadt-ref-fmla theForm
 
(DM-create-constr-list theVADTType obj-being-changed
 

final-points)))
 
))
 

(T
 

(break "unknown formula type in handle-userDefined-formula")
 
(setf newFormulaString "")))
 

newFormulaString
 

B.2.4 form-create-from-constr-list 

(defun form-create-from-constr-list (theForm theList)
 
(if (not (formtable-find theForm))
 

;; load it
 
(file-load nil (concatenate 'string $FormsDir
 

(format nil "primitiveForms/-a.frm" theForm)))
 

(let* (newCopy tempConstrList tempConstr)
 
(if (displayable-win (formtable-find theForm))
 

(if (model-form-p
 
(displayable-win (formtable-find theForm)))
 

;; copying a model; straightforward
 
(setf tempConstr (make-constr-name
 

:name theForm
 
:list theList))
 

;; else, copying a (visible) copy
 
(let* ((tempComponentList (gv (displayable-aggregate
 

(car (gv (displayable-win
 
(formtable-find theForm)) :child)))
 

:components))
 
(overriddenComponentList (remove-if-not
 

r(lambda (component)
 
(roobj-override component))
 

tempComponentList)))
 

;; create constrlist from all overridden cells
 
(setf tempConstrList (mapcar #'(lambda (component)
 

(cons (displayable-id (roobj- formsRO component))
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(roobj-formula component)))
 
overriddenComponentList))
 

;; if theList has any values that are different from
 
tempConstrList, use them. First, sort the lists.
 

(setf theList (sort theList #'(lambda (a b)
 
(string-lessp (car a) (car b)))))
 

(setf tempConstrList (sort tempConstrList #'(lambda (a b)
 
(string-lessp (car a) (car b)))))
 

(setf tempConstrList (stable-merge-no-dups theList
 

tempConstrList
 
r(lambda (a b) (string-equal (car a) (car b))) 
#'(lambda (a b) (string-lessp (car a) (car b))))) 

(setf tempConstr (make-constr-name 
:name (form-model-title (displayable-constr-name
 

(formtable-find theForm)))
 
:list tempConstrList))
 

))
 

;; else parent isn't visible, so the constr-list is just a
 
;; merge of the parent's constr-list and theList.
 
(progn
 

(setf tempConstrList (constr-name-list
 
(displayable-constr-name
 

(formtable-find theForm))))
 

(setf theList (sort theList #'(lambda (a b)
 
(string-lessp (car a) (car b)))))
 

(setf tempConstrList (sort tempConstrList #'(lambda (a b)
 
(string-lessp (car a) (car b)))))
 

(setf tempConstrList
 
(stable-merge-no-dups theList tempConstrList
 
#'(lambda (a b) (string-equal (car a) (car b)))
 
#l(lambda (a b) (string-lessp (car a) (car b)))))
 

(setf tempConstr (make-constr-name
 
:name (form-model-title (displayable-constr-name
 

(formtable-find theForm)))
 
:list tempConstrList))
 

) ) 

;; if a form with the given constr-name already exists,
 
;; use it rather than creating a new one.
 
(if (null (setf newCopy (formtable-find tempConstr)))
 

(setf newCopy (form-create-from-abs-ref tempConstr)))
 
newCopy ; return the new form
 

))
 

B.2.5 display-graphical-formula 

; ; ; 
;;; display-graphical-formula
 
;;
 



78 

(defun display-graphical-formula ()
 
(if $Gesture
 

(let* ((tempFormula (gv $FormulaGadget :formulaText :string))
 
tempOperator stringIndex w h
 
(tempObj (formula-tab-get-obj
 

(gv $FormulaWindow :formulaTab)))
 
(tempFormDrawWindow (gv tempObj :parent :window))
 
(parsed-formula
 

(parse-formula-string tempFormula tempFormDrawWindow))
 
theValue tempImage modelForm cellFmla tempCell
 

;;hjghjg may need to add destroy-objects call(s) as well.
 
(opal:remove-all-components
 

(gv $FormulaGadget :drawAgg :userDefined))
 
(display-gesture-icons nil)
 

(if (cellref-p parsed-formula)
 
;; handle as celiRef
 
(progn
 

(multiple-value-setq (modelForm cellFmla tempCell)
 
(formula-model parsed-formula tempFormDrawWindow))
 

(if tempCell
 
(if (null (displayable-object tempCell))
 

(setf theValue (displayable-cell-demand tempCell
 
(formtable-find modelForm)))
 

(setf theValue (roobj-value
 
(displayable-object tempCell))))
 

(setf tempImage
 
(if (not (or (typep theValue 'eventReceptorDycon)
 

(typep theValue 'glyphDycon)
 
(listp theValue)))
 

(displayable-display theValue)
 
(create-instance nil opal:text))
 

(if (and (is-a-p tempImage opal:text)
 
(not (typep (formtable-find modelForm) 'VADTForm)))
 

;; not a graphical object
 
(s-value $FormulaGadget :drawObj nil)
 

(progn
 
(move-to-drawing-area tempImage)
 
(opal:add-component
 

(gv $FormulaGadget :drawAgg :userDefined)
 
tempImage)
 

(s-value $FormulaGadget :drawObj :userDefined)
 
) ) 

(if (typep theValue 'absDycon)
 
(progn
 

(display-gesture-icons (displayable-absmype theValue))
 
(s-value $FormulaGadget :drawObj :userDefined))
 

;; else
 
(if (typep (formtable-find modelForm) 'VADTForm)
 

(display-gesture-icons (displayable-name
 
(formtable-find modelForm)))
 

;; else
 
(display-gesture-icons nil))
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(if (and (cellref-form parsed-formula)
 
(null (displayable-win (formtable-find
 

(cellref-form parsed-formula)))))
 
(progn
 
(roobj-set-general-formula (formula-tab-get-obj
 

(gv $FormulaWindow :formulaTab))
 
s(<- ,(make-cellref
 

(expand-refs
 
(displayable-constr-name
 
(formtable-find
 
(cellref-form parsed-formula)))
 
(displayable- parentFormlD
 

(roobj-formsR0 (formula-tab-get-obj
 
(gv $FormulaWindow
 
:formulaTab)))))
 

(cellref-cellid parsed-formula))))
 
(format T "Got a ref to an undisplayed form; ")
 
(format T "setting generalized formula to -a -%"
 

(roobj-general-formula (formula-tab-get-obj
 
(gv $FormulaWindow :formulaTab))))
 

) ) 

;; else (not a cellRef)
 
(if (or (equal tempFormula "")
 

(search ":" tempFormula)) ; read-from-string bombs on ":",
 
; and we want to ignore it anyway.
 

(s-value $FormulaGadget :drawObj NIL)
 
(progn
 

(multiple-value-setq (tempOperator stringlndex)
 
(read-from-string tempFormula))
 

(setf tempOperator (format nil "-a" tempOperator))
 
;; so we can treat it as a string
 

(cond ((string-equal tempOperator "BOX")
 
(multiple-value-setq
 
(w stringlndex)
 
(read-from-string tempFormula nil nil
 

:start stringlndex))
 
(setf h (read-from-string tempFormula nil nil
 

:start strincandex))
 

(if (and (numberp w) (numberp h))
 
(progn
 

(s-value $FormulaGadget :drawAgg :drawRect :box
 
(list 0 0 w h))
 

(s-value $FormulaGadget :drawObj :drawRect))
 
(s-value $FormulaGadget :drawObj nil))
 

((string-equal tempOperator "CIRCLE")
 
(setf w (read-from-string tempFormula nil nil
 

:start stringlndex))
 
(if (numberp w)
 

(progn
 
(setf w (* w 2))
 
(s-value $FormulaGadget :drawAgg
 

:drawCircle :box
 
(list 0 0 w w))
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(s-value $FormulaGadget :drawObj :drawCircle))
 
(s-value $FormulaGadget :drawObj nil))
 

((string-equal tempOperator "LINE")
 
(multiple-value-setq
 
(w stringIndex)
 
(read-from-string tempFormula nil nil
 

stringIndex))
 
(setf h (read-from-string tempFormula nil nil
 

:start stringIndex))
 
(if (and (numberp w) (numberp h))
 

(progn
 
(if (<= 0 (* w h))
 

both coordinates have same sign
 
(s-value $FormulaGadget :drawAgg
 

:drawLine :points
 
(list 10
 

(+ 10 (gv $FormulaGadget :gestureBorder :top))
 
(+ 10 (abs w))
 
(+ 10 (abs h)
 

(gv $FormulaGadget :gestureBorder :top))))
 
(s-value $FormulaGadget :drawAgg :drawLine :points
 

(list 10
 
(+ 10 (abs h)
 

(gv $FormulaGadget :gestureBorder :top))
 
(+ 10 (abs w))
 

(+ 10 (gv $FormulaGadget :gestureBorder :top)))))
 
(s-value $FormulaGadget :drawObj :drawLine))
 

(s-value $FormulaGadget :drawObj nil))
 

(T
 

(s-value $FormulaGadget :drawObj NIL))
 

)))
 

(update-formula-versions)
 

) ) 

B.2.6 prey-formula 

;;; prey- formula
 
;;
 

(defun prey- formula
 
(update-formula-versions)
 
(let* ((tempFormulaText (gv $FormulaGadget :formulaText))
 

newFormulaString)
 
(if (and
 

(not (equalp (car $PreviousFormulas) (car $NextFormulas)))
 
(> (length $PreviousFormulas) 1))
 

(progn
 
(setf $NextFormulas (cons
 

(car $PreviousFormult:)
 
$NextFormulas))
 

(setf $PreviousFormulas (cdr $PreviousFormulas))
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(setf newFormulaString (car $PreviousFormulas))
 
(if newFormulaString (progn
 

(s-value tempFormulaText :string newFormulaString)
 
(s-value tempFormulaText :cursor-index
 

(length newFormulaString))
 
(display-graphical-formula))))))
 

B.2.7 next-formula 

; ; ; 
;;; next-formula
 
;;
 

(defun next-formula ()
 
(update-formula-versions)
 
(let* ((tempFormulaText (gv $FormulaGadget :formulaText))
 

(newFormulaString (car $NextFormulas)))
 
(if $NextFormulas
 

(progn
 
(setf $PreviousFormulas (cons
 

(car $NextFormulas)
 
$PreviousFormulas))
 

(setf $NextFormulas (cdr $NextFormulas))
 
(s-value tempFormulaText :string newFormulaString)
 
(s-value tempFormulaText :cursor-index
 

(length newFormulaString))
 
(display-graphical-formula))))
 




