
AN ABSTRACT OF THE THESIS OF

Herkimer John Gottfried for the degree of Master of Science in Computer Science

presented on December 9, 1996. Title: Graphical Definitions: Expanding Spreadsheet

Languages through Direct Manipulation and Gestures.

Abstract approved:

Margaret M. Burnett

Until now, attempts to extend the one-way constraint evaluation model of the

spreadsheet paradigm to support complex objects, such as colored circles or user-

defined types, have led to approaches featuring either a direct way of creating objects

graphically or strong compatibility with the spreadsheet paradigm, but not both. This

inability to conveniently go beyond numbers and strings without straying outside the

spreadsheet paradigm has been a limiting factor in the applicability of spreadsheets. In

this thesis we present a technique that removes this limitation, allowing complex objects

to be programmed directlyand in a manner that fits seamlessly within the spreadsheet

paradigmusing direct manipulation and gestures. We also present the results of an

empirical study which suggests that programmers can use this technique to program

complex objects faster and with fewer errors. The graphical definitions technique not

only expands the applicability of spreadsheet languages, it also adds to their support for

exploratory programming and to their scalability.

C Copyright by Herkimer John Gottfried

December 9, 1996

All Rights Reserved

Graphical Definitions:

Expanding Spreadsheet Languages

through Direct Manipulation and Gestures

by

Herkimer John Gottfried

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed December 9, 1996

Commencement June 1997

Master of Science thesis of Herkimer John Gottfried presented on December 9, 1996

APPROVED:

Major Profqpor, representing Computer Science

Chair of Department of Computer Science

Dean of Gradu School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Redacted for privacy

Redacted for privacy

ACKNOWLEDGMENT

We would like to thank the members of our research group, in particular John

Atwood, Rebecca Walpole, and Sherry Yang, for their work on the Forms/3

implementation and for their feedback on graphical definitions. Special thanks go to

Shikha Ghosh Gottfried and Judy Hays for their help in testing the empirical study, and

to the subjects of the study for their participation.

This work was supported in part by Hewlett-Packard and by the National

Science Foundation under grant CCR-9308649 and an NSF Young Investigator Award.

Table of Contents

Page

1. Introduction 1

1.1 Organization of this Thesis 2

1.2 Design Goals 2

2. Related Work 4

2.1 Spreadsheet Languages 4

2.2 Demonstrational Systems 6

3. Programming Graphical Objects Directly 8

3.1 Introduction to Forms/3 8

3.2 How are Graphical Definitions Used? 9

3.3 Graphical Definitions are Consistent with the Value Rule 12

3.4 Using Gestures with User-Defined Types 13

4. The Semantics of Graphical Definitions 15

4.1 Graphical Types in Forms/3 15

4.2 Graphical Definitions for Built-In Types 16

4.3 Example: Defining a Binary Tree 18

4.4 Defining New Gestures 20

5. Other Contributions of the Approach 25

5.1 Gesture Spaces 25

5.2 Exploratory Programming 26

5.3 Scalability 29

6. Empirical Study 31

6.1 Details of the Empirical Study Procedure 31

6.2 Subjects 32

Table of Contents, Continued

Page

6.3 Programs 33

6.4 Results 38

6.5 Analysis of Programming Difficulties 43

6.6 Summary of Results 45

7. Implementation 47

8. Conclusion 48

References 49

Appendices 52

Appendix A. Empirical Study Materials 53

Appendix B. Source Code 65

List of Figures

Page

3-1. A portion of a form used to define a circle in Forms/3 9

3-2. The indirect approach 10

3-3. A visualization of population data 10

3-4. Defining the circle for cell city 11

3-5. Defining the circle for cell town 12

3-6. The programmer clicks on the search tree to set the context for the gesture 14

4-1. A tree definition form 19

4-2. Defining gesture semantics 22

4-3. Using graphical definitions to insert a new element into a tree 23

5-1. Using gestures to explore a binary tree 28

6-1. Population program (before programming) 34

6-2. Programming the population program using the copying technique 35

6-3. The output of the completed tree program 36

6-4. Defining formulas for the tree program using the copying technique 37

List of Tables

Page

4-1. Gesture attributes 17

4-2. Formulas defined by drawing gestures and clicking on gesture icons for built-in

types 17

4-3. Formulas defined by direct manipulation of an existing object a 18

4-4. The semantics of formula specifications 21

4-5. Formulas defined by drawing gestures and clicking on gesture icons for user-

defined types 22

5-1. Programmers perform fewer actions using graphical definitions 30

6-1. Summary of subject backgrounds 33

6-2. Program correctness 39

6-3. Program completion time (detail, in order of program completion time) 40

6-4. Program completion time (summary) 41

6-5. The subjects' preferred method of using graphical definitions 41

6-6. User reaction to graphical definitions 43

6-7. Correlation between cloning on the population program and correctness on the

tree program 44

6-8. Difficulties encountered on tree program 45

6-9. Number of subjects who made conceptual errors on the tree program 45

List of Appendix Figures

Page

A-1. The output of the completed population program 56

A-2. The output of the completed tree program 59

Graphical Definitions:
Expanding Spreadsheet Languages

through Direct Manipulation and Gestures

1. Introduction

In recent years, many new graphical techniques have been developed to support

the use of graphical objects. Of particular note are the contributions of demonstrational

programming research, which have brought straightforward, graphical techniques for

creating and working with graphical objects to both end-users and programmers.

Unfortunately however, users of spreadsheets have been left out of these advances, and

still find themselves stranded in a highly textual world with limited abilities to incorporate

graphical objects into their computations.

We set out to correct this problem. Our goal was to incorporate graphical objects

into spreadsheets in a way that would fit seamlessly within the one-way constraint model

of the spreadsheet paradigm. Further, we wanted our approach, like most other features

found in spreadsheets, to be applicable to all users of spreadsheet languages. That is, we

wanted to support the simple, built-in graphical objects likely to be used by ordinary end-

users, in a way general enough to also support the complex, user-defined objects needed

by programmers.

In this thesis we present such an approach. It allows both simple and complex

objects to be defined graphically in a spreadsheet language using direct manipulation and

gestures. We call these direct manipulations and gestures graphical definitions to

emphasize that they are a declarative way to define formulas for cells in a graphical

manner. The contributions of the graphical definitions approach are that (1) it is the first

approach that provides fully declarative, graphical support for working directly with

objects in a way that fits seamlessly within the spreadsheet paradigm; (2) it adds to both

the support for exploratory programming and to the scalability of spreadsheet languages;

2

and (3) it contributes gesture spaces, a technique that takes a step forward in the

practicality of programming with gestures.

1.1 Organization of this Thesis

We begin with a discussion of the design goals of our approach. In Chapter 2, we

review related work, evaluating other systems with regard to these design goals. In

Chapter 3 we provide a brief introduction to the Forms/3 spreadsheet language in which

our approach is prototyped, along with examples of how our technique might be used by

end-users and by programmers. In Chapter 4 we present the formal semantics of graphical

definitions. We describe other contributions of the approach in Chapter 5. We present the

results of an empirical study in Chapter 6, and we conclude in Chapter 7.

1.2 Design Goals

We use the term spreadsheet languages to refer to all systems that follow the

spreadsheet paradigm, from commercial spreadsheets to more sophisticated systems

whose computations are defined by one-way constraints in the cells' formulas. By "fitting

seamlessly within the spreadsheet paradigm," we mean that the approach follows the

declarative, one-way constraint paradigm of spreadsheets, emphasizing that it should

follow the value rule for spreadsheets, which states that a cell's value is defined solely by

the formula explicitly given it by the user [8]. The characteristic of seamlessness within the

spreadsheet paradigm was one of our two primary design goals.

Our other primary design goal was directness, a term we will use to mean

following the principles advocated by Shneiderman; by Hutchins, Hollan, and Norman;

and by Nardi. The term direct manipulation was coined by Shneiderman [19, 20], who

describes three principles of direct manipulation systems: continuous representation of the

objects of interest, physical actions or presses of labeled buttons instead of complex

3

syntax, and rapid incremental reversible operations whose effect on the object of interest is

immediately visible.

Hutchins, Hollan, and Norman [7] expand upon these notions, suggesting that the

degree to which a user interface feels direct is inversely proportional to the cognitive

effort needed to use the interface. They describe directness as having two aspects. The

first aspect is the distance between one's goals and the actions required by the system to

achieve those goals. In traditional spreadsheet programming, this distance is fairly small

because there is a well-understood, one-one mapping from each operator and term in the

goal to the formula that must be specified (e.g., from the goal "add A and B" to the

formula "A + B"). The second aspect is a feeling of direct engagement, "the feeling that

one is directly manipulating the objects of interest." Nardi [18] sees direct engagement as

a critical element in spreadsheets, emphasizing freedom from low-level programming

minutiae in favor of task-specific operations. Direct engagement has been largely absent

from prior approaches to supporting graphics in spreadsheet languages.

4

2. Related Work

Our approach is most closely related to research in spreadsheet languages and

demonstrational systems.

2.1 Spreadsheet Languages

Microsoft Excel [13] and other commercial spreadsheets provide the capability to

display simple graphics and charts in spreadsheets. However, these graphical objects are

strictly output mechanisms rather than first-class objects. They cannot be values of cells,

other cells' values cannot depend on them, and only the charts (not the other kinds of

graphics) can be dependent on other cells in the spreadsheet. Furthermore, these

spreadsheets do not allow users to extend the set of graphical objects that are supported.

In some spreadsheets, it is possible to gain some graphical support for objects through the

use of macro languages and incorporation of state-modifying programming languages, but

these approaches violate the spreadsheet value rule. Macros violate it because a macro

stored in one group of cells actually changes other cells' formulas during executionthe

spreadsheet equivalent of self-modifying programs.

Although some research spreadsheet languages have used graphical techniques,

they have not achieved the combination of generality and directness that we sought for the

spreadsheet paradigm. For example, NoPumpG [11] and NoPumpII [25] are simple

spreadsheet languages designed to support interactive graphics. The design goal of these

systems was to provide the capability to create low-level graphical primitives while adding

as little as possible to the basic spreadsheet paradigm. Thus, NoPumpG and NoPumpII

include some built-in graphical types that may be instantiated using cells and formulas, and

support limited (built-in) manipulations for these objects, but do not support complex or

user-defined objects.

Penguims [5] is an environment based on the spreadsheet model for specifying user

interfaces. Its goal is to allow interactive user interfaces to be created with little or no

5

explicit programming. This work is similar to ours in its support for abstractionit

provides the capability to collect cells together into objectsbut it also introduces several

new concepts that violate the spreadsheet model, such as interactor objects that can

modify the formula of other cells, and imperative code similar to macros. Penguims

provides the capability to build interactive user interfaces, but this programming is still

done indirectly by defining formulas for cells.

Action Graphics [6] is a spreadsheet language for graphics animations. It provides

some support for complex objects, such as the ability to group cells into "composite cells,"

but does not provide the directness we sought. Also, animation in Action Graphics is

performed through functions that cause side-effects; thus, this approach violates the

spreadsheet value rule.

Smedley, Cox, and Byrne [21] have incorporated the visual programming language

Prograph and user interface objects into a conventional spreadsheet in order to provide

spreadsheet users with a graphical interface for input and feedback. However, like

Penguims, this approach does not follow the value rule because user interface objects can

modify the formulas of other cells. Also, although the Prograph approach to spreadsheets

adds the ability to incorporate graphical objects into spreadsheets, it does not make

programming them more direct.

Wilde's WYSIWYC spreadsheet [26] aims to improve traditional spreadsheet

programming by making cell formulas visible and by making the visible structure of the

spreadsheet match its computational structure. Although this work is similar to ours in its

attempt to emphasize the task-specific operations of spreadsheet languages, Wilde focuses

on the visual representation of the resulting program rather than on the means of

specifying it, and does not address graphical types.

C32 [17] is a spreadsheet language that uses graphical techniques along with

inference to specify constraints in user interfaces. Unlike the other spreadsheet languages

described, C32 is not a full-fledged spreadsheet language; rather, it is a front-end to the

underlying textual language Lisp used in the Garnet user interface development

environment [16]. C32 is a way of viewing constraints, but does not itself feature the

graphical creation and manipulation of graphical objects. Instead, this function is

6

performed by the demonstrational system Lapidary [23], which is another part of the

Garnet package. The combination of C32 and Lapidary (and the other portions of the

Garnet package) features strong support for direct manipulation of built-in graphical user

interface objects, but not for any other kinds of objects, which must be written and

manipulated in Lisp.

2.2 Demonstrational Systems

Our work is also related to research on demonstrational programming by direct

manipulation of objects, such as Chimera [9], KidSim [22], Mondrian [12], TRIP3 [14],

and IMAGE [15]. Of these, the most closely related to our work are those featuring a

declarative approach. KidSim [22] is a demonstrational system that uses direct

manipulation to specify declarative graphical rewrite rules. Although the approach used in

KidSim is similar to ours in its emphasis on directness, it does not provide the kind of

flexible, declarative specification of objects and attributes that we sought for a full-

featured, spreadsheet-based approach.

The two-way constraint-based systems TRIP3 [14] and IMAGE [15] use direct

manipulation as a means of specifying relations declaratively; in these systems a visual

example defines a relationship between the application data and its visual representation.

However, like many demonstrational systems, their approach uses inference to determine

this relation rather than having the relation be specified explicitly by the programmer.

Although our system shares with inferential languages the property that concrete examples

are used in programming, our approach avoids using inference to derive the logic [27].

Also, the purpose of TRIP3 and IMAGE is to provide a visual interface to textual

programming languages, while our approach attempts to extend the power of the

spreadsheet without involving any other programming language.

Furthermore, two-way constraints are not completely compatible with the

spreadsheet paradigm because they violate the spreadsheet value rule. To see why,

imagine specifying the formula for cell X to be a box whose width is a reference to cell W

7

(whose formula is cell A plus cell B). If the user then selects and stretches the box in X,

what does that mean for cells W, A, and B? If any of these are automatically changed, the

value rule is violated for the changed cell(s); if they are not changed, the two-way nature

of the constraints is not being maintained.

8

3. Programming Graphical Objects Directly

3.1 Introduction to Forms/3

We have prototyped our approach in the spreadsheet language Forms/3 [1, 2], and

the examples in this thesis are presented in that language. Programs in Forms/3 consist of

forms (similar to sheets in commercial spreadsheets) that contain cells whose values are

defined by their formulas. In addition to traditional spreadsheet cells, Forms/3 supports

both built-in graphical types and user-defined graphical types. Built-in types are provided

in the language implementation but are otherwise identical to user-defined types.

Attributes of a type are defined by formulas in groups of cells, and an instance of a type is

the value of an ordinary cell that can be referenced just like any other cell. For example,

the built-in circle object shown in Figure 3-1 is defined by cells defining its radius, line

thickness, color, and other attributes.

The straightforward approach used in [2] to program graphical types is to make a

copy of the definition form for each new instance of the type, specify formulas for each

object's attributes, and then reference the new objects (see Figure 3-2). However,

although this approach satisfies the value rule, it is a very indirect way of specifying

graphical objects, because the process of specifying the object bears little resemblance to

the object itself, violating the principles of directness advocated by Nardi and by Hutchins,

Hollan, and Norman. The graphical definitions technique presented in this thesis solves

this problem of indirectness, extending the approach of [2] to support the direct style that

characterizes spreadsheets.

9

1!i prrnitivgCticle

40 SOLID Q)

radius DASH q.

1
DOUBLE-DASH Cj)

thickness lineStyle

BLACK I

1ineForeColor 1ineBackColor

newCircle [BLACK

fillForeColor fi1lBackColor

lineStipple dashPattern

Figure 3-1. A portion of a form used to define a circle in Forms/3. The circle in cell
newCircle is defined by the other cells, which define its attributes. A user can view and
specify spreadsheet formulas by clicking on the formula tabs (13); radio buttons and popup
menus can be used to specify constant formulas.

3.2 How are Graphical Definitions Used?

To introduce graphical definitions, we consider tasks that a traditional spreadsheet

user might be interested in performing, but that are difficult to do or are beyond the

capabilities of current spreadsheets. One such task is displaying a graphical representation

of data, using domain-specific visualization rules. Figure 3-3 shows such a visualization

that a population analyst might wish to specify in a spreadsheet language. The program

categorizes population data into cities, towns, and villages, and represents each with a

differently sized black circle. The population analyst can use our approach to define these

graphical objects using direct manipulation and gestures.

10

a PandimOnickzi

smallCircle primitiveCirclel:newCircle

Figure 3-2. The indirect approach. A new circle is defined by copying the circle definition
form and specifying formulas for some of its attributes (radius and fillForeColor in this
example). The circle can be used in a program by referencing cell newCircle. This thesis
presents a more direct approach that allows complex objects to be programmed using
direct manipulation and gestures, rather than by copying forms and defining formulas.

1

Portland 450000

Eugene 120000

Corvallis 55000

Albany 25000

if (population[i@j] > 200000)

location population graph then city

else (if (population[i@j] > 50000)

then town

else village)
But ccU

city Li3 town villages

Figure 3-3. A visualization of population data.

11

Simple graphical objects such as circles can be defined by drawing a gesture in the

shape of the object, and can be sized by directly manipulating the object. To define the

large city circle for the visualization program, the population analyst first draws a circle

gesture (Figure 3-4(a)). This defines the cell's formula to be a reference to cell newCircle

on a copy of the built-in circle definition form whose radius formula is defined to be the

radius of the drawn circle gesture. However, the circles in the program are to be solid

black. Because there are no graphical definitions to specify fill color, the population

analyst clicks on the circle to display its definition form, and then defines the formula for

cell fillForeColor (Figure 3-4(b)).

Formula for: city

...f.WS6

Formula for: city Accept

Graphics 7

0
Undo E=I Display

box circ

Graphics Area:

I GREEN
wan
YELLOW

box cicc line maim
PURPLE

114SUPP

(b)(a)

Figure 3-4. Defining the circle for cell city. (a) The population analyst first draws a circle

gesture to define the circle. (b) After clicking on the circle to display its definition form,

the population analyst defines the fillForeColor formula via a popup menu.

The circles for cells town and village can be defined in the same way, or they can

be defined by graphically specifying how they are different from the city circle, which

already has the fillForeColor attribute defined. To define the town circle using the latter

technique, the population analyst clicks on cell city instead ofdrawing a new circle. This

12

displays the circle in the formula edit window so that it can be manipulated (Figure 3-5).

The population analyst then resizes the circle to define the town circle, which has all of the

attributes of the city circle except its radius.

EratT-Formuhtz CI Enter furn404%

Formula for: town hccept Formula for: town MEI
cit.y1 753-primitiveCircle:someCircle

Undo Redo Clone Display Undo Redo Clone Display

Graphics Area: Graphics Area:

C) C
box circ line box clic line

(a) (b)

Figure 3-5. Defining the circle for cell town. (a) The population analyst clicks on cell city
to display the large city circle. (b) The population analyst directly manipulates the circle to
define the smaller town circle, which has the black color and other attributes of the original
circle.

3.3 Graphical Definitions are Consistent with the Value Rule

Note that a graphical definition defines a reference to a new object, not a

modification of an existing object. If direct manipulation were to modify the existing

object, this would override the formulas of the cells that define its attributes, which would

violate the spreadsheet value rule.

Instead, a graphical definition defines the creation of a copy of the definition form

for the object (recall Figure 3-1), in which the cell formulas are defined to be the same as

those that define the original object, except for any formulas defined by the manipulation

13

itself. Thus, direct manipulation of a circle specifies a new circle whose radius is defined to

be the radius of the manipulated circle, and whose other attributes are defined by the same

formulas as on the original circle's definition form. This borrows from declarative textual

languages the idea that the application of an operation to an object results in a new object,

and is key to enabling the graphical definitions approach to fit seamlessly within the

spreadsheet paradigm.

3.4 Using Gestures with User-Defined Types

Even traditionally abstract types are graphical if a programmer chooses to think of

them as such. To demonstrate the generality of our approach, we show in this section how

graphical definitions can be used even in a traditional data processing example, such as a

binary search.

Suppose the programmer wants to develop the binary search algorithm using a

binary tree that was previously implemented by some other programmer. The user-defined

tree type contains operations to insert a new element into a tree, report the top element of

the tree, and report the left and right subtrees. The tree implementor has also defined

gestures, which are automatically displayed, to perform these operations (Figure 3-6(3)).

The gestures allow the low-level details of the tree implementation to be abstracted away,

letting the programmer of the search algorithm perform tree operations without explicitly

copying the tree definition form, defining new formulas for cells on the definition form, or

explicitly referencing those cells.

14

CI-Entereormat

searchTreel

Undo Redo

left

Figure 3-6. The programmer clicks on the (1) search tree to set the (2) context for the
gesture. (3) Iconic representations of the tree gestures are automatically displayed. (4) The
programmer then draws a gesture to reference the left subtree.

To program the search algorithm, the programmer can use graphical definitions to

access different elements of the search tree. For instance, if the top element of the tree is

greater than the search element, the search algorithm is called recursively on the left

subtree. (Recursion is supported in Forms/3 by referencing cells on copies of the form

being defined, which are then automatically generalized using a deductive technique [27].)

The programmer can define a formula to access the left subtree by clicking on the search

tree cell and drawing the left gesturea line pointing down to the left (Figure 3-6). This

direct action defines a formula that is equivalent to that defined by copying the tree

definition form, defining the formula for cell inputTree on that form to be a reference to

the search tree, and referencing cell lefts. However, unlike the actions of copying the form

and writing textual formulas, this gesture corresponds directly to the programmer's intent:

"I want that tree's left subtree."

The tree definition form and formal semantics of graphical definitions will be discussed in
detail in the next chapter.

15

4. The Semantics of Graphical Definitions

4.1 Graphical Types in Forms/3

Graphical definitions build upon previous work on graphical types in the

spreadsheet paradigm [2]. The central philosophy of this work was that in a spreadsheet

language, all on-screen cells' values are displayed, and therefore all types are in some

sense graphical. Graphical types can be used to create such diverse applications as event-

based programs [1], inventory tracking [2], a desktop analog clock application [24],

exception handling [24], and algorithm animation [3].

In keeping with the philosophy that all types are graphical, in this work a type is

the 4-tuple: (components, operations, graphical representations, interactive behaviors). In

this model, there is no theoretical distinction between built-in and user-defined types; both

are defined by the above 4-tuples. The only distinction is implementation; that is, whether

the type's implementation has already been provided by the language implementor. We

have extended the operations of a graphical type to include the graphical definitions

defined for the type, which will be discussed further in sections 4.2 and 4.4.

To define a new type, a programmer uses a type definition form which, following

the spreadsheet paradigm, consists of cells with formulas. The type definition form is the

aspect of this work that graphical definitions directly affect. The form contains two

distinguished cells: an abstraction box, which defines the structure of the type as the

composition of its attributes (the first element of the 4-tuple); and an image cell, whose

formula defines the type's appearance(s) (the third element of the 4-tuple). The operations

and interactive behaviors are specified by additional abstraction boxes and ordinary (non­

distinguished) cells on the form, in addition to the graphical definitions. An object's

appearance is entirely flexible and can be based on its attributes, as demonstrated in the

circle example. Each type has its own type definition form, and each object (instance of

the type) has its own copy of the type definition form, upon which different formulas can

be defined to allow individual differences among the objects. A discussion of information

16

hiding and other type-related issues is omitted here, since it does not impact the graphical

definitions technique presented in this thesis.

The circle form (Figures 3-1 and 3-2) is one example of a type definition form;

because circles are a built-in type, the circle form is provided in the language

implementation. By specifying formulas for the attribute cells, a new instance of a circle is

defined in the abstraction box newCircle. Information about the instance of the type can be

obtained by referencing cells on the definition form such as radius and lineForeColor.

4.2 Graphical Definitions for Built-In Types

We have implemented graphical definitions for the built-in types box, circle, and

line. Graphical definitions allow these graphical objects to be instantiated and manipulated

using gestures and direct manipulation, as shown in the example of Chapter 3. We have

defined a gesture for each of these types, and a programmer can instantiate a new instance

of the type by drawing the gesture or clicking on the gesture icon displayed in the formula

edit window (recall Figure 3-4a). This action defines a formula that is a reference to an

abstraction box on a copy of the definition form for the graphical type; the formal

semantics of the defined formula are shown in Tables 4-1 and 4-2. The formulas for some

of the cells on this definition form are defined by the attributes of the gesture itself: for

instance, the circle gesture defines a reference to the abstraction box on a copy of the

circle definition form in which the formula for cell radius is defined to be the radius of the

drawn circle gesture. For objects that are instantiated by clicking on the gesture icon

rather than by drawing a gesture, the defined formula is simply a reference to the

abstraction box on the type definition form (with default formulas for the cells' formulas).

17

Gesture Attribute Value

width co

height 11

radius p

dx

dy kv

Table 4-1. Gesture attributes. The above notation is used in the tables in this chapter. An
instance of a gesture is defined by the attributes and values shown in the table.

Graphical Action Formula
Type

circle draw gesture primitiveCircle(radius(v-p):someCircle

click on gesture icon primitiveCircle (radiusq r 25) :someCircle

box draw gesture primitiveB ox(widthcgr' co, heightii):someBox

click on gesture icon primitiveBox (widtlfr 50 ,heighrr- 50) :someBox

line draw gesture primitiveLine(de/taxar, deltayv- w):newLine

click on gesture icon primitiveLine (deltax(w- 50 ,deltay v 50) :someLine

Table 4-2. Formulas defined by drawing gestures and clicking on gesture icons for built-in
types. The formula notation is FC(DefList):RC, where FC is a copy of definition form F,
DefList is a list of formula definitions for each cell that is defined differently on form FC
than on F, and RC is the cell to be referenced on FC. The notation for each element of
DefList is (X'R=. a), denoting that cell X has the formula a.

A new graphical object can also be created by directly manipulating an existing

instance of the type, such as stretching the endpoint of a line or the edge of a circle. These

manipulations, like the gestures described above, specify a reference to an abstraction box

on a copy of the definition form for the graphical object. However, the formulas for all of

the cells on the new definition form will be the same as those on the definition form for the

18

object being manipulated, except for those formulas that depend on the attributes of the

gesture itself (Table 4-3).

Graphical Type Manipulation Formula

circle stretch edge of circle primitiveCircle(radiusw'p,
cellvcr'cella):someCircIe

box stretch corner of box primitiveBox(widthc),
heightcri, cellycz-cella):soineBox

line stretch line endpoint primitiveLine(de/taro-t
deltayr° y cellvar cell,c):someLine

Table 4-3. Formulas defined by direct manipulation of an existing graphical object cc. The
notation cell vz.- cella denotes that for all cells X not specified explicitly in the table, the
formula for cell X on FC is the same as the formula for cell X on E, where Fa is the
definition form for object a.

4.3 Example: Defining a Binary Tree

For user-defined types, the programmer creates the type definition form, placing

cells and abstraction boxes on it as needed and defining their formulas. Programmers will

often use more than one abstraction box, placing an input abstraction box, other cells for

input specifications and output information, and one or more output abstraction boxes on

the definition form. Each abstraction box for a particular type definition form must contain

the same set of cells, although they may have different formulas.

For example, a tree definition form (Figure 4-1) might contain an input abstraction

box intended to contain an incoming tree, an input cell for an element to be inserted into

the tree, and an output abstraction box that defines a tree into which the new element has

been inserted. Other cells providing operations for the tree (such as the predicate reporting

whether the incoming tree is empty, and a cell reporting the root element) are also usually

19

present. For graphical definitions to be possible with such a type, a programmer needs a

way to specify the set of graphical definitions for the type, enabling their use for purposes

such as the binary search algorithm of the previous section.

3
10

top newElement

4113.5t:: 5

10

left

5 15

15

right
 FALSE

10

10

top

5

3 5 15

left

15

right

Figure 4-1. A tree definition form. The cells inside the abstraction boxes are by definition
"hidden," and cannot be accessed by cells outside this form. The implementor of the tree
has provided access cells such as empty? and top to report the values of the attributes of
the incoming tree. The formula tabs on cells newElement and inputTree signify that these
cells are intended for input. The formulas that define the cell values are not shown.

20

4.4 Defining New Gestures

The first step in specifying the set of graphical definitions for a user-defined type is

to specify the set of gestures that are applicable to the type. In our implementation,

gestures are defined and trained using the Agate gesture recognizer [10], which is part of

the Garnet environment. The programmer presses a button on the type definition form to

start Agate, and then types the name of a gesture and draws a few examples of the

gesture. Miniature gesture icons are automatically displayed at the top of the type

definition form when Agate is exited.

After defining a gesture for the type, the programmer specifies the gesture's

semantics. These specify the formula that will be defined when the gesture is drawn. For

instance, the new tree gesture at the top of Figure 4-1 specifies a reference to cell new Tree

on a copy of the tree definition form, in which the formula for cell newElement is the

element to be inserted into the tree, and the formula for the abstraction box inputTree is a

reference to the tree being manipulated.

To define the semantics of a gesture, the programmer specifies two things: the cell

to be referenced, and formula specifications for each of the input cells on the definition

form. (Because the formula for the input abstraction box is always a reference to the

object being manipulated, its formula is defined automatically.) There are four types of

formula specification (defined formally in Tables 4-4 and 4-5):

A gesture attribute formula specification for a cell means that the formula

depends on some attribute of the gesture itself, such as its height, width or

radius. For example, a programmer defining a gesture for a sectionHeading

user-defined type to be used for formatting text might define the gesture

attribute formula specification "height" for cell size (Figure 4-2a(1)).

A same formula specification for a cell means that the formula for the cell

on the new definition form is the same as that on the definition form of the

object being manipulated (Figure 4-2a(2)).

A constant formula specification depends only on the name of the gesture,

and defines the new formula for the cell completely (Figure 4-2a(3)).

21

An askUser formula specification means that the user will be asked to

specify the formula for the cell after the gesture is drawn. The new tree

gesture (Figure 4-2b) defines an askUser formula specification for cell

newElement. When the gesture is drawn, a dialog box will be opened

asking the user to enter a formula for cell newElement (Figure 4-3).

Type of formula Permissible Formula defined for cell X
specification values

height' 1

width (D

gesture attribute radius p

dx

dy w

same same X,

constant anything same as formula
specification value

askUser ask "string" anything (defined by user)

Table 4-4. The semantics of formula specifications. This table defines the formula that is
defined for cell X on form FC when gesture G is applied to some graphical object a,
where a is defined by definition form Fa, and the formula specification for cell Xis given
in the table. For the askUser formula specification, the keyword ask is followed by the
prompt "string" that will be displayed when the user is asked to enter the formula.

Agate provides many (17) primitive gesture attributes such as minX, maxX, and initial-
sin, from which ours are defined. It would be simple to add more to our list (such as
angle, perhaps), but the current set has been sufficient for our purposes.

22

Action Formula

draw gesture, click on gesture icon FC(13,3-a, cellvarformulaSpecv):x

Table 4-5. Formulas defined by drawing gestures and clicking on gesture icons for user-
defined types. This table defines the formula that is defined by applying a graphical
definition to some graphical object a. In the above notation, 13 and x represent the input
abstraction box and cell to be referenced, respectively, on definition form Fa. x is defined
by the gesture's semantics. The notation cell vcrformulaSpec v denotes that for all cells X

other than 13, the formula for cell X on FC is defined by the formula specification for cell
X, as defined in Table 4-4.

a Defining 'Bold' gesture for &ratio/II-leading

1 Cell to be referenced:
LformattedText

2
SIZE: height
STRING: same

3
STYLE: Bold

(a)

o

Denning 'new. Sesture tar Tree

Cell to be referenced:

NEWELEMENT: ask "Enter the new element"

(b)

Figure 4-2. Defining gesture semantics. (a) The bold sectionHeading gesture defines a
reference to cell formattedText on a copy of the sectionHeading definition form in which
(i) the formula for cell size is defined to be the height of the drawn gesture, (2) string is
defined to be the same as the string formula for the sectionHeading object being
manipulated, and (3) style is the constant "Bold". (b) The new tree gesture defines a
reference to cell new Tree on a copy of the tree definition form whose newElement formula
is to be entered by the user.

23

0 EaerFunnubl',ML.:Aa.

Formula for: newTree Accept Cancel Clear

searchTreel

Undo Redo Clone Display

Graphics Area.

NEWELEMENTnew top left right

10 Enter the new element:3

5 15

CE

(a) (b)

Enter Numb:

Formula for: newTree Accept Cancel Clear

660-Tree:newTreel

Undo Redo Clone Display

Graphics Area.

new top Left right

10

5 15

3

(c)

Figure 4-3. Using graphical definitions to insert a new element into a tree. (a) The
programmer draws the new gesture. (b) After drawing the gesture, the programmer is
prompted for the element to be inserted. (c) The resulting formula is a reference to a new
copy of the tree definition form in which cell newElement has the formula 3 and cell
inputTree is a reference to the original tree.

24

In addition to specifying gestures that manipulate an existing object, the

programmer can specify a gesture to instantiate a new instance of the type that is not

derived from any other instance of the type. The programmer presses the "top-level

gesture" button on the type's definition form to edit the gesture, and specifies a new

gesture whose name is the name of the type. This gesture is automatically added to the set

of gestures understood by the top-level gesture recognizer.

Top-level gestures are important to the consistency of the approach for two

reasons. First, they allow user-defined types to be instantiated with the same directness

that is provided for built-in types. Second, they provide the same interface for instantiating

new graphical objects as for manipulating them.

25

5. Other Contributions of the Approach

Here we elaborate on significant aspects of the approach that have not been

covered fully in the rest of this thesis.

5.1 Gesture Spaces

Several researchers [4, 10] have discussed the need for context-dependent

gestures. Landay and Myers [10] identify this as a problem to be solved: "The system

needs a way to map the same gesture into multiple meanings based on the context." Our

approach solves this problem by making the set of gestures recognized by the gesture

classifier depend on the context of the formula being edited.

By partitioning the gestures into different gesture spaces (a concept similar to

name spaces in programming languages), gestures need only be distinct within a specific

context. For example, the top-level gestures and type-specific gestures may overlap. This

allows the same gestures to be reused in different contexts, while eliminating possible

ambiguities over the meaning of a gesture. Thus, the set of allowable gestures for any

context remains relatively small and recognizable even for large programs.

In the work of Gross and Do [4], as in ours, gestures are only applicable in certain

contexts, but in their system the context is inferred and may not yet be defined at the time

a particular gesture is drawn, and thus the meaning of the gesture may be ambiguous.

Such ambiguities may be left unresolved until further information is added by the user .

Since their system is intended to support conceptual and creative design, ambiguity may be

an advantage because it supports the designer's creativity by allowing specific design

choices to be deferred until some later time. In contrast, our approach is intended for

programming, which is not compatible with ambiguity, and uses scope rules to determine

the unique context which is current.

These scope rules, which determine which gestures are applicable, are simple. If

the formula being edited is a reference to an instance of a user-defined type or to a cell on

26

a user-defined type definition form, then the set of gestures for that typeand only those

gestureswill be recognized. Otherwise, the recognized gestures are the set of top-level

gestures.

One problem that programmers in any programming language face is that of

remembering the permissible operations on an object, and this problem is exacerbated if

the operations are invisible gestures that must be memorized. Our approach addresses this

problem by displaying miniature icons of the allowable gestures (and their names) for the

current context. These icons document the set of allowable operations, and can even be

used as an alternative means of specifying gestures: rather than drawing a gesture, a

programmer can click on a gesture icon. The partitioning of the gestures into different

gesture spaces along with the automatic display of the allowable gestures contributes to

the practicality of our approach, keeping the set of operations permissible at any one time

small, recognizable, and visible.

5.2 Exploratory Programming

One popular use of spreadsheets is in investigating "what-if' scenarios, in which

users experiment with different formulas for cells to see what values they produce for

other cells. Our approach extends this support for exploratory programming to graphical

objects. By exploratory programming, we mean allowing the programmer to interactively

gesture and directly manipulate objects, immediately see the effects of these manipulations,

and use this feedback to perform further manipulations. This is supported by our approach

in a number of ways that work together to satisfy Shneiderman's third principle of direct

manipulation: rapid incremental reversible operations whose effect on the object of interest

is immediately visible [20].

Because the result of applying a graphical definition to an object is a new object to

which further manipulations may be applied, our approach provides incremental

operations. The new object defined by a graphical definition is immediately displayed and

manipulable, so the effects of such manipulations are immediately visible. And because

27

graphical definitions define declarative formulas for cells rather than performing any state

modification, it is trivial to provide reversible operationsjust revert to the previous

formula for the cell. We have added undo and redo buttons in the formula edit window

that allow the programmer to easily and quickly undo (or redo) the effects of any graphical

definition.

Exploratory programming can aid in understanding and debugging complex data

structures. For instance, consider the binary tree. The implementor of the tree type might

test the correctness of the implementation by creating a tree, inserting a few new elements,

and then accessing the top element and left and right subtrees to ensure that they are

correct; or a programmer wishing to use the type in a program might perform similar

actions in order to better understand how to use the tree. Without graphical definitions,

this process is straightforward but somewhat tedious: the programmer defines formulas for

cells inputTree and newElement, creates another tree, defines its inputTree formula to be a

reference to cell newTree from the previous form, and so on. With graphical definitions,

the programmer simply draws a tree gesture, a few new gestures, and then explores the

tree by drawing top, left, and right gestures (Figure 5-1). Explorations like this for even a

small tree with just a few elements would require the creation of several forms and the

definition of several formulas, whereas gestures provide the same functionality more

quickly, more directly, and with more flexibility.

28

l.Fnt.rf Ponnutn

Formula for: newTree =I =BEM
1740-Tree:newTreel

Display

Graphics Area.

new top left right

10

5 15

3 8

(a)

Formula for: newTree Accept

2032-Tree:lefq

Redo Display
MEI MEM
Graphics Area:

new top left right

3

(c)

Wvirftmrax

Formula for: newTree

1931-Tree:left

Undo Redo E:2 Display

Graphics Area:

Iv

new top left right

:8 /

(b)

Formula for: newTre
 11121421

1931-Tree:left

Undo Redo Display

Graphics Area:

new top left right

5

3 8

(d)

Figure 5-1. Using gestures to explore a binary tree. (a) The programmer draws a left
gesture to show the left subtree. (b) The subtree is immediately displayed, and the
programmer can draw another gesture to show its left subtree. (c) The resulting subtree
(the single element 3) is now shown. (d) The programmer has pressed the undo button to
revert to the previous formula, and can now explore the right subtree or perform other
manipulations.

http:l.Fnt.rf

29

5.3 Scalability

Another practical contribution of our approach is that it allows the screen real

estate and memory usage of a spreadsheet program to be reduced significantly, thus

helping make spreadsheet languages more suitable for building large applications. To

consider a small example, building the population visualization program shown in Figure

3-3 without graphical definitions would have required the programmer to copy the circle

definition form and define the radius formula for each circle, as well as to define a

reference to the circle from the population form, whereas graphical definitions required

only a single copy of the definition form to define the fill color for the first circle.

Although each graphical object specified with a graphical definition is defined by a

definition form behind the scenes, only the graphical object itself is explicitly displayed

onscreen; its definition form is only shown if the programmer elects to display it by

clicking on the object. Because so many fewer visual components need to be constructed,

displayed, and redrawn, supporting the programmer's manipulations requires less screen

real estate, memory, and computation time.

Perhaps even more important to the programmer is that graphical definitions

reduce the amount of work required to create programs containing graphical objects

(Table 5-1). Without graphical definitions, the programmer would have to copy type

definition forms and create formulas defining the network of relationships among the cells

on those forms. (Forms/3's multiple forms are similar to commercial spreadsheets' linked

spreadsheets whose cells reference one another.) But with graphical definitions,

programming with graphical objects is elevated from such low-level programming

minutiae to the task-specific operations represented by each gesture.

Actions needed to create graphical objects without graphical definitions
To create these graphical # formulas # gestures # cells # off -form cells # type definition

objects defined referenced referenced forms copied

3 circles (population program) 9 N/A 3 3 3

n circles (population program) 3n N/A n n n
3-element search tree 6 N/A 3 3 3

n-element search tree 2n N/A n n n

Actions needed to create graphical objects with graphical definitions
To create these graphical # formulas # gestures # cells # off -form cells # type definition

objects defined referenced referenced forms copied
3 circles (population program) 4 3 2 0 1

n circles (population program) n+ 1 n n- 1 0 1

3-element search tree 1 4 0 0 0

n-element search tree 1 n+ 1 0 0 0

Table 5-1. Programmers perform fewer actions using graphical definitions; in some cases the reduction is as much as a factor of n. Of
particular importance is the reduction in the more complex programming actions; that is, those that require multiple forms (linked
spreadsheets), shown in the two rightmost columns.

31

6. Empirical Study

In order to obtain empirical data on the usefulness of our approach, we conducted

a user study. Among the questions we hoped to answer were the following:

Do graphical definitions help programmers construct correct programs?

Do graphical definitions help programmers construct programs more

quickly?

Do programmers using graphical definitions prefer to draw gestures or

click on gesture icons?

Do programmers enjoy using graphical definitions?

The study was conducted one subject at a time at the author's workstation. Each

subject was given an introduction to Forms/3 programming, followed by instruction on

how to create boxes using either graphical definitions or the "copying" technique shown in

Figure 3-2. The subject was then asked to use the newly learned technique to create

several colored circles in a larger program. This was followed by instruction in the second

technique and a second programming task using user-defined types.

The study was counter-balanced with regard to the programming method involved;

that is, each subject completed one of the programs using graphical definitions and the

other using the copying technique. The same program was always performed first, which

may have given the second program a learning advantage. However, because we did not

assume that the problems were of equal difficulty, this did not affect the validity of the

results. The data produced by the study included post-question and post-test

questionnaires as well as notes and observations taken by the author during the study.

6.1 Details of the Empirical Study Procedure

The subjects were first given a brief hands-on introduction to Forms/3 in which

they learned how to define simple formulas and reference cells in formulas. They were

then taught how to create a box of a particular size and color using either graphical

32

definitions or by copying the built-in box form and defining formulas for cells on that

form. Half of the subjects were taught the copying technique, and the other half were

taught graphical definitions. Each subject was given an information sheet describing the

steps they took in constructing the example programs used in the instruction. They were

allowed to refer to this information sheet when working on their assigned programs. They

were then asked to complete a small program which required them to create three colored

circles using the technique they had been taught (see Section 6.3). Upon completion of the

program, they answered a questionnaire about their academic experience, previous

exposure to Forms/3, and their confidence in the correctness of their solution.

They were then shown how to program using the user-defined binary tree type

described in Section 4.3, either by making copies of the tree definition form and defining

formulas for cells on those forms (if they had previously been taught graphical definitions),

or using graphical definitions (if they had previously been taught the copying technique).

They were then asked to instantiate a tree with several elements and reference its left

subtree using the technique they had just been taught (see Section 6.3). After finishing this

program, they were given another questionnaire in which they were asked questions about

the tree problem as well as questions comparing the two problems and techniques.

Appendix A contains all of the instructional materials and questionnaires used in the study.

6.2 Subjects

The subjects in the study were 20 computer science graduate students at Oregon

State University. A summary of the subject backgrounds is shown in Table 6-1. Most of

the subjects had little or no previous exposure to Forms/3. Two of them had done a small

amount of Forms/3 programming in a visual programming course one and a half years

earlier, but had not used graphical definitions or user-defined types. Four of the subjects

were new or former members of our research group with little programming experience in

Forms/3. Only one of these four had used graphical definitions previously, although

several had seen it in demos. The subjects were assigned to one of the two groups

33

randomly, except that the four from our research group were intentionally divided evenly

between the groups to reduce possible bias that might occur if they were placed in the

same group. There turned out to be no significant correlation between performance in this

study and previous experience with Forms/3 (Fisher's exact test, p=0.406).

60% of the subjects in the study were Master's students, and the remaining 40%

were Ph.D. students. Performance in the study was independent of degree status (Fisher's

exact test, p=0.392). The students included both first year students (35%) and advanced

students; performance was also independent with regard to number of years of graduate

study (Fisher's exact test, p=0.474).

Degree Status Years at OSU Forms/3 experience

MS, Ph.D. mean, median Never used it, Used it

Graphical definitions first 6, 4 1.90, 2 9, 1

Copying technique first 6, 4 2.90, 2

Cumulative 12, 8 2.40, 2 15, 5

Table 6-1. Summary of subject backgrounds. Performance on the study was independent
with regard to degree status, years of graduate study and prior Forms/3 experience.

6.3 Programs

6.3.1 Population program

The first program completed by the subjects in the study is shown in Figure 6-1. In

this program the subjects were to redefine the formulas for cells city, town, and village

from textual representations to the graphical representations of black circles. Programming

this with graphical definitions required the subject to draw a circle gesture or click on the

34

circle gesture icon to define the first circle, resize the circle if necessary, display the

circle's definition form by clicking the middle mouse button, and define the formula for the

fillForeColor cell. The remaining circles could be programmed in the same way, or they

could be programmed by clicking on the first circle and then resizing it to create a new

circle, as described in Section 3.2.

Figure 6-1. Population program (before programming). The subjects were asked to
redefine the formulas of cells city, town, and village.

Programming the population program using the copying technique required the

subject to make a copy of the primitiveCircle form for each circle and then define formulas

for cells radius and fillForeColor (Figure 6 -2).

35

Portland 450000

Eugene 120000

Corvallis 55000

Albany 25000 Village

ovation
1020-1Wingh WeiTIR

rat': I BLACK 11

Formula for: village Accept Cancel Clear

1020-primitiveCircle:newCirclel

I BLACK II WHITE

ineroreCo

I BLACK

i11F0te0CiI:
tot i4act4cP,,

Figure 6-2. Programming the population program using the copying technique. Each circle
is defined by a copy of the primitiveCircle form on which formulas for cells radius and
fillForeColor have been defined.

6.3.2 Tree program

In the second program, the subjects were asked to define the formulas for two

cells: one that instantiates a tree containing three elements, and the other that reports the

left subtree of that tree, as shown in Figure 6-3. To define the formula for cell binTree

36

using the copying technique, the subject made several copies of the tree form, defined

formulas for the newElement and inputTree cells on these forms, and referenced the

new Tree cell on the final copy of the form (see Figure 6-4). To define the formula for cell

left, the subject made another copy of the Tree form, defined the inputTree formula to be

a reference to cell bin Tree, and referenced cell left on that form. To define the formula for

cell binTree using graphical definitions, the subject drew the top-level tree gesture or

clicked on the tree gesture icon, then drew three new gestures and entered the values for

each of the elements in the tree. To define the formula for cell left, the subject clicked on

cell binTree and drew the left gesture (refer to Figure 3-6 for a similar example).

0 trooDuimPte

Figure 6-3. The output of the completed tree program.

37

Imtlxualrite

.trI6'TIMB , .

leftTree12887 -Tree:left

top

Anput.Treelt.reeExample:binTre

z:.'

left

right

AnpotTroo 1396­
left right

31QwZIQA4e t:

right

inPutTr0,1
 1525-Tree:newTree

10ft

Copy Oeii

:hewTree:­

left

nowTtgooa

Figure 6-4. Defining formulas for the tree program using the copying technique. The
forms 1396-Tree, 1525-Tree, and 1691-Tree are used to construct the tree shown in cell
treeExample:binTree. The other form (2887-Tree) is used to report information about the
tree in cell binTree; in this case, its left subtree.

A common error in this problem using the copying technique occurred in defining

the formula for cell left Tree. Many subjects defined this formula to be a reference to cell

newTree[left] on the third copy of the form (1691-Tree in Figure 6-4) rather than

referencing cell left on a new form (2887-Tree) whose inputTree formula is a reference to

cell binTree. Although this formula produces the correct answer, it violates the

information hiding rules of Forms/3 by accessing private data in the tree abstraction box.

38

Our implementation of Forms/3 does not enforce these information hiding rules; however,

the better solution (and the one taught to the subjects) is the one shown in Figure 6-4.

6.4 Results

We will discuss the results from the study as they relate to the questions listed at

the beginning of this chapter.

6.4.1 Do graphical definitions help programmers construct correct programs?

A summary of the correctness results is shown in Table 6-2. All subjectsboth

those using graphical definitions and those using the copying techniquewere able to

complete the population program correctly. This is not particularly surprising since the

formulas defined in this program were quite simple and the colored circles used in the

program provided the subjects with a visual indication of the correctness of their formulas.

Significantly more subjects were able to complete the tree program correctly using

graphical definitions than the copying technique (Fisher's exact test, p=0.03). Whereas

90% of the subjects using graphical definitions completed the program correctly, only

40% of the subjects using the copying technique did so. These results produced a

significant difference in the cumulative results. The cumulative results show that

significantly more programs were completed correctly with graphical definitions than with

the copying technique (Fisher's exact test, p=0.05).

39

Population Tree Total
% %n % n n

Graphical Correct 10 100% 9 90% 19 95%

Definitions Incorrect 0 0% 1 10% 1 5%

Copying Correct 10 100% 4 40% 14 70%

Technique Incorrect 0 0% 6 60% 6 30%

Total Correct 20 100% 13 65% 33 82.5%

Incorrect 0 0% 7 35% 7 17.5%

Table 6-2. Program correctness. All subjects were able to complete the population
problem correctly. 65% of the subjects completed the tree program correctly: 90% of the
subjects who used graphical definitions, and 40% of the subjects who used the copying
technique.

6.9.2 Do graphical definitions help programmers construct programs more quickly?

We measured the amount of time it took each subject to complete each program.

Both programs were completed significantly faster using graphical definitions (population:

Mann-Whitney test, p<.02; tree: Mann-Whitney, p<.002). These results were the most

dramatic for the tree program. In fact, each of the subjects who used graphical definitions

completed the tree program faster than any of the subjects who used the copying

technique on that program. Table 6-3 and Table 6-4 contain detailed and summary results.

40

Subject Population Technique Subject Tree Technique
time # time

11 75 Graphical Definitions 2 60 Graphical Definitions

7 95 Graphical Definitions 6 60 Graphical Definitions

13 135 Graphical Definitions 12 75 Graphical Definitions

17 160 Graphical Definitions 10 90 Graphical Definitions

4 240 Copying 4 105 Graphical Definitions

19 240 Graphical Definitions 18 105 Graphical Definitions

15 285 Graphical Definitions 14 120 Graphical Definitions

3 300 Graphical Definitions 8 180 Graphical Definitions

6 300 Copying 20 255 Graphical Definitions

9 300 Graphical Definitions 16 300 Graphical Definitions

1 330 Graphical Definitions 13 330 Copying

8 420 Copying 7 390 Copying

5 435 Graphical Definitions 17 390 Copying

10 450 Copying 19 450 Copying

2 555 Copying 3 480 Copying

12 600 Copying 11 540 Copying

16 615 Copying 9 600 Copying

20 705 Copying 15 720 Copying

18 825 Copying 5 870 Copying

14 840 Copying 1 900 Copying

Table 6-3. Program completion time (detail, in order of program completion time). All
times are in seconds. Both programs were completed significantly faster using graphical
definitions than with the copying technique.

41

Population Tree Both

mean median sd mean median sd mean

Graphical Definitions 235.5 262.5 115.9 135.0 105.0 83.4 370.5

Copying 555.0 577.5 204.3 567.0 510.0 202.2 1122.0

Table 6-4. Program completion time (summary). All times are in seconds. Note that
median and standard deviation are not meaningful in the rightmost column (Both) because
no single subject was assigned both programs using either graphical definitions or the
copying technique.

6.4.3 Do programmers prefer to draw gestures or click on gesture icons when using
graphical definitions?

We were also interested in determining which graphical definitions input technique

the subjects preferred, and whether this depended on the problem they had solved using

graphical definitions. We asked the question, "When you used gestures, did you prefer to

draw the gesture or click on the gesture icon?" The possible answers to this question on

the questionnaire were drawing the gesture, clicking on the gesture icon, or using both

techniques. A little over half of the subjects (55%) said they preferred to click on the

gesture icon, while most of the others said they preferred to use both techniques (x2=7.90,

df=2, p<.02). Only one subject preferred solely to draw the gesture (Table 6-5).

Problem done using graphical definitions

Population Tree TOTAL

draw 0 1 1

Preferred method click 7 4 11

both 3 5 8

Table 6-5. The subjects' preferred method of using graphical definitions.

42

A greater, although not statistically significant, number of subjects who used

graphical definitions in the population program preferred solely to click compared to those

who used graphical definitions in the tree program (Fisher's exact test, p=0.18). We can

speculate that this apparent trend may be related to difficulties some subjects encountered

in drawing circle gestures in the population program and box gestures in the preceding

training. Several subjects in this group had significant difficulty in using the mouse to draw

gestures at all, and others initially drew gestures that were incorrectly recognized by the

gesture recognizer as boxes or lines. This may have contributed to some subjects'

reluctance to use the circle gestures in the population program. These gesture recognition

errors did not occur with the tree gestures, which, unlike the circle gesture, all consisted

of straight line segments. More experimentation would be useful to explore these results

further.

6.4.4 Do programmers enjoy using graphical definitions?

In the post-test questionnaire we asked two questions pertaining to this question:

"If you were able to choose either approach to use on a third problem, which would you

use?" and "Which problem did you feel more comfortable working on?" A majority of

subjects who specified a preference, although not statistically significant (69%, f=2.25,

df=1, p<0.14), said they would choose graphical definitions to use on a third problem. A

significant majority of subjects (79%, x2-6.37, df=1, p<0.02) said they felt more

comfortable on the problem on which they used graphical definitions. As we would

expect, the answers to these two questions were highly correlated (Fisher's exact test,

p=0.004). See Table 6-6.

43

More comfortable on program using

Graphical Copying (No answer) Total
Definitions

Would rather Graphical Definitions 10 0 1 11

use on a third Copying 1 4 0 5

program No preference 4 0 0 4

Total 15 4 1 20

Table 6-6. User reaction to graphical definitions.

6.5 Analysis of Programming Difficulties

In order to be able to perform a more detailed analysis of these results, we also

looked at some of the difficulties the subjects encountered while working on the programs.

One surprising result we discovered was that, in the population program, many of the

subjects using graphical definitions did not take full advantage of the capabilities of

graphical definitions. Although with graphical definitions the subjects could first define a

black circle for cell city and then define the black circles for cells town and village entirely

by direct manipulation (we refer to this as "cloning" in Table 6-7 below), only slightly

more than half of the subjects (56%) used this technique. The others used graphical

definitions to define a circle of the correct size, but then had to display the circle's

definition form to define the formula for its finForeColor cell. This required more work

and time than cloning, and may have indicated a partial lack of understanding of graphical

definitions. Subjects who mastered the cloning technique tended to do significantly better

on the population program (Mann-Whitney test, p<.01). They also performed better on

the tree program (Mann-Whitney, p<.10). This may be an indication that, even for built-in

types, the benefits of graphical definitions may increase for advanced programmers as

opposed to graphical definitions being a tool useful only to novices.

44

Population program

Used cloning Didn't use cloning

Tree Correct 4 0

program Incorrect 2 4

Table 6-7. Correlation between cloning on the population program and correctness on the
tree program. The subjects who used cloning on the population program tended to do
better on the tree program as well.

On the tree program, only one subject using graphical definitions (10%) had any

problems in defining the formulas for cell binTree, and only one (10%) had difficulty with

cell left. The subjects using the copying technique, on the other hand, encountered several

difficulties. When instantiating the tree, several subjects made errors in defining the

relationships between cells on the various copies of the tree definition form. Many of these

errors were later corrected, in part because the subjects could see that the formulas they

had defined were not producing the results they expected. However, in defining the

formula for cell left, this continuous immediate feedback may actually have contributed to

some errors: a few subjects defined incorrect formulas (such as creating a new tree with

the elements 3 and 8) that looked correct but did not define the correct relationship. Table

6-8 contains a more detailed summary of the difficulties the subjects encountered on this

problem.

In Table 6-9 we consider the number of subjects who made conceptual errors such

as the ones described above on the tree program. Significantly more errors were made

when the subjects used the copying technique than when they used graphical definitions

(Fisher's exact test, p--0.001). These results, along with Table 6-2, suggest that in addition

to helping programmers construct ultimately correct programs, graphical definitions can

also help programmers make fewer errors along the way. This may be because graphical

definitions are so closely related to the task-specific operations defined for the graphical

type; they allow the programmer to concentrate on the task to be done rather than on the

45

low-level details of copying forms and defining formulas for cells, activities in which the

study subjects made numerous errors.

binTree left entire program

(number of subjects)

Graphical none 9 9 8

Definitions minor 1 0 1

major 0 1 1

none 3 3 2

Copying minor 3 2 3

major 4 5 5

Table 6-8. Difficulties encountered on tree program. This table shows a categorization of
the number of subjects who encountered difficulties as they were defining formulas for
cells binTree and left in the tree program. Minor difficulties consisted of incorrect
formulas that were quickly discovered and corrected. Major difficulties included numerous
minor errors or errors that were never corrected.

Programs with errors Programs without errors

Graphical definitions 2 8

Copying 8 2

Table 6-9. Number of subjects who made conceptual errors on the tree program.

6.6 Summary of Results

We obtained the following results from the study. First, using graphical definitions

subjects completed significantly more programs correctly than with the copying technique,

46

and they had fewer difficulties in completing the programs. Second, subjects completed

the programs faster using graphical definitions than with the copying technique. Third,

most subjects seemed to prefer clicking on gesture icons to drawing gestures, although

many subjects used both techniques. Fourth, the subjects were more comfortable using

graphical definitions than the copying technique. These results demonstrate the usefulness

of graphical definitions, and show that graphical definitions can be an effective technique

for constructing programs with graphical types.

47

7. Implementation

The work described in this thesis has been implemented in our Forms/3 research

prototype, which runs on Sun and Hewlett-Packard color workstations using Harlequin

Common Lisp and the Garnet user interface development environment [16]. The gesture

training facility is provided by Garnet's Agate package [10].

The major functions in the Lisp code used to implement graphical definitions in

Forms/3 are shown in Appendix B.

48

8. Conclusion

Spreadsheets have traditionally been limited to supporting only the simplest of

textual types, namely numbers and strings. Prior attempts to remove this limitation have

resulted in a number of interesting approaches, but none of them have featured a seamless

fit within the one-way constraint model of the spreadsheet paradigm while still satisfying

the principles of directness advocated by Shneiderman; by Hutchins, Hollan, and Norman;

and by Nardi.

The graphical definitions described in this thesis solve this problem. Among the

other benefits of graphical definitions are the following:

The contextual display of the gestures valid for the formula being edited

and the use of gesture spaces to keep the number of such operations

manageable eliminate the need for the programmer to memorize gestures,

solving a common problem of gestural interfaces.

Support for exploratory programming is enhanced, because graphical

definitions have immediate effects and can be experimented with rapidly

(using only a few mouse strokes) and reversibly.

Program scalability is increased because fewer system resources are

required, and because with graphical definitions programmers can specify

fewer formulas and fewer cell references than are required without

graphical definitions, sometimes reducing these actions by as much as a

factor of n.

We have also evaluated graphical definitions in an empirical study. The results of

this study show that programmers using graphical definitions can construct programs with

graphical types faster and with fewer errors than with a less direct technique.

Most important, this work demonstrates that direct manipulation and gestures can

be used to specify formulas in a spreadsheet language in a way that is entirely compatible

with the spreadsheet value rule, allowing graphical types to be promoted to first-class

status in spreadsheet languages.

49

References

[1]	 Burnett, M. and A. Ambler, "Generalizing Event Detection and Response in Visual
Programming Languages," International Workshop AVI '92: Advanced Visual
Interfaces, Rome, Italy, May 27-29, 1992, 334-347.

[2]	 Burnett, M. and A. Ambler, "Interactive Visual Data Abstraction in a Declarative
Visual Programming Language," Journal of Visual Languages and Computing,
March 1994, 29-60.

[3]	 Carlson, P., M. Burnett, and J. J. Cadiz, "A Seamless Integration of Algorithm
Animation into a Visual Programming Language," ACM Proceedings of Advanced
Visual Interfaces '96, Gubbio, Italy, May 27-29, 1996 (to appear).

[4]	 Gross, M. and E. Do, "Ambiguous Intentions: A Paper-Like Interface for Creative
Design," ACM Symp. on User Interface Software and Technology, Seattle, WA,
Nov. 6-8, 1996, 183-192.

[5]	 Hudson, Scott., "User Interface Specification Using an Enhanced Spreadsheet
Model," ACM Trans. on Graphics, July 1994, 209-239.

[6]	 Hughes, C. and J. Moshell, "Action Graphics: A Spreadsheet-Based Language for
Animated Simulation," in Visual Languages and Applications (T. Ichikawa, E.
Jungert, R. Korfhage, eds.), Plenum Publishing, New York, NY (1990), 203-235.

[7]	 Hutchins, E., J. Hollan, and D. Norman, "Direct Manipulation Interfaces," in User
Centered System Design: New Perspectives on Human-Computer Interaction (D.
Norman, S. Draper, eds.), Lawrence Erlbaum Assoc., Hillsdale, NJ (1986), 87-124.

[8]	 Kay, A., "Computer Software," Scientific American, Sept. 1984, 53-59.

[9]	 Kurlander, D., "Chimera: Example-Based Graphical Editing," in Watch What I Do:
Programming by Demonstration (A. Cypher, ed.), MIT Press, Cambridge, MA
(1993), 271-290.

50

[10] Landay, J. and B. Myers, "Extending an Existing User Interface Toolkit to Support
Gesture Recognition," Adjunct Proc. INTERCHI '93, Amsterdam, The Netherlands,
Apr. 24-29, 1993, 91-92.

[11] Lewis, C., "NoPumpG: Creating Interactive Graphics with Spreadsheet Machinery,"
in Visual Programming Environments (E. Glinert, ed.), IEEE Computer Society
Press, Los Angeles, CA (1990), 526-546.

[12] Lieberman, H., "Mondrian: A Teachable Graphical Editor," in Watch What I Do:
Programming by Demonstration (A. Cypher, ed.), MIT Press, Cambridge, MA
(1993), 341-358.

[13] Microsoft Excel User's Guide, Microsoft Corporation, 1993-1994.

[14] Miyashita, K., S. Matsuoka, S. Takahashi, A. Yonezawa, and T. Kamada,
"Declarative Programming of Graphical Interfaces by Visual Examples," ACM Symp.
on User Interface Software and Technology, Monterey, CA, Nov. 15-18, 1992, 107­
116.

[15] Miyashita, K., S. Matsuoka, S. Takahashi, and A. Yonezawa, "Iterative Generation
of Graphical User Interfaces by Multiple Visual Examples," ACM Symp. on User
Interface Software and Technology, Marina del Rey, CA, Nov. 2-4, 1994, 85-94.

[16] Myers, B., D. Giuse, R. Dannenberg, B. Vander Zanden, D. Kosbie, E. Pervin, A.
Mickish, P. Marchal, "Garnet: Comprehensive Support for Graphical, Highly
Interactive User Interfaces," IEEE Computer, Nov. 1990, 71-85.

[17] Myers, B., "Graphical Techniques in a Spreadsheet for Specifying User Interfaces,"
CHI '91, New Orleans, LA, Apr. 28 - May 2, 1991, 243-249.

[18] Nardi, B., A Small Matter of Programming: Perspectives on End User Computing,
MIT Press, Cambridge, MA (1993).

[19] Shneiderman, B., "Direct Manipulation: A Step Beyond Programming Languages,"
IEEE Computer, Aug. 1983, 57-69.

[20] Shneiderman, B., Designing the User Interface: Strategies for Effective Human-
Computer Interaction, Addison-Wesley, Reading, MA (1992), 181-233.

51

[21] Smedley, T., P. Cox, and S. Byrne, "Expanding the Utility of Spreadsheets Through
the Integration of Visual Programming and User Interface Objects," ACM Advanced
Visual Interfaces '96, Gubbio, Italy, May 27-29, 1996, 148-155.

[22] Smith, D., A. Cypher, and J. Spohrer, "KidSim: Programming Agents Without A
Programming Language," Comm. ACM, July 1994, 55-67.

[23] Vander Zanden, B. and B. Myers, "Demonstrational and Constraint-Based
Technologies for Pictorially Specifying Application Objects and Behaviors," ACM
Trans. on Computer-Human Interaction, Dec. 1995, 308-356.

[24] van Zee, P., M. Burnett, and M. Chesire, "Retire Superman: Handling Exceptions
Seamlessly in Declarative Visual Programming Languages," 1996 IEEE Symposium
on Visual Languages, Boulder, Colorado, September 3-6, 1996 (to appear).

[25] Wilde, N. and C. Lewis, "Spreadsheet-Based Interactive Graphics: From Prototype
to Tool," CHI '90, Seattle, WA, Apr. 1-5, 1990, 153-159.

[26] Wilde, N., "A WYSIWYC (What You See Is What You Compute) Spreadsheet,"
1993 IEEE Symp. on Visual Languages, Bergen, Norway, Aug. 24-27, 1993, 72-76.

[27] Yang, S. and M. Burnett, "From Concrete Forms to Generalized Abstractions
through Perspective-Oriented Analysis of Logical Relationships," 1994 IEEE Symp.
on Visual Languages, St. Louis, MO, Oct. 4-7, 1994, 6-14.

52

Appendices

53

Appendix A. Empirical Study Materials

A.1 Introduction to Forms/3

This is the script that was read to all subjects as their introduction to Forms/3. They were
instructed to perform the actions described in the script.

This study has two parts in which you'll be doing some programming in the

spreadsheet-based visual programming language Forms/3. Before each section, you'll be

given instructions on how to complete the task that I'll ask you to do.

For the first part, I'll give you a brief hands-on introduction to programming in

Forms/3, and then demonstrate one way of programming graphical objects such as boxes

and circles. I'll then ask you to modify an existing program to use these graphical objects.

In Forms/3, programming is done by defining formulas for cells which are placed

on windows called forms, such as the "demoForm" you see here. For these examples, you

won't be creating any new cells, but you will be defining formulas for existing cells. To

define a formula for a cell, double click on the formula tab shown in the bottom right hand

corner of the cell. Go ahead and define the formula of cell X to be the number 15. (Post

the formula)

We can reference this cell in another formula. To define the formula for cell Y to

be X, either type the name of the cell, or click on the cell. Go ahead and do this. Now, if

we change Xs formula, Ys value changes as well. For instance, change Xs formula to 10.

Press the "Clear" button to erase the current formula.

54

A.2 Group 1 (graphical definitions first)

A.2.1 Introduction to graphical definitions for built-in graphical objects

This was read to the subjects who programmed the population program using graphical
definitions.

Graphical objects can be created and manipulated by gestures. For instance, to

define the formula for cell aBox to be a box, first double click on the formula tab, and then

either draw a gesture in the shape of a box or click on the box gesture icon. Go ahead and

do this. The box can be resized by grabbing and dragging its corners.

Circles are resized by dragging the top right, bottom right, etc., and lines are

stretched by dragging their endpoints.

These graphical objects are actually defined by built-in definition forms that

contain cells. To display the definition form for an object, click on it with the middle

mouse button. Then press the accept button to close the formula edit window. If we define

new formulas for the cells on the primitiveBox form, the box changes. For instance, to

make the box a solid color, define a formula for the fillForeColor cell. Make the box

green. alit diSplay or accept)

New objects can also be created from existing objects. For instance, to create a

box that is just like some other box but smaller, click on the existing box while editing the

new formula, and resize it to the desired size. This defines a new box that has all of the

attributes of the original box except its size. Define the formula for anotherBox to be a

green box that is smaller than the green box you just created.

Are there any questions before you start the first program?

55

A.2.2 Information sheet for population program using the copying technique

This was given to the subjects for their reference during the introduction above and while
they were completing the population program.

to define a formula for a cell:

double click on the formula tab

to refer to another cell in a formula:

click on that cell while editing the formula

to create a new box:

double click on the formula tab to bring up the formula edit

window.

draw the box gesture or click on the box gesture icon.

to resize a box:

drag the corners of the box to the desired size.

to display the box definition form:

press the middle mouse button in the graphics area

to make the box solid green:

define a formula for the fillForeColor cell on the primitiveBox

form.

to create a new (different sized) box from another box:

click on the box.

stretch the box to the desired size.

A.2.3 Population program

This was read to all subjects prior to beginning the population program.

Now I'd like you to use the approach you've just learned to program circles in the

following program. This is a visualization of population data for various cities. Different

sized cities are represented by the strings "city", "town", and "village". I'd like you to

change these strings to a graphical representation of solid black circles of varying sizes, as

56

shown in this figure (see Figure A-1). You will need to replace the formulas for these

three cells with formulas that represent black circles of approximately the size shown here,

using the approach to programming graphical objects that I've just demonstrated.

Portland 450000

Eugene 120000

Corvallis 55000

Albany 25000

J

town village

Figure A-1. The output of the completed population program. This handout was given to
the subjects prior to beginning the population program.

57

A.2.4 Introduction to the copying technique for user-defined graphical objects

This was read to the subjects who programmed the tree program using the copying
technique.

In this example, you're going to create a small binary tree, using a user-defined

Tree data type that has already been created. This tree is defined by a form similar to the

built-in primitiveBox form you saw earlier.

To define a new tree, the first thing you'll do is make a copy of the Tree form. To

do this, first select the Tree form in the list and then press the "Copy Form" button. The

Tree form contains several "abstraction boxes", which contain cells. These are used for

data abstraction, and are similar to structs in C. To create a new tree, define a formula for

the newElement cell. The abstraction box new Tree now represents a tree containing the

new element. This tree can be used in a program by referencing the newTree cell on this

form. Let's do this now: create a tree with the element 10, and define the formula for

a Tree on the treeDemo form to be a reference to this tree.

We can create a new tree that is exactly like another tree but with some change

(such as a new element) by defining a formula for the inputTree abstraction box. For

instance, to create a tree that is the same as the first tree but with the element 5 added to

it, first copy the Tree form, then define the formula for the inputTree abstraction box on

this form to be a reference to the new Tree cell on the previous tree's definition form. Now

define the formula 5 for the newElement cell. The new Tree abstraction box is now a tree

just like the previous tree but with the element 5 added. We can now define the formula

for anotherTree to be a reference to the new Tree abstraction box on this form.

The tree form also contains other cells to perform operations on the tree. For

instance, if we define a new tree just like the one in the anotherTree cell, we can access its

top element and left and right subtrees. Define the formula for cell tree Top to be the top

element of the tree defined in cell anotherTree by copying the Tree form, defining the

formula for cell inputTree to be anotherTree, and defining the formula for cell tree Top to

be the top cell on the Tree form.

Are there any questions before you start the second program?

58

A.2.5 Information sheet for tree program using graphical definitions

This was given to the subjects for their reference during the introduction above and while
they were completing the tree program.

to define a new tree with the element 10:

select the Tree form

press the "Copy Form" button

define the formula '10' for the newElement cell

reference the newTree cell of the Tree form

to define a new tree with the element 5 added to an existing tree:

select the Tree form

press the "Copy Form" button

define the formula for the inputTree cell to reference the existing

tree

define the formula '5' for the newElement cell

reference the newTree cell of the Tree form

to access the top element of an existing tree

select the Tree form

press the "Copy Form" button

define the formula for the inputTree cell to reference the existing

tree

reference the top cell of the Tree form

A.2.6 Tree program

This was read to all subjects prior to beginning the tree program.

Now I'd like you to use the approach you've just learned to complete the following

exercise. Define the formula for cell binTree on the treeExample form to be a binary tree

with the elements 15, 3, and 8. Define the formula for leftTree to be the left subtree of

binTree (see Figure A-2).

59

Figure A-2. The output of the completed tree program. This handout was given to the
subjects prior to beginning the tree program.

A.3 Group 2 (copying technique first)

A.3.1 Introduction to the copying technique for built-in graphical objects

This was read to the subjects who programmed the population program using the copying
technique.

Programming with graphical objects is done similarly, with a few new concepts.

For instance, the first step in creating a box is to make a copy of the built-in box form.

This is done by first selecting the primitiveBox form and then pressing the "Copy Form"

button. Go ahead and do this now. The box in cell someBox is defined by the formulas of

cells on this form. If we define new formulas for these cells, the box changes. For instance,

60

make the box narrower by changing the formula for the width cell to 40. Go ahead and do

this. The width cell changes to white to signify that it has been changed.

This box can be used in a program by referencing it in a formula. Define the aBox

cell on the demoForm to be a reference to the box you have just created.

Other cells on the box form affect other attributes of the box. To make the box a

solid color, define a formula for the fillForeColor cell. Make the box green.

Are there any questions before you start the first program?

A.3.2 Information sheet for population program using the copying technique

This was given to the subjects for their reference during the introduction above and while
they were completing the population program.

to define a formula for a cell:

double click on the formula tab

to refer to another cell in a formula:

click on that cell while editing the formula

to create a new box:

select the primitiveBox form

press the "Copy Form" button

to make the box solid green:

define a formula for the fillForeColor cell on the primitiveBox

form.

A.3.3 Population program

The instructions for the population program for this group were identical to those

given in section A.2.3.

61

A.3.4 Introduction to graphical definitions for user-defined graphical objects

This was read to the subjects who programmed the tree program using graphical
definitions.

In this example, you're going to create a small binary tree, using a user-defined

Tree data type that has already been created. Although a tree is defined by a form similar

to the built-in primitiveBox form you saw earlier, we will be programming the tree using

gestures rather than by copying forms.

To define a cell's formula to be a tree, first double click on the cell's formula tab as

before. Then either draw the Tree gesture (a capital T), or click on the Tree gesture icon.

This defines the formula for the cell to be an empty tree. You can now define a new

formula that represents an operation on the tree. The displayed gesture icons signify the

operations that have been defined for the tree.

To create a tree with a new element added, draw the New gesture or click on the

New gesture icon. You will be asked to enter the new element. Enter the value 10. Press

the "Accept" button. The formula for cell aTree is a tree with the single element 10.

A new tree can be created from an existing tree. For instance, to define cell

anotherTree to be a new tree with the element 5 added to the tree you just created, first

double click on the formula tab for anotherTree. Then click on cell aTree. Now draw the

New gesture, and enter the value 5. And we can perform more operations on this new

tree, such as adding another element to it, say 8.

Other operations on the tree are performed in the same manner. To define treeTop

to be the top element of the tree you just created, click on the anotherTree cell while

editing the formula for treeTop, then draw the Top gesture.

Are there any questions before you start the second program?

62

A.3.5 Information sheet for tree program using graphical definitions

This was given to the subjects for their reference during the introduction above and while
they were completing the tree program.

to create a new tree with the element 10:

double click on the formula tab to bring up the formula edit

window.

draw the "Tree" gesture or click on the "tree" gesture icon.

draw the "New" gesture or click on the "new" gesture icon.

enter the value 10.

to define a new tree with the element 5 added to an existing tree:

double click on the formula tab to bring up the formula edit

window.

click on the tree

draw the "New" gesture or click on the "new" gesture icon.

enter the value 5.

to access the top element of an existing tree:

double click on the formula tab to bring up the formula edit

window.

click on the tree

draw the "Top" gesture or click on the "top" gesture icon.

A. 3.6 Tree program

The instructions for the tree program for this group were identical to those given

in section A.2.6.

63

A.4 Questionnaires

Questionnaire 1 was given to the subjects after they completed the first program.
Questionnaire 2 was given to the subjects after they completed the second program.

A.4.1 Questionnaire 1

Subject #:

Answer these questions after finishing the first part

1. How many years have you been at OSU?

1st year 2nd year 3rd year other (specify)

2. Are you a Master's or PhD student?

Master's PhD Unsure

3. Describe your experience with Forms/3.

Never heard of it Know a little, but haven't used it

Have used it a little Have used it a lot

4. Did you do the first program using gestures or by copying the primitiveCircle form?

gestures copying

5. Did you think that your solution to the problem was correct?

yes no not sure

6. How confident were you of your results on this problem? Why?

very confident somewhat confident not confident

64

A.4.2 Questionnaire 2

Subject #:

Answer these questions after finishing the second part

1. Did you do the second program using gestures or by copying the primitiveCircle form?

gestures copying

2. Did you think that your solution to the problem was correct?

yes no not sure

3. How confident were you of your results on this problem? Why?

very confident somewhat confident not confident

4. Which problem did you feel more comfortable working on? Why?

population tree

5. If you were able to choose either approach to use on a third problem, which would you

use? Why?

gestures copying

6. When you used gestures, did you prefer to draw the gesture or

click on the gesture icon?

draw the gesture click on the icon used both

7. Any other comments?

THANK YOU VERY MUCH FOR YOUR PARTICIPATION!

65

Appendix B. Source Code

B.1 gesture.lisp

The file gesture.lisp contains the definitions of the gesture class and

gestureTableEntry structure. These structures store information about user-defined

gestures and the semantics of these gestures. This file also contains functions to

manipulate these structures. The most important functions are shown below.

B.1.1 gesture class

(deferrals gesture (displayable)

((id :accessor displayable-id :initarg :id :initform nil)

(name :accessor displayable-name :initarg :name

:initform nil)

(attributeList :accessor displayable-attributeList

:initarg :attributeList :initform nil)

(:documentation "Gesture class.")

B.1.2 gestureTableEntry struct

(defstruct gestureTableEntry

(vadtName nil)

(gestureName nil)

(returnCell nil)

(items nil)

66

B.1.3 gesture-create-constr-list

;;;

;;; gesture-create-constr-list

;;

;;; creates a constr-list and returns the selected cell from a

;; gesture that contains the appropriate cell fmlas for

;;; theVADTType.

NOTE: only supports direct fmlas: cell defined by

single attrib.

;; theAttribs is (list (cellName, logicalVal))

;; returns (list (celllD, absoluteVal))

(defun gesture-create-constr-list (theVADTType gesture)

(let* ((theEntry (find-gestureTableEntry theVADTType

(displayable-name gesture)))

(theAttribs (if theEntry

(gestureTableEntry-items theEntry)))

(returnCell (if theEntry

(gestureTableEntry-returnCell theEntry)))

(model (formtable-find theVADTType))

tempConstrList val win)

(setf win (car (gv (displayable-win model) :child)))

(setf tempConstrList

(mapcar r(lambda (attrib)

(setf val (read-from-string (cadr attrib)))

(if (not (equalp 'same val)!

(progn

(if (not (stringp val))

(if (equalp val 'ask)

(setf val (get-val-from-prompt

(subseq (cadr attrib) 4)

(car attrib)))

(setf val (displayable-getAttribute val

(displayable-attributeList

gesture)))))

(if (null val)

(setf val (parse-formula-string

(cadr attrib) win)))

(if (not (null val))

(cons (car

(displayable-getNameEntry model

(format nil "-a" (car attrib))))

(list '<- val)))

)))

theAttribs))

(values (remove-if #'null tempConstrList) returnCell)

))

67

B.1.4 edit-gesture-attributes

(defun edit-gesture-attributes (theVADTType gestureName)

(let* ((title (format nil "Defining '-a' gesture for -a"

gestureName theVADTType))

(model (formtable-find theVADTType))

(currentEntry (find-gestureTableEntry

theVADTType gestureName))

;; the currently defined attributes

(currentAttributes (if currentEntry

(gestureTableEntry-items currentEntry)))

(currentReturnCell (if currentEntry

(gestureTableEntry-returnCell

currentEntry)))

(allCells (remove-if #'null

(displayable-mapcells

r(lambda (cellid cell)

(if (not (or (roobj-formulatab-hidden?

(displayable-object cell))

(string-equal cellid

(displayable-absBoxId

model))))

(roobj-name (displayable-object cell))))

(displayable-celltable model))))

(returnCells (sort

(stable-merge-no-dups

(list theVADTType)

(remove-if #'null

(displayable-mapcells

#1(lambda (cellid cell)

(declare (ignore cellid))

(if (roobj-formulatab-hidden?

(displayable-object cell))

(roobj-name (displayable-object

cell))))

(displayable-celltable model)))

#'string-equal #'string-lessp) #'string-lessp))

(allCellAttributes (mapcar #'(lambda (cellName)

(list (read-from-string cellname)

"same"))

allCells))

allAttributes returnCellListObj returnCell)

(setf returnCell (if currentReturnCell currentReturnCell

(let* ((absBoxIds

(remove-if #'null

(displayable-mapcells

#'(lambda (cellid cell)

(if (typep cell 'absBox)

cellid))

(displayable-cellTable

model)))))

(roobj-name (displayable-object

(displayable-getCell

model

(if (= 2 (length absBoxIds))

(car (remove-if #'(lambda (cellid)

(string-equal

(displayable- absBoxld model)

68

cellid)) absBoxIds))

(displayable-absBoxId model))))))))

(setf currentAttributes (sort currentAttributes

#'(lambda (a b) (string-lessp (car a)

(car b)))))

(setf allCellAttributes (sort allCellAttributes

#'(lambda (a b) (string-lessp (car a)

(car b)))))

;; combine both sets of attributes

(setf allAttributes (stable-merge-no-dups

currentAttributes allCellAttributes

#1(lambda (a b) (string-equal (car a)

(car b)))
#'(lambda (a b) (string-lessp (car a)

(car b)))))

;; re-sort so that "same" comes last

(setf allAttributes (stable-sort (copy-list allAttributes)

#'(lambda (a b) (and (not (string-equal "same" a))

(string-equal "same" b))) :key #'cadr))

(setf returnCellListObj (create-instance nil

gg:option-button

(:items returnCells)

(:label "")

(:initial-item returnCell)))

(setf allAttributes (cons '("Cell to be referenced"

,returnCellListObj)

allAttributes))

(s-value $GestureEditor :vadtType theVADTType)

(s-value $GestureEditor :gestureName gestureName)

(gg:pop-up-win-change-items $GestureEditor allAttributes

200 200 title T)

B.1.5 define-gesture

(defun define-gesture (an-interactor final-obj-over)

(declare (ignore an-interactor))

(agate:do-go

:initial-classifier (gv final-obj-over :parent :classifier)

:initial-examples (gv final-obj-over :parent :items)

:final-function #'(lambda (filename classifier examples

saved trained)

(declare (ignore filename saved trained))

(let* ((win (gv final-obj-over :window))

(agg (displayable-aggregate win))

gestAgg)

(setf gestAgg

(displayable-gestureIconAgg win))

(opal:remove-component agg

(displayable-gestureIconAgg win))

(setf gestAgg

(create-instance nil opal:aggregadget

69

Gesture")

(:parts

'((:topLevel ,opal:text

(:left ,(o-formula

(+ 10

(opal:gvl-sibling :topLevelBorder

:left))))

(:top 10)

(:font ,opal:default-font)

(:string "Top-Level

(:toplevelborder ,opal:rectangle

(:left ,(o-formula

(+ (opal:gvl-sibling :icons :left)

(opal:gvl-sibling :icons

:width))))

(:top 0)

(:height 50)

(:width 110))

(:icons ,(create-instance nil

$GestureIconAgg

(:classifier classifier)

(:items examples)))))

(:interactors

'((:addTop ,inter:button-interactor

(:window ,(o-formula

(gv-local :self :operates-on

:window)))

(:active T)

(:start-event :any-mouseDown)

(:start-where ,(o-formula

(list :in (gvl :operates-on

:topLevelBorder))))

(:final-function

, #'define toplevel- gesture))))

))

(displayable-set-gestureIconAgg win

gestAgg)

(opal:add-component agg gestAgg)

))

70

B.1.6 define-toplevel-gesture

(defun define-toplevel-gesture (an-interactor final-obj-over)

(declare (ignore an-interactor final-obj-oyer))

(agate:do-go

:initial-classifier $GestureClassifier

:initial-examples $GestureExamples

:final-function #'(lambda (filename classifier examples

saved trained)

(declare (ignore filename saved trained))

(setf $GestureClassifier classifier)

(setf $GestureExamples examples))

71

B.2 formulaDM.lisp

The file formulaDMlisp contains functions to support the use of direct

manipulation for editing formulas. The functions that are specifically related to graphical

definitions are shown below.

B.2.1 handle-gesture

;;;

;;; handle-gesture

;;

(defun handle-gesture (gesture-name attribs)

(if (or (null attribs)

(< 9 (+ (abs (- (inter:gest-attributes-minx attribs)

(inter:gest-attributes-maxx attribs)))

(abs (- (inter:gest-attributes-miny attribs)

(inter:gest-attributes-maxy attribs))))))

(let* ((tempFormulaText (gv $FormulaGadget :formulaText))

(newFormulaString nil))

(gv tempFormulaText :string)

(gv tempFormulaText :cursor-index)

(case (gv $FormulaGadget :drawObj)

(:userDefined

(if (null gesture-name)

(format T "Gesture not recognized")

(let* ((tempFormDrawWindow

(gv (formula-tab-get-obj

(gv $FormulaWindow :formulaTab))

:parent :window))

(parsed-formula (parse-formula-string

(gv tempFormulaText :string)

tempFormDrawWindow))

modelForm theFmla theCell theVADTType

theGesture selectCell tempConstr)

(if (cellref-p parsed-formula)

(progn

(multiple-value-setq

(modelForm theFmla theCell)

(formula-model parsed-formula

tempFormDrawWindow))

(setf theVADTType

(displayable-name

(formtable-find modelForm)))

(setf theGesture

(make-gesture gesture-name attribs))

(multiple-value-setq (tempConstr selectCell)

(gesture-create-constr-list

theVADTType theGesture))

(if (typep (formtable-find modelForm)

'VADTForm)

(if selectCell ;; a recognized gesture

(progn

72

;; need to create a constr entry for the

;; distinguished absBox unless the formula

;; already refers to the model's

;; distinguished absBox

(if (not (and (string-equal

(cellref-form (car

(cellrefs-replace-constr-names-by-ids

(list parsed-formula))))

(displayable-id (formtable-find modelForm)))

(string-equal

(cellref-cellID parsed-formula)

(displayable- absBoxlD

(formtable-find modelForm))))

;; need to get a ref to an absBox. if theCell

;; is an absBox or evaluates to an absDycon

;; (demand if necessary), then use it

;; otherwise, get the distinguished absBox

(let* (absBoxConstr theValue)

(if (typep theCell 'absBox)

(setf absBoxConstr

'((,(displayable-absBoxID

(formtable-find modelForm))

<- ,parsed-formula)))

(progn

(if (null

(displayable-object theCell))

(setf theValue

(displayable-cell-demand

theCell

(formtable-find modelForm)))

(setf theValue

(roobj-value

(displayable-object theCell))))

(if (typep theValue 'absDycon)

(setf absBoxConstr

'((,(displayable-absBoxID

(formtable-find modelForm))

<- ,parsed-formula)))

(setf absBoxConstr

'((,(displayable-absBoxID

(formtable-find modelForm))

<- ,(make-cellref modelForm

(displayable- absBoxlD

(formtable-find

modelForm)

)))))

)))

(setf tempConstr

(merge-constr-lists

(constr-name-list

(unravel-self-refs

(make-constr-name :list absBoxConstr)

(displayable-title

(displayable-parent

tempFormDrawWindow))))

tempConstr))

))

(setf newFormulaString

73

(make-vadt-ref-fmla modelForm tempConstr

selectCell)))

(format T "Gesture not defined for -a-%"

theVADTType))

(setf newFormulaString

(make-prim-ref-fmla modelForm tempConstr

(gv tempFormulaText :string))))

(T

;; else
(break "error no

)))

t a cellref in handle-gesture"))

(if (null attribs)

(setf newFormulaString

(if (string-equal gesture-name "BOX")

"box 50 50"

(if (string-equal gesture-name "CIRC")

"circle 25"

(if (string-equal gesture-name "LINE")

"line 50 50"

(if (formtable-find gesture-name)

(format nil " -a: --a" gesture-name

(roobj-name (displayable-object

(displayable-getcell

(formtable-find gesture-name)

(displayable-absBoxID

(formtable-find gesture-name))))))

(format nil "Form for gesture -a not found"

gesture-name))

))))

;; else, attribs not null

(let* ((gesture

(make-gesture gesture-name attribs)))

(setf newFormulaString

(if (string-equal gesture-name "BOX")

(format nil "box -a -a"

(displayable-getAttribute 'width

(displayable-attributeList gesture))

(displayable-getAttribute 'height

(displayable-attributeList gesture)))

(if (string-equal gesture-name "CIRC")

(format nil "circle -a"

(displayable-getAttribute 'radius

(displayable-attributeList gesture)))

(if (string-equal gesture-name "LINE")

(format nil "line -a -a"

(displayable-getAttribute 'dx

(displayable-attributeList gesture))

(displayable-getAttribute 'dy

(displayable-attributeList gesture)))

(if (string-equal gesture-name "NIL")

(format T "Sorry, gesture not recognized-%")

(if (formtable-find gesture-name)

(format nil "-a:-a" gesture-name

(roobj-name (displayable-object

(displayable-getcell

(formtable-find gesture-name)

(displayable- absBoxlD

(formtable-find gesture-name))))))))))))

74

(if newFormulaString

(progn

(s-value tempFormulaText :string newFormulaString)

(s-value tempFormulaText :cursor-index

(length newFormulaString))

(display-graphical-formula)

))

B.2.2 create-graphical-formula

; ; ;
;;; create-graphical-formula

;;

;;; objType is :drawRect, :drawCircle, or :drawLine;

;;; return fmlaString

(defun create-graphical-formula (objType obj-being-changed

final-points)

(let* (newFormulaString w h)

(case objType

(:drawRect

(setf w (third final-points))

(setf h (fourth final-points))

(setf newFormulaString (format nil "box -a -a" w h)))

(:drawCircle

(setf w (third final-points))

(setf h (fourth final-points))

(setf newFormulaString (format nil "circle -a"

(round (/ (max w h) 2)))))

(:drawLine

(progn

(setf w (- (third final-points)

(first final-points)))

(setf h (- (fourth final-points)

(second final-points)))

;; move to upper left corner of gesture window

(if (<= 0 (* w h)) ; both coordinates have same sign

(s-value obj-being-changed :points

(list 10

(+ 10 (gv $FormulaGadget :gestureBorder :top))

(+ 10 (abs w))

(+ 10 (abs h) (gv $FormulaGadget :gestureBorder

:top))))

(s-value obj-being-changed :points

(list 10

(+ 10 (abs h)

(gv $FormulaGadget :gestureBorder :top))

(+ 10 (abs w))

(+ 10 (gv $FormulaGadget :gesturE?order :top)))))

(setf newFormulaString

(format nil "line -a -a" w h))))

75

)

newFormulaString)

B.2.3 handle-userDefined-formula

(defun handle-userDefined-formula (theForm theFmla

obj-being-changed final-points)

;; the new formula for this cell is theFmla;

;; its model is theForm.

(let* (newCopy newFormulaString)

(case (car theFmla)

(make-boxDycon

(case (length theFmla)

(3

(setf newFormulaString (create-graphical-formula

:drawRect obj-being-changed final-points))

)

(4

(setf newCopy (form-create-from-constr-list

theForm

'(("Box50" <- ,(gv obj-being-changed :width))

("Box51" <- obj-being-changed :height)))))

(setf newFormulaString (format nil "-a:someBox"

(displayable-id newCopy)))

)

(T

(break "unknown box parameters"))

))

(make-circleDycon

(case (length theFmla)

(2

(setf newFormulaString {create-graphical-formula

:drawCircle obj-being-changed final-points)))

(3

(setf newCopy (form-create-from-constr-list

theForm

'(("Circle50" <­
,(round (/ (gv obj-being-changed :height) 2))

))))

(setf newFormulaString (format nil "-a:someCircle"

(displayable-id newCopy)))

(T

(break "unknown circle parameters")))

)

(make-lineDycon

(case (length theFmla)

(3

(setf newFormulaString (create-graphical-formula

:drawLine obj-being-changed final-points)))

(4

(setf newCopy (form-create-from-constr-list

theForm

'(("Line50" <- ,(- (gv obj-being-changed :x2)

76

(gv obj-being-changed :x1)))

("Line51" <- ,(- (gv obj-being-changed :y2)

(gv obj-being-changed :y1)))

)))

(setf newFormulaString (format nil "-a:someLine"

(displayable-id newCopy)))

(T

(break "unknown line parameters")

))

(abscompose

(format T

"Working on DM (RESIZE) of a VADT (Not yet implemented)")

(let* ((theVADTType (displayable-name

(formtable-find theForm))))

(setf newFormulaString

(make-vadt-ref-fmla theForm

(DM-create-constr-list theVADTType obj-being-changed

final-points)))

))

(T

(break "unknown formula type in handle-userDefined-formula")

(setf newFormulaString "")))

newFormulaString

B.2.4 form-create-from-constr-list

(defun form-create-from-constr-list (theForm theList)

(if (not (formtable-find theForm))

;; load it

(file-load nil (concatenate 'string $FormsDir

(format nil "primitiveForms/-a.frm" theForm)))

(let* (newCopy tempConstrList tempConstr)

(if (displayable-win (formtable-find theForm))

(if (model-form-p

(displayable-win (formtable-find theForm)))

;; copying a model; straightforward

(setf tempConstr (make-constr-name

:name theForm

:list theList))

;; else, copying a (visible) copy

(let* ((tempComponentList (gv (displayable-aggregate

(car (gv (displayable-win

(formtable-find theForm)) :child)))

:components))

(overriddenComponentList (remove-if-not

r(lambda (component)

(roobj-override component))

tempComponentList)))

;; create constrlist from all overridden cells

(setf tempConstrList (mapcar #'(lambda (component)

(cons (displayable-id (roobj- formsRO component))

77

(roobj-formula component)))

overriddenComponentList))

;; if theList has any values that are different from

tempConstrList, use them. First, sort the lists.

(setf theList (sort theList #'(lambda (a b)

(string-lessp (car a) (car b)))))

(setf tempConstrList (sort tempConstrList #'(lambda (a b)

(string-lessp (car a) (car b)))))

(setf tempConstrList (stable-merge-no-dups theList

tempConstrList

r(lambda (a b) (string-equal (car a) (car b)))
#'(lambda (a b) (string-lessp (car a) (car b)))))

(setf tempConstr (make-constr-name
:name (form-model-title (displayable-constr-name

(formtable-find theForm)))

:list tempConstrList))

))

;; else parent isn't visible, so the constr-list is just a

;; merge of the parent's constr-list and theList.

(progn

(setf tempConstrList (constr-name-list

(displayable-constr-name

(formtable-find theForm))))

(setf theList (sort theList #'(lambda (a b)

(string-lessp (car a) (car b)))))

(setf tempConstrList (sort tempConstrList #'(lambda (a b)

(string-lessp (car a) (car b)))))

(setf tempConstrList

(stable-merge-no-dups theList tempConstrList

#'(lambda (a b) (string-equal (car a) (car b)))

#l(lambda (a b) (string-lessp (car a) (car b)))))

(setf tempConstr (make-constr-name

:name (form-model-title (displayable-constr-name

(formtable-find theForm)))

:list tempConstrList))

))

;; if a form with the given constr-name already exists,

;; use it rather than creating a new one.

(if (null (setf newCopy (formtable-find tempConstr)))

(setf newCopy (form-create-from-abs-ref tempConstr)))

newCopy ; return the new form

))

B.2.5 display-graphical-formula

; ; ;
;;; display-graphical-formula

;;

78

(defun display-graphical-formula ()

(if $Gesture

(let* ((tempFormula (gv $FormulaGadget :formulaText :string))

tempOperator stringIndex w h

(tempObj (formula-tab-get-obj

(gv $FormulaWindow :formulaTab)))

(tempFormDrawWindow (gv tempObj :parent :window))

(parsed-formula

(parse-formula-string tempFormula tempFormDrawWindow))

theValue tempImage modelForm cellFmla tempCell

;;hjghjg may need to add destroy-objects call(s) as well.

(opal:remove-all-components

(gv $FormulaGadget :drawAgg :userDefined))

(display-gesture-icons nil)

(if (cellref-p parsed-formula)

;; handle as celiRef

(progn

(multiple-value-setq (modelForm cellFmla tempCell)

(formula-model parsed-formula tempFormDrawWindow))

(if tempCell

(if (null (displayable-object tempCell))

(setf theValue (displayable-cell-demand tempCell

(formtable-find modelForm)))

(setf theValue (roobj-value

(displayable-object tempCell))))

(setf tempImage

(if (not (or (typep theValue 'eventReceptorDycon)

(typep theValue 'glyphDycon)

(listp theValue)))

(displayable-display theValue)

(create-instance nil opal:text))

(if (and (is-a-p tempImage opal:text)

(not (typep (formtable-find modelForm) 'VADTForm)))

;; not a graphical object

(s-value $FormulaGadget :drawObj nil)

(progn

(move-to-drawing-area tempImage)

(opal:add-component

(gv $FormulaGadget :drawAgg :userDefined)

tempImage)

(s-value $FormulaGadget :drawObj :userDefined)

))

(if (typep theValue 'absDycon)

(progn

(display-gesture-icons (displayable-absmype theValue))

(s-value $FormulaGadget :drawObj :userDefined))

;; else

(if (typep (formtable-find modelForm) 'VADTForm)

(display-gesture-icons (displayable-name

(formtable-find modelForm)))

;; else

(display-gesture-icons nil))

79

(if (and (cellref-form parsed-formula)

(null (displayable-win (formtable-find

(cellref-form parsed-formula)))))

(progn

(roobj-set-general-formula (formula-tab-get-obj

(gv $FormulaWindow :formulaTab))

s(<- ,(make-cellref

(expand-refs

(displayable-constr-name

(formtable-find

(cellref-form parsed-formula)))

(displayable- parentFormlD

(roobj-formsR0 (formula-tab-get-obj

(gv $FormulaWindow

:formulaTab)))))

(cellref-cellid parsed-formula))))

(format T "Got a ref to an undisplayed form; ")

(format T "setting generalized formula to -a -%"

(roobj-general-formula (formula-tab-get-obj

(gv $FormulaWindow :formulaTab))))

))

;; else (not a cellRef)

(if (or (equal tempFormula "")

(search ":" tempFormula)) ; read-from-string bombs on ":",

; and we want to ignore it anyway.

(s-value $FormulaGadget :drawObj NIL)

(progn

(multiple-value-setq (tempOperator stringlndex)

(read-from-string tempFormula))

(setf tempOperator (format nil "-a" tempOperator))

;; so we can treat it as a string

(cond ((string-equal tempOperator "BOX")

(multiple-value-setq

(w stringlndex)

(read-from-string tempFormula nil nil

:start stringlndex))

(setf h (read-from-string tempFormula nil nil

:start strincandex))

(if (and (numberp w) (numberp h))

(progn

(s-value $FormulaGadget :drawAgg :drawRect :box

(list 0 0 w h))

(s-value $FormulaGadget :drawObj :drawRect))

(s-value $FormulaGadget :drawObj nil))

((string-equal tempOperator "CIRCLE")

(setf w (read-from-string tempFormula nil nil

:start stringlndex))

(if (numberp w)

(progn

(setf w (* w 2))

(s-value $FormulaGadget :drawAgg

:drawCircle :box

(list 0 0 w w))

80

(s-value $FormulaGadget :drawObj :drawCircle))

(s-value $FormulaGadget :drawObj nil))

((string-equal tempOperator "LINE")

(multiple-value-setq

(w stringIndex)

(read-from-string tempFormula nil nil

stringIndex))

(setf h (read-from-string tempFormula nil nil

:start stringIndex))

(if (and (numberp w) (numberp h))

(progn

(if (<= 0 (* w h))

both coordinates have same sign

(s-value $FormulaGadget :drawAgg

:drawLine :points

(list 10

(+ 10 (gv $FormulaGadget :gestureBorder :top))

(+ 10 (abs w))

(+ 10 (abs h)

(gv $FormulaGadget :gestureBorder :top))))

(s-value $FormulaGadget :drawAgg :drawLine :points

(list 10

(+ 10 (abs h)

(gv $FormulaGadget :gestureBorder :top))

(+ 10 (abs w))

(+ 10 (gv $FormulaGadget :gestureBorder :top)))))

(s-value $FormulaGadget :drawObj :drawLine))

(s-value $FormulaGadget :drawObj nil))

(T

(s-value $FormulaGadget :drawObj NIL))

)))

(update-formula-versions)

))

B.2.6 prey-formula

;;; prey- formula

;;

(defun prey- formula

(update-formula-versions)

(let* ((tempFormulaText (gv $FormulaGadget :formulaText))

newFormulaString)

(if (and

(not (equalp (car $PreviousFormulas) (car $NextFormulas)))

(> (length $PreviousFormulas) 1))

(progn

(setf $NextFormulas (cons

(car $PreviousFormult:)

$NextFormulas))

(setf $PreviousFormulas (cdr $PreviousFormulas))

81

(setf newFormulaString (car $PreviousFormulas))

(if newFormulaString (progn

(s-value tempFormulaText :string newFormulaString)

(s-value tempFormulaText :cursor-index

(length newFormulaString))

(display-graphical-formula))))))

B.2.7 next-formula

; ; ;
;;; next-formula

;;

(defun next-formula ()

(update-formula-versions)

(let* ((tempFormulaText (gv $FormulaGadget :formulaText))

(newFormulaString (car $NextFormulas)))

(if $NextFormulas

(progn

(setf $PreviousFormulas (cons

(car $NextFormulas)

$PreviousFormulas))

(setf $NextFormulas (cdr $NextFormulas))

(s-value tempFormulaText :string newFormulaString)

(s-value tempFormulaText :cursor-index

(length newFormulaString))

(display-graphical-formula))))

