```
Investigation of the 4x4 and 8x8 Foot
    Dougles Fir Spacing Plots on the
        McDonald Forest
        by
        Walter Kirchner
            A Thesis
        Presented to the Faculty
            of the
            School of Forestry
        Oregon State College
            In Partial Fulfillment
            of the Requirements for the Degree
        Bachelor of Science
            June, }194
```

Approved:

Professdr of Forestry
Map of McDonald Forest. $\frac{\text { Page }}{1}$
Location Map Showing Spacing Plots. 2
Introduction. 3
History 4
Procedure 6
Tree Location Map of 8×8 Spacing Plot 10
Tree Location Map of 4×4 Spacing Plot 11
Summary of Statistics 12
Graphic Comparison of the Plots 13
Photographs 14
Results of Spacing Experiment at Wind River Experimental Forest. 18
Conclusions 19
Appendix
8x8 Spacing Plot Data Sheet 20
4x4 Spacing Plot Data Sheet 25
Bibliography. 32

Showing:
Position of 4×4 and 8×8 Spacing Plots*
Scale 1" 250'

Da.tum
Horizontal Control by Pacing Direction by Hand Compass Error of Closure 1:40 Mapped March, 1948

Legend
Grevel Road
Fire Trail
= = =

* This map shows only the most important HIGHWAY landmarks necessary for finding the plots. $99 W / 400$ FEET

Introduction

Today there is scant written information pertaining to the effect of spacing arrangement on the growth of field planted douglas-fir. The pioneer in this field of investigation in the douglas fir region is the Pacific Northwest Forest Experiment Station. Since 1925 the experiment station has kept a record of the growth of douglas-fir on fifteen acres of land plented to $4 x 4,5 x 5,6 x 6,8 x 8,10 x 10$, and $12 x 12$ foot spacing. Unfortunately this experiment is being conducted on site quality IV land which is not the type of land industrial foresters are interested in planting seedlings.upon. It is reasonable to believe that the particular spacing giving thé best growth will vary with the site quality. If growth rates of similar spacing arrangements as is found on the above plots but on site quality I, II, or III land could be obtained, much valuable information could be added to the meager supply. On the Oregon State College School of Forestry lands at McDonald Forest permanent spacing arrangement experimental plots were planted in 1927 and fortunately the area is on site quality III land. Todoy after twenty growing seasons these plots offer on excellent opportunity to observe the growth reaction and to compare it with the site IV growth rates. It is the purpose of this paper to investigate the growth characteristics on the spacing plots at McDonald Forest and to summarize conclusions that seem pertinent at this time. The information contained herein is limited to that obtained from one-seventh acre and one-thirteenth acre plot cruises; hence the scope of this report is necessarily limited.

In the fall of 1927 Professor T. J. Starker with the aid of his silviculture class established 4×4 and 8×8 foot spacing plots in the location as shown on the map page 2 . The spacing test was started to "determine the effect of spacing arrangement, through its effect on competition on the growth of field planted Dougles fir."l Douglas fir 1-12 stock was used on both plots. It had been obtained as I-I stock from the Wind River nursery and grown south of the Oregon State College School of Forestry building for two years. On the $4 x 4$ foot spacing site, 800 seedlings were planted using sixteen rows four feet apart with intervals between trees of four feet in each row. On the 8×8 foot plot 400 seedlings were planted using sixteen rows eight feet apart with trees spaced eight feet apart in each row. In the words of Professor Starier, "the plots were located on upper site III land and there was no indication to believe a difference in site quality existed between the two plots." The slope of the land varied between eight and fifteen degrees with an easterly aspect. A sign was placed on the southeast corner of the 4×4 plot with the inscription "D. FIR SPACING TEST" and it is still visible to this day. Extending from the sign and running due west is a woven wire fence. There is no evidence to indicate any mortality of the seedling's for the period up to March,1933 for at that time Harry A. Fowells in his investigations of the

1. Fowells, Harry Ardell, Master Thesis, "A study and summary of the investigational on the licDonald Forest with recommendations," May 15, 1933.
plot made the following comment, "In March, 1933, five growing seasons after the study was started representative rows in each of the two spacings were selected and 100 trees in each spacing measured for total height and leader growth. Status; The following table gives the analysis of the data as found:"

For the period from the above information to the time this thesis was prepared there is no record of any further investigations. It is unknown at which time the aluminum tags observed on the trees by myself ${ }^{2}$ were placed, since there is no record of this in Fowell's report.

As will be shown in this report the weather has played a major role in the history of these plots. From a study of the United States Department of Agriculture Climatological Data, Oregon Section, the weather in the Corvallis area has been unusually harmful to tree growth but once during the period from 1927 to 1948. In January of 1942 the outstanding feature of the month's weather was the ice storm in the northwest counties of the state. A freezing rain which resulted in heavy accumulations of ice on all exposed surfaces caused damage to orchards, shade trees, and forest trees. The lowest temperature in Corvallis during this period was 2. See field notes under "remaris". (Appendix)
170. As can be observed on the plots, all of the windfalls and broken stems are pointing toward the east. From a comparison of the trees killed from ice damage and wind damage, it appears likely that each occurred at the same stand age. Inadequate wind records however, make it impossible to obtain wind velocities in the Corvallis area.

The lands adjacent to the $4 x 4$ and 8×8 spacing plots contain other douglas fir and ponderosa pine plantations that are about the same stand age and should not offer any influence on the growth of trees on the cruise plots.

Procedure

An extensive survey of the 4×4 and $8 x 8$ spacing plots was made to determine the best procedure to follow for an accurate cruise. It was realized that a 100% cruise would be too time consuming for the purposes of this paper because of the extreme difficulty of measuring the heights of the trees. Since there were no noticeable differences in the growth characteristics from one end of either plot to its opposite end (a 25% cruise seemed to be the most practical means of obtaining cruise data. Except for the first few planted rows on each plot, the spacing was rather poorly done so in order to avoid confusion, it was decided to map all planted trees on the areas. ${ }^{3}$

To aid in mapping, control strings were strung along the boundaries of the selected cruise plots. The eastwest control line on the south side of each control plot was strung so as to include the trees in the second row of the original planted plot. This was done to insure 3. See cruise plot maps pages 10 and 11 .
that all cruise trees had grown under the influence of shade from trees of the same spacing. The next step was to decide on what data was necessary ore in order to ascertain the total effect of spacing. In addition to (1) diameter breast height, and (2) total height, it was decided to measure the (3) diameter at one-half height, the (4) height from the ground to the first dead limb $\frac{1}{4}$ inch or greater in diameter, (5) the height to the first limb with green leaves covering $\frac{1}{4}$ or more of its length, and finally the (6) height from the ground to a broken stem or spiked top. In addition to (4) and (5), it would be desirable to measure the diameter of each limb, but the time element would not allow it. Finally, it was decided to include any unusual characteristics of growth or health of each tree in a remaris column on the cruise sheet.

$$
\text { Field Procedure on } 8 \times 8 \text { Plot }
$$

Mapping on this plot was done with the aid of a hand compass and steel tape. Distances between trees within the plot were frequently estimated. The first tree measured is located at the southwest corner of the cruise plot and an aluminum tag with the numerals 1985 is nailed on the east side of the stem approximately breast high. All other trees were measured in numerical order as shown on the cruise map. The diameters were measured with a diameter tape, the heights by means of a topographic abney or 6.6 foot rod--whichever was the most convenient. Since it was not possible because of the dense condition of the trees
to use the abney at a distance of 66 feet from the base of each tree, half of this distance was used and the readings divided by two. This was conveniently measured off by laying out five lengths of the 6.6 foot rod. Even at this distance it was often impossible to observe the base of the tree and the leader while standing in one position. This was overcome by placing a white card at a measured distance up the trunk of the tree so that both factors could be observed from the same position. Measuring the heights of the trees under such conditions was the most tedious and time consuming task of all the measurements taken. The heights to the first dead and first green limbs were estimated to the nearest half foot in the former case and nearest foot in the latter. With the aid of the 6.6 foot rod for frequent checks, this was considered accurate enough for all practical purposes. The most practical method of measuring the diameters at one-half the height was to determine half the height of the trees beforehand and to climb them to the necessary height and measure with a diameter tape. The exact position at which to measure was found by dropping a plumb line graduated in feet. The height to the point at which the stem was broken off was estimated. In many cases lateral branches had assumed the leader position of the tree but these trees were included in the same category as those trees broken and dead. As can be noted in the remaris column of the data sheet, the spiked topped trees sometimes had bracket fungus sporophores on their trunks.

Working by myself, I found the following order of collecting data the most efficient on this plot: (1) map and number the trees, (2) measure the DBH, height to first dead and green limbs, (3) measure total heights or broken heights, (4) measure diameter at $\frac{1}{2}$ height.

Field Procedure on $4 x 4$ Plot
On this plot all of the measurements except those requiring climbing the trees were taken in one operation. In mapping, directions were obtained by means of a hand compass and distances by the use of the 6.6 foot rod previously mentioned. The same instruments were used and the same methods were used to measure the trees on this plot as on the 8×8 spacing. However, because of the more dense nature of this stand, it was often impossible to see the tops of the trees from a distence of one-half chain. Because of this a horizontal distance of three 6.6 foot rod lengths was measured out and the value obtained from the abney arc was divided by 3.33 to get the height of the tree. In future work it is recommended that a per cent abney be used to measure heights for its greater convenience. When the trees were climbed to get the diameter at half the height, it was often possible to reach over to adjacent trees and measure them at the same time. This saved considerable climbing on this plot.


```
108 thwe ow 2660 tg. f4
    1Tan m 24.6
    , . 5}\times5\mathrm{ -4p+revig
```

TREE LOCATION MAP OF 4×4 SPACING PLOT
Scale $I^{\prime \prime}=10^{\prime}$

| EFFECT OF SPACING ARRANGEMENT ON FIELD PLANTED DOUGLAS | |
| :--- | :--- | :--- |
| | FIR ON MCDONALD FOREST |

PRESENT CONDITION PER CENT OF ORIGINAL TREES PLANTED

LEGEND
8×8 spacing
Healthy trees--dominant, codominent and intermediate trees free of defect.
Leaners--trees leaning more than 15° and less than 85° from vertical position.
Shaded out--dead or suppressed trees as a result of intense shade. Windfalls--trees 85° or greater from vertical position.
Spiked tops--trees that have broken tops or stems from ice or wind damage.

Identification sign located
on the southeast corner of the 4×4 plot as seen from the road.

These trees are located on the south boundary of the 4×4 plot. Despite the added light available to them, the natural prunning and form quotient factor is splendid. Unless some of these trees are thinned, all of them will probably be lost in a severe wind storm.

This is an ideal situation in a $4 x 4$ spacing arrangement. The stems are straight with little taper and good natural prunning.

Broken stems from wind and ice damage.

$4 x 4$ spacing--the windfalls exemplify the effect of strong winds on this spacing arrangement.

This picture illustrates the breaking of the stems at weakened points by a severe wil̃d. A light thinning would have eliminated the chances of such heavy losses. Note the absence of such losses on the 8×8 plot.

Wind falls on the 4×4 plot.

RESULTS OF SPACING EXPERIMENT AT WIND RIVER EXPERIMENTAL FOREST AFTER 26 GROWING SEASONS ${ }^{4}$

	4X4 P10	8x8 P10t
*Present site quality (on basis of av. ht. of $D^{\prime} s$ and C's.)		
Av. DBH	2.711	3.811
Av. ht. all trees	24.51	$25.4{ }^{\prime}$
Av. ht. $C^{\prime} \mathrm{s}$ and $D^{\prime} \mathrm{s}$	29.91	29.71
Ht. to bottom of live crown	7.11	1.11
Av. limb diameter	.3611	. $54{ }^{\prime \prime}$
*Fifteen acres in $2 l l$ were planted to $4 x 4,5 \times 5,6 \times 6,8 \times 8$, l0xl0, and l2xl2. All trees were planted on site quality IV land.		
Munger, Thornton T., 1946. "The spacing in Plantations, Forest Research Notes, No. 34, Pacific Northwest Forest Experiment Station.		

Conclusions

1. Because of the high mortality on the $4 x 4$ plot, growth characteristics exhibited on it cannot be considered normal, especially if compared to growth rates on the 4×4 plot established at the Wind River Experimental Forest.
2. In view of the difference in effect the wind and ice storm had on the 4×4 and 8×8 plots, it appears inadvisable for this reason to plant trees to a 4×4 foot spacing arrangement that are subject to these dangers and are not going to be thinned under the management plans.
3. The 4×4 plot is no longer useful for measuring the effect of spacing arrangement on growth because of the high mortality on it.
4. As was true on the Wind River experimental plots, the 4×4 and $8 x 8$ plots on McDonald Forest exhibited height characteristics that showed a decrease in site quality.
5. 8×8 spacing is superior to 4×4 spacing on site III areas that are suceptible to wind throw or ice damage, but it is quite possible that $7 x^{7} 7$ or $6 x 6$ spacing would be better.

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst. Green Limb	Dia. at $\frac{1}{2}$ Height	Ht. to Broken Stem
Tag 1985	1. ${ }^{\text {\% }}$	6.3	$39 \frac{1}{2}$	1	11	4.3	--
Tag 1986	2.D	6.8	51	112	11	--	-
Tag 1987	3.D	7.2	46	$1{ }^{\frac{1}{2}}$	5	--	--
	$4 . \mathrm{C}$	6.4	43	$1{ }^{\frac{1}{2}}$	13	--	--
Tag 1989, Dead	5.	4.0	--	2	--	--	--
Tag 1990	6.0	4.9	42	$\frac{1}{2}$	11	--	--
Tag 1991	7.0	4.5	$38 \frac{1}{2}$	112	19	3.2	--
Tag 1992	8.0	6.4	47	$1 \frac{1}{2}$	17	--	--
	9.C	6.5	45	2	15	--	--
	10.D.	5.2	39	11 $\frac{1}{2}$	8	--	-
Spike Top	11.	6.0	$40 \frac{1}{2}$	$1 \frac{1}{2}$	8	--	22
	12.D	6.3	46	2	21	4.1	--
	13.0	8.1	$43 \frac{1}{2}$	1	26	--	--
	$14 . \mathrm{C}$	5.8	42	2	16	3.8	--
	$15 . C$	6.6	$43 \frac{1}{2}$	2	11	--	--

$\because \mathrm{C}$ means co-dominant; D , dominant; and I , intermediate.

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst. Green Limb	$\begin{aligned} & \text { Dia. at } \\ & \frac{1}{2} \text { Height } \end{aligned}$	Ht. to Broken Stem
	16.C	5.0	44	2	17	--	--
	$17 . C$	5.6	$44 \frac{1}{2}$	2	15	3.3	--
	18.C	6.7	45	2	13	--	--
	19.D	7.7	$38 \frac{1}{2}$	2	12	5.3	-
	20. C	5.5	401	2	11	--	-
Spike Top	21.	4.5	37	1	8	--	16
Spike Top	22.	4.3	30	2	11	--	12
	23.C	7.4	43	2	16	--	--
	24.C	7.3	$45 \frac{1}{2}$	1 $\frac{1}{2}$	15	--	--
Dead	25.	2.9	15	-	--	--	--
Leaner	26.	4.6	24	$2 \frac{1}{2}$	13	--	--
	27. 6	4.8	$39 \frac{1}{2}$	2	10	--	--
	28.1	7.1	$37 \frac{1}{2}$	1 $\frac{1}{2}$	13	--	--
	29.C	5.7	$42 \frac{1}{2}$	2	18	3.9	--
	30.C	7.2	45	2	18	--	-

8 x 8 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst.	Ht. to list. Green Limb	$\begin{aligned} & \text { Dia at. } \\ & \frac{1}{2} \text { Height } \end{aligned}$	Ht. to Broken Stem
	31.1	3.5	$33 \frac{1}{2}$	2	7	-	--
	$32 . C$	7.1	40	1 $\frac{1}{2}$	17	--	--
	33.1	3.5	35	2	6	--	--
	34.1	3.1	29	17	5	--	--
	35. D	8.2	48	12 ${ }^{\frac{3}{2}}$	9	5.2	--
	$36 . C$	6.9	$40 \frac{1}{2}$	2	14	4.4	--
	$37 . C$	4.3	40	$2 \frac{1}{2}$	12	2.9	-- - -
	$38 . \mathrm{C}$	5.2	$43 \frac{1}{2}$	1 $\frac{1}{2}$	18	--	--
Dead	39.	. 7	9.9	$\frac{1}{2}$	--	--	--
	$40 . C$	8.1	$45 \frac{1}{2}$	17 $\frac{1}{2}$	14	5.5	--
	41.1	4.7	$35 \frac{1}{2}$	2	8	--	--
	42.C	5.6	$45 \frac{1}{2}$	2	17	-	-
	43.D	6.9	49	2	10	--	--
	44.I	4.1	38	2	6	-	--
	$45 . C$	7.4	$42 \frac{1}{2}$	$1 \frac{1}{2}$	11	--	-

8×8 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst. Green Limb	Dia. at $\frac{1}{2}$ Height	Ht. to Broken Stem
Spike Top	46.	6.1	44	2	22	-	22
	47.C	5.6	44	$2 \frac{1}{2}$	17	--	-
	48.C	6.2	$43 \frac{1}{2}$	$\frac{1}{2}$	8	--	-
Suppressed	49.	1.8	17	$1 \frac{1}{2}$	4	--	-
Diseased	50.	4.5	$31 \frac{1}{2}$	2	11	--	12
	51.C	6.6	$42 \frac{1}{2}$	2	11	--	--
	52.D	7.4	48	$1 \frac{1}{2}$	17	4.4	--
	53.D	8.1	49	$2 \frac{1}{2}$	8	--	--
Dead Leaner	54.	2.3	15	2	--	-	--
Spike Top	55.	5.4	41	2	12	-	21
	56.D	8.6	$52 \frac{1}{2}$	$2 \frac{1}{2}$	6	--	--
	57.						
	58.C	6.6	44 $\frac{7}{2}$	-	12	--	--
Spike Top	59.	6.0	35	2	8	--	15
	60.1	3.8	29	2	7	--	-
	61.C	7.1	43	1	8	4.2	--

8×8 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst. Green Limb	Dia. at $\frac{1}{2}$ Height	Ht. to Broken
Windem							

APPENDIX
4x4 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst. Green Limb	Dia. at $\frac{1}{2}$ Height	Ht. to Broken Stem
	1.	4.2	-	2	13	--	13
	2.c*	3.4	33	4 $\frac{1}{2}$	13	-	--
	3.	3.8	--	2	11	--	11
	4.	3.9	-	2 $\frac{1}{2}$	$11 \frac{1}{2}$	-	12
	5.D	6.2	41	2	16	3.8	--
Dead	6.	3.6	-	--	--	--	-
Tag 1961	7.6	4.2	31	2	15	3.7	-
	8.D	7.2	42	17 $\frac{1}{2}$	12	4.7	--
	$9 . \mathrm{C}$	4.2	33	17 $\frac{1}{2}$	12	3.1	--
Tag 1962	10.	1.5	Dead	--	--	--	--
Dead	11.	1.9	--	$2 \frac{1}{2}$	-	--	--
Windfall	12.	2.0	--	--	--	--	--
	13.C	3.9	38	$1{ }_{1} \frac{1}{2}$	12	2.8	--
Tag 1963	$14 . C$	5.0	29	$1 \frac{1}{2}$	16	--	--
Leaner	15.	3.6	25	2	--	--	-

*C means co-dominant; D, dominant; and I, intermediate.
4×4 DATA SHEET

Remarks	Tree No.	DBH	Height	$\begin{aligned} & \text { Ht. to lst. } \\ & \text { Dead Limb } \end{aligned}$	Ht. to lst. Green Limb	Dia. at $\frac{1}{2}$ Height	Ht. to Broken Stem
Leaner	16.	4.3	--	1	--	--	--
Windfall	17.	3.2	--	-	--	--	1
	$18 . \mathrm{C}$	5.0	38	2	14	3.6	--
Diseased	19.	3.5	Dead	--	--	--	7
Tag 1964	20.	3.1	--	-	--	-	7
	21.	2.7	--	--	--	--	2
Dead	22.	. 7	--	-	--	--	--
Leaner	23.	3.6	--	-	--	--	--
Suppressed	24.	1.6	16	$2 \frac{1}{2}$	11	-	--
Dead	25.	. 8	--	--	- -	--	--
Tag 1965	26.D	6.3	40	2	13	3.9	--
	27.	3.3	--	2	--	--	3
Leaner	28.C	5.5	35	2	14	--	--
Leaner	29.	4.2	20	$2 \frac{1}{2}$	14	--	--
	30.1	4.0	27	17	10	--	--
Tag 1966	$31 . C$	3.6	32	1-1	18	-	--

4x4 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst. Green Limb	Dia. at $\frac{1}{2}$ Height	Ht. to Broken Stew
	32.C	4.2	30	17	19	--	--
Crooked	33.	5.6	Widower	2	15	--	-
	34.	4.3	--	--	--	--	1
Windfall (Broken Up)	35.	-	--	--	--	--	--
Dead	36.	1.7	--	--	--	--	- -
Tag 1967	$37 . C$	3.9	28	2	10	--	-
Suppressed	38.	. 5	6.6	23	$4 \frac{1}{2}$	--	-
Dead	39.	3.0	--	\cdots	--	-	-
Dead	40.	--	-	--	--	--	3
Tag 1968	41.D	5.7	35	$2 \frac{1}{2}$	11	--	--
Leaner	42.I	4.0	--	2	$2 \frac{1}{2}$	--	-
Windfall	43.	3.8	--	--	--	--	-
Windfall	44.	3.7	-	--	-	--	-
Diseased (At Break)	45.1	4.0	27	$2 \frac{7}{2}$	15	--	7
	46.C	3.6	28	2	12	2.3	--
	47.C	2.8	28	3	16	2.1	--

4×4 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to 1st. Dead Limb	Ht. to lst. Green Limb	Dia. a.t $\frac{1}{2}$ Height	Ht. to Broken Stem
	48.D	5.0	36	2	15	2.4	-
Leaner	49.I	4.4	--	4	--	--	Broken Tip
	$50 . \mathrm{C}$	3.6	33	$2 \frac{1}{2}$	12	2.8	-
Tag 1970	51.1	4.2	Leaner	$4 \frac{1}{2}$	--	--	--
Dead	52.	1.9	-	12	--	--	6
Tag 1971	53.1	3.0	--	--	--	--	-
Poor Form	54.C	6.5	39	$2 \frac{1}{2}$	7	\cdots	-
Diseased	55.	3.3	-	--	--	--	8
	56.	2.0	--	--	--	-	6
Poor Form	57.1	3.8	--	$2 \frac{1}{2}$	11	--	--
	58.	3.3	--	--	--	--	6
Tag 1972	59.	2.8	--	--	-	--	6
Suppressed	60.	. 4	6.6	12 $\frac{1}{2}$	3	--	--
	$61 . C$	5.3	37	$2 \frac{1}{2}$	10	--	--
Suppressed	62.	. 3	6.6	1-1	3	--	--
Windfall	63.	3.7	-	--	-	-	--

4×4 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst.	Ht. to lst. Green Limb	Dia. at $\frac{1}{2}$ Height	Ht. to Broken Stem
Tag 1974	64.	2.5	--	--	--	--	8
	65.	5.1	--	2	7	--	15
	66.	5.8	--	2	9	--	19
Diseased	67.	2.4	Dead	--	--	--	6
Tag 1975	68.	3.3	--	--	--	--	9
	69.	4.9	--	--	--	--	18
Diseased	70.	2.8	--	--	\because	--	7
Diseased	71.	2.0	--	--	--	--	8
	72.C	3.7	32	2	15	--	--
	$73 . C$	4.1	34	2	16	--	--
	74.C	3.7	$30 \frac{1}{2}$	1-1 $\frac{1}{2}$	16	--	--
	75.	6.2	--	$1 \frac{1}{2}$	12	--	14
	76.	3.5	-	1 $\frac{1}{2}$	12	--	12
	77.1	2.3	23	$2 \frac{1}{2}$	14	--	--
	78.1	3.0	23	$2 \frac{1}{2}$	14	--	--
Poor Form	79.D	5.9	40	2	20	--	--

4×4 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst. Green Limb	$\begin{aligned} & \text { Dia. at } \\ & \frac{1}{2} \text { Height } \end{aligned}$	Ht. to Broken Stem
	80.C	4.6	31	1	17	--	--
	81.	3.0	27	2	11	--	--
Dying	82.	2.8	--	1 $\frac{1}{2}$	15	--	15
	83.	3.4	--	2	--	--	16
Dead	84.	3.5	--	$1 \frac{1}{2}$	--	--	-
Widower	85.	2.6	--	12	-	--	--
Widower	86.	4.3	--	17 $\frac{1}{2}$	-	-	--
Dead	87.	--	--	--	--	--	4
	88.	2.1	-	2	7	--	12
Diseased	89.	5.1	--	11 $\frac{1}{2}$	7	--	-
Diseased	90.	3.1	20	2	12	--	-
	91.	2.6	--	$1 \frac{1}{2}$	14	--	--
	92.C	7.4	33	2	9	-	--
Diseased	93.	4.0	--	--	--	-	-
	94.C	4.4	29	3	10	-	-
	95.	--	--	--	--	--	4

4×4 DATA SHEET

Remarks	Tree No.	DBH	Height	Ht. to lst. Dead Limb	Ht. to lst, Green Limb	$\begin{aligned} & \text { Dia. at } \\ & \frac{3}{2} \text { Height } \end{aligned}$	Ht . to Broken Stem
	96.	--	--	-	--	--	4
Widower	97.	3.2	18 est.	1	14	--	--
Poor Form	98.	3.3	26 est.	2	11	--	--
Leaner	99.	3.9	20 est.	$2 \frac{1}{2}$	--	--	-
Leaner	100.	2.1	--	11 $\frac{1}{2}$	--	--	--
	101.	5.4	--	2	--	--	2
	102.D	6.3	41	$2{ }^{\frac{1}{2}}$	12	--	--
	103.	3.3	--	--	--	--	--
Dead	104.	1.5	14 est.	$2{ }^{\frac{1}{2}}$	--	--	-
	105.C	5.0	36	$2{ }^{\frac{1}{2}}$	11	--	-
Diseased	106.	1.7	--	$2 \frac{1}{2}$	8	--	12
	107.	4.6	--	$1 \frac{1}{2}$	--	--	$\frac{1}{2}$
	108.	2.2	--	$1 \frac{1}{2}$	--	--	-

BIBLIOGRAPHY

1. Bruce, Donald and Schumacher, F. X., 1942. Forest Mensuration, 2nd Ed., McGraw-Hill Book Co., New York.
2. Howells, Harry A., 1933. "A study and summary of the investigational on the McDonald Forest with recommendations," Master Thesis, Oregon State College.
3. McArdle, Richard E. and Meyer, Walter H., 1930. "The yield of Douglas fir in the Pacific Northwest," Technical Bulletin, No. 201, U. S. Department of Agriculture. 64 pp .
4. Munger, Thornton T., 1946. "The spacing in Plantations," Forest Research Notes, No. 34, Pacific Northwest Forest Experiment Station.
5. Toumey, James. W. and Korstian, Clarence F., 1947. Seeding and Planting in the Practice of Forestry, 3rd. Ed., John Wiley \& Sons, Inc., New York.
