

Oregon State University Extension Service

Integrated Pest Management for the Cereal Leaf Beetle

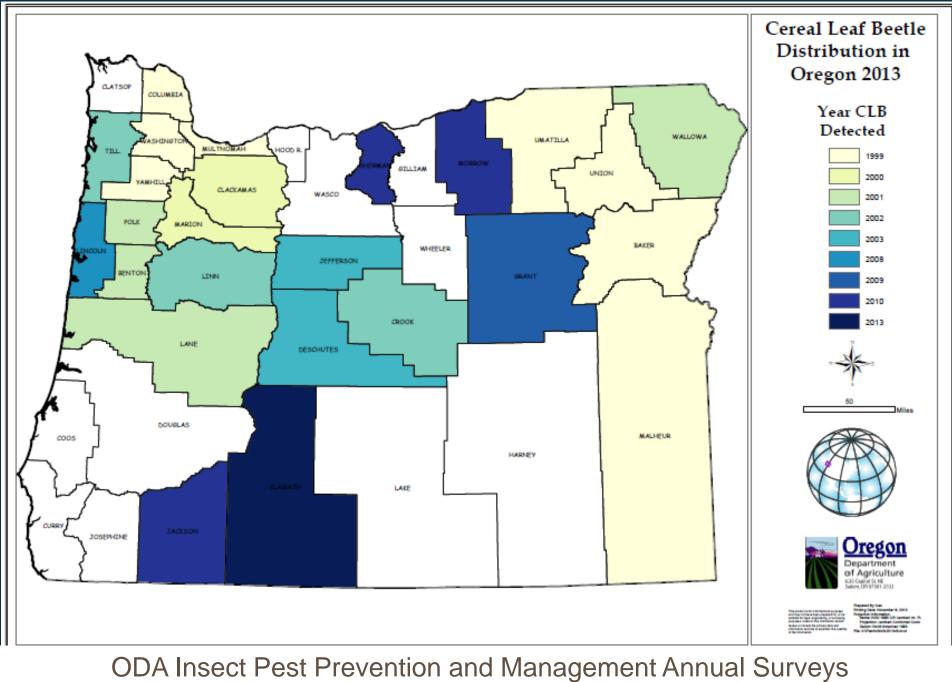
Darrin L. Walenta Extension Agronomist NE OR Email: darrin.walenta@oregonstate.edu Phone: 541-963-1010 Klamath Basin Small Grain Winter Meeting OSU-Klamath Basin Research & Extension Center

February 20, 2014

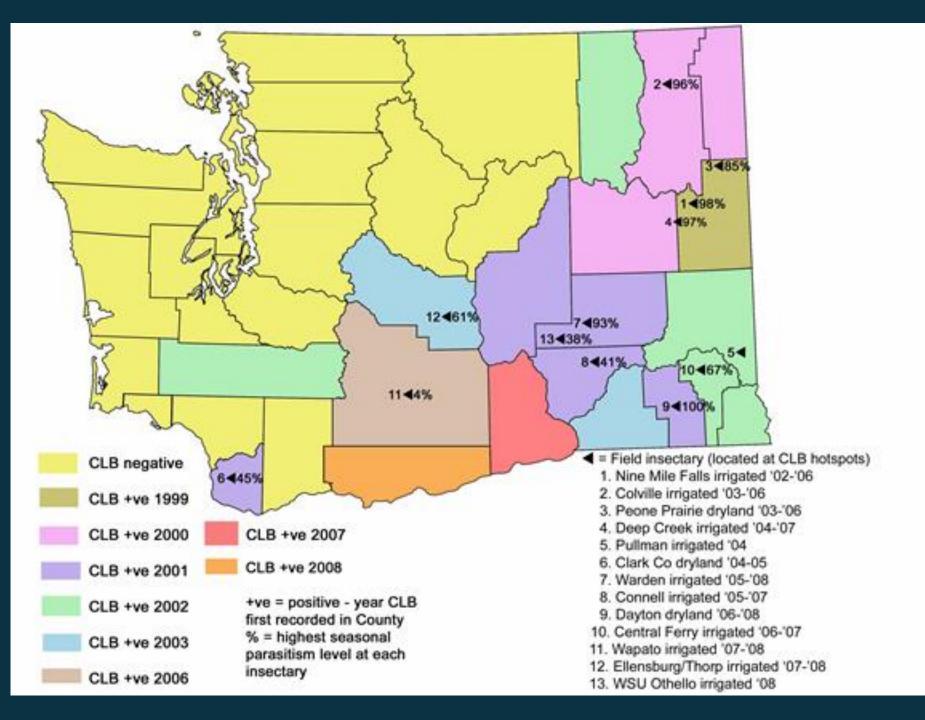
Overview of.....

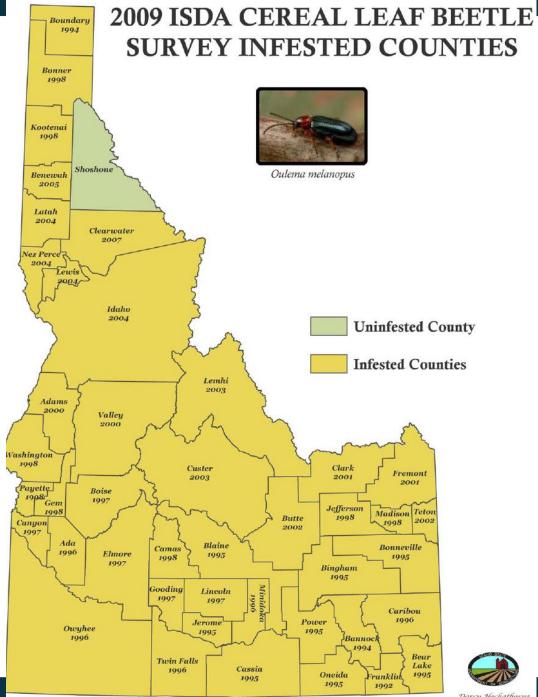
- CLB History/Background and Economic Implications
- CLB Biology, Phenology & Injury Symptoms
- IPM Concepts
- CLB IPM Options

CLB History/Background and Economic Implications



Cereal Leaf Beetle


Oulema melanopus (Coleoptera: Chrysomelidae)


- Native to Europe and Asia
- First official record in U.S. = Michigan 1962
- Now widespread across eastern & mid-western states and into Canada
- 1st bio-control efforts 1963-79
- First found in OR, ID & WA in 1999

= 25 infested counties as of 2013

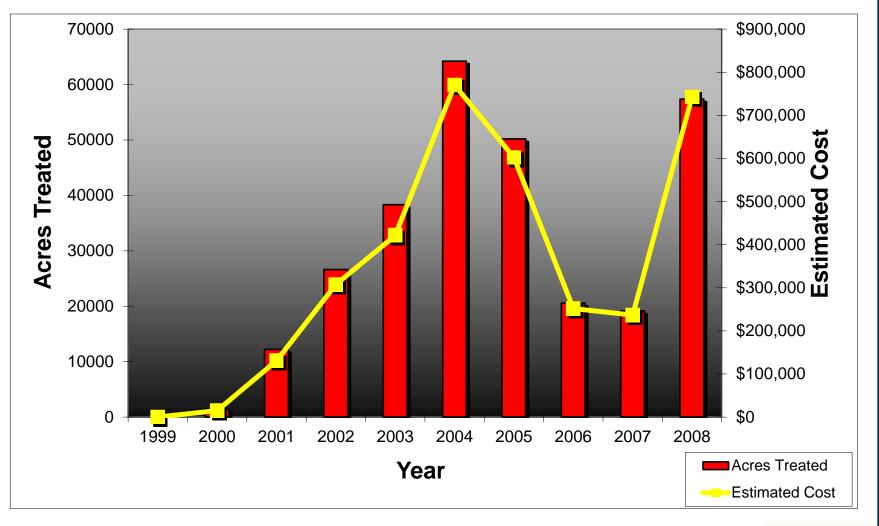
Oregon State UNIVERSITY

Yield Loss Potential – Small Grains

Yield Loss = damage level + crop stage/vigor

dryland -vs- irrigated, low -vs- high vigor

In OR and WA: yield losses up to 25% in spring wheat and 18% in winter wheat


In eastern/mid-western states, yield losses up to 55% in spring wheat and 75% in oats & barley

**Low yield impact when damage occurs during late head fill

**Significant yield loss (45%) when nearly 100% defoliation during early head fill.....

Acreage Treated & Estimated Cost of CLB Control in OR

Compiled by Gary Brown, USDA-APHIS

Oregon State

CA Exterior Quarantine for CLB

Oregon

http://pi.cdfa.ca.gov/pqm/manual/htm/pqm_index.htm

Restrictions for certain commodities entering CA from areas under quarantine:

- Small grains ear corn straw/hay
 grass sod grass & forage seed fodder/plant liter
- Christmas trees used harvesting equipment & machinery

CLB-infested counties

- Covered commodities admitted into CA if certified as "treated" by state department of ag at origin prior to shipment
- "treated" = manner approved by Secretary of CDFA (e.g. fumigation, bulk grain storage period)
- Not exposed to re-infestation after treatment

CA Exterior Quarantine for CLB

Areas Not Known to be CLB - Infested

- Commodities admitted with County of Origin Certificate issued by State Dept. of Ag (ODA)
- Small grains, grass seed, forage need Certificate of Inspection to be free of live or dead CLB

Exemptions do exist.....certificates not needed for:

- Grain sorghum, shelled corn, soybean
- Cleaned and bagged small grain, grass and forage seed \leq 100 lbs
- Bulk small grains shipped Dec. 1 to April 30 (Master Permit QC 523) but subject to CDFA inspection
- Baled hay/straw but subject to CDFA inspection
- Straw/hay used as bedding during animal shipment

CA Exterior Quarantine for CLB

Implications of recent CLB detection in Klamath Co., OR and Siskiyou & Modoc Co., CA

- CA Exterior Quarantine still in place "PENDING......"
- Agreement between ODA and CDFA
- Jackson & Klamath Co. OR and Siskiyou & Modoc Co. CA considered a *single contiguous production area*
- Enables movement of covered commodities within these counties but not to other CA counties

http://www.oregon.gov/ODA/CID/Pages/cereal_leaf_beetle.aspx

Cereal Leaf Beetle Biology, Phenology and Crop Injury Symptoms

CLB – Host Crops & Weeds

Many grass crop, forage and weedy species

Small grain winter -vs- spring oats > barley > wheat > triticale Corn Sorghum Rice Timothy Orchardgrass Millet Brome spp.

Fescue spp. Ryegrass spp. Bluegrass "wild" grasses native & introduced Wild oat Quackgrass Jointed goatgrass Foxtail Reed canarygrass

CLB – Damage on wheat

CLB – Damage on corn

CLB – Turf grass seed

Heavy CLB damage on Per. ryegrass in Marion County...

Seedling grass seed fields may serve as over-wintering sites for new adults.

Oregon State

CLB Life Stages - Adult

- Approx. ¼" to 3/8" long
- Black head
- Orange-red thorax & legs
- Metallic, bluish-black wing covers (elytra)

- Chew completely through the leaf
- Drop to the ground when disturbed

CLB Life Stages – Adult "Look-alike" spp.

Positive ID is key!!!

- Several other small beetles that may look somewhat similar.....
- Soft-winged flower beetle (Coleoptera: Melyridae)
- Native predator feeds on aphids, alfalfa weevils and immature stages of several other insects.

Look-alike Collops sp. (left) and adult CLB (right). (Photo by G. Clevenger)

eggs and 1st instar larva ~ 1/32 to 1/16"

4th Instar larva ~ ¼" to 3/8"

Black head, pale yellow body under black slime (fecal material)

Resemble small slugs

Oregon State

CLB Life Stages – Larva

Inter-vienal feeding

Consume mesophyl & upper leaf cuticle

"window-pane" or "frosted" appearance

90% of damage during last 2 instar stages (3rd and 4th)

Active 3 to 4 weeks

Control needed *prior to* this stage if infestation at or above threshold

Oregon State

Extremely isolated case of FROST damage?

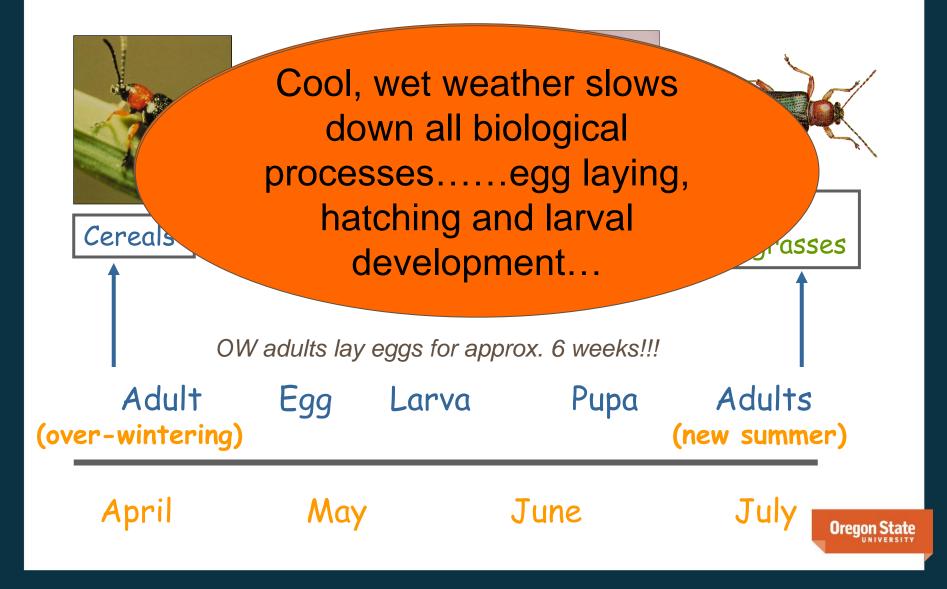
2005 Irrigated Soft White Spring Wheat – Union Co. 1.5 larvae/flag leaf 20% yield loss 91% T. julis parasitism

indded all the

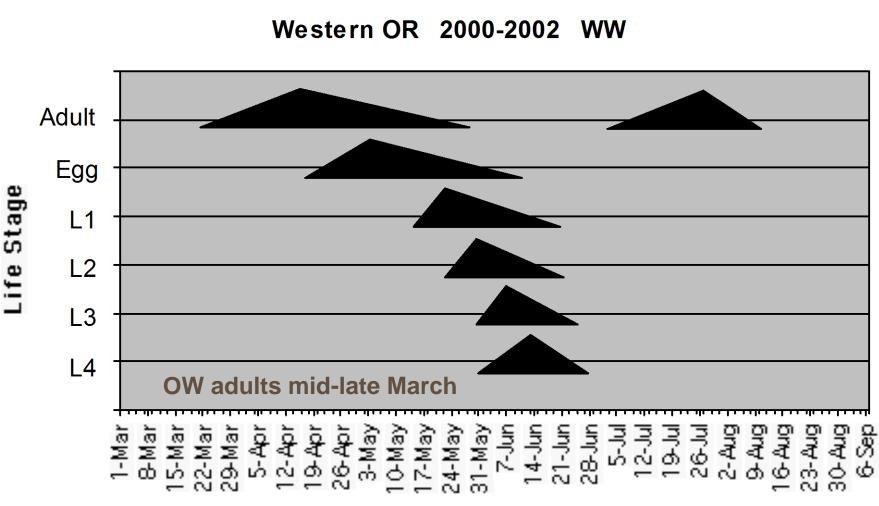
Winter Wheat (anthesis):
70% larvae in 3rd & 4th instar
1.2 larvae / tiller
0.7 larvae / flag leaf
18% yield loss (dryland)

CLB Life Stages – Larva

Larva "disappear" mid to late June (few OW adults around)

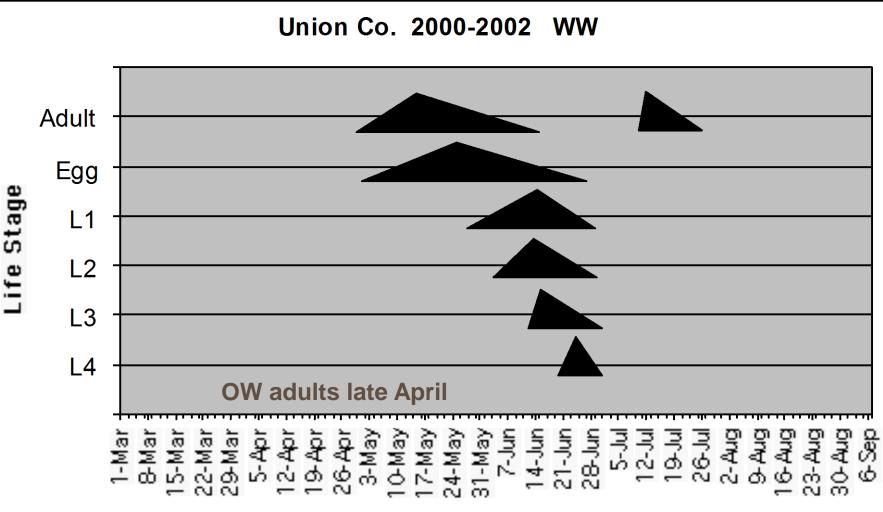

Drop to ground

Pupate in soil within earthen cells (difficult to find)


*Damage is done at this point, no control in crop needed.....

CLB pupa (Photo by G. Clevenger)

Life Cycle (1 generation/year) - NE Oregon



CLB Phenology – Western OR

Date

CLB Phenology – Union Co.

Date

CLB – Habits & Preferences

Adults over-winter in protected sites near grain fields

- Grain stubble, grass crowns, permanent vegetation, riparian areas, etc.
- Disappear in late June!!

Adults very active on calm, sunny days

- Prefer spring planted grains (e.g. oats, barley)
- Can migrate to successively younger stands

Females begin laying eggs ~ 2 weeks after emergence

• can lay up to 300 eggs over 6-week period

Host Crop Preferences in Oregon????

Fall planted grasses

Spring planted grasses

Spring planted cereals

Annual ryegrass Perennial ryegrass Orchardgrass Tall fescue Kentucky bluegrass Oats

Late summer adults?

Oregon State

Over-wintering adults

Susceptibility to Damage - Fall Planted Grasses (2002)

Host plant	6-9-03	7-14-03	7-14-03
	Damage	Adults	Damage
Annual ryegrass	low	mowed	
Perennial rye grass	low	mowed	
Orchard grass	low	mowed	
Tall fescue	low	mowed	
Kentucky bluegrass	none	mowed	
Fine fescue	none	mowed	

OW CLB adults attracted to fall-planted AR, PR, OG and TF

Feeding & egg laying did occur but damage was not significant

February 27, 2014

30

Susceptibility to Damage - Spring Planted Grasses (2003)				
Host plant ow	6-9-03	7-14-03	7-14-03	
Adults	Damage	Adults	Damage	
Oats	High	5.0	- Summer	
Triticale	Medium	24.3	- Adults	
Annual ryegrass	low	17.4	High	
Perennial rye grass	low	19.7	Medium	
Orchard grass	low	29.3	Medium	
Tall fescue	low	14.7	Medium	
Kentucky bluegrass	none	14.1	Low	
Fine fescue	none	1.9	None	
OW adults = not interested when spring grain available 'New' summer adults = can damage spring-planted AR,PR, OG, TF				
Fine leaved grasses = not preferred				

"

CLB – Habits & Preferences

OW adults prefer spring planted grains (oats & triticale) and fall planted grasses (AR, PR, OG, TF).

"New" summer adults appear in July......

- Do not mate
- Dormant during high heat (aestivation period)
- Migrate to any available grass host (corn, grass seed, other) to feed prior to over-wintering (harvest small grains)

Mortality over-winter can range 40-70%

• Extreme temperatures, introduced / natural predators

IPM Concepts & Resources

Integrated Cereal Leaf Beetle Management

33 February 27, 2014

IPM – Agricultural Definition

Ecologically-based pest control strategy that relies heavily on:

- Natural mortality (e.g. natural enemies, weather, etc.)
- Control tactics that disrupt these factors as little as possible

IPM utilizes pesticides after systematic monitoring of pest populations and natural control indicates a need

IPM considers all control tactics – even no action

IPM – Concepts

Based on biology of.....

- Crop
- Pest Complex
- Natural predator(s)

GOAL = maintain pest populations below economically damaging levels by using a combination of control methods such as.....

Oregon

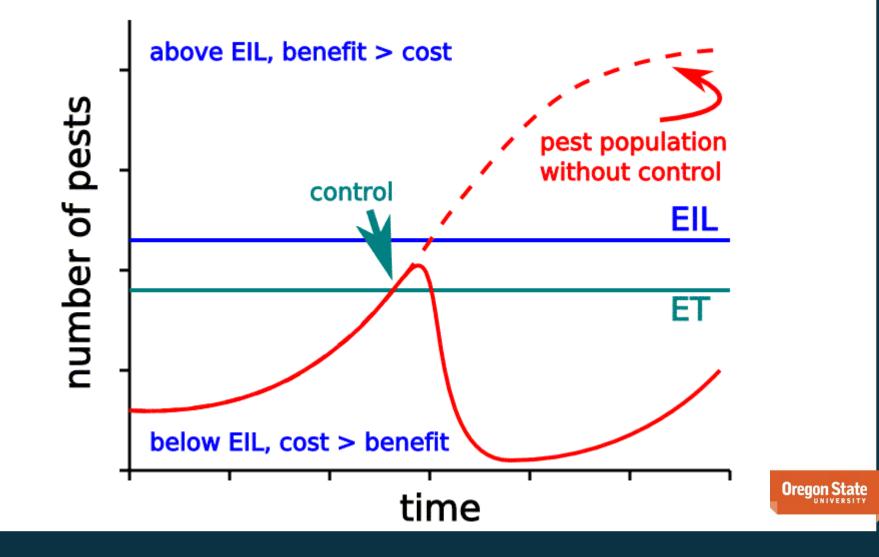
BiologicalCulturalChemicalMechanicalGenetic

IPM – Key Tactics

Pest ID and Understanding Biology

Design IPM program to specific pest

Monitoring


- Assess pest and natural enemy populations
- Crop damage levels
- effective management action

Pest Action Thresholds

• Reduce pest levels below economical damage levels

Utilize combination of control tactics

 develop a flexible IPM program (time of year, crop rotation, weather patterns) Economic Threshold = pest population levels which require control "action" to prevent unacceptable crop damage / economic loss.

IPM Resources

OSU – IPPC

PNW Pest Mgmt Handbooks http://www.ipmnet.org/

Insecticide Resistance Action Committee

http://www.irac-online.org/

Western Region IPM Center www.wripmc.org Integrated Pest Management (IPM) for the Cereal Leaf Beetle in Washington State

WASHINGTON STATE UNIVERSITY EXTENSION • EM054E

Oregon State

CLB IPM Options

Field Scouting

Economic Thresholds in Small Grains

Management Options

Insecticides

Cultural

Biological

CLB Phenology Model – Online Tool

CLB IPM Options – Field Scouting

Primary tool in all IPM programs!

Correct pest ID essential!

Start when temps reach 50 F, continue through early grain fill

- Winter wheat = 2 nodes present
- Spring grain = soon after emergence (1 2 leaf, adult damage concern)

Goal = determine when 50% or more eggs have hatched (lots of small 1st & 2nd instar larvae!)

Monitoring over time helps determine peak levels: adult infestation - egg laying - larvae developmenter

CLB IPM Options – Field Scouting

10 X 10 scouting technique

Check 10 tillers every 10 acres

 W pattern across field, check field edges apart

Record # of eggs, larva/tiller and flag leaf (*adults?*)

High % eggs....scout again a few days later

Data sheet available in OR CLB IPM publication later in 2013

ld Name/I p/Stage:_					_ "		b	Landon Review	CLB	Stage:		_		
		CEREA	L LEAF B	E	THE MON	ITORING/TI	HP.	ESHOLD E	VALUATI	ON DATA	SHEET			
		Т	ller		P	tag				T	ilor			tag
		# oggs	# larvas		# oggs	# larvas				# eggs	# larvas		# oggs	# larvae
1	1 2	<u> </u>	<u> </u>	\vdash	<u> </u>		+	6	1 2			\vdash	<u> </u>	<u> </u>
	3	<u> </u>	<u> </u>	\vdash	<u> </u>		+		3			⊢	<u> </u>	<u> </u>
	4			H					4			H		<u> </u>
	6			H			+		- 6			F		
	8								6					
	7								7			Ľ		
	8		L				4		8					L
	9	<u> </u>	<u> </u>	\vdash	<u> </u>		4		9			-	<u> </u>	—
	10 subtotal		<u> </u>	\vdash	<u> </u>		+		10 subtotal			⊢	<u> </u>	<u> </u>
2	subtoral 1			H			┥	7	1			F		
	2			F					2					
	3								3					
	4								4			Ľ		
	6								6			Ľ		
	8	<u> </u>	<u> </u>	\vdash	<u> </u>		4		6			-	<u> </u>	—
	7	<u> </u>	<u> </u>	\vdash	<u> </u>		┥		8	<u> </u>		\vdash	<u> </u>	<u> </u>
	9		<u> </u>	H					9			F		
	10			F			1		10			F		
	subtotal			L					subtotal					
3	1							8	1			Ľ		
	2						1		2			Ľ		
	3	<u> </u>	<u> </u>	\vdash	<u> </u>		4		3			-	<u> </u>	<u> </u>
	4	<u> </u>	<u> </u>	\vdash	I		+		- 4	I		\vdash	<u> </u>	I
	6			H			+		6			F		
	7			H			+		7			F		
	8								8					
	9								9			Ľ		
	10		L		<u> </u>		4		10			-		L
4	subtotal 1			\vdash	<u> </u>	$ \rightarrow $	+	9	subtotal 1			-	<u> </u>	<u> </u>
4	2	<u> </u>	<u> </u>	\vdash	<u> </u>		+	U	2			\vdash	<u> </u>	<u> </u>
	3			H					3			H	<u> </u>	<u> </u>
	4			Ħ			1		4			F		
	5								5					
	8								6			Ľ		
	7		—	\vdash	<u> </u>		4		7			-	<u> </u>	—
	8	<u> </u>	<u> </u>	\vdash	<u> </u>		4		8			-	<u> </u>	—
	10	l —	<u> </u>	H	<u> </u>		+		10	l —		H	<u> </u>	<u> </u>
	subtotal			H			+		subtotal			F		
5	1							10	1					
	2								2			Ľ		
	3								3					
	4			\vdash	<u> </u>		4		4			-	<u> </u>	<u> </u>
	6		<u> </u>	\vdash	<u> </u>		+		6			⊢	<u> </u>	<u> </u>
	7			H					7			H		
	8			F					8					
	9								9					
	10								10			Ľ		
	subtotal								subtotal					
Total # Egg Total # Lan								Total # Egg			1V09 = 09V09 =			

Data sheet available online at http://extension.oregonstate.edu/unior

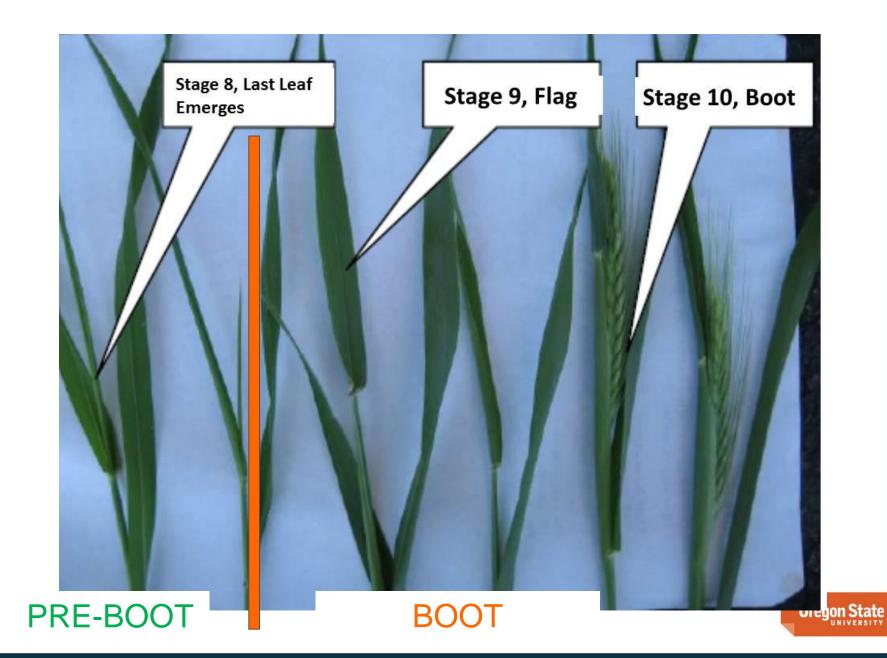
CLB IPM Options – Economic Thresholds

Current Threshold Levels (adapted): Small Grains

Pre-Boot until Flag Leaf Fully Emerged (Feekes 1-8):

3 larvae and / or eggs per tiller

Boot stage and later (Feekes 9+):


1 larvae per tiller

Flag leaf contributes ~50% of photo-synthates during early to mid-grain fill (Simmons, 1987)

Figure 2-1. The Feekes scale of wheat development.

		Tillering			10	2	Stem Extens	n		Hea	ding	Ripening
N.	×.					V	X	A A		h	h	- ANA
1 one shoot	2 tillering begins	3 tillers formed	4 leaf sheaths lengthen	5 leaf sheaths strongly	6 first node of stem visible	7 second node vísible	8 last leaf just visible	9 ligule of last leaf just visible	10 in "boot"	10.1 head visible	10.5 flowering (wheat)	11
PRE-BOOT					B	SOC	T					

Yield Impact & Economic Threshold Evaluation Funding: Oregon Wheat Commission

Winter & Spring Wheat

- 4 WW (2 irr)
- 5 SW (2 irr)
- 2 DNS (1 irr)

Treatments (3 reps)

- insecticide
- non-treated

Assessments

• egg/larvae populations

Oregon

- Flag leaf damage
- Grain yield/loss

CLB Impact on Soft White Winter Wheat Yield – Union Co.

Treatment	Larvae per Tiller ¹	Larvae per Flag Leaf ¹	Flag Leaf Damage ²	Average Yield Loss				
	#	#	% area	%				
		<u>2004</u>						
No Insecticide	0.7	0.4	22	-3				
Insecticide	0.1	0	6	0				
	<u>2005</u>							
No Insecticide	1.5	0.4	na	-14				
Insecticide	0.7	0.2	na	0				

¹Approximately 14 days after insecticide application.

²Flag leaf defoliation determined when 90% of CLB larvae initiated pupation.

CLB Impact on Soft White Spring Wheat Yield – Union Co.

Treatment	Larvae per Tiller ¹	Larvae per Flag Leaf ¹	Flag Leaf Damage ²	Average Yield Loss				
	#	#	% area	%				
		<u>2004</u>						
No Insecticide	0.7	0.6	25	-13				
Insecticide	ecticide 0.1		1	0				
	<u>2005</u>							
No Insecticide	3.1	1.0	na	-19				
Insecticide	0.1	0.1	na	0				

¹Approximately 14 days after insecticide application.

²Flag leaf defoliation determined when 90% of CLB larvae initiated pupation.

CLB Economic Threshold - Summary

Spring wheat more susceptible to economic damage

- Yield loss in 7 of 7 study sites
- Ranged from 4 to 21 bu/a loss

Winter wheat = variable response to CLB damage

- Yield loss ranged from 0% to -31% (loss in 2 of 4 sites)
- More advanced growth stage compared to sp. wheat

Irrigated –vs- dryland.....no observed differences

Crop health/vigor influenced damage potential

CLB Economic Threshold - Considerations

PRE-BOOT stage

3 eggs and/or larva per Tiller = **APPLICABLE to SW/WW**

BOOT stage

- 1 larvae per flag leaf = **DEPENDS**.....
- Observed economic damage at 0.4 to 0.7 larva / flag leaf
- ET can be less than 1 larva / flag lead if two conditions are met....
 - 1. Low crop health and vigor
 - 2. Total # of larva per TILLER > 1

Early detection can help reduce yield loss, improves bio-control and no "slimy"pants!

CLB IPM Options – Insecticides:

CLB IPM Options – Insecticides:

Several foliar-applied products registered for CLB control in small grains, grass hay & pasture and corn.....

 2013 PNW Insect Management Handbook <u>http://www.ipmnet.org/IPM_Handbooks.htm</u>

Be Sure and Follow Label Instructions!

Various restrictions for grazing, forage, fodder, hay, straw & grain (PHI, max amount applied per season, etc.)

CLB IPM Options – Insecticides: Pasture & Grass Hay

IRAC Site of Action

Group #	Product	Active Ingredient
1 A	various	carbaryl
1 B	various	malathion
3 A	Baythroid XL	beta=cyfluthrin
3 A	Silencer, Warrior II	lambda-cyhalothrin
3 A	Mustang Max	zeta-cypermethrin
28 + 3 A	Besiege	chlorantraniliprole + lambda-cyhalothrin

Oregon State

CLB IPM Options – Insecticides: Small Grains

IRAC Site of Action

<u>Group #</u>	Product	Active Ingredient
1 A	Lannate	methomyl
3 A	Baythroid XL	beta=cyfluthrin
3 A	Silencer, Warrior	lambda-cyhalothrin
3 A	various	pyrethrin
3 A	Declare	gamma-cyhalothrin
5	Radiant SC	spinetoram
15	Dimilin 2L	diflubenzuron
biocide	*Mycotrol O	Beauveria bassiana
biocide	*Grandevo	Chromobacterium subtsugae

Oregon State

* OMRI listed

CLB IPM Options – Insecticides: WHEAT only							
IRAC Site of	Action						
<u>Group #</u>	Product	Ac	tive Ingredient				
1 B	various	ch	lorpyrifos				
3 A	Tombstone	cy	fluthrin				
3 A	Mustang Max (trit	icale) zet	ta-cypermethrin				
1 B + 3 A	Cobalt	chlorpyrifos	+ gamma-cyhalothrin				
1 B + 3 A	Stallion	chlorpyrifos	+ zeta cypermethrin				

CLB IPM Options – Insecticides: Barley only

IRAC Site of ActionGroup #ProductActive Ingredient

3 A + 4 A Endigo ZC lambda cyhalothrin + thiamethoxam

Insecticide Resistance Management - CLB

Rotate site of action groups

- avoid consecutive use of same group
- Most products are in Group 1 and 3!!

Tank mixtures /pre-mixes with different sites of action

• Must be registered for intended use!

Timing is Key!

- only one well-timed application is needed for CLB control!
- Did it work? Monitor efficacy after REI expires.

Using IPM tactics help prevent resistance development

New Label Requirements for pyrethroid insecticide products

Located in the "Directions for Use" section of label...

• Buffer Zones

Spray Drift Prevention Requirements

PULL HERE TO OPEN 🕨

RESTRICTED USE PESTICIDE DUE TO TOXICITY TO FISH AND AQUATIC ORGANISMS

FOR RETAIL SALE TO AND USE ONLY BY CERTIFIED APPLICATORS, OR PERSONS UNDER THEIR DIRECT SUPERVISION, AND ONLY FOR THOSE USES COVERED BY THE CERTIFIED APPLICATOR'S CERTIFICATION.

GROUP 3 INSECTICIDE

Insecticide

Active Ingredient:	
Lambda-cyhalothrin ^{1,2}	
Other Ingredients:	77.2%
Total:	100.0%

Warrior II with Zeon Technology contains 2.08 lbs. of active ingredient per gal. and is a capsule suspension.

¹CAS No. 91465-08-6 ²Synthetic pyrethroid

Contains petroleum distillate.

KEEP OUT OF REACH OF CHILDREN. WARNING / AVISO

Si usted no entiende la etiqueta, busque a alguien para que se la explique a usted en detalle. (If you do not understand the label, find someone to explain it to you in detail.)

See additional precautionary statements and directions for use in booklet.

EPA Reg. No. 100-1295 EPA Est. 39578-TX-1

Product of the United Kingdom Formulated in the USA

SCP 1295A-L2B 0709 304012

1 gallon

Net Contents

R

SYNGENTA and Seller offer this product, and Buyer and User accept it, subject to the foregoing Conditions of Sale and Limitation of Warranty and Liability, which may not be modified except by written agreement signed by a duly authorized representative of SYNGENTA.

DIRECTIONS FOR USE

RESTRICTED USE PESTICIDE

It is a violation of Federal law to use this product in a manner inconsistent with its labeling.

SHAKE WELL BEFORE USING.

Do not apply this product in a way that will contact workers or other persons, either directly or through drift. Only protected handlers may be in the area during application. For any requirements specific to your State or Tribe, consult the agency responsible for pesticide regulation.

This labeling must be in the possession of the user at the time of application.

AGRICULTURAL USE REQUIREMENTS

Use this product only in accordance with its labeling and with the Worker Protection Standard, 40 CFR part 170. This Standard contains requirements for the protection of agricultural workers on farms, forests, nurseries, and greenhouses, and handlers of agricultural pesticides. It contains requirements for training, decontamination, notification, and emergency assistance. It also contains specific instructions and exceptions pertaining to the statements on this label about personal protective equipment (PPE) and restricted-entry interval. The requirements in this box only apply to uses of this product that are covered by the Worker Protection Standard.

Do not enter or allow worker entry into treated areas during the restricted-entry interval (REI) of 24 hours.

PPE required for early entry to treated areas that is permitted under the Worker Protection Standard and that involves contact with anything that has been treated, such as plants, soil, or water is:

- Coveralls
- Chemical-resistant gloves, Category G, such as barrier laminate or Viton[®] ≥ 14 mils
- Shoes plus socks

FAILURE TO FOLLOW THE DIRECTIONS FOR USE AND PRECAUTIONS ON THIS LABEL MAY RESULT IN POOR INSECT CONTROL, CROP INJURY, OR ILLEGAL RESIDUES.

GENERAL DIRECTIONS FOR USE

Initial and residual control are contingent upon thorough crop coverage. Apply with ground or aerial equipment using sufficient water to obtain full coverage of foliage. Apply in a minimum of 2 gals. per acre by air or 10 gals. per acre by ground unless otherwise specified in this label. When foliage is dense or pest pressure is high (heavier insect or egg pressure, larger larval stages), use of higher application volumes and/or higher use rates may improve initial and residual control.

For cutworm control, Warrior II with Zeon Technology may be applied before, during, or after planting. For soil-incorporated applications, use higher rates for improved control.

RESISTANCE MANAGEMENT

Warrior II with Zeon Technology is a Group 3 Insecticide (contains the active ingredient lambda-cyhalothrin). Some insects are known to develop resistance to products used repeatedly for control. Because the development of resistance cannot be predicted, the use of this product should conform to resistance management strategies established for the use area. Consult your local or state agricultural authorities for details.

Oregon State

If resistance to this product develops in your area, this product, or other products with a similar mode of action, may not provide adequate control. If poor performance cannot be attributed to improper application or extreme weather conditions, a resistant strain of insect may be present. If you experience difficulty with control and resistance is a reasonable cause, immediately consult your local company representative or agricultural advisor for the best alternative method of control for your area.

SPRAY DRIFT PRECAUTIONS BUFFER ZONES

Vegetative Buffer Strip

Construct and maintain a minimum 10-foot-wide vegetative filter strip of grass or other permanent vegetation between the field edge and down gradient aquatic habitat (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes or natural ponds; estuaries; and commercial fish farm ponds).

Only apply products containing Warrior II with Zeon Technology onto fields where a maintained vegetative buffer strip of at least 10 feet exists between the field and down gradient aquatic habitat.

For guidance, refer to the following publication for information on constructing and maintaining effective buffers: *Conservation Buffers to Reduce Pesticide Losses. Natural Resources Conservation Services.* USDA, NRCS. 2000. Fort Worth, Texas. 21 pp. www.in.nrcs.usda.gov/technical/agronomy/newconbuf.pdf

In the State of New York, a 25 ft. vegetated, non-cropped buffer strip untraversed by drainage tiles must be maintained between a treated field and a coastal salt marsh or stream that drains into a coastal salt marsh, for both aerial or ground application. For aerial applications, the 25 ft. vegetated non-cropped buffer strip for runoff protection would be part of the larger 150 ft. buffer strip (or 450 ft. buffer strip for ULV application) required for spray drift.

Buffer Zone for Ground Application (groundboom, overhead chemigation, or airblast)

Do not apply within 25 feet of aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes; natural ponds; estuaries; and commercial fish ponds).

Buffer Zone for ULV Aerial Application

Do not apply within 450 feet of aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes; natural ponds; estuaries; and commercial fish ponds).

Buffer Zone for Non-ULV Aerial Application

Do not apply within 150 feet of aquatic habitats (such as, but not limited to, lakes; reservoirs; rivers; permanent streams; marshes; natural ponds; estuaries; and commercial fish ponds).

SPRAY DRIFT REQUIREMENTS

Wind Direction and Speed

Only apply this product if the wind direction favors on-target deposition.

Do not apply when the wind velocity exceeds 15 mph.

Temperature Inversion

Do not make aerial or ground applications into temperature inversions.

Inversions are characterized by stable air and increasing temperatures with height above the ground. Mist or fog may indicate the presence of an inversion in humid areas. The applicator may detect the presence of an inversion by producing smoke and observing a smoke layer near the ground surface.

Droplet Size

Use only medium or coarser spray nozzles (for ground and non-ULV aerial application) according to ASAE (5572) definition for standard nozzles. In conditions of low humidity and high temperatures, applicators should use a coarser droplet size.

Additional Requirements for Ground Applications

Wind speed must be measured adjacent to the application site on the upwind side, immediately prior to application.

For ground boom applications, apply using a nozzle height of no more than 4 feet above the ground or crop canopy.

For airblast applications, turn off outward pointing nozzles at row ends and when spraying the outer two rows. To minimize spray loss over the top in orchard applications, spray must be directed into the canopy.

Oregon State

Pyrethroid labels

Buffer Zones

- 10 ft vegetative filter strip between field edge and down gradient aquatic habitat.....plus.....
- 25 ft no spray buffer zone.....plus.....

Spray Drift Prevention Requirements

- Droplet size medium or coarser (ASAE S572 standards)
- Measure wind speed prior to application

 (adjacent to site prior to application, upwind side)
- More on label

CLB IPM Options – Cultural Control

Sound agronomic practices that favor well-established stands

- Vigorous, well-tillered, non-stressed plants
- Tolerate damage from CLB infestations below threshold levels

CLB-resistant varieties not identified yet in PNW

• Resistance mechanism = leaf hairiness

Oat trap crop management tactic

- CLB adults prefer small, young oat plants for egg-laying
- Seeding oat border strips 2 weeks after spring wheat effective (Roberts et al. 2010)
- Untreated oats provide refuge for introduced and natural predators

CLB IPM Options – Oat Trap Crop Tactic

Winter wheat field

CLB adults move from winter to spring planted cereals during season.

Spring oat strip (seeded approx 14 days after spring wheat

CLB IPM Options – Biological Control

No natural predators when CLB first arrived

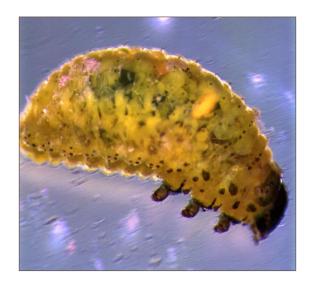
Insecticides first line of defense

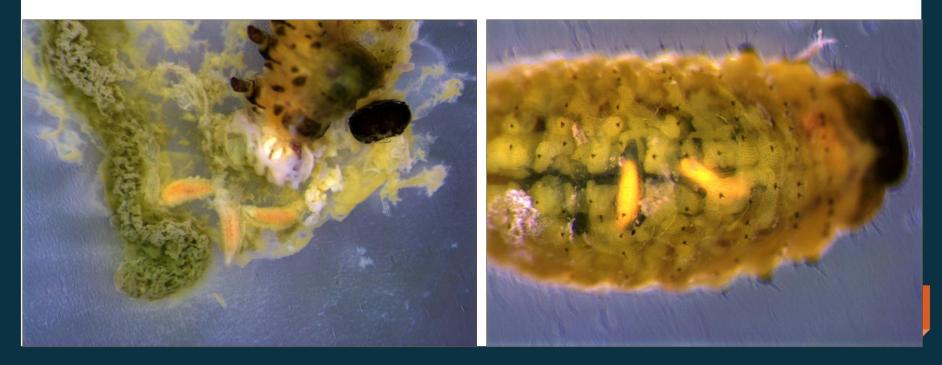
Introduced CLB-specific parasitoid wasps have been used over the last 40+ years

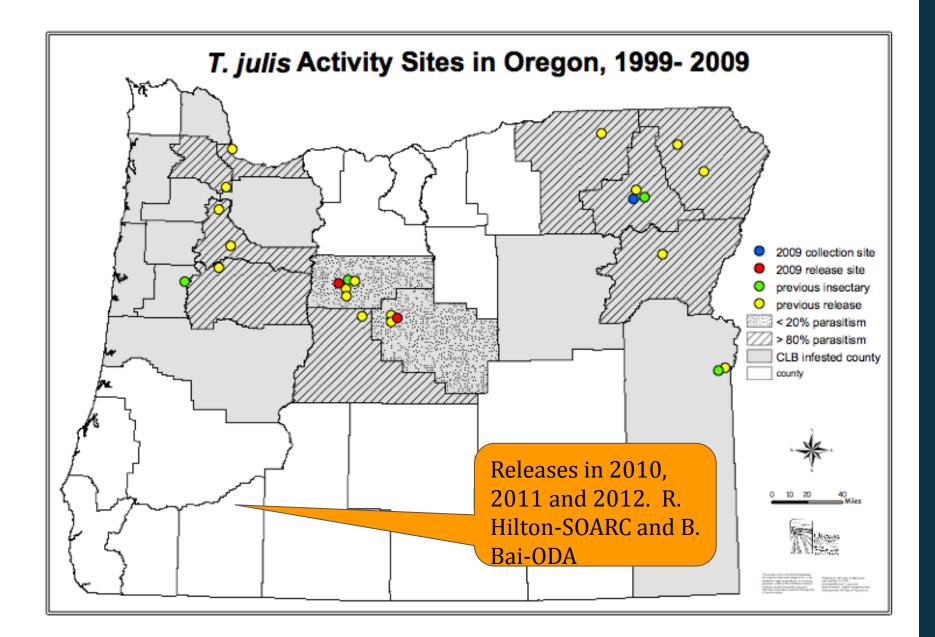
- Successful example of "classic" biological control
- Natural enemies are imported and released in a new region for permanent establishment

Once established, help maintain CLB populations below economic threshold levels w/o insecticides

Oregon CLB Bio-control Project ODA, USDA-APHIS and OSU


CLB larval parasitoid *Tetrastichus julis*




Adults lay eggs in CLB larva (2nd and 3rd instar). 4 to 6 *T. julis* larva develop within the host while the CLB-larva continues to feed on the crop until pupation. Adults live 2-4 weeks and have 2 generations per year.

T. julis larvae recovered from CLB larva

Mike Cooper, Idaho State Department of Agriculture

Statewide biological control release summary (ODA, APHIS)

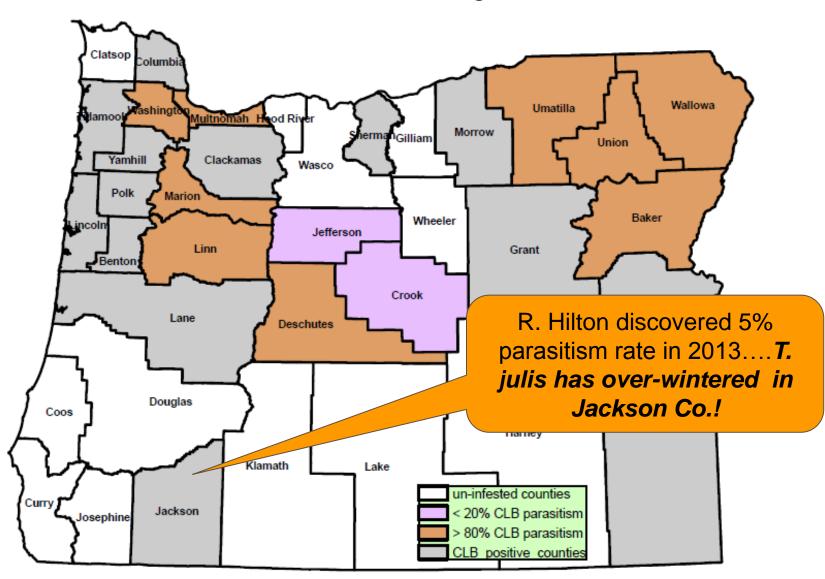
Year	A. flavipes	T. julis
2000	263	12,310
2001	434	18.905
2002	6,200	107,566
2003	28,111	108,949
2004	26,213	51,000
2005	31,904	23,160
2006	16,750	41,965
2007	4,285	16,207
2008	0	3,564
2009	0	13,870
Total	114,160	397,496

Oregon State

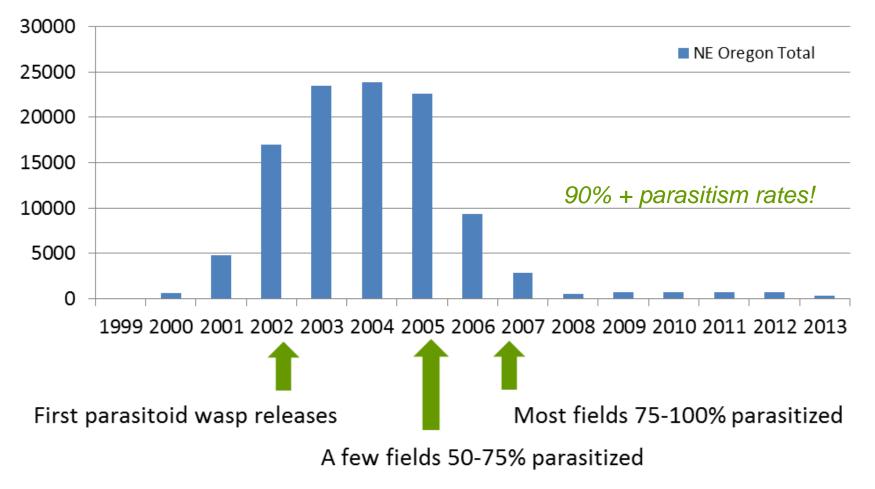
70

Recent T. julis Release Activities – R. Hilton, OSU-SOARC

Collection Site	Date	Release Site	# CLB Larva	Parasitism Rate %	# of T. Julis Larva
Multnomah	6-24-10	Jackson-Glass	300	100	1500
Multnomah	6-21-11	Jackson-Glass	200	100	1000
Multnomah	6-22-11	Jackson-Glass	800	100	4000
Multnomah	6-29-11	Jackson-Glass	200	100	1000
Union	6-15-12	Jackson-Table Rock Rd.	600	96	2880
Total			2100		10,380


Continued release needed until over-winter recovery reaches 50% parasitism levels in the field.

ODA, APHIS & OSU will provide assistance to cooperators willing to leave in-field refuge areas


Oreaon Si

February 27, 2014

Cereal leaf beetle and larval parasitoid wasp (*T. julis*) distribution in Oregon - 2010

CLB Treated Acreage Trend for NE Oregon

Patience is a virtue!

Oregon State

February 27, 2014

73

T. Julis over-winters in the soil as a larva within the pupal cell of the dead CLB host!

T. julis does not over-winter as an adult so this stage is CRITICAL for its survival

No-till / direct seed systems promote survival

Reduced tillage systems?

Conventional systems tend to bury/destroy pupal cells

No Spray Refuge Areas within treated fields promote survival of introduced parasitoids and natural predators.

Preferred Sites: large areas near field borders in close proximity to riparian or permanently vegetated areas.

Convergent lady beetle Hippodamia convergens

Large untreated areas are most effective refuge areas.

Booth-L

20 1994

"No Spray" Refuge near riparian areas.

ower-Gove-F

2 to 5 acres minimum

T. julis release sites need at least 50% infestation level

Google earth

Image State of Oregon © 2013 Google Oregon's bio-control program key to CLB management! ODA, USDA-APHIS & OSU greatly appreciate the Oregon Hay & Forage Association for their support that made this program possible!

Oregon CLB Biological Control Program

T. Julis has gradually spread throughout Oregon

• Managed release efforts and on it's own within local areas

ODA monitors T. julis spread within OR

ODA Commodity Inspection

• certificate of origin for hay shipment to CA

Oregon CLB Biological Control Program ODA Plans for 2014

Detection surveys in Klamath and adjacent counties

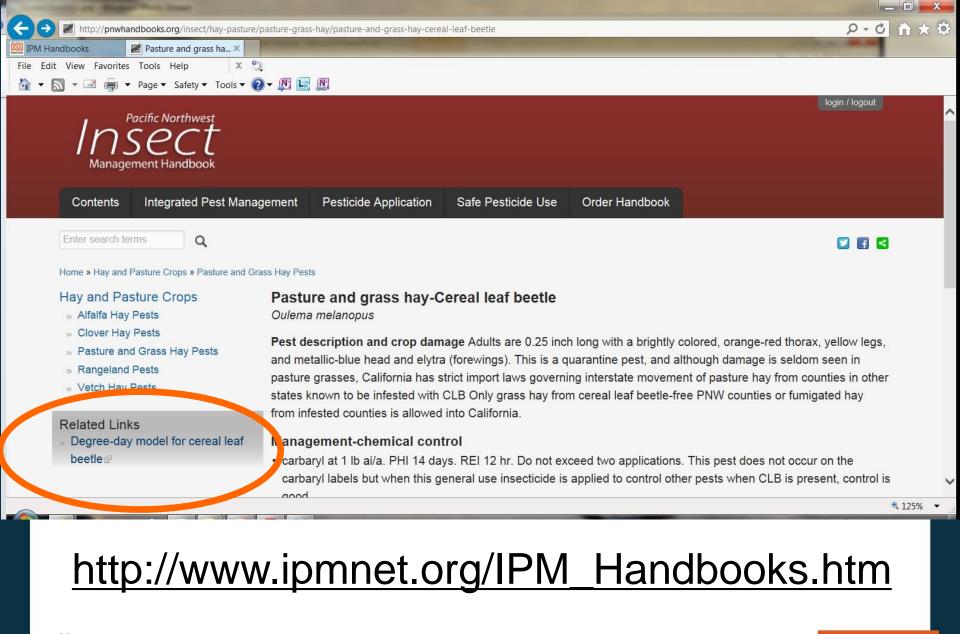
Monitor grain fields for T. julis parasitism rates to locate potential collection sites for re-distribution

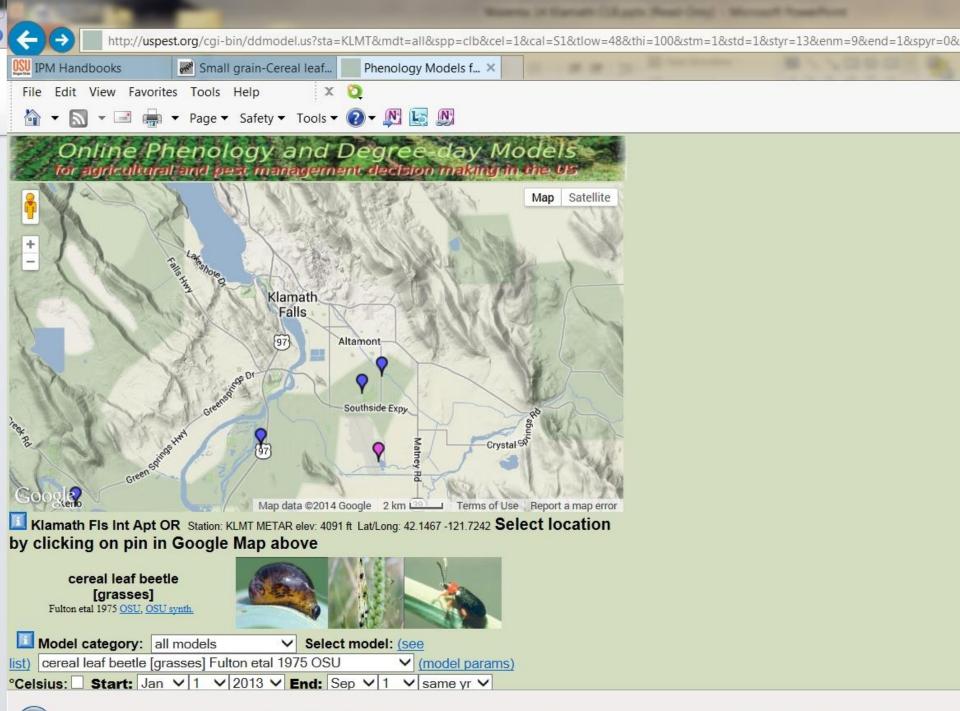
Klamath Co. a priority for T. julis release

 Need grain fields with at least 50% CLB infestation level within portion of the field (need 2 – 5 acres, no insecticide)

Continued collaboration between ODA, USDA and OSU

Oregon State


3rd and 4th Instar Larvae


Photo: Darrin L. Walenta

T. julis preparing to parasitize CLB larvae in spring wheat. Photo: Darrin L. Walenta

Model species/general links: <u>cereal leaf beetle</u> [grasses] Type: insect						
Timest						
Type: insect						
Model source/other links: Fulton etal 1975 OSU, OSU synth.						
Calculation method: single sine						
	48 degrees Fahrenheit					
Upper threshold: 100 degrees Fahrenheit	100 degrees Fahrenheit					
Directions for starting/BIOFIX: Calendar date						
No starting/BIOFIX date, set to: default date 1 1						
Ending date: 12 1						
Model validation status: requires local validation						
Region of known use: used in USA						
======================================	1					
1. 90 DDs after Jan 1: OW gen. ca. 1st adult emerge	L					
2. 144 DDs after Jan 1: 1st egg laying						
3. 270 DDs after Jan 1: 50%/peak egg laying						
4. 297 DDs after Jan 1: 1st egg hatch						
5. 324 DDs after Jan 1: early/10% larvae						
6. 432 DDs after Jan 1: 50%/peak egg hatch						
7. 612 DDs after Jan 1: 90% egg laying						
8. 648 DDs after Jan 1: peak larvae						
9. 756 DDs after Jan 1: end (90%) egg hatch						
10. 900 DDs after Jan 1: 90% larvae/end larvae						
1. 936 DDs after Jan 1: end OW adults						
2. 990 DDs after Jan 1: 1st summer adult emerge						
13. 1314 DDs after Jan 1: 50% summer adult emerge						
14. 1530 DDs after Jan 1: 90% summer adult emerge						

-

🛛 🗲 🕞 🔲 http://uspest.org/cgi-bin/ddmodel.pl?wfl=KLMT13.txt&hfl=klamathfallsintlap_or.txt&fcz=97603&uco=1&mdt=all&spp=clb&tlow=48&thi=100&cal=S1&st
IPM Handbooks Small grain-Cereal leaf cereal leaf beetle [g ×
File Edit View Favorites Tools Help 🛛 🗴 🧿
🟠 🔻 🔝 👻 🚍 🖶 👻 Page 👻 Safety 👻 Tools 👻 🕢 🔛 💽
7. 612 DDs after Jan 1: 90% egg laying
8. 648 DDs after Jan 1: peak larvae
9. 756 DDs after Jan 1: end (90%) egg hatch 10. 900 DDs after Jan 1: 90% larvae/end larvae
10. 900 DDs after Jan 1: 90% larvae/end larvae 11. 936 DDs after Jan 1: end OW adults
12. 990 DDs after Jan 1: 1st summer adult emerge
13. 1314 DDs after Jan 1: 50% summer adult emerge
14. 1530 DDs after Jan 1: 90% summer adult emerge
======================================
Weather station: 2013 KLMT METAR Klamath Fls Int Apt OR Lat:42.1467 Long:-121.7242 Elev:4091
mn day max min precip DD48 CUMDD48 event
1 1 28.04 3.02 0.00 0.00 0.0 * START *
1 2 24.98 -0.04 0.00 0.00 0.0
1 3 28.94 -0.94 0.00 0.00 0.0
1 5 28.40 12.92 0.09 0.00 0.0 1 6 32.00 24.98 0.01 0.00 0.0
1 7 35.96 26.06 0.01 0.00 0.0
1 8 39.92 24.08 0.00 0.00 0.0
1 9 39.92 17.06 0.03 0.00 0.0
1 10 30.02 5.00 0.01 0.00 0.0
1 11 28.04 1.04 0.02 0.00 0.0
1 12 37.04 -5.08 0.00 0.00 0.0
1 13 41.00 -4.00 0.00 0.00 0.0
1 14 21.02 1.00 0.00 0.00 0.0
1 15 28.04 3.00 0.00 0.00 0.0
1 16 32.00 1.04 0.00 0.00 0.0
1 17 33.98 1.04 0.00 0.00 0.0
1 18 35.06 1.04 0.00 0.00 0.0
1 19 33.98 -2.02 0.00 0.00 0.0
1 20 35.06 -0.94 0.00 0.00 0.0
1 21 35.06 -0.94 0.00 0.00 0.0
1 22 33.98 3.92 0.00 0.00 0.0

m

A REAL PROPERTY AND A REAL

(\	(http	//uspest	t.org/cgi-t	pin/ddmode	el.pl?wfl=	KLMT13.txt&hfl=klamath	allsintlap_or.txt&fcz=976038	&uco=1&mdt=all&spp	=clb&tlow=48&thi=100&cal=S1&str
	M Hand	lbooks		🚧 Small	grain-Cere	al leaf	cereal leaf beetle [g.	×	and the state of the second second	#//D00
File	Edit	View I	avorites	Tools	Help	x	0			
	- 5	• 🖃	-	Page 🗸	Safety 🔻	Tools 🔻	0- N 💽 N			
4 7		2 32.00		0.00	86.0					
4 8		2 28.04		0.00	86.0					
4 9		2 21.92		2.28	88.3	1000				
4 10		6 30.02		4.51	92.8	OW gen.	. ca. 1st adult emerge			
4 11		2 24.08		2.35	95.2					
4 12		4 24.98		4.91	100.1					
4 13		2 26.96 6 19.04		0.08	100.2					
(a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b		6 28.04		0.00	100.2					
		6 26.06		0.00	100.2					
4 17		8 21.02		0.61	100.8					
4 18		6 24.98		3.83	104.6					
1.1 (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2		2 33.98		2.84	107.5					
4 20		6 21.92		3.99	111.5					
4 21		4 24.98		4.91	116.4					
4 22		0 26.60		2.82	119.2					
4 23		2 30.92		5.82	125.0					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 30.02		6.11	131.1					
		4 24.98		8.54	139.7					
4 26		2 30.92			149.7	1st egg	g laying			
4 27		2 33.08			160.1					
4 28	69.0	8 33.98	0.00	7.46	167.6					
4 2 9	60.9	8 33.08	0.00	3.97	171.6					
4 30	59.0	0 26.06	0.00	2.80	174.4					
5 1		2 28.94		5.64	180.0					
5 2		4 33.08		9.50	189.5					
5 3		0 32.00			200.2					
1.2		8 44.96		9.48	209.7					
5 5		6 44.06			220.3					
43 54		4 37.04		9.69	230.0					
5 7		4 44.60		7.37	237.4					
58		0 37.94		7.53	244.9					
5 9		2 37.04			255.6	F 0.8 /				
5 10		6 42.08			270.1	50%/pea	ak egg laying			
5 11		4 46.04			286.7	1.05	, hat ab			
5 12		4 46.04 0 41.00		10.08	303.4 315.8	1st egg	, naton			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4 33.80		9.60	325.4	early/1	10% larvae			
5 14		8 39.02		8.20	333.6	carry/1	LV. IAIVAC			
28 2623		8 41.00		4.41	338.0					
5 17		6 35.06		4.58	342.6					
C.24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 30.02		4.16	346.7					
		2 26.96		5.48	352.2					
1.		6 35.06		8.89	361.1					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 28 04		2.25	363 3					

-

IN A REAL PROPERTY OF A REAL PRO

Maneria Di Karnath (Likopis Real-Dea) - Microsoft Spanificati

cereal leaf beetle model - Fulton et al 1975 OSU Location: 2013 KLMT Klamath Fls Int

Date	DDs	Event
4-10-13	93	OW gen. ca. 1st adult emerge
4-26-13	150	1st egg laying
5-10-13	270	50%/peak egg laying
5-12-13	303	1st egg hatch
5-14-13	325	early/10% larvae
6-2-13	436	50%/peak egg hatch
6-14-13	619	90% egg laying
6-17-13	659	peak larvae
6-28-13	774	end (90%) egg hatch
7-3-13	915	90% larvae/end larvae
7-4-13	938	end OW adults
7-7-13	999	1st summer adult emerge
7-22-13	1321	50% summer adult emerge
8-2-13	1539	90% summer adult emerge

cereal leaf beetle model - Fulton et al 1975 OSU Location: 2013 IMBO IMBLER OR n

Date	DDs	Event
4-4-13	92	OW gen. ca. 1st adult emerge
4-27-13	151	1st egg laying
5-10-13	277	50%/peak egg laying
5-11-13	298	1st egg hatch
5-13-13	330	early/10% larvae
6-1-13	437	50%/peak egg hatch
6-15-13	613	90% egg laying
6-17-13	652	peak larvae
6-28-13	777	end (90%) egg hatch
7-3-13	921	90% larvae/end larvae
7-4-13	939	end OW adults
7-7-13	992	1st summer adult emerge
7-22-13	1318	50% summer adult emerge
8-1-13	1538	90% summer adult emerge

Closing Comments

CLB IPM has proven very effective in established areas

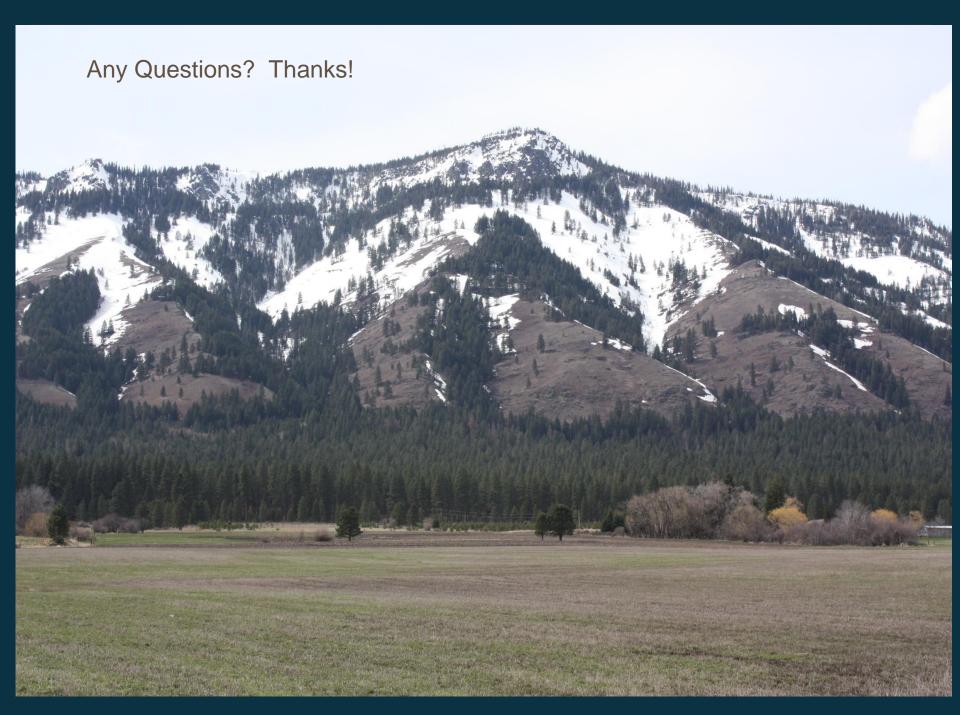
- Occasional "hot-spots" do occur
- Since 2007, less than 700 acres in NE OR have needed CLB control (refuge!)

Monitor CLB populations levels then consider.....

- Does it meet/exceed the economic threshold level?
- What percentage of the population are eggs?
- Do small larvae make up the majority of the population?
- Are the CLB larva parasitized? If so, at what level?

CLB larva samples can be tested by contacting: Richard Hilton OSU-SOARC (541-772-5165)

If control necessary, leave untreated area within field to serve as refuge for *T. julis*



OR Cereal Leaf Beetle Bio-Control Program Contacts:

Oregon Department of 635 Capitol Street NE Salem, Oregon 97301-2 Barry Bai	Agriculture, Plant Divisio 532 Office: 503-986-4645		<u>i@oda.state.or.us</u>				
Dr. Helmuth W. Rogg, Oregon Department of Agriculture, IPPM Program Manager 635 Capitol Street NE Salem, OR 97301-2532							
Helmuth Rogg Richard Worth	Tel.: 503-986-4662 (of.) Tel.: 503-986-6461		Email: <u>hrogg@oda.state.or.us</u> Email: <u>rworth@oda.state.or.us</u>				
Gary Brown – USDA-APHIS, PPQ6135 NE 80th Ave., Ste. A-5Portland, OR 97218office: 503-326-2814 x239cell: 503-730-7608Email: gary.w.brown@aphis.usda.gov							
Darrin L. Walenta – OSU Extension Service Union Co. 10507 North McAlister Road LaGrande, OR							

Email: darrin.walenta@oregonstate.edu

Office: 541-963-1010

