NAAFE 2015 Conference, 20-22 May 2015, Ketchikan, Alaska

Distributional effects of quota self-governance by French producer organizations: the case of the Bay of Biscay sole fishery

Manuel Bellanger, Claire Macher, Olivier Guyader

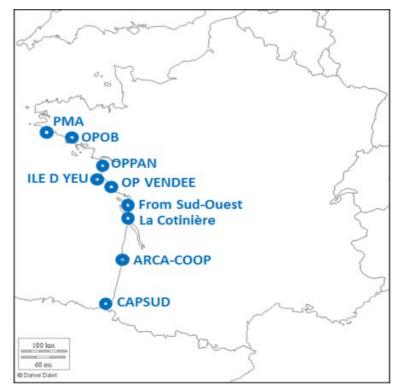
IFREMER, UMR AMURE

Outline

- Introduction
- Governance system of Bay of Biscay sole quota
- Material & methods
- Inequality metrics for the study of distributional effects
- Results
- Conclusions / perspectives

EU Common Fisheries Policy reform

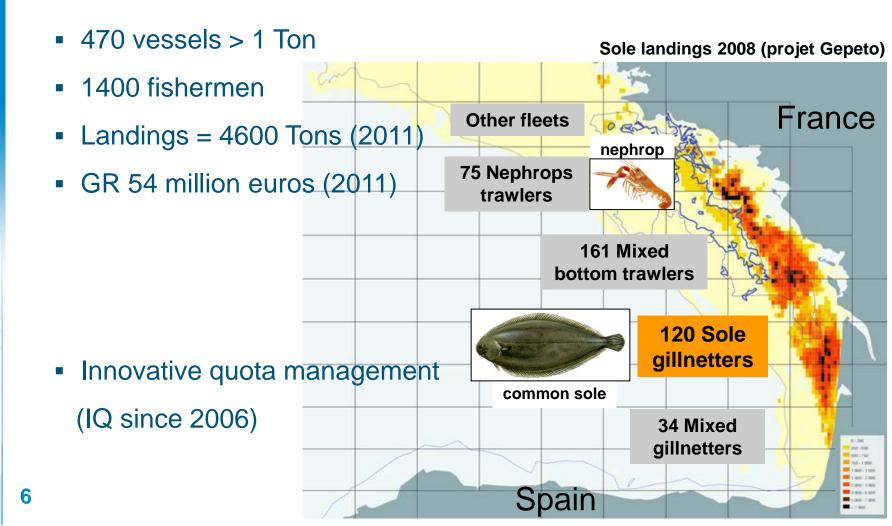
- Reinforcement of local institutions
- Discussions on ITQs


➢ In France:

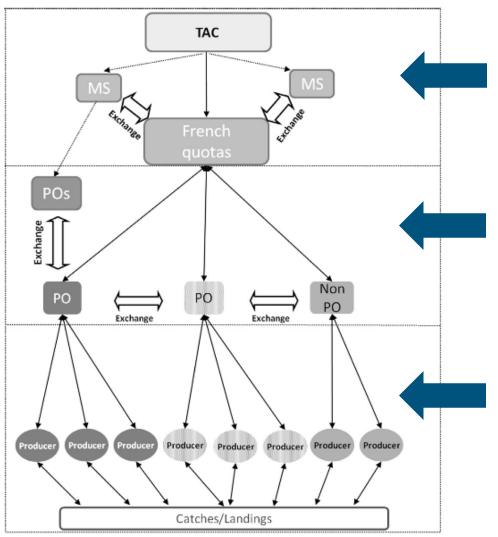
- Fishing rights are not transferable
- Official consensus against ITQs amongst stakeholders arguing ITQs would result in capital concentration and destabilization of local fishing communities
- Gradual transfer of competence (including quota management) to Producer Organizations (POs) – *comanagement* governance system
- Evolution of quota management in response to constraining quotas => IQ systems

> What's a PO?

- A group of harvesters that manage collectively assigned fishing rights.
- Similar to the self-organized harvest cooperatives called "Sectors" in the New England groundfish fishery (US)
- ➤ How big are they?
 - 35 500 vessels
- How many are there?
 - 9 POs in the Bay of Biscay
- Caracterization:
 - Geographically-relevant
 - 1 PO \neq 1 fishery



Map of Bay of Biscay POs (France)

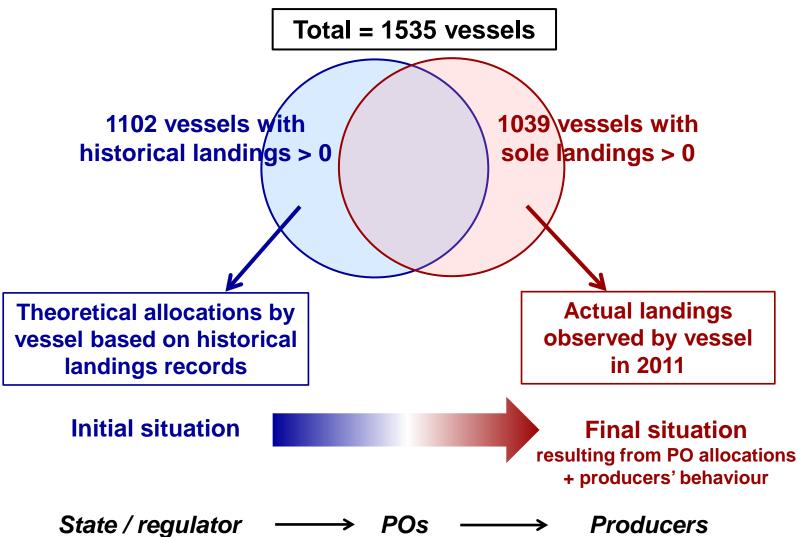

Issues addressed: the distributional effects of the French fishery governance system

- Has quota management by POs led to limit inequalities and concentration?
- Are distributional effects quantifiable?

Case study: the Bay of Biscay common sole fishery

Governance system of Bay of Biscay sole quota

Member State share is based on a relative stability key

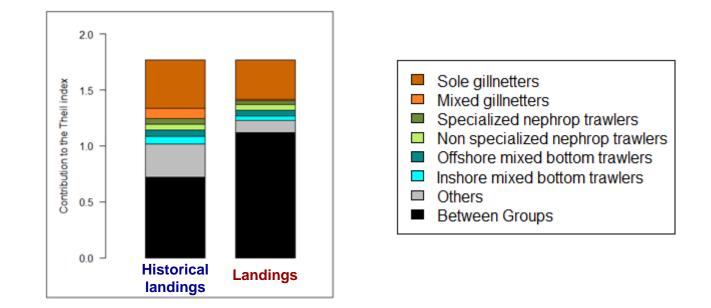

Quota share by PO is based on historical landings (2001-2003) of their members.

Management by POs: collective or individual quota allocation based on a collective-pooling management system specific for each PO

7

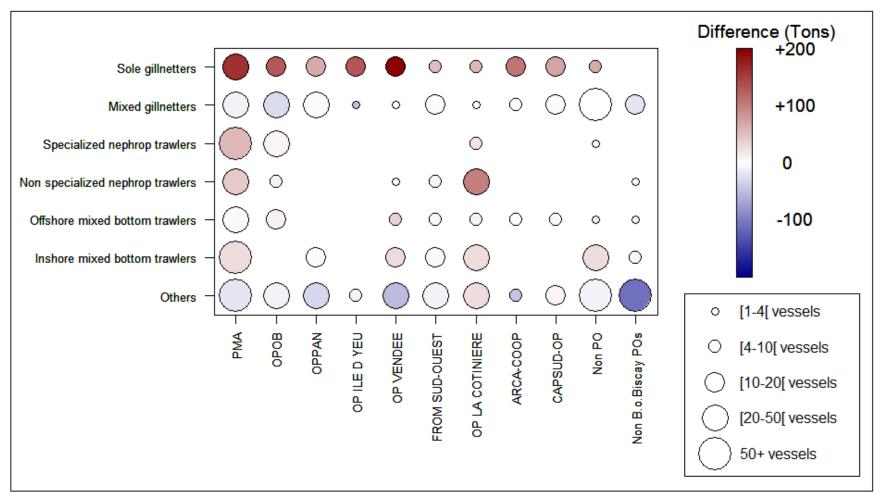
Material & methods

Inequality metrics

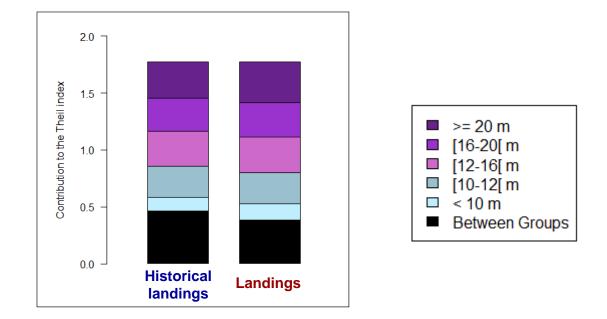

	Formula	Pros	Cons
Gini index	$G = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} x_i - x_j }{2N^2 \bar{x}}$	 Intuitive 	 Not easily decomposable
Hoover index	$H = \frac{1}{2} \sum_{i=1}^{N} \left \frac{E_i}{E_{total}} - \frac{A_i}{A_{total}} \right $	 Intuitive 	 Non decomposable
Theil index	$T = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{x_i}{\bar{x}} \times \ln \frac{x_i}{\bar{x}} \right)$	 Decomposable 	 Non intuitive
Generalized enthopy index	$GE(\alpha) = \frac{1}{N\alpha(\alpha-1)} \sum_{i=1}^{N} \left[\left(\frac{x_i}{\bar{x}} \right)^{\alpha} - 1 \right]$	 Decomposable 	Non intuitiveParameter to be set
Atkinson index	$A(\varepsilon) = 1 - \frac{1}{\bar{x}} \left(\frac{1}{N} \sum_{i=1}^{N} x_i^{1-\varepsilon} \right)^{\frac{1}{1-\varepsilon}}$	 Sensitivity to upper/lower end 	 Parameter to be set
Herfindahl-Hirschman index (HHI)	$HHI = \sum_{i=1}^{N} \left(\frac{x_i}{\sum_{j=1}^{N} x_j}\right)^2$	 Applicable in a variety of contexts 	 Correlated with number of firms

> Application of inequality metrics at the entire population level

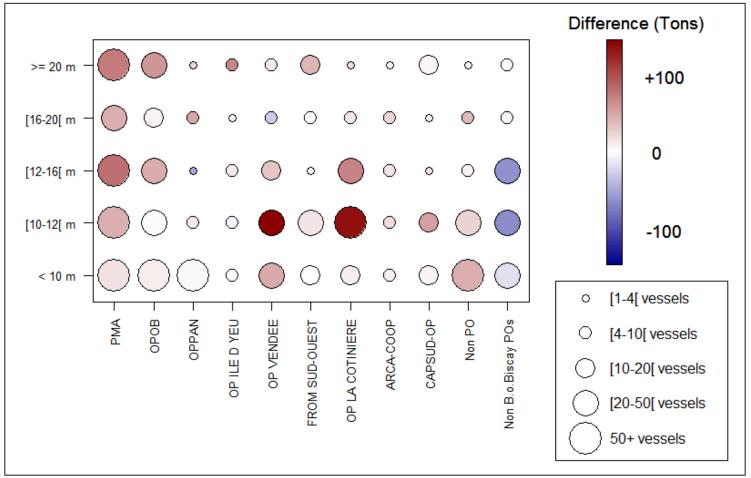
	Theoretical allocations based on historical landings	Landings observed
Gini index	0.87	0.86
Hoover index	0.73	0.72
Theil index	1.77	1.76
Generalized enthopy index ($\alpha = 2$)	4.82	4.72
Atkinson index ($\epsilon = 0.75$)	0.93	0.93
Herfindahl-Hirschman index (HHI)	0.0069	0.0068


- Same tendency over all metrics: Landings observed are slightly less concentrated than Theoretical allocations based on historical landings
- No clear sign of distributional effects at this scale

Decomposition of the inequality by fleets: use of the Theil index to determine the within and between components


- Inequality in Landings observed is mainly due to the inequality between fleets.
- <u>Distributional effects</u>: Landings observed within fleets are more homogeneous than Theoretical allocations based on historical landings

Cumulative difference Landings – Historical landings by fleet*PO


<u>Distributional effects</u>: Sole gillnetters are "favored" in all POs

Decomposition of the inequality by length class: use of the Theil index to determine the within and between components

- Inequality between groups is less important than in the case of decomposition by fleets
- Inequality is mainly due to the inequality within length classes.

Cumulative difference Landings – Historical landings by length class*PO

<u>Distributional effects</u>: Small-scale (< 12 m) are "favored" in some POs

Overview

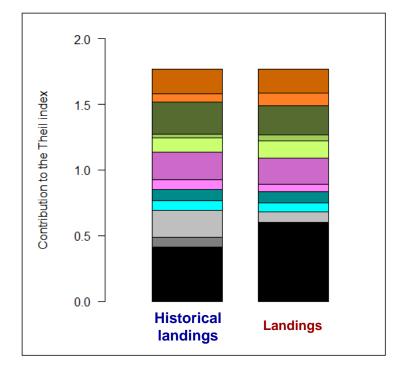
The management of the sole quota by producers organizations had distributive effects:

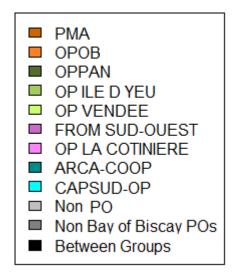
- the fleets that were the most favored were the fleets that were the most economically dependent on this species; in other words, in a context of non-transferability of fishing rights, POs played the role of quota finetuning to adjust for fleets needs
- In certain POs, small scale fisheries (<12m) benefited from quota redistribution; in these cases, management policies were favorable to less profitable artisanal fisheries and local fishing communities

Limits

- Only one species/quota considered
- "1 vessel = 1 firm" hypothesis
- Productions vs. revenues

Conclusion


- Inequality metrics at global scale did not show distributional effects
- Decomposition of inequality by subgroups provided more interesting results


Perspectives

Comparison with theoretical allocations according to PO rules / Individual Quotas Thank you for your attention

Appendix

Theil decomposition by POs

