

AN ABSTRACT OF THE THESIS OF

Akekalak Chaitheerayanon for the degree of Master of Science in

Electrical & Computer Engineering presented on December 16, 2003.

Title: Investigating New Design Alternatives for a Radix-2

Modular Multiplier Kernel and I/O Subsystem..

Abstract approved:

Alexandre Ferreira Tenca

A main arithmetic operation for cryptographic systems is modular exponenti-

ation. Exponentiation is computed by a long sequence of modular multiplications.

Modular multiplication can be implemented in a general-purpose processor or a

dedicated hardware, but dedicated hardware tends to be faster than a processor.

Modular multiplication is a time-consuming operation, and therefore it requires a

fast and efficient algorithm that can be suitably implemented in hardware. Mont-

gomery multiplication algorithm is one of these efficient algorithms.

There are several designs that are implemented based on the Montgomery

algorithm. Most of them are fixed-precision implementations which means that the

system can not perform the multiplication if the operand size is larger than the

precision of the system datapath. Its lack of flexibility has led to a new design that

can perform the multiplication for operands of any size — a scalable architecture.

The hardware implementation of the scalable Montgomery Multiplier (MM)

is composed of the kernel and the I/O interface. The main function of the I/O

is to interact with both the host system and the kernel. Multiplication operands

are loaded from software running on the host system and then stored inside the

I/O. These operands are transferred to the kernel when they are needed during

the computation. Moreover, the temporary results from the kernel are also stored

inside the I/O.

All major goals of this thesis work involve the investigation of design alterna-

tives for the MM architecture. The first goal is to investigate an alternate design

for the kernel. The second one is to develop a new design for the I/O subsystem.

As a final goal, the generated VHDL code must be ported to a Field Programmable

Gate Array (FPGA). That will take advantages of the Xilinx technology, showing

the flexibility of the scalable MM design in a FPGA chip.

c©Copyright by Akekalak Chaitheerayanon

December 16, 2003

All rights reserved

Investigating New Design Alternatives for
a Radix-2 Modular Multiplier Kernel

and I/O Subsystem.

by

Akekalak Chaitheerayanon

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 16, 2003
Commencement June 2004

Master of Science thesis of Akekalak Chaitheerayanon presented on
December 16, 2003

APPROVED:

Major Professor, representing Electrical & Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to
any reader upon request.

Akekalak Chaitheerayanon, Author

ACKNOWLEDGMENT

First of all, my family, father, mother, brother, and sisters are always with

me when I needed them the most. Their encouragement helped me to continue

study and finished this work.

This thesis work would not be completed if there was no support from a

number of people, especially Dr. Alexandre F. Tenca, my advisor, who has been

considerably helpful. My first class at Oregon State University was his, and he

gave me a chance to do a research with him since. All his advice and comments

are so invaluable. It has been good experiences working with him.

Last but not least, I would like to thank to all Thai friends here at Oregon

State University, especially Suchittra Chatpimolkul who has been more than a

friend to me since we met.

TABLE OF CONTENTS

Page

1. INTRODUCTION . 1

1.1. Montgomery Multiplication Algorithm . 2

1.2. Motivation. 4

1.2.1. Radix-2 Architectural Approaches for Scalability 5

1.2.2. I/O Subsystem . 5

1.3. Organization of this Thesis. 6

2. ALTERNATE DESIGN . 7

2.1. Systolic Array for Montgomery Algorithm. 7

2.1.1. Montgomery Multiplication Algorithm Comparison 10

2.1.2. Examples of Montgomery Multiplication Algorithms 11

2.2. Hardware Implementation for Systolic Array Algorithm 12

2.3. Operation Illustration. 16

2.4. Partitioning the Systolic Array . 19

2.5. Comparison of Scalable Architecture . 20

3. I/O SUBSYSTEM DESIGN. 22

3.1. Montgomery Multiplier Hardware Overview . 22

3.2. Previous Work on the I/O Subsystem . 23

3.3. I/O Subsystem Architecture . 24

3.3.1. MMHW Operation Overview . 25

3.3.2. Host Interfacing Pins to MMHW . 26

3.3.3. Accessing to I/O . 28

TABLE OF CONTENTS (Continued)

Page

3.4. Description of Building Blocks . 33

3.4.1. 32-to-w Converter . 33

3.4.2. S FIFOs . 35

3.4.3. Y and M FIFOs. 39

3.4.4. X FIFO . 41

3.4.5. w -to-32 Converter . 42

4. EXPERIMENTAL RESULTS AND ANALYSIS . 45

4.1. Simulation, Synthesis, and Implementation Environment 45

4.2. Area Estimation for MMHW. 46

4.3. Time Estimation for MMHW . 48

4.4. Total Operation Time. 52

4.5. Optimal Design . 53

4.6. Operation Bandwidth . 57

5. CONCLUSION AND FUTURE WORK . 59

5.1. Conclusion. 59

5.2. Future Work . 60

BIBLIOGRAPHY . 64

APPENDICES . 65

A. KERNEL-I/O INTERFACE . 67

TABLE OF CONTENTS (Continued)

Page

B. I/O SUBSYSTEM STATE MACHINES DESCRIPTION 70

B.1. Top Level Control . 70

B.2. 32-to-w Converter Control . 72

B.3. w-to-32 Converter Control . 73

LIST OF FIGURES

Figure Page

1.1 Radix-2 Montgomery Multiplication Algorithm 4

2.1 Radix-2 Montgomery Algorithm for Systolic Array of Eq. 2.2 9

2.2 Radix-2 Montgomery Multiplication Algorithm 10

2.3 Data dependence graph for systolic array algorithm. 13

2.4 Radix-2 bit-level Algorithm for Systolic Array 13

2.5 A systolic array structure . 14

2.6 Processing element for a systolic array . 14

2.7 Data Path Infrastructure for the Partitioned Systolic Array 20

3.1 Block Diagram of MMHW . 22

3.2 Block diagram of the I/O subsystem . 25

3.3 The diagram of the fields in the control register 29

3.4 Example of the timing diagram for writing X operand 31

3.5 The diagram of the fields in the status register 31

3.6 Example of the timing diagram for reading the result register 33

3.7 System level of 32-to-w converter . 34

3.8 The interface of the FIFO used for S . 36

3.9 Block diagram of the FIFO . 37

3.10 Comparison of the sequence of data read from the FIFO 38

3.11 The structure of a read pointer generator . 39

3.12 Block diagram of the rotator design . 39

3.13 Logic for pointer generators’ count signals . 41

3.14 The structure of X FIFO . 42

3.15 The structure of w-to-32 converter . 43

LIST OF FIGURES (Continued)

Figure Page

4.1 Area of MMHW for different word size configurations on Xilinx
chip . 47

4.2 Area of MMHW . 49

4.3 Critical path delay of MMHW . 51

4.4 Total operation time of MMHW . 54

4.5 Clock cycles performing each MMHW task in percentage propor-
tions . 58

5.1 Funnel design for k = 3 and w = 8 . 61

5.2 Division of 3 8-bit words into 8 3-bit words for X 62

LIST OF TABLES

Table Page

3.1 Pin Description (reproduced from [12]) . 27

3.2 I/O registers and their addresses . 28

3.3 The truth table signals controlling FIFO read/write 40

4.1 Clock period for different configurations, n = 1,024 bits 50

4.2 The number of clock cycles needed in pre- and post-computation
for each configuration of w and n . 55

4.3 The total number of clock cycles and total operation time for
w = 32; n=1,024 on Xilinx Spartan II XC2S200 chip. 55

4.4 The configurations of the optimal design for each operand size . . . 56

4.5 Comparison of a performance between MMHW and ARM system
with 80MHz clock . 57

5.1 Timing of the funnel operation with contents from RAM and a
register shown . 63

LIST OF APPENDIX FIGURES

Figure Page

A.1 Timing diagram for case 2p < NW . 68

A.2 Timing diagram for case 2p > NW . 69

B.1 State machine generating start signal. 70

B.2 MMHW operation state machine. 71

B.3 Counter keeping track of the number of result words read. 72

B.4 State machine controlling a load operation of w-bit word to the
FIFO. 72

B.5 Counter keeping track of the number of w-bit words written to
the FIFO. 73

B.6 State machine controlling a read operation of w-bit word from the
FIFO. 74

B.7 Counter keeping track of the number of w-bit words read from
the S FIFO. 74

B.8 State machine keeping track of the availability of the 32-bit result
word. 75

INVESTIGATING NEW DESIGN ALTERNATIVES FOR
A RADIX-2 MODULAR MULTIPLIER KERNEL

AND I/O SUBSYSTEM.

1. INTRODUCTION

As an electronic communication becomes more and more popular, people

need a secure channel when communicating among themselves. Thus, the issue

of security has become more attractive, and several approaches have been devel-

oped. RSA [1] is one of the most reliable cryptographic systems found inside many

systems. A main arithmetic operation for RSA cryptography is modular exponen-

tiation. This type of exponentiation can be accomplished by performing a long

sequence of modular multiplications. Modular multiplication is a very important

operation in other cryptographic systems as well.

Modular multiplication can be implemented in a general-purpose processor or

a dedicated hardware. Both implementations have advantages and disadvantages.

Dedicated hardware tends to be faster than the general-purpose processor. One

way to illustrate this point is that designers can optimize their designs to have as

many arithmetic units as possible under the area constraint and the satisfaction

of the performance. However, the general-purpose processor has a limitation to

perform arithmetic operations. On the other hand, the software running on the

general-purpose processor has more flexibility when the design or implementation

needs to be modified. Also, when changes are needed, modification to the dedicated

hardware can be costly.

Modular multiplication is a time-consuming operation especially in an effective

and reliable RSA which uses operand sizes in a range of 512 to 2048 bits. It needs

2

a fast and efficient algorithm that also can be suitably implemented in hardware.

The Montgomery multiplication algorithm [2] is very efficient. It replaces a regu-

lar division operation that is needed in modular multiplication by a series of shift

operations and additions. These shift and addition operations are fast and easy

to implement in hardware. As the multiplication is executed, the algorithm uses

right shift operations (division by 2) to reduce the result and keep it bounded.

There are several implementation approaches of the Montgomery algorithm.

Most of them are fixed-precision implementations. This means the system cannot

perform the multiplication if the operand size is larger than the precision of the

system datapath. Its lack of flexibility has led to a new design that can perform

the multiplication for operands of any size.

Tenca and Koç [3] have developed a modified version of the Montgomery

algorithm. This algorithm is called a Multiple-Word Radix-2 Montgomery Mul-

tiplication Algorithm (MWR2MM). The algorithm has an advantage over others

because it works with a group of bits (words) of the operands instead of handling

whole operands at once. Operations on words are used to reach any required pre-

cision. This algorithm leads to a scalable design. This scalable architecture is

also flexible in hardware implementation because it can be reconfigured to fit in a

chip that has a limited area. Thus it is an efficient hardware solution for modular

multiplication.

1.1. Montgomery Multiplication Algorithm

The Montgomery multiplication algorithm performs modular multiplication

of two given numbers, A and B; they both are n-bit long. The operation of the

Montgomery multiplication algorithm can be written as MM(A,B). As a result,

it gives (ABr−1 mod M), where r = 2n; and M is an integer in the range of

3

2n−1 < M < 2n. r and M have to be selected such that they are relatively prime

to each other. Since r = 2n is an even integer, M can be selected as any odd

integers. Normally, M is selected as a prime, except for 2, or a product of two

primes. This is enough to satisfy the relatively prime condition.

The Montgomery multiplication algorithm replaces regular division by per-

forming only shift operations and additions. All values are residues in modulo M .

The Montgomery image of A is A = (Ar mod M). A can be computed by per-

forming MM(A, r2). On the other hand, the transformation back from the image

to the integer domain is A = MM(A, 1) = (Arr−1 mod M).

If C is defined as the outcome from modular multiplication of two integers A

and B, which means C = (AB mod M), then Montgomery multiplication of the

images of A and B is the image of C. That is:

C = MM(A,B)

= A Br−1 (mod M)

= ArBrr−1 (mod M)

= ABr (mod M)

= Cr (mod M)

Figure 1.1 shows a radix-2 Montgomery algorithm that is stated in [3]. It is

suitable for both software and hardware implementations.

The step described in line 8 of the algorithm is called final reduction. We

need this step because the value of P after the loop is in a range [0, 2M −1]. Thus,

the conversion of the result back to the range [0,M − 1] is done by subtracting M

out of P when P ≥ M .

4

1 P = 0

2 for i = 0 to n − 1

3 if (P + aiB) is even

4 then P := (P + aiB)/2

5 else P := (P + aiB + M)/2

6 end if

7 end for

8 if P ≥ M then P := P − M

9 end if

FIGURE 1.1: Radix-2 Montgomery Multiplication Algorithm

1.2. Motivation

The hardware implementation of the scalable Montgomery Multiplier (MM)

proposed in [3] is composed of the kernel and the I/O interface. The motivation

for this thesis work is to investigate design alternatives for the MM architecture.

The first goal is to investigate the alternate design for the kernel. The second one

is to develop a new design for the I/O subsystem which replaces an old version of

the subsystem designed by the research group at Oregon State University. The old

version imposed some constraints to scalability and portability. As a final goal, the

code is ported to a Field Programmable Gate Array (FPGA) taking advantages of

the Xilinx technology, and showing the flexibility of the scalable MM design in a

small FPGA chip.

5

1.2.1. Radix-2 Architectural Approaches for Scalability

We have investigated some previous hardware designs that are implemented

based upon the Montgomery multiplication algorithm and tried to find alternative

designs for the kernel in [3].

The solution that could more closely compete with the design in [3] is a

systolic architecture called Array-C [4]. A hardware implementation realizes the

Montgomery algorithm presented in [5]. The algorithm is slightly different from

the one in Figure 1.1. The architecture is a one-dimensional systolic array that

works with a full-precision of the operands. To be comparable to the design in [3],

we investigated the option of applying a partitioning and mapping algorithms for

fixed-size systolic arrays as proposed in [6]. The partitioning method allows the

system to perform the operation on chunks (words) of the input operands allowing

it to work with operand sizes that are larger than the size of the system data path.

1.2.2. I/O Subsystem

The main function of the I/O is to interact with both the host system and

the kernel. The operands are loaded from a software running on the host system

and then stored inside the I/O. These operands are transferred to the kernel when

they are needed. Moreover, the temporary results from the kernel are also stored

inside the I/O.

The first version of the I/O subsystem was targeted to be used with the

radix-8 kernel [7]. Since there is an on-going investigation of other versions of the

kernel that operate in different radices, the best way is to design an I/O block

that is reconfigurable. That means, it will be able to work with various kernel

6

configurations, e.g. radices, word sizes, and number of words of operands. This is

one of the goals in this work.

In the first version of the I/O subsystem, FIFOs used in operand registers

were implemented by using flip-flops. Some of these operands are reused during the

computation. To make the information inside the FIFOs reusable, the first version

uses a data structure that does not destroy the information when data is read

from the FIFO. When the information is requested again, the pointer is controlled

to point back to the location of that data; this method is call wrapping. As a

consequence, FIFO pointers are moved back and forth during the computation.

It is very unconventional. Therefore, in the new design, a FIFO with rotation

capability is used, instead of the wrapping idea. An advantage of the new version

is that a FIFO is designed to be easily modified for different storage spaces.

Since the design of the I/O subsystem has to support the kernel in different

configurations, reconfigurable devices are of interest to us. Therefore, the target

technology for this design is Field Programmable Gate Array (FPGA).

1.3. Organization of this Thesis

We describe the investigation of an alternative design for the Montgomery

multiplier kernel in chapter 2. In chapter 3, we describe a flexible design of the

I/O subsystem to be used in the scalable Montgomery multiplier system. Next, in

chapter 4, the experimental results are discussed. Lastly, we conclude this work

and give suggestions for future work.

7

2. ALTERNATE DESIGN FOR RADIX-2
MONTGOMERY MULTIPLIER KERNEL.

In this chapter, the systolic array for Montgomery algorithm proposed in [4]

is investigated. This Montgomery multiplier design is considered to be a competi-

tor to the scalable architecture presented in [3], and both design alternatives are

compared to each other.

Fundamentally, a systolic array architecture is composed of many processing

elements (PEs). Normally, all PEs are structured in the same way. The PEs are

connected to one another to form a linear array or a tree [8]. The word systolic in

this context means that the data is regularly pumped out of the output of one PE

to the input of the next PE. The data are transferred and used in further PEs in

the array.

There are many advantages when hardware is implemented by a systolic

architecture [8]. For instance, it improves the throughput of the whole system

since once I/O is accessed, the data can be repeatedly used by PEs in the array.

Also, PEs used in the systolic architecture are modular elements; therefore, the

system has regularity in data and control flows, making it very appropriate for

VLSI designs.

2.1. Systolic Array for Montgomery Algorithm

As described in the last chapter, Montgomery multiplication of two input

operands A and B can be expressed as

MM(A,B) = C = ABr−1 mod M

8

where A and B are two given integers, M is an odd number in the range of

2n−1 < M < 2n, and r = 2n.

Operands A, B, M , and C are divided into groups of bits (words). A bit

vector A is divided into groups of v bits. The number of v-bit words for A is d.

This means, if A is n bits long, then n = v · d. The radix of the multiplier is

a function of v as V = 2v. For other operands, they are divided into groups of

w bits (word size), and there are e words for each n-bit operand. The number

representation for operands can be shown below.

A = (A(d−1), . . . , A(1), A(0)),

B = (B(e−1), . . . , B(1), B(0)),

M = (M (e−1), . . . ,M (1),M (0)),

C = (C(e−1), . . . , C(1), C(0))

The systolic algorithm presented by Dussé and Kaliski in [5] is considered.

It is also used in [4]. The full precision version of the algorithm is:.

C[i] = (C[i − 1] + A(i) · B · V + Q[i − 1] · M)/V (2.1)

where Q[i − 1] = ((C[i − 1] mod V) · M
′(0)) mod V

C[−1] = 0

M
′(0) = −(M (0))

−1

mod V = −(M mod V)
−1

mod V

To complete the operation, this algorithm is performed for i in the range of

[0, d], which means the expression shown above performs for d + 1 times.

From the generic algorithm shown in Eq. (2.1), let us consider its use in radix

2. Literally, it means A is divided into groups of 1 bit for each word, and this gives

v = 1, and consequently V = 2. Hence, the radix-2 algorithm is:

C[i] = (C[i − 1] + 2 · ai · B + Q[i − 1] · M)/2 (2.2)

9

where Q[i − 1] = c0[i − 1] = C[i − 1] mod 2

C[−1] = 0

The expression in Eq. (2.2) can be written into an algorithm called

Algorithm A as follows:

Algorithm A

1 C[−1] = 0, Q[−1] = 0

2 for i = 0 to n

3 C[i] = (C[i − 1] + 2 · ai · B + Q[i − 1] · M)/2

4 Q[i] = C[i] mod 2

5 end for

6 if C[n] ≥ M then C := C[n] − M

7 end if

FIGURE 2.1: Radix-2 Montgomery Algorithm for Systolic Array of Eq. 2.2

In this case, operand A is represented by a n-bit vector an−1, . . . , a1, a0. In

radix 2, M
′(0) can be eliminated from the algorithm because its value is always

1. Since M is always odd, the least significant bit (LSB) of M which is m0 will

always be 1. As a result, the modular inverse of 1 when the modulus is 2 is also 1.

Note that when A is an n-bit precision number, the expression in Eq. (2.2)

has to be executed n + 1 times to complete the operation.

10

2.1.1. Montgomery Multiplication Algorithm Comparison

In this section, two Montgomery multiplication algorithms are compared.

The first algorithm is the one shown in Figure 2.2 (also shown in the previous

chapter), which is referred as Algorithm B. The second algorithm (Figure 2.1) is

Algorithm A presented in the prior section.

Algorithm B

1 P = 0

2 for i = 0 to n − 1

3 if (P + aiB) is even

4 then P := (P + aiB)/2

5 else P := (P + aiB + M)/2

6 end if

7 end for

8 if P ≥ M then P := P − M

9 end if

FIGURE 2.2: Radix-2 Montgomery Multiplication Algorithm

Both algorithms look very similar to each other. In the implementation point

of view, both algorithms have about the same level of complexity. Algorithm B

needs an addition and a division by 2, which is easily accomplished by using a right-

shift operation. On the other hand, Algorithm A has an addition, a multiplication

by 2, and a division by 2. The multiplication and division by 2 can be implemented

by a left-shift and right-shift operation, respectively.

11

Algorithm A takes one iteration longer than Algorithm B does. However, n

is usually much larger than 1 (n >> 1); therefore, the execution time will not be

much different between the two algorithms (n + 1 ≈ n when n >> 1).

2.1.2. Examples of Montgomery Multiplication Algorithms

The following examples show that both algorithms give the same result, but

Algorithm A takes one more iteration to finish the computation. The example

shows the multiplication of A = 011 and B = 101 where M = 111. Moreover, let

v = w = 1; therefore, d = e = 3. Note that for Algorithm A, C[i] is replaced with

P [i] for comparison purposes.

• The following steps perform the multiplication of the Algorithm A

1 i = 0; P [0] = (P [−1] + 2a0B + Q[−1]M)/2

2 = (0 + 1010 + 0)/2 = 101; Q[0] = 1

3 i = 1; P [1] = (P [0] + 2a1B + Q[0]M)/2

4 = (101 + 1010 + 111)/2 = 1011; Q[1] = 1

5 i = 2; P [2] = (P [1] + 2a2B + Q[1]M)/2

6 = (1011 + 0 + 111)/2 = 1001; Q[2] = 1

7 i = 3; P [3] = (P [2] + 2 · 0 · B + Q[2]M)/2

8 = (1001 + 0 + 111)/2 = 1000

9 test: P [3] ≥ M is true: so, P = P [3] − M = 1000 − 111 = 001

The underlined least significant bit indicates the value of Q[i] of each

iteration.

12

• The following steps perform the multiplication of the Algorithm B:

1 P = 0

2 i = 0; test: P + a0B = 0 + 101 is odd

3 P = (P + a0B + M)/2 = (0 + 101 + 111)/2 = 110

4 i = 1; test: P + a1B = 110 + 101 is odd

5 P = (P + a1B + M)/2 = (110 + 101 + 111)/2 = 1001

6 i = 2; test: P + a2B = 1001 + 0 is odd

7 P = (P + a2B + M)/2 = (1001 + 0 + 111)/2 = 1000

8 test: P ≥ M is true: so, P = P − M = 1000 − 111 = 001

2.2. Hardware Implementation for Systolic Array Algo-
rithm

As proposed in [4], the implementation of Algorithm A into a systolic array

is done by connecting several processing elements (PEs) in a linear array, and then

performing the operation of Eq. (2.2). Figure 2.3 shows the data dependence graph

for the systolic architecture. A similar figure is also shown in [4].

Figure 2.3(b) represents the input-output relation. Each circle represents one

PE. The value of i represents the position where the i-th PE (PE #i) is located,

and the value of j is the time domain (clock). The data of each cell, which traverse

along the i axis, are bj and mj. And, the data of each cell traversing along the j

axis are ai and Q[i − 1]. Each PE performs the operation Z[i][j] which is shown

in Figure 2.3(a). We take the lower v bits of Z[i][j] to be P [i][j]. Then, the rest

of the bits of Z[i][j] becomes Carry[i][j].

The radix-2 bit-level algorithm for the data dependence graph is shown in

Figure 2.4. Although the algorithm is claimed to function properly for any value

of w, we only succeeded in working with w = 1.

13

����� ��� ���
	��
��� ������������������������� �����!�����"�����#��%$ &�'!()#�+*,��� �-��� ./'

*0��� 1"���2� $
& '
./'

& '
. '

*,��� 1���� �3$
������� ����� ��� �"�

�4��� ��� �"�
5
6 7
8 7

8:9
8
;
6 9

6=<�> 95

? @ 5?BA?"C DFE GIH!J�KD:E J�KDLE M�KNO

(a) (b)

FIGURE 2.3: Data dependence graph for systolic array algorithm

Algorithm C

P [−1] = 0, b−1 = 0

FOR i = 0 TO n

Q[i − 1] = P [i − 1][1]

FOR j = 0 TO n

PE



































Z[i][j] = P [i − 1][j + 1] + Carry[i][j − 1]+

ai · bj−1 + Q[i − 1] · mj

P [i][j] = (Z[i][j] mod 2)

Carry[i][j] = Z[i][j]/2

NEXT

NEXT

FIGURE 2.4: Radix-2 bit-level Algorithm for Systolic Array

14

In this case, where v = w = 1, the length of Z is 3 bits. The intermediate

result bit P is the LSB of Z, and the upper two bits of Z are assigned to Carry.

A block diagram of the systolic array is shown in Figure 2.5, and each PE

used in the array is constructed as shown in Figure 2.6.

PQSRP
T R
P

UVP UXW UZY\[�W UZY
]

QS^�_ ` a R�b

T ^�_ `

FIGURE 2.5: A systolic array structure

Ra

Rz

Rq

Ra*

3

2

1

Rb1 Rb2

Rm1 Rm2 Mout

Qout

Pout

Bout

AoutAin

Bin

Pin

Qin

Min

FIGURE 2.6: Processing element for a systolic array

The systolic array is composed of n+1 PEs. The Aout, Bout, Pout, Qout, and

Mout pins of one PE are connected to the corresponding Ain, Bin, Pin, Qin, and Min

pins of the next PE, respectively. On the first PE (PE #0), for each clock cycle,

15

Ain is fed by a bit ai of operand A. Similarly, Bin and Min are fed by bi and mi,

respectively. However, due to the term 2 ·ai ·B, operand B is shifted one bit to the

left. Thus, ai, bi, and mi are synchronously fed to the first PE (the least significant

bit is taken first), but bi is relatively inputted one clock cycle after ai and mi. For

instance, at the time we insert a2 and m2 to the PE #0, b1 is taken to the Bin. For

Pin and Qin of the PE #0, we insert a zero bit to both pins as their initial values.

The PE has a simple structure; it mainly consists of registers and arithmetic

elements. In Figure 2.6, all registers are one-bit registers except for Rz, which is a

3-bit register. Ra∗ is used to store a value of ai where i is the corresponding PE

position. That means Ra∗ of the PE #0 stores a0 and will not change. Similarly,

the register Rq stores a value of Q[i] where i is the PE position, and it keeps the

same value until the operation is finished. The symbol ⊗ is a bit-by-bit multiplier,

which can be realized by an AND gate. There are two multipliers of this type

in the PE. We call the first one on the top mul1 and the other one mul2. The

symbol ⊕ represents a 4-input adder that takes operands from the results of both

multipliers, the intermediate result from the previous PE, and the carry. We will

refer to this adder as add. The four input terminals of add are in1, in2, in3, and

in4.

During the operation, operand A is delayed by one clock cycle, and B and M

are delayed by two clock cycles. The delay on B is enough for ai to be set and stored

in Ra∗ just in time when b0 arrives at the PE #i to execute the multiplication.

Then, the result of the adder has three bits and is registered in Rz. We take the

least significant bit of Rz as P and insert it to the next PE. The rest of the bits

of Rz are fed back to the adder of the same PE as a carry of last addition. Q[i] is

set to the value of the first computed P of that PE. The value of P , which comes

out of the last PE in the array, is the final result for this Montgomery multiplier.

16

2.3. Operation Illustration

We show, in this section, the graphical representation of the Montgomery

multiplier using the systolic array just presented. In this example, A = 011, B =

101, and M = 111. We define ti (where i = 0, 1, 2,. . .) as a clock cycle.

t = t0; Vectors of operands line up at the input terminal of PE#0. 011, 1010, and

111 are shown up at Ain, Bin, and Min respectively. For Pin and Qin of

PE#0, a bit 0 is always taken here.

t = t0

011

1010

111

0

0

000
0

0

0

t = t1; a0 which is 1 is registered to Ra∗ and Ra. The value in Ra∗ will not be

changed; however, the value in Ra will be altered as the operation goes on

since it merely acts like a buffer for the pipeline. At mul1, a0 and b0 are

multiplied, and the result is sent to in1 of add. All other inputs of add

have 0; therefore, the result is 001. This value will be registered to Rz in

the next clock cycle, and its LSB will be stored in Rq as Q[0].

t = t1

01

101

11

0

0

001

1
0

0

1

1

1

000

0

00

1

17

t = t2; At PE#0, bit vectors of A, B, and M are still moving along their corre-

sponding registers. Rz now has a value of 001, and Rq is registered with 1

which is a value of Q[0]. mul1 now takes a0 from Ra∗ and b1 as its inputs.

The result from add for this cycle is 000. Again, this value will be regis-

tered to Rz in the next cycle, but Rq will not further change the value. At

PE#1, a0, which is passed on from Ra of PE#0 in the previous cycle, is

now buffered in Ra of PE#1. We now take a look at add. in1 has 0; in2

has P [0][1] which is 1; in3 has a multiplication of m0 and Q[0], and it is 1;

lastly, in4 is 00. The result of add which is 010 will be registered to Rz in

the next clock cycle.

t = t2

0

10

1

0

0

000
0

0

0

1

1

1

001
00

1

01

1

1

010
0

1

1

t = t3; At PE#0, the same operation occurs as it does in the previous cycle. At

PE#1, this is very similar to what happens to PE#0 at t1. Ra∗ is registered

and not changed with a1. mul1 takes a1 an b0 as the inputs and gives the

result to add. mul2 has m1 and Q[0]; it sends the result to in3 of add.

Besides those two inputs, the LSB of Rz from PE#0 and feeded-back carry

bits of its own Rz are the other two inputs for add. The result of add, 011,

is sent to Rz to be registered in the next clock. And the LSB will be kept

in Rq to be Q[1].

18

0

1

0

0

0

001
1

0

0

0

1

1

000
00

1

10

1

1

011
1

0

1

t = t3

1

1

0

010
01

1

1

t = t4; At PE#1, Rz is now 011 which is the result from add of the previous cycle.

also, Rq is registered with 1, and this is used as Q[1] for the operation. in1

of add now has a1b1; in2 has 1 from PE#0’s Rz ; in3 has Q[0] ·m2; and in4

has carry bits, 01. Then, the result is 011. At PE#2, there is the operation

at add by adding Q[1] · m0 and the LSB from PE#1’s Rz.

0

0

0

0

0

000
0

0

0

0

1

0

001
00

0

01

1

1

011
0

1

1

t = t4

1

1

1

011
01

1

1

1

0

010
0

1

1

1

The systolic array has a similar routine to the previous clock cycles. We note

here only important events which are:

• a2 is stored in Ra∗ of PE#2 at t5,

• Q[2] is stored in Rq of PE#2 at t6,

• an appended 0 bit is stored in Ra∗ of PE#3 at t7,

• the final result p0, p1, p2, and p3 are coming out of Rz of PE#3 at t8, t9, t10,

and t11 respectively. The result of the operation is in the range of [0, 2M−1].

Therefore, we need a hardware to do the final reduction step.

19

2.4. Partitioning the Systolic Array

As described in the previous chapter, there are several advantages of the

scalable design over the fixed hardware. In this section, we discuss the possibility

of making the systolic array, presented in the prior section, scalable. To accomplish

this, we apply the partitioning method proposed in [6] to the systolic array.

For the algorithm shown in Figure 2.4, we can partition the outer loop (loop i)

into smaller computations. That means we divide n+1 computations of the outter

loop to the small number of computations and perform these tasks several times. If

the number of computations is p, then the number of iterations (performing these

p computations) k has to be such that k = dn+1
p
e.

The hardware mapping for the partitioned algorithm can be realized as a

linear array of p PEs, and we call this array a pipeline. Since there are intermediate

data communicating between each PE, there have to be a storage keeping the

communications between the last PE of the pipeline and the first PE of the next

round (pipeline cycle). These communications during the pipeline cycle are the

intermediate result P and Q. The storage for P is designed as a FIFO. The size of

this FIFO have to be large enough to collect all bits that will be passed through

the pipeline. And, it is n + 1. For Q, a one-bit register is enough for this purpose.

The data path infrastructure for this hardware is shown in Figure 2.7

Since, in the full precision array where r = 2n, the systolic hardware needs

n + 1 PEs to finish the operation, r has to be carefully selected when the array is

partitioned into the pipeline. As discussed that the p-PE pipeline needs k pipeline

cycles to finish the operation, the equivalent number of PEs is kp. Thus, r for this

case should be a constant r = 2kp−1.

20

cedf�g cedfih c�dfZjBkXl�hnm

o#p�o#q

r
s t
u
v ts

k
w k\x�y�w�z#x

FIGURE 2.7: Data Path Infrastructure for the Partitioned Systolic Array

2.5. Comparison of Scalable Architecture

Let us compare the design of scalable systolic array described in the previous

section (design-C) with the design by Tenca and Koç, proposed in [3] (design-TK).

Since design-C was not synthesized for any technology, we do not compare the area

or clock period of the design. We compare both designs by looking at the design

perspectives and their operation.

The PE of both designs have very similar arithmetic units. The PE consists

of two vector-by-bit multipliers which can be realized by arrays of AND gates.

One 4-input adder is employed in each PE. In design-C the adder is designed by

using Carry Ripple Adder (CPA) whereas, in design-TK, Carry Save Adder (CSA)

is used.Now, we might conclude that the infrastructure (pipeline plus memory) of

design-TK requires more area than the other because we need extra storage for

data in a carry save form.

The computation time for both designs can also be compared. When there

are p PEs in the pipeline, design-TK takes dn
p
e pipeline cycles while design-C needs

dn+1
p
e to finish the computation. Most of the time the two numbers are the same.

21

However, when n is a multiple of p, design-C will take one more pipeline cycle than

design-TK.

design-C has a critical disadvantage when compared to design-TK. The PE

used in design-C is designed based on the description of the hardware implemen-

tation presented in [4]. However, design-C is found to work only when w = 1.

Although it is claimed to be work with any word size, the design for those cases

are not shown in the paper, only stated that the computation can be done by using

a similar method. It is not possible to derive information from the paper. Being

able to work only with w = 1 is a huge limitation in terms of flexibility.

It is a disadvantage of a scalable architecture to work only with w = 1. First

of all, the number of clock cycles taken to finish the multiplication is larger than

that with a bigger word size when working with the same number of stages. The

total execution time for the system would be much longer.

22

3. I/O SUBSYSTEM DESIGN.

In this chapter, we describe the design aspect of the I/O subsystem used

for Montgomery multiplier hardware. The overview of the multiplier hardware

structure will also be shown in this section. And, we explain the problems of the

previous version of the I/O as well as the difficulties in I/O designing. Then, the

new version of the design is described with details for all components used to build

up the I/O block.

3.1. Montgomery Multiplier Hardware Overview

Montgomery Multiplier Hardware(MMHW) consists of two main compo-

nents: the I/O subsystem and the kernel. The block diagram of the top level

of this hardware is shown in Figure 3.1 below.

Status register

Control register

Test register

M register

Y register

X register

I/O and memory Kernel

Multiplication
Engine

MM Hardware

HOST

FIGURE 3.1: Block Diagram of MMHW

23

In the Figure 3.1, only the registers that are visible to the host system (or

application software) are shown. The kernel is described in detail in [7]. X, Y ,

and M registers are used to store (from the host) and distribute (to the kernel) the

values of X, Y , and M operands. The Test register is offered for testing purposes.

It is used to read and write various internal locations. The Control register is used

to hold the commands and configurations for MMHW operations. The Result

register stores the result coming out of the kernel.

Inside the I/O subsystem, operands are divided into groups of bits (words)

and send out to the kernel one word per clock cycle. The word size for X, Y and

M operands is based on the kernel configuration. The word size for X is an integer

number depending on the radix of the kernel. For example, the radix-2 version of

the kernel would need one bit from X each time a new PE starts a computation;

therefore, the word size for X is 1. For Y and M , the word size is variable and

could be configured as 1, 2, 4, 8, 16, or 32. The size of 32 bits is the maximum

value allowed in this version of the I/O subsystem design.

3.2. Previous Work on the I/O Subsystem

The first version of the I/O subsystem was developed by the research group

in the Information and Security Laboratory at Oregon State University. It was

designed to support a radix-8 version of the kernel [7]. There are three critical

limitations in this first design:

• It was designed to work only with the radix-8 kernel; therefore, each word

that the X register distributes to the kernel has three bits.

• Since data in Y and M registers are reused by the kernel in several pipeline

cycles, we need a method to keep those data in the registers. The wrapping

24

method, which is used in this design, is not conventional. Even though it

uses the idea of the rotating data, it does not actually write the data back

to the register after the data is read out. Instead, these data are never

destroyed; they are still located at the same position inside the register. The

first word of data is located at a so-called base address, and the read address

is initialized to this value. During the computation, the read address is

increased one position after one word is read out from the register. When

the next computation cycle starts, the read address is assigned with the value

of the base address in order to move the pointer back to where the first word

is located. This process continues until the computation is finished.

• The size of the memory modules used for X, Y , and M registers are fixed to

2,048 bytes, which make the synthesis of the multiplier impractical for small

devices (small area). That is a limitation to flexibility.

This thesis presents an I/O design that is reconfigurable. This means the

number of bits coming out of the X register can be any integer number as explained

previously. The size of the queue is also adjustable by using the memory that can

be configured both in depth and width.

3.3. I/O Subsystem Architecture

Our goal in redesigning the I/O subsystem used in the MMHW was to create

a generic and parameterizable solution that uses basic digital components as much

as possible. In this section, we describe the design of all of its components. The

block diagram illustrating the structure of the I/O is shown in Figure 3.2.

25

{ | }~ }n�
�I�3}n�

�
�
�

�
�
�
��

�

� �
� �
� �

�I� � �=� ���� �B��� ��� � ���� � �� ��� �"� �� �!�-� � � ���

� �B�-� � �=�� �!�-� � � ���
�� � �B�� ��� �����

� � ���
� ���

¡ ¡
¡�¢

£�¤
¥
¦

� �

� �

§Z¨��3�
¨I�©nª���ªZ«Iªn�I¬¬
}\­ �©ZªX�Iªn«IªZ�I¬

{ | }©nª���ªX«IªZ��¬

®�®�¯ ° ± ² ± ¯ ³ ´ µ � � ¶ ¯ ° ± ² ± ¯ · ¸ ¹ º » ¼ » ½

®�¯ ° ± ² ± ¯ · ¸ ¹ º » ¼ » ½
¾ ¯ ° ± ² ± ¯ · ¸ ¹ º » ¼ » ½

¿ À Á Â Ã Á ÄÅ Ã!Æ�Ç!È É Â È É¿ À Á Â Ã Á ÄÅ Ã!Æ�Ç!È É Â È É¿ À Á Â Ã Á ÄÅ Ã!Æ�Ç!È É Â È É

Ê
� Ë � Ì
Í��-Ë �-Ì
Î��=Ë � Ì
Ï-Ï��=Ë � Ì
Ï-ÐX�=Ë � Ì

� Ñ Ò�Ñ Ó � �=Ô Õ Ö=×Ø � Ù � ���� �!�-� � � ���
· ¸ µ ´�Ú ² ¯ ° ± ² ± · ¸ µ ´ Ú ² ¯ ° ± ² ± ¯Ä ½ · °

� �

° ± ² ± ¯ ¼ Û

Ü ÝÞ Ý�ßàáÞ

âã

� �

§�¨I�3�
¨I�~ }X�
�I�3}n�¬
}\­ �~ }n�#���3}X�
ä µ ¯ ÛÄ · ¯ Û· ° ¯ Û· ° ¾

å± ° ° ·

µ ² ± · ²æ ¸ · Û!¸ Ú ¯ ° ½ Û�¸
Ä · ¼ ² ¸ ¯ ç· ¸ ± ° ¯ ç· ¸ ± ° ¯ èBéÛ!¸ ¶ ² ¯ ê µ ¸ ²
ë�ì í í

åµ ² ± ² ´ µ ¯ æàî ßÜ àïðñ ½ Û!² · ½ Ú µ ¼ ¹�Û!± Ú µ

FIGURE 3.2: Block diagram of the I/O subsystem

3.3.1. MMHW Operation Overview

The user loads data into the MM, activates the operation, and reads the

result through a sequence of read/write cycles on the MM registers.

First of all, the user writes the operand size to the control register. Next,

the user loads the X, Y , and M operands. They are loaded with several 32-bit

words. They could be loaded in any order, i.e. we can load either X, Y , or M

26

first. However, for each operand, words must be loaded in sequence, from the

least-significant word (LS Word) to the most-significant word (MS word).

For example, if the operand size is 96 bits, and the user wants to load

Y = (y95y94 . . . y1y0). The user has to start with the LS word (y31 . . . y0) first.

Then, the next word to be written is (y63 . . . y32). And, the last word of Y to be

sent to the I/O is (y95 . . . y64).

After loading all operands, the user tells the hardware to start the operation

by writing a command to the control register. After while, the kernel finishes the

computation and notifies the I/O to update the status register as the multiplication

was completed. The user obtains this information by reading the status register.

As of now, the result is stored inside the S FIFOs. Then, the user can read 32-bit

words from the result register in several consecutive cycles. The status register is

updated again when all bits of the result are acquired.

3.3.2. Host Interfacing Pins to MMHW

There are many signals used to connect the MMHW to the host system.

Table 3.1 shows a type and describes the function for each of those ports.

MMHW is selected by the host system when cs n is asserted. This signal

is generated by an address decoder outside the MMHW. To access the registers

inside the MMHW I/O block, the 4-bit addr signal is used to specify those register

addresses. The 32-bit mm data bus is the bus carrying data between the host

system and the MMHW during read or write cycles. The rd n is asserted when

the host system performs a read cycle. Likewise, the wr n is asserted when a

write operation is executed. The MMHW can be globally reset by the assertion of

reset n. The rdy signal is used to synchronize the read and write operations when

the MMHW is not ready to accept new data or deliver a requested result.

27

Pin(s) Function # Type Description

cs n chip

select

1 in Validates the address applied to the

MMHW. It is generated from an exter-

nal address decoder.

addr address 4 in Address for accessing data in the

MMHW.

mm data bus data 32 in/out A bidirectional data bus to/from the

MMHW.

rd n read

strobe

1 in With cs n, validates an address for

reading data from the MMHW.

wr n write

strobe

1 in With cs n, validates an address for

writing data to the MMHW.

clock clock 1 in Clock source for MMHW.

reset n reset 1 in Reset signal to MMHW. Resets all in-

ternal state storages to zero.

rdy ready 1 out Data ready signal. The MMHW will

pull rdy low in a case where the host

attempts to write to the operand FIFO

in the MMHW, but the previous write

request has not finished loading data

to the FIFO. Or, the host attempts to

read the result from the result register,

but the value in the register is not ready

to be read.

TABLE 3.1: Pin Description (reproduced from [12])

28

3.3.3. Accessing to I/O

To access the registers inside the I/O subsystem, the host has to provide

specific address bits (addr) for those registers. The following table shows the

addresses associated with the I/O registers.

Address Pins Register

0111 result register

0110 Y operand register

0101 X operand register

0100 M operand register

0011 reserved

0010 test register

0001 control register

0000 status register

TABLE 3.2: I/O registers and their addresses

There are four registers in the I/O to which the user can write: Control, X,

Y , and M registers. When the host writes to one of these registers, it asserts a

request (wr n signal) and provides the register address to the I/O.

During the reading operation, there are two registers from which the host

can read: status and result registers. Similar to writing operation, when the host

reads from the I/O, it sends cs n, rd n signals, and the target address.

29

3.3.3.1. Writing the Control Register

The control register can be written when wr n is asserted with addr = 0001.

This 32-bit register contains command and parameters for the MMHW hardware.

The command and parameters are specified in several fields which are described in

detail in [9]. Figure 3.3 shows the 32-bit diagram consisting of fields in the control

register. Since the modification is made to the I/O design, only new and modified

fields will be described below:

òóôõö÷øó óó ôó õó öó ùô ùô úõ óûBü�ý þ ÿ�������� � �!ý�� 	�û
� � ����û�þ � ûBü ý þ ÿ��
����� � �!ý���� ��� ����û�þ � ��� � �
� � ���
����� �
� ����

� � � � �
� � � �!�����

� "#��� �
� � �� � ��� � ���$�% � % �
��� �
� ���

FIGURE 3.3: The diagram of the fields in the control register

• operand size host word - control reg(31:26)[6 bits]: This field specifies the

X, Y , and M operand size in host words. The host word size is 32. Note

that the length of the X, Y , and M operands must be an integer number and

a multiple of 32. The MMHW supports operands up to 2048 bits precision

which is (2048/32 = 64 host words).

• operand size int word - control reg(25:15)[11 bits]: This field specifies the X,

Y , and M operand size in (internal) kernel words. The number in this field

corresponds to the number in operand size host word field. For example, if

the operand is 128 bits precision (which is 4 host words) and the word size

is 8, the number of kernel words is (128/8) = 16.

30

• x fifo reset - control reg(14),y fifo reset - control reg(13),

m fifo reset - control reg(12): These bits are used to reset the operand FIFOs.

Each FIFO can be reset individually by setting its corresponding bit to 1.

3.3.3.2. Writing Operand Registers

The operand registers can be written when cs n and wr n are asserted with

appropriate operand addresses. Additionally, the selected operand register has to

be “ready”. Since the operand register takes 32-bit input at each clock cycle, but

it internally works with w-bit output, it takes more than one clock cycle to transfer

data from the operand register to its permanent location in the FIFO when w is

less than 32. Then, the host cannot write the next 32 bits to the operand register

when it is in the transfer period (the register is not ready).

Figure 3.4 shows a timing diagram when the user loads data to the X FIFO.

In this example, w is 8 bits, so there are 4 words in the X register to be transferred

to the FIFO. The operation starts when the host sends to the I/O block a write

request, the address 0101 used to specify the X register, and 32-bit data. Then,

at the next rising edge clock, the host data are written to the register. A state

machine starts sending all 4 words to the FIFO. However, in this example, the

host requests to write again to the register while there are still two words of the

current 32-bit word left in it. Therefore, the new data cannot be written to the

register at this time, and the I/O control pulls the rdy signal down, forcing the

host to wait. The write cycle is accomplished when the rdy signal becomes high.

31

& ' (&)
* +�+�, - .�/ 0�1

23254�+�* 6 * 4 7 8
9 - .
: / 0�1
;5, 4�<
, + =

+�* 6 * 4�, > ?�@ A B A (- C�/ 0�1 D
E F G HID�E F G�JKD$E F G LMD�E F G N D$E F G�HID�E F G�JKD$E F G LMD�E F G�N

G�O P O H
H J H J H J H J

G O P O J

FIGURE 3.4: Example of the timing diagram for writing X operand

3.3.3.3. Reading the Status Register

The status register can be read by the host when rd n is asserted with the

address pins (addr) are 0000. The host can monitor the status of the MMHW by

looking at the contents inside the status register. The status of the MMHW is

defined in many fields. Figure 3.5 shows the diagram of these fields in the status

register. Some of the status fields is already described in [9]. Only new fields are

described in the following list:

QRSTUVWR RR SR TR UR XT R XYZR QR YR�ZR VR WS Q
[\] [\] [\] [\][\]^�_ ^�_^ ^^ ^` a�^ a ` b$a�c

d egf f

a [!h�i \

d e5f f a�[!hgi \f j$k c�a�c$lm$e i l�no` p i a a�[qh�i \ lm
e i l$^ i k ` i ^ i p f f f j$k clme i l
^ i k ` i j h�l$c j
r a

FIGURE 3.5: The diagram of the fields in the status register

• m stillload but start - status reg(7), y stillload but start - status reg(8),

x stillload but start - status reg(9): These bits indicate errors occurring to

32

the corresponding operands. This error generated when the host started the

multiplication before all operand words have been loaded.

• m empty but start - status reg(10), y empty but start - status reg(11),

x empty but start - status reg(12): These bits indicate an error generated

because the operand FIFO has not been loaded with any data (empty), and

the user starts a multiplication.

• m loaded but write - status reg(13), y loaded but write - status reg(14),

x loaded but write - status reg(15): These bits indicate the error generated

because the operand FIFO has already been loaded with all operand bits,

but the user writes more data to the FIFO.

• sc fifo empty - status reg(16), ss fifo empty - status reg(17): If set to one,

these bits indicate that the corresponding FIFO is empty.

• sc fifo full - status reg(18), ss fifo full - status reg(19): If set to one, these

bits indicate that the corresponding FIFO is full.

• reserved - status reg(31:20)[12 bits]: Reserved for future use.

3.3.3.4. Reading the Result Register

Reading from the result register is controlled by the assertion of cs n and

rd n with addr is 0111. Also, the result register has to be “ready”. Since the size

of the register is 32 bits wide, but it only gathers one w-bit word from the S FIFOs

in each clock cycle, it takes more than one cycle for the register to have a 32-bit

result word ready when w is less than 32. If the host requests to read when the

result register is in the gathering period (it is not ready), then the host cannot

read from the register.

33

Figure 3.6 shows a timing diagram when the I/O builds the 32-bit result

word and keeps it in the result register, ready for the host to read. Whenever the

op done signal is set, the state machine starts gathering words from the S FIFOs

to fill in the result register. In this example, w is 8 bits; therefore, there are 4

words to be read from the S FIFOs. The I/O takes at least 5 cycles to complete

the filling the result register. If the host reads from the result register during these

cycles, the I/O will pull the rdy signal to 0, so the host has to wait. The read is

successful when the rdy signal is set back to 1, and then the 32-bit result is shown

up at the data bus.

s t u s v

w x�y�z
u {�y�x�u z |

w | } ~�t � y�x�� � � y���u w x
w x��

�3��y�x���� � y
� ~
} � �
� � ��� � � � ��� � �

��� � ��� ��� � � � �$� � � � ��� � ��� ��� � � � ��� � � � ��� � ��� �$� � ���
� x�x�w � ��� ��� � � � �

FIGURE 3.6: Example of the timing diagram for reading the result register

3.4. Description of Building Blocks

3.4.1. 32-to-w Converter

This module is constructed by a normal parallel-in/serial-out shift register

and its control unit as shown in Figure 3.7. It takes 32-bit input at a time. The

34

serial output bits are shifted out w bits every cycle where w is a word size defined

by the kernel design. w can be described as the number of bits in each kernel word.

� ��� �� ¡�¢
� £�¢g¤�¡�� �
����
¥�¦g� ��§�¢�¨�¡�� � ©$¡ ª«�
¥�¦�¡$� ¬ ­�� ¡�ªo¥$��¨
¤�® ¥
¤�¯

��¨�£
® ¥�§�¨
��¨$¡�°
±g ¡�ª²� ¬ �³ ¬ ³ ¥�¡�ªo�´�´

¥�¦5�
��§�¢5¨�¡
� � ©
¡$� µ�¬ ³ ¡�� ¢

� ��§ ¤�µ$¡�¥�¦5¡�� ¬ ­ �

� ��� � ¡�¢
® ¥�§�¨
� µ�¬ ³ ¡�� ¢
¦�¡�¬ ¢
¤�® ¥
¤�¯

ª¶¡�¥�±g

·�¸

¹

º�»$¼ »�½�¾ ¿

À�¾ À$Á�½ ÀgÂ Ã3Ä Å
Á�ÆgÇ È
»
¿5º�½�É²Ç

Á�Æ�½5Ä
¾ Ê$Ç�½3¾ ¿Ë¼ ½gÉ«Á
È º
Ì Í Á�¿3¼ È�Á$Â ½gÈ Ç ÎÐÏ Ñ�Ò�Ó Ô$Ò�Õ�Ö

Â Á
»�º�Ç º�½�×�ÃØ¼ ½gÉÙÈ
¾ ¼ Ç
À�¾ À�Á�½gÉÙÇ
È Ç »�Í�Å�½gÁ�Æ�½�Ä ¾ Ê
Ç

ºg»�¼ »�½gÈ�Ç�Î5Ñ Àg¾ À$Á

È º�Ú

ÛÐÜÞÝÐß àËáãâ�ä�åÐß æ�á�ä�â�ç

ÛØèqégêoá�â
égë ç

ÅgÁ�Ä�¼ ½gÉÙÈ�¾ ¼�¾ ¿�Î5½�È�Ç�Î

Á�Æ�Ç
È�»$¿�º�½�È
Ç Î�½gÄ�ÅË¾ À�¼ ½�Ç
¿

FIGURE 3.7: System level of 32-to-w converter

The I/O has three copies of this type of the converter for each one of the

operands’ FIFOs. It is mainly used to interface between the 32-bit host bus and

the input port of the FIFO. Since the FIFO is constructed by a random access

memory (RAM) and the width of the RAM is defined by w, we need a temporary

storage that is able to hold 32-bit data from the host, and then transfer these data

to the FIFO, w bits at a time.

It also has a control part that maintains the proper functionality of the I/O.

Firstly, it has to be able to correctly pass on 32-bit data from the host to its

corresponding operand’s FIFO. So, whenever there is a request from the host to

write data to the converter, in the next clock cycle, the fifo we signal (a write

request signal) is sent to the FIFO, enabling it for the write operation.

The rdy signal, which is used to control the host writing the FIFO, is also

implemented in this unit. As explained in section 3.3.3.2. on page 30, the rdy

35

signal is normally low, and it will be set high when the host attempts to write new

data into a FIFO that is still being updated (written).

The reach op size signal indicates that all operand bits have been loaded

to the FIFO. A counter keeps track of the number of operand words loaded to

the FIFO. If the value of this counter is equal to the operand size (portion of the

control register), the reach op size will be set high.

The converter generates two signals indicating that there is an error in the

operation: loaded but write and stillload but start. The loaded but write error in-

dicates that the FIFO has already been loaded with all the bits of the operand,

but the user wrote more data to the FIFO. The exact size of the operand is needed

for the MMHW. If the user writes more data to the FIFO, the result from MMHW

will be incorrect. The stillload but start error indicates that the size of data in

the FIFO is less than the size of the operand, which means the FIFO expects more

data to come; however, the user started the MMHW.

3.4.2. S FIFOs

Regular FIFOs are used to store word vectors for both SS and SC. The

interface of the FIFO is shown in Figure 3.8. data in is a w-bit input port. It

is connected to one of the kernel ports where words of S are sent out. The data

presenting at this port is written to the FIFO when there is a write request via a

fifo we pin. data out is a w-bit output port. This ports sends out a word of S to

the kernel when it is requested via a fifo re pin. full and empty are output pins

indicating the status of the FIFO. The FIFO can be reset (set to empty) manually

via either reset n (global system reset) or fifo flush pin.

Figure 3.9 shows a block diagram of the FIFO design. The FIFO uses RAM

as its storage. Since the target technology for our design is Spartan II FPGA

36

ì

íÐî²ï
îqðòñ

ì
ó�ô�õ�ô5ö�÷oø
ùÐú ö ú ÷#û�ø

üýô

þ û þËÿ ÷ þ�� � õ��
ó$ô

� � ÿ ���

ùãú ö ú ÷ ÿ�� ö
þ��	� �
ô�

�«ö �

FIGURE 3.8: The interface of the FIFO used for S

chip [10], we use on-chip dual-port Block RAM [11] to be a memory element in

this design rather than a RAM module described in VHDL.

The dual-port Block RAM has two independent ports: A and B. Both ports

have an access to the same memory space, but they are independent to each other

which means each memory port has its own interface, e.g. address bus, data

in/out bus, clock, etc. We configure port A for read. The interfaces for port A are:

read address(ADDRA), clock(CLKA), and data out(DOUTA). On the other hand,

port B is configured for write, and its interfaces are: write address(ADDRB), data

in(DINB), write enable(WEB), and clock(CLKB). Note that the bus for data in

and address are separate lines.

Moreover, the RAM has a registered output, which implies that the content

of the memory, when read, is registered before showing at DOUTA pins. So,

whenever the address at ADDRA changes, the content of that address will show

up at DOUTA pin at the next clock cycle.

The FIFO configuration is parameterizable. This can be done by changing

the width and depth of the RAM. w represents the width of the memory. The

depth is configured by d which is the width of the address bus. Then, the depth

of the RAM is 2d. For instance, if w is 8 and d is 5, this gives a memory size of

8 × 32 which is 256 bits.

37

����� ����� � �

��������� � � �!�"

���$�%�$�

&'# ���%�$� #

()+*
,-.
(*
) /0 12
/)

���3� 4!5�5�6 7

&'# ��� 485$536 7

& 7
7

9;:�6 6
78<>=�� ?

@ A%B�C DFE GF@ GH
E GF@ G H DB
C I�J�B HC�K I;C L

�

M

M

M

9�:�6 6
78<>=�� ?

����� ����4%:N�9;� 9%4�� 9;6 :3O�P

9;� 9%4�� 9;6 :3O�P @ A%B�C DFE GF@ GH
E GF@ G H DB
C I�J�B H
C K I�C L

Q &'# � � 7=34;� ��� 7 #5�7 #!R

Q # 78�%�=34;� ��� 7 #5�7 #!R

SUT VXW

YZSZSU[�Y

YZSZSU[�W\^]�W

SZ_U`Za�Yb�c$d Y

b�c$d W

���$e����
&f# �$eF���

FIGURE 3.9: Block diagram of the FIFO

The write pointer is generated by the use of a regular counter. However, it is

a different story for generating the read pointer. Since the RAM has a registered

output as explained previously, the data is delayed by one clock cycle. Therefore,

when the data are read out from the FIFO, the sequence of data is wrong. Fig-

ure 3.10 shows a comparison of the sequence of data read from the queue along

the clock. Figure 3.10(a) is the one that we expect for the FIFO; Figure 3.10(b)

is the one that happens when we use just a counter to generate the read pointer.

If we take a look at Figure 3.10(b), we can see that the data are delayed. The

first word of the queue shows up at the output port for two clock cycles. Therefore,

we need an extra control to correct this problem by advancing the read pointer

one position in order to have the next word ready when it is needed.

The control part for generating the read pointer is shown in Figure 3.11. It

consists of a regular counter, an array of flip-flops with an enable input, and a

multiplexer. The counter has 1 as its initial value which means when the system

is reset, the counter starts counting from 1. The read enable signal is the signal

38

g h g i g j

k8l

m

g n

op q
r s t u uv

utsr
s t u v

w$x g x�y�z${ g
k8l x$w|x�w�w k

k w�y3}%~ g k
� �8��� �%� � ������ � ���!�

g � g �

(a)

� � � � � �

�8�

�$� � �����$� � � � �

� �

�����8� �$�|����� �

(b)

FIGURE 3.10: Comparison of the sequence of data read from the FIFO

that enables the counter to operate. Then, the value of the counter is sent out to

the flip-flops and the multiplexer. The purpose of those flip-flops is to delay the

output from the counter. Thus, the value that comes out of the flip-flops is always

one less than the value of the current counter. Each flip-flop has the initial value

of 0; therefore, at the initial state, the flip-flops give 0, but the counter gives 1.

Then, the multiplexer selects the value of the read pointer from either the flip-flops

or the counter by using the read enable for a select signal.

The FIFO can be re-initialized by the user via the fifo flush signal. This will

only move the write and read pointers of the FIFO to their initial position. Thus,

39

�|�¡ £¢¥¤§¦�¨'©«ª
¬ ­N®$¯

° ­�±N²�³

´�µ�¶�µ�· ¸�¹

´�µ

º» ¼ ½�¼ ¾ ¼ ¿%À;Á�¿FÀ Â$ÃFÄ

�XÅ'Æ Å«ª
°$Ç

º

È

É
É ´�µ$Ê�ËÌÊ�Ë�Ë�´

Í Î ÏFÐ Ñ8Ò Í

Í Î ÏFÐ Ñ8Ò Í Ï%Î�Ó Ô Õ Ö�Ó Î
É

´;µ

´�µ

FIGURE 3.11: The structure of a read pointer generator

the FIFO is empty. But, the data in the FIFO need not to be cleared; they can

be left in the queue.

3.4.3. Y and M FIFOs

The FIFOs, used for both Y and M operands, have a rotate capability. This

means they can be selected to be regular queues or rotators. When the FIFO is

acting as a rotator, the data coming out of the FIFO are written back into it.

To make the FIFO feasible to function as a rotator, the regular FIFO used

for S operand is upgraded. Figure 3.12 shows the modification to the FIFO.

×

Ø	Ù|Ú;Ù^Û
Ü

Ý�Þ3ß$Þ�à áXâ

ã¥ä à ä áfå â æ Þ

ç å ç�è á ç�é ê ß�ë
Ý�Þ

ì é è ì�í
î è¥ã Þ

×

×

ï

ð
× ãXä à ä á èUê à

ç�êUé!é
Þ�î|ñòà ó

FIGURE 3.12: Block diagram of the rotator design

40

The multiplexer is added to the data path of the FIFO. Then, the data

attempted for the FIFO is selected between an external data or the data out from

its own output port. mode signal is used for the selection.

The signals that activate the increment for both pointer generators are also

modified. In a rotator mode, both generators increase their value according to the

read operation. Therefore, the multiplexer is added to the control section as shown

in Figure 3.13. This logic circuit is designed based on the function of this FIFO

version as shown in Table 3.3

Main function
Signals

FIFO Operation
mode we re wr cnt rd cnt

NOP X X X 0 0 NOP

Queue

0 0 0 0 0 NOP

0 0 1 0 1 read

0 1 0 1 0 write

0 1 1 1 1 write and read

Rotator

1 0 0 0 0 NOP

1 0 1 1 1 rotate

1 1 0 0 0 NOP

1 1 1 1 1 rotate

Note: NOP - No Operation, X - Do not care

TABLE 3.3: The truth table signals controlling FIFO read/write

41

ô

õ

öø÷>ù'ú

û
ú

üNú

ýZþ	ÿ!ÿ

ú¥ö���� �

ü3ù����
	�� û ü��
��	��

FIGURE 3.13: Logic for pointer generators’ count signals

3.4.4. X FIFO

Unlike the other two operands, the operand X is not reused during the

MMHW operation. Its value can be discarded once it is loaded into the kernel.

We do not have to write it back to the queue. Therefore, the design of the storage

for X should be very simple. However, the number of bits that is taken from X is

not w. This number varies depending on the radix used in the kernel design. For

instance, in radix-8 kernel, 3 bits are needed each time X is read. This means that

the design of a storage for X will be very complex if we would like to construct

it with the RAM-based FIFO. However, we will still refer to this module as an X

FIFO.

Figure 3.14 shows our design for X FIFO. We design the module as a series

of the parallel-in/serial-in/serial-out k-shift registers. The registers are connected

to one another in a linear form. Each register takes w bits parallel or k bits serial

input. At the output, it shifts out serial k bits. When data is loaded into the

FIFO, the control sends an enable signal to one of the registers, and then write

to that register. The serial output port of one register is connected to the serial

input port of another register on its right.

For X operand, we only write to the FIFO until the whole data of X is

kept inside. Then, we start to read out from it; the read operation continues until

42

��� ����������� ���

� �� � � �
� � �

 "! � ! �#�$� %#& '"('"�

'"('"�)� '"* �)+$,'�('��-�.�
�
/ 0�1�2�3"4 5"/ 5-64 5�/ 5�6 3"1
2)7)8�1�6
2�9 7�2-: ;�< �$(� �= ���)��� ���)>
/ 0�1�2�3"4 5"/ 5-64 5�/ 5�6 3"1
2)7)8�1�6
2�9 7�2-: ;.? � !" = ���)��� ���)>

��� @�� �-A�+��-�'"('"�)� '"* �)+$,

B�C �)%.(�D ��(� E

B�F �-�)� �-� E� �.�)���)��� �)�

G$G

G$G

H�3�I 1/ 3�I 1
/ J�I K 6 3�5�19 7�L)M

/ 3�7�8"6 H�3�I 1/ 3�I 1
/ J�I K 6 3�5�19 7�L�M

/ 3�7�8"6 H�3�I 1/ 3�I 1
/ J�I K 6 3�5�19 7�L�M

/ 3�7�8"6 @ N

���$@�� ��A�+$���

'"��* *�-OQPR� S

* � !� ��(��� T U.V

W XY
Z\[] ^
_`ab
cde

W XY
Z\[] ^
_`ab
cfe

�

FIGURE 3.14: The structure of X FIFO

the MMHW finishes its operation. In the control section, there is a counter that

counts every time when there is a write request for the FIFO. The value of the

counter is corresponding to the position of the register in the series. So, the value

of the counter is sent to a decoder, which , then, sends an enable signal to the

corresponding register. Thus, only the chosen register is written with w-bit word

sent from the X’s 32-to-w converter. When the FIFO is read out, k bits are shifted

out at the output port of each register. These k bits are sent to the serial input

port of the adjacent register. The k bits output of the right most register is send

to the output port of the FIFO which is connected to the kernel.

3.4.5. w -to-32 Converter

After the kernel has finished the multiplication, it sends the kernel done

signal to the I/O. At this time, the result is stored inside either the SC or SS

43

FIFOs. Since the result register is 32 bits wide, but the output of the FIFOs has

only w bits, we need a hardware to convert multiple words of w-bit data to a 32-bit

value. We call this circuit a w-to-32 converter. The value of w is a power of 2

and less than or equal to 32; therefore, we need NW in 32 = 32
w

words in order to

construct the 32-bit data and put them into the register. The diagram of w-to-32

converter is shown in Figure 3.15 below.

gih�jlk-m
n$oRp
q�rsn t�o$qvu�w

g�xlo yzo$q|{}y�~#�ln �lqQw

�)�Q���v� �
�
u�qvt#�z�$o �l�
y�o$y������zu.�u.qvt���� o ���
y�o y �#� �

���s�����z�lq

���
�
� �v� �#�
q#�ly
m�� q

���
t�o �lt �Rn �R�
t"��u�q�y
�
u.��� ���Rt#o �lu.q�y
�zn ��rl��u#qvt����$o t

FIGURE 3.15: The structure of w-to-32 converter

When the op done signal is set, the state machine sends host sfifos read to

both of S FIFOs requesting the first w-bit word from them. The result data word

signal is the w-bit data from either SC or SS FIFOs (selected by the status k(0)

signal from the kernel). This first word is the least significant word of the result;

therefore, when we write w bits to the 32-bit result register, the least significant

position is written first.

In the state machine, there is a counter that keeps track of the number of

words of the result read from the S FIFOs. It is used to make sure that the exact

number of NW in 32 words are read from the S FIFOs and written to the result

register. Additionally, we use the value of the counter to generate the enable signals

44

for writing the result to the proper position in the result register. For instance, if

w is 4, there are 8 words (NW in 32 is 8) to read from the S FIFOs and write

to the register. We assume that at some point when the value of counter is 3, the

enable signals which are 8 bits will be 0000 0100. Therefore, at the next rising

edge of the clock, the third word of the result from the S FIFOs will be written

from the 8th to 11th position of the register.

When the result register is ready with 32-bit result data stored inside, the

host can now send host reading results signal to the I/O. This process connects

32-bit result register to the host data bus (i.e. mm data bus), and takes the result

into the host system. Then, the process of taking words from the FIFOs and

constructing the result register is repeated until the op done is cleared, i.e. the

host receives all the bits of the result value from the I/O block.

45

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter, we present the performance evaluation of the MMHW (both

radix-2 kernel and I/O subsystem) based on area and time estimation. The discus-

sion of the kernel alone was already presented in [7] and [3] for ASIC, and [12] for

FPGA implementation.

4.1. Simulation, Synthesis, and Implementation Environ-
ment

The design was simulated in Modelsim for testing and verifying its functions.

It was implemented and optimized for FPGA. Xilinx Synthesis Technology (XST),

embedded in Xilinx ISE WebPack version 5.1i, was used in the project as a syn-

thesis tool. Then, the implementation results were generated and presented in this

chapter.

The main target technology is a Xilinx FPGAs. One of them is the Spartan

II XC2S200 [10]. This chip has 28×42 CLB arrays which is 1176 CLBs and equal

to 2352 slices. It has 14 blocks of RAM with the toltal size of 56 Kbits. The design

was also synthesized for Virtex XCV200 [13]. This chip has the same number of

slices and block RAMs as the other one. However, the implementation results are

very similar for both families. Therefore, we will only illustrate the results for

Spartan II XC2S200.

During the experiment, many design configurations were tried by varying

the values of operand precision (n), word size (w), number of PEs in the pipeline

(NS), and size of the registers. For this work, n was set to 256, 512, 1024, or 2048

bits; w was considered as 8, 16, or 32 bits; NS was an integer number. The size

46

of registers was set to store 2048-bit operands for each case of w. Therefore, the

size of RAM were 8x256, 16x128, and 32x64 for w as 8, 16, and 32, respectively.

The data were collected after the Place and Route (PAR) step because the

post-PAR results are more accurate than those of synthesis step. During PAR

step, the tool applied the constraints to device resources (e.g. number of slices,

I/O pins, etc.). The constraint of the number of slices created the limitation of

NS when the design was implemented with different configurations.

4.2. Area Estimation for MMHW

The area of the MMHW depends on word size (w) and number of stages

(NS). The dependence of w and NS over the kernel area was discussed in [7].

And, as mentioned eariler, the operand register size is set to store 2048 bits which

is the maximum operand size; thus, the I/O can be used with the scalable kernel

to work with any operand size upto its maximum. Hence, the only parameter

that has an effect on the I/O area is w. For example, the I/O area for w = 8 is

1517 slices which is about 65% of the chip. Figure 4.1 shows the area of MMHW

configurations against the number of PEs for all three word sizes.

The figure shows that the area of MMHW linearly increases for each addition

of NS value. However, after some value of NS, the chip gets crowded, and the

area stays constant at 2,350 slices which is almost 100% of the chip area.

As stated previously, only the I/O alone already takes about 65% of the chip

area. The main reason for this is because the X FIFO is designed by using a series

of shift registers that has the total size of 2,048 bits. This large area limits the

configurations for NS to 15, 7, and 4 PEs for word size 8, 16, and 32, respectively.

Hence, the exploration of the area/time tradeoff is also limited.

47

1684

1741

1801

1862

1919

1978

2036

2094

2180

2286

2350

1814

1924

2033

2143

2350

1847

2060

2350

2257

235023502350

1709

23222334

1500

1750

2000

2250

2500

0 2 4 6 8 10 12 14 16

Number of PEs

A
re

a
(S

lic
es

)

8 bits

16 bits

32 bits

FIGURE 4.1: Area of MMHW for different word size configurations on Xilinx
chip

In order to have more number of PEs in the pipeline, the size of the X

operand register is configured to be exactly the same as the size of the operand.

For example, while working with w = 8 and n = 256, the number of 8-bit shift

registers used inside the X register is only 32, but it was configured to have 256

shift registers; therefore, there are 224 of those that are never used. Trimming

off those unused shift registers results in giving up area from the I/O; therefore,

the MMHW is able to be configured with more PEs. Note that the size of Y and

M registers is set to 2,048 bits via a RAM configuration. Since block RAMs are

primitive components of the FPGA chip, changing their size from 256 to 2,048 bits

only take few more slices occupied by the FIFO control unit.

Further results of this work from this point are based on a setup where the

X register size is set to the same size of the operand.

Figure 4.2 shows the MMHW area for different word size configurations versus

the number of PEs. There are four lines in each figure. Each line represents the

area for different operand precision. The larger the precision, the smaller the

48

maximum number of stages. For example, in w = 8 configuration, the maximum

number of stages is 27 for 256-bit precision, but it is only 11 for 2048-bit precision.

The area where w = 8 and w = 16 is increased linearly as the number of

stages increases as shown in 4.2(a) and 4.2(b). However, the area for w = 32 is

linear to the point where the number of stages is 4 for operand size less than 2048

bits. As the number of stages increases from that point, the area slowly increases

and stays constant at 2350 slices (about 99% of the area).

4.3. Time Estimation for MMHW

The critical path delay for the MMHW was found to be in the path between

the block RAM and one of the address generators (write or read). The example of

implementation results of the critical path delay for 1,024-bit precision for different

kernel configurations is shown in Table 4.1. The values in the table are very closed

to one another because the timing constraint was set and applied to the design

during the PAR process. The constraints were set to: 13.75ns for w = 8 and 16;

13.9ns for w = 32.

Figure 4.3 shows the critical path delay of different word size configurations

versus the number of PEs. Each graph has four lines that are the delay of different

operand precisions. The delay is quite a constant as the timing constraint was

applied when the design was implemented. However, as the area increases, the

value of timing constraints has to be increased.

The MMHW can run at clock frequency about 72.5 MHz for w = 8 and

w = 16. However, for w = 16 and n = 256, when NS = 13, the delay is unchar-

acteristically higher than the other values of NS. For w = 32, the MMHW can

operate with the clock about 71 MHz. But, for n = 256 and NS = 7, the clock is

about 67 MHz.

49

500

750

1000

1250

1500

1750

2000

2250

2500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of PEs

A
re

a
(S

lic
es

)

256 bits

512 bits

1024 bits

2048 bits

(a)

500

750

1000

1250

1500

1750

2000

2250

2500

0 2 4 6 8 10 12 14

Number of PEs

A
re

a
(S

lic
es

)

256 bits

512 bits

1024 bits

2048 bits

(b)

500

750

1000

1250

1500

1750

2000

2250

2500

0 2 4 6 8 10 12

Number of PEs

A
re

a
(S

lic
es

)

256 bits

512 bits

1024 bits

2048 bits

(c)

FIGURE 4.2: Area of MMHW where (a) w = 8, (b) w = 16, (c) w = 32

50

Clock period (ns)

Operand’s precision - n = 1,024 bits

NS
Word size - w

8 16 32

1 13.732 13.565 13.841

2 13.720 13.649 13.894

3 13.717 13.518 13.821

4 13.606 13.686 13.900

5 13.748 13.668 13.776

6 13.739 13.731 13.860

7 13.641 13.728 13.769

8 13.715 13.567

9 13.498 13.658

10 13.688

11 13.702

12 13.586

13 13.719

14 13.621

15 13.541

16 13.745

17 13.677

18 13.719

TABLE 4.1: Clock period for different configurations, n = 1,024 bits

51

13.000

13.100

13.200

13.300

13.400

13.500

13.600

13.700

13.800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of PEs

C
ri

tic
al

 P
at

h
D

el
ay

 (n
s)

256 bits

512 bits

1024 bits

2048 bits

(a)

13.000

13.200

13.400

13.600

13.800

14.000

14.200

14.400

14.600

0 2 4 6 8 10 12 14

Number of PEs

C
ri

tic
al

 P
at

h
D

el
ay

 (n
s)

256 bits

512 bits

1024 bits

2048 bits

(b)

13.400

13.600

13.800

14.000

14.200

14.400

14.600

14.800

15.000

0 2 4 6 8 10 12

Number of PEs

C
ri

tic
al

 P
at

h
D

el
ay

 (n
s)

256 bits

512 bits

1024 bits

2048 bits

(c)

FIGURE 4.3: Critical path delay of MMHW where (a) w = 8, (b) w = 16, (c)
w = 32

52

4.4. Total Operation Time

The total operation time Top is the product of the total number of clock

cycles to operate MMHW and the clock period. The total number of clock cycles

is measured in three parts: pre-computation, computation, and post-computation.

In the first part, the number of clock cycles depends on n and w. It includes

cycles needed for writing parameters to the control register, loading X, Y , and M

operands, and starting the kernel. For writing the control register and starting the

kernel, each task takes one cycle.

For loading operands, the number of clock cycles taken depends on how the

task is performed. The scenario for this task is to interleave the write cycles into X,

Y , and M . That means the 32-bit words of different operands are loaded in three

consecutive cycles. After one word of each operand is loaded to its register which

takes one clock cycle, it takes 32
w

cycles to write 32-bit word to its corresponding

FIFO. Then, the next 32-bit word can be loaded. The process repeats until all

operand bits are written in each FIFO. We assume that the first 32-bit word of X

is loaded first, then Y , and M is the last operand. Therefore, it takes (32
w

+1) · d n
32
e

clock cycles between loading the first 32-bit word of X to its register and writing

the last w-bit word to its FIFO. For the M operand, the task finishes two cycles

after. Hence, the number of clock cycles taken before starting the MMHW (C1) is:

C1 = Cwrite control register +

(

32

w
+ 1

)

⌈ n

32

⌉

+ 2 + Cstart kernel

=

(

32

w
+ 1

)

⌈ n

32

⌉

+ 4

For the second part, the number of clock cycles the kernel takes to finish the

computation (C2) is discussed in [7] and [3]. It is:

53

C2 =







2kp + e − 1 if (e + 1) ≤ 2p

k(e + 1) + 2(p − 1) otherwise.

where k =
⌈n

p

⌉

and e =
⌈ n

w

⌉

.

The number of clock cycles in the post-computation is the cycles needed

for reading the final result from the result register. After the kernel finishes the

computation, the 32-bit result register is filling by w-bit words from the S FIFOs in

the next clock. This filling period takes 32
w

cycles, and the 32-bit result word is now

ready. When the word is read by the host (one cycle is taken), the filling period of

the next 32-bit result word starts. The process repeats until the host reads the last

32-bit result word from the MMHW. Assuming the best case scenario, the number

of clock cycle in this part is:

C3 =

(

32

w
+ 1

)

⌈ n

32

⌉

+ 1

Hence, the total number of clock cycles to operate MMHW is C1 + C2 + C3.

The number of clock cycles for pre- and post-computation for each configuration

is shown in Table 4.2. Table 4.3 shows the total number of clock cycles, and the

total operation time in microsecond when w = 32 and n = 1,024.

The total operation time Top versus the number of PEs is shown in Fig-

ure 4.4. Each figure presents the time in microseconds for one operand precision

with different word sizes.

4.5. Optimal Design

As the number of slices of the chip is limited, it can be considered as a design

constraint. Therefore, the goal is to identify the configuration of the MMHW

54

n=256

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Number of PEs

Ti
m

e
(u

se
cs

)

8 bits

16 bits

32 bits

(a)
n=512

0.00

50.00

100.00

150.00

200.00

250.00

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Number of PEs

Ti
m

e
(u

se
cs

)

8 bits

16 bits

32 bits

(b)
n=1024

0.00

100.00

200.00

300.00

400.00

500.00

0 2 4 6 8 10 12 14 16 18 20

Number of PEs

Ti
m

e
(u

se
cs

)

8 bits

16 bits

32 bits

(c)
n=2048

0.00

200.00

400.00

600.00

800.00

1000.00

0 2 4 6 8 10 12

Number of PEs

Ti
m

e
(u

se
cs

)

8 bits

16 bits

32 bits

(d)

FIGURE 4.4: Total operation time of MMHW for (a) n = 256, (b) n = 512, (c)
n = 1024, (d) n = 2048

55

C1, C3

word size Operand size (bits)

(bits) 256 512 1024 2048

C1

8 44 84 164 324

16 28 52 100 196

32 20 36 68 132

C3

8 41 81 161 321

16 25 49 97 193

32 17 33 65 129

TABLE 4.2: The number of clock cycles needed in pre- and post-computation for
each configuration of w and n

NS Clock cycles Operation time (µs)

1 8581 118.77

2 4359 60.56

3 2975 41.12

4 2251 31.29

5 1857 25.58

6 1562 21.65

7 1366 18.81

TABLE 4.3: The total number of clock cycles and total operation time for
w = 32; n=1,024 on Xilinx Spartan II XC2S200 chip

(w and NS) that satisfies the constraint while yielding the best performance —

shortest total operation time.

56

Since the number of clock cycles for the pre- and post-computation parts are

taken into account, the effect of the word size configuration on the total operation

time is more significant than that of the computation part alone — only kernel is

considered for the operation time. C1 and C3 are notably small when w = 32. As

a result, the configuration for the most efficient design is based on a design with

w = 32. The optimal designs for each operand size are shown in Table 4.4.

n w NS Area Top (µs)

256 32 8 2252 7.62

512 32 8 2350 8.59

1024 32 7 2350 18.81

2048 32 4 2350 61.02

TABLE 4.4: The configurations of the optimal design for each operand size

Table 4.5 shows the performance of the MMHW comparing with that of the

ARM system (running at 80 MHz) and software algorithms [14]. The configurations

for MMHW are selected with w = 32 and NS = 8 and 7 for 256-bit and 1024-bit

precision, respectively. The MMHW is selected to operate at clock period of 20ns

(50MHz) that yields the total operation time as 11.1µs and 27.3µs for operand

precision 256 and 1,024 bits, respectively. The speedup is very significant even

though the operation time of the MMHW is already included the time to access

the I/O, and it operates at a slower clock frequency.

57

n MMHW (µs) Software on ARM system (µs) Speedup

256 11.1 42.3 3.81

1024 27.3 570 20.88

TABLE 4.5: Comparison of a performance between MMHW and ARM system
with 80MHz clock

4.6. Operation Bandwidth

The comparison of the bandwidth of the I/O and the kernel is necessary. This

is because the MMHW is operated several times in the execution of the modular

exponentiation; thus, the I/O is also accessed for each MMHW operation, i.e.

the result read from the I/O is used as operands in the next MMHW operation.

Therefore, several cycles are taken to finish reading result and writing that result

to the operand registers before the following MMHW operation can start. These

cycles are considered to be the I/O bandwidth.

The I/O bandwidth should be small when compared to that of the kernel

because, most of the time, the hardware is expected to do the computation rather

than spending too much time just for transferring data through the I/O. As the

configurations are already selected, the proportion of the number of clock cycles is

inspected for those configurations. Figure 4.5 shows a comparison of the number

of clock cycles needed to perform each task in the MMHW operation.

As shown in the figure, the proportion of time used by the I/O is around

6 - 11% of the total number clock cycles. That means about 94 - 89% of the total

number of clock cycles is used by the hardware to perform the actual computation.

58

3.6

93.3

3.1

5.7

89.0

5.3

5.0

90.3

4.8

3.0

94.1

2.9

0%

20%

40%

60%

80%

100%

C
lo

ck
 c

yc
le

s

256 512 1024 2048

Operand size

post-

computation

pre-

FIGURE 4.5: Clock cycles performing each MMHW task in percentage
proportions

59

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

An alternative design of the kernel is investigated. The design is a systolic

array based on the Montgomery multiplication algorithm. The algorithm for this

design needs one more iteration than the kernel in [3] does to finish the compu-

tation. Therefore, the multiplication of n-bit operands requires (n + 1) PEs in

the full precision array. The only word size that works in the systolic array is 1.

Although it is claimed to be able to work with any word size, only simple cases

(the number of bits for all operands are the same) were shown in [4]. For the

cases where the word size of X is different from that of Y and M , the PE design

is not shown in [4], and it was not possible to derive the information from the

paper. The systolic array can be scalable when the partitioning method is applied

to it. The infrastructure for a scalable architecture is composed of the pipeline

with some number of PEs and the temporary memory element used to store the

intermediate communications between pipeline cycles.

The architecture of the scalable architecture using the PEs proposed in [4]

would be similar to the one in [3], very similar performance, but the inability to

make the word size bigger than 1 made us abandon further comparison of this

alternative with the design in [3].

The new version of the I/O subsystem is presented in this work. It is scalable

and parameterizable. It can be configured to work with the operand size of up to

2048 bits, and the word size is a number that is a power of 2 and less than 32.

Regular FIFOs are used to store the intermediate data between pipeline cycles.

Rotators needed for some operands are designed using the regular FIFO with a

small modification to support three types of operations: writing into the FIFO,

60

reading from the FIFO, and writing back the information into the FIFO as it is

read (rotation).

Several configurations of the MMHW support the analysis of many area and

time tradeoffs. The best option to configure the MMHW depends on the operand

precision. The design is optimized and implemented for FPGA. In last chapter,

the optimal configuration was analyzed for each precision case. The result shows

that the biggest word size is the best choice as the I/O bandwidth is smaller.

5.2. Future Work

The I/O subsystem described in Chapter 3 was only tested when connected

to the radix-2 version of the kernel. Testing its functionality with other radices is

needed to be done since it is intended to be generic.

Moreover, the implementation results presented in Chapter 4 are limited for

the large word size as well as the large operand size. It would be interesting to

observe the performance of the MMHW with more than 4 PEs in the pipeline

when word size is 32 bits and operand size is 2048 bits, for example. The limited

results are caused by the area constraint. There are two possible solutions: change

the device technology and change the design of the X FIFO. Our target device in

this work is Spartan II XC2S200 which has 2352 slices. We can change to other

technologies that have more area.

The X FIFO was designed using registers instead of RAMs. Since most

FPGA devices including Spartan II family have block RAMs as their primitive

components. When block RAMs are used in the design, only few CLBs are occupied

by the the control unit; thus, the number of CLBs used reduces significantly.

However, designing the X FIFO using RAMs is not straightforward. Because the

number of bits of X required by the kernel is an integer number, e.g. 3 bits for

61

radix-8, the data coming out of the RAM, whose size normally is the power of two,

needs to be manipulated before they can be used in the kernel. The circuitry for

the bit size manipulation (funnel) would be very complicated to design, but the

savings in area would be significant.

The funnel design for the case where k divides w can be done by using a

shift register with some control. A w-bit word is read from the RAM and stored in

the w-bit shift register. When bits of X are requested from the kernel, k bits are

shifted out in each read cycle of X. As the shift register gets empty, the next w-bit

word is requested from the RAM and loaded into the shift register. The timing is

satisfied because k bits of X is requested every two clock cycles; therefore, after

the shift register is empty, the next w-bit word is loaded to it in the next cycle.

Then, the first k bits from the new word will be ready in the following cycle.

The design for other cases has to be specific for the value of k. The possible

solution when k = 3 (radix-8 kernel) and w = 8 is shown in Figure 5.1.

�.�R�

�#�$�-� ¡ � ¢

�¤£�¥¦}§©¨«ª«¬«­¯®}°

± ² ³ ´ µ± ´ µ
± ¶ ³ ´ µ

± · µ
± ² ³ ¶ µ
± · ³ ¸ µ

± · ³ ¹ µ
± º ³ ¶ µ
± ¹ ³ » µ

± ¸ ³ º µ

¼ ½¾
¼

¼
½
¼
¼
¾
½

¼
¿ À�Á�Â ¡ � ¢

FIGURE 5.1: Funnel design for k = 3 and w = 8

62

The diagram in Figure 5.2 illustrates how three 8-bit words from the RAM

are divided into eight 3-bit words of X (X (0) . . . X(7)). Most X words are taken

from three adjacent bits inside the same RAM word, except for X (2) and X(5). The

mechanism that concatenates bits between two RAM words in order to produce

X(2), for example, is to use a register holding a content of the first RAM word; then,

two MS bits from the register are concatenated with the LS bit from the RAM.

Table 5.1 shows an example of nine clock cycles used to produce X (0) . . . X(7).

Note that the read address for the RAM is not changed every cycle; it is increased

only when a new word from the RAM is needed. Also, since the RAM has a

registered output, the word coming out from the output port shows one cycle after

the address is changed.

ÃÄÃÄÃÄÃÄÃÄÃÄÃÄÃ ÃÄÃÄÃÄÃÄÃÄÃÄÃÄÃÃÄÃÄÃÅÃÄÃÄÃÄÃÄÃ
Æ
Ç È$É

ÊÌË-Í�Î ÊÌË)Ï�ÎÊÐË$Ñ�Î

Æ
Ç Ò$ÉÆ�Ç Ó-ÉÆ
Ç Ô$ÉÆ�Ç Õ�ÉÆ�Ç Ö-ÉÆ�Ç ×$É Æ
Ç Ø-É

FIGURE 5.2: Division of 3 8-bit words into 8 3-bit words for X

63

Time 1 2 3 4 5 6 7 8 9

Address 1 1 2 2 2 3 3 3 4

Data(RAM) M(1) M(1) M(2) M(2) M(2) M(3) M(3) M(3)

Data(register) M(1) M(1) M(2) M(2) M(2) M(3) M(3)

X(j) X(0) X(1) X(2) X(3) X(4) X(5) X(6) X(7)

where M(i) — Memory content of address i.

TABLE 5.1: Timing of the funnel operation with contents from RAM and a
register shown

64

BIBLIOGRAPHY

1. L. Adleman R.L. Rivest, A. Shamir, “A method for obtaining digital signature
and public-key cryptosystems,” Comm. ACM, vol. 21, no. 2, pp. 120–126,
February 1978.

2. P.L. Montgomery, “Modular multiplication without trial division,” Mathe-
matics of Computation, vol. 44, no. 170, pp. 519–521, April 1985.

3. A. F. Tenca and Ç. K. Koç, “A scalable architecture for modular multiplica-
tion based on montgomery’s algorithm,” in IEEE Transactions on Computers,
September 2003, vol. 52, pp. 1215–1221.

4. T. Matsumoto K. Iwamura and H. Imai, “Montgomery modular-
multiplication method and systolic arrays suitable for modular exponenti-
ation,” in Electronics and communications in Japan. Part 3, Fundamental
electronic science, March 1994, vol. 77, pp. 40–51.

5. S. R. Dussé and Jr. B. S. Kaliski, “A cryptographic library for motorola
dsp56000,” Advances in Cryptology—EUROCRYPT’90, Spring-Verlag, pp.
230–244, 1990.

6. D. I. Moldovan and J. A. B. Fortes, “Partitioning and mapping algorithms
into fixed size systolic arrays,” IEEE Transactions on Computers, vol. C-35,
pp. 1–11, January 1986.

7. G. Todorov, “Asic design, implementation, and analysis of a scalable high-
radix montgomery multiplier,” MS thesis, December 2000.

8. H. T. Kung, “Why systolic architectures?,” Computer, vol. 15, no. 1, pp.
37–46, January 1982.

9. R. Traylor, “Scalable MM - Hardware interfaces,” Tech. Rep., ISL Research
Group, Oregon State University, January 2001.

10. Xilinx, “Spartan-II 2.5v FPGA family: Complete data sheet,” Product
Datasheet, DS001, September 2003.

11. Xilinx, “Dual-port block memory for Virtex, Virtex-e, Virtex-II,
Virtex-II Pro, Spartan-II, and Spartan-IIe v4.0,” LogiCORE Datasheet
(http://www.xilinx.com), November 2001.

12. M. Khaldoon, “Prototyping of scalable montgomery multiplier using field
programmable gate arrays (FPGAs),” MS thesis, Oregon State University,
July 2002.

65

13. Xilinx, “Virtex 2.5v Field Programmable Gate Arrays,” Product Datasheet,
DS003-1 (v2.5), April 2001.

14. T. Acar Ç. K. Koç and Jr. B. S. Kaliski, “Analyzing and comparing mont-
gomery multiplication algorithms,” in IEEE Transactions on Micro, June
1996, vol. 16, pp. 26–33.

66

APPENDICES

67

A. KERNEL-I/O INTERFACE

This appendix shows the updated timing diagram of signals interfacing be-

tween the kernel and the I/O subsystem. The original description of signals is

presented in [7].

68

1 21 2 3 N
S

1 2 3 N
S

1 2 3
N
W 1 2 3

N
W

1 2 3
N
W 1 2 3

N
W

1 2 3
N
W

1 2 3
N
W

1 2 3
N
W

1 2 3
N
W

0 0

 e
 x
t

 e
 x
t

 e
 x
t

 e
 x
t

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 31

1

0

0

1 12 2 23 3NS NS

1 12 2 23 3NS NS1

1

1

1

start

next_Xset

loadX_ext

loadX_int

Xj

read_YM

resetYM(sync)

read_S

loadS

write_S

SS* SC*
o o

SS* SC*
K_OUT K_OUT

SS* SC*
IN IN

SS* SC*

Y* M*

Xj IN

loadX_int - these signals travel internally in the kernel
0

* *Y IN MIN

* *Y IN MIN
- these extended words of Y and M are zeros

1 21 2 3 N
S

1 2 3 N
S

0

2*NS < NW

F
IG

U
R

E
A

.1:
T

im
in

g
d
iagram

for
case

2p
<

N
W

69

1 21 2 3 N
S

1 2 3 N
S

1 2 3
N
W

1 2 3
N
W 1 2 3

N
W

1 2 3
N
W

1 2 3 N
W

1 2 3
N
W

1 2 3
N
W

 e
 x
t

 e
 x
t

 e
 x
t

 e
 x
t

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

0

0

1 12 2 23 3NS NS

1 12 2 23 3NS NS1

1

1

start

next_Xset

loadX_ext

loadX_int

Xj

read_YM

resetYM(sync)

read_S

loadS

write_S

SS* SC*
o o

SS* SC*
K_OUT K_OUT

SS* SC*
IN IN

SS* SC*

Y* M*

Xj IN

loadX_int - these signals travel internally in the kernel
0

* *Y IN MIN

* *Y IN MIN
- these extended words of Y and M are zeros

1 1

0

1 21 2 3 N
S

1 2 3 N
S

2*NS > NW

0 00

1

0 0

0 0

1

1 2 3
N
W

3

3

3

3

0 0

F
IG

U
R

E
A

.2:
T

im
in

g
d
iagram

for
case

2p
>

N
W

70

B. I/O SUBSYSTEM STATE MACHINES
DESCRIPTION

Several state machines create signals synchronizing operations of the I/O

subsystem. Their state diagrams and functions are described in this section. Note

that all state changes happen at the rising edge of the clock.

State machines for the kernel control can be found in [7].

B.1. Top Level Control

The state machine in Figure B.1 generates the start signal used to activate

the kernel operation.

ÙQÚ�Û�Ü�Ý�Ý�Þ"ß$à Û�Ý$à Ü"ß$à Û�Ú�á Ü�Ý-Ý$Þ"ß$à Û�Ý$à Ü"ß$à Û�Ú�á â Þ�Ü�Ý-Ý�Þ"ß à Û�Ý$à Ü�ß à Û�Ú�á�ÛÜ)Ù â Û�ã�Ü"ä à

å æ$ç$æ-è é.ê ë$ì ê#è å ì"í é�å$æ î�ï ð�ñ

ò æ å$ê#æ í é�ó ì ê#æ

ç�è ô)å$è#õsö ÷�øù�úsé û)ü û ì é�ú ì ó�æ�õsö ÷�ø ç�è ô�å�è#õ�ö ý)øù�ú�é û�ü û ì é�ú ì ó�æ�õ�ö ý)ø ç-è ô-å-è#õ�ö ÷�øù�ú�é û"ü û ì é�ú ì ó�æRõ�ö ý)ø

FIGURE B.1: State machine generating start signal.

The state machine is initialized in no assert start op state. When the host

starts the computation (the third bit of the control register is 1), the state is

changed to assert start op. At this state, the start signal is asserted to the kernel

activating the computation. Also, after the kernel is started, the Y and M FIFOs

become rotators (the FIFO mode is 1). The machine is in this state for one cycle;

71

then, the deassert start op and wait state is reached. At this state, the start signal

is de-asserted, but the FIFO mode is still 1. The machine stays in this state until

the computation in the kernel is done. Then, the it is back to its initial state.

The state machine in Figure B.2 keeps track of the current action of the

MMHW. During the initial state no operation, there is no any operation in the

kernel. After the kernel starts the operation, the state changes to op in progress.

During this state, the kernel is executing the multiplication. After it finishes, the

state changes to op done rd wait. In this state, the op done signal is asserted to

the seventh bit of the status register. Moreover, w-bit result words are acquired

from the S FIFOs (controlled by other state machines) and the 32-bit result word

is read from the result register; these two actions repeat several times. the number

of w-bit result words read from the S FIFOs is tracked by the counter shown in

Figure B.3. When the counter is equal to the number of operand words, the last

w-bit word is acquired, and then the last word read signal is asserted. After the

host requests the last 32-bit result word, the machine changes back to its initial

state as well as de-asserts the op done signal.

þ�ÿ���ÿ������	��
 � ÿ�þ ÿ��
��� þ
���
��ÿ��������	� ÿ������Qÿ�þ������	���������

��������� ��� ��� �����

 ! ����� ��"$#���%���������%�&

#	'���%�#����)(+* ,�-

. ���	��� ! ��%�#����

/1032 4 #���� �������5%�6 ��7�������� 8 ! � �	&

#	'���%�#����)(+* ,�- #�'���%�#����9(+* :�-

FIGURE B.2: MMHW operation state machine.

72

; <

=�>�?�@ A�? B�C B�>�?�A�D5E	F�GD	E5?5E�@ A�H

I

=�>�?�@ A�? B�C B�>�?	A�D	E5F�G

J�K�L�M5N O�P�L�N Q)R L�STJ�U�V

=�>�?�@ A�? B�C B�>�?	A�D	E	F�G

W F�?�@ A�XY>�D	G�A�D�E5F�G[Z1\ <�]

?�@ F�D�@

FIGURE B.3: Counter keeping track of the number of result words read.

B.2. 32-to-w Converter Control

The state machine in the 32-to-w converter controls the loading of w-bit word

to its associated FIFO. It also keeps track of the number of operand words loaded

to the operand FIFO. The state diagram is shown in Figure B.4.

^`_ba9c`d
e5d�afc+_bafg�h+i j�e c`d�e�d�abi ^+a)g�h`i j�e	i ^Yk

l�m�n�m�o pfq r�s n�o p)tul�v o�v qbwbpbl�m5w

x n r v y
o pbz s q)m�{}|�~ x l�m���� r p s�� pbn�v ��m�{

l�m���� r p s�� p)n�v ��m

��� x s�� m�l���q9z�p)l�m	w)p)tum�{����	����[���[� l�z
����� ���
s�� m�l���q9z�pbn r v y�o p)m�q��������

s�� m�l���q9z�pbn r v y�o p)m�q���� �b�
y
v y s p)tum1�T� �b�

y�v y s pbtum[�������

FIGURE B.4: State machine controlling a load operation of w-bit word to the
FIFO.

The machine starts in the no data no shift state. After the host writes a 32-

bit word to the operand register, the machine changes the state to data in shifting.

In this state, the machine enables the FIFO and sends 32
w

w-bit words to it. If the

host writes another 32-bit word to the operand register, the machine de-asserts the

73

rdy signal indicating the register is not ready to receive a new data and the host

must hold the write request. After all 32 bits are sent out, indicated by the signal

from the counter keeping track of the number of w-bit word sending to the FIFO,

the state is changed back to the initial state. This state change is also activated

when all operand words are loaded into the FIFO, the operand size is reached.

Figure B.5 shows the counter keeping track of the number of w-bit operand

words loaded to the operand FIFO. Two control signals: shift done and reach op size

are generated based on the value of this counter.

� �

�9��� ����� �b�����b� � � �f¡¢5£5¤5£�¥ ¦�§

¨ ©�ª ����� «�¬���­ ©�® �

�9��� ����� �)���	�9� � � �)¡ �f��� ����� �b���5�)� � � �f¡

¢	£	¯�°5±�¦�²�³�¦�¤�´ µ�£·¶1¸ ��¹

¤	±�´ º�¥ ¦�»�²�§�£f¼1¸ ��¹�½¿¾�ÀfÁÃÂ Ä�©�Å �)� ¬ ®fÆ�© �}Ç ¨�È É[Ê ¼ Â Ç ¨�È ÉÌËf��Ê

¤	Í�§
°	¦�¢5£	¤5£�¥

FIGURE B.5: Counter keeping track of the number of w-bit words written to the
FIFO.

B.3. w-to-32 Converter Control

There are two state machines inside the w-to-32 converter. Figure B.6 shows

the state machine controlling the result word acquiring from the S FIFOs. The

initial state is microp wait. When the kernel operation is done, result words are

already stored inside the S FIFOs. Thus, the machine changes its state to rd word

to start the read from the S FIFOs. The machine changes back to its initial state

74

when 32
w

words have been read. This is indicated by the counter keeping track of

the number of w-bit words gathered from the S FIFOs shown in Figure B.7. The

counter resets itself every 32
w

counts.

ÎÐÏ�ÑbÒ�Ó·Ô$Õ+ÖØ×bÏ�Ù Ò�Ú�Õ+ÖØÓ·Ò�Ú

Û�Ü)Ý�ÜfÞ ßYà

Ñ9Ó�á`â$Ù�ã�Òåäçæ·è9é�ê

ë Ò�ãfì�á`í	Ù	Õ`Ò�ãbî$Õ[ãbÎÐÔ$Ù	ï`ðòñ�ó¿ô ë�õ�ö ßY÷ õ à`Ü9ð

ø`õ Ý�Þ ßYÝ ù·ú ù õ Ý�ßYÛ�Ü)û+÷üäþý�ÿ��ø`õ Ý�Þ ßYÝ ù·ú ù õ Ý�ßYÛ�Ü)û+÷üäþý����

FIGURE B.6: State machine controlling a read operation of w-bit word from the
FIFO.

� �

�	��

���
�	���������� ���

� ����� �

�	��

�!�
��� �	��

���
�	�

���"

���
�#�

FIGURE B.7: Counter keeping track of the number of w-bit words read from the
S FIFO.

Figure B.8 is the state machine keeping track of whether the 32-bit result

word is ready. The initial state is res reg empty. It stays in this state until 32
w

words fill up the result register. If the host requests the result within this state,

the ready signal (rdy) is pulled down and prevents the host from reading. After

75

the result register is ready, the state changes to res reg full. Within this state, the

host is now able to read the result data.

$&%('*)�+-,�.�$�%�/0.�%"1324,�5 $&%�'#)6+ ,�.�$&%(/�.�7�)�+-+

8&9&:*9
; <>=

?(@ :�; <08&9�A�B0C =�D0<�8�9&:�EGF ;-:

HJILKM $�NG.�O3P�$�N4Q M-R P�)TS�,�%�$6UWV(X�Y Z!Q

[\ M ?(@ :]; <�8*9&A�B^C ="D^<�8&9&:�E>F-; :�Q`_!a�b]c
d4egfhI 8&B(i!UWa j(c

FIGURE B.8: State machine keeping track of the availability of the 32-bit result
word.

