
AN ABSTRACT OF THE THESIS OF

Thomas M. Scott for the degree of Master of Science in

Industrial Engineering presented on March 14, 1991. Title:

Design of an Obiect- Oriented Paradigm for Model Generation:

An Application in Timber Harvesting

Abstract approved: _Redacted for Privacy
ca.icLIA nalluilawa

The potential gains that could be realized from

optimizing timber harvesting are significant. To a great

extent it is these initial functions that dictate the

quality of future manufacturing steps. Timber harvesting

systems are defined by the operations they contain and the

equipment that perform them. For any given harvesting

situation there are a large number of unique systems,

performing under a variety of cost, production, and

environmental conditions. The objective of optimized timber

harvesting is to reduce cost while simultaneously increasing

production and minimizing environmental impact. One way to

accomplish this objective is through mechanization and

automation.

Mechanization increases the production output,

efficiency, and product quality. However selecting an

appropriate level of mechanization to avoid under

utilization of expensive resources is a critical decision.

The decision requires that the product mix, environmental

and user specified constraints be matched against the

available equipment technology, and the required performance

criteria.

This research describes a computer based system which

queries a user on the timber stand specifics and a set of

harvesting objectives. The system then matches these user's

needs to a level of mechanization that would maximize the

efficiency of the production system. The computer

accomplishes this by searching a set of databases containing

information on the available technology and its impact on

production, efficiency, economics and the environment. The

level of mechanization is determined by specific

combinations of existing equipment. Individual pieces of

equipment that are compatible with one another are balanced

together to form a viable productive unit.

Design of an Object-Oriented Paradigm for Model

Generation: An Application in Timber Harvesting

by

Thomas M. Scott

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed March 14, 1991

Commencement June 1991

APPROVED:

---- c-----)
Redacted for Privacy

Professor of Industrial and Manufacturing Engineering in
charge of Major

/,
Redacted for Privacy

Head of department of Industrial and Manufacturing
Engineering

Redacted for Privacy
Dean of Grad e School,'

Date Thesis is presented March 14, 1991

Typed by Thomas M. Scott for Thomas M. Scott

ACKNOWLEDGEMENTS

I would like to thank my major professor Dr. Sabah

Randhawa. His continued support and encouragement were

necessary for the project's success. I would like to thank

Dr. Ken Funck and Dr. Eldon Olsen for their input and

support during the project. I would also like to thank Tony

Chou for helping with some of the difficult points in the

software development.

I would especially like to thank my family who were

always there when I needed them. My two children Jeffery and

Dana showered me with love and understanding throughout this

project. My good friend Rudy Hansen was always ready with

words of encouragement and I thank him for that.

My deepest gratitude however goes to my Lord Jesus

Christ who never let me lose sight of my priorities. From

Luke 9:25 " For what is a man profited if he gains the whole

world and loses or forfeits himself? ".

TABLE OF CONTENTS

Chapter 1 INTRODUCTION 1

Problem Domain 6

General Approach 6

Chapter 2 METHODOLOGY 9

Environment Creation 10
Site Variables 10
Stand Variables 11
Requirement Variables 11

Database Creation and Selection 12

Search Process 16

Mapping Procedures 20

Chapter 3 COMPUTER MODEL 25

Data Abstraction 26

Data Encapsulation 27

Inheritance 28

Polymorphism 29

System Layout 29

Object Definition 30

Object Interaction 34

Chapter 4 APPLICATION AND IMPLEMENTATION 40

Timber Harvester Organization 40

Timber Harvester Application Example 43

Chapter 5 CONCLUSIONS 53

BIBLIOGRAPHY 56

Appendix 1 USERS MANUAL 58

Appendix 2 PROGRAM LISTING 100

LIST OF FIGURES

1.1 The Mapping Procedure 5

2.1 Search Procedure 18

2.2 Mapping procedure 21

3.1 System Representation 35

4.1 Timber Harvester User Interface 41

4.2 System Application Example 44

4.3 The User's Environment 47

4.4 Equipment Attributes 49

4.5 Select Goals 51

4.6 Feasible Alternatives 51

4.7 System Report 52

4.8 Full View System Report 52

A1.1 Different Smalltalk Windows 66

A1.2 Window Label Bar and Window Buttons 67

A1.3 Setting Harvesting Requirements 73

A1.4 Defining Site Specifics 75

A1.5 Creation of an Operation 79

A1.6 Setting Equipment Attributes 84

A1.7 Skidder Speeds and Loads 87

A1.8 WoodDensity Data 91

A1.9 Selection of Goals 97

LIST OF TABLES

1. User Environment Summary 46

2. Available Equipment Used in System Application
Example 48

Design of an Object-Oriented Paradigm for Model

Generation: An Application in Timber Harvesting

CHAPTER 1

INTRODUCTION

Timber harvesting is an area of considerable

importance, particularly in the Pacific Northwest. In recent

years, significant changes have occurred in the log

manufacturing and harvesting environment. There have been

two important reasons for these changes. First, public

awareness concerning forest issues has increased

dramatically in recent years. Protection of the environment

and enhancement of the scenic values are factors that must

be considered when making harvesting related decisions.

Second and perhaps more important, there has been an

increase in the proportion of merchantable second growth

forests now being harvested. This has greatly affected

equipment selection as well as the overall logging

practices. Typically the smaller stem sizes found in second

growth forests have increased the opportunity for the use of

material handling systems and automatic processors. The

choice of equipment for any phase of the timber harvesting

process is a function of multiple factors including tract

geometry, topography, plot size and concentration, tree

stand characteristics including species distribution and log

size distribution.

Modeling and evaluation of timber harvesting systems

2

can be done using analytical modeling. However, mathematical

analysis of such a complex process is extremely difficult to

conduct. Simulation is the most common technique used for

analyzing complex systems such as timber harvesting.

Scenario or Model formulation is recognized as the most

difficult phase in building a simulation model, yet all

simulation techniques start with the premise that this phase

is correct and complete. Typical simulation analysis efforts

consist of three cyclic phases (Law 1982), beginning with

defining the system to be modeled. From this definition the

system is translated into a simulation model program. The

program is fed data, output is then generated and analyzed.

Current simulation applications primarily focus on the

second of these three phases, that is, given an alternative

to be simulated, translate it into a simulation model. Some

effort has been made in developing output model analyzers.

However little if any effort has gone into the first phase,

that of model or scenario generation. Paralleling the trends

in simulation technology, there have been a number of

simulation models that have been developed for analyzing

different facets of log harvesting, but very little effort

has been expending on timber harvesting equipment selection

itself. The system described in this research is

specifically designed to generate modeling scenarios for

timber harvesting. The scenarios generated represent the

sequence of operations required for a given harvesting

3

environment. Each operation is represented by a piece of

equipment designated to perform that operation from a

database of available technology. The harvesting scenarios

give specific information about equipment compatibility and

overall costs. The systems identified as feasible harvesting

alternatives can then be analyzed using a simulation model

for equipment balancing and other detailed performance

measures. One such model is LOGSIM (Randhawa and Olsen;

1990). LOGSIM is a computer-based simulation system for

modeling the entire harvesting system from the felling

operation until the log arrives at a conversion facility.

Several researchers have suggested the potential for

the use of artificial intelligence (AI) techniques in

simulation and decision support. These include Oren, 1977;

Oren and Ziegler, 1979: Goldin and Klahr, 1981; Gory and

Krumland, 1983; Shannon, 1984; Calu, Wael, Esmeijer,

Kerckhoffs and Vansteenkiste, 1984; Shannon, Mayer and

Adelsberger, 1985; Ruiz-Meir, Talvage and Ben-Arieh, 1985

and Kerchkhoffs and Vansteenkiste, 1986. The research in

this area has progressed in two directions : provide model

development capabilities that would allow the user to easily

develop and modify representations of systems to be

simulated, and to increase the understanding of the system

being studied through better interpretation of simulation

output.

The focus of this research is to develop a methodology

4

for the automatic generation of simulation models or

scenarios. This is accomplished by taking user input used to

describe a particular harvesting environment, and mapping

the user environment to a database of available equipment

technology (Figure 1.1). The mapping process employs an

artificial intelligence technique known as a best first

search algorithm which identifies the feasible harvesting

alternatives.

5

SYSTEM
DATA BASES

Matching

HARVESTING
WORK

ENVIRONMENT

User Requirements
Vector

BEST-FIRST
SEARCH

ALGORITHM

I
Feasible

Alternatives

Figure 1.1 The Mapping Procedure

6

Problem Domain

Selection of the appropriate harvesting equipment is

determined by the interaction of a multitude of factors. The

primary factors may be categorized into two major

categories. The first category is the specific harvesting

environment and the second category is the database of

available equipment. The database of available equipment

must include well defined attributes used to determine site

and equipment compatibility. Once these two sets of data

are assembled one needs to use a systematic procedure to

determine the combinations of equipment that satisfy all

harvesting requirements while producing the required

finished product. The actual problem domain is slightly more

complicated since the compatibility between pieces of

equipment must also be considered.

General Approach

A work environment is created by the user to produce an

N-dimension vector space representing the timber stand

environment. The equipment database is created by a two step

process, initiated with the creation of a harvesting

operation and then the creation of appropriate equipment for

the given operation. The search process uses a best first

search algorithm driven by harvesting cost.

The initial state of the system is standing timber with

the first operation always defined as the start operation.

7

Therefore the search process begins by mapping the specific

user's environment to the equipment filed under the start

operation. The start operation contains one machine which is

a null machine whose only purpose is to define the user

selected starting operations. For example a user might want

the operations felling, felling plus bunching and felling

plus delimbing to be the three starting operations, so the

null machine would contain this information. Basically the

start operation and the null machine define the initial

state of the system. Each starting operation is explored for

machines that pass the requirement vector, those that pass

are put in a queue and designated as unexpanded systems.

Each piece of equipment contains a variable which

indicates the operations that can follow the current

operation. The search algorithm will select the lowest cost

equipment from the starting operations. This lowest cost

equipment becomes a starting system. The search algorithm

and the mapping procedures expand the system by selecting

pieces of equipment in the starting system's feasible

successor operations to come up with feasible extended

systems. These feasible extended systems are then added to

the queue of unexpanded systems. This queue of unexpanded

systems is then sorted to identify the lowest cost system to

expand next. This search process is continued until a

suitable system is identified based on the following

criteria.

8

1.) The system's last machine produces the goal
product.

2.) The system's last machine produces the goal
location.

3.) The system becomes the lowest cost system in queue.

In words the search process is searching for the system

that produces the user defined product at the user defined

location. When a given state is expanded the new expanded

systems are put into the queue and the queue is sorted by

cost. Therefore a system may be expanded to produce the goal

product at the goal location, but due to cost remain buried

in the queue of unexpanded systems. The first system that

meets both goal states and becomes the lowest cost system is

identified as a suitable system.

9

CHAPTER 2

METHODOLOGY

Timber harvesting is traditionally a sequential process

where a stand of timber is cut and processed to deliver a

specific product to a mill for further processing. A

harvesting system is comprised of components that are

interrelated and jointly contribute to a common objective.

The sequential nature of timber harvesting suggests that

certain steps must be performed in a given order to achieve

the objective. However, the order of these operations can

vary greatly from system to system (Conway 1982).

No matter what harvesting system is being considered

they all have certain characteristics in common, These

include:

i. Cutting the tree, usually a felling operation.

2. Skidding or Yarding, usually referred to as primary
transportation.

3. Loading the trees on vehicles, referred to as the
loading operation.

4. Log or tree transportation, usually referred to
secondary transportation.

These four components represent a macro starting point

from which the more sophisticated harvesting systems are

built. In today's highly mechanized industry a single

machine often performs several operations. Harvesting

10

systems vary depending on a large number of external factors

such as stand geometry, terrain and the form and location of

the primary product objective. In this research, these

external factors are represented in the user's vector.

Environment Creation

The TIMBER HARVESTER is a completely menu driven system

that allows a user to easily create, edit and display the

current harvesting environment. The users environment is

broken down into three components, Site Variables , Stand

Variables and Harvesting Requirements.

Site Variables

GroundFirmness

The firmness of the ground, defined by using a
discrete 1-5 scale; 1 defining soft ground and 5 defining a
hard ground firmness.

GroundRoughness

The roughness of the ground, defined on a discrete
scale 1-5; 1 defining mild ground roughness and 5 defining a
severe ground roughness.

Slope

The average slope on the given site.

HaulDistance

The average transportation distance from the woods to
loading location.

11

Stand Variables

Acres

The size of the given timber stand in (acres).

The average diameter at breast height of the major
species in the stand.

Dbh

Merchantable Trees

The number of merchantable trees per acre.

Species

The major species on the given site.

Tree Height

The average tree height (in feet) for a stand.

Unmerchantable Trees

The number of unmerchantable trees per acre.

Requirement Variables

Shear Felling

This variable determines if a shear attachment may be
used during felling.

Suspension

This variable determines if one end of the log or tree
must be suspended during transport.

Product

The required finished product.

12

Once the users environment is created it defines an

N - dimension vector space representing the particular

timber stand. The user vector variables are continually

accessed during program execution to map the equipment to

the specific harvesting environment.

Database Creation and Selection

The database of available equipment is selected from a

larger database of equipment technology. The larger database

contains state of the art harvesting systems as well as the

older systems. The reason for the two separate databases is

so a given user may select only the equipment that are

pertinent to their operation. Both databases have database

functions for addition, deletion and display. The difference

is that additions to the database of available equipment are

selected from the database of equipment technology. This

means that only those pieces of equipment contained in the

database of equipment technology can be added to the

database of available equipment.

Both databases are arranged by harvesting operations,

where equipment designated to perform a given operation is

filed under that operation. The TIMBER HARVESTER allows for

the creation and deletion of harvesting operations at any

time. This data representation scheme requires a concise

definition of an operation.

13

DEFINITION: An operation is a procedure that takes an input
material form at a particular location and
transforms the material into an output form at a
particular location. The output form must be
consistent with the operation for which a given
piece of equipment is assigned.

For a felling operation the input form would be

standing timber and the output form would be a complete

tree. It would obviously be inconsistent to have a piece of

equipment categorized for the felling operation performing

delimbing, because the output form would be a delimbed tree.

Therefore all delimbing must be performed by equipment

assigned to that operation. Some equipment will have an

output form that is the same as the input form and the only

difference will be the change in location (eg skidding).

Once an operation is created, equipment can then be

added under that operation to produce that operation's

output form at a location. After the equipment is given a

name and added to the database of equipment technology, its

attributes must be assigned that define the operating

specifics about a given piece of equipment. Assigning

attributes to a given piece of equipment is nothing more

that giving it a unique identity. These attributes are

accessed during program execution to calculate production

costs and to determine suitability of the equipment with the

current user environment. The equipment attributes in the

system databases include:

14

Accumulation

This attribute is described in two parts. The input
accumulation refers to the accumulation state that a given
piece of equipment can accept. Given a particular type of
input accumulation a given machine will produce an output
accumulation state which may or may not be the same as the
input accumulation. For example a feller buncher's
accumulation state is bunched or decked while manual felling
results in a random accumulation state.

Attachment

The attachment attribute refers to a prominent
attachment such as a shear attachment for a feller buncher
or a grapple attachment on a skidder. This attribute
variable is referenced during program execution to calculate
production costs.

CostPMH

The cost of the operation per machine hour is an
entered value that is independent of the user environment.
This value must be known or estimated by the user.

Dbh

The dbh is described in two parts. The lowerbound value
represents a piece of equipment's lower bound operating
range. The upperBound value represents the upper bound
operating range.

Ground

This attribute is described in two parts. The ground
roughness refers to general topography and rocks etc. The
ground firmness refers to soil texture. A scaling factor
from 1 to 5 is used to define the two ranges. A factor of
one being mild or soft while a factor of 5 being severe or
hard.

HPClass

The horse power class is a user entered value
describing the horse power class of a given piece of
equipment.

15

Product

The product is described in two parts. The first part
is termed the input and refers to an input product. This
input product refers to the output product from a piece of
equipment that performed the previous operation. Given a
particular input form a given piece of equipment will
produce an output product.

Location

The location attribute refers to the location where the
output product is located after processing. This may or may
not be the same location as before processing. An example
would be a bucking operation where the output location is
the same after the bucking operation as before. With a
skidding operation the location changes but the product
state remains constant.

MaintCost

The maintenance cost per machine hour is a user defined
value. The value is entered in a prompter window during
attribute assignment.

Operations

This attribute is one of the more important attributes,
and can have significant impact on the solution space. A
piece of equipment assigned to performing a given operation
needs to know what possible operations can follow the
operation it performs. An example would be manual felling,
at the completion of the felling operation there most
probably will be more than one possible way to proceed with
harvesting.

Case 1: We might bunch the trees before skidding.

Case 2: We might skid whole trees by themselves.

Case 3: We might delimb the trees.

The following operations would then be included in the
attribute operations.

Case 1: bunching.

Case 2: skidding.

Case 3: delimbing.

16

These operations are all considered valid moves from the
operation felling. It is important to realize that this
attribute determines how systems can be constructed. It is
equally important to realize that the user is in complete
control of this attribute. This feature gives the user the
flexibility to add operations and equipment freely.

ProdCost

This attribute is a default variable that is entered as
a constant when no regression/production equation is
defined. It is a constant value that is not affected by the
user environment. This feature allows the incorporation of
equipment for which sufficient data is not available.

ProdEquation

This attribute defines the name of a production
equation. The production equation name is the name of a
method in the class machine. The machine class may have many
production methods so prodEquation identifies the specific
equation to be used by a given piece of equipment. During
program execution this equation will be utilized to provide
an environmentally matched production cost for a given piece
of equipment.

Slope

The slope attribute is a two part variable. The
lowerBound defines the lowest slope for which a given piece
of equipment can operate. The upperBound defines the largest
positive slope for which the equipment can operate.
Therefore the slope attribute defines the operating range
for slope.

Suspension

This attribute is used to reflect a piece of
equipment's ability to suspend one end during transport.
This is a binary variable.

Search Process

The TIMBER HARVESTER uses an artificial intelligence

technique known as a best first search (Figure 2.1). A

best first search is a way to combine the advantages of both

depth first and breadth first search into a single method.

17

At each step of the best first search process we select the

most promising system generated thus far. This most

promising system is then expanded to include the feasible

moves from the current state of the system.

Queue of
unexpanded systems

18

Is Queue empty?
Yes/No

NO

YES

Remove lowest
cost alternative

Check for goal req.

NO

YES

Report that no available
systems are suitable

Map user vector
to the partial

unexpanded system

Add current expanded
systems to queue

Sort queue by
lowest cost

Report goal
system identified

STOP

Figure 2.1 Search Procedure.

YES

Redefine vector space

19

If any of the feasible moves generate a solution and

still remains the most promising system, it is declared a

suitable harvesting system for the current user's

environment. The feasible moves from any state of the system

is determined from a combination of factors during the

mapping procedures employed by the search algorithm.

The system's initial state is defined as standing

timber and all harvesting operations begin with the start

operation. At the beginning of the search routine a null

piece of equipment defines the user defined starting

operations. The equipment in each starting operation are

then mapped to the user's environment and the feasible

pieces of equipment become the starting set of unexpanded

systems.

Equipment that is assigned to a particular operation

needs to know what operations can follow the one it

performs. This key piece of information focuses the mapping

routines to map only a subset of the database, thereby

greatly improving program execution time. Once we know what

operations can follow the current state of the system, we

map each piece of equipment categorized in those selected

operations and generate a collection of feasible moves from

the current state.

20

Mapping Procedures

The mapping procedures are embedded in the search

process and are used to generate the feasible moves from a

partial state (Figure 2.2).

O = Operation
M = Machine

Partial system passed
from search routine

Identify Or + i that
follows Oi and is
compatible with M i

< Does operation > NO
i + 1 exist?

I YES

YES Is 01+ 1 already
in partially expanded

system?

N

NO

Identify M i + 1 to
perform operation i + 1

<Does Mi + 1 exist?

YES

Can M i + I handle the
output states of M,?

YES

User vector satisfied?

YES

Calculate
production cost

i

Add MI + 1 to partial
system and put in a

collection to be returned
to search algorithm

Check for additional

M1+1

N

Return

Figure 2.2 Mapping Procedure.

21

22

There are three critical maps that must be satisfied for a

piece of equipment to be selected as a feasible extension of

the current system state. The following is a list of the

critical maps.

1. Does the partial system already contain the
candidate operation.

2. Can the candidate equipment for the next operation
process the output from the previous stage.

3. Can the candidate equipment operate on the current
user's environment.

Each one of these critical maps will now be discussed.

Does the partial system already contain the candidate

operation.

The Timber Harvester is designed to be very flexible,

allowing the user to define systems with any order of

operations. For example trees can be bucked into logs prior

to skidding or after the skidding operation. Regardless of

when the trees are bucked the bucking operation is performed

only once. Therefore it is necessary to map the candidate

equipment to the current system to determine if the system

has already performed that operation. If the system does

contain the operation for which the candidate equipment is

designated to perform, then the candidate equipment is

removed from consideration.

23

Can candidate equipment process the current material state.

Each piece of equipment knows what material state it

can accept and given a specific input material form at a

specific location, each piece of equipment will generate a

specific output material form. The three variables that

define the material state are accumulation, product and

location. These variables are all collections of

input/output form. That is for a given input the equipment

will generate a given output. Timber harvesting systems are

by nature a sequential process where a predecessor

equipment's output product will become the successor

equipments input product.

If any one of these three variables cannot map the

predecessors output form to the successors (candidate)

equipments input forms then the equipment is discarded as

incompatible equipment. This process of mapping the three

material form variables defines the equipment compatibility.

Can candidate equipment operate on the current user's

environment.

Each piece of equipment has its operating ranges which

define its operational limitations. These operating ranges

and other critical machine attributes must be mapped to the

24

user's environment. If the specific harvesting environment

falls within the equipment's operational limitations the

equipment remains a candidate for system expansion.

If all three critical maps are satisfied the equipment

production cost is calculated by using a production

regression equation. The production equation provides an

accurate assessment of the production cost for a given piece

of equipment, on the user specified site. If a production

equation is not available an estimated production cost will

be used. Each successful candidate equipment is then added

to the partial system.

The resulting systems are then added to the collection

of unexpanded systems. The collection or queue of unexpanded

systems is then sorted by least cost and the process is

repeated. The system stops when the lowest cost system ends

at the required location with the required product.

25

CHAPTER 3

COMPUTER MODEL

To achieve the desired degree of abstraction and

reusability, the object-oriented paradigm was selected. The

object-orientated framework provided a viable representation

for the problem domain, by allowing the problem to be

decomposed into logical modules (objects), containing both

data and procedures. The objects represent real world

entities, but more specifically represent partitioned areas

of computer memory allocated to a specific object's data and

procedures (Tello, 1989). Therefore, these objects can act

as encapsulated entities by interacting with other objects

in the system by passing messages between one another.

Object-oriented programming is defined in its purest

sense as programming implemented by sending messages to

objects (Pinson and Wiener 1988). Smalltalk/V, (SMALLTALK/V

Tutorial and Programming Handbook, 1986) was the specific

software tool selected, because of its interactive

programming environment and its strict compliance to the

four basic object properties of data abstraction, data

encapsulation, inheritance and polymorphism. These

properties will now be discussed in terms of their

relationship to this research.

26

Data Abstraction

Object-oriented code by its very definition links data with

procedures. In procedural programming parameters (data) is

sent to procedures that act on the data in a predetermined

way. In procedural programming the data is passive and the

procedures are active. In the object-oriented paradigm the

data and the procedures are linked together producing a form

of active data (Tello 1989). The significant result of this

linkage between data and procedures is data abstraction. In

the most general sense, an abstraction is a concise

representation for a more complicated idea or object.

Details of the implementation of an abstraction are not

essential to an understanding of its purpose and

functionality. Thus using and understanding an abstraction

enables higher-level human functioning than is possible if

one has always to focus on the details (Pinson and Wiener

1988). The behavior of an abstract data object is defined by

abstract operations which are called methods.

Methods are to object-orientated programming as

procedures are to procedural programming. The real relevance

of data abstraction is that it relieves the user of an

object from having to know the details of invoking the

object's methods. This release allows a programmer to become

the user of an object instead of the programmer of an

object.

This concept is the key to the reusablilty of object-

27

oriented code. This attribute is exploited during database

creation by using one object class to represent many

different kinds of harvesting equipment. Therefore once this

object is created a programmer has only to know the names of

the messages to be able to use the object in it's full

functionality.

Data Encapsulation

Data encapsulation restricts the affects of change by

restricting all access to an objects data to messages that

invoke that particular object's methods. The result of

encapsulation is the minimization of inadvertent changes due

to interdependencies between objects. This attribute of the

object-oriented paradigm assures the programmer that no

surprise program errors should occur, if the methods or data

within an object are modified.

The abstract machine class used in this research must

be able to attain the machine characteristics of any kind of

machine. To do this, production equations must reside as

methods in the machine class object. However it is

impossible to foresee all the types of machines a given user

may require, so they must be dynamically created when

needed. To accomplish this the machine class object must be

modified to include the production equation required by a

new type of machine. Data encapsulation almost guarantees

that no surprise affects will occur due to the addition of

28

the new method.

Inheritance

Objects in an object oriented system are arranged in

hierarchies. Classes of objects located higher in the

hierarchy are usually more generalized and the classes lower

in the hierarchy are more specialized. Classes higher in the

class hierarchy are usually called super classes while

classes lower in the hierarchy are called subclasses. In

Smalltalk all objects are a subclass of the class object.

A fundamental concept in object-orientated programming

is that of a class. The class hierarchy defines the

properties of each subclass created. A newly created

subclass inherits the method protocol of any of it's

superclasses higher in the class hierarchy. This facility

for inheritance greatly reduces the amount of redundant

coding. A class is an object itself, but its main purpose is

for creating copies of itself. These copies of class objects

are called instances of the class. When a class produces

instances of itself we say it is instantiated. Since an

instance is a copy of a class object it also inherits all

the descriptive protocol from the class hierarchy.

When developing an object-oriented system a programmer

must decide whether it is beneficial to make a subclass to

an existing class or not. Smalltalk comes with a rich

library of object classes of which the class Collection

29

defines the protocol for many useful data structures. This

research created many useful subclasses of the class

Collection which inherited all the protocol of classes

higher in the class hierarchy. The primary result of

inheritance is greatly reduced development time.

Polymorphism

This object-oriented concept allows the same message to

be used on different objects with the same or very different

results. The ability to use the same message for similar

operations on different kinds of objects allows for

completely new classes of objects to be used in existing

applications. An additional benefit is that it facilitates

the use of consistently logical message names, thereby

increasing program clarity.

System Layout

Developing an object-oriented system, begins with

defining the problem domain and a solution domain. With an

understanding of both domains the programmer identifies the

objects required to reach a solution. The object-oriented

system of this research was designed around the following

steps.

1. Definition of the problem domain.
(as explained in chapter 1).

30

2. Object definition.

a) a subclass of existing object class ?
b) create new subclass ?

3. Object interaction.

a) Identify the messages that each object
should respond to.

b) Create methods to answer required
messages.

c) Establish the required sequence of
messages between interacting objects
that will lead to a problem solution.

Object Definition

System objects are arranged in a hierarchical manner

with all objects being a subclass of the class Object. The

system hierarchy is arranged in the following manner with an

asterisk indicating objects unique to the Timber Harvester.

Object
Collection
IndexedCollection
OrderedCollection
System
Dictionary
DictionaryDictionary
DictionaryOrderedCollection

Environment
Machine
SystemFinder
BestFirstSelection

TimberSimPane

For a definition of the Smalltalk system objects see
(SMALLTALK/V Tutorial and Programming Handbook, 1986). A
brief description of the objects unique to the TIMBER
HARVEST is given below.

31

System

This object class holds a state which is added or
removed from the queue during the search procedure. Since it
is a subclass of OrderedCollection it inherits all the
properties of that class.

DictionarvDictionary

This object class is a subclass of the class Dictionary
which is instantiated to create data structures to store and
retrieve objects. As the name suggests this data structure
is a dictionary within a dictionary. This object Inherits
all the protocol of the class Dictionary.

DictionarvOrderedCollection

This object class is a subclass of the class Dictionary
which is instantiated to create data structures to store and
retrieve objects. As the name suggests this data structure
is an orderedCollection within a dictionary. This object
Inherits all the protocol of the class Dictionary.

Environment

This object's main function is to provide instance
variables and the pooled Dictionary (EnvironmentDictionary)
to other system objects. The pooled Dictionary houses the
key/value pairs for the user vector.

Machine

The Machine class object is an abstract class that
contains the instance variables and methods that comprise a
generic machine. When instantiated the machine object can
take on specific attributes of a particular machine.

SystemFinder

The SystemFinder class provides the instance variables
and messages that are needed by search routines, including
the BestFirstSelection used by the Timber Harvester. The
SystemFinder class is a subclass of the class Object and has
the sole purpose of providing instance variables and generic
methods for its subclasses. BestFirstSelection is a subclass
of SystemFinder and so by the inheritance property inherits
the instance variables and generic methods. The purpose for
this decoupling is so more than one search algorithm can
easily be explored. To incorporate another search algorithm
one would only have to create another subclass and define
the object protocol.

32

BestFirstSelection

This object along with its superclass SystemFinder
performs the best first search. The BestFirstSelection has
no instance variables of its own, only those of its super
class which are inherited. The BestFirstSelection contains
the instance methods that are specific to a best first
search.

TimberSimPane

The TimberSimPane is the application frame for the
Timber Harvester, which means it defines all the panes and
controls all program flow. This object is by necessity large
with many methods and instance variables.

The system organization is simplified by defining

objects as belonging to one of the following five class

categories.

1. Data storage class objects

- System
- OrderedCollection
- Dictionary
- DictionaryDictionary
- DictionaryOrderedCollection

2. User's Environment class objects

- Environment

3. Equipment class objects

- Machine

4. Search class objects

- SystemFinder
- BestFirstSelection

5. User interface class objects

- TimberSimPane

33

However it must be remembered that many objects perform

data storage that are not categorized under that heading.

Objects that fall under the data storage heading are used

almost exclusively for that purpose. There are some

important global objects that are used to contain data that

must be accessible to all other system objects. The two

equipment databases are global objects and are instances of

the class DictionaryDictionary whose names are Operations

and OperationsAvailable. This data structure allows us to

store equipment by operation name and by the specific

equipment name.

The OperationsAvailable database as mentioned

previously is a subset of the Operations database. Two other

important databases have global access, WoodDensity and

SkidderSpeeds. WoodDensity is an instance of the class

Dictionary and contains key value pairs relating a species

symbol to a numeric density value. The SkidderSpeeds

database contains skidder performance measures by horse

power class, attachment class and terrain slope. The

SkidderSpeeds database is an instance of the class

DictionaryDictionary.

The bulk of the computer system is comprised of the

Environment, Equipment, and Search class objects. These

objects interact by sending messages to one another until a

problem solution is attained. Program operation can best be

discussed by dissecting the search objects and discussing

34

their methods and messages.

Object Interaction

Assuming the necessary environment and equipment data

has been input into the system, the user invokes the search

algorithm by selecting the " Match Equipment " option during

program execution. This selection sends a message called

startSystem to an instance of BestFirstSelection called

EquipmentSelector. The corresponding method residing in the

object is invoked resulting in an initial queue. The queue

contains all types of equipment for the start operation that

passed the mapping procedures. This queue is the starting

set of all unexpanded systems, where one or more starting

points may eventually become feasible harvesting systems.

The main search algorithm is now invoked by a message

(called search) which begins by expanding the lowest cost

equipment.

SEARCH METHOD (refer to Figure 2.1).

The search process begins by checking to see if the

queue is empty. If the queue is empty the program reports

that a suitable system is not possible. The user may

redefine the user vector and run the search again or exit

the system. If there are system objects in the queue the

lowest cost system object is removed and stored it in a

local variable called aState. The partial system represented

35

by the variable aState is then checked to see if the goal

states are satisfied. If both the goal location and the goal

product states match the user specified states the program

will report that a suitable system has been identified.

If the goal requirements were not met, the partial

system is sent as a parameter with the message expandState.

The expandState message is a BestFirstSelection instance

method that is responsible for expanding the partial system

with successor states (Figure 3.1). To do the actual

identification, the method sends the message

feasibleMachinesFrom, again with the partial system as a

parameter.

Partially expanded system Candidate
machines to
perform

Oi+i

Mr-3

(felling) (-bunching) (skidding) (loading) (operation i 1)
Oi -3 O.o-2 Oi -1 Oi Oi+1

0 = Operation
M me Machine

Figure 3.1 System Representation.

36

The feasibleMachinesFrom method's main function is to

return an OrderedCollection of pieces of equipment to the

expandState method. The orderedCollection contains the

equipment that the partial system object could feasibly move

to from the last piece of equipment in the partial system.

The feasibleMachinesFrom method performs the three critical

maps previously discussed.

The feasibleMachines method proceeds by iterating

through the feasible operations (Figure 3.1). The method

first checks whether the current system already contains the

candidate operation. If the system does not contain the

operation in question, then the process continues, and if it

does contain the operation , it is discarded and an

alternative operation, if one exists is selected for

evaluation. The next step is to identify the equipment

available to perform the new operation. The equipment filed

under the new operation are evaluated separately. The

evaluation consists of mapping the machine attributes

previously discussed to the users environment vector.

The message processMaterial is sent to the candidate

equipment with the parameters outputProductState,

locationOut and accumulationStateOut. The parameters

represent the current state of the material.

The processMaterial method directly defines the

equipment compatibility. An equipment that cannot process

the current material state, is by definition an incompatible

37

piece of equipment for expanding the current system. This

process of passing the output variables equipment as input

variables to a candidate piece of equipment, bears a strong

analogy to passing a baton in a rely race.

If the equipment can process the current material

state, the equipment is then mapped to the user environment

vector. The equipment is sent the message compCumVector,

whose name is an abbreviation for Compute Cumulative Vector.

This equipment vector is created when the equipment

attributes are mapped to the user environment vector. The

vector is a set of binary values that describe a successful

attribute map with a 1 or an unsuccessful attribute map with

a 0. If the size of the Cumulative Vector is equal to the

number of occurrences of the value 1 a 'pass' is stored in

the equipment's instance variable mappingFactor, otherwise

'fail' is recorded.

If a 'pass' is recorded the piece of equipment is

defined as compatible with the user's specified harvesting

environment and therefore defined as a feasible successor

equipment. Before an equipment can be added to a copy of the

partial unexpanded system the production cost must be

calculated. If no production equation is defined the user

defined scaler value is used. If a production equation is

defined a sequence of three steps are followed to evaluate

costs.

38

1. Determine the name of the production equation.
2. Perform the production equation.
3. Store the result in the instance variable prodCost.

The production equation provides the ability to model

an equipment's operating cost as a function of the specific

stand environment. Once the production equation is

calculated the equipment is added to a collection of

feasible expansion equipments called feasibleMachines. When

the operations list is exhausted the collection called

feasibleMachines is returned to the expandState message

which was the calling method for the feasibleMachineFrom

method.

The expandState method then adds each equipment

contained in the feasibleMachines collection to a copy of

the partial system to be expanded, producing successor

states of the partial system. Each new expanded system

represents a new state that has been created. The number of

created states is echoed back to the user during program

execution. The newly created states are added to a

collection called successors and returned from the

expandState method to the calling method search. The search

method adds the successor collection to the queue of

unexpanded systems and then sorts the queue where the whole

search process begins again.

All programming in Smalltalk is accomplished by sending

messages and from the previous discussion it should be

apparent that the nesting of messages and sequences of

39

messages can become fairly complex. It should also be

apparent that objects can send messages to themselves quite

frequently during method execution.

40

CHAPTER 4

APPLICATION AND IMPLEMENTATION

Timber Harvester Organization

The Timber Harvester is laid out in a system of

rectangular windows. There are two types of windows, list

pane windows and text pane windows. There are two text panes

and 8 list panes (Figure 4.1). The window pane feature of

the Timber Harvester makes it very user friendly. This

feature also allows a user with no knowledge of Smalltalk to

interact with the system successfully.

To operate the system a user is required to make an

appropriate selection from a menu and click on the mouse.

The system uses a networked-menu system, that is, a choice

on a menu leads to a sub menu and so on. At each step a

"text window" explains the menu options and parameters to be

specified. This hierarchial representation keeps a user

supplied with up to date information on the state of the

system.

41

0 TIMBER HARVESTER ver 1.H @ail
lelcome to the Timber Harvester.

Input your environment characteristics.

2) Match equipment or display environment

by using the menu in the listpanes.

environment

equipment

goal

operations

printScreen
mywirmatimig

k

irr

I(I(

It

(

Figure 4.1 Timber Harvester User Interface.

42

In addition to executing the equipment search

algorithm, the Timber Harvester provides complete editing

capabilities for the equipment and support data bases, and

the user environment. Specific functions provided in the

Timber Harvester include:

1. Creation, modification and removal of harvesting
operations.

2. Creation, modification and removal of harvesting
equipment for specific operations.

3. Assignment and modification of equipment attributes.

4. Creation and modification of the contents of the
support data bases.

5. Defining harvesting requirements
(site specifics, stand specifics, etc).

6. Printing hard copies of text panes and screen dumps.

The alternatives selected by Timber Harvester depend on

the information provided in the equipment and support data

bases. There is a wide range of mechanized equipment

available for the many different tasks in a harvesting

operation. To reduce the task of finding production

equations for every piece of equipment to manageable size,

similar function machines were grouped together as a generic

equipment type and further broken down by subcategories such

as horse power class. Suitable published production

equations were used for the production rates for the generic

equipment types in the system. Where production equations

43

were unavailable or inappropriate, individual equipment

studies were grouped together and production rates

transformed through regression analysis to develop

production equations for the generic equipment class. If no

production data was found, "ball park" estimates were

created to enable the program to operate. The user has the

option of overriding the production figures if so desired.

Production rates for individual equipment were obtained

from published production studies form organizations such as

: Forest Engineering Research Institute of Canada (FERIC),

Logging Industry Research Association (LIRA), Canadian Pulp

and Paper Association (CPPA), manufacturers handbooks and

articles published in trade magazines.

Timber Harvester Application Example

The Timber Harvester has been verified for accuracy and

validated using a timber harvesting problem domain. To

illustrate the application of Timber Harvester, consider the

subsystem of a larger problem domain shown in Figure 4.2.

Each node shows the product state after the foregoing

operation is complete. The system shown in Figure 4.2

starts with standing timber to be harvested, therefore the

start operation will have one equipment called begin. The

name of the equipment is strictly arbitrary. The begin

equipment describes the initial harvesting product state

through it's output product states. These output product

Goal Product: Tree Length
Goal Location: Hauling

Standing
Timber

Start

Whole
Trees

Complete
Trees

Delimbed
and

Topped

Bunching (Delimbed
and

Topped

Whole
Trees

Delimb n9
Delimbed

and
Topped

.44

Bucked
Logs

Whole
Trees

Delimbing De limbed
and

Topped

Skidded
Products

Loading Loaded
Products

o3

(
Hauled

Products

45

states are important because they define what equipment can

start the harvesting operation. Only those equipments that

can process the initial product states become feasible

equipment to start the harvesting operation. The initial

product state is as follows:

1. location = standing.
2. accumulation = random.
3. product state = complete tree.

This is the starting variable assignment for most

timber harvesting situations that are encountered. The start

operation and the begin equipment are usually preprogrammed

and their inclusion in this section is only for

completeness. The user is required only to describe their

specific harvesting environment and then initiate the search

algorithm. Table 1 summarizes the set of attributes for the

harvesting environment and (Figure 4.3) shows the screen

display. Table 2 summarizes the equipment built in the

database that may be used by the processes in the

application system. The (Figure 4.4) shows a screen

display of the equipment attribute assignment for a given

piece of equipment.

As previously discussed the completion of each

operation gives rise to three important variables: product

state, accumulation state and location. The three variables

define the equipment compatibility. For example, many

grapple skidders require the material to be bunched prior to

skidding. Therefore any system that does not yield a bunched

46

accumulation state prior to skidding will not be able to

employ grapple skidders. Therefore grapple skidders are

sensitive to the accumulation state of the material.

Table 1. User Environment Summary

Variable Scale
Range of

Measurement

SITE VARIABLES

groundFirmness Discrete Scale 1-5 1:Soft 5:Hard
groundRoughness Discrete Scale 1-5 l:mild 5:Severe
Slope Percent Slope -30 to 30
Haul Distance Distance (feet) N/A

STAND VARIABLES

acres Stand size (acres) N/A
dbh Avg. diameter (in) 1 to 40 (in)
merchantable Trees Merch. trees/acre N/A
species Species name N/A
tree height Avg. height (ft) N/A
tree Volume Volume (cubic ft) N/A
unmerch Trees Unmerch. trees/acre N/A

PRODUCT
REQUIREMENTS

shear felling Binary discrete scale N/A
suspension Binary discrete scale N/A

47

0 TIMBER HARVESTER ver 1.11 OCe
'lease select the desired goal state to set. goal location:

product:operktions
pr WtScreen

prodEquations

ci

reports
dAtiorRnplall

(
I(I(11:

mres: set to 588 acres
abh: set to 7 inches

groundFirmness set to 3 scalar value
groundRoughness set to 3 scalar value

haulDistance: set to 388 feet

merchIrees: set to 134 trees/acre
unmerchTrees: set to 45 trees/acre

treeHeight: set to 1:: ave height in feet

treeVolume: set to 78 Ave ft3/tree
shearFelling: set to true

species: set to douglasFir

slope: set to 18 X slope
suspention: set to false

Figure 4.3 The User's Environment

48

Table 2. Available Equipment Used in System Application
Example

Operation: felling

Operation: fellBunch

(fbNoLevel)

Operation: bunching

Operation: delimbing

Operation: loading

Operation: Skidding

Equipment
Manual (manual)

Equipment
Feller buncher no level

Feller buncher level (fbLevel)

Equipment
Wheeled Grapple (wheelGrp)

Equipment
Manual (manual)
Processor (processor)

Equipment
Stroke boom loader (StrokeBoom)

Equipment
Caterpiller with Cable

(catCable)

Caterpiller with Grapple
(catGrapple)

() indicates shortened computer name.

49

CD TIMBER HARVESTER ver 1.8 MED
elect the equipment you wish to display

from the available equipment list.
environment attributes:

equipment available:

goal

operations

printScreen
nrmiVetuatinm

database:

C
I(IC I(

Machine name => fbLevel

Operation => fellBunch

Cost per productive machine hour => 34 $/hour
Attachment => saw

Horse power class => 110 hp

Production cost => 21 $/cunit
Max ground firmness => 3

Max ground roughness => 3

Production equation => fbLevel

Suspention for one end of log => true

dbh range at upperBound: => 16 inches

dbh range at lowerBound: => 4 inches

slope range at upperBound: z> S0 Z slope

slope range at lowerBound: => -60 X slope

location standing to final location => skidIrail

acc. state random to => bunched or decked

Product state completeTree to => wholeTree

bunching

delimbing

fellBunch

add:

display:

remove:

felling

hauling
lnadinn

fbLevel

fbMoLevel

Figure 4.4 Equipment Attributes

50

It should be noted that output variables of one operation

are input variables to the successor operation.

The objective is to generate feasible harvesting

systems and identify the most cost effective alternative.

The user is required to select the goal location and the

goal product desired and then initiate the search process

(Figure 4.5). During execution the Timber Harvester

displays each alternative that meets both the goal location

and the goal product (Figure 4.6). Referring to (Figure

4.6) the number on the far left correlates to the state

number the search algorithm assigned to the system; it

serves as the identification number for the report. The next

number in square brackets is the logging cost per mbf.

Referring to (Figure 4.7) the list of equipment identifies

a suitable harvesting system. The user can display

(or print a hard copy) of the system. The computer screen

can scroll from right to left and top to bottom in any

window, the (Figure 4.8) shows the complete suitable

harvesting system selected. Furthermore, the user may query

the Timber Harvester for details on specific equipment of

the system identified.

51

CD TIMBER HARVESTER verl.H @Cle.)
lease select the required product the

ing operation should produce.

environment

i went

operat ons

nrnelFmsAt ink

location:

(r t
r r printScreen

The goal location set to concVard

he goal product set to treeLength

completeTree

logLength

shortilood

treeLength

e ree

Figure 4.5 Select Goals

CD TIMBER HARVESTER ver 1.H OCO
!lease select the desired goal state to set. environment

-. i.-nt
qoal k.

operat one

printScreen
m4NOmmtimm

location:

product:

Mates Gen. t45 1pueue Size Kl3

she required harvesting product is treeLength

The required final location is concYard

1:a BestlirstSelection starting with standing timber

39: $499.711->begin->fbMoLevel -)processor->catCable-

41: $-492.711 ->begin-)fbNoLevel ->processor->catGrappl

43: S-E96.95/->beginr>fbLevel-)processor-)catCable-h
4S: $.499.9S1 -)begin->fbLevel->processor-)catGrapple-

a suitable system is

$-409.7I-)begin->fhtioLevel-)processor->catCable->strt

Figure 4.6 Feasible Alternatives

52

0 TIMBER HARVESTER ver 1.H moo
!lease select the state number of the system that

you would like to display.
goal

operations

printScreen

.. . tions

repurts

1ELZW::r

display:

print:

(
I(K K

pperation Machine Product Location

start begin completeTree standing
fellBunch fbMoLevel wholeTree skidTrail
delimbing processor treeLength skidTrail
skidding catCable treeLength roadSide
loading strokeBoom treeLength onTruck
hauling logTruck treeLength concYard

Total harvesting cost = 89.7

19

43

45

Figure 4.7 System Report

Operation Machine Product Location

start begin completeTree standing
fellBunch fbNoLevel wholeTree skidTrail
delimbing processor treeLength skidTrail
skidding catCable treeLength roadSide
loading strokeBoom treeLength onTruck
hauling logTruck treeLength concYard

Accumulation

random
bunched or Decked
bunched or Decked
bunched or Decked
bunched or Decked
bunched or Decked

Figure 4.8 Full View System Report.

53

CHAPTER 5

CONCLUSIONS

The design, evaluation and control of mechanized timber

harvesting systems is a problem of considerable importance

in the forest products industry, and has economic as well as

societal relevance. The type of processing that is chosen

affects the type and quality of log that is delivered to the

mill, and ultimately the finished wood product. No previous

work has provided a design and evaluation tool in this

important area of application. The Timber Harvester provides

a modeling tool for identifying feasible alternatives for a

specific harvesting environment by including such factors as

production costs, production efficiency, environmental

considerations and specific user goals.

The object-oriented framework proved to have unique

flexibility throughout the research, and greatly reduced the

development duration. The ability to create working copies

of class objects and use them throughout the system greatly

reduced the amount of redundant code, while increasing the

level of abstraction. The level of abstraction is of supreme

importance, for it allows this research to be applied to

another process type problem domain. To apply the Timber

Harvester to another process problem domain the user

interface object TimberSimPane would need to be replaced.

The reason for replacing this object is so that pertinent

54

attribute lists and other domain specific attributes could

be evaluated. In short the object-oriented framework will

permit the application of the Timber Harvester to another

problem domain with a minimal amount of programming.

The direction for future research is two fold:

methodology enhancement and the expansion of the timber

harvesting application. Methodology enhancement will

encompass a code translation to a hybrid object-oriented

language such as C++, which will result in a compiled

version of the Timber Harvester. The compiled version would

run much faster and would also give the programmer better

control over memory allocation and control, which larger

scale applications will require.

Expanding the application example from identifying a

suitable system for a single timber stand to encompassing

the entire yearly cut for a given mill. For example, a mill

that may purchase timber on a National Forest will end up

with many different sales with many different environmental

characteristics. The mill must allocate available harvesting

systems to their most promising sites, both from an economic

as well as ecologic view point. The complete model would

include screening the feasible alternatives resulting from

the matching process against user constraints and

objectives. These constraints and or objectives include

available capital , long-term investment, production goals,

crew skills, environmental constraints, and state and

55

federal regulations.

56

BIBLIOGRAPHY

Calu, J., Wael, L.D., Esmeijer, E., Kerckhoffs, E.J.H. and
Vansteenkiste, G.C., "Knowledge-Base Aspects in Advance
Modeling and Simulation," Pro. 1984 Summer Simulation
Conf., 1247-1253, 1984.

Conway, S., Logging Practices, Miller Freeman Publ. Inc.,
San Francisco, 1982.

Cox, B.J., Object Oriented Programming : An Evolutionary
Approach, Addison-Wesley Publ. Co., Reading, MA, 1986.

Goldin, S.E. and Klahr, P., "Learning and Abstraction in
Simulation," Pro. 7th International Joint Conference on
Artificial Intelligence, 212-214, 1981.

Gory, G.A. and Krumland, R.G., "Artificial Intelligence
Research and Decision Support Systems," in Ed,.
Bennett, J.L., Building Decision Support Systems,
Addision-Wesley Publ. Co., Reading, MA, 1983.

Kerckhoffs, E.J.H. and Vansteenkiste, G.C., "The Impact of
Advanced Information Processing on Simulation - An
Illustrative Review," Simulation, 46, 1, 17-26 1986.

Law, A.M. and Kelton, W.D., Simulation Modeling and Analysis
,McGraw-Hill Book Co., New York, NY, 1982.

Lewis, J.P. and Wiener, R.S., An Introduction to Object-
Oriented Programming and Smalltalk, Addision-Wesley
Publ. Co., Reading MA, 1988.

Oren, T.E., "Simulation - As it has been, is, and should be,
" Simulation, 29, 5, 182-183, 1977.

Oren, T.I. and Ziegler, B.P. , "Concepts for Advanced
Simulation Methodologies," Simulation, 32, 3, 69-82,
1979.

57

Ruiz-Meir, S., Talvage, J. and Ben-Arieh, D., "Towards a
Knowledge-Based Network Simulation Environment,"
Pro. 1985 Winter Simulation Conf., 232-236, 1985.

Shannon, R.E., "Artificial Intelligence and Simulation,"
Pro. 1984 Winter Simulation Conf., 3-9, 1984.

Shannon, R.E., Mayer, R. and Adelsberger, H.H., "Expert
Systems and Simulation, Simulation, 44, 6, 275-284,
1985.

SMALLTALK /V Tutorial and Programming Handbook, Digitalk
Inc, Los Angeles, Ca, 1986.

Randhawa, S.U. and Olsen, E.D., "LOGSIM: A Tool for
Mechanized Harvesting Systems Design and Analysis,"
Applied Engineering in Agriculture, 6, 2, 231-237,
1990.

Rich, E., Artificial Intelligence, McGraw-Hill Book Co.,
New York, NY, 1983.

Tello, E.R., Obiect-Oriented Programming for Artificial
Intelligence, Addision-Wesley Publ. Co., Reading, MA,
1989.

APPENDICES

58

APPENDIX 1.

59

USERS MANUAL

60

Table of Contents

Introduction 62

1 Defining the Harvesting Environment 70

1.1 Definition of user environment variables 70

1.2 Meeting the harvesting requirements 72

1.3 Defining the site specifics 74

1.4 Defining the stand specifics 74

2 Creation and Modification of the Equipment
Database 76

2.1 Creation/Removal of a harvesting operation 76

2.2 Creation/Removal of harvesting equipment 78

2.3 Assignment of equipment attributes 80

2.4 Modification of existing equipment 85

3 Creation and Modification of Support Databases . 86

3.1 Skidder Speeds and Loads database 86

3.2 Wood Density database 89

3.3 Production Equation database 93

4 Running the Equipment Matching Program 95

4.1 Selection of the goal states 96

4.2 Initiating the search algorithm 96

5 Displaying and Interpreting the results 98

61

5.1 Displaying feasible systems 98

5.2 Printing feasible systems 98

6 Trouble Shooting Errors 99

6.1 Program halts 99

6.2 Common Logic Errors 99

62

INTRODUCTION

The Timber Harvester was designed to automatically

generate feasible timber harvesting systems. System

selection is based on the interaction of four major

components.

1. The user's specific harvesting environment.

2. The specific harvesting requirements.

3. The available harvesting equipment's operating
attributes.

4. The required product and it's final location.
(ie) the goal states.

The user is required to build the user environment by

using a mouse to select each environment attribute. The

harvesting requirements are input in a similar manner, to

build in constraints that will determine the direction of

the search for feasible alternatives. These requirements

might be the allowance or prohibition of using a shear type

feller buncher for felling. Each piece of harvesting

equipment is assigned to a harvesting operation. If a piece

of equipment is multi - operational, it must reside in an

operation that is multi-operational. An example would be a

feller buncher that not only fells trees but also bunches

them, would reside in the operation fellBunch. That actual

name of the operation can be anything but some logical

63

expression should be used.

The Timber Harvester uses a best first search, which

uses the production cost as the driving factor. This

production cost is either an input cost or is calculated

using a production equation. The production equation will

compute different values for different user environments.

The input production cost is only used if no production

equation is currently available for the program to access.

Given all four components the Timber Harvester's search

algorithm will map the user environment to the available

equipment database to produce feasible harvesting

alternatives.

Once alternatives have been generated they can be displayed

to reveal the following equipment attributes for each

operation.

1. Product Produced - The output product produced.

2. Accumulation State - The accumulation state of the
output product (bunched etc.).

3. Location - The output product location
(landing etc.).

4. Production Cost - Production cost for each
operation.

The Timber Harvester always displays all feasible

systems until a lowest cost feasible solution is identified.

64

All of these alternatives can then be used as input into a

computer program LOGSIM (Randawa and Olsen 1989). The

procedural simulation can then analyze the equipment

balancing and other system specifics.

SYSTEM LAYOUT

The Timber Harvester is laid out in a system of

rectangular windows. There are two types of windows, list

pane windows and text pane windows. There are two text panes

and 8 list panes laid out in the following manner.

TEXT PANE 1.

I I I I

LIST I LIST
PANE PANE

1.
I 2.

TEXT PANE 2.

LIST I LIST
PANE PANE

3.
I 4.

LIST I LIST
PANE I PANE

5.
I 6.

LIST I LIST
PANE I PANE

7.
I 8.

65

TEXT PANE 1.

Text pane 1 is a help pane which walks the user through
all the operations of the Timber Harvester.

TEXT PANE 2.

Text pane 2 is a response area for the timber
harvester.

LIST PANES 1 - 8.

The list panes 2 - 7 can take on different lists
depending upon which option is selected in list pane 1.

MOUSE

The typical mouse used with the Timber Harvester has
two selection buttons. The left button is used to make a
selection and the right button is used to bring up a menu.

The window pane feature of the Timber Harvester makes

it very user friendly. These panes will be referred to by

name in the following chapters. The Timber Harvest is

written in an object-oriented language called Smalltalk

which an interpreted language. This may require some

Smalltalk interaction from the user. The amount of this

interaction will be minimal but the basic's of the smalltalk

environment need to be discussed.

Exiting Smalltalk

To exit Smalltalk/V and return to DOS, move the cursor

to the background and click the right mouse button to bring

66

up the SYSTEM MENU. Select the exit smalltalk item by

clicking the left mouse button when exit smalltalk is

highlighted (figure A1.1). If any changes have been made and

the changes should be saved, select the save image option

otherwise select forget image or continue to remain in

smalltalk. Talking specifically about the

window menu

pane menu

secondary
pane menu

system menu

!:r1.1 I I a Ik'V fr,oc r ipt

s... sign have choices Wile, lead
to additional pop up menus
offering more selections such as
this 'next menu' item in the
Transcript pane moms above.

Figure A1.1 Different SmallTalk Windows

67

close zoom

collapse

resize

Figure A1.2 Window Label Bar and Window Buttons

Timber Harvester, if you have added equipment or made any

changes select the save image option.

Moving Around the Smailtalk Environment

To get around the smalltalk/V environment
, you must

open up and close windows, make selections from popped up

menus and move the cursor using a mouse or the keyboard.

The Cursor

The cursor is the pointer on the screen. It tells

Smalltalk/V where you are going to do something like pop-up

a window.

68

The I Beam

The insertion point or I-beam is a special text marker

that is used when editing strings. It appears in a text

window or pane and marks the spot where new text will be

inserted or deleted.

Working with Your Mouse.

Your mouse has two buttons that Smalltalk/V uses. The

right button " administrates " your way around the

Smalltalk/V environment. Use the right button to bring up

menus for selection and for scrolling within a window pane.

The left button " selects " things for Smalitalk to execute.

Use the left button to select menu items, text or text

lines, and objects form a list.

Windows

A window is an object with a border, label bar, window

buttons an one or more panes like those previously

discussed, and may also have pop-up menus. A window can be

active or non-active. Windows can be opened, closed,

collapsed, resized and moved around the screen.

69

The Label Bar

Each window has its own label bar and menu. The window

title is displayed at the top with one or more small

buttons. The buttons provide quick access to specific window

activities (figure A1.2).

CLOSE BUTTON

When selected, the window closes an disappears from the
screen. When a window closes all information contained in
the window is lost.

ZOOM BUTTON

When selected, Smalltalk/V zooms in on the text pane so
that it fills the whole screen. To unzoom the text pane,
click on the menu bar with the left button.

COLLAPSE BUTTON

When selected, the window collapses to show only the
label bar. If the window is already collapsed, selecting
this button expands the window to its original size.

RESIZE BUTTON

Select this button and the system responds with a
rectangle outline for resizing the window.

70

1 - Defining the Harvesting Environment.

1.1 Defining the user environment variables.

The users environment is broken down into three logical

units: requirements ,site and stand. They collectively make

up the user environment thus defining the harvesting

situation. The variables used to define the user environment

will now be discussed in detail.

SITE VARIABLES

GroundFirmness

This variable contains a value from 1 - 5, which
represents the firmness range. The value of one defines a
soft ground firmness and value of five defines a hard ground
firmness.

GroundRoughness

This variable contains a value from 1 - 5, which
represents the roughness range. The value of one defines a
mild ground roughness and a value of five defines a severe
ground roughness.

Slope

The slope is defined by a value from -30 to +30. This
value represents the average slope on the given site.

HaulDistance

The haul distance defines the average transportation
distance from the woods to the landing or roadside.

71

STAND VARIABLES

Acres

The acres variable represents the size of the stand in
acres.

Dbh

The dbh variable represents the average diameter at
breast height of the major species in the stand.

MerchTrees

The merchantable tree variable represents the number of
merchantable trees per acre.

Species

The species variable represents the name of the major
species on the given site.

TreeHeight

The tree height variable represents the average tree
height in feet for a stand.

TreeVolume

The tree volume variable represent the average cubic
volume per tree for a stand.

UnmerchTrees

The unmerchantable tree variable represents the number
of unmerchantable trees per acre.

REQUIREMENT VARIABLES

ShearFellinq

The shear felling variable determines if a shear
attachment may be used during a felling operation.

72

Suspension

The suspension variable determines if a log or tree
must have one end suspended during transport.

1.2 Meeting the harvesting requirements.

In any given timber harvesting situation there are a

number of requirements that must be met. The requirement

subset that the Timber Harvester incorporates presently is

limited to the following.

1. ShearFelling - Can equipment use a shear for
felling ?

2. Suspension - One end must be off the ground
during transport (no plowing).

To set the requirements, the following sequence should

be followed. (see figure A1.3)

1. Select the environment option in listPanel.

2. Select the requirements option in listPane2.

3. Select the appropriate requirement listPane3.

The requirement selection will basically eliminate any

systems that do not satisfy the harvesting requirements.

This means that if you select a whole tree harvest, no

system involving a bucking operation will be feasible.

73

CD TIMBER HARVESTER ver 1.H @Cie)
felling can be performed with a shear type

attachment. (true or false).

environment requirements:

equipment

goal

operations

printScreen

i nu- r

site

stand:

(
r

I(I(

liearFelling: set to true chcarFelling.false

suspention: true

Figure A1.3 Setting Harvesting Requirements.

74

1.3 Defining the site specifics.

The site specifics define the terrain by assigning the

values of 1 through 5 to ground roughness and ground

firmness. The haul distance is a site specific variable that

is defined by the distance in feet. The Slope is given a

value of -30 to +30 which represents a range from 30 percent

down hill to 30 percent uphill. To set the site variables,

the following sequence should be followed. (see figure A1.4)

1. Select the environment option in listPanel.

2. Select the site option in listPane2.

3. Select the appropriate site variable in
listPane3.

1.4 Defining the stand specifics.

Stand specifics define the timber stand variables such

as dbh and species. To set the stand variables, the

following sequence should be followed.

1. Select the environment option in listPanel.

2. Select the stand option in listPane2.

3. Select the appropriate stand variable in
listPane3.

All of these variables form a user environment vector

that will be used during the search procedure to map the

user environment to a candidate piece of equipment.

75

TIMBER HARVESTER ver 1.H
please edit the default value if necessary, also aiirments:
note that if the default value is in quotes your equipment -

response must also be contained in quotes. goal stand:

operations

(
r

K K
printScreen

fintat imic
haulDistance.taulDistance: set to 388

Figure A1.4 Defining Site Specifics.

76

2 Creation and Modification of the Equipment Database.

2.1 Creation/Removal of a harvesting operation.

The Timber Harvester comes as a blank slate. This means

it comes with no user environment and no database of

available technology. The previous chapter outlined the

necessary steps to create the user environment, leaving the

equipment database to be defined in this chapter. To begin

building our database we first must clearly define what

constitutes an operation.

Definition # 1. - An operation is a procedure that takes an
input material form at a particular
location and transforms the material into
an output form at a particular location.

This definition seems simple enough, and it would be if each

piece of equipment could perform only one operation. Many

types of timber harvesting equipment can perform multiple

operations. While these machines are flexible they are not

always the most cost efficient for a given user environment.

At times a system composed of singular function machines is

more efficient. Therefore to allow the Timber Harvester to

evaluate both types of systems we need to modify definition

1.

77

Definition # 2 - An operation is a procedure that takes an
input material form at a particular
location and transforms the material into
an output form at a particular location.
The output form and location must be
consistent with the operation for which a
given piece of equipment is assigned.

[EXAMPLE] - For a felling operation the input form would be

standing timber and the output form would be a whole tree.

It would obviously be inconsistent to have a piece of

equipment categorized for felling doing delimbing, because

the output form would be a delimbed tree. Therefore all

delimbing must be done by machines assigned to that

operation, even if it is the same type of machine that did

the felling.

** Note **

Some equipment will have an output form that is the
same as the input form and the only difference will be a
change in location, (eg) skidding.

The reason for the modification to definition # 1 will

become readily apparent as we discuss building the database.

The database of available equipment technology is arranged

by operation. We begin building our database with the most

primitive operation usually felling, but combination

operations are often used. Once an operation is created we

can add the available equipment to perform the operation. If

a machine can perform multiple operations it must reside in

a combination operation that has a specific input material

form and a specific output form.

78

To create an operation perform the following sequence.

(see figure A1.5)

1. Select operations in listPanel.

2. Select add option from listPane2.

3. Enter an Alpha-Numeric name in prompter window.

To remove an operation perform the following sequence.

1. Select operations in listPanel.

2. Select remove option from listPane2.

3. Select the operation to remove from listPane3.

CAUTION ==> REMOVING AN OPERATION WILL REMOVE ALL THE
EQUIPMENT IN THE SYSTEM THAT IS ASSIGNED TO THAT OPERATION.

2.2 Creation/Removal of harvesting equipment.

Once an operation is in the system, equipment can then

be added under that operation to produce that operation's

output form at a location. Once the equipment is added then

the attributes must be assigned that define the specifics

about a given piece of equipment. To create equipment for an

operation, perform the following steps.

1. Select equipment in listPanel.

2. Select database in listPane2.

3. Select the appropriate operation in listPane3.

4. Select add in listPane4.

5. Enter an Alpha-Numeric equipment name in the
prompter window.

79

0 .
.

(D@Cg
!lease enter the name of the operation you wish to aienvironment

equipment

goal

Ismilimil
display:

remove:

operations
printScren
nrsvIrmiat 4

e
nng

(l

K K K
peirOperation added to Operations aNemOperatior

bunching

delimbing

fellBunch

felling
haul inn'

Figure A1.5 Creation of an Operation.

80

2.3 Assignment of equipment attributes.

Assigning attributes to a given piece of equipment is

nothing more than giving it a unique identity. These

attributes are accessed during program execution to

calculate production costs and to determine suitability of

the equipment with the current user environment. These

attributes will now be discussed in detail.

Accumulation

This attribute is described in two parts. The input
accumulation refers to the accumulation state that a given
piece of equipment can accept. Given a particular type of
input accumulation a given machine will produce an output
accumulation state which may or may not be the same as the
input accumulation.

Attachment

The attachment attribute refers to a prominent
attachment such as a shear attachment for a feller buncher
or a grapple attachment on a skidder. This attribute
variable is referenced during program execution to calculate
production costs.

CostPMH

The cost of the operation per machine hour is an
entered value that is independent of the user environment.
This value must be known or estimated by the user.

Dbh

The dbh is described in two parts. The lowerbound value
represents a piece of equipment's lower bound operating
range. The upperBound value represents the upper bound
operating range.

81

Ground

This attribute is described in two parts. The ground
roughness refers to general topography and rocks etc. The
ground firmness refers to soil texture. A scaling factor
from 1 to 5 is used to define the two ranges. A factor of
one being mild or soft while a factor of 5 being severe or
hard.

HPClass

The horse power class is an entered value describing
the horse power class of a given piece of equipment.

Product

The product is described in two parts. The first part
is termed the input and refers to an input product. This
input product refers to the output product from a piece of
equipment that performed the previous operation. Given a
particular input form a given piece of equipment will
produce an output product.

Location

The location attribute refers to the location where the
output product is located after processing. This may or may
not be the same location as before processing. An example
would be a bucking operation where the output location is
the same after the bucking operation as before. With a
skidding operation the location changes but the product
state remains constant.

MaintCost

The maintenance cost per machine hour is an entered
value. The value is entered in a prompter window during
attribute assignment.

Operations

This attribute is one of the more important attributes,
and can have significant impact on the solution space. A
piece of equipment assigned to performing a given operation
needs to know what possible operations can follow the
operation it performs. An example would be manual felling,
at the completion of the felling operation there most
probably will be more than one possible way to proceed with
harvesting.

Case 1: We might bunch the trees before skidding.

82

Case 2: We might skid whole trees by themselves.

Case 3: We might delimb the trees.

The following operations would then be included in the
attribute operations.

Case 1: bunching.

Case 2: skidding.

Case 3: delimbing.

These operations are all considered valid moves from the
operation felling. It is important to realize that this
attribute determines how systems can be constructed. It is
equally important to realize that the user is in complete
control of this attribute. This feature gives the user the
flexibility to add operations and equipment freely.

ProdCost

This attribute is a default variable that is entered as
a constant when no regression/production equation is
defined. It is a constant value that is not affected by the
user environment. This feature allows the addition and
incorporation of equipment without sufficient data.

ProdEauation

This attribute defines the name of a production
equation. During program execution this equation will be
utilized to provide an environmentally matched production
cost for a given piece of equipment.

Slope

The slope attribute is a two part variable. The
lowerBound defines the lowest slope for which a given piece
of equipment can operate. The upperBound defines the largest
positive slope for which the equipment can operate.
Therefore the slope attribute defines the operating range
for slope.

Suspension

This attribute is used to reflect a piece of
equipment's ability to suspend one end during transport.
This is a binary variable, if the equipment does not do any
transportation the response should always be yes.

83

To set the attribute values for a piece of equipment

the following sequence should be followed. (see figure A1.6)

1. Select the equipment option in listPanel.

2. Select the attribute option in listPane2.

3. Select the desired operation in listPane3.

4. Select the desired equipment in listPane4.

5. Select the desired attribute in listPane5.
Then follow program prompts.

84

0 IIMBER HARVESTER ver LH @CID
pelect the input accumulation state and

then select the output accumulation state.

environment

equipneut

goa

operations

printScreen
mrrATmmthmvc

attributes:

available:

database:

IL

r

K
starting with bunched or decked to => bunched or decIfellBunch

starting with random to => bunched or decked

starting with single pieces in lead to => bunched or

felling

hauling

loading

catCable

cat, app e

skidding

mtArt

accumulation:bunched

attachment:

costPHH:

dbh:

ground:
Wrinnac

or de

random
single piece

output: hunched or d

random

single pieces

Figure A1.6 Setting Equipment Attributes.

85

2.4 Modification of existing equipment.

Modification of attributes for existing equipment is

performed in the same manner as setting them for the first

time, with one notable exception. If you want to change

attributes that have more than a single value, such as

location, product and accumulation you must reset all the

values. An example might occur in the following.

Operation: Bucking.
Name:Processorl.

input product:

input product:

whole tree =>

delimbed tree

output product: bucked
tree.

=> output product:bucked
tree.

Lets say this piece of equipment exists. It is later

decided that this piece of equipment CANNOT process whole

trees. To change attribute you must perform the following.

1. Select the equipment option in listPanel.

2. Select the attribute option in listPane2.

3. Select the desired operation in listPane3.

4. Select the desired equipment in listPane4.

5. Select input in listPane5.

Once input is selected both whole tree and
delimbed tree are erased and you are left to
redefine the input/output product
relationships.

6. Select delimbed in listPane6.

86

7. Select output in listPane7.

8. Select bucked in listPane8.

3 - Creation and Modification of Support Databases.

The Timber Harvester uses three support databases that

are accessible by the entire system. These databases may be

added to, deleted from or can just display the data they

contain. Once they are created they should not need much up

keep but should be monitored to insure accurate results.

3.1 Skidder Speeds and Loads Database.

This database contains the information needed when

calculating the production cost for different kinds of

skidding equipment. The database is organized by the type of

attachment of the skidding equipment, this can be either a

cable or a grapple. Three variables are entered for a given

horse power class and slope percentage. A typical data table

will look like the following table. (see figure A1.7)

HORSE POWER CLASS: 90
ATTACHMENT CLASS CABLE
SLOPE (%) LOAD

(1000 LB)
LOADED SPEED

MPH
EMPTY SPEED

MPH

-30 11.0 19.0 4.40-20 11.0 19.0 5.90-10 11.0 19.0 9.30
0 11.0 4.90 19.10

10 9.0 3.70 19.00
20 8.0 2.50 19.00
30 7.0 2.20 19.00

87

CD TIMBER HARVESTER ver 1.H C@CJED
please select the horse power class to display. operations

printScreen

prodEquationsedit:

reports

slildderSpeed

neitu

add:

display:

reSIOVe :

((tt
Iorse Power Class 118

Attachment Class cable:

Slope Load Loaded Speed Empty Speed

-38 11 17 4

-28 11 17 7

-18 11 17 9

8 11 6 17

18 9 4 17

28 8 3 17

38 7 3 17

cable:

grapple:

'illilk
1.1.s.

288

98

Figure A1.7 Skidder Speeds and Loads.

88

3.1 a. Creating a new horse power class data table.

To create a new horse power class for a given

attachment type, you should perform the following sequence.

1. Select skidderSpeed in listPanel.

2. Select add in listPane2.

3. Select attachment type in listPane3.

4. Enter a horse power class in the prompter
window.

3.1 b. Displaying a data table.

To display a data table for a given attachment and

horse power class, you should perform the following

sequence.

1. Select skidderSpeed in listPanel.

2. Select display in listPane2.

3. Select attachment type in listPane3.

4. Select the horse power class in listPane4.

3.1 c. Editing a data table.

To edit an existing table, you should perform the

following sequence.

1. Select skidderSpeed in listPanel.

2. Select edit in listPane2.

89

3. Select attachment type in listPane3.

4. Select the horse power class in listPane4.

5. Select slope percentage in listPane5.

6. Select variable to change in listPane6.

3.1 d. Removing a data table.

To remove an existing data table, you should perform

the following sequence.

1. Select skidderSpeed in listPanel.

2. Select edit in listPane2.

3. Select attachment type in listPane3.

4. Select the horse power class in listPane4.

3.2 The Wood Density Database.

The wood density database contains information relating

a density value to a particular species of tree. This

database must contain the species and the associated value

before a harvesting system can be found for a given species.

The following database functions are available. (see figure

A1.8)

90

3.2 a. Creating a new species.

To add a new species to the wood density database

perform the following sequence.

1. Select woodDensity in listPanel.

2. Select add in listPane2.

3. Enter an Alpha species name in the prompter
window.

91

a 1MBER HARVESTER ver 1.H
The species in the system and their density

values those displayed.

ImnderosaPine set to 33

enylemanSpruce set to 29

whiteFir set to 34

douglasFir set to 38

larch set to 39

0(38
printScreen

prodIquationt

reports

skidderS

woodDensitg

add:

dtt:
remove:

Figure A1.8 WoodDensity Data.

92

3.2 b. Editing an existing species value.

To edit an existing species perform the following

sequence.

1. Select woodDensity in listPanel.

2. Select edit in listPane2.

3. Select the species to edit in listPane3.

4. Enter the new value in the prompter window.

3.2 c. Displaying the existing species.

To display all existing species perform the following

sequence.

1. Select woodDensity in listPanel.

2. Select display in listPane2.

3. Select the species to display in listPane3.

3.2 d. Removing an existing species.

To remove an existing species perform the following

sequence.

1. Select woodDensity in listPanel.

2. Select remove in listPane2.

3. Select the species to remove in listPane3.

93

3.3 Production Equation Database.

The production system database is just a collection of

production equation names. The corresponding equations need

to added to the machine class after the name or names of the

equations are added to production system equation database.

Please refer to Chapter 6 for the specifics on adding the

equations to the machine class. (see figure 8)

3.3 a. Adding a production equation name.

To add a production equation name perform the

following sequence.

1. Select prodEquations in listPanel.

2. Select add in listPane2.

3. Enter an Alpha-Numeric name in the prompter
window.

3.3 b. Displaying the current production equation
names.

To display the currently available production equation

names, perform the following sequence.

1. Select prodEquations in listPanel.

2. Select display in listpane2.

94

3.3 c. Removing an existing production equation name.

To remove a currently existing production equation name

perform the following sequence.

1. Select prodEquations in listPanei.

2. Select remove in listPane2.

3. Select the production equation name in
listPane3.

95

4 - Running the Equipment Matching Program

Before running the equipment matching algorithm, the

user must specify the goal location and the goal product

required.

To run the equipment matching algorithm the mouse should be

placed in any list pane and the right button should be

selected. This procedure should bring up a menu from which

the selection match equipment should be chosen. The program

will respond by relaying the goal location and the goal

product selected. Then the program will begin the search

routine. When the search process finds a system that ends in

the required goal states and satisfies the user vector

requirements, the system will be displayed on the screen.

The display shows the state number, the total system cost

and a list of equipment. The state number refers to the

number of systems evaluated. This number is an easy way to

attach an identity to a system and is used for this purpose.

An example display might look like the following.

34:[112.56]->manual->d8cat->loader->truck.

State number = 34
System logging cost = 112.56
System = ->manual->d8cat->loader->truck.

Notice that the user is not explicitly told which

96

operation each piece of equipment performs. To find out the

specifics a user must record the state number and display

the system specifics at the end of the run.

4.1 Selection of the goal states.

The selection of the goal operation must be selected

before running the match equipment algorithm. To select a

goal perform the following sequence. (see figure A1.9)

1. Select goal in listPanel.

2. Select the goal state to set in listPane2.

3. Set the goal state in listPane3.

4.2 Initiating the search algorithm.

To initiate the search algorithm perform the following

sequence. (see figure 10)

1. Place mouse pointer in any list pane.

2. Select the right mouse button.

3. Select match equipment from the menu.

97

O T I MB E H H A H VEST E H ver 1.E1 (gX39
?lease select the required product the

harvesting operation should produce.
qoal
operations
printScreen

prodEquatione

reports
gir4 el .1 or c,,.441

location:

product:

C K I(F'

he goal location set to condard

The goal product set to treeLength
completeTree

logLength

shorttlood

treeLength
wholetree

Figure A1.9 Selection of Goals.

98

5 - Displaying and Interpreting the Results

The Timber Harvester comes with a feature to display or
print the various systems that the search algorithm
suggests.

5.1 Displaying feasible systems.

To display any system the Timber Harvest suggests as a

feasible harvesting system, perform the following sequence.

1. Select the reports option in listPanel.

2. Select the display option in listpane2.

3. Select the state number of the system in
listPane3.

5.2 Printing feasible systems.

To print any system the Timber Harvest suggests as a

feasible harvesting system, perform the following sequence.

1. Select the reports option in listPanel.

2. Select the print option in listpane2.

3. Select the state number of the system in
listPane3.

99

6 - Trouble Shooting Errors.

The Timber Harvester is virtually indestructible but in

the unlikely event that the program halts, the following

should section should get you back up and running. We cannot

stress enough the importance of backing up the image file

and the change.log file after and database change is made.

6.1 Program halts.

Program halts can occur when smalltalk expects

information where none exits. Smalltalk will provide you

with a walkback window which is covered in detail in the

Smalltalk/V handbook.

6.2 Logic errors.

What to do when the system does not seem to providing

the result you expect ? Usually a piece of equipment you

created was not created like you think, in other words you

probably did not enter the equipment characteristics as you

expected to. Check all the pieces of equipment in the

sequence you think should have been found. A handy way to do

this is to pick goal states early in system creation and

progress forward until you can isolate the equipment that is

causing the problem.

100

APPENDIX 2.

101

PROGRAM LISTING

102

(OrderedCollection) subclass: #System
instanceVariableNames: cost
classVariableNames:
poolDictionaries:

System class methods

new

11 create a new initialized system "

A super new initialize.

System methods

add: aMachine

" Add aMachine to the receiver. Add the production
cost/(a mapping factor) of adding a Machine to the cost
of the receiver. Answer the receiver. "

" use the super class method add: to add the object
machine. The variable super will override the System
instance method add:. "

aMachine compCumVector.
super add: aMachine.
cost := cost + (aMachine prodCost).

^self

contains:anOperation

11 check to see if the system contains an operation "

self do: [:machine 1

(machine operation asSymbol = anOperation)
ifTrue: [Atrue]).

^false

cost
" Answer the cost of the receiver. "

^cost

103

endsIn: aSymbol

" Answer true if the last machine in the receiver is
aMachine. Otherwise, answer false. "

A((self last operation asSymbol) = aSymbol)

endslnLocation: aSymbol

" Answer true if the last machine in the receiver is
aMachine. Otherwise, answer false. "

A((self last locationOut asSymbol) = aSymbol)

endsInProduct: aSymbol

" Answer true if the last machine in the receiver is
aMachine. Otherwise, answer false. "

A((self last outputProductState asSymbol) = aSymbol)

initialize

" Initialize the receiver: set its cost to 0.
Answer the receiver. "

cost := 0.

Aself

length

" Answer the length of the receiver: the number of
Machines contained in it. "

^self size

(Dictionary) subclass:
instanceVariableNames:
classVariableNames:
poolDictionaries:

104

#DictionaryOrderedCollection

DictionaryOrderedCollection class methods

new

" Answer a new DictionaryOrderedCollection object capable
of containing 10 dictonaries. "

^ self new: 10

DictionaryOrderedCollection methods

addSymbolKey:aSymbol

" Add an OrderedCollection to
DictionaryOrderedColllection. "

1 tempOrderedCollection 1

tempOrderedCollection := OrderedCollection new.
self at: aSymbol put: tempOrderedCollection.

^self

addValueAt:akey with: aSymbol

" add an object to an OrderedCollection object within a
dictionary object. "

(self at:akey) add: aSymbol.

^ self

105

removeSymbolKey:aKey

" Answer the receiver without the key/value pair
whose key equals aKey. If such a pair is not found
report an error. "

self
removeKey: aKey
ifAbsent: [self errorAbsentKey].

Aself

removeValueAt:aKey with:aSymbol

II remove a value at aKey. "

(self at:aKey)
remove:aSymbol
ifAbsent: [self errorAbsentKey].

Aself

retrieveCollection:aSymbol

" retrieve an OrderedCollection from a dictionary object."

Aself at: aSymbol

106

(Dictionary) subclass:
instanceVariableNames:
classVariableNames:
poolDictionaries:

#DictionaryDictionary

DictionaryDictionary class methods

new

" Answer a new DictionaryDictionary object capable
of containing 10 dictonaries. "

A self new: 10

DictionaryDictionary methods

addSymbolKey:aSymbol

" Add a Dictionary to DictionaryDictionary. "

1 tempDictionary 1

tempDictionary := Dictionary new.
self at: aSymbol put: tempDictionary.

^self

addValueAt:akey with: aSymbol with:anObject

" add an object to a dictionary object within a
dictionary object. "

(self at:akey) at: aSymbol put:anObject.

A self

107

removeSymbolKey:aKey

" Answer the receiver without the key/value pair
whose key equals aKey. If such a pair is not found
report an error. "

self
removeKey: aKey
ifAbsent: [self errorAbsentKey].

^self

removeValueAt:aKey with:aSymbol

" remove a value at aKey. "

(self at:aKey)
removeKey:aSymbol
ifAbsent: [self errorAbsentKey].

^self

retrieveDictionary:aSymbol

" retrieve a dictionary at aSymbol
from a dictionary object . "

^self at: aSymbol

retrieveValueAt:aKey with:aSymbol

retrieve an object from a dictionary
within a dictionary object. "

A(self at:aKey) at:aSymbol.

108

(Object) subclass:
instanceVariableNames:

classVariableNames:
poolDictionaries:

Machine class methods

#Machine
name
initialCost
maintCost
productionCost
cumScoreVector
outputProductState
inputProductState
productState
predCompatibility
mappingFactor
succCompatibility
succProcess
operation
slopeRange
dbhRange
suspention
locationIn
locationOut
accumulationStateIn
accumulationStateOut
accumulation
location
type
hpClass
attachment
productionEquation
costPMH
roughness
firmness

new

" create a new instance of machine "

A super new initialize.

109

Machine methods

accumulationState

" return accumulation dictionary "

A accumulation

accumulationState:aKey with:aSymbol

" store accumulationStateIn at a key
(accumulationStateOut) "

accumulation at:aKey put:aSymbol.

Aself

accumulationStateIn

answer the accumulationStateIn

A accumulationStateIn

accumulationStateIn:aSymbol

answer the accumulationStateIn

accumulationStateIn:= aSymbol.

A self

accumulationStateOut

" answer the accumulationStateOut "

A accumulationStateOut

accumulationStateOut:aSymbol

" set the accumulationStateOut "

accumulationStateOut := aSymbol.

A self

110

attachment

" return the attachment type for a machine "

A attachment

attachment:aString

set the attachment type for a machine "

attachment := aString.

Aself

compCumVector

" compute the cumulative Score Vector "

" Temporary variable "

1 sum 1

" Test to see if a machine causes butt split and the user
specified that butt split was not allowed. "

(self attachment = #shear and: [(EnvironmentDictionary
at:#shearFelling:) = 'false'])

ifTrue: [self cumScoreVector:#attachment with:0]
ifFalse: [self cumScoreVector:#attachment with:1].

" Test to see if a machine does not suspend one
end of the log and the user specified that one end must be
suspended. "

(self suspention = 'false' and: [(EnvironmentDictionary
at:#suspention:) = 'true'])

ifTrue: [self cumScoreVector:#suspention: with:0]
ifFalse: [self cumScoreVector:#suspention: with:1].

It compute the cumScoreVector. "

((slopeRange at:#1owerBound:) <= (EnvironmentDictionary
at:#slope:)
and: [(slopeRange at:#upperBound:) >=
(EnvironmentDictionary at:#slope:)])

ifTrue: [

self cumScoreVector:#slope with:1]
ifFalse: [

111

self cumScoreVector:#slope with:0].

((dbhRange at:#1owerBound:) <= (EnvironmentDictionary
at:#dbh:)
and: [(dbhRange at:#upperBound:) >= (EnvironmentDictionary

at:fdbh:)])
ifTrue: [

self cumScoreVector:#dbh with:1]
ifFalse: [

self cumScoreVector:#dbh with:0].

((self firmness) >= (EnvironmentDictionary
at:#groundFirmness))

ifTrue: [

self cumScoreVector:#firmness with:1]
ifFalse: [

self cumScoreVector:#firmness with:0].

((self roughness) >= (EnvironmentDictionary
at:#groundRoughness))

ifTrue: [

self cumScoreVector:#roughness with:1]
ifFalse: [

self cumScoreVector:#roughness with:0].

II calculate the mappingFactor "

((cumScoreVector size) = (cumScoreVector occurrencesOf:1))
ifTrue: [

mappingFactor := 'pass']
ifFalse: [

mappingFactor := 'fail'].

^self

costPMH

" return the instance variable costPMH "

^costPMH

112

costPMH:aNumber

If set the instance variable costPMH to aNumber. "

costPMH := aNumber.

^self

cumScoreVector

" answer the cumScoreVector "

cumScoreVector

cumScoreVector:aSymbol with:aNumber

" store either a 1 for pass or 0 for fail at a Symbol in
the cumScoreVector dictionary. "

cumScoreVector at:aSymbol put:aNumber.

^self

dbhRange

" dbh range for a machine ,return the collection. "

"dbhRange

dbhRange:aString

" dbh range for a machine at a key (aString)
return aNumber. "

AdbhRange at:aString

dbhRange:aString with:aNumber

" dbh range for a machine at a key (aString)
store aNumber. "

dbhRange at:aString put:aNumber.

^self

113

fbNoLevel

" production cost derivation for operation feller bunch
without leveling. "

1 treesPMH prodFt3PMH prodCostFt3 speedEmpty speedLoaded
slope dbh merchantableVol unmerchantableVol woodDensity
haulDistance acres treeVol hookUnhookDeckTime
travelTime totalCycleTime

merchantableVol := EnvironmentDictionary at:#merchTrees:.
treeVol := EnvironmentDictionary at:#treeVolume:.
dbh := EnvironmentDictionary at:#dbh:.
unmerchantableVol := EnvironmentDictionary
at:#unmerchTrees:.

treesPMH := 214.7 - 0.134 * (merchantableVol /0.4047) -
53.1 * (unmerchantableVol / merchantableVol) -
4.2 * (dbh * 2.54) + 29.7 * [4.36 - 0.12 *
(dbh *2.54) - 0.00052 * (unmerchantableVol /
0.4047)].

prodFt3PMH := treesPMH * treeVol.

prodCostFt3 := (self costPMH)/prodFt3PMH.

AprodCostFt3

firmness

tt return the instance variable firmness. "

^firmness.

firmness:aNumber

It set the instance variable firmness to aNumber. "

firmness := aNumber.

^self

hpClass

return the horse power class for a machine "

^hpClass

hpClass:aString

set the horse power class for a machine "

hpClass := aString.

^self

initialCost

5 return production cost "

^initialCost

initialCost:aNumber

" update initialCost cost "

initialCost := aNumber.

^self

initialize

/I initialize an instance of the class machine.
answer the reciever. "

dbhRange := Dictionary new.
self dbhRange:#1owerBound: with:1.
self dbhRange:#upperBound: with:40.
slopeRange := Dictionary new.
self slopeRange:#1owerBound: with:O.
self slopeRange:#upperBound: with:30.
succCompatibility := OrderedCollection new.
succProcess := OrderedCollection new.
productState := Dictionary new.
location := Dictionary new.
accumulation := Dictionary new.
initialCost := O.
maintCost := O.

114

115

productionCost := 0.
cumScoreVector := Dictionary new.
attachment := 'notDefined'.
costPMH := 0.
firmness := 0.
roughness := 0.
hpClass := 'notDefined'.
operation := 'notDefined'.
productionCost := 0.
suspention := 'notDefined'.
productionEquation := 'notDefined'.

^self

inputProductState

" answer the inputProductState "

^ inputProductState

inputProductState:aSymbol

II set the inputProductState "

inputProductState := aSymbol .

A self

locationIn:aSymbol

II answer the locationIn "

locationIn := aSymbol.

^ self

locationOut

" answer the locationOut "

A locationOut

116

locationOut:aSymbol

II set the locationOut "

locationOut := aSymbol.

^ self

locationState

" return location dictionary. "

^location

locationState:aKey with:aSymbol

II store locationOut at a key (locationIn) "

location at:aKey put:aSymbol.

^self

maintCost

II answer the maintCost "

^maintCost

maintCost:aNumber

" Update the maintenance cost "

maintCost := aNumber.

^self

mappingFactor

" Return the mappingFactor "

^ mappingFactor

117

name

" Return the name of the equipment "

A name

name:aSymbol

11 Set the name of the equipment with aSymbol "

name := aSymbol asString.

A self

operation

11 Return the name of the operation "

A operation

operation: aSymbol

H Set the name of the operation with aSymbol "

operation := aSymbol asString.

A self

outputProductState

11 answer the outputProductState "

A outputProductState

outputProductState:aSymbol

" answer the outputProductState "

outputProductState := aSymbol.

A self

118

processCheck

check for compatiable process material "

(self accumulationStateOut) = nil
ifFalse: [

(self outputProductState) = nil
ifFalse: [

(self locationOut) = nil
ifFalse: [Atrue]]].

^false

processMaterial:productSymbol with:locationSymbol
with: accumulationSymbol

" set input and output product states based from aSymbol
that is returned from a machine in a system. "

inputProductState := productSymbol.
locationIn := locationSymbol.
accumulationStateIn := accumulationSymbol.

(productState includesKey:productSymbol)
ifTrue: [

outputProductState := productState at: productSymbol]
ifFalse: [outputProductState := nil].

(location includesKey:locationSymbol)
ifTrue: [

locationOut := location at:locationSymbol]
ifFalse: [locationOut := nil].
(accumulation includesKey:accumulationsymbol)
ifTrue: [

accumulationStateOut := accumulation
at: accumulationSymbol]
ifFalse: [accumulationStateOut := nil].

^self

prodCost

return production cost "

AproductionCost

119

prodCost:aNumber

update production cost "

productionCost := aNumber.

^self

productionEquation

return the value of productionEquation "

A productionEquation

productionEquation:aSymbol

" set the value of productionEquation "

productionEquation := aSymbol.

^self

productState

return the productState dictionary "

^productState

productState:aKey with:aSymbol

" store outputProductState at a key (inputProductState)"

productState at:aKey put:aSymbol.

^self

resetAccumulation

" This method resets the Dictionary for Accumulation .

called by attributesInput5. "

accumulation := Dictionary new.

^self

120

resetLocation

" This method resets the Dictionary for location .

called by attributesInput5. "

location:= Dictionary new.

^self

resetOperations

" This method resets the orderedCollection for successor
processes "

succProcess:= OrderedCollection new.

^self

resetProductState

" This method resets the Dictionary for the product state .

called by attributesInput5. "

productState := Dictionary new.

^self

roughness

" return the instance variable roughness. "

^roughness.

roughness:aNumber

" set the instance variable roughness to aNumber. "

roughness := aNumber.

^self

121

skidding

" production cost derivation for operation skid. "

(loads load prodLbsPMH prodFt3PMH prodCostFt3 speedEmpty
speedLoaded slope merchantableVol woodDensity haulDistance
acres treeVol hookUnhookDeckTime travelTime totalCycleTimel

slope := ((EnvironmentDictionary at:#slope:)
printPaddedTo:1) asSymbol.
merchantableVol := EnvironmentDictionary at:#merchTrees:.
woodDensity := WoodDensity at:(EnvironmentDictionary
at:#species:).
haulDistance := EnvironmentDictionary at:#haulDistance:.acres := EnvironmentDictionary at:#acres:.
treeVol := EnvironmentDictionary at:#treeVolume:.

(self attachment = #cable)
ifTrue:[
load := (SkidderSpeedCable at:(self hpClass))

retrieveValueAt:slope with:#1oad.

speedEmpty := (SkidderSpeedCable at:(self hpClass))

retrieveValueAt:slope with:#emptySpeed.

speedLoaded := (SkidderSpeedCable at:(self hpClass))

retrieveValueAt:slope with:#1oadedSpeed].

(self attachment = #grapple)
ifTrue:[
load := (SkidderSpeedGrapple at:(self hpClass))

retrieveValueAt:slope with:#1oad.

speedEmpty := (SkidderSpeedGrapple at:(self hpClass))

retrieveValueAt:slope with:#emptySpeed.

speedLoaded := (SkidderSpeedGrapple at:(self hpClass))

retrieveValueAt:slope with:#1oadedSpeed].

loads := load/(merchantableVol*treeVol*woodDensity).

hookUnhookDeckTime := 4.35 + (1.35 * loads).

(self attachment = #grapple)

ifTrue:[hookUnhookDeckTime := 0.3 * hookUnhookDeckTime].

travelTime :=

((haulDistance/88)*((l/speedLoaded)+(1/speedEmpty))).

122

totalCycleTime := hookUnhookDeckTime + travelTime.

prodLbsPMH := (load * 60)/totalCycleTime.

prodFt3PMH := prodLbsPMH/woodDensity.

prodCostFt3 := (self costPMH)/prodFt3PMH.

AprodCostFt3

slopeRange

slope range for a machine return the collection. "

AslopeRange

slopeRange:aString

slope range for a machine at a key (aString) "
return aNumber.

slopeRange at:aString

slopeRange:aString with:aNumber

" update the slope range for a machine at a key (aString)
store aNumber. "

slopeRange at:aString put:aNumber.

^self

succCompatibility

return a compatibility OrderCollection which represents
compatible successor machines. "

"succCompatibility

123

succCompatibility:aSymbol

" add aSymbol (an equipment name) to compatibility list.
Do this only if the name does not already exist."

(succCompatibility includes:aSymbol)
ifFalse: [

succCompatibility add:aSymbol].

^self

succProcess

II return a compatibility OrderCollection which represents
compatible successor processes."

AsuccProcess

succProcess:aSymbol

If add aSymbol (a process name) to compatibility list.
Do this only if the name does not already exist."

(succProcess includes:aSymbol)
ifFalse: [

succProcess add:aSymbol].

^self

suspention

" Return the true/false value of suspention "

A suspention

suspention:aString

" set the true/false value of suspention "

suspention:= aString.

A self

124

(Object) subclass:
instanceVariableNames:

classVariableNames:
poolDictionaries:

SystemFinder class methods

SystemFinder methods

goal

#SystemFinder
statesGenerated
startingSystem
goal
queue
goalLocation
goalProduct

" return the current goal state "

A goal

goal:aSymbol

'I return the current goal state "

goal := aSymbol.

A self

goalLocation

II return the current goalLocation state "

A goalLocation

goalLocation:aSymbol

Il set the current goalLocation state "

goalLocation := aSymbol.

A self

125

goalProduct

II return the current goalProduct state "

A goalProduct

goalProduct:aSymbol

II set the current goalProduct state "

goalProduct := aSymbol.

A self

nextState

" Remove the first remaining state (aSystem) from the
queue and answer it. "

^queue removeFirst

queue

" return the size of the queue. "

1 tempQueueSize 1

tempQueueSize := queue .

A tempQueueSize

startSystem

II

126

11 Create a queue to hold partial solution systems and
answer the receiver. "

Temporary variables

aNewState 1

self initializeQueue.

(OperationsAvailable at:#start) do: [:machine 1

aNewState := System new .

machine processMaterial:#completeTree with:#standing
with:#random.
queue add:(aNewState add:machine)].
statesGenerated := 1.

send message showStartSystem: with aBestFirstSelection
as the parameter. "

Timber showStartSystem:self.

^self

127

(SystemFinder) subclass:
instanceVariableNames:
classVariableNames:
poolDictionaries:

#BestFirstSelection

BestFirstSelection class methods

BestFirstSelection methods

enqueue: anOrderedCollection

" Add the states contained in anOrderedCollection to
the queue. In this case, add the new states one at a
time to the queue. Being a SortedCollection, it will
Maintain the states in ascending order of cost.
Answer the receiver. "

queue addAll: anOrderedCollection.

^self

expandState: aSystem

" Expand the state aSystem by finding all possible
states (Systems) that can be reached from it. Print
the states as they are generated. aSystem is an
OrderedCollection of machines. "

Temporary variables

1 successors successorState 1

successors := OrderedCollection new.

" Send feasibleMachineFrom: message to a
BestFirstSelection and do a block of code on each object
(aMachine) in the OrderedCollection feasibleMachines. "

(self feasibleMachinesFrom: aSystem) do: [:aMachine 1

successorState := System new.
successorState addAll: aSystem.
successorState add: aMachine .

statesGenerated := statesGenerated + 1.

Timber showStatesCount:statesGenerated.
Timber showQueueCount:queue.

128

" Send messages to the object Timber to print the
sucessorState and statesGenerated in a textpane. "

((successorState endsInLocation: goalLocation) and:
[successorState endslnProduct: goalProduct])

ifTrue: [

Timber showStatesGenerated:statesGenerated.
Timber showSuccessorState:successorState.
Timber addToReportsAt:(statesGenerated storeString)
with: successorState.

] .

" Add the successorState to the successors and when
complete, return the successors. "

successors add: successorState].

^successors

feasibleMachinesFrom:aSystem

" Answer an OrderedCollection containing the machines
that the receiver could feasibly move to from the
last machine in aSystem. "

Temporary variables

IfeasibleMachines lastMachine candidateMachine
candidates tempMachineI

" lastMachine is the machine to be expanded.
Create an OrderedCollection to hold feasible machines. "

lastMachine := aSystem last.
feasibleMachines := OrderedCollection new.
candidates := OrderedCollection new.

" Now check to see what operations follow the last
machine operation. Then process the equipment in for
those operations. "

(lastMachine succProcess) do: [:operationl
(aSystem contains:operation asSymbol)
ifFalse:[
(OperationsAvailable at:(operation asSymbol)) do:
[:equipmentI
tempMachine := equipment deepCopy.

129

tempMachine processMaterial: (lastMachine
outputProductState)
with:(lastMachine locationOut) with:(lastMachine
accumulationStateOut).
(tempMachine processCheck)
ifTrue:[
((tempMachine productionEquation = 'notDefined')
or: [equipment productionEquation =
#notDefined])
ifFalse: [tempMachine prodCost:
(tempMachine perform:(tempMachine
productionEquation))].
(candidates includes: tempMachine)

ifFalse: [candidates add:tempMachine]]]]].

" For each candidate machine map the machine to the user
environment vector (EnvironmentDictionary). Then check
the mapping factor for a pass criterion. If candidate
passes then add machine to feasible machine
OrderedCollection. "

candidates do: [:candidateMachine
1 candidateMachine

compCumVector.
((candidateMachine mappingFactor) = 'pass')
ifTrue: [feasibleMachines add: candidateMachine]].

^feasibleMachines

initializeQueue

" intializeQueue so its an SortedCollection. The queue is
sorted by the system cost which is the accumlated
adjusted production cost for each machine. "

queue := SortedCollection sortBlock: [:systeml
:system2 1 (systeml cost) <= (system2 cost)].

^self

130

search

** This is the main processing loop for the search
algorithm. **

" While there are states left in the queue, expand
them and add their successor states to the queue. If
the goal is found, report success. Otherwise, report
failure. Answer the receiver. "

I aState successors 1

[queue isEmpty] whileFalse: [

aState := self nextState.

" Check for goal state by sending endsIn: message with
the instance variable goal as an argument. "

((aState endsInLocation: goalLocation) and: [aState
endsInProduct: goalProduct])
ifTrue: [

Timber reportSuccess:aState.
^self 3.

" If the goal was not found, then send the message
expandState: to a BestFirstSelection with the
current state as aState to expand. "

successors := self expandState: aState.
self enqueue: successors].

" If queue is empty then report failure ."

Timber reportFailure.

^self

131

(Object) subclass:
instanceVariableNames:

classVariableNames:
poolDictionaries:

TimberSimPane class methods

#TimberSimPane
inputString
inputPanel
inputPane2
inputPane3
inputPane4
inputPane5
inputPane6
inputPane7
inputPane8
inputPane9
replyStream
list1Collection
list2Collection
list3Collection
1ist4Collection
1ist5Collection
1ist6Collection
1ist7Collection
list8Collection
choicel
choice2
choice3
choice4
choice5
choice6
choice7
choice8
operations
stateCollection
stateCount
stateGenWindow
queueCount
queueCntWindow

new

create a new instance of TimberSimPane

A super new initialize.

132

start

" Open a TimberSimPane to begin the Timber Harvester "

Timber := TimberSimPane new.
EquipmentSelector:= BestFirstSelection new.
Timber openOn: 'Welcome to the Timber Harvester.

1) Input your enviroment charactistics.
2) Match Equipment with enviroment.'.

^self

TimberSimPane methods

acresPrompt

" Open a prompter window to set the stand size in acres. "

Temporary variables

ItempVal tempi

" get user input for stand size in acres "

tempVal := Prompter prompt: 'Stand size in acres.'
defaultExpression: " point: 200 @ 250.

Determine the appropriate operation to locate an object.
Once the object is located, update the Stand size

information.

EnvironmentDictionary at:choice3 put:tempVal.
inputString := (inputString, choice3 printString, ' set
to tempVal printString, '\') withCrs.
self changed: #reply2.

^self

133

addToAvailable:tempkey

add to operationsAvailable "

1 temp
I

A self

addToDatabase

111

(OperationsAvailable includesKey:tempkey)
ifFalse: [OperationsAvailable
addSymbolKey:tempkey].

OperationsAvailable addValueAt:tempkey
with:choice5 with:(Operations
retrieveValueAt:tempkey with:choice5).
inputString := (inputString, choice5
printString,' added to available ',choice3
printString, 'equipment.', '\') withCrs .

self changed: #reply2.

add equipment to database "

1 temp tempkey 1

temp:= Prompter prompt: 'equipment name'
defaultExpression: '#' point: 200 @ 150.
tempkey := temp.

temp := Machine new.
temp operation:choice3.
temp name:tempkey.
Operations addValueAt:choice3
with:tempkey with:temp.
inputString := (inputString, tempkey
printString, ' added to ', choice3
printString, '\') withCrs .

self changed: #reply2.

A self

134

addToDatabase:aSymbol

add equipment to database "

1 temp tempkey 1

temp:= Prompter prompt: 'equipment name'
defaultExpression: '#' point: 200 @ 150.
tempkey := temp.

temp := Machine new.
temp operation:choice3.
temp name:tempkey.
Operations addValueAt:choice3
with:tempkey with:temp.
EquipmentAll at:tempkey put:temp.
inputString := (inputString, tempkey
printString, ' added to ', choice3
printString, '\') withCrs .

self changed: #reply2.

^ self

addToReportsAt:aKey with:aSystem

" add a system to stateCollection for reports. "

stateCollection at:aKey put:aSystem.

^self

addToWoodDensity

" Open a prompter window to add to wood density species."

" Temporary variables "

ItempVal tempi

" get user input for the specie name "

temp := Prompter prompt: ' specie name
defaultExpression: '#' point: 200 @ 250.

(temp = nil)
ifFalse: [

WoodDensity at:temp put:38.
inputString := (inputString, temp printString, ' added

135

and set to 38 ', '\') withCrs.
self changed: #reply2].

^self

attributesInput4

II evaluate attributes for input pane 4. "

list5Collection:= PaneSelectors
retrieveCollection:#attributes.
replyStream := ReplylDictionary at: #attributes.
self changed: #replyl .

^ self

attributesInput5

"evaluate attribute input for input pane 5."

(choice5 == #suspention:)
ifTrue:[

list6Collection := PaneSelectors
retrieveCollection:#booleanCollection.
replyStream := ReplylDictionary at: #equipSuspention.
self changed: #replyl].

(choice5 == #slope:)
ifTrue:[

list6Collection := PaneSelectors
retrieveCollection:#bounds.
replyStream := ReplylDictionary at: #equipmentSlope.
self changed: #replyl].

(choice5 == #dbh:)
ifTrue:[
list6Collection := PaneSelectors
retrieveCollection:#bounds.
replyStream := ReplylDictionary at: #equipmentDbh.
self changed: #replyl].

(choice5 == #ground:)
ifTrue:[

list6Collection := PaneSelectors
retrieveCollection:#groundSpecifics:.
replyStream := ReplylDictionary at: #ground.
self changed: #replyl].

136

(choice5 == #maintCost:)
ifTrue:[

replyStream := ReplylDictionary at: #promptMessage.
self changed: #replyl.
self maintPrompt].

(choice5 == #input:)
ifTrue:[

(Operations retrieveValueAt:choice3 with:choice4)
resetProductState.
list6Collection := PaneSelectors
retrieveCollection:#inputProduct.
replyStream := ReplylDictionary at: #input.
self changed: # replyl].

(choice5 == #location:)
ifTrue:[

(Operations retrieveValueAt:choice3 with:choice4)
resetLocation.
list6Collection := PaneSelectors
retrieveCollection:#1ocation.
replyStream := ReplylDictionary at: #location.
self changed: # replyl].

(choice5 == #accumulation:)
ifTrue:[

(Operations retrieveValueAt:choice3 with:choice4)
resetAccumulation.
list6Collection := PaneSelectors
retrieveCollection:#accumulation.
replyStream := ReplylDictionary at: #accumulation.
self changed: # replyl].

(choice5 == #attachment:)
ifTrue:[
list6Collection := PaneSelectors
retrieveCollection:#attachments.
replyStream := ReplylDictionary at: #attachment.
self changed: # replyl].

(choice5 == #hpClass:)
ifTrue:[

replyStream := ReplylDictionary at: #hpClass.
self changed: #replyl.
self hpPrompt].

(choice5 == #operations:)
ifTrue:[

(Operations retrieveValueAt:choice3 with:choice4)
resetOperations.
list6Collection := Operations.
replyStream := ReplylDictionary at:

137

#equipmentOperations.
self changed: #replyl].

(choice5 == #prodEquation:)
ifTrue:[

list6Collection := PaneSelectors
retrieveCollection:#prodEquations.
replyStream := ReplylDictionary at:
#equipmentProdEquation.
self changed: #replyl].

(choice5 == #prodCost:)
ifTrue:[

replyStream := ReplylDictionary at: #promptMessage.
self changed: #replyl.
self prodPrompt].

(choice5 == #costPMH:)
ifTrue:[

replyStream := ReplylDictionary at: #promptMessage.
self changed: #replyl.
self costPMHPrompt].

^self

attributesInput6:aString

II attribute selectors for input pane 6. "

1 temp tempkey 1

(choice5 == #suspention:)
ifTrue: [

choice6 := aString.
replyStream := ReplylDictionary at: #promptMessage.
tempkey := choice4.
((Operations at:choice3) at:tempkey)
suspention:choice6.
inputString := (inputString, choice4 printString,
' for ', choice5 printString,

' set to ',
choice6 printString,\') withCrs.
self changed: #reply2].

(choice5 == #operations:)
ifTrue: [

choice6 := aString asSymbol.
tempkey := choice4.
(Operations retrieveValueAt:choice3 with:tempkey)
succProcess:choice6.
inputString := (inputString, choice6 printString ,

' added to succesor operations', '\') withCrs.

138

self changed: #reply2].

(choice5 == #slope:)
ifTrue: [

(choice6 == #lowerBound:)
ifTrue: [

list7Collection := PaneSelectors
retrieveCollection:#slopeCollection.
replyStream := ReplylDictionary
at:#equipmentSlopeLower.
self changed: #replyl].

(choice6 == #upperBound:)
ifTrue: [

list7Collection := PaneSelectors
retrieveCollection:#slopeCollection.
replyStream := ReplylDictionary
at:#equipmentSlopeUpper.
self changed: #replyl]].

(choice5 == #dbh:)
ifTrue: (

(choice6 == #lowerBound:)
ifTrue: [

list7Collection := PaneSelectors
retrieveCollection:#dbhCollection.
replyStream := ReplylDictionary
at:#equipmentDbhLower.
self changed: #replyl].

(choice6 == #upperBound:)
ifTrue: [

list7Collection := PaneSelectors
retrieveCollection:#dbhCollection.
replyStream := ReplylDictionary
at:#equipmentDbhUpper.
self changed: #replyl]].

(choice5 == #input:)
ifTrue: [

choice6 := aString asSymbol.
list7Collection := PaneSelectors
retrieveCollection:#output:.
replyStream := ReplylDictionary at:#input.
self changed: #replyl].

(choice5 == #accumulation:)
ifTrue: [

choice6 := aString asSymbol.
list7Collection := PaneSelectors
retrieveCollection:#output:.

139

replyStream := ReplylDictionary at:#accumulation.
self changed: # replyl].

(choice5 == #location:)
ifTrue: [

choice6 := aString .

list7Collection := PaneSelectors
retrieveCollection:#output:.
replyStream := ReplylDictionary at: #location.
self changed: # replyl].

(choice5 == #attachment:)
ifTrue: [

(Operations retrieveValueAt:choice3 with:choice4)
attachment: choice6.
inputString := (inputString, 'attachment set to
',choice6 printString ,'\') withCrs.
self changed: #reply2].

(choice5 == #prodEquation:)
ifTrue: [

(Operations retrieveValueAt:choice3 with:choice4)
productionEquation:choice6.
inputString := (inputString, 'production equation set
to ',choice6 printString ,'\') withCrs.
self changed: #reply2].

(choice5 == #ground:)
ifTrue: [

(choice6 == #firmness:)
ifTrue: [

choice6 := aString asSymbol.
list7Collection := PaneSelectors
retrieveCollection:#oneToFive:.
replyStream := ReplylDictionary
at:#equipmentFirmness.
self changed: # replyl].

(choice6 == #roughness:)
ifTrue: [

choice6 := aString asSymbol.
list7Collection := PaneSelectors
retrieveCollection:#oneToFive:.
replyStream := ReplylDictionary
at:#equipmentRoughness.
self changed: #replyl]].

A self

140

attributesInput7

" evaluate attribute input for input pane 7."

((choice7 == #output:) and: [choice5 == #input:])
ifTrue: [

list8Collection := PaneSelectors
retrieveCollection:#outputProduct.
replyStream := ReplylDictionary at: #input.
self changed: #replyl].

((choice7 == #output:) and: [choice5 == #location:])
ifTrue: [

list8Collection := PaneSelectors
retrieveCollection:#1ocation.
replyStream := ReplylDictionary at: #location.
self changed: #replyl].

((choice7 == #output:) and: [choice5 == #accumulation:])
ifTrue: [

list8Collection := PaneSelectors
retrieveCollection:#accumulation.
replyStream := ReplylDictionary at: #accumulation.
self changed: #replyl].

(choice5 == #dbh:)
ifTrue: [

self dbhSetBounds:choice7 with:choice6.
self changed: #replyl].

(choice5 == #ground:)
ifTrue: [

self groundSetMaxes:choice6 with:choice7.
self changed: #replyl].

(choice5 == #slope:)
ifTrue: [

self slopeSetBounds:choice7 with:choice6.
self changed: #replyl].

A self

availableInput4

" evaluate available equipment for input pane 4."

(choice4 == #display:)
ifTrue: [

list5Collection := (OperationsAvailable at:choice3).
replyStream := ReplylDictionary at:#availableDisplay.

141

self changed: #reply1].

(choice4 == #remove:)
ifTrue:

list5Collection := (Operations at:choice3).
replyStream := ReplylDictionary at:#availableRemove.
self changed: #reply1].

(choice4 == #add:)
ifTrue: [

list5Collection := (Operations at:choice3).
replyStream := ReplylDictionary at:#availableAdd.
self changed: #replyl].

^self

availableInput5:tempkey

evaluate available input for input pane 5. "

(choice4 == #add:)
ifTrue: [

self addToAvailable:tempkey].

(choice4 == #display:)

ifTrue: [

self displayMachine:(OperationsAvailable
retrieveValueAt:tempkey with:choice5)].

(choice4 == #remove:)

ifTrue: [

self removeFromAvailable:tempkey].

^ self

columnDisplay:aString

inputStream outputStream tempNumber wordNumber word
inputStringTemp I

tempNumber := 0.
wordNumber := 0.
inputStream := ReadStream on:aString.
outputStream := WriteStream on:

(String new: inputStringTemp size + 2).

[inputStream atEnd]

142

whileFalse: [

word := inputStream nextWord.
wordNumber := wordNumber + 1.
(wordNumber = 1)
ifTrue: [tempNumber := 16 - (word size)).
(wordNumber = 2)
ifTrue: [tempNumber := 12 - (word size)].
(wordNumber = 3)
ifTrue: [tempNumber := 15 - (word size)].
(wordNumber = 4)
ifTrue: [tempNumber := 14 - (word size)].
(wordNumber = 5)
ifTrue: [tempNumber := 8 - (word size)].
(wordNumber = 6)
ifTrue: [tempNumber := 3 - (word size)].
(wordNumber = 7)
ifTrue: [tempNumber := 8 - (word size)].
outputStream nextPutAll:word.
1 to:tempNumber by:1 do: [:number 1

outputStream space)].

inputStringTemp := outputStream contents.

A inputStringTemp

columnDisplaySkidderData:aString

I inputStream outputStream tempNumber newWord
inputStringTemp chard

tempNumber := 0.
inputStream := ReadStream on:aString.
outputStream := WriteStream on:

(String new: inputStringTemp size + 2).

[inputStream atEnd]
whileFalse: [

char := inputStream next.

(char asciiValue = 32)
ifTrue: [inputStream skip:l.
(newWord = 1)
ifTrue: [

1 to:(13 - tempNumber) by:1 do: [:number 1

outputStream space].
newWord := 0.
tempNumber := 0.]]
ifFalse: [

tempNumber := tempNumber + 1.

143

newWord := 1.
outputStream nextPut:char]].

inputStringTemp := outputStream contents.

A inputStringTemp

convertStringToNumber:aString

U convert either negative or positive string
representations to either
negative or positive numbers. "

1 number neg temp tempkey firstCharacter newString
choice 1

number := 0.
newString := aString.
neg := 0.
firstCharacter := (aString at:l).

(firstCharacter isDigit)
ifFalse: [

(firstCharacter asciiValue = 45)
ifTrue: [

neg := 1.
newString := (aString select: [:character 1

character isDigit])]].

^choice

costPMHPrompt

II

newString do: [:character
number:= number * 10 + character digitValue.
choice:= number].

(neg = 1)
ifTrue: [choice := choice * -1].

a prompter to set the cost per machine hour cost. "

1tempVal choiceSelector tempkey temp
tempkey := choice4.
choiceSelector:= (choice5)asSymbol.
tempVal := Prompter prompt: 'Cost per Machine Hour.'

144

defaultExpression: " point: 200 @ 250.
(Operations retrieveValueAt:choice3 with:tempkey)
perform: choiceSelector with:tempVal.
inputString := (inputString, choice4 printString,
for ', choice3
printString, ' at ', choice5 printString,' set to '

tempVal printString, '\') withCrs.
self changed: #reply2.

^self

createEquationSymbol

" Open a prompter window to get symbol name."

" Temporary variables "

1tempVal tempi

" get user input for the symbol name"

tempVal := Prompter prompt: 'Equation Name.'
defaultExpression: ' #' point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the symbol
information. "

(tempVal == nil)
ifFalse: [

PaneSelectors addValueAt:#prodEquations with:tempVal.
inputString := (inputString,tempVal printString, '

added to production equation names. ', '\') withCrs.
self changed: #reply2].

^self

createOperation

create a new operation. "

1 temp tempkey newAvailableOperation
1

temp:= Prompter prompt: 'operation name'
defaultExpression: '#' point: 200 @ 150.
tempkey := temp.
(tempkey = nil)
ifFalse: [

inputString := (inputString, tempkey

145

^self

printString,' added to Operations' asSymbol
printString, '\') withCrs .

self changed: #reply2.
Operations addSymbolKey:tempkey.
OperationsAvailable addSymbolKey:tempkey].

changed: #input3.

databaseInput4

" evaluate database input for input pane 4."

(choice4 == #remove:)
ifTrue: [

list5Collection := (Operations at:choice3).
replyStream := ReplylDictionary
at:#databaseRemove.
self changed: #reply1].

(choice4 == #display:)
ifTrue: [

list5Collection := (Operations at:choice3).
replyStream := ReplylDictionary
at:#databaseDisplay.
self changed: #reply1].

(choice4 == #add:)
ifTrue: [

replyStream := ReplylDictionary at:#equipAdd.
self changed:#replyl.
list4Collection:= (Operations at:choice3).
self addToDatabase].

A self

databaseInput5:tempkey

evaluate database input for input pane 5.

(choice4 == #display:)
ifTrue: [

self displayMachine:(Operations
retrieveValueAt:tempkey with:choice5)].

(choice4 == #remove:)
ifTrue: [

self removeFromDatabase:tempkey].

146

^ self

dbhPrompt

" Open a prompter window to set the dbh weight factor.
Temporary variables "

itempVal choiceSelector tempkey tempi

tempkey := choice4. " store choice4 to tempkey"
" concatenate choice5 with #with: as a sysmbol"

choiceSelector:= (choice5,#with:)asSymbol.

" get user input for the performance factor "

tempVal := Prompter prompt: 'DBH Performance Factor.'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the dbh information. "

((Operations at:choice3) at:tempkey) perform:
choiceSelector with:choice6 with:tempVal.
inputString := (inputString, choice4 printString, ' for

choice5 printString,
' at ', choice6 printString, ' set to ', tempVal
printString, '\') withCrs.
self changed: #reply2.

^self

dbhSetBounds:aString with:aKey

It set the upper or lower bounds on dbh. "

(Operations retrieveValueAt:choice3 with:choice4)
dbhRange:aKey with:(self
convertStringToNumber:aString).
inputString := (inputString, 'The dbh choice6
printString, ' for ', choice4
printString, ' is set to ', choice7 asSymbol
printString,'\') withCrs.
self changed: #reply2.

147

displayEnvironment

" display the current environment in text pane 2. "

((EnvironmentDictionary keys) asSortedCollection) do:
[:akey 1 inputString := (inputString, akey printString,
' set to ', (EnvironmentDictionary at:akey) printString,
' \') withCrs.
self changed: #reply2] .

A self

displayFactors

" display the current performance factors "

ft Temporary variable "

ItempMachinel

"Determine what operation the machine belongs to
and what attribute is selected. Then display the
key value pairs using the instance variable inputString."

(choice5 == #slope:)
ifTrue: [

tempMachine := (Operations at:choice3) at:choice4.
tempMachine slopeDictionary keysDo: [:akey 1

inputString := (inputString, akey printString, ' set to
', (tempMachine slopeDictionary at:akey) printString,
'\') withCrs.

self changed: #reply2]].

(choice5 == #dbh:)
ifTrue: [

tempMachine := (Operations at:choice3) at:choice4.
tempMachine dbhDictionary keysDo: [:akey 1

inputString := (inputString, akey printString,
' set to

',(tempMachine dbhDictionary at:akey) printString,
'\') withCrs.
self changed: #reply2]].

A self

148

displayMachine:aMachine

" Report in the Text pane 2 that the receiver aMachine.
Answer the receiver."

inputString := (inputString, 'Machine name => ',aMachine
name asSymbol printString, ' \') withCrs.
self changed: #reply2.
inputString := (inputString, 'Operation => ',aMachine
operation asSymbol printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Cost per machine hour =>
',(aMachine costPMH printPaddedTo:1) asSymbol
printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Attachment => ',(aMachine
attachment) asSymbol printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Horse power class =>
',(aMachine hpClass) asSymbol printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Production cost =>
',(aMachine prodCost printPaddedTo:l) asSymbol
printString, ' \') withCrs.
self changed: #reply2.
inputString := (inputString, 'Max ground firmness =>
',(aMachine firmness printPaddedTo:l) asSymbol
printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Max ground roughness =>
',(aMachine roughness printPaddedTo:l) asSymbol
printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Maintenance cost =>
',(aMachine maintCost printPaddedTo:l) asSymbol
printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Production equation =>
',(aMachine productionEquation) asSymbol printString,
'\') withCrs.
self changed: #reply2.
inputString := (inputString, 'Suspention for one end of
log => ',(aMachine suspention) asSymbol printString, '\')
withCrs.
self changed: #reply2.

(aMachine dbhRange) keysDo: [:akey
I

inputString := (inputString,'dbh range at ', akey
printString, ' => ((aMachine dbhRange) at:akey)
printString, '\') withCrs.
self changed: #reply2] .

149

(aMachine slopeRange) keysDo: [:akey I

inputString := (inputString,'slope range at ', akey
printString, ' => ((aMachine slopeRange) at:akey)
printString, '\') withCrs.
self changed: #reply2] .

(aMachine locationState) keysDo: [:akey
I

inputString := (inputString,'location akey
printString, ' to final location => '

((aMachine locationState) at:akey) printString, '\')
withCrs.
self changed: #reply2] .

(aMachine accumulationState) keysDo: [:akey I

inputString := (inputString,'acc. state ', akey
printString, ' to => ',
((aMachine accumulationState) at:akey) printString,
'\') withCrs.
self changed: #reply2] .

(aMachine productState) keysDo: [:akey
inputString := (inputString,'Product state ', akey
printString, ' to =>
((aMachine productState) at:akey) printString, '\')
withCrs.
self changed: #reply2] .

(aMachine succProcess) do: [:operation'
inputString := (inputString,'successor operation =>
', operation printString , '\') withCrs.
self changed: #reply2] .

^self

displayOperations

" display the operations in Operations DictionaryDictionary
in text pane 2."

((Operations keys) asSortedCollection) do: [:akey j

inputString := (inputString, akey printString, '\')
withCrs.
self changed: #reply2] .

^ self

150

displayProductionEquations

" display the production equations in text pane 2."

(PaneSelectors at:#prodEquations) do: [:anEquation I

inputString := (inputString, anEquation printString,
'\') withCrs.
self changed: #reply2] .

A self

di splaySkidderSpeedData

" Report in the Text pane 2 the horse power class skidder
speed data."

1 tempDictionaryDictionary inputStringTempI

inputString := (inputString,'Horse Power Class ',choice4
asSymbol printString, '\') withCrs.
inputString := (inputString,'Attachment Class ',choice3
asSymbol printString, '\') withCrs.
inputString := (inputString, '\') withCrs.
inputString := (inputString,'Slope

' Load I I

Loaded Speed ',' Empty Speed ', '\') withCrs.
self changed: #reply2.

inputString := (inputString, '

1 I I 1

self changed: #reply2.

I

'\') withCrs.

(choice3 == #cable:)
ifTrue: [

tempDictionaryDictionary := SkidderSpeedCable
at:choice4].

(choice3 == #grapple:)
ifTrue: [

tempDictionaryDictionary := SkidderSpeedGrapple
at:choice4].

((tempDictionaryDictionary keys) asSortedCollection:
[:numl :num2 1 (self convertStringToNumber:num1) <=
(self convertStringToNumber:num2)])

do: [:akey 1

inputStringTemp := (akey printString,",
(tempDictionaryDictionary

retrieveValueAt:akey with:#1oad) printString,",
(tempDictionaryDictionary retr

151

retrieveValueAt:akey with:#1oadedSpeed) printString,' 1

.

(tempDictionaryDictionary
retrieveValueAt:akey with:#emptySpeed) printString).

inputString := (inputString,(self
columnDisplaySkidderData:inputStringTemp), '\') withCrs.
inputString := (inputString asSymbol).
self changed: #reply2].

inputString := (inputString,'

self changed: #reply2.

Aself

displaySystem:aString

I I

', '\') withCrs.

" Report in the Text pane 2 the receiver at a string
in stateCollection .

Answer the receiver."

1 inputStream outputStream word wordNumber tempNumber
inputStringTemp{

'I clear reply pane 1."

inputString := ".
self changed: #reply2.

inputString := (inputString, 'Operation ', 'Machine
','Product ','Location 1 1

. Accumulation',
'\') withCrs.
self changed: #reply2.

inputString := (inputString, '

1 I I 1 , I I/ / I /'\') withCrs.

self changed: #reply2.

(stateCollection at:aString) do: [:machine
1

inputStringTemp := (machine operation asSymbol
printString,' /

,machine name asSymbol printString,' 1

,machine outputProductState printString,' 1

,machine locationOut printString,' 1

,machine accumulationStateOut asSymbol printString ,'
,'\') withCrs.

inputString := (inputString,(self
columnDisplay:inputStringTemp), '\') withCrs.
inputString := (inputString asSymbol).
self changed: #reply2].

inputString := (inputString, '

I I 1 1 I I 11 1

'\') withCrs.
self changed: #reply2.

152

I /

inputString := (inputString, 'Total Environmentally
adjusted logging cost ',(((stateCollection at:aString)
cost) printRounded:1), '\') withCrs.

self changed: #reply2.

^self

displayWoodDensities

" WoodDensity keysDo: [:akey
inputString := (inputString, akey printString,

' set to
', (WoodDensity at:akey) printString, '\') withCrs.
self changed: #reply2] .

^self

editSkidderSpeedData

" Open a prompter window to set the skidder data ."

" Temporary variables "

ItempVal tempi

" send new prompt to the reply pane 1 (the help window)."

replyStream := ReplylDictionary at:#skidderEditInput6.
self changed: #replyl.

" get user input for the value"

tempVal := Prompter prompt: 'parameter value'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.

153

Once the object is located, update the skidder
information. "

(tempVal = nil)
ifFalse: [

(choice3 == #cable:)
ifTrue: [

(SkidderSpeedCable at:choice4) addValueAt:choice5
asSymbol with:choice6 with:tempVal.
inputString := (inputString,'hp choice4 asSymbol
printString, ' for ', choice6 asSymbol printString,

'

at slope ', choice5 asSymbol printString
,' set to ', tempVal printString, '\') withCrs.
self changed: #reply2].

(choice3 == #grapple:)
ifTrue:
(SkidderSpeedGrapple at:choice4) addValueAt:choice5
asSymbol with:choice6 with:tempVal.
inputString := (inputString,'hp choice4 asSymbol
printString, ' for ', choice6 asSymbol printString,

'

at slope ', choice5 asSymbol printString
,' set to ', tempVal printString, '\') withCrs.
self changed: #reply2]].

^self

environmentInput2

It evaluate the environment selections for input pane 2."

(choice2 == #requirements:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#requirements:.
replyStream := ReplylDictionary at: #requirements.
self changed: #replyl].

(choice2 == #site:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#site:.
replyStream := ReplylDictionary at: #site.
self changed: #replyl].

(choice2 == #stand:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#stand:.
replyStream := ReplylDictionary at: #stand.

154

self changed: #replyl].

A self

equipmentInput2

" evaluate selection for equipment in input pane 2. "

(choice2 == #attributes:)
ifTrue: [

list3Collection:= Operations.
replyStream := ReplylDictionary at: #process.
self changed: #replyl.].

((choice2 == #database:) or: [choice2 ==
#available:])

ifTrue: [

list3Collection:= Operations.
replyStream := ReplylDictionary at: #process.
self changed: #replyl].

A self

equipmentInput3:aString

II

II

evaluate input for input pane 3 given equipment was
selected for input pane 1."

choice3:=aString. " store aString to choice3. "

Determine if choice2 is add:, and if true open a
a prompter window to receive input. Store the input
temp to tempkey which is just a string name. Then
determine the selected operation to add an object
to, and create an instance of Machine for the
required operation. Add the new machine to the
proper operation collection. Once added answer
reply pane 2 with an acknowledgement."

(choice2 == #available:)
ifTrue: [

list4Collection := PaneSelectors
retrieveCollection:#operationFunctions.
replyStream := ReplylDictionary
at:#availableOptions.
self changed:#reply1].

155

(choice2 == #database:)
ifTrue: [

list4Collection := PaneSelectors
retrieveCollection:#operationFunctions.
replyStream := ReplylDictionary
at:#databaseOptions.
self changed:#reply1].

" Determine if choice2 was attributes or available."

(choice2 == #attributes:)
ifTrue: [

" Determine the operation selected and set
list4Collection. Then set the instance variable
replyStream and both reply pane 1 and 2."

listt4Collection:= (Operations at:choice3).
replyStream := ReplylDictionary at: #attributeFactors.

self changed: #replyl.
self changed: #reply2].

^self

goalInput2

II

II

Change the state of the harvester panes
so that specific facts are reviewed or
selected."

Determine the input2 match and choose the appropriate
list for the next listPane and clear listPanes beneath
the next listPane."

(choice2 == #location:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#1ocation.
replyStream := ReplylDictionary at: #locationGoal].

(choice2 == #product:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#inputProduct.
replyStream := ReplylDictionary at:#productGoal].

^self

goallnput3

Ill

156

send a message to an instance of BestFirstSelector H

(EquipmentSelector)
to set goalstates and send response to reply pane 2.

(choice2 == #location:)
ifTrue: [

EquipmentSelector goalLocation:choice3.
inputString := (inputString, 'The goal location set to
', choice3 printString, '\') withCrs .

self changed: #reply2].

(choice2 == #product:)
ifTrue: [

EquipmentSelector goalProduct:choice3.
inputString := (inputString, 'The goal product set to
', choice3 printString, ' \') withCrs .

self changed: #reply2].

^ self

groundSetMaxes:aSymbol with:aString

II set the ground operating maxes. "

(Operations retrieveValueAt:choice3 with:choice4)
perform:choice6 with:(self
convertStringToNumber:aString).
inputString := (inputString, 'The max ', choice6
printString, ' for ', choice4
printString, ' is set to ', choice? asSymbol
printString,'\') withCrs.
self changed: #reply2.

157

haulPrompt

u Open a prompter window to set the haul distance."

" Temporary variables "

ItempVal tempi

tempVal := Prompter prompt: 'haul distance'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the haul distance
information. "

EnvironmentDictionary at:choice3 put:tempVal.
inputString := (inputString, choice3 printString, ' setto ', tempVal printString, '\') withCrs.
self changed: #reply2.

^self

hpPrompt

" Open a prompter window to set the horse power instance
variable."

" Temporary variables "

ItempVal tempi

" get user input for the horse power class"

tempVal := Prompter prompt: ' horse power '

defaultExpression: ' " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the horse power class."

(Operations retrieveValueAt:choice3 with:choice4)
hpClass:tempVal.
inputString := (inputString,'horse power class set
to ', tempVal asSymbol printString, '\') withCrs.
self changed: #reply2.

^self

initialize

" Initialize instance variables."

stateCollection := Dictionary new.

A self

inputl

" Initialize inputPane with an OrderedCollection.
Answer a listlCollection as a SortedCollection."

listlCollection: = OrderedCollection new.
list1Collection:= PaneSelectors
retrieveCollection:#startCollection.

"Return the collection as a SortedCollection."

Alist1Collection asSortedCollection

inputl: aSymbol

II Change the state of the harvester panes
so that specific facts are reviewed or
selected."

choicel:= aSymbol. store input from listPane 1 to
choicel.

158

" Determine the inputl match and choose the appropriate
list for the next listPane and clear listPanes beneath
the next listPane."

(choicel == #environment)
ifTrue: [

list2Collection:= PaneSelectors
retrieveCollection:#environment:.
self paneClear.
replyStream := ReplylDictionary at: #environment].

(choicel == #equipment)
ifTrue: [

list2Collection:= PaneSelectors
retrieveCollection:#equipmentSelection.
self paneClear.
replyStream := ReplylDictionary at:#equipment].

159

(choicel == #operations)
ifTrue: [

list2Collection:= PaneSelectors
retrieveCollection:#operationFunctions.
self paneClear.
replyStream := ReplylDictionary at:#operations].

(choicel == #goal)
ifTrue: [

list2Collection:= PaneSelectors at:#goalStates:.
self paneClear.
replyStream := ReplylDictionary at:#goal].

(choicel == #reports)
ifTrue: [

list2Collection:= PaneSelectors
retrieveCollection:#reports.
self paneClear.
replyStream := ReplylDictionary at:#reports].

(choicel == #woodDensity)
ifTrue: [

list2Collection:= PaneSelectors
retrieveCollection:#dataFunctions.
self paneClear.
replyStream := ReplylDictionary at:#woodDensity].

(choicel == #skidderSpeed)
ifTrue: [

list2Collection:= PaneSelectors
retrieveCollection:#dataFunctions.
self paneClear.
replyStream := ReplylDictionary at:#woodDensity].

(choicel == #prodEquations)
ifTrue: [

list2Collection:= PaneSelectors
retrieveCollection:#operationFunctions.
self paneClear.
replyStream := ReplylDictionary at:#prodEquation].

(choicel == #printScreen)
ifTrue: [Display outputToPrinterUpright].

" send a cascading message to self to update pertinate
application panes."

self

changed: #input2;
changed: #replyl;
changed: #reply2;

input2

II

changed: #input3;
changed: #input4;
changed: #input5;
changed: #input6;
changed: #input7;
changed: #input8;
changed: #reply3;
changed: #reply4;
changed: #reply5;
changed: #reply6.

contents of inputPane ."

160

(list2Collection isNil)
ifTrue: [A list2Collection:= OrderedCollection new].

(list2Collection isKindOf: OrderedCollection)

ifTrue:[
(list2Collection notEmpty)
ifTrue: [

(self isFirstElementAlpha:list2Collection)
ifFalse: [Alist2Collection asSortedCollection: [:numl :num2
1 (self convertStringToNumber:numl) <= (self
convertStringToNumber:num2)]]
ifTrue: [Alist2Collection asSortedCollection]]].

(list2Collection isKindOf: Dictionary)
ifTrue:[A list2Collection keys asSortedCollection].

input2: aSymbol

It Determine the input2 match and choose the appropriate
list for the next listPane and clear listPanes beneath
the next listPane."

choice2:= aSymbol.

(choicel == #goal)
ifTrue: [self goallnput2].

(choicel == #environment)
ifTrue: [self environmentInput2].

(choicel == #operations)
ifTrue: [self operationsInput2].

(choicel == #prodEquations)
ifTrue: [self productionEquationsInput2].

II

II

161

(choicel == #equipment)
ifTrue: [self equipmentInput2].

(choicel == #reports)
ifTrue: [self reportsInput2].

(choicel == #woodDensity)
ifTrue: (self woodDensityInput2].

(choicel == #skidderSpeed)
ifTrue: [self skidderSpeedInput2].

set instance variables for trailing list panes to nil."

list4Collection := nil.
list5Collection := nil.
list6Collection := nil.
list7Collection := nil.
list8Collection := nil.

send a cascading message to self to update pertinate
application panes."

self

input3
II

changed: #input3;
changed: #input4;
changed: #input5;
changed: #input6;
changed: #input7;
changed: #input8;
changed: #replyl.

contents of inputPane ."

(list3Collection isNil)
ifTrue: [A list3Collection:= OrderedCollection new]

(list3Collection isKindOf: OrderedCollection)
ifTrue:[
(list3Collection notEmpty)

ifTrue: [

(self isFirstElementAlpha:list3Collection)
ifFalse: [Alist3Collection asSortedCollection:
[:numl :num2 1 (self convertStringToNumber:numl) <=
(self convertStringToNumber:num2)]]
ifTrue: [Alist3Collection asSortedCollection]]].

(list3Collection isKindOf: Dictionary)
ifTrue:[A list3Collection keys asSortedCollection].

162

input3:aString

If Determine the input3 match and choose the appropriate
list for the next listPane and clear listPanes beneath
the next listPane."

II

choice3 := aString.

(choice2 == #stand:)
ifTrue: [self standInput3].

(choice2 == #site:)
ifTrue: [self siteInput3].

(choicel == #goal)
ifTrue: [self goalInput3].

(choice2 == #requirements:)
ifTrue: [self requirementsInput3].

(choicel == #operations)
ifTrue: [self operationsInput3:aString].

(choicel== #equipment)
ifTrue: [self equipmentInput3:aString].

(choicel == #reports)
ifTrue: [self reportsInput3:aString].

(choicel == #woodDensity)
ifTrue: [self woodDensityInput3:aString].

(choicel == #prodEquations)
ifTrue: [self productionEquationsInput3].

(choicel == #skidderSpeed)
ifTrue: [self skidderSpeedInput].

set instance variables for trailing list panes to nil."

list5Collection := nil.
list6Collection := nil.
list7Collection := nil.
list8Collection := nil.

" send a cascading message to self to update pertinate
application panes."

A self

163

changed: #input4;
changed: #input5;
changed: #input6;
changed: #input7;
changed: #input8.

input4
11 contents of inputPane ."
(list4Collection isNil)

ifTrue: [A list4Collection:= OrderedCollection new].
(list4Collection isKindOf: OrderedCollection)

ifTrue:[
(list4Collection notEmpty)

ifTrue: [

(self isFirstElementAlpha:list4Collection)
ifFalse: [Alist4Collection asSortedCollection:
[:num1 :num2 1 (self convertStringToNumber:numl) <=
(self convertStringToNumber:num2)]]
ifTrue: [Alist4Collection asSortedCollection]]].

(list4Collection isKindOf: Dictionary)
ifTrue:[A list4Collection keys asSortedCollection].

input4: aSymbol

III Determine the input4 match and choose the appropriate
list for the next listPane and clear listPanes beneath
the next listPane."

" Temporary variable "

1 temp tempkey1

choice4:= aSymbol.

(choice2 == #site:)
ifTrue: [self siteInput4].

(choice2 == #requirements:)
ifTrue: [self requirementsInput4].

(choice2 == #stand:)
ifTrue: [self standInput4].

If choice2 = attributes retreive the list of attributes
for list5Collection.

11

II

164

(choice2 == #attributes:)
ifTrue: [self attributesInput4].

If choice2 = available then determine what operation
is currently selected and place the selected machine
in the available equipment list."

(choice2 == #available:)
ifTrue: [self availableInput4].

(choice2 == #database:)
ifTrue: [self databaseInput4].

(choicel == #skidderSpeed)

ifTrue: [self skidderSpeedInput4].

set instance variables for trailing list panes to nil."

list6Collection := nil.
list7Collection := nil.
list8Collection := nil.

self

" send a cascading message to self to update pertinate
application panes."

input5
II

changed: #input5;
changed: #input6;
changed: #input7;
changed: #input8.

contents of inputPane ."

(list5Collection isNil)

ifTrue: [A list5Collection:= OrderedCollection new].
(list5Collection isKindOf: OrderedCollection)

ifTrue:[
(list5Collection notEmpty)

ifTrue: [

(self isFirstElementAlpha:list5Collection)
ifFalse: [Alist5Collection asSortedCollection:
[:numl :num2 1 (self convertStringToNumber:numl) <=
(self convertStringToNumber:num2)]]
ifTrue: [Alist5Collection asSortedCollection]]].

165

(list5Collection isKindOf: Dictionary)
ifTrue:[A list5Collection keys asSortedCollection].

input5: aSymbol

u Determine the input5 match and choose the appropriate
list for the next listPane and clear listPanes beneath
the next listPane."

1 temp tempkey 1

choice5 := aSymbol.

(choice2 == #site:)
ifTrue: [self siteInput5:aSymbol].

(choice2 == #attributes:)
ifTrue: [self attributesInput5].

(choice2 == #available:)
ifTrue: [

choice5:= aSymbol.
tempkey:= (choice3 asSymbol).
self availableInput5:tempkey].

(choice2 == #database:)
ifTrue: [

choice5:= aSymbol.
tempkey:= (choice3 asSymbol).
self databaseInput5:tempkey].

(choicel == #skidderSpeed)
ifTrue: [self skidderSpeedInput5].

self

11

list7Collection := nil.
list8Collection := nil.

Send self a message to update listPane6."

changed: #input6;
changed: #input7;
changed: #input8.

input6
" contents of inputPane ."

166

(list6Collection isNil)
ifTrue: [A list6Collection:= OrderedCollection new].

(list6Collection isKindOf: OrderedCollection)

ifTrue:[
(list6Collection notEmpty)

ifTrue: [

(self isFirstElementAlpha:list6Collection)
ifFalse: [Alist6Collection asSortedCollection:
[:numl :num2 1 (self convertStringToNumber:numl) <=
(self convertStringToNumber:num2)]]
ifTrue: [Alist6Collection asSortedCollection]]].

(list6Collection isKindOf: Dictionary)
ifTrue:[A list6Collection keys asSortedCollection].

input6:aString

" Determine the input6 match and choose the appropriate
action to be taken next."

II Temparary variables"

1 tempkey temp 1

choice6 := aString.

(choice2 == #site:)
ifTrue: [self sitelnput6:aString].

(choice2 == #attributes:)
ifTrue: [self attributesInput6:aString].

((choicel == #skidderSpeed) and: [choice2 == #edit:])
ifTrue: [self editSkidderSpeedData].

self
11

list8Collection := nil.

Send self a message to update listPane7."

changed: #input7;
changed: #input8.

input?
it contents of inputPane ."

167

(list7Collection isNil)
ifTrue: [A list7Collection:= OrderedCollection new].
(list7Collection isKindOf: OrderedCollection)

ifTrue:[
(list7Collection notEmpty)

ifTrue: [

(self isFirstElementAlpha:list7Collection)
ifFalse: [Alist7Collection asSortedCollection:
[:numl :num2 1 (self convertStringToNumber:numl) <=
(self convertStringToNumber:num2)]]
ifTrue: [Alist7Collection asSortedCollection]]].

(list7Collection isKindOf: Dictionary)
ifTrue:[A list7Collection keys asSortedCollection].

input7:aSymbol

" Determine the input7 match and choose the appropriate
action to be taken next."

choice? := aSymbol.

(choice2 == #attributes:)
ifTrue: [self attributesInput7].

self

input8
II

changed: #input8

contents of inputPane ."

(list8Collection isNil)

ifTrue: [A list8Collection:= OrderedCollection new].
(list8Collection isKindOf: OrderedCollection)

ifTrue:[
(list8Collection notEmpty)

ifTrue: [

(self isFirstElementAlpha:list8Collection)
ifFalse: [Alist8Collection asSortedCollection:
[:numl :num2 1 (self convertStringToNumber:numl) <=
(self convertStringToNumber:num2)]]
ifTrue: [Alist8Collection asSortedCollection]]].

(list8Collection isKindOf: Dictionary)

168

ifTrue:[A list8Collection keys asSortedCollection].

input8:aSymbol

" Determine the input8 match and choose the appropriate
action to be taken next."

Temparary variables"

1 tempkey temp 1

tempkey := choice3 asSymbol.

((choice? == #output:) and: [choice5 == #input:])
ifTrue: [

choice8 := aSymbol.
(Operations retrieveValueAt:tempkey
with:choice4)
productState:choice6 with:choice8.
inputString := (inputString,choice6 printString,
' as input will yield ', choice8 printString,' as
output', '\') withCrs .

self changed: #reply2].

((choice7 == #output:) and: [choice5 == #location:])
ifTrue: [

choice8 := aSymbol.
(Operations retrieveValueAt:tempkey with:choice4)

locationState:choice6 with:choice8.
inputString := (inputString,choice6
printString,
' at input location => choice8 printString,
'\') withCrs .

self changed: #reply2].

((choice7 == #output:) and: [choice5 == #accumulation:])
ifTrue: [

choice8 := aSymbol.
(Operations retrieveValueAt:tempkey with:choice4)

accumulationState:choice6 with:choice8.
inputString := (inputString,'starting with ',
choice6 printString,
' to => choice8 printString, '\') withCrs .

self changed: #reply2].

A self

inputMenul

Answer a Menu for the input Pane."

^Menu
labels: 'display environment\match equipment'
withCrs
lines: #(1 2)

selectors: #(displayEnvironment runMatchEquip)

inputMenu2

Answer a Menu for the input Pane."

^Menu
labels: 'create an operation\remove an operation'
withCrs
lines: #(1)
selectors: #(createOperation removeOperation)

inputMenu3

" Answer a Menu for the input Pane."
^Menu

labels: 'display performance factors' withCrs
lines: #()
selectors: #(displayFactors)

inputMenu5
Answer a Menu for the input Pane.

^Menu
labels: 'display performance factors' withCrs
lines: #()
selectors: #(displayFactors)

isFirstElementAlpha:aCollection

If

169

check to see if the first element of a collection is a
Alpha."

1 firstCharacter firstElement1

firstElement := (aCollection at:l).
firstCharacter := (firstElement at:1).

170

((firstCharacter isDigit) or: [(firstCharacter asciiValue
= 45)])

ifFalse: [^true]
ifTrue: [Afalse].

maintPrompt

a prompter to set the maintenance cost."

itempVal choiceSelector tempkey tempi
tempkey := choice4.
choiceSelector:= (choice5)asSymbol.
tempVal := Prompter prompt: 'Maintenance Cost.'
defaultExpression: '75' point: 200 @ 250.

(Operations retrieveValueAt:choice3 with:tempkey)
perform: choiceSelector with:tempVal.
inputString := (inputString, choice4 printString,
' for ', choice3
printString, ' at ', choice5 printString,' set to '

tempVal printString, '\') withCrs.
self changed: #reply2.

^self

merchPrompt

"Open a prompter window to set the density of merch trees ."

" Temporary variables "

itempVal tempi

" get user input for the merch trees"

tempVal := Prompter prompt: 'density merch Trees/acre'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the slope information."

EnvironmentDictionary at:choice3 put:tempVal.
inputString := (inputString, choice3 printString, ' set to

tempVal printString, '\') withCrs.
self changed: #reply2.

^self

171

openOn: aString

II Create a Timber harvester window with aString."

1 topPane replyPanel replyPane2 replyPane3 replyPane4
replyPane5 replyPane61

inputString := String new.
stateCount := String new.
stateGenWindow := String new.
replyStream:= ReplylDictionary at: #begin.
topPane := TopPane new label: 'T I M B E R HARVES
T E R ver 1.0 '.
topPane addSubpane:

(replyPanel := TextPane new
model: self;
name: #replyl;
change:#status:;
framingRatio: (0 @ 0 extent: 2/3 @ (3/16))).

topPane addSubpane:
(replyPane2 := TextPane new

model: self;
name: #reply2;
change:#status:;
framingRatio: (0 @ (1/4) extent: 2/3 @ (3/4))).

topPane addSubpane:
(inputPanel := ListPane new

menu: #inputMenul;
model: self;
name: #inputl;
change:#inputl:;
framingRatio: (2/3 @ 0 extent: 1/6 @ (1/4))).

topPane addSubpane:
(inputPane2 := ListPane new

menu: #inputMenul;
model: self;
name: #input2;
change:#input2:;
framingRatio: (5/6 @ 0 extent: 1/6 @ (1/4))).

topPane addSubpane:
(inputPane3 := ListPane new

menu: #inputMenul;
model: self;
name: #input3;
change:#input3:;
framingRatio: (2/3 @ (1/4) extent: 1/6 @
(1/4))).

topPane addSubpane:
(inputPane4 := ListPane new

menu: #inputMenul;
model: self;
name: #input4;

172

change:#input4:;
framingRatio: (5/6 @ (1/4) extent: 1/6 @
(1/4))).

topPane addSubpane:
(inputPane5 := ListPane new

menu: #inputMenul;
model: self;
name: #input5;
change:#input5:;
framingRatio: (2/3 @ (2/4) extent: 1/6 @
(1/4))).

topPane addSubpane:
(inputPane6 := ListPane new

menu: #inputMenul;
model: self;
name: #input6;
change:#input6:;
framingRatio: (5/6 @ (2/4) extent: 1/6 @
(1/4))).

topPane addSubpane:
(inputPane7 := ListPane new

menu: #inputMenul;
model: self;
name: #input7;
change:#input7:;
framingRatio: (2/3 @ (3/4) extent: 1/6 @
(1/4))).

topPane addSubpane:
(inputPane8 := ListPane new

menu: #inputMenul;
model: self;
name: #input8;
change: #input8:;
framingRatio: (5/6 @ (3/4) extent: 1/6 @
(1/4))).

topPane addSubpane:
(replyPane3 := TextPane new

model: self;
name: #reply3;
change:#status:;
framingRatio: (0 @ (3/16) extent: 1/6 @
(1/16)))

topPane addSubpane:
(replyPane4 := TextPane new

model: self;
name: #reply4;
change:#status:;
framingRatio: (1/6 @ (3/16) extent: 1/6 @
(1/16))).

topPane addSubpane:
(replyPane5 := TextPane new

model: self;

173

name: #reply5;
change: #status:;
framingRatio: (2/6 @ (3/16) extent: 1/6 @
(1/16))).

topPane addSubpane:
(replyPane6 := TextPane new

model: self;
name: #reply6;
change:#status:;
framingRatio: (1/2 @ (3/16) extent: 1/6 @
(1/16))).

topPane reframe: (Display boundingBox insetBy: 0@0).
topPane dispatcher openWindow scheduleWindow

operationsInput2

" evaluate the selections for operations for input pane 2."

(choice2 == #remove:)
ifTrue: [

list3Collection:= Operations.
replyStream := ReplylDictionary at: #process.
self changed: #replyl].

(choice2 == #add:)
ifTrue: [

list3Collection:= Operations.
replyStream := ReplylDictionary at: #operationAdd.
self changed: #replyl.
self createOperation].

(choice2 == #display:)
ifTrue: [

replyStream := ReplylDictionary at:
#operationsDisplay.
self changed: #replyl.
self displayOperations].

A self

operationsInput3:aString

" respond to the selection of operations for input 1 and
the selection of a data function for input pane 2."

choice3:=aString. store aString to choice3.
(choice2 == #remove:)
ifTrue: [self removeOperation:choice3].

^self

paneClear

" clears the reply panes "

list3Collection := nil.
list4Collection := nil.
list5Collection := nil.
list6Collection := nil.
list7Collection := nil.
list8Collection := nil.
inputString:= ".
stateGenWindow := ".
stateCount := ".
queueCount := ".
queueCntWindow := ".

^self

prodPrompt

5 a prompter to set the production cost."

174

ItempVal choiceSelector tempkey temp)
tempkey := choice4.
choiceSelector:= (choice5)asSymbol.
tempVal := Prompter prompt: 'Production Cost.'
defaultExpression: " point: 200 @ 250.

(Operations retrieveValueAt:choice3 with:tempkey)
perform: choiceSelector with:tempVal.
inputString := (inputString, choice4 printString, '

for ', choice3
printString, ' at ', choice5 printString,' set to '

tempVal printString, '\') withCrs.
self changed: #reply2.

^self

productionEquationsInput2

evaluate selections for production equations for input
pane 2."

(choice2 == #remove:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#prodEquations.
replyStream := ReplylDictionary at:
#prodEquationsRemove.
self changed: #replyl].

(choice2 == #add:)
ifTrue: [

replyStream := ReplylDictionary at:
#prodEquationsAdd.
self changed: #replyl.
self createEquationSymbol].

(choice2 == #display:)
ifTrue:
replyStream := ReplylDictionary at:
#prodEquationsDisplay.
self changed: #replyl.
self displayProductionEquations].

A self

productionEquationsInput3

11 evalutate production equations for input 3."

(choice2 == #remove:)
ifTrue: [self removeProductionEquation].

(choice2 == #display:)
ifTrue: [self displayProductionEquations].

A self

queueSize

" return size of queue"

AqueueCount

removeFromAvailable:tempkey

11 remove from to available equipmenmt "

1 temp 1

((OperationsAvailable at:tempkey) includesKey:choice5)
ifTrue: [OperationsAvailable removeValueAt:tempkey
with:choice5.
inputString := (inputString, choice5 printString,
' removed from ', tempkey printString, ' operation '

'\') withCrs .

self changed: #reply2]
ifFalse: [

inputString := (inputString, choice5 printString,
' is already removed from ', tempkey printString,

175

operation ', '\') withCrs .

self changed: #reply2].

A self

removeFromDatabase:tempkey

I I

I temp
I

176

remove aMachine from both database machines and
available machines."

Operations removeValueAt:tempkey with:choice5.
inputString := (inputString, choice5 printString,
' removed from database for', '\') withCrs .

self changed: #reply2.
inputString := (inputString, tempkey printString, '

operation. ', '\') withCrs .

self changed: #reply2.

((OperationsAvailable at:tempkey) includesKey:choice5)
ifTrue: [OperationsAvailable removeValueAt:tempkey
with:choice5.
inputString := (inputString, choice5 printString,
'removed from available equipment for the ', '\') withCrs

self changed:
inputString :

operation.',
self changed:
ifFalse: [

inputString :
' is already
self changed:
inputString :

printString,
self changed:

^self

#reply2.
= (inputString, tempkey printString, '

'\') withCrs .

#reply2]

= (inputString, choice5 printString,
removed from the available ', ' \') withCrs .

#reply2.
= (inputString, 'equipment for the ', tempkey
' operation.', '\') withCrs .

#reply2].

removeOperation:aString

II remove an operation. 11

I temp tempkey 1

Operations removeKey:(aString asSymbol) ifAbsent: [Aself].
Operations do: [:operation)
operation do: [:equipment)
((equipment succProcess) includes:(aString asSymbol))

177

ifTrue: [(equipment succProcess) remove:(aString
asSymbol)]]].

OperationsAvailable removeKey:(aString asSymbol) ifAbsent:
["self].

inputString := (inputString, aString printString,
' removed from Operations' printString, '\') withCrs .

self changed: #reply2.

^self

list4Collection := nil.
list5Collection := nil.
list6Collection := nil.

changed: #input3;
changed: #input4;
changed: #input5;
changed: #input6.

removeProductionEquation

VI remove a production equation. "

(choice3 = #notDefined)
ifFalse: [

PaneSelectors removeValueAt:#prodEquations with:choice3.
inputString := (inputString, choice3 printString,
' removed from production equations' printString, '\')
withCrs .

self changed: #reply2]
ifTrue: [

inputString := (inputString, choice3 printString,
' cannot be removed from equations'asSymbol printString,
'\') withCrs .

self changed: #reply2].

^self

list4Collection := nil.
list5Collection := nil.
list6Collection := nil.

changed: #input3;
changed: #input4;
changed: #input5;

replyl

II

changed: #input6.

Initialize reply pane with an
empty String."

AreplyStream

replyl:aSymbol

II Initialize replyPanel "

AReplylDictionary at:aSymbol

reply2

11 Initialize reply pane with an
empty String."

AinputString

reply3

II Initialize reply pane with an
empty String."

A stateGenWindow

reply4

" Initialize reply pane with an
empty String."

AstateCount

reply5

II Initialize reply pane with an
empty String."

AqueueCntWindow

178

179

reply6

II Initialize reply pane with an
empty String."

AqueueCount

reportFailure

II Report in the TimberSimPane text pane 2 that the
receiver failed to find the goal.
Answer the receiver."

inputString := (inputString, 'a suitable system is
not possible' asSymbol printString, ' \') withCrs.
self changed: #reply2.

^self

reportsInput2

U respond to a selection of reports for input pane 2."

list3Collection:= (((self stateCollection) keys)
asSortedCollection: [:numl :num2 1

(self convertStringToNumber:numl) <= (self
convertStringToNumber:num2)]).
(choice2 == #display:)
ifTrue: [

replyStream := ReplylDictionary at: #reportsDisplay.
self changed: #replyl].
(choice2 == #print:)
ifTrue: [

replyStream := ReplylDictionary at: #reportsPrint.
self changed: #replyl].

A self

180

reportsInput3:aString

" respond to the input pane 1 selector being reports. Using
both choice2 and choice3 from their respect list panes."

choice3:= aString.
(choice2== #display:)
ifTrue: [self displaySystem:choice3].

(choice2 == #print:)
ifTrue: [(inputString, ' \') withCrs
outputToPrinter].

^self

reportSuccess:aSystem

II Report in the Text pane 2 that the receiver found the
goal. Answer the receiver."

inputString := (inputString, 'a suitable system is '

asSymbol printString, '\') withCrs.
self changed: #reply2.
inputString := (inputString,'$-[1, (aSystem cost
printRounded:1),']').
self changed:#reply2.
aSystem do: [:machine
inputString := (inputString,'->', (machine name asSymbol
printString)).
self changed: #reply2].

^self

requirementsInput3

" evaluate requirment selection for input pane 3."

(choice3 == #suspention:)
ifTrue: [

list4Collection := PaneSelectors
retrieveCollection:#booleanCollection.
replyStream := ReplylDictionary at:#suspention.
self changed:#reply1].

(choice3 == #shearFelling:)
ifTrue: [

list4Collection := PaneSelectors
retrieveCollection:#booleanCollection.

181

replyStream := ReplylDictionary at:#shearFelling.
self changed:#reply1].

(choice3 == #product:)
ifTrue: [

list4Collection := PaneSelectors
retrieveCollection:#outputProduct.
replyStream := ReplylDictionary at:#finishedProduct.
self changed:#reply1].

A self

requirementsInput4

" evaluate requirements for input pane 4."

(choice3 == #suspention:)
ifTrue: [

EnvironmentDictionary at:choice3 put:choice4.
inputString := (inputString, choice3 printString,
' set to ', choice4 printString, '\') withCrs.
self changed: #reply2].

(choice3 == #product:)
ifTrue: [

EnvironmentDictionary at:choice3 put:choice4.
inputString := (inputString, choice3 printString,
' set to ', choice4 printString, '\') withCrs.
self changed: #reply2].

(choice3 == #shearFelling:)
ifTrue: [

EnvironmentDictionary at:choice3 put:choice4.
inputString := (inputString, choice3 printString,
' set to ', choice4 printString, '\') withCrs.
self changed: #reply2].

^self

182

runMatchEquip

n run the search procedure "
stateGenWindow := 'States Gen.' asSymbol.
queueCntWindow := 'Queue Size ' asSymbol.
stateCollection := Dictionary new.
self

changed: #reply3;
changed: #reply5.

((EquipmentSelector goalLocation) isNil and:
[(EquipmentSelector goalProduct) isNil])
ifFalse: [

EquipmentSelector startSystem.
EquipmentSelector search].

A self

showQueueCount:aQueue

II

^self

show the states generated so far then show it in
in the text pane 4."

queueCount := aQueue size printString.
self changed: #reply6.

showStartSystem:aSystemFinder

II

^self

show the systemFinder type and the initial state
in the text pane 2."

inputString := ".
self changed: #reply2.
inputString := (inputString,'The required harvesting
product is ' asSymbol printString,
(EquipmentSelector goalProduct) asSymbol printString,
'\') withCrs.
self changed: #reply2.
inputString := (inputString,'The required final
location is ' asSymbol printString,
(EquipmentSelector goalLocation) asSymbol printString,
'\') withCrs.
self changed: #reply2.
inputString := (inputString,'1:',(aSystemFinder
printString), ' starting with standing timber 'asSymbol
printString, '\') withCrs.
self changed: #reply2.

183

showStatesCount:aNumber

show the states generated so far then show it in
in the text pane 4."

stateCount := aNumber printString.
self changed: #reply4.

^self

showStatesGenerated:aNumber

" show the states generated so far then show it in
in the text pane 2."

inputString := (inputString, (aNumber printString),':
self changed: #reply2.

^self

showSuccessorState:aSystem

show the new successor state generated in
in the text pane 2."

inputString := (inputString,'$-[', (aSystem cost
printRounded:1),']').
self changed:#reply2.
aSystem do: [:aMachine

I

inputString := (inputString,'->', (aMachine name
asSymbol printString)).
self changed:#reply2].
inputString := (inputString, '\' withCrs).
self changed:#reply2.

^self

siteInput3

evaluate site selectors for input pane 3."

(choice3 == #haulDistance:)
ifTrue: [

replyStream := ReplylDictionary at:#promptMessage.
self changed: #replyl.
self haulPrompt].

(choice3 == #terrain:)

184

ifTrue: [

list4Collection := PaneSelectors
retrieveCollection:#terrain:.
replyStream := ReplylDictionary at:#terrain.
self changed: #replyl].

A self

siteInput4

II evaluate input for site in input pane 4. "

(choice4 == #ground:)
ifTrue: [

list5Collection:= PaneSelectors
retrieveCollection:#groundSpecifics:.
replyStream := ReplylDictionary at: #ground.
self changed: #replyl J.

(choice4 == #slope:)
ifTrue: [

list5Collection:= PaneSelectors
retrieveCollection:#slopeCollection.
replyStream := ReplylDictionary at: #slope.
self changed: #replyl J.

A self

siteInput5:aSymbol

I temp tempkey
I

choice5 := aSymbol.
(choice4 == #slope:)

ifTrue: [

temp:= self convertStringToNumber:aSymbol.
tempkey:= choice4.
EnvironmentDictionary at:tempkey put:temp.
inputString := (inputString, tempkey
printString, ' set to ', temp
printString, '\') withCrs .

self changed: #reply2].
(choice4 == #ground:)
ifTrue: [

(choice5 == #firmness:)
ifTrue: [

list6Collection := PaneSelectors
retrieveCollection:#oneToFive:.
replyStream := ReplylDictionary at:
#firmness.

self changed: #replyl].
(choice5 == #roughness:)
ifTrue: [

list6Collection := PaneSelectors
retrieveCollection:#oneToFive:.
replyStream := ReplylDictionary at:
#roughness.
self changed: #replyl]].

A self

siteInput6:aString

11 site selectors for input pane 6 "

185

choice6 := aString asSymbol.
(choice5 == #firmness:)

ifTrue: [

EnvironmentDictionary at:#groundFirmness
put:(aString asInteger).
inputString := (inputString, 'ground firmness
set to ',choice6 printString, '\') withCrs.
self changed: #reply2].

(choice5 == #roughness:)
ifTrue: [

EnvironmentDictionary at:#groundRoughness
put:(aString asInteger).
inputString := (inputString, 'ground roughness
set to ',choice6 printString, '\') withCrs.
self changed: #reply2].

A self

skidderSpeedInput2

11 respond to skidder speed being selected for inputl. "

(choice2 == #add:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#skidderSpeed.
replyStream := ReplylDictionary at:
#skidderSpeedAdd.
self changed: #replyl].

(choice2 == #remove:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#skidderSpeed.
replyStream := ReplylDictionary at:

186

#skidderSpeedRemove.
self changed: #replyl].

(choice2 == #edit:)
ifTrue: (

list3Collection:= PaneSelectors
retrieveCollection:#skidderSpeed.
replyStream := ReplylDictionary at:
#skidderSpeedEdit.
self changed: #replyl).

(choice2 == #display:)
ifTrue: [

list3Collection:= PaneSelectors
retrieveCollection:#skidderSpeed.
replyStream := ReplylDictionary at:
#skidderSpeedDisplay.
self changed: #replyl].

^self

skidderSpeedInput3

" evalutate skidder speed for input 3."

(choice2 == #add:)
ifTrue: [

replyStream := ReplylDictionary at:#hpClass.
self changed:#replyl.
self addToSkidderSpeed].

(choice2 == #remove:)
ifTrue: [

list4Collection := SkidderSpeedCable.
replyStream := ReplylDictionary
at:#skidderRemove.
self changed: #replyl].

(choice2 == #display:)
ifTrue: [

list4Collection := SkidderSpeedCable.
replyStream := ReplylDictionary
at:#skidderDisplay.
self changed: #replyl].

(choice2 == #edit:)
ifTrue: [

list4Collection := SkidderSpeedCable.
replyStream := ReplylDictionary
at:#skidderEdit.
self changed:#reply1].

^self

skidderSpeedInput4

187

11 evaluate skidderSpeed input for input pane 4."

(choice2 == #edit:)
ifTrue: [

list5Collection:= PaneSelectors
retrieveCollection:#slopeCollection.
replyStream := ReplylDictionary at:
#skidderEditInput4.
self changed: #replyl].

(choice2 == #display:)
ifTrue: [self displaySkidderSpeedData].

^self

skidderSpeedInput5

" evaluate skidder speed input for input pane 5."

(choice2 == #edit:)
ifTrue: [

list6Collection:= PaneSelectors
retrieveCollection:#skidderSpeedVariables.
replyStream := ReplylDictionary at:
#skidderParameter.
self changed: #replyl].

" self

slopePrompt

If Open a prompter window to set the slope weight factor."

" Temporary variables "

ItempVal choiceSelector tempkey tempi

tempkey := choice4. " store choice4 to tempkey"

" concatenate choice5 with #with: as a sysmbol"

choiceSelector:= (choice5,#with:)asSymbol.

" get user input for the performance factor "

tempVal := Prompter prompt: 'Slope Performance Factor.'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the slope information."

188

(Operations retrieveValueAt:choice3 with:tempkey)
perform: choiceSelector with:choice6 with:tempVal.
inputString := (inputString, choice4 printString, ' for
', choice5 printString,
' at ', choice6 printString, ' set to ', tempVal
printString, '\') withCrs.
self changed: #reply2.

^self

slopeSetBounds:aString with:aKey

" set the upper or lower bounds on slope. "

(Operations retrieveValueAt:choice3 with:choice4)
slopeRange:aKey with:(self
convertStringToNumber:aString).
inputString := (inputString, 'The slope ', choice6
printString, ' for ', choice4
printString, ' is set to ', choice7 asSymbol
printString,'\') withCrs.
self changed: #reply2.

standInput3

II evaluate selection for stand instance variables in list
pane input3. "

(choice3 == #dbh:)
ifTrue: [

list4Collection := PaneSelectors
retrieveCollection:#dbhCollection.
replyStream := ReplylDictionary at:#dbh.
self changed: #replyl].

(choice3 == #species:)
ifTrue: [

list4Collection := WoodDensity.
replyStream := ReplylDictionary at:#species.
self changed:#reply1].

(choice3 == #treeVolume:)
ifTrue: [

replyStream := ReplylDictionary
at:#promptMessage.
self changed: #replyl.
self treeVolumePrompt].

(choice3 == #acres:)

189

ifTrue: [

replyStream := ReplylDictionary
at:#promptMessage.
self changed: #replyl.
self acresPrompt].

(choice3 == #treeHeight:)
ifTrue: [

replyStream := ReplylDictionary
at:#promptMessage.
self changed: #replyl.
self treeHeightPrompt].

(choice3 == #merchTrees:)
ifTrue: [

replyStream := ReplylDictionary
at:#promptMessage.
self changed: #replyl.
self merchPrompt].

(choice3 == #unmerchTrees:)
ifTrue: [

replyStream := ReplylDictionary
at:#promptMessage.
self changed: #replyl.
self unmerchPrompt].

A self

standInput4

II evaluate stand input for input pane 4."

(choice3 == #species:)
ifTrue: [

EnvironmentDictionary at:choice3 put:choice4.
inputString := (inputString, choice3 printString,
' set to ', choice4 printString, '\') withCrs.
self changed: #reply2].

(choice3 == #dbh:)
ifTrue: [

EnvironmentDictionary at:choice3 put:(self
convertStringToNumber:choice4).
inputString := (inputString, choice3 printString,
' set to ', choice4 asSymbol printString

, '\')
withCrs.
self changed: #reply2].

A self

190

stateCollection

return stateCollection "

stateCollection.

treeHeightPrompt

I/ Open a prompter window to set the tree Height."

" Temporary variables "

(tempVal tempi

" get user input for the tree height"

tempVal := Prompter prompt: 'Tree Height.'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the slope information."

EnvironmentDictionary at:choice3 put:tempVal.
inputString := (inputString, choice3 printString, ' set
to ', tempVal printString, '\') withCrs.
self changed: #reply2.

^self

treeVolumePrompt

" Open a prompter window to set the tree volume."

"Temporary variables "

ItempVal temp

"get user input for the tree volume"

tempVal := Prompter prompt: 'Tree Volume.'
defaultExpression: " point: 200 @ 250.

"Determine the appropriate operation to locate an object.
Once the object is located, update the slope information."

EnvironmentDictionary at:choice3 put:tempVal.
inputString := (inputString, choice3 printString, ' set

191

to ', tempVal printString, '\') withCrs.
self changed: #reply2.

^self

unmerchPrompt

" Open a prompter window to set the density of
unmerch trees ."

" Temporary variables"

(tempVal templ

" get user input for the unmerch trees"

tempVal := Prompter prompt: 'density unmerch Trees/acre'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the slope information."

EnvironmentDictionary at:choice3 put:tempVal.
inputString := (inputString, choice3 printString, ' setto ', tempVal printString, '\') withCrs.
self changed: #reply2.

^self

woodDensityEdit:aSymbol

" Open a prompter window to set the density value ."

" Temporary variables "

(tempVal tempt

" get user input for the value"

tempVal := Prompter prompt: 'density value'
defaultExpression: " point: 200 @ 250.

" Determine the appropriate operation to locate an object.
Once the object is located, update the density
information.

192

WoodDensity at:choice3 put:tempVal.
inputString := (inputString, choice3 printString, ' set
to ', tempVal printString, '\') withCrs.
self changed: #reply2.

^self

woodDensityInput2

" evaluate selection for woodDensity in input pane 2."

(choice2 == #display:)
ifTrue: [

replyStream := ReplylDictionary at:
#woodDensityDisplay.
self changed: #replyl.
self displayWoodDensities].

(choice2 == #add:)
ifTrue: [

replyStream := ReplylDictionary at:
#woodDensityAdd.
self changed: #replyl.
self addToWoodDensity].

(choice2 == #edit:)
ifTrue: [

list3Collection:= WoodDensity.
replyStream := ReplylDictionary at:
#woodDensityEdit.
self changed: # replyl].

(choice2 == #remove:)
ifTrue: [

list3Collection:= WoodDensity.
replyStream := ReplylDictionary at:
#woodDensityRemove.
self changed: # replyl].

A self

woodDensityInput3:aString

II Evaluate woodDenstiy for input pane 3."

A self

choice3:= aString asSymbol.
(choice2== #edit:)

ifTrue: [

self woodDensityEdit:choice3].

(choice2== #remove:)
ifTrue: [

WoodDensity removeKey:choice3.
inputString := (inputString, choice3
printString, ' removed from wood
densities.', '\') withCrs .

self changed: #reply2.
self changed: #input3].

193

