
AN ABSTRACT OF THE THESIS OF 


Oongjun Yuk for the degree of Master of Science in Civil Engineering presented on 

February 16, 2001. Title: Stochastic Analysis of the Nonlinear Response 

Transition Behavior of an Ocean System. 

Abstract approved: 
Solomon C.S. Yi 

The nonlinear response of an ocean system subjected to random excitations 

can exhibit very complex dynamic behaviors including jump phenomena and 

coexistence of attractors. In this study, the stochastic system response behavior of 

a simple (Ouffing) oscillator under narrow-band random excitations is first 

examined in the subharmonic resonance region. A semi-analytical procedure based 

on the nonlinear response characteristics of the corresponding deterministic system 

is developed to derive the response transition probabilities within individual 

attraction domains and among finite attraction domains under the assumptions of 

stationarity and Markov process. Overall response amplitude probability 

distributions are obtained by applying the Bayes formula to the two different types 

of response transition probability distributions. 

To validate the prediction capability of the semi-analytical method, numerical 

simulation of the responses of the Ouffing system are generated and statistical 

characteristics of the response behavior are compared with prediction results. It is 

Redacted for Privacy



shown that the semi-analytical procedure provides more accurate predictions than 

other approximate methods available in the literature. A parametric study on the 

effects of variations in excitation intensity and degree of narrow-bandedness is 

conducted. Results confirmed that the nonlinear response characteristics including 

jump phenomenon and co-existence of attraction domains are preserved under 

narrow-band random excitations. 

The semi-analytical prediction method developed above is then applied to 

analyze the stochastic response behavior of a nonlinear mooring system subjected 

to random ocean waves. For modeling of the structural system, a nonlinear­

structure, nonlinearly-damped (NSND) model is employed and a reverse multiple­

input/single-output technique is applied to identify the system coefficients. To 

verify the accuracy and capability of the semi-analytical method in predicting the 

complex behaviors of the nonlinear mooring system, analytical predictions are 

compared with experimental results and numerical simulations. System response 

amplitude probability distributions predicted by the semi-analytical procedure are 

shown to be in good agreement with experimental and simulation results. 
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STOCHASTIC ANALYSIS OF THE NONLINEAR RESPONSE 

TRANSITION BEHAVIOR OF AN OCEAN SYSTEM 


1. INTRODUCTION 

In ocean and structural engineering, the dynamic loads from environment, 

which includes earthquake, wind, and waves, are often modeled as narrowband 

stochastic processes. Due to the random nature of the environmental loads and 

complex behavior of nonlinear systems, accurate analysis and prediction of 

nonlinear dynamic system response behaviors is highly challenging. The complex 

behaviors of nonlinear systems have been demonstrated in many previous studies 

(Rice, 1954; Lyon, et aI, 1961; Dimentberg, 1971; Richard and Anand, 1983; 

Davies and Liu, 1990; Gottlieb and Yim, 1992; Koliopulos and Bishop, 1993; Lin 

and Yim, 1995). These complex behaviors include co-existence of attractors, 

instability, initial condition dependency, amplitude jump phenomenon, and chaos 

(Nayfeh and Mook, 1979; Guckenheimer and Holmes, 1986; Thompson and 

Stewart, 1986; Jordan and Smith, 1987). 

A mooring system subjected to wave forces is an example of highly nonlinear 

offshore structures and has been investigated in depth to demonstrate the 

characteristics of the system behaviors (Yim, et al., 1993). Shih (1998) and Yim 

investigated the stochastic behavior of the mooring system under narrowband 

excitations and developed a semi-analytical method to predict the probability 

distribution of the responses using a simple (Duffing oscillator) model with 
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nonlinear restoring force terms up to third order and hydrodynamic damping terms. 

They showed that the semi-analytical procedure is capable of predicting the system 

response behavior accurately and can potentially be used to analyze more 

complicated models. 

1.1 Literature Review 

Recently a significant amount of research has been devoted to nonlinear 

system response having single- and multi-degrees-of-freedom (Krylov and 

Bogoliubov, 1947; Hayashi, 1953; Bogoliubov and Mitropolsky, 1961; Davis, 

1962; Davies and Liu, 1990; Koliopulos and Bishop, 1993). Several analytical 

methods to study the nonlinear system response under deterministic excitation 

including multiple scales, harmonic balance, averaging, and Lindstedt-Poincare 

have been developed. 

However, the stochastic behaviors of nonlinear system response subjected to 

narrowband excitations are not well understood due to the complex characteristics 

of the system responses. Gradual variations of excitation parameters can make the 

system response undergo transient states continuously. Development of analytical 

methods to describe nonlinear system behaviors accurately is difficult due to these 

complex transitions among co-existing attractors. 

Yim and Lin (1991) and Gottlieb and Yim (1992) showed that the multi-point 

mooring system with geometric nonlinearity can exhibit highly nonlinear response 

behaviors including chaos and semi-analytical methods, and numerical techniques 

are required in general to investigate these complex responses. 
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Recently, several stochastic analysis methods have been developed to 

describe the stochastic behaviors of nonlinear system response under narrowband 

excitation. Roberts and Spanos (1986) and Davies and Liu (1990) assumed both 

the excitation and response to be Markov processes and applied the stochastic 

averaging method to analyze the stochastic response under narrowband excitations. 

The probability density function of the response envelope process was obtained by 

solving the Fokker-Planck equation associated with the excitation and the response 

envelope. 

Alternatively, Koliopulos and Bishop (1993) proposed a quasi-harmonic 

method. In their formulation of the probability density function of the response 

envelope, both the excitation and the response processes are assumed to be 

narrowband. However, the effects of variation of randomness in the excitation on 

response behaviors are not taken into account by this method, even though an extra 

parameter is employed to indicate the occurrence and persistence of the response 

amplitude jump phenomenon. 

Another method is a semi-analytical method developed by Shih and Yim 

(Shih, 1998). The excitation and the response processes are assumed to be Markov 

processes. The system response under stochastic narrowband excitation is 

considered a transient state as excitation parameters vary continuously. Transitions 

of the response are divided into inter-domain and intra-domain. The stochastic 

behaviors of the excitation are used to determine the probability density function of 
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the system response. In developing the semi-analytical method, the well-known 

Duffing oscillator is used for simplicity. 

In this study, a nonlinear-structure, nonlinearly-damped (NSND) model is 

used to describe the mooring system. The quadratic hydrodynamic damping force 

and nonlinear restoring force terms up to third order are considered. The semi­

analytical method is applied to analyze the responses of the NSND model under 

narrowband excitations in the subharmonic resonance region. Predicted probability 

density distributions obtained from the semi-analytical method are compared with 

experimental results and numerical simulations. 

1.2 Objectives and Scope 

The long-term objective of the research described herein is to obtain a better 

understanding of the nonlinear system response behaviors from a stochastic 

perspective for structural design and control applications. The specific objective of 

this study is to validate the capability and accuracy of the semi-analytical method in 

predicting the response amplitude probability density function of the multi-point 

mooring system under narrowband excitation using NSND model. To demonstrate 

the capability of the semi-analytical method, predicted probability distributions of 

the response amplitude are compared with experimental results and numerical 

simulations. 

A brief summary of the scope of work of this thesis is presented in this 

section. In Chapter 1, literature related to this study is reviewed and objectives and 
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scope are provided. Configuration of the structural system considered and 

description of the semi-analytical method are presented in Chapter 2. Formulation 

and procedures of the semi-analytical method developed by Shih and Yim are 

summarized to provide the background of the analysis method employed in this 

study. In the development of the semi-analytical method, the Duffing oscillator is 

employed for its simplicity and well-known nonlinear characteristic behavior. In 

Chapter 3, the capability and accuracy of the semi-analytical method in analyzing 

the Duffing oscillator are demonstrated. Comparisons of analytically predicted 

response amplitude probability distribution with numerical simulations are made to 

validate the proposed method. In Chapter 4, the NSND model is employed to 

describe the structural system. Applying the semi-analytical method to the NSND 

model in the subharmonic resonance region, analytical predictions are obtained and 

compared with experimental results and numerical simulations. Finally, a 

summary of the results, concluding remarks and recommended future studies are 

provided in Chapter 5. 
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2. MODEL FORMULATION AND SEMI-ANALYTICAL METHOD 

2.1 Deterministic Excitation Model and System Response Behaviors 

2.1.1 Excitation model 

The governing equation of a general deterministic Duffing oscillator IS 

expressed as 

(2.1 ) 


where, Cs is the damping coefficient, and a] and a3 are the linear and nonlinear 

stiffness coefficients, respectively. The system is subjected to an external 

excitation f(t}. The elastic restoring force represented by the cubic polynomial is 

the only source of nonlinearity in the system. Even though the mooring lines have 

linear elastic properties, it is observed that restoring force provided by multi-point 

mooring lines is nonlinear due to geometry (Yim, et ai, 1993). For the excitation, 

both deterministic and stochastic model are used. 

When the excitation is deterministic, the excitation parameters are all time 

independent andf(t) can be expressed as 

I(t) = Acos(mt + ¢) (2.2) 

where (A, m, ¢) are constants. 
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2.1.2 System response behaviors 

2.1.2.1 Co-existing attraction domains and initial condition dependency 

A major difference in the response characteristics between a linear and 

nonlinear system is the dependency of the steady-state response on system initial 

conditions. To demonstrate the system response initial condition dependency in the 

subharmonic resonance region, four co-existing attraction domains corresponding 

to an excitation amplitude A=9 and their corresponding response time series are 

shown in Fig. 2.1 and Fig. 2.2. 

Fig. 2.1 shows that under identical excitation parameters, I.e., excitation 

amplitude, frequency, and phase angle, system responses can exhibit completely 

different behaviors. Notice that the system response behavior with certain set of 

parameters is sensitive to initial conditions around the boundaries of co-existing 

attraction domains. Small variations in initial condition near the boundaries of 

attraction domains may cause period doubling of response or large amplitude 

response. As shown in Fig. 2.2, co-existing attraction domains have such complex 

patterns that a probabilistic description is needed to describe sensitive system 

response behaviors. For convemence of notations, the large harmonic, small 

harmonic, 112 subharmonic and 113 subharmonic attraction domains are denoted as 

D,. D2• D3 and D-/, respectively. 
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2.1.2.2 Response amplitude domain overlap 

Previous investigations showed that, when the excitation frequency OJ is close 

to three times the system linear natural frequency, five attraction domains co-exist 

(Thompson and Stewart, 1986). These attraction domains include two harmonic 

(large and small amplitude), two 112 subharmonic, and one 113 subharmonic 

responses. It is found that the two co-existing 112 subharmonic response attractors 

are of the same steady-state amplitude but with different biases in the time series. 

Thus, they are considered as being parts of the same attraction domain (i.e., they 

belong to the same attractor) henceforth in this study. 

Amplitude response curves of the system in the subharmonic resonance region 

are shown in Fig. 2.3. Due to the complexity of solving approximate steady-state 

response amplitudes in these attraction domains, these curves are obtained by direct 

integration of Eq.(2.1), and the parameters are the same as in Fig. 2.1. In the 

figure, the vertical dashed lines indicate intervals of excitation amplitudes where 

different types of system response, or attraction domain Dd, exist and those 

excitation amplitude domains are denoted as D/ (d=I,2,3,4). Note that, in each 

domain Dd, the steady-state response amplitudes also form a response amplitude 

domain D/ (d=I,2,3,4), as shown in Fig. 2.3. In addition, unlike the case of the 

large amplitude resonance region, response amplitude domain overlaps are 

observed among D/. That is, single response amplitude may belong to more than 

one attraction domain and thus, may correspond to different excitation amplitudes. 
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Fig. 2.3 Amplitude response C\lIVes of the system in the subharmonic resonance 
region. {w=3.6, Cs=0.05, aJ=I, a3=0.3, fjFO, A=9, (x(O), dx/dt(O»= (4.6, 0), (4.2, 
0.6), (4.1, 0), (4.3, O)}. 

2.1.2.3 Response amplitude jump phenomena 

When the excitation amplitude exits from the small amplitude domain by 

crossing A2U (see Fig. 2.3), the system response goes to the large amplitude 

harmonic domain because it is the only existing domain for A > A2U. Similarly, an 

exit of the system response from the large amplitude harmonic domain by varying 

the excitation amplitude across AIL will induce the response amplitude to jump to 
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the small amplitude harmonic domain. This is because the small amplitude 

harmonic domain is the only existing one for A < AlL. 

(1) 112 subharmonic domain upper bound A3U At the 112 subharmonic domain 

upper bound A 3U, the possible destination domains are the large and the small 

amplitude harmonic domains (see Fig. 3.3). When the excitation amplitude 

increases from A < A3U to A > A 3U, the 1/2 subharmonic domain evolves into either 

the small or the large amplitude harmonic domains. When the transient-state 

system mean energy is greater than the steady-state 112 subharmonic response 

mean energy at A = A3U, the large amplitude harmonic domain may likely be the 

destination of the inter-domain transition. Conversely, if the transient-state system 

mean energy is lower than the steady-state 112 subharmonic response mean energy 

at A = A3U, the system response will likely go to the small amplitude harmonic 

domain. 

(2) 1/2 subharmonic domain lower bound A3L At the 112 subharmonic domain 

lower bound A3L, the possible destination domains are the large and the small 

amplitude harmonic domains, and the 113 subharmonic domain (see Fig.2.3). 

However, a jump from a 1/2 subharmonic response domain to the large amplitude 

resonance response domain is highly unlikely due to the decreasing excitation 

amplitude (hence input energy). Thus, during the inter-domain transition, the 

system response may transition to either the small amplitude harmonic or the 1/3 

subharmonic domain (see Fig.2.3) when the excitation amplitude varies from A > 

A3L to A < A 3L . It is assumed that, after the response exits from the 1/2 
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sub harmonic domain, it will first visit the 113 subharmonic domain before it can 

visit the small amplitude harmonic domain. 

(3) 113 subharmonic domain upper bound A4U At 113 subharmonic domain 

upper bound A3 l!, the possible destination domains are the large and the small 

amplitude harmonic domains and the 1/2 subharmonic domain (see Fig.2.3). 

Although the excitation amplitude is increasing (hence higher energy input), a jump 

from a 113 subharmonic response to a large amplitude resonance response is highly 

unlikely due to the large gap between the two energy levels and the presence of the 

112 subharmonic domain in between. Thus, during the inter-domain transition, the 

system response may transition to either the small amplitude harmonic or the 112 

subharmonic domain (see Fig. 2.3) when the excitation amplitude varies from A < 

A4lJ to A > A4U. The system response will more likely go to the 112 subharmonic 

domain during the inter-domain transition at A = A4U if the transient-state system 

mean energy is greater than the steady-state 113 subharmonic response mean energy 

at A = A4U. Otherwise, the small amplitude harmonic domain will become the 

destination of the inter-domain transition. 

(4) 1/3 subharmonic domain lower bound A4L At the 1/3 subharmonic domain 

lower bound A 4L , the possible destination domains are the large and the small 

amplitude harmonic domains (see Fig. 2.3). However, as explained in (2), a jump 

from a 1/3 sub harmonic response domain to the large amplitude resonance response 

domain is highly unlikely due to the decreasing excitation amplitude (hence input 

energy). Thus, during the inter-domain transition, the system response will likely 
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transition to the small amplitude harmonic domain (see Fig. 2.3) when the 

excitation amplitude varies from A > A4L to A < A4L. 

2.2 Stochastic Excitation Model and Assumptions 

If the excitation is random, f(t) may be interpreted as a stochastic process, the 

parameters (A, OJ, ¢) then become time dependent random variables and their 

behaviors may vary significantly depending on the spectral bandwidth of the 

process. The narrowband process can be modeled as the output process of a lightly 

damped linear system with a white noise process as the excitation (Stratonovich, 

1963). This linear system in frequency domain can be expressed in the form of a 

stochastic differential equation as 

.. . 2 112
f + r f + OJI f = r OJI Wo (2.3) 

where y serves as a bandwidth parameter, (Df is the peak frequency of the output 

process f(t) and Wo is a stationary Gaussian white noise process with zero mean and 

spectral intensity So. In the time domain, a stationary narrowband random process 

is defined as a process that is close to sinusoidal oscillations of a fixed peak 

frequency with the time interval equal to a large number of oscillation cycles 

(Stratonovich, 1963). The amplitude and phase of the process vary slowly and 

randomly while the frequency retains a constant value (Ochi, 1990). 

The envelope and phase processes associated with a given random process are 

useful concept in the theory of random vibrations. A narrowband stochastic 
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process f(t) can be represented as a cosine function having time varying amplitude 

governed by the envelope process, and time varying frequency governed by the 

phase process (Langley, 1986), that is, 

f(t) = A(t)coslw1t+¢ (t)J (2.4) 

where, A(t) and ¢(t) are the envelope and the phase processes, respectively. 

By assuming the narrowband process f(t) to be Guassian with zero-mean and 

variance cyj, the joint probability density function of the envelope A(t) and the 

phase ¢(t) processes is obtained as (Ochi, 1990) 

2 
p(A(t),¢(t))= A(t)2exp[_ A (t)2] os; A(t) <00, 0S;¢(t)S;2Jr (2.5) 

2Jr CYf 2Jr CYf 

For the narrowband excitation process, f(t), the frequency is assumed to be 

constant and equal to the peak frequency OJ[ of the spectrum of the system input in 

Eq.(2.3). Effects of excitation frequency variations on the response behavior are 

taken into account through excitation phase angle variations (Rice, 1954; 

Stratonovich, 1963; Langley, 1986). For the response process, it is assumed that 

the prominent deterministic system response behavior described earlier, including 

co-existing attraction domains, and the domain-dependent characteristics, are 

preserved in the narrowband random excitation environment. 

From a stochastic point of view, the probability transitions of the excitation 

amplitude and phase angle processes and the corresponding response amplitude 

process are assumed to be ergodic Markov processes. 
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2.3 Stochastic Descriptions of Excitation Parameters 

To investigate the stochastic behaviors of the amplitude and the phase 

processes, a four dimensional joint probability density function (PDF) of the 

random variables representing the excitation amplitudes and phase angles 

corresponding to consecutive excitation cycles, i.e., A(l), A (2), 11) and 12
), can be 

obtained as (Ochi, 1990) 

p(A(I) ,rp(l) ,A(2) ,rp(2)) 

(I) (2) { 1 {[ ] [(""(2) - ",,(I)) J}}= A A ex _-_ 0" 2 (A(I) Y+ (A(2) y _ 2A(I) A(2) pcos'f' 'f' 

4.7r 2M p 2M / l + Asin (rp (2) _rp(I)) 

(2.6) 


where, 

p = rSI! (m)cos[(m - mI)r}lm 

A = rSo (m) sin[(m - mI)r}lm (2.7) 

M = - - A2 
O"f 4 P 2 

and superscripts (1) and (2) indicate that the quantities are in the current and the 

next excitation cycles, respectively; Srim) is the one-sided spectral density function 

of((t) , and T is the excitation period equal to 2mmj. If a random variable c[J is 

introduced to represent the phase angle difference 12
) _II), the joint PDF of A(/), 

A(2) and c[J can be obtained from Eq.(2.6) by the transformation of the random 

variables (Ochi, 1990) 
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In addition, the joint PDF of A(l) and A(2) can be obtained by integrating 

Eq.(2.6) with respect to ¢if) and ¢i2). 

where, 10 is the modified Bessel function of order zero. The excitation bandwidth 

dependency ofEq.(2.6) is transferred to Eq.(2.8)-(2.9). 

Under the assumption of Markov process, the probability propagation density 

function of the excitation amplitude process represented by the Markov state 

density function (Gillespie, 1992) can be expressed as 

(2.1 0) 


where, p(A(l)) is a Rayleigh-distributed marginal density function of p(A(J),A(2)). 

Since Eq.(2.1 0) is a conditional probability density function, the probability density 

function ofA (2) can be obtained as 

(2.11) 
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,--------------------------~ 

2.4 Response Inter-domain Transitions 

When the excitation amplitude drifts out of the attraction domain boundaries 

defined in the response amplitude curves, the system response may be attracted to a 

competing attraction domain and this transition is defined as an inter-domain 

transition. For a stationary Markov response process, the response inter-domain 

transition (or the amplitude jump phenomenon) among finite number of domains, 

D/ can be modeled as a stationary Markov process with discrete states (Gillespie, 

1992) or a stationary Markov chain (Ochi, 1990; Bouleau and Lepingle, 1994). 

Stochastic behaviors of the inter-domain transition are characterized by an 

inter-domain transition probability matrix K. Thus, the governing equation of the 

probability inter-domain transition can be expressed as 

(2.12) 


where, p(D(l)) and p(D(2)) are probability vectors of the system response being in 

each individual attraction domain in the current and the next excitation cycles, 

respectively. 

The dimensions of p and K are (n x 1) and (n x n), respectively, where n is 

the number of coexisting attraction domains. Thus, Eq.(2.12) can also be written as 

(2.13) 

where, Pi/iIJJ, an element of the inter-domain transition probability matrix K, is a 

conditional probability that the system response is going to the th attraction domain 

given that it is currently in the /h attraction domain. p/D/2)) and p/p/)) are the th 

http:Eq.(2.12
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and /' elements of the probability vectors p(D(2») and p(D(l» , respectively, stand 

for the probabilities of the system response being in the /" and /' attraction 

domains in the next and the current excitation cycles, respectively. The conditional 

probabilities Pu(i\i) in Eq.(2.13) depend on the domain exit probabilities, P(EdU and 

p(EdU) , and the probability that an attraction domain becomes the destination 

domain. 

Note that under stationary condition p(D(2») is equal to p(D(l») . Thus, 

obtaining a stationary probability vector p(D) = {Pi (Di)} from Eq.(2.10) or 

Eq.(2.13) IS equivalent to obtaining the eigenvector of the transition matrix K 

corresponding to the unit eigenvalue. Normalization of the eigenvector is required 

to meet the probability rule. 

2.5 Evaluation of Probability Transition Matrix K 

Conditional probabilities, pu(iJi) , can be evaluated by considering the 

mechanism of the system response inter-domain transition behavior depicted 

previously and the stochastic behavior of the excitation amplitude characterized by 

Eq.(2.9). For the system response to stay in the same attraction domain, Dd, in the 

next excitation cycle, the excitation amplitude must remain within the same 

domain, D/, in the next cycle. The probability, p(A\D/), of the excitation 

amplitude being in the domain D/ can be expressed as 

http:Eq.(2.13
http:Eq.(2.10
http:Eq.(2.13
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4 p(A) A 
peA ID,,' ) = ,A E D" (2.14)

fp(A)dA 
IJ/ 

where, p(A) is a Rayleigh distribution. From Eq.(2.9), the probability distribution, 

p(A(2)IA(I) ED/), of the excitation amplitude in the next cycle given that the 

excitation amplitude belongs to D/ in the current cycle can be obtained by 

p(A(2) IA(I) E D,/) = fp(A(2) IA(I) )p(A(I) IDd A )dA(I) (2.15) 
J)/ 

Thus, the probability that the system response remains in the same attraction 

domain, Dd, in the next excitation cycle reads 

(2.16) 

Note that p(R(2) ED/IR(I) ED/) is equal to the diagonal elements of K, Pi/iii), 

in Eqs.(2.12-2.13). The probability, P(EdU) , that the system response exits from the 

attraction domain Dd at the domain upper limit AdU is equivalent to the probability 

that the excitation amplitude A(2) is greater than AdU. Thus, from Eq.(2.15), p(EdU) 

can be obtained by 

Adl 

p(E"l/ ) = 1- f p(A(2) I A(I) ED" A )dA(2) (2.17) 
o 

Accordingly, the probability, P(Ed1j, that the system response exits from the 

attraction domain Dd at the domain lower limit AdL can be obtained by 

p(E",) = 1- fp(A(2) IA(I) E D/ )dA(2) (2.18) 
Ad/ 

Note that, after the system response exits from an attraction domain, there may 

exist multiple possible destination domains of the inter-domain transition. In this 

http:Eq.(2.15
http:Eqs.(2.12-2.13
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8.00 

case, the transient-state system mean energy, or equivalently, the transient-state 

system response amplitude is employed to determine the attraction domain that the 

system will settle to during the inter-domain transition. The system energy level 

can be represented by the system mean energy which is defined as the averaged 

system total energy over one excitation cycle. Fig. 2.4 shows the relationship 

between the system total energy and the system mean energy. When the system 

response has a higher total energy local maximum, the system mean energy is also 

higher. In addition, when the system response has a higher mean energy, the 

response also has a larger amplitude as shown in Fig. 2.4. 

16.00 
...... *' ... system mean enerqy 
- sy'.,terl'1 totol energy 

12.00>, 
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Fig. 2.4 System response in the small amplitude harmonic domain. (Top) 
relationship between transient-state system total energy and mean energy over one 
excitation cycle. (Bottom) relationship between response displacement and mean 
energy. {Cs = 0.05, a1 = 1, aj = 0.3, (i)= 3.6, ¢= 0, A = 12 (x(O), dxIdt(O» = (-1.8, 
O)}. 
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Fig. 2.5 Mean energy level of the system response in the small amplitude harmonic 
domain and the 1/2 and 113 subharmonic domains. {Cs = 0.05, a} =1, a3 = 0.3, (j)= 

3.6, ¢= 0, A = 7}, (x(O), dx/dt(O» = {(-I, 0.5) (small amplitude harmonic response), 
(-3.75,4.75) (112 subharmonic response), (-1.4,0.75) (113 subharmonic response)}. 

For example, consider the 112 subharmonic domain lower boundary A2L. At 

this lower bound, the possible destination domains are the large and the small 

amplitude harmonic domains, and the 113 subharmonic domain (see Fig. 2.3). 

However, a jump from a 112 subharmonic response domain to the large amplitude 

resonance response domain is highly unlikely due to the decreasing excitation 

amplitude (hence input energy). Thus, during the inter-domain transition, the 

system response may transition to either the small amplitude harmonic or the 113 

subharmonic domain (see Fig. 2.3) when the excitation amplitude varies from A > 

A2L (A = 7 in this case) to A < A2L (A = 6). Fig. 2.5 shows that the system mean 

energy of a typical response in the 112 subharmonic domain is higher than those 

corresponding to the 1/3 subharmonic domain, which in turn is higher than those in 

http:1.4,0.75
http:3.75,4.75
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the small amplitude harmonic domain. Therefore, it can be assumed that, after the 

response exits from the 112 subharmonic domain, it will first visit the 1/3 

subharmonic domain before it can visit the small amplitude harmonic domain. 

The four diagonal elements of matrix K, p(LIL) = PII(111), p(SIS) = P22(212), 

p(1I21112) = p:l3(313), and p(1I311/3) = P44(414), can also be obtained by Eq.(2.16). 

Evaluation of the rest elements ofK can be performed with following steps: 

1. p(LI1!3), p(1/2IS), 	 p(1/31S) According to the response inter-domain 

transition behavior, these three conditional probabilities are equal to zeros. 

Pl4 (114) = P32 (312) = P42 (412) = 0 (2.19) 

2. 	 peLIS) This probability is equal to the complement ofp(SIS). Thus, 

PI2 (112) =1- P22 (212) (2.20) 

3. p(1/31112) When the system is in the 112 subharmonic domain, D3, an exit 

from the domain at the lower boundary A3L leads the system to the 113 sub harmonic 

domain, D". Therefore, from Eq.(2.18),p(1/31112) = P43(413) can be calculated as 

if) 

P43(413)=I- fp(A(2)IA(I)EDl,A)dA(2) 	 (2.21 ) 
A1{ 

4. p(LI1I2) and p(SI1I2) An exit of the system response from the 112 

subharmonic domain, D3, at the upper boundary A3u may lead the system to the 

large (D 1) or the small (D2) amplitude harmonic domain. The probability of the 

exit P(E3U) can be calculated from Eq.(2.17). The probability that the system 

response goes to the large amplitude harmonic domain after the exit, p(LIE3lJ, can 

be approximated by the probability that the system transient-state mean energy 

http:Eq.(2.17
http:Eq.(2.16


24 

corresponding to A3U is greater than the 1/2 subharmonic steady-state system mean 

energy at A3l/. In addition, because the system mean energy is directly related to 

the response amplitude, p(LIE3uJ may also be approximated by the probability that 

the transient-state response amplitude R corresponding to A3U is greater than the 

steady-state 112 subharmonic response amplitude R3i S) at A3l/. The response 

amplitude probability distributionp(RI(D/hu) at the domain upper boundary A3U 

can be obtained from intra-domain transition probability distribution. Therefore, 

Pl3 (13) = p(E311 )p(R > R~~ I A3U ) = P(E3l/) I peR I (D~ )3f1 (2.22) 
R>R\~ 

(2.23) 

5. p(1/21113) and p(SI1I3) Based on the response inter-domain transition 

behavior described in Section 2.1.2 and the arguments presented step 4, the 

probability of the system response going to the 112 subharmonic (D3) and the small 

amplitude harmonic (D2) domains after an exit from the 113 subharmonic domain 

(D.j) can be calculated as, 

P24 (214) = P(E411 )p(R > R~~~ IA4U) = p(E411 ) 2:p(R I(D~ )411 (2.24) 
R>R\~ 

P24 (21 4) =1- P44 (414) - P34 (314) (2.25) 

respectively, where, Rm(S) is the steady-state 113 subharmonic response amplitude 

at Am. The probabilities p(E4U) and p(RI(Dl)4u) are obtained from Eqs.(2.17) and 

intra-domain transition probability distribution, respectively. 

6. p(1/2IL), p(l/31L) and peSIL) During the inter-domain transition following 

the exit of the system response from the large amplitude harmonic domain, DI, the 

http:Eqs.(2.17
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response amplitude keeps decreasing while the excitation amplitude vanes 

randomly. Depending on the excitation amplitude variation, the possible 

destination domains of the transition include the 112 subharmonic, D 3 , the 113 

subharmonic, D", and the small amplitude harmonic, D2, attraction domains. 

For the system response transition to the 112 subharmonic domain, D3 , it is 

assumed that the excitation amplitude A must be within the domain D3A when the 

response amplitude R decreases to the mean steady-state 112 subharmonic response 

. (\j
amphtude, R3 ·. Similarly, for the system transition to the 113 subharmonic 

domain, D4, the excitation amplitude must be within the domain D/ when the 

response amplitude decreases to the mean steady-state 113 subharmonic response 

amplitude, R,,'(5) . 

To estimate the number of excitation cycles required for the harmonic response 

amplitude decreasing from attraction domain DI to D3 and D4, the response 

amplitude decay rate of an unforced linear system is employed (Clough and 

Penzien, 1993). The damping and stiffness coefficients of the linear system are 

identical to those of the nonlinear system considered. Thus, the required excitation 

cycles may be estimated by 

R(S) - R(s) 

m(i ,') = 'a (2.26)I J 
'. (' R(s) -Vdl,.lC . . , .I 

where, m(i, j) is the excitation cycles of the transition from the attraction domain Di 

to the attraction domain Dj . Note that R/S) is the steady-state response amplitude 

corresponding to the excitation amplitude A = AIL, in the attraction domain DI. Let 

ml = m(l, 3)+1 and m2 = m(3, 4). Thus, when the response amplitude decreases 
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from RlJ to RpJ, the probability distribution of the excitation amplitude IS 

obtained as 

p,(A(lIIl) IA(l) E D~) = jp(A(lIIl) I A(IIIH)) ... 
..1(1111-1) 

(2.27)
jp(A(J) IA(2)) jp(A(2) IA(I))p(A(I) IDl

A)dA(I)dA(2) .. ·dA(IIIH) 

J)~ A("ED~ 

p(A(lIIl) E D~) = jPJ(A(lIIl) IA(l) E D~)dA(fIIl) (2.28) 
D~ 

where D/ is the complement domain of D/. A part of the excitation amplitudes 

A(II1l) not within D/ will propagate toward D/ and the rest are going to D/. Thus, 

P4(A(lIIl+fII2) IA(l) E D~) = jp(A(lIli+fII2) IA(fIIl+fII2-1)) ... jp(A(fIIl+2) IA(fIIl+l)) 

A(II/l-t/Ill-I) A(IIII-1) 

(2.29)
fp(A(lIIl+l) IA(lIIl))PJ(A(lIIl) IA(l) E DlA)dA(lIIl)dA(lIIl+l) ···dA(lIIl+fII2-1) 

b~ 

p(A(lIIl+1II2) E D~) = jP4(A(lIIl+1II2) I A(l) E Dl
A)dA(1I1i+1II2) (2.30) 

IJi' 

where, D/ is the complement domain of D/. The probabilities P31(311), P41(411) 

andp21(211) can be obtained as 

(2.31) 

(2.32) 

(2.32) 
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2.6 Response Intra-domain Transition Probabilities 

The intra-domain transition is defined as the cycle-to-cycle response amplitude 

transition behavior that takes place within the same attraction domain. Due to 

variations in the excitation amplitude, transitions of the response amplitude 

probability will occur among response amplitude domains, (DJ~A' corresponding to 

different excitation amplitude within D/. The governing equation of the intra­

domain probability transition from (D/)/l) at the current excitation cycle to 

(D/)/2) at the next excitation cycle reads 

p(R(2) I A(I) ,A(2) ,D/)= fp(R(2) I R(I) ,A(I) ,A(2) ,D/ )p(R(I) I(D/ )~) ~R(I) (2.33) 

(Ii/r:) 

where, p(R (2) I R (I) , A (I), A (2) , D/ ) is a domain dependent response amplitude 

probability transition density function. 

Note that the probability distribution of the response amplitude p(R(2) I 

(D/)/2)) may be transitioned from all p(R(l) I(D/)/') , A{l) ED/ ) and is the union 

of all the possible transitions. These events are mutually exclusive and thus, 

according to the Bayes formula (Ochi, 1990), p(R(2) I(D/) /2)) can be expressed as 

(2.34) 

On the other hand, occurrence of a response amplitude R being in the domains, 

D/, corresponding to different attraction domains, Dd, are mutually exclusive 

events. Therefore, the response amplitude PDF can be expressed as (Ochi, 1990) 
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~---------------------

p(R(=))= Ip(R(=) ID/ )p(D/) z = 1,2 (2.35) 
"~I 

In addition, within an attraction domain, the response amplitude PDF can also 

be expressed as 

(2.36) 

Note that {p( (D/JA J d((D/)A)} is equivalent to {p( AI D/ J dA} which stands 

for the probability of the excitation amplitude being equal to A given that A belongs 

to D/. The integration of Eq.(2.36) is carried out over the entire domain D/ . 

Thus, Eq.(2.36) can be rewritten as 

p(R(=) ID/)= fp(R(=) I(D/ t )p(A ID" A ~A, z = 1,2 (2.37) 
1J/ 

By substituting Eq.(2.33) and (2.34) into Eq.(2.36), the governing equation of 

the response amplitude intra-domain probability transition yields 

p(R(2) I D" II) 

= f{ ~ fP(R(2) I R(I). A(I), A(2), D/I )p(R(I) I(D/ )~) )dR(I) ]P(A(I) I D,,·l ~A(I) }P(A(2) I D/l ~A(2) 

(2.38) 

Finally, the overall stationary response amplitude PDF can be approximated as 

/I 

p(R(I)) = p(R(2)) = L p(R(I) I D/ )p(D,,) (2.39) 
"~I 

http:Eq.(2.36
http:Eq.(2.33
http:Eq.(2.36
http:Eq.(2.36
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2.7 Evaluation of Response Intra-domain Transition Probabilities 

From a deterministic point of view, the variation in the response amplitude is a 

function of: (1) the excitation amplitude and the response amplitude in the current 

excitation cycle, (2) variation in the excitation parameters (amplitude and phase 

angle), and (3) the system phase status (x, dxldt) at the time when the excitation 

parameter variation takes place, which is also considered as the initial condition of 

the following transient-state response. That is, 

(2.40) 

where, R(I) and R(2) are response amplitudes in the domains (D/)/I) and (Di~A(2), 

respectively; (/J is the variation in the excitation phase angle; and X stands for the 

system initial condition. Note that the function g is domain dependent. If the 

response amplitude R(l), the excitation amplitude A(l) and A(2) are fixed, then R(2) 

can be considered as a function of (/J and X only, i.e., R(2) = g(C/J, X) where g is a 

domain dependent function. As a result, the probability distribution of R(2) can be 

derived from the joint probability distribution of dJ and Xi through the functional 

relationship R(2) = g(eP, X), given that R(I), At) and AF) are fixed. However, to 

date, an explicit expression of the function it (or g) is not available and, thus, a 

direct derivation ofp(R(2) I R(/), A(l), A (2), D/) from p(eP, X I R(/), A (I), A (2), D/) is 

not feasible. Thus, to obtain p(R(2) I R(/), A(/), A (2), Dl ), the use of a numerical 

technique is required. 
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To facilitate a numerical evaluation of p(R(2) I R(I), A(I), A(2) DR) the, d , 

response amplitude domains ((D/)/~) , z=1,2}, the system initial condition xD 

domain, the excitation phase angle difference C/J domain, and the excitation 

amplitude domain D/ are discretized. The value of g(C/Jup, Xu(/)= RurP) , given R 

urI (I), A/I) and AF) can be obtained by direct numerical integration of Eq.(2.1), 

where the subscripts indicate sample points of their corresponding discretized 

random variables, C/J, xD, R(I), R(2), and D/, respectively. Thus, p(C/Jup, Xuoll I R urI 

(I) A(/) A(2J DR)= (R (2)IR (I) A(I) A(2) DR) 
, J ' I ,d P ur2 urI, J ' , d .I 

The probability distribution of the phase difference C/J is characterized by 

Eq.(2.8) and depends on A/I) and AF) only. The initial condition, xD, is assumed to 

be uniformly distributed over the domain which is the phase trajectory of the 

current response cycle. In addition, C/J and xD can be assumed as statistically 

independent because the excitation properties C/J is not affected by the system 

response and the uniformly distributed system initial condition is affected by 

neither the variation in the excitation parameters nor the system response. Thus, 

(2) I (I) (I) (2) /I
p( Rllr2 Rllrl , Ai' Ai ,D,,) 

1 <I) +iJ<P12 (A (I) A (2) C/J) (241) 
_ 0 (I) (I) (2) D Ii = _ "I' f Pi' i ' .
-P(C/JIlf1'X IiO I Rllrl,A i ,Ai , " ) (I) (2) d(/J 

mr <P"I'-iJ<P12 p( Ai' Ai ) 

where, my is the total number of intervals in discretized xD domain; p(A/,), A F), C/J) 

and p(A/I), AF)) can be obtained by Eqs.(2.8)-(2.9). By varying (/Jup and Xuoll over 

their entire respective domains and lumping all computed p(RuJ2) I R urI (I), A/I), 
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Ai(2). D/), a probability vector of the response amplitude p(R(2) I R urI (/), A/I). Ai(2). 

Dl) can be obtained. 
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3. ANALYSIS AND PREDICTIONS AND COMPARISONS OF 

STOCHASTIC RESPONSES 

3.1 Analysis of Stochastic Response Behavior 

3.1.1 Jump phenomena among various harmonic/subharmonic responses 

The system response under a narrowband excitation exhibits amplitude jumps 

between several levels as shown in Fig. 3.1. To depict the mechanism of the jump 

phenomenon, an amplitude response map, Fig. 3.2, which is obtained by plotting 

the excitation amplitudes versus the corresponding measured response amplitudes, 

is employed. In the figure, the corresponding amplitude response curves of the 

system are presented as solid lines. Note that the characteristics of the response 

inter-domain transition behavior depicted in Chapter 2 are preserved under the 

narrowband excitation environment. Namely, the system response goes from the 

large amplitude domain to the small amplitude domain when the excitation 

amplitude varies from greater than to less than the large amplitude domain lower 

boundary. 

Under close examination of the details of response time histories (e.g., Fig. 

3.1), 112 and 113 subharmonic responses are observed to occur repeatedly under 

narrowband excitations. These subharmonic responses are often difficult to 

identify due to overlapping of the different response amplitude (i.e., small 

amplitude harmonic, 112 and 113 subharmonic) domains (e.g., clustered 4.0 length 

units in Fig. 3.1). However, the existence of these responses can be identified 
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relatively clearly in the associated amplitude response maps (e.g., Fig. 3.2) by 

observing the points located along to the corresponding subharmonic amplitude 

response curves. 
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Fig. 3.1 System response in the subharmonic resonance region. Time series of 
narrowband excitation amplitude (top) and corresponding response amplitude 
(bottom). {Cs =0.05, a]= 1, a3 =0.3, 0Jj= 3.6,0/ = 157, y= 0.005}. 
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Fig. 3.2 Amplitude response maps corresponding to the time series shown in Fig. 
3.1. 

Existence of the 113 subharmonic response under narrowband excitation was 

also observed in simulations conducted in previous studies (Davies and Raj an, 

1988; Francescutto, 1991) when an extremely small excitation bandwidth and 

special system initial conditions are employed. However, it was concluded that the 

113 subharmonic response only exists in the beginning of a response realization, 

and once it disappears, it will not be observed. This contradiction in the 

observation of repeated occurrence of the subharmonic response may be due to 

different simulation durations employed. In this study, the simulation duration is 

on the order of 12,000 excitation cycles, significantly longer than the 

approximately 600 cycles employed in previous studies. 

'. 
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3.1.2 Frequency of occurrence and transition among attraction domains 

Stochastic system response characteristics, including frequency of occurrence 

and transition among various attraction domains can be observed in the time 

histories and amplitude response maps. As indicated in Figs.3.1-2, the frequencies 

of occurrence are relatively high for large and small amplitude harmonic responses, 

and low for 112 and 113 subharmonic responses. As mentioned in previous 

sections, when the excitation gradually exceeds the region of small amplitude 

harmonic response, a jump to the large amplitude response is almost certain, while 

decrease in excitation amplitude induces possible jumps from large amplitude 

harmonic response to either 112 or 113 subharmonic or small amplitude responses. 

Trends for jumps among 112 and 1/3 subharmonic and small amplitude responses 

are less clear. Numerical values governing these probabilities of occurrence and 

transition will be presented and discussed in a later section. Dependency of the 

probabilities of occurrence and transition among various domains will also be 

examined. 

3.1.3 Effects of varying excitation bandwidth 

Effects of varying the degree of randomness of the excitation (i.e., excitation 

bandwidth) on the response behavior are demonstrated in Fig. 3.3(a-d). Observe 

that as the degree of randomness in the excitation increases (increasing excitation 

bandwidth parameter y), the response time series exhibits more frequent amplitude 

jumps between distinct levels. In addition, the total time of the response in higher 
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amplitude level also increases. As a result, the probability of the system response 

staying in the higher amplitude level increases as the excitation bandwidth 

increases. Consequently, the response inter-domain probability transition and the 

response amplitude PDF are related to the excitation bandwidth. As shown in the 

corresponding amplitude response maps (Fig. 3.4), increasing excitation 

randomness also results in spreading of the amplitude distribution around the 

deterministic response amplitude curves. For a low degree of excitation 

randomness (Fig. 3.4(a)), amplitude spreading is concentrated at the jump 

transitions among large and small amplitude and 1/3 subharmonic responses. (Note 

that 112 sub harmonic does not appear to occur.) The interior regions of the large 

and small amplitude responses resemble those of their corresponding deterministic 

system. However, as the degree of excitation randomness increases (Fig. 3.4(b-c)), 

amplitude spreading moves towards the overlapping region involving all responses 

(large and small amplitude as well as 112 and 113 subharmonics). For a large 

degree of excitation randomness (Fig. 3.4(d)), spreading of the amplitude 

distribution among various attraction domains becomes even more significant, 

resulting in the increase in variance of the response amplitude in each response 

attraction domain. Therefore, the response intra-domain probability transition and, 

thus, the response amplitude PDFs are clearly affected by variations in the 

excitation bandwidth. 
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Fig. 3.3 (a), (b), (c), and (d): System response under varying excitation bandwidth 
in the subharmonic resonance region. Time series of narrowband excitation 
amplitude (top) and corresponding response amplitude (bottom). {Cs=0.05, aj=l, 
a3 =0.3, ~=3.6, aj = 57, y= (a) 0.001, (b) 0.005, (c) 0.01, (d) 0.05}. 
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(a) (b) 

12.00 .: 

(c) (d) 

12.00 

Fig. 3.4 (a). (b). (c). and (d): Amplitude response maps corresponding to the times 
series shown in Fig. 3.3 (a) - (d). respectively. 

3.1.4 Effects of varying excitation intensity 

The responses of the nonlinear Duffing system subjected to two levels of 

excitation intensity are shown in Fig. 3.5. Note that for smaller value of excitation 

intensity. the relative time of the system response spends in the lower amplitude 
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level is longer. Because the excitation bandwidth employed is fixed in these cases, 

the degree of randomness in the excitation is not changed. Consequently, as 

observed, the frequency of the response amplitude jumps is approximately 

unchanged. However, with lower excitation intensity, it appears that on the 

average, the system response stays longer in the lower amplitude level during each 

visit. In other words, the probability of the system response in the lower amplitude 

level increases as the excitation intensity decreases. Consequently, the response 

inter-domain probability transition is also affected by the excitation intensity. 

Note that, in the amplitude response maps shown in Fig. 3.6, the density of 

the points in the small amplitude as well as the 1/2 and 113 subharmonic response 

region increases as the excitation intensity decreases. Thus variations in the density 

of the amplitude response maps also reflect the influence of variations in excitation 

intensity on the system response. 
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(a) 

(b) 

Fig. 3.5 (a) and (b): system response under varying excitation variance in the 
subharmonic resonance region. Time series of narrowband excitation (top) and 
corresponding response amplitude (bottom). {es = 0.05, a1 = 1, a3 = 0.3, 0Jj =3.6, 
y= 0.01, aj = (a) 157, (b) 125}. 
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(a) (b) 

12.001200 

Fig. 3.6 (a), and (b): Amplitude response maps corresponding to the times series 
shown in Fig. 3.3 (a) and (b), respectively. 

3.2 Predictions of Stochastic Response Behavior and 
Comparisons with Simulations 

To verify the capability of the proposed semi-analytical method in 

characterizing the stochastic system response behavior in the subharmonic 

resonance region described above, analytical predictions of the system response in 

five cases with various excitation parameter sets (see Table 3.1 below) are 

presented and compared to simulation results. 
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Case (i) (ii) (iii) (iv) (v) 

r 0.001 0.005 0.01 0.05 0.01 

7 
o( 157 125 

Table 3.1 Excitation parameters of the system varied in the subharmonic resonance 
region. Excitation frequency mr = 3.6, and system parameters Cs = 0.05, a] = 1, a3 

= 0.3 are held constant. 

The system damping, linear and nonlinear restoring force parameters, Cs, a] 

and a3, respectively, as well as the excitation frequency mr are held constant for all 

five cases. For completeness, the domain boundaries of each response attractor are 

listed here: lower boundary oflarge harmonic domain, AlL = 1.4, upper boundary of 

small harmonic domain, A2U = 33.3, upper boundary of 112 subharmonic domain, 

A3l! = 23, lower boundary of 112 subharmonic domain, A3L = 6.4, upper boundary of 

113 subharmonic domain, Am = 12, and lower boundary of 1/3 subharmonic 

domain, A'/L = 2.2. 

3.2.1 Effect of varying excitation randomness on inter-domain transitions 

The system response behavior under varying degree of excitation 

randomness, y, with constant excitation intensity, aJ, is investigated in this section. 

The normalized auto-correlation, p' = Ipl/0/, and the cross-correlation coefficients 

of the cosine and sine components A'=IAI/aj, of the excitation envelop process 

with time lag equal to the central excitation period (Ochi, 1990), the inter-domain 
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probability transition matrices K, and the normalized eigenvectors corresponding to 

the unit eigenvalues for four values of yare listed in Table 3.2. 

Observe that p' decreases and A' increases as the excitation bandwidth 

parameter y increases. Thus, the randomness in the excitation amplitude cosine and 

sine component processes increases with bandwidth as expected. As a result, the 

randomness in the excitation amplitude and phase angle processes increases with 

excitation bandwidth. 

In the transition matrix K, decreasing values of diagonal elements with 

increasing excitation randomness indicate increasing probability of the response 

exiting from the current attraction domain. The off-diagonal elements, except the 

zero entries and P4J(411), increase at different rates with increasing degree of 

excitation randomness, indicating that the probability of a given attraction domain 

becomes the destination domain of a transition from another domain increases as 

the degree of excitation randomness increases. In the last column of Table 3.2, the 

probability of the response being in the large amplitude harmonic domain pJ(D,), 

increases with increasing y, confirming the observation that the time spend in the 

region of large amplitude response increase with increasing randomness. Although 

the values of the probability are of an order of magnitude smaller, the same trend 

can be said of the 112 subharmonic response. Contrarily, the probability the 

response staying in the small amplitude domain decreases as y increases. The 

probability of the response staying in the 113 subharmonic domain varies little with 

changing r Thus, the trends of variation in the Pd(DJ) observed in Table 3.2 agree 
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with the stochastic response behavior observed earlier, hence, validating the inter-

domain transition assumption of the proposed semi-analytical procedure. 

Case r p A,' Transition Matrix, K 
Normalized 
Eigenvector 

(i) 0.001 0.999 0.00011 

lQ9977 0..0.0.14 0..0.0.14 0. ~ 
0.0005 0.9986 0.0116 0.D38 

0.000 I 0 0.9802 0.000 

0.0015 0 0.0068 0.960 

r(~)} r91P2(~) 0.58 

P3([),,) 0.001 

P4(D4) 0.01 

(ii) 0.005 0.996 0.00056 

lo..9959 0..0.0.31 Qo.0.39 0. ~ 
0.00060.9969 0.0143 0.074 

0.0004 0 0.9566 0.009 

0.0031 0 0.0252 0.961 

r~)l r2~P2(~) 0.547 

P3([)") 0.00 

P4(D4) 0.01 

(iii) 0.010 0.992 0.00112 

lD.9949 0..0.0.31 0..0.0.63 0. ~ 
0.0008 0.9956 0.0195 0.094 

0.0017 0 0.939 0.021 

0.0026 0 0.0352 0.883 

r~)} r6~P2(~) _ 0.50 

P3([),,) 0.01 

P4(D4) 0.01 

(iv) 0.050 0.958 0.00549 

rQ9935 Qo.0.97 0.0.183 0. ~ 
0.00 I 0.9903 0.0389 0.153 

0.0047 0 0.8679 0.084 

0.0008 0 0.0749 0.762 

r~)} ro.~P2(~) 0.352 

P3([),,) 0.02 

P4(D4) 0.011 

Table 3.2 Effects of varying excitation bandwidth on response inter-domain 
probability transition in the subharmonic resonance region. 

3.2.2 Effect of varying excitation randomness on intra-domain transition 

To investigate the influence of varying excitation randomness on the 

response intra-domain transition behavior, the corresponding variance a/ of the 

response amplitude PDF within each attraction domain D/ (d=I,2,3,4) is 

calculated from peR ID/). The results obtained for cases (i) to (iv) are tabulated 

in Table 3.3. The predicted O'D/ increases with increasing excitation bandwidth in 

all the four co-existing attraction domains, which is in accordance with the 
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response behavior observed earlier in Fig 3.3. In addition, aD/ 0=1,2,3,4) varies 

with attraction domains, reflecting the domain dependency of the system response 

characteristics, validating the proposed semi-analytical method in characterizing 

the stochastic response behavior under varying excitation bandwidth. 

Variance aD/ of Response Amplitude within Attraction Domain 

Case (i) (ii) (iii) (iv) 

r 0.001 0.005 0.010 0.050 

) 

aD( 0.0883 0.1623 0.2370 1.8192 

2
aD2 0.4738 0.5364 0.9796 2.1156 

2
aD3 0.4489 0.6716 0.8203 1.6155 

7 
aD.( 0.0397 0.1100 0.1885 0.8431 

Table 3.3 Effects of varying excitation bandwidth on the variance of the response 
amplitude within the co-existing attraction domains DD/ 0=1,2,3,4), respectively, 
in the subharmonic resonance region. 

3.2.3 Effect of varying excitation intensity on inter-domain transition 

The effects of varying excitation intensity (i.e., variance a/) on the system 

response behavior are investigated in cases (iii) and (v). For these two cases, the 

values of the normalized parameters p' and IL " inter-domain probability transition 

matrix K, and the normalized eigenvectors corresponding to the unit eigenvalues 

are listed in Table 3.4. 
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Case 
)

a-i 
, 

p /t' Transition Matrix, K Normalized 
Eigenvector 

(iii) 157 0.992 0.00112 

l0.9949 0.0.031 0.0.063 0 ~ 
0.0008 0.9956 0.0195 0.094 

0.0017 0 0.939 0.021 

0.0026 0 0.0352 0.883 

rq 

») r6~P2(~) 0.50 

P1(D,) om 
P4(D4) 0.01 

(v) 125 0.997 0.00113 

lO.9936 0.0021 0.0040 0. ~ 
0.00\0 0.9979 0.0\38 0.089 

0.0015 0 0.946 0.0155 

0.0039 0 0.0362 0.8951 
rq 

») f4 

1P2(~) 0.73 

Pl(D,) om 
P4(D4) om 

Table 3.4 Effects of varying excitation variance on response inter-domain transition 
probability in the subharmonic resonance region. 

As shown in the table, the normalized excitation parameters p' and /t' (with 

respect to variance a-/) remain practically constant when the excitation variance a-/ 

decreases from 157 to 125, confirming that randomness in the excitation is not 

affected by variations in the excitation intensity. In the transition matrix, K, the 

complexity of the transition behavior is reflected by variations in the off-diagonal 

elements. Under response inter-domain transitions, trends of variation in the 

probabilities that the response in the higher and lower amplitude levels are 

accurately predicted as shown in the last column of Table 4. That is, p,(D,) 

decreases but J:p;(D;} (i=2,3,4) increases with decreasing excitation variance a-j. 

This result agrees with the response characteristics observed in a previous section. 
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3.2.4 Effect of varying excitation randomness on response amplitude 
probability density function 

As the degree of excitation randomness (i.e., bandwidth parameter r) 

Increases (cases (i) through (iv)), Fig. 3.7 shows that the response amplitude 

probability mass in the high level region increases in accordance with the response 

behavior observed earlier. In case (iv), although the simulation appear to show 

only a single mode located in the high amplitude level region in the probability 

distribution, the long tail of the distribution in the lower amplitude level indicates 

the existence of a less obvious mode in that region. The less consistent match in 

the results of case (iv) in the lower amplitude level is probably due to insufficient 

samples in that region. The comparisons of predictions with simulations for four 

cases are shown in Fig. 3.8. Note that the semi-analytical method clearly predicts 

the decreasing probability mass in the small amplitude region and the increasing 

probability at, and spreading of, the large amplitude response region. The predicted 

quantitative values match quite well with simulation results also. 
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Fig 3.7 Variations in the response amplitude probability distribution under varying 
excitation bandwidth in the subharmonic resonance region, (a) simulation, (b) 
prediction. 
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Fig 3.8 Variations in the response amplitude probability distribution under varying 
excitation bandwidth in the subharmonic resonance region, (a) case(i), (b) case(ii), 
(c) case(iii), (d) case(iv). 
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3.2.5 Effects of varying excitation intensity on response amplitude probability 
distribution 

Fig. 3.9 shows that as the excitation variance decreases from 157 (case (iii» 

to 125 (case (v», the probability mass in the large amplitude response region 

decreases in accordance with the response behavior described earlier. This trend is 

captured by the proposed semi-analytical procedure. 
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Fig 3.9 Variations in the response amplitude probability distribution under varying 
excitation variance in the subharmonic resonance region, (a) simulation, (b) 
prediction. 
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3.3 Comparisons With Existing Analytical Methods 

3.3.1 Stochastic averaging method 

Using the method of stochastic averagmg, Davis and Liu (1990) and 

Koliopulos and Bishop (1993) derived the form of the response amplitude PDF 

(3.1) 

Sf' G, ? were, y =-'a,)
R-, 8=_r_ (3.2)h 8=-- 17 =-', (Jj - , 

al ai'2ra:' 2ra:' 
R is the response amplitude; sc, aI, and a3 are structural damping, linear stiffness 

and nonlinear stiffness coefficients, respectively; 1. 0Jr, and CT/ are excitation 

bandwidth parameter, central frequency and variance, respectively 

3.3.2 Quasi-harmonic method 

Using the quasi-harmonic method, Koliopulos and Bishop (1993) obtained a 

relationship between the narrowband excitation amplitude A and its corresponding 

response amplitude R 

,8 ?? 16 r 2 2 2 2 ] 32Y +-(l-v-)y- +- L(1-v ) +48 v y =-0, (3.3)
399 

where, scaled parameters y, S and v are defined in Eq.(3.2). The response 

amplitude PDF can be obtained by a probability transformation rule between the 

random variable Band y through the functional relationship defined in Eq.(3.3) 
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(Ochi, 1990). The probability density function of eis obtained as (Koliopulos and 

Bishop, 1993): 

(I
1 -­

p(O) =-e 'I, (3.4) 
17 

Since Eq.(3.3) is a third-degree polynomial equation, for a given e, there may 

exist three real solutions. The real solutions with the smallest and the largest 

magnitudes correspond to the co-existing stable (physically observable) small and 

large amplitude steady-state responses. The real intermediate magnitude solution, 

associated with the unstable steady-state response, is physically unobservable. In 

this case, the probability mass associated with ewill be transferred and distributed 

to the smallest and the largest values of y, respectively, by a ratio K determined by 

the following equation (Dimentberg, 1988; Koliopulos and Bishop, 1993): 

' er 
Ei(x) = -dv (3.5)r00 v 

where emax and emin are the respective upper and lower bounds of ewhich 

corresponds to multiple solutions of Eq.(3.1) 

3.3.3 Comparisons of analytical predictions and simulation results 

The prediction capability of the proposed semi-analytical method and the 

stochastic averaging method presented by Davies and Liu (1990) and the quasi-

harmonic method presented by Koliopulos and Bishop (1993) is examined in this 
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section. In particular, the response amplitude PDF predicted by these methods for 

two specific excitation bandwidths selected by Koliopulos and Bishop (1993) are 

compared. In both cases, (a) and (b), the system and excitation parameters are: {Cs 

= 0.16, aj = 1, a3 = 0.3, wr =2, r = 0.01, <J/ = 3.05}, whereas, the excitation 

bandwidth parameter are r = 0.02 and r = 0.08, respectively. Note that 

corresponding to these system and excitation parameters, the scaled parameters 

employed in the stochastic averaging and the quasi-harmonic methods are {v=2, 

8=0.08, c=yI(2-Yal)=0.01, lFO.91} and {v=2, 8=0.08, c=0.04, lFO.91}, 

respectively. 

Prediction results of the semi-analytical, stochastic averagmg and quasl­

harmonic methods are shown in Fig. 3.10(a and b). Comparisons are also made 

with the response amplitude histogram obtained from simulations. Note that in 

each case, while all three methods predict the trends, the semi-analytical method 

developed in this study match simulation results significantly better, especially in 

the small amplitude response region. 

http:c=yI(2-Yal)=0.01
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Fig. 3.10 Response amplitude histogram and probability distributions predicted by 
the semi-analytical (SE-AN), quasi-harmonic (Q-H) and stochastic averaging (ST­
AV) methods, respectively. {Cs=0.16,a/= I,a3 =0.3, wr=2, y=O.Ol, cr/ = 
3.0S}. (a) y= 0.02, and (b) y= 0.08. 
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4. STOCHASTIC ANALYSIS OF A MOORED OCEAN SYSTEM 

4.1 Description of Moored Ocean System 

An experiment has been performed at the o. H. Hinsdale Wave Research 

Laboratory at Oregon State University on a submerged mUlti-point moored ocean 

system under wave excitation. The experimental model consists of a 45.72 cm 

diameter PVC spherical rigid body with a 2.54 cm square rod through the center of 

the sphere, restricting its motion to surge (along the direction of the exciting waves) 

only. The rod is rigidly supported 1.83 m above the bottom of the wave channel by 

guyed masts. The sphere is neutrally buoyant when submerged. Linear springs are 

attached to the sphere, providing a nonlinear restoring force due to large geometry 

(see Fig. 4.1). 

ROD 

mq~ ~ 
WAVES 

ROD 

SPRING 

(a) Plan View 

Fig. 4.1 Experimental model 
excited structural system. 

of a 

(b) Profile View 

submerged, hydrodynamically damped and 
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Steady-state system responses under deterministic wave excitations over a 

wide range of wave frequencies are examined first. Periodic wave excitations with 

sufficiently long duration are applied to the moored system to achieve steady-state 

responses. Superharmonic, primary and subharmonic resonance responses are 

observed around regions with wave frequency centralized at 0.14 Hz, 0.27 Hz and 

0.50 Hz, respectively (Fig. 4.2). Notice that while the primary resonance is clearly 

demonstrated, the superharmonic and subharmonic resonance regions are indicated 

by relatively small humps. In the subharmonic resonance region, the sphere 

oscillates at a period near twice that of the excitation, indicating the responses are 

112 subharmonics. Dashed lines in the figure show the estimated stability 

boundaries of the corresponding superharmonic, pnmary and subharmonic 

resonance regions (Yim and Lin, 2000). 
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In this study, we are interested in examining the transition behaviors between 

subharmonic and harmonic system responses. For this purpose, narrowband-

random excitations with dominant frequencies centered around 0.5 Hz (the 

subharmonic resonance region) will be employed. Corresponding experimental 

tests of the moored ocean system will also be examined and used to calibrate 

analytical predictions and simulation results. 

4.2 Analytical Model 

The general form of equation of motion can be described mathematically as 

mx(t) + C~x(t) + R(x(t)) = f(t) (4.1) 

where, m = mass, Cs = damping coefficient, R(x(t)) = restoring force, and f(t) = 

external excitation forcing. For the moored sphere model, in addition to the 

hydrodynamic inertia and drag forces, nonlinear structural (restoring) force and 

nonlinear damping force (NSND) are also included. The nonlinear equation of 

motion for the NSND model is given by 

where 

D 
3 2

f(t) = p ~ ClI/u(t) + jL'" : D u(t)lu(t)I, 
(4.3)

cosh(ks)
u(t) = aOJ . cos(kx(t) - OJt)

smh(kh) 
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rna = added mass, Cd = hydrodynamic drag coefficient, Cm = hydrodynamic inertia 

coefficient, Cs = linear damping coefficient, Cd' = nonlinear structural damping 

coefficient, p = water density, and D = diameter of the sphere. Linear wave theory 

is used for the horizontal water particle velocity, u(t}. 

For modeling of the structural system using the NSND model, the coefficients 

of the governing equation of motion should be determined accurately. System 

identification technique developed in a previous study by Narayanan (1999) is used 

to determine the coefficients. It is shown that the system response resulting from 

predictions using the coefficients determined by Narayanan's system identification 

technique match the experimental results accurately. 

4.3 Amplitude Jump Phenomena 

A typical nonlinear response behavior, the amplitude jump phenomenon, 

which is observed in both analytical analysis and experiment, can be explained by 

the response amplitude curve. The amplitude jumps occur when the excitation 

amplitude gradually drifts out of attraction domain boundaries. This (jump) 

phenomenon is defined as an inter-domain transition. For the specific set of system 

parameters, rn = 3.428, Ca = 0.25, ~ = 0.06, C/ = 0.02, Cm = 1.25, Cd= 0.1, al = 9.3, 

U2 = 4.0, U3 = 4.0, three different attraction domains are found over the region of 

excitation amplitudes and frequencies considered. The nonlinear system response 

dependency on initial conditions is shown in Fig. 4.3. For trajectories with initial 

displacements and velocities high-lighted in Fig. 4.3(a), the steady-state responses 
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result in 112 subharmonics. On the other hand, if the initial conditions belong to the 

regions high-lighted in Fig. 4.3(b), the resulting steady-state responses are large 

amplitude harmonics. The time series shown in Fig. 4.4 demonstrate the amplitude 

jump phenomenon from the small amplitude harmonic attraction domain to the 

large amplitude harmonic domain when excitation amplitudes increased from 2.26 

to 2.27. The system initially is subjected to deterministic excitation with amplitude 

A = 2.26 until the system response amplitude stabilizes at 1.8. The "steady-state" 

response shows the small amplitude harmonic response having the same frequency 

as the excitation. Then, the excitation amplitude is increased from A=2.26 to 

A=2.27 at time = 600 sec. For such a small increase in amplitude, it is observed 

that the steady-state response amplitude is increased about three times in 

magnitude. The response amplitude curves shown in Fig. 4.5 are the steady-state 

response amplitudes under deterministic excitation obtained by numerical 

integration of the equation of motion. 
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Fig. 4.5 Response amplitude curve {m=3.428, Ca=0.25, ;=0.06, C/=0.02, 
C,n=1.25, Cr O.1, a,=9.3, a2=4.0, a3=4.0}. 

Transitions among different domains depend on the attraction domains that the 

system response belongs to at the moment of excitation variation. For example, as 

the excitation amplitude slowly decreases from A2U < A < AIU to AlL < A < A2U, 

the occurrence of jump phenomenon depends on the current attraction domain the 

response belongs to. If the system response belongs to the large amplitude domain 

(D3), amplitude jump will not occur. When the small amplitude domain CD,), is the 

current attraction domain, transition from D, to 1/2 subharmonic domain CD2), will 

occur. With infinitesimal variations in excitation amplitude, jumps from D3 to D" 

http:C,n=1.25
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and from D3 to DI cannot occur. Schematic diagram of transitions that can occur 

among domains are shown in Fig. 4.6. 

CLARGE~ 
~---

112 SUBHARMONIC 

Fig. 4.6 Schematic diagram of system response transitions among D I, D 2, D3 . 

For the gradual excitation amplitude variation within an attraction domain, 

response amplitude varies along the response amplitude curve. When the 

excitation amplitudes are increased from °to beyond the small amplitude harmonic 

domain upper boundary All!, transitions occur from DI to D2 and D2 to DI and DI to 

D3. On the other hand, for the excitation amplitude decreasing from A > AlU to 0, 

responses undergo the transitions from D3 to D2 and D2 to DI. Transitions and 

variations of system response amplitudes with increasing and decreasing excitation 

amplitude are shown in Fig. 4.7. 
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Fig. 4.7 Transitions and variations of system response amplitude along the 
response amplitude curves. 

For stochastic excitation model with the finite variation III excitation 

amplitude, response amplitude curves become response amplitude map where 

groups of data points indicating existence of corresponding attraction domains. 

Schematic diagram of response amplitude transitions with finite excitation 

amplitude variation is shown in Fig. 4.8. Notice that transitions from D3 to D/ and 

D2 to D3 are assumed to occur even though the occurrences of those transitions are 

highly unlike. The dashed lines (Fig. 4.8) indicate the transitions considered to 

occur with finite excitation amplitude variations. 
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Fig. 4.8 Schematic diagram of system response transitions under infinitesmal ~ 
and finite (--~) excitation amplitude variations among D/, D2 and D3 

4.4 Stochastic Excitation Parameters 

Excitation forces on ocean structures under random wave fields are often 

modeled as narrowband random processes. In addition, to study the transitions of 

system responses among competing attractors over a narrow range of excitation 

frequency, the narrowband random process is employed to model the wave 

excitation. As shown in an earlier section, a narrowband Gaussian random 

excitation process,f(t}, is written as 

f(t) = A(t) cos{w / + c(t)} (4.3) 

The four dimensional joint probability density function of the random variables 

representing the excitation amplitudes and phase angles corresponding to 

consecutive excitation cycles, i.e., A(/), A(2), II) and 12
), is given by 
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(4.4) 

where 

P = rS II (W)COS[(W - Wf }r}fw 

A = rSlf(w)sin[(w-wl }r}fw 
~ = O'f 4 _ p2 _ A2 

(4.5) 

with superscripts (1) and (2) indicating that the quantities are in the current and the 

next excitation cycles, respectively; SJiw) is the one-sided spectral density function 

of{(t), and T is the excitation period equal to 27l10Jj. The spectral density function 

of a time series are usually obtained numerically using a standard data analysis 

procedure. (A typical example of a time series and its spectral density are shown in 

Figs.4.9(a) and (b), respectively.) All stochastic parameters of the excitation 

random process can be obtained from the spectral density of the time series. By 

introducing a random variable ([J to represent the phase angle difference ¢f2) -¢fl), 

the joint PDF of A(l), A(2) and ([J can be obtained from Eq.(4) by the transformation 

of the random variables 

p(A(I) , A (2) ,([J) 

= A(I) A(2) exp{~~ 2 [(A(I) Y+ (A(2) y]_ 2A(I) A(2) [pcoS(([J) + ASin(([J)]}} (4.6)
27rM 2M t 
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In addition, the joint PDF of A(l) and A(2) can be obtained by integrating 

Eq.(4.4) with respect to rj/I) and rj/2). 
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Fig. 4.9 Experimental excitation: (a) wave profile (b) wave spectra. 
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4.5 Inter-domain Transitions 

When the stochastic excitation is applied to the system, excitation amplitude, 

frequency and phase keep varying slowly from cycle to cycle. Due to the gradual 

variations in the excitation parameters, the system response undergoes transition 

from one attraction domain to another attraction domain. To describe these 

transitions between different attraction domains a probability distribution IS 

employed. The governing equation for inter-domain transition is given by 

(4.8) 


where, K is the transition matrix whose dimension is n x n (n = the number of co­

existing attraction domains = 3), and superscripts (1), (2) denote the current and 

next cycles respectively. The element of the transition matrix K in /17 row and.l 

column is a conditional probability, pij(ilij, where i is the attraction domain of the 

next cycle and.i is the attraction domain of the current cycle. These conditional 

probabilities can be evaluated by considering the stochastic behavior of the 

excitation amplitude and system response inter-domain transition behavior. For the 

system response to stay in the same attraction domain, Dd in both current and next 

cycle, the excitation amplitude must remain within same domain, Dl, as in the 

current cycle. The probability of the excitation amplitude being in the domain, D/, 

can be written as 

(AIDA)- peA) A E D II A (4.9)
P d - fj).1 p(A)dA ' 

d 
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where, p(A) is a Rayleigh distribution. Then, the probability distribution of the 

excitation amplitude in the next cycle given that the excitation amplitude is in D/ 

in the current cycle can be expressed as 

(4.1 0) 

Thus, the probability of the system response amplitude remaining in the same 

attraction, Dd, in the next cycle is 

p(R(2) ED II IR(I) E D II) = f .1 p(A(2) IA(I) E D A )d'A(2) (4.11 ) d d J)" d 

The conditional probability given by Eq.( 4.10) is equal to the diagonal 

elements of the inter-domain transition matrix, pdiliJ. The off-diagonal elements 

of K can be determined by considering the transient-state system mean energy, or 

equivalently, the transient-state response amplitude. 

4.5.1 System total energy 

Transient system total energy IS employed to determine the destination 

attraction domain for the case that there exist multiple possible destination domains 

after excitation amplitude exit through one of the domain boundaries. The system 

total energy (TE) is defined as the sum of the potential energy (PE) and the kinetic 

energy (KE). Potential energy and kinetic energy are expressed as a function of the 

response displacement, and a function of the response velocity, respectively. 

Therefore, the system total energy of the NSND moored ocean system model can 

be written (up to a constant) as 
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1 2 1 1 1 4 1 .2
TE=PE+KE=-a1x +-a2 x' +-a,x +-(m+m )x (4.12)

2 3 4' 2 (I 

Three different types of response behavior are shown in Figs.4.1 0, 11, 12. For 

the large amplitude response and 112 subharmonic response in Fig. 4.1 O. and Fig 

4.12., respectively, the system is subjected to excitation forces with identical 

frequencies and amplitudes. The difference in system response behavior is caused 

by the initial condition dependency of the nonlinear system. It is observed that the 

magnitudes of the total energy in those two responses are significantly different. 

On the other hand, as shown in Figs.4.11 and 12, it is observed that the total energy 

of the small amplitude harmonic and 112 subharmonic response overlaps for 

increasing excitation amplitude. These observations imply that when the excitation 

amplitude exit through the upper boundary of 112 subharmonic domain, it is 

impossible for the system response to jump up to the large amplitude harmonic 

domain because of the large gap in the system total energy even though the input 

energy increases as the excitation amplitude increases. In addition, when the 

excitation amplitude increased from 0.5 to 0.95, there exist two possible destination 

domains, i.e., large amplitude domain, and 1/2 subharmonic domain. However, the 

total energy of the small amplitude harmonic response overlaps that of 112 

subharmonic response while there is a large difference between small and large 

amplitude harmonic response. Thus, in this case, the destination domain would be 

the 112 subharmonic domain. 

http:Figs.4.11
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Fig. 4.10 Time series and total energy of large amplitude harmonic response. 
{m=3.428, Ca=0.25, ';=0.06, Cd'=0.02, Cm=1.25, CrO.I, aj=9.3, a2=4.0, a3=4.0, 
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Fig. 4.11 Time series and total energy of small amplitude harmonic response. 
{m=3.428, C(/=0.25, ';=0.06, Cd'=0.02, Cm=1.25, Cr O.1, a,=9.3, a2=4.0, a3=4.0, 
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4.5.2 System energy level 

The system energy level in a transient state can be also used to determine the 

destination domain when the excitation amplitude varies out of the attraction 

domain boundaries. The system energy level can be represented by the system 

mean energy, which is defined as the averaged system total energy over one 

excitation cycle (Shi, 1998). 

At the 1/2 subharmonic domain lower boundary (one of the boundaries of the 

small amplitude harmonic domain), the possible destination domains are the large 

amplitude harmonic domain and the 1/2 sub harmonic domain. When the excitation 

amplitude increases from A=0.5 to 0.95, the small amplitude harmonic domain 

evolves into either the 112 subharrnonic or large amplitude harmonic domains. The 

relationship among the system mean energies of a typical responses in the 112 

subharmonic and large amplitude harmonic domains at A=0.95 shown in Fig. 

4.13(a) and 4.13(b) are examined. For time t greater than 30 seconds, all three 

different types of system response are close to steady state. It is found that the 

system mean energy of a typical response in the small amplitude harmonic domain 

is less than that in the 112 subharmonic response (Fig. 4.13a). On the other hand, it 

is observed that the system mean energy in the large harmonic domain is much 

greater than that of the steady-state small amplitude harmonic response. The 

system mean energy level of the 1/2 subharmonic response is found to lie between 

those of the small and large amplitude harmonic responses. 
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Fig. 4.13 Mean energy level of the system response. (a) small amplitude harmonic 
and 112 subharmonic domains. (b) small and large amplitude harmonic domains. 
{m=3.428, Ca=0.25, q=0.06, Cd'=0.02, Cm=1.25, Cd=O.1, aj=9.3, a2=4.0, a3=4.0}, 
(x(O),dx/dt(O))={ (0.0, 0.0) (small amplitude harmonic, and 112 subharmonic 
responses), (4.0, 1.0) (large amplitude harmonic response)}, {a=0.95 (large 
amplitude harmonic, and 112 subharmonic responses), 0.5 (small amplitude 
harmonic response)}. 
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Thus, with the excitation amplitude range of (0.5, 1.5) during the inter-

domain transition, a jump from small amplitude harmonic response to large 

amplitude harmonic response is highly unlikely. This confirms that the 

characteristics of inter-domain transition at lower boundary of the 112 sub harmonic 

domain described by using the system mean energy level is in good agreement with 

that obtained by employing the system total energy. 

Considering the system mean energy level of typical responses in competing 

domains around domain boundaries, all the elements of inter-domain probability 

transition matrix K can be evaluated. The detailed description of evaluation of 

inter-domain probability matrix K is provided in Appendix B. 

4.6 Intra-domain Transitions 

In addition to the inter-domain transition of the system response, the system 

response also undergoes successive transient-state within the attraction domain as 

the excitation parameter varies within an excitation amplitude domain. These 

transitions within attraction domains are defined as intra-domain transitions. As 

shown in an earlier section, the governing equation of the response amplitude 

probability intra-domain transition can be written as 

p(R(2) ID/) =JvlJ p(R(2) I R(I) ,A(I) ,A(2) ,D/)p(R(I) I(D/)~»)dR(I) Jp(A(I) ID/)dA(I)} 

p(A(2) I D/)dA(2) 

(4.13) 

(4.14) 
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To numerically evaluate the intra-domain transition probability, the response 

amplitude domains {(D/)/z), z=i,2}, the system initial condition XO domain, the 

excitation phase angle difference cP domain, and the excitation amplitude domain 

D/ are discretized. The initial condition is assumed to be uniformly distributed 

over the domain, which is the phase trajectory of the current excitation cycle. 

Then, the first term on the right-hand-side of Eq.(4.l5) can be evaluated by the 

following equation 

(R(2) I R(I) A(I) A(2) D R)
P k I' I ' , ' d 

<P1'+/J<P12 (A(I) A(2) cP) (4 16) 
= (cP X" IR(I) A(I) A(2) DR) = _1_ f p .i' i' dcP . 

P 1" I' I' I ' , ' d (A(I) A(2)) 
mx <Pp-/J<P12 P j' , 

where, my is the total number of intervals of initial condition XO. and the subscripts 

indicate sample points of the corresponding discretized random variables. The 

probability vector of the response amplitude p(R(2) I R/i), A/J, AF), D/) can be 

obtained by varying r11) and X/ over the entire respective domains and lumping all 

p(RP) I R//), Ai(/)' AFJ. D/). Then, the discrete form of Eq.( 4.13-15) can be used 

to determine the intra-domain transition probability vectors as following. 

p(R(2) I(D/)~2)) = 'Ip(R(2) IA;I) ,Ai(2) ,D/)p(A;I) ID/) (4.18) 
/=1· . 

http:Eq.(4.l5
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p(R(2) ID/) = 'I,p(R(2) I(D/)~»)p(A?) ID/) (4.20) 
i~1 

where, rnR and rnA is the number of intervals in the discretized (D/)/l) domain and 

excitation amplitude domain, respectively. The probability of the excitation 

amplitude of the next cycle being in domain Dl can be computed by 

A,,+I1AI2 

p(A,;Z) ID/) = f peA ID/)dA, n =1,2, . .. ,rnA' Z =1,2 (4.21) 
A,,-M/2 

Thus, the overall stationary response amplitude PDF can be approximated as 

111./ 

p(R(I») =p(R(2») =LP(R(I) I D/)p(D
d

) ( 4.22) 
i~1 

4.7 Prediction, Experimental Results, and Simulation 

To validate the prediction capability of the semi-analytical method, predicted 

response amplitude PDFs are presented and compared to experimental and 

numerical simulation results. The durations of experiments were sufficiently long 

to achieve stationarity, however, data were recorded only for short period of time 

due to limited storage capacity and large number of cases considered. Since long 

duration of simulations are relatively easy to obtain, and may provide better "data 

set" for calibrating of the semi-analytical method, simulation results were 

performed for 25000 excitation cycles. The experimental tests were conducted 

with several distinct configurations for single-degree-of-freedom (SDOF) and 

multi-degree-of-freedom systems. In this study, experimental results from tests 

D 16, D 1 7 and D 18 are selected for comparison with predictions. In these tests, 
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narrowband excitations are used as input to SDOF system with large sphere, 90° 

mooring lines configuration, which exhibit highly nonlinear behavior among 

several different configurations. "Tests" DIS and D 19 are generated numerically 

using the Shinozuka formulation in numerical simulation of narrowband wave with 

target variances of Test DIS and 19 about one-half times that of Test D 16 and two 

time that of Test D 18, respectively. These two different target variances are 

selected to examine the influence of the variance on the accuracy in predicting 

response amplitude probability. The excitation and system parameter sets are 

shown in Table 4.1. Note that p is the auto-correlation ofthe cosine components of 

the excitation envelope process with time lag equal to the peak excitation period 

(Ochi, 1990). 

Test DIS D16 D17 D18 D19 

System Parameters Cs= 0.76 a/=9.3 a2=4.0 a3=4.0 

Excitation Parameters, Eq.(5) 

oJ( 7t 

2 ar 0.0675 0.1434 0.2178 0.2210 0.4050 

p 0.0206 0.0344 0.0632 0.0634 0.1236 

M 0.0041 0.0194 0.0434 0.0448 0.1488 

Table.4.1 Parameters of narrowband excitation on SDOF, 90° configuration. 
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The probability of the system response being in one attraction domain 

through inter-domain transitions and corresponding transition probability matrix, K 

are listed in Table 4.2. Subscripts 1, 2, and 3 represent the small harmonic domain, 

112 subharmonic domain, and large harmonic domain, respectively. 

Test 
)

at Transition Matrix, K Normalized Eigenvector 

DIS 0.0675 
l0954 

0.911 
0. 

88910.046 0.089 0.074 

l.601 0.000 0.038 

r(D,)} r52}
P2(D2) = 0.048 

p,(D,) 0.000 

D16 0.1434 
l0790 

0.768 
0. 

72010.210 0.232 0.123 

0.000 0.000 0.158 

r(D,)} r85}
P2(D2 ) = 0.215 

p, (D,) 0.000 

D17 0.2178 
lO.701 

0.689 
0. 

56710.299 0.311 0.136 

0.000 0.000 0.297 

r(D,)} r97}
P2(D2) = 0.303 

p,(D,) 0.000 

D18 0.2210 
lO.698 

0.688 
0.5 

6310.302 0.312 0.136 

0.000 0.000 0.300 

r(D,)} r95}
P2(D2) = 0.305 

p, (D?,) 0.000 

D19 0.4050 
l0665 

0.664 
0. 

37510.333 0.334 0.119 

0.002 0.002 0.506 

r(D,)} r64}P2(D2) = 0.332 

p, (D,) 0.004 

Table.4.2 Inter-domain transition probability in the subharmonic resonance region. 

Observe that when the excitation intensity, I.e., vanance, Increases, the 

excitation amplitudes become large and the excitation amplitude probability 
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distribution is shifted to right. As the excitation amplitude increases from Test DIS 

to D19, the probability that the system response staying in the small amplitude 

domain decreases. Thus, the value ofPll(JI]} in the transition matrix K decreases 

while both P22(212) and P33(313) increases. 

The overall response amplitude PDFs obtained by Eq. (4.22), numerical 

simulation results, and experimental results are presented in Fig. 4.10 for the five 

cases examined. It can be observed that, in each case, predictions obtained from 

the analytical procedure accurately match both the experimental and simulation 

results. 
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Fig. 4.14 Overall response amplitude distribution: (a) Test D15 (b) Test D16. 
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Fig. 4.14 Overall response amplitude distribution (continued) : (c) Test D 17 (d) 
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5. SUMMARY AND CONCLUDING REMARKS 


5.1 Summary 

The behaviors of two nonlinear dynamical systems subjected to narrowband 

random excitations are investigated in this study. For convenience of development 

of the probabilistic analysis procedure, a simple (Duffing) system with nonlinearity 

limited to the restoring force only is first examined. With the knowledge gained 

from the analysis of the Duffing system, the resulting probabilistic analysis 

procedure is modified and applied to analyze the stochastic behavior of a nonlinear 

ocean system under random wave excitation. The analytical model of the ocean 

system is derived from a multi-point mooring system experiment conducted at the 

O.H. Hinsdale Wave Research Laboratory at Oregon State University. The system 

is modeled as a nonlinear structure (with a third order polynomial restoring force) 

with nonlinear damping (hydrodynamic drag force) (NSND). The system 

coefficients are obtained from a nonlinear system-identification technique 

developed by Narayanan (1999). 

The formulation of the analysis method is described and validated by 

numerical simulation. The analysis method is applied to investigate the complex 

system response behavior among co-existing attractors in the sub harmonic 

resonance regIOn. The system response is considered as in a transient-state due to 

the successive variations in the excitation parameters, and transitions among co­

existing attractor are model as inter-domain transitions. The probability of 
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response amplitude being in a particular attraction domain given that it belongs to 

some other domains in the current excitation cycle is evaluated and the transition 

probability matrix K is obtained. By solving the associated eigenvalue problem, 

the time-invariant steady-state probability is then obtained. 

In addition to inter-domain transitions, variations of the response amplitude 

within an attraction domain take place as the excitation parameter varies. These 

variations are considered intra-domain transitions. The intra-domain transition 

probability is obtained by considering the characteristic response behavior under 

deterministic excitation and the functional relationship between excitation 

parameter and response amplitude. Because the form of this functional relationship 

is quite complex and an analytical expression is not available, a numerical 

technique is developed and employed to compute the intra-domain transition 

probability. 

For the Duffing system, numerical simulations are performed to validate the 

capability and accuracy of the semi-analytical method in predicting the response 

amplitude probability density function. The effects of varying excitation 

bandwidth and variance on the response amplitude probability distribution are also 

investigated. 

For the NSND model, the response amplitude probability distribution is 

predicted by the semi-analytical method with stochastic excitation parameters 

obtained from the corresponding measured experimental results. Predictions are 
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compared with the experimental and simulation results to confirm the validity of 

semi-analytical method. 

5.2 Concluding Remarks 

The assumption that the nonlinear system response characteristics under 

deterministic excitations are preserved under narrowband excitation environment 

has been confirmed via simulations and predictions for the Duffing System, and 

simulations, predictions as well as experimental results for the moored ocean 

system. Due to the random nature of the narrowband excitation process, excitation 

parameters vary gradually. These slow variations can be approximated by a 

succession of finite discrete changes in the system excitation parameters. Thus, 

transient-state response characteristics are employed to interpret the system 

response behavior under narrowband excitations. 

The stationary probability vector associated with inter-domain transitions can 

be characterized by the excitation amplitUde domain boundaries as well as the 

excitation bandwidth and variance. Note that the locations of the domain 

boundaries are determined by the excitation frequency that is assumed to be the 

dominant frequency of the narrowband process. Thus, the locations of the domain 

boundaries are time invariant. However, when the excitation bandwidth increases, 

variations in the excitation frequency may shift the domain boundaries hence 

significantly affecting the response inter-domain transition behaviors. 
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A significant improvement in the accuracy of predicting response amplitude 

probability distribution is achieved by the semi-analytical method. This is because 

the stochastic nonlinear response behavior under narrowband excitation is 

accurately characterized by the analytical procedure through inter-domain and 

intra-domain transitions. 

F or the NSND model, overlapping of the excitation amplitude domains 

between large amplitude domain and small amplitude domain is observed. 

However, excitation amplitude domains of small amplitude response and 1/2 

subharmonic response do not overlap. As shown in the response amplitude curve, 

there is a discontinuation in the excitation amplitude domain of small amplitude 

response. 

According to the inter-domain transition probabilities, it is observed that the 

steady state probability of response amplitude being in large harmonic attraction 

domain is relatively small compared with those in small amplitude harmonic, and 

112 subharmonic domains for all of the five cases examined. The entries of the 

transition matrix K are related to the stochastic properties of the excitations, and for 

the excitation parameters used to analyze the experiments, the probability of system 

response being in the large amplitude domain is found to be practically negligible. 

Thus, the contribution to the overall response amplitude distribution from the intra­

domain transition probability of large harmonic attraction domain is also negligible. 

Overall response amplitude probability distribution is obtained by combining 

the inter-domain and intra-domain transition probabilities using the Bayesian 
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formulation. As concluded above, the inter-domain transition probability of 

particular domains could be practically zero, and thus their contributions to the 

overall PDF negligible. Hence the inter-domain transition probabilities should be 

first determined to eliminate the need for calculations of intra-domain transition 

probabilities of attraction domains with negligible transition probabilities. 

The predicted response amplitude probability distributions are compared with 

both experimental and simulation results and found to match both results 

accurately. The shape of the probability distribution, and the location of its mode 

and maximum of the response amplitude are in good agreement with experimental 

results. These results validate the capability of the semi-analytical method in 

predicting nonlinear system response under narrowband excitation. 

The response amplitude probability distribution can be obtained from the 

analytical procedure when the stochastic property of excitation amplitude is 

specified. The predicted results for the wide range of excitation parameter can be 

readily used in structural design, control, and other applications without 

simulations. 

Based on the capability and accuracy of the semi-analytical method in 

predicting response amplitude probability distribution for both Duffing system and 

NSND model, it is concluded that the method can be reliably applied to analyze 

these types of nonlinear system responses. 
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5.3 Recommended Future Study 

Predicting the response amplitude probability distribution by the seml­

analytical method takes significant amount of computational efforts compared to 

direct numerical simulations, even though the analytical method takes advantage of 

the stochastic properties of the nonlinear system response. Most of the 

computational time is devoted to obtaining the probability of the response 

amplitude in the next cycle over the entire discretized domains. The computational 

time increases significantly with increasing number of discretized intervals due to 

the lack of an analytical functional relationship between the response amplitude in 

next cycle and excitation amplitude, phase angle difference in both current and next 

cycle and initial conditions. Development of an analytical functional relationship 

will significantly improve the computational efficiency. 

Wave force on a structural system is determined by the Morrison equation 

considering the wavelength and the dimension of the sphere used in experiments. 

However, for large structural systems in relatively shallow water depth, a large­

body (diffraction) theory may be needed to characterize the fluid-structure 

interaction system. Thus, extension of the semi-analytical method to a structural 

system under random excitations using large-body theory modeling is 

recommended for future study. 
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APPENDIX A 

THE SEMI-ANALYTICAL PROCEDURE 

ANAL YSIS OF NONLINEAR SYSTEM BEHA VIORS 

UNDER NARROWBAND STOCHASTIC EXCITATIONS 


I Step 1 I 
System Model 

SDOF system with nonlinear restoring force and/or nonlinear damping 

Step 2A J 
Deterministic Excitation Model 

sinusoidal with constant amplitude A, frequency co and phase 
angle ~ f(t)=Acos(cot+~) I Step 2B 

Stochastic Excitation Model 
narrowband process slowly varying amplitude A (E1) 
slowly varying phase angle <I> (E2) 
spectral density sharply concentrated near central frequency (E3) 
Gaussian process with Rayleigh distributed amplitude and 
uniformly distributed phase angle (E4) 
frequency in each excitation cycle close to central frequency, COf; 

local frequency variations accounted for by phase angle drift (ES) 
stationary Markov excitation amplitude process (E6) 

Step 3A I 
Deterministic System ResQonse Characteristics 

co-existing attraction domains (Sl) 
overlapping response amplitude domains (S2) 
domain dependent response characteristics (S3) 
response inter-domain transitions (S4) 

I Step 3B I 
Stochastic System ResQonse Characteristics 

assume preservation of deterministic nonlinear response characteristics under 

stochastic narrowband excitation environment 

response amplitude process assumed stationary Markov (R1) 

(E 1), (E2) ==>successive transient-state system response (R2) 

(E 1), (S 1), (S4) ==>system response inter-domain transition (R3) 


IContinued A J 
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IContinued A I 

I Step 4 I 
Stochastic Excitation Parameters DescriQtion 

(R2), (R3), (EI), (E2), (E3), (E4) ==> 
p(A(l), A(2), <D = ~(2) _ ~(I» (E7) 
p( A (I), A(2) (ES) 
p(A(2) IA(I» (E9) 

I 

I Step 5 I 
Stochastic ResQonse AmQlitudes DescriQtion 

00 

(Rl) ==>p(R(2» = fp(R(2)IR(I»p(R(I»dR(I) (R4) 
0 

I 


I Step 6 I 
ResQonse AmQlitude Probability Distribution 

(SI), (S2), (S3), (S4), (R2), (R3) ==>p(R(k» = LP(R(k)IDd R)p(Dd R) (RS) 
d 

peR(k) I D d R) = fpeR (k) I (D d R ) A )p( (D d R ) A )d(Dd R ) A (R6) 

I I 

I Step 7A I 
Inter-Domain Transition 

CR1), (R3), (R5), (SI), (S2), (S4), 
(E 1 ), (E5), (E6), (E9) 

=> response amplitude probability 
inter-domain transition (finite) 

=> stationary Markov chain 
=> response amplitude probability 

inter-domain transition: 
p(D(2») = Kp(D(I») (R7) 

or 

{p;(D;(2»)} = [p;/ilj)]{pj(Dj(I»} (RS) 

I Step 7B I 
Intra-Domain Transition 

(Rl), (R2), (R4), (R6), (SI), (S2), (S3), 
(El), (E2), (E5), (E6), (E7), (E8), (E9) 
=> response amplitude probability 

intra-domain transition 
(continuous) 


=> stationary Markov process 

=> response amplitude probability 


intra-domain transition: 
peR (2) I A (I) ,A (2) ,D/) = 

fpeR (2) I R (I) ,A(I) ,A (2) , D / ) . (R9) 
D/ 

p(R(J) I (DdR)/»dR(I) 

I I 

I Continued B Continued C I I I 
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Continued B Continued C I I I I 

1 I 

I Step SA I I Step SB I 
Transition Matrix K Evaluation 

(R 7), (R8), (R 18), (S 1), (S4), 
(ES), (E9) ==> Pij(iU) (RIO) 

Transition Probability Evaluation 

(R9) ==> 


p(R(2)I(D/)/2)) = J(R9)p(A(l)ID A)dA(1)

d 

o A 
d 

(Rll) 

(R6), (R9), (Rll) ==> p(R(2) IDl) (R12) 

I

I Step 9A I I Step 9B I 
Invariant 12robability vector 

(RIO) ==> 
P(Dd) = p(Dl) = p(D/) = 
normalized eigenvector of K 
corresponding to unit eigenvalue 

(RI9) 

Functional relationship of response amplitude 
(R2), (S3) ==> domain dependent response 
characteristics (R13) 
R(2) = g(R(I), A(l), A(2), <1>, XO) (RI4) 
or R(2) = g(<1>,XO) given R(\), A(1), A(2) 

(RlS) 
I 

I Step 10 J 
Res120nse Am12litude Probability (R9) Evaluation 

* discretization of (Dl)A, D/, <1>, XO domains (RI6) 
* numerical evaluation of (RlS) by direct integration of governing equation 

(RI7) 
* (E7), (E8) ==> calculate occurrence probability ofR(2) obtained in (RI7) 

and then lump calculated probability mass into corresponding interval in 
discretized (Dl)Ao (RlS) 

I 


I 

I Step 11 I 

Overall Stationary Res120nse Am12litude Probability Distribution 

(RS), (R6), (RI8), (RI9) ==> 

peR) = LP(RIDd R)p(D/) (R20) 
d 
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APPENDIXB 


EVALUATION OF INTER-DOMAIN 

PROBABILITY TRANSITION MATRIX 


B.1 Diagonal elements 

In the subharmonic resonance region, three attraction domains co-exist as 

explained in Chapter 4 for the particular NSND system coefficients and excitation 

parameter considered. The conditional probabilities of the response amplitude 

transition within attraction domain, i.e., PII (111), P22(212), and P33(313), can be 

determined by Eq.( 4.11). 

B.2 Off-diagonal elements 

B.2.1 Transitions from large amplitude domain 

As shown in the response amplitude curve, there is no upper boundary for the 

large amplitude domain. The transition from large amplitude domain to 1/2 

subharmonic domain can occur when the excitation amplitude becomes less than 

the lower boundary A3L of large amplitude domain. Therefore, P23(213) can be 

evaluated as 

Pn(213) = 
Auf p(A(2) I A(l) E D/)dA(2) (B.1) 
A21 
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Since there exist three domains, PI3(113) is the complements of P33(313) and 

P23(213). Thus, 

P13 (113) =1- P23 (213) - P33 (313) (B.2) 

B.2.2 Transitions from 112 subharmonic domain 

When the excitation amplitude exit the 112 subharrnonic domain through the 

upper boundary A2U, there exist more than one possible destination domain. To 

determine the transition probability from 112 subharrnonic domain to large 

amplitude domain, mean energy level is taken into account. Considering evolution 

of the total system energy and the average total energy over one excitation cycle, 

the mean energy level of the large amplitude response is much higher than that of 

small amplitude response. Therefore, as far as small amplitude domain co-exist 

with the large amplitude domain, transition from D2 to DJ cannot occur. Thus, the 

excitation amplitude should exit the 112 subharmonic domain through the upper 

boundary All! as well as the upper boundary A2U. This can be rewritten as 

P32(312) = fp(A(2) I A(I) E D2 A)dA(2) (8.3) 
Au 

Once P32(312) is determined, P12(112) can be computed from the complement 

of pn(212) and P32(312). 

PI2 (112) =1- P22 (212) - P32 (31 2) (B.4) 
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8.2.3 Transitions from small amplitude domain 

Transition from the small amplitude domain to the 112 subharmonic domain 

can occur when the excitation exit through the lower and upper boundaries of 112 

subharmonic domains. When the excitation amplitude exits through the upper 

boundary A2lJ of the 112 subharmonic domain from the upper part of the small 

amplitude domain, the input energy decreases. Thus, the total system energy also 

decreases. Therefore, the transition to the higher energy level, i.e., transition to 

large amplitude domain, cannot occur. In addition, an exit from the lower part of 

the small amplitude domain through the lower boundary A2L of 112 subharmonic 

domain also lead the system response to the 1/2 subharmonic domain due to the 

large difference between the mean energy level of large amplitude and 1/2 

subharmonic domain. Therefore, the probability of the system response transition 

to the 1/2 subharmonic after an exit from the small amplitude domain can be 

calculated as 

A" 
P21 (211) = f p(A(2) IA(I) E D/)dA(2) (8.5) 

An 

P31 (311) can also be determined by 

P31 (311) =1- Pl1 (111) - P21 (211) (8.6) 
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APPENDIXC 


PROGRAM LIST 


program rprobdis 
'****************************************************************** 
! prob-dis.for ---> For calculating response amplitude probability 
! distribution. 
'****************************************************************** 

implicit double precision (a-h,o-z) 
dimension x( 4 ),dphi(1 OO),pdf(1 00) 
common /exci/ aW,wf,pi,cs,a1 ,a2,a3,co 1 ,c02,c03,c04,Atmp 1 ,Atmp2,ro,D, 
cm,cd,pern,depth, wlength 
pi=4.0*atan( 1.0) 
n=2 
ro=1.94 
open( unit= 1 ,file='rprobdis.inp' ,status='unknown') 
open( uni t=2,file='rprobdis. pmf,status='unknown') 
open(unit=3,file='rprobdi 1.dat',status='unknown') 
open( uni t=4 ,file='rprobdi2 .dat' ,status='unknown') 
open( uni t=5 ,file='rprobdi3 .dat' ,status='unknown') 
open( unit=6,file='rprobdi4 .dat' ,status='unknown') 
read(l,*) rm 
read(1,*) D 
read(L*) si 
read(l , *) a 1 ,a2,a3 
read(1, *) cm,ca,cd 
read( 1,*) cdp 
read( 1 , *) pem 
read( 1,*) depth,depsph 
read(1 , *) sr 
read( 1 , *) steprate 
call wave(pern,depth, wlength) 
read(1, *) namp 
read(1, *) cy 1 
read( 1 , *) ddevi 1 
read(1,*) dnptsOa,dnptsOb,dnpts 1 a 
stpmax= l.1sr 
stpmin=stpmax * steprate 
tol=ld-6 
phs=O.dO 
icount=O 

http:phs=O.dO
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wf=2 *pi/pern 
rk=2 *pi/wlength 
rma=ca*(D**3)*pi/6 
cs=2*si*sqrt(a1 *(rm*(1 +ca))) 
co 1 =rm+rma 
co2=ro*cdp*(pi *D* *2/4) 
Atmp1 =cosh (rk*depsph) 

Atmp2=sinh (rk*depth) 
do 501 ia=l,namp 


read(2, *) aws,daw 1 

read(2, *) xi 1 ,xi2 

read(2, *) ndph,idx 

read(2, *) nCy,dcy 

read(2, *) cys,dnpts 1 b 


do 10 i=l,ndph 
read(2, *) dphi(i),pdf(i) 

10 continue 
do 20 k1=1,ncy 
cy=cys+(k1-1 )*dcy 
nptsO= Idint( cy* 2 * pi * sr/wf) 
npts 1 =Idint( cyl *2*pi *sr/wf) 
nptsOda= Idint( nptsO * dnptsOa) 
nptsOdb= Idint(nptsO* dnptsOb) 
npts1 da=Idint(npts 1*dnptsla) 
nptsldb=Idint(nptsl *dnptsl b) 
do 70 k=l,ndph 
pern=2*pi/wf 
tint=l.lsr 
stp=stpmin 
stpl=O. 
err=O. 
t=O 
x(1)=xil 
x(2)=xi2 
awl=aws 
aw2=aws 
aw=aws 
phl=phs 
ph2=phs 
phi=phs 
daw=O. 
dph=O. 
tt=O. 
do 50 ii=1,2 
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if(ii.eq.I) then 
npts=nptsO 
dnptsta=nptsOda 
dnptstb=nptsOdb 
ddevi=lO. 

endif 
if(ii.eq.2) then 
npts=nptsl 
dnptsta=npts 1 da 
dnptstb=npts 1 db 
daw=dawl 
dph=dphi(k) 
ddevi=ddevi 1 

endif 
tsta=tt+dnptstai sr 
tstb=tt+dnptstb/sr 
awl=aw 
aw2=aw+daw 
phI =phi 
ph2=phi+dph 
remax=O. 
remin=IOO. 
xa=x(l) 
pxa=O. 
ta=O. 
iflag=O 
islopp=O 
do 30 i=l,npts 
awww=(aw-awl)*(aw2-aw) 
pph=(phi-phl )*(ph2-phi) 
if((awww.gt.O.).or.(aw.eq.awI)) then 
aw=aw+( aw2-aw 1 )/ddevi 


else 

aw=aw2 


endif 

if((pph.gt.O.).or.(phi.eq.phI)) then 

phi=phi+(ph2-phl )/ddevi 

else 

phi=ph2 


endif 

t1=t+tint 

if(x(l ).gt.xa) islop= 1 

if(x(1 ).eq.xa) islop=islopp 

if(x(l ).It.xa) islop=-I 
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if(t.ge.tsta.and.t.le.tstb) then 
indslo=islopp*islop 

if(indslo.le.O) then 
if(iflag.eq.O) then 

iflag= 1 
go to 35 

endif 
if(abs(xa).gt.abs(pxa)) then 

xamax=abs( xa) 
tamax=ta 

else 
xamax=abs(pxa) 
tamax=pta 

endif 
if(xamax.gt.remax) remax=xamax 
if(xamax.lt.remin) remin=xamax 

35 pxa=xa 
pta=ta 
endif 

endif 
xa=x(l ) 
ta=t 
islopp=islop 
call rkck(n,t,x,stp,tl,stpmax,stpmin,tol,stpl,err) 
if(err .eq. 1) go to 100 
stp=stpl 

30 continue 
if(idx.eq.1) write(3,114) remax,remin,pdf(k) 
if(idx.eq .2) write( 4,114) remax,remin,pdf(k) 
itUdx.eq.3) write(5,114) remax,remin,pdf(k) 
if(idx.eqA) write(6,114) remax,remin,pdf(k) 
icount=icount+1 
tt=t 

50 continue 
write(*, *) icount 

70 continue 
20 continue 
501 continue 
114 format(2x,f12.8,2x,f12.8,2x,f16.14) 
100 continue 

http:format(2x,f12.8,2x,f12.8,2x,f16.14
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close(1 ) 

close(2) 

close(3) 

close(4) 

close(5) 

close(6) 

end 

SUBROUTINE rkck(n,x,y,h,b,hmax,hmin,tol,hl,err) 

IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

PARAMETER (NMAX = 1 0) 

DIMENSION y(n),ytem(nmax),ak1(nmax),ak2(nmax),ak3(nmax) 

DIMENSION ak4(nmax),ak5(nmax),ak6(nmax),yout(nmax),yerr(nmax) 

PARAMETER (the2=0.25,the3=0.3 75,the4=2028.12197.,the5= 1.,the6=0.5) 

PARAMETER (c21 =0.25,c31 =3.132.,c32=9.132.,c41 =1932.12197.) 

PARAMETER (C42=-7200.12197.,C43=7296.12197.,C51 =8341.14104.) 

PARAMETER (C52=-32832.141 04.,C53=29440.l41 04.,C54=-845 .14104.) 

PARAMETER (C61 =-6080.120520.,C62=41 040.120520.,C63=-28352.120520.) 

PARAMETER (C64=9295.120520.,C65=-5643.120520., WI =33440.1282150.) 

PARAMETER (W3=146432.1282150.,W4=142805.1282150.) 

PARAMETER (W5=-50787.1282150.,W6=1 0260.1282150.,El =1045.1376200.) 

PARAMETER (E3=-11264.1376200.,E4=-10985.1376200.) 

PARAMETER (E5=7524.1376200.,E6=13680.1376200.) 

downsw=O. 


300 continue 
call frk(x,y,akl) 
do 11 i=l,n 
ytem(i)=y(i)+c21 *h*akl (i) 

11 continue 
call frk(x+the2*h,ytem,ak2) 
do 12 i=l,n 
ytem(i)=y(i)+h*(c31 *ak1(i)+c32*ak2(i)) 

12 continue 
call frk(x+the3*h,ytem,ak3) 
do 13 i=l,n 
ytem(i)=y(i)+h*(c41 *ak1 (i)+c42*ak2(i)+c43*ak3(i)) 

13 continue 
call frk(x+the4*h,ytem,ak4) 
do 14 i=l,n 
ytem(i)=y(i)+h*(c51 *akl (i)+c52*ak2(i)+c53 *ak3(i)+c54*ak4(i)) 

14 continue 
call frk(x+the5*h,ytem,ak5) 
do 15 i=l,n 
ytem(i)=y(i )+h*( c61 *ak 1 (i)+c62*ak2(i)+c63 *ak3(i)+c64 *ak4(i)+c65 *ak5(i)) 

15 continue 
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call frk(x+the6*h,ytem,ak6) 
do 16 i=l,n 
yout(i)=y(i)+h* (w 1 * ak 1 (i)+w3 * ak3(i)+w4 *ak4(i)+w5*ak5(i)+w6* ak6(i)) 

16 continue 
do 17 i=l,n 
yerr(i)=h*( e 1 * ak1 (i)+e3 *ak3(i)+e4 * ak4(i)+e5*ak5(i)+e6* ak6(i)) 

17 continue 
if(downsw.eq. 1.) go to 400 
emax=O. 
do 18 i=l,n 
if(dabs(yerr(i)) .gt. emax) emax=dabs(yerr(i)) 

18 continue 
if(emax .Ie. to1/2.) then 
x=x+h 
do 19 i1 =l,n 
y(il )=yout(i 1) 

19 continue 
if(emax .It. tolI1250.) then 
del=5. 
else 
del=(toll(2. *emax))**0.25 
endif 
h=del*h 
if((h.ge.O.) .and. (h .gt. hmax)) h=hmax 
if((h.lt.O.) .and. (abs(h).gt.hmax)) h=-hmax 
x1=x+h 
if(((h.ge.O.) .and. (x1.ge.b)) .or. ((h.lt.O.) .and. (xl.le.b))) then 
hl=h 
h=b-x 
if(dabs(h) .Ie. hmin*O.l) go to 500 
downsw=l. 
endif 
go to 300 
else 
del=(toll(2*emax))**0.25 
if( del .Ie. 0.1) del=O.l 
h=del*h 
if( dabs(h) .It. hmin) then 
write(*,*)' ERROR! SINGULAR POINT! ' 
err=l. 
go to 500 
endif 
go to 300 
endif 

http:del=(toll(2*emax))**0.25
http:emax))**0.25
http:if(downsw.eq
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400 continue 
do 410 i=l,n 
y(i)=yout(i) 

410 continue 
x=x+h 

500 continue 
return 
END 
Subroutine frk(t,x,ak) 
implicit double precision (a-h,o-z) 
dimension x(2),ak(2) 
common lexcil aw,wf,pi,cs,a1 ,a2,a3,co 1 ,co2,co3,co4, 
Atmp 1 ,Atmp2,ro,D,cm,cd,pern,depth, wlength 
co3=ro*D**3*cm*(pi/6)*wf**2*aw*(AtmpllAtmp2) 
co4=ro*D**2*cd*(pi/4)*wf**2*aw**2*(Atmp1/Atmp2)*abs((Atmp1/Atmp2)) 
xl =x(l) 

x2=x(2) 

theta=-wf*t+phi 

ak(1)=x2 

ak(2 )=( co3 * ( dsin( theta) )+co4 * ( dcos( theta)* abs( dcos( theta))­

(cs*x2+a1 *x1 +a2*x1 **2+a3*x1 * *3+co2*x2*abs(x2)))/co 1 
tmp=( co3 * (dsin( theta) )+co4 * (dcos( theta») * abs( dcos( theta) )/co1 

return 

end 

Subroutine wave(pern,depth,wlength) 

implicit double precision (a-h,o-z) 

common lexcil aw,wf,pi,cs,a1 ,a2,a3,co 1 ,co2,co3,co4, 

Atmp 1 ,Atmp2,ro,D,cm,cd 

write(*, *) 'Start computing the wave length ..... ' 

write(*, *) 'Number of iterations ... ' 

icount=O 


const=( 4*(pi**2)*depth)/(32. I 7* (pern* *2» 

LO=32.17*(pern**2)/(2*pi) 

xO=2*pi*depthiLO 


202 	 fxl =xO*(tanh(xO))-const 
fx1 p=tanh(xO)+xO*(1-(tanh(xO»**2) 
xnext=xO-fx 1 Ifx 1 p 
y=xnext* (tanh( xnext) )-const 
err=abs(y) 
if(err .It. 0.0001) goto 204 
if(icount .gt. 3000) then 
write(*,*) 'Error!, Not convergent! ' 
goto 204 

endif 
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xO=xnext 

icount=icount+ 1 

write(*,*) icount 

goto 202 


204 	 wlength=2*pi*depthlxnext 
write(*,*) 'wave period water depth wave length.' 
write(* ,206) pern,depth,wlength 

206 	 format(2x,fl 0.3,5x,f5.3,5x,fl 0.3) 
write(*, *) 'error is' 
write(* ,208) err 

208 	 format(2x,fl6.12) 
return 
end 

http:format(2x,fl6.12



