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RATIONAL APPROXIMATIONS FOR FUNCTIONS OF A COMPLEX
VARIABLE OBTAINED BY USE OF THE DARBOUX FORMULA

THEORETICAL DEVELOPMENT

In a recent paper Squire (9, p. 94-108) obtained some
rational approximations for functions satisfying the dif-

ferential equation,

(1) v'(x) = £(x) y(x) ,
N
of type E: i -
1+ An Rn+l(a)(x-a)
(2)  y(x) = y(a) §‘° .

n+l N n+l
1+ Z («1) A_R_,.(x)(x~-a)
n=o n n+l

With this he obtained certain rational representations for
b 4
e , namely

n
+
™

n
1
™

2

(3) o 12 + 6x + x ,

2
12 - b6x + x

2 3
120 + 60x + 12x + x

2
120 - 60x + 12x - x3

Squire mentions that these formulas were first obtained by



2
Hummel and Seebeck (3, p. 243-217) using a generalization
of Taylor’s expansion, In addition, he states that more
‘recently Lanczos (5, p. 379-L76) obtained them by a quad-
rature technique.

A survey article by Southard (8, p. 1-13) tabulates
eighteen of the known methods for obtaining rational func-
tions as approximations for functions of a real variable,
while making most particular reference to a formula by

Darboux, discussed by Whittaker and Watson (11, p. 125):

(n) Zn: m=-1 m
@ (0)f£(z) - £(a)] = (-1)  (z-a)
m=1
(L) (n=m) (m) (n-m) (m)
[P (U (2)-¢p (0 (a)]

n+l (n+l)

+ (= l) (z-a) f ¢(t) f (a+ t[z-a]) dt .

The class of functions for which the Darboux formula will
give a rational approximation, he states, are those func-

tions which satisfy the differential equation

(5) £'(z) = Ry(2) £(2) + Ry(2)

where Rl(z) and Rz(z) are rational functions of z . At

the close of his paper Southard outlines some of the open
5

questions with respect to application of Darboux formula

and the potential usefulness of that formula for obtaining
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rational approximations for complex z. In particular, for
the class of functions satisfying the differential equation
(1) he specifically suggests experimenting with the nth de-
gree polynomial

P n-p
(6) Do) = (s-1)

with p an arbitrary integral parameter, p = 0. This the-
8is deals with just such experimentation.

By arbitrary choice of n and p formulas can be ob-
tained which are comparable to those obtained by Lanczos
and Squire. For example, if p =5, n = 6,

z 720 + 120z
(7) e ~ 2 3 5 ’

Ly
720 - 600z + 2,0z - 60z + 10z - 2z

which for z = 1 yilelds e ~ 2.718447, and, if p =5, n = 7,

2
8 z 2520 + 720z + 60z
( ) e ~ > g ’

3 n
2520 - 1800z + 60z =120z + 15z - z

which yields e ~ 2.718287.

Insofar as comparison is being made it is interesting
to note that in (6) the combination p = 3, n = 6, by Dar-
boux' formula ylelds the last formula in (3), which yields
e ~ 2,7183.,

The importance of the variation of results stemming

from the wide latitude of choice for n and p is that
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the flexibility theredby afforded will enable one to tailor
the approximating function to fit a nonlinear case., It goes
without sa ying that for varilous combinations of n and p,
as well as for n = p, we obtaln results for the well-docu-
mented linear case similar to those obtained by Southard,
Hummel and Seebeck, Lanczos, Lotkin (6, p. 29-34), Squire,
and Milne (7, p. 537-542).

The Darboux formula (l4) holds if f£(z) 4is analytic at
all points on the straight line from a to 2z and if qp(t)
is any polynomial of degree n. Requiring that n =p
(Southard treated the case n = p) we obtain several special

formulas, For p=1,

f(z) ~ f(a) + l.f'(z) (z=-a)
n

(9) el (m) n
. Z n-m f (‘) (z;a) :
m=) n m!

It is at once evident that a8 n-—so00 the right hand side
reduces to the Taylor series representation of f(z), which

converges for [z-a| < R. The term L #lz)(2-0) may be
n
approximeted by L f(z) -f(a) (z-a), so (9) may be written
n
z-a

f(z) ~ f(a) + t’(a)(z-a)

(10) n-l (m) >
N Z n-m f (a) (s=8) o

m=2 n-1l m!




A Tform of the approximation free of f’(z) results if (9)

is rewritten as

n-1 (m)
-1
(11) f'(z)~nf(z)-f(a) + Z (men) £ (s} (z-a)m .
z -8 m=1 m!

The functions are analytic; integration from a to =z

yields x
f(z) ~f(a) + n f fing~1fls) ds
a S=-2a
(12) n-1 (m) -
. Z m-n f (a) Linik)
m=1 m m!
Z n-1 (m) .
=n f 2Ll L] R Z £ (=) (z-a)
a S-a m=1 m m!
n-1  (m) n
D I O PSR
m=o0 m!

The last term is the nth partial sum of the Taylor series
expansion of f(z), As n-—soo the Taylor series becomes
an exact representation of f(z), hence the limit of the

sum of the other terms must be zero. That is,

z n-1 (m)
_ m
(13) 1lim n j’ Ha) - fis) ds - E: f__iil (z=-a) = 0,
N —» 00 a s8-8 m=l m m!

- m
(14) jﬁ $(a) » Tla) ds = E: £ () (z-a) .

a S -a m=1 m m!
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This series also converges for |z-a| < R. Combining (1)

and (12 ) we get

00 (m) n n-1 (m) -

m=l m m{ m=1 m m!
(15) n-1 (m) -

& E: 5;_121 (z-a) |,
m=o m!
or (e's) f(m) . n-1 (m) n
f
(16) f(z) ~n Z i, (z-2) 4 L (z-2) .
m=n m m! m=0 m!

That is, the first term on the right replaces the terms of
the Taylor series expansion from m = n and beyond, saying

in effect that

©  (m) & ©  (m) n
a7 uma ) L&) Gy aam Y L (8) ()
n->00 m=n m m! n-00 m=n m!

which is easily verified. We note that (1l) represents the

definite integral of the Taylor series expansion of f(z).
The expeansion of a meromorphic function in an infinite

series of rational functions, as discussed in Copson

(1, p. 147) or Titchmarsh (10, p. 110), can be extended in

the following way:

(1) let f(z) be a meromorphic function having poles of

first order, =z, Zps *** 5 Z,, With residues by, b2’°"’bn3

(ii) order the poles by their moduli,

(18) OE'Zl'E'ZalS-.-......E|zn' ;



finally, form the integral

(19) I = .QL f(w) aw ,
anl g (w-a)(w-2)

where C 1is a circle of radius R enclosing all singular-

ities. The residues are quickly evaluated, so

(200 1= flz)-rfla) T P

z-a k=1 (Z~2)(zy-a)

As R—s 00 the number of poles could become arbitrarily

large; if f(w) 1is bounded 1limy = 0, so

R—+o00
00
(21) fle) -fla) e
Z-a k=1 (zk'z)(zk-a)
or
00
(22)  £(z) = f(a) - ). bk[ o o ]
k=] zk-z zk-a

The number of poles and the number of terms of the series
might well be finite, providing a useful way of represent-
ing an analytic function exactly in terms of rational func-
tions. Even if the number of poles were quite large there
might be suitable approximations to f(z) by retaining
relatively few residues.

Equation (22) suggests another way of attacking the
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integral of (14). If f(z) satisfies the given conditions

Z oo Z

(23) n ff(s)-f(a) ds = n Z j bk ds
k=1 a (

a s-a s-zk)(zk-a)
00 D
=n10g-|—[ l:z‘zkil 2 S
k=1 | -2,
From (11), by

Z=-Zy z, -a n-1 f(mz ) m
f(z).-unlog.[—[l: ] X -nz '—'——a—(z-a)

k=1 “x m=l mmn
(24) n-1 (m) "
e z f (a) (z-a) ,
m=1 m!
and, formally at least,
b n-1 (m)

Z - 2 k
(25) log-l—l- [ ] T = Z £ ) (Z-&)m .

a-zk

Finally, as n-—so00,

by
- zZ -2 Z, =8 - f(m()a) m
o [[z2] Tl S
k=1 &~ % m=1 m mt

a2 by-product formula in which the rather special function
on the right is expressed as a product.
s’
For the more general case, 1 < p <= n, Darboux form-

ula (4) may be written out as



n-p o (p! ) 9
- m m
£(z) ~ fla) + Z (-1) Sl f (z) (z-a)

m=1 (n)

m
(27)
n-p (m) o
N (n-p), £ (a) (z-2)
m=l (n), m
where
(28) (n)m = n(n-1)s-+eee(n-m+l), m=> 1.
(m) (m-l) (mPl)
If, in (27), the £ (z) is replaced by L_(z) - f (a)
zZ-a
an inductive process quickly yields
m-1 (k) X
f(z) - E: f (2) (z-a)
(m) k=0
(29) r (z) = p
(z-a)"
hence the Darboux formula goes as
= 1 (p) T (k) K
M=
f(z) ~ f(a) + Z (=1) - [f(z) - Z r (a) (z-a) ]
m=1 (n)y k=0
(30) n-p (m)
N Z (n=p), £ (a) (z_a)m.
m=l (n), m!

This rather clumey result could probably be reduced in form
but it should be sufficient to write down some formulas
which result for special values of p. For the case p =1,

already discussed, (30) takes the form



n-1 (m) n
(31) £(z) ~r(a) + 2(2) =1(a) 4 5" nem £ (&) (, 4y |
Z=-a m=l n m!
which reduces at once to
n-1l (m)
Ne T m
(32) pa) ~ta) » ), o LBl ",
m=l n=1 m!
precisely the form of (10).
For p =2,
n=-2
' (m) m
flz)mtla) + L (8)(z-2) | EZ (n-g)(n-m-l) £ (®) (,a)
n - 3n+3 m=1 n- 3n+3 mt
(33) ne2 .
” o m
= (a) + £ (a)(za) + ), TR T (8) ()"
m=2 n"- 3n+3 @
For p = 3,
2
1"
- T -
f(z) ~ f(a) + f'(a)(z-a) n-1 - (a) (z-a)

10

3 3 2
n -bn +1lln-13 n -6n +1ln-13
(34)
n-3 m
(n-m)(n-m-1l)(n-m-2) f (a) ( "
+ 3 - z-a)
m=l nebébn + ln-13 m!

2
n3-9n +26n - 26 f”(a)

i 2
= f(a) + £ (a)(z-a) + (z-a)

2
n"-6n +ln-13 2!

n-3 (m) o
. Z (n-m)(n-m-1)(n-m-2) £ (a) {gad) .

m=3 n3-6n2+11m -13 m!
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Other formulas of similar nature have been developed

but not included in the present work. A section on appli-
cations of these ideas appears to be more interesting than

additional formulations.

APPLICATIONS

Some applications of the theory for the simple dif-

ferential equation

(35) v/(2) - y(z) =0, y(0) = 1,

have already been indicated for n = p, the set of rational
fractions in (3) published by Squire. Some variations of
these approximations for p # n are obtained quickly from
the formulations above; if a = 0, n = 6 in (9), the case

p =1, it follows at once that

© 2 3 L 5
y+5 z z z z
(36) y =1+ 2 + — At — t — 4 —
6 3 12 72 720
or
2
(37) e‘ 720 + 600z + 240z + 6023+ 102h+ z

120(6 - z)

This rational approximation function yields e ~ 2.718332.
The formulas of (7) and (8) are obtained by choosing a = 0,
p=5,n=6and 7 in the formula of (27).

It has not been pointed out by the various authors
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cited that certain recursion methods simplify and greatly
extend the range of this type of approximation. The Dar-
boux formula for n = p has been studied extensively by
Dyche (2, p. 1-18). More general formulas have been ob-
tained but let the special case n = 2 be considered in the
study below:

f(z) = f(a) + Z2 [(r'(a) + £/(2)]

2
(38) 2

, (z-2)
12

" 7]
[f(a) -£(2)] .
The solution of the differential equation

(39) v/(z) - y(z) =0, y(a) = b,

is obtained easily from (38) since y'' = y’= y. That is,

2
1+ Z=-8 i (z-2a)
(10) y = b £ 2,
z-8 (z-a)
1l - +
2 12

which, for a = d, b =1, is the form of the second approxi-
mation in (3). Bﬁt note that a kind of analytic continua-
tion is at once possible if the value of y at the first
point, say z = 1, is used to evaluate y at z = 2, then
repeating the process. Equation (L4LO) then takes the form

of a recursion formula (or difference equation), namely



1 + 2-8 4 (z-a)

2 12
(41) Yes:1 = % sy T =1

The solution is at once

4

1 4 %2-8 4 (z-a)
e 12

(42) Ve = <

2
1. 28 (z-a)

S 2 12

for general values of z-a, If, in particular, z-a =1,

19,% k
(43) (_:,_) = (2.71428)

and a special case is Y10 = 21,700, which compares well

10
with the exact value e = 22,076. The case n = 3, as

studied by Lanczos, would yileld

k
(Lk) v, = (133
71
100
which would give an approximation to e correct to

three significant figures. Few approximation techniques
are valid over such a wide range.

Second order differential equations with polynomial
coefficients are still of considerable practical interest.
Let the next example be the linear Bessel differential

equation of zero order,

(45) xy'(x) + y'(x) +xy(x) =0, y(0) =1, y'(0) =0 .
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Let the independent variable be the real number x and, for
convenience, let y'(x) = z(x). The formula of (38) must

be applied twice. From the differential equation,

vyix) = z, z'(x) =- 21X |
X
(L46) y"(x) =_2Z%Xy ) z”(x) o xy+(2;x2)z ’
X X
so, if
(L7) y(a) = b , z(a) = ¢,

the two Darboux representations have the form

2
y=b+ X2 (c+g) + (x-8) [-°+ab + z+xy],
2 12 a x
8
(L8) 2 2 5
- x-a[’c+ab _zt xy] + (x-a) [ab+(2-a Je _ xy+(2-x )z]
2l a x 12 o* <2

and the recursion notation leads to

2
(x-2) X=-8 X=-2a X=-8 X=8a
(y -y )1~ ] -z 1+ 22y - g IR E0R
k+l k 12 k+l 2 & k P ba
(L9) =0,

a

2
+ zk+1[1+x-a 4 (x-8) (2;( ) 1. zkll-
2x 12x 2a 12a

X=-8 (x-a) (2-a )]
2

=0 .
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Elimination of 2 yields
k+1
2
1 - (x-2) X-8(1 4%-8
12 N 2 “6x
Yk+1 ' 2 2
X=8 (14 X-8 1 +%8 , (x-2)"(2-x7)
503 6x 2x 1212
1_(x--a) xa(1+ra)
- 12 _ 2 ba
Ty 2,, 2
x-a( 1+‘x-a) 14+ X8 (x=a)"(2=x")
2 6% 2x 12x2
2
1 X-a 1 x-a (x-a) (2-&%
+ z Sa 4 2a 120° .
k 1+ X8 14X-8 (x—a)2(2-a2)
Similarly,
1+x2a 4+ (x-8) (g-x ) oeitinad 1 +féf.)
X 12x + 2 X
Zrel 5
X-8 () 4 X-8 1. (x-a)
(51) 2 bx %2
1. X2 1. X8 4 (x=a) (2-a) x-a(l_x-a)
-y {14 —08Ye, |__"2a 125 2 s " |,
£l 1 4xa 1+%8 (x-a) (2-2) 1__(}_:3)_2
6x 2x 12x2 12

Although clumsy in appearance note that the values of y(x)
and z(x) are given for integer multiples of x-a in
terms of the values of y(x) and z(x) at the preceding
peint. Such an operation lends itsel:s well to digital
equipment. Because of indeterminant forms the case a = 0

must be worked out separately,
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8 2 4 2 2
(52) y(x) = St é-x : , z(x) = -x(2L0- 13; ) L
i@t il ¥ x') 2(240 + 17x + x )

x=0.

Then y(1) = 392 = 0,7655 and 2(1) = - 227 = _0.1,399,
516 516

which are off three and two places each in the last figure,
If, again, z-a = 1, then

2
lla(llx + 6x+2) - x(6x+1l)(6a-1)

a1 = i
(53)

a(157x2+ 78x + 23)

2 2
a(ba=-1)(1llx + 6x+ 2) + x(6x+1)(1lla - ba+ 2)
+2

k 2 2
a (157x + 78x + 23)
and
11(12ax -~ 1)
z =-xy, 5
ke a(157x + 78x + 23)
(54)

2
11x(lla - 6a+ 2) - a(bx+l)(ba=-1)
+X2z N

k 2 2
a (157x + 78x + 23)

In particular, y(2) = 395(508) - 227(472) _ 23,379

516(807) 104,103
= 0.2246 and z(2) = - 395(253) + 227(89) _ 60,069
516(807) 104,103

= ~0.,5770. The exact values are 0,2239 and -0.5767. The
remarkable thing is that the recursion may be extended at
least as far as k = 10, the last pair of entries being
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y(10) = -0.,2467 and z(10) = -0,0276. The exact values are
-0.2459 and -0,0435 respectively.
Instead of recursion relationships the approximation
might well be obtained as a formal closed expression. Con-

sider the case

(55)  v"%x) +y(x) =0, y0)=1, y'(0)=o.

The pair of Darboux recursion formulas is at once

2
(x-a) X-8a
(y -y ) [1- ] - 222 (=2 +2)=0,
k+] k 12 > k+1 k
(56)
X=-a (x-a)2

12

For z-a = 1 the solution of the pair of difference equa-

tions

11(yk+l - yk) - 6(2k+1 + zk) =0,

(57)

+ -
6(yk+1 ¥ yk) 11(z, zk) =0,

1

Jdo=1, 2z,=0,

may be quickly obtained by a Laplace transform procedure,

-1
jgi z

157

132
157

(58) ¥, = cos k( cos = -gink( sin

k

Note that for all values of k
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2 2

(59) I *E " Y
For k =1, 2, and 3 the values of 7y, are 0.541L, -0.413L,
and -0,989, while the exact values are 0,5403, -0.4162, and
-0,9900, It is amusing to note that for any desired angle
measured by a rational number (58) yields a Pythagorean
triangle approximation, precisely the method of construct-
ing a table of sinusoidal functions practiced by the Baby-
lonians of 2000 B.C.

These results might well be compared with a paper by
Kulikov (l, p. 1135-1143), who devised an approximation

technique for the second order linear equation

(60) ay’(x) + £(x) v(x) + F(x) y(x) =0,

a = constant.
He specifically studied the Bessel equation (L45) but
achieved no such range of approximation as 0 = x =10,
Also, his procedures seem to be quite special and not im-
mediately applicable to differential equations of order
higher than two.

Of course any approximation technique should be tested
against nonlinear equations. Something was done along such
lines by Lotkin, using a combination of the Darboux formula
and iteration procedures. Perhaps the best field for future
extensions of the present technique lies in the study of

those iteration techniques which are primarily based on the
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usual Taylor series expansions. And the problem of estima-

tion of error is virtually untouched.
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