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RATIONAL APPROXIMATIONS FOR FUNCTIONS OF A COMPLEX 

VARIABLE OBTAINED BY USE OF THE DARBOUX FORMULA 

THEORETICAL DEVELOPMENT 

In a recent paper Squire (9, p. 91-lO8) obtained some 

rational approximations for functions satisfying the dif- 

ferential equation, 

(1) y'(x) f(x) y(x) 

of type N 
N n+l 

A R1(a)(x_ a) 
n=o 

(2) y(x) = y(a) 
N 

n+l N n+l 

i + (-1) A R (x)(x-a) 
n n+l n= o 

With this he obtained certain rational representations for 
X 

e , namely 

X 
2+x 

e -) 

2-x 

2 
X 

12 + 6x + X 
(3) e -) 

2 
12 - 6x + x 

23 X 120+60x+12x+x 
e 23 

120 - 60x + l2x - x 

Squire mentions that these formulas were first obtained by 



iTuinael and Seebeck (3, p. 223-2L7) using a generalization 

of Taylor s expansion. In addition, he states that more 

recently Lanezos (, p. 379-L76) obtained them by a quad- 

rature technique. 

A survey article by Southard (8, p. 1-13) tabulates 

eighteen of the known methods for obtaining rational func- 

tions as approximations for functions of a real variable, 

while making most particular reference to a formula by 

Darhoux, discussed by Whittaker and Watson (11, p. l2): 

(n) 
(0)[f(z)-f(a)J = 

n 
ni-1 ni 

L (-1) (z-a) 
uil 

(It) (n-m) (m) (n-ni) (ni) 

(l)f (z) - (0)f (a)] 

1 
n n+l f (n+l) 

+ (-1) (z-a) J (t) f (a+t[z-a)) dt 
o 

The class of functions for which the Darboux formula will 

give a rational approxImation, he states, sre those func- 

tions which satisfy the differential equation 

() f'(z) fi(z) 1(z) + fl2(z) 

where R1(z) and R2(z) are rational functions of z At 

the close of his paper Southard outlines some of the open 
J 

questions with respect to application of Darboux formula 

and the potential usefulness of that formula for obtaining 



rational approximations for complex z. In particular, for 

the class of functions satisfying the differential equation 

(1) he specifically suggests experimenting with the nth de- 

grec polynomial 

p n-p 
(6) (/L(t) = t (t-l) 

with p an arbitrary integral parameter, p 0. This the- 

sis deals with just such experimentation. 

By arbitrary choice of n and p formulas can be ob- 

tamed which are comparable to those obtained by Lanczos 

and Squire. For example, if p = , n 6, 

Z 720 + l2Oz 
(7) e 

2 3 L S' 
720 - 600z + 2lOz - bOz + lOz - z 

which for z = i yields e -. 2.718)47, and, if p = S, n = 7, 

2 
Z 2S20 + 720z + 60z 

(8) 
2 3 Ll_ S' 

2S20 - 18COz + 60z -120z + lSz - z 

which yields e -' 2.718287. 

Insofar as comparison is being made it is interesting 

to note that in (6) the c,nibination p 3, n 6, by Dar- 

boux' formula yields the last formula in (3), which yields 

e -u 2.7183. 

The importance of the variation of results stemming 

from the wide latitude of choice for n and p is that 
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the f1exib5.iit, thertby 
affordec1 w 11 enable one to taIlor 

the approxi.'iiatinp function to fit a nonl!ner «aie. It goes 

without saying that for varous cornhT.nations of n and p, 

as well as for n p , we obtain results "or the well-docù- 
rnented lirear case similar to those obtained by Southard, 
ïu'uìrnel and Seebeck, Lanczos, Lotkin (6, p. 29-314), SquIre, 

and ilne (7, p. 37-142). 

The Parboux foriiula (b.) holds If f(z) Is analytic at 
al]. points on the strairht line fro a to z and If (t) 
is any polynomial of de'ree n. }1equIrIn that n p 

(Southard treated the case n = p) we obtain several special 
formulas. For p 1, 

I f(z) - f(a) + - f (z) (z-a) 
n 

i (mn) 
rn 

(9) 
f (a) (z-a + 

n 

It is at once evident that as n-oo the rIght hand side 
reduces to the Taylor series representation of f(z), which 

converges for Çz-n R. The term I f'(z(z-s.) mna be 

by (z-a), so (9) may be written 

f(z) -' f(a) + f'(a)(z-a) 
(10) n-1 (ia) 

n-m f (a) (z-a) 
m2 n1 
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A form of the approximation free of f'(z) results if (9) 

Is rewritten as 

n-1 (rn) 
m-1 

(11) f'(z) 
f(z) -f(a) (m-n) f (a) 

(z-a) + 

z-a m1 

The functions are analytic; integration from a to z 

yields 
z 

f(z) f(a) + n f 
f(s) - f(a) 

a s-a 

(12) n-1 (rn) 

+ 
rn-n f (a) 

(z-a) 

m1 m ml 

Z n-1 (ii) 

= n f 
f(s) - f(a) 

da - n 
f (a) 

(z-a) 
a s-a rn1 rum! 

n-1 () 

+ 
I 

(a) 
(z-a) 

11 

The last term Is the nth partial sum of the Taylor series 

expansion of f(z). As n--oo the Taylor series becomes 

an exact representation of f(z), hence the 11mt of the 

sum of the other terms must be zero. That is, 

[Z 
n-1 

mi I f(s) - f(a) f 
(z-a) O, (13) hm nJ 

J da ______ n La s-a m=1 mm! J 

or z (m) 
ni 

(1L) f 
f(s) - I(a) 

ds = 
(a) 

(z-a) 
a s-a m1 mm! 
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This series also converges for Iz-al R. Combining (lL) 
FInd (12 ) we get 

00 (ni) n-1 (ni) 

f(z) n I 
I (a) (z-a) - n 

(a) (z-a) 
m=l nm m1 mm! 

(1g) n-1 (ni) 
'Ti 

+ 
f (a) (z-a) 

mo 
or 

(ni) ri-1 (m) 

(16) 1(z) n 
f (a) (z-a) + 

f (a) (za)ni. 
nin ni m mo rn 

That is, the first term on the right replaces the terms of 
the Taylor series expansion from ni = n and beyond, saying 
in effect that 

00 (ni) 00 (ni) 
(17) 11m n (a) (z-a) 11m (a) (z-a), 

n .-* ni=n ni ni ! n -' 0° mn ni! 

which is easily verified. We note that (1L.) represents the 
definite integral of the Taylor series expansion of 1(z). 

The expansion of a meromorphic function in an infinite 
serles of rational functions, as discussed in Copson 

(1, p. lIi7) or Titchrnarsh (10, p. 110), ran be extended In 
the following way: 

(i) let 1(z) be a meromorphic function having poles of 
first order, z1, z2, ... z, with residues b1, b2,..e,b; 
(ii) order the poles by their modulI, 

(18) O. 1z11 1z21 ........ . < tz ; 
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finally, form the integral 

(19) 1= - ________ i 

J 
f(w) 

dw 

2jti (w-a)(w-z) 

where C is a circle of radius R enclosing all singular- 

ities. The residues aro quickly evaluated, so 

n 
(20) 1= _______ + 

f(z) -f(a) bk 

z-a k1 (zk_z)(zk_a) 

As R- the nu;nber of poles could become arbitrarily 

large; if f(w) is bounded limi = 0, so 
R - oo 

00 
f(z) -f(a) 

(21) = - bk 

z-a k1 (zk_z)(zi:_a) 

or 
00 

(22) f(z) = f(a) - bk [__ 
i 

k1 Lzk-z - zk_ai 

The number of poles and the number of terms of the series 

might weil be finite, providing a usefu. way of represent- 

ing an analytic function exactly in terms of rational func- 

tions. Even if the number of poles were qiite large there 

might be suitable approximations to f(z) by retaining 

relatively few residues. 

Equation (22) suggests another way of attacking the 
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integral of (lL). If f(z) satisfies the given conditions 

z z 

(23) n ff(s)_f(a) ds = 
J 

b 
ds 

a s-a k1 a (s_zk)(zk_a) 

oo bk 
[z_z 

=nlogfl klzk_a 
. 

k=l La_zkJ 

From (11), 
n-1 (na) 

f(z)nlorfl [z_zkl 
zk_a (a) 

n L (z-a) 
k1 L a_zkj m1 ni mt 

(2) fl-I (îi) 
ni 

+ 
! _ (a) (z-a) 

inl ni 

and, formally at least, 

(2) log fi [z zkl 
z:a 

k1 Lazki 

Finally, as noo, 

n-1 (ni) f(a) ni 
(z-a) 

rnl mm 

b1 
C0r -i co (ni) 

TiHz-zk z-a f (a) 
(26) I I 

k exp ¿ (z-a) 

k1 L a - rnl ni u t 

a by-product formula in which the rather special function 

on the right is expressed as a product. 

For the more enera1 case, i p n , Darboux form- 

ula ()4) may be written out as 



i) 
(ni) ni 

f(z) f(a) + (-1) f (z) (z-a) 
nil (n) 

ni 
(27) 

n-p (ni) 

+ 

(n-p) f (a) 
(z-a), 

m1 (n) 

where 

(28) (n) = n(n-1)......(n-m+1), u 1. ni 

(ri) 
(m-1) (m-1) 

If, in (27), the f (z) Is replaced by f (a) 

z- a 

an inductive process quickly yields 

ni-1 
s- (k) k 

f(z) - f (a) (z-a) 
(ni) 

(2;) f (z) ________________________ 
ni (z-a) 

hence the Darboux formula goes as 

ni-1 

(k) nil 
() 1f(z) - f (a) (z-a) 

j 
f(z) f(a) + (-1) 

nil (n) L ko 
(30) n-p (ni) 

+ 
f (a) 

(z-a). 
nil (n) ni! 

This rather clumsy result could probably be reduced in forni 

but it should be suffIcIent to write down some formulas 

which result for special values of p . For the case p = 1, 

already discussed, (30 takes the form 



n-1 (ni) 

(31) f(z) -f(a) f(z)-f(a) (a) 
(z-a) 

z-a nii n mg 

which reduces at once to 

n-1 (ni) 

(32) f(z) f(a) + 
n-m f (a) 

(z-a)tm 
m1 n-1 mt 

precisely the form of (10). 

For p2, 
n-2 (ni) 

f(z)-f(a) + 
f'(a)(z-a) (n-m)(n-m-1) f (a) 

lU 

n - 3n+3 m1 n2- 3n+ 3 mt 
(z-a) 

2 

( 33) 
n-2 (m) 

= f(a) + f'(a)(z-a) + 
(n-m)(n-ni-1) f a) 

m2 2 
(z-a) 

n-3n+3 mt 

For p = 3, 
2 

1(z) f(a) + f'(a)(z-a) 
3 7 f'1(a) (z-a) 

3 2 32 
n 6n +]4n - 13 n -6n +1Ln - 13 

(3)4) - 
n-3 (in) 

+ i: 

(n-ui)(n-m-1)(n-m-2) f (a) 

in=1 n -6n + 11.n- 13 ni! 

32 
= f(a) + f(a)(z-a) + n -9n +26n- 26 f'(a) 2 

3 2 
(z-a) 

n -6n +)4n-13 2! 

n-3 (in) 

+ : 

(n-m)(n-in-l)(n-ni-2) f (a) 32 
m3 n -6n +llpi-13 mt 
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Other rormulas of similar nature have been developed 

but not included in the present work. A section on appli- 

cations of these ideas appears to he more interesting than 

additional formulations. 

APPLICATIONS 

Some applications of the theory for the simple dif- 

ferential equation 

(3g) y1(z) - y(z) = O , y(o) = 1, 

have already been indicated for n = p, the set of rational 

fractions in (3) published by Squire. Some variations of 

these aproximations for p n are obtained quickly from 

the formulations above; if a = O, n = 6 in (9), the case 

p = 1, it follows at once that 

2 3 
y+5 z z z z 

(36) y1+-----z +- + - + - + - 
6 3 12 72 720 

or 

z 

(37) e 

2 3 
720 + 600z + 2140z + bOz + lOz + z 

120(6 - z) 

This rational approximation function yields e 2.718332. 

The formulas of (7) and (8) are obtained by choosing a 0, 

p = S, n = 6 and 7 in the formula of (27). 

It has not been pointed out by the various authors 
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cited that certain recursion methods simplify and greatly 

extend the range of this type of approximation. The Dar- 

boux formula for n p has been studied extensively by 

Dyche (2, p. 1-lEs). More general formulas have been ob- 

tained but let the special case n = 2 be considered in the 

study below: 

z-a 
f(z) = f(a) + - [f'(a) + f '(z)] 

2 

(38) 2 
(z-a) 

[f"(a) - f"(z) J 
12 

The solution of the differential equation 

I 

(39) y (z) - y(z) O , y(a) = b 

is obtained easily from (38) since y" y- y. That is, 

2 
z-a (z-a) 1+ - + 

(b0) y = b 
2 12 

z-a (z-a)2 
1- - + 

2 12 

which, for a O, b 1, is the form of the second approxi- 

mation in (3). But note that a kind of analytic continua- 

tion is at once possible if the value of y at the first 

point, say z = 1, is used to evaluate y at z = 2, then 

repeating the process. Equation (LO) then takes the form 

of a recursion formula (or difference equation), namely 



2 13 

i + + (z- 

(14) 
k+i = k 

2 12 

2 
' 

= I 

2 12 

The solution is at once 2k 
+ z-a + (z-a) 

2 12 
(L2) 

7k 2 

- 
(z-a) 

2 12 

for generai values of z-a. If, in particular, z-a i, 

k k 
(I.3) 

k 
= (2:2) = (2.71L28) 

7 

and a special case is y10 = 21,700, which compares well 

10 
with the exact value e 22,076. The case n = 3, as 

studied b Lanczos, would yield 

k 
(I) y = 22.) k 

71 
100 

which would give an approximation to e correct to 

three significant figures. Few approximation techniques 

are valid over such a wide range. 

Second order differential equations with polynomial 

coefficients are still of considerable practical interest. 

Let the next example be the linear Bessel differential 

equation of zero order, 

(I$) xy"(x) + y'(x) +xy(x) = 0, y(0) = 1, y'(0) = O 
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Let the irdependent varab1e be the real number x and, for 

convenience, let y'(x) = z(x) . The formula of (38) must 

be applied twice. From the differential equation, 

y'(x) z 

(6) 
I, z+Xy 

X 

so, if 

(ii?) y(a) = b 

/ z+xy 
z (x) =- _____ 

X 

(I xy+(2-x)z 
z (x) = ____________ 

2 
X 

z(a) = c 

the two Darboux representations have the form 
2 

y = b + 
x-a (c+ z) + (x-a) [c+ab + 

z+xy 
i 

2 12 L a x J 

(I8) 
2 2 2 

c+ab z+x'1 
= + - (x-a) [ah+(2-a )c xy-s-(2-x )z] 

2L a xi 121 2 2 L a x 

and the recursion rotation leads to 

2 
x-a x-a x-a x-a 

- 
- z - [1+-) z -[i---] 

12 k+1 
2 6x 

- k2 
6a 

(Ii 9) =0, 

x-a x-a x-a 
-i-- [yk+l(1+ )+ y (1--)] 6x k 6a 

2 2 2 2 

+ Zk+1[l4 
(x-c.) (2-x ) r x-a (x-a) (2-a ) 

2 
Zkll_+ 

2x l2x 2a l2a2 

=0. 



1 

Elimination f z yields 
k+ 1 

i - 
(x-a)2 

L:( i 
12 2 (x 

T + 
k+i 2 2 

±(1+± ) i +! + 
(x-ii) (2-x ) 

2 6x 2x 12x2 
g o' '- I 2 

(x-a) 

12 2 - 
- 2 

(x-a) (c-x 

2 6x 2x 12x2 
2 2 

xa (x-a) (2-a) i_X 
6a 12R2 ___2a 

i + x-a (x-a) 2( 2-a2) 

6x 12 

Similarly, 2 2 
(x-a) (2-x ) 

(1 +!) 
2x l2x 

+ 

2 6x 
k+l 

2 

( i + ) 

(x-a) 

2 6x 12 
2 2 

ix-a i_x-a + (x-a) (2-a) L(1_X_a 
) 

___ 
k k 

12a2 _2 
(x-a)2(2-x2) 1(x-a)2 

6x 2x 12x2 12 

Although clumsy in appearance note that the values of y(x) 

and z(x) are given for integer multiples of x-a In 

terms of the values of y(x) and z(x) at the preceling 

point. Such an operation 1end itself weil to digital 

equipment. Because of Indeterminant forms the case a = O 

must be worked out separately, 



2 2 2 
(80.-x )(6-x ) -x(2h0- 13x (2) y(x) = ________________ , z(x) = _______________ 

2 L 2 I 

2(2Li0+l7x + x ) 2(2)0 + 17x + x 

x0 
39 - Then y(l) - - -0.765 and z(l) = - = -0.I399, 

l6 l6 

which are off three and two places each in the last figure. 

If, again, z-a = 1, then 
2 

lla(llx + 6x+2) - x(6x+l)(6a-l) 

Yk+lrk 2 
a(l7x + 73x + 23) 

(3) 

and 

+ Zk 

2 2 
a(6a-l)(llx + 6x+ 2) + x(6x+l)(lla - 6a+ 2) 

2 2 
a (l7x + 78x + 23) 

ll(l2ax- 1) 
Zk+l _X3Tk 2 

a(l7x + 78x + 23) 

(5I!) 2 
llx(lla - 6a+ 2) - a(6x+l)(6a-l) +xz 

k 2 2 
a (]S7x + 78x + 23) 

In particular, y(2) 39(08) 227(1412) 23,379 

l6(807) l0L,l03 

= 0.22146 and z(2) = 3923) + 227(89) 60,069 

516(807) l014,lO3 

= -0.77O. The exact values are 0.2239 and -0.767. The 

remarkable thing is that the recursion may be extended at 

least as far as k 10, the last pair of entries being 
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y(10) = -0.2L67 and z(l0) = -0.0276. The exact values are 

-0.2I9 an. -0.0)43 respectively. 

Instead of recursion relationshios the approximation 

niht well be obtained as a formal closed expression. Con- 

sider the case 

II / (5) y (x) + y(x) = 0, y(0) = 1, y (0) = 0. 

Te pair of Darboux recursion formulas is at once 
2 

-Ykl_ (x-a) x-a 
(z + zk) O 

12 2 
k+1 

(6) 
2 

x-a 

k 2 k+1 k)t_ J = o , + y / - + (z - z _____ 
12 

y =1, z0. 
o 

"or z-a = 1 the solution of the pair of difference equa- 

tions 

I r' 
l 

ll(y1 - - 6(Zk+1 + zk) = C 

+y)+11(z 
k+l k k+l k 

y0l, z00 
may be quickly obtained by a Laplace transform procedure, 

= cos k( cosa) , = -sink( sin) 
17 17 

Note that for all values of k 
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2 2 

(9) + z = 
k k 

For k = 1, 2, arid 3 the values of are 0.tlh, -0.U131, 

and -0.989L., while the exact values are 0.I03, -0.ILl62, and 

-0.9900. It. is ariusing to note that for any desIred angle 

measured by a rational number (8) yields a Pythagorean 

triangle approximation, precisely the method of construct- 

ing a table of sinusoidal functions practiced by the Baby- 

lonians of 2000 B.C. 

These resi.:lts might well be compared with a paper by 

Kulikov (Lt, p. 113-l1L3), who devised an approximation 

technique for the second order linear equation 

(60) ay"(x) + f(x) y'(x) + T(x) y(x) = O 

a. = constant. 

fle specifically studied the Bessel equation (L5) but 

achieved no such range of approximation as O x 10. 

Also, his procedures seem to be quite special and not Im- 

mediately a;p1icable to differential equations of order 

higher than two. 

0f course any approximation technique should be tested 

against nonlinear equations. Something was done along such 

lines by Lotkln, using a combination of the Darboux formula 

and iteration procedures. Perhaps the best field for future 

extensions of the present technique 11es in the study of 

those iteration techniques which are primarily based on the 
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usual Taylor series expansions. And the problem of estirria- 

tian of error is virtually untouched. 
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