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Markov chains have long been used to sample from probability distributions and

simulate dynamical systems. In both cases we would like to know how long it takes for

the chain’s distribution to converge to within ε of the stationary distribution in total

variation distance; the answer to this is tmix(ε), called the mixing time of the chain.

After this time, we can sample the Markov chain’s position to approximate sampling

the underlying stationary distribution, and the chain’s dynamics exhibit equilibrium

behavior. In this dissertation we study the effect that the system size (diameter

of the state space, say) has on the mixing time of a sequence
(
x(n),L(n),P(n)

)
of

Markov chains which have locally-finite lattice state spaces, and transition probability

functions converging to those of a gradient dynamical system. In lieu of a precise

functional form for the mixing time, the problem we study is the asymptotic growth

rate as n→∞.

This dissertation offers a novel solution utilizing the weak scaling limits of the

Markov chains and local central limit theory for random walks on lattices. By sepa-

rating the state space into high-drift and low-drift regions where weak limits are valid,

and utilizing martingale theory to approximate the chain’s behavior in the intermedi-



ate regions, we determine the time required for the distribution to converge weakly to

to stationarity. This decomposition of the state space makes evaluating the existence

of cutoff straightforward as well. Then a local limit theorem is used to strengthen

the weak convergence to total variation convergence. The theory developed is then

applied to recover recent mixing time results for statistical mechanical models, giving

independent proof of known mixing behavior in the mean-field Ising and Potts models,

as well as a full description of the mixing behavior of the Blume-Capel model.
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MIXING TIMES FOR DIFFUSIVE LATTICE-BASED MARKOV

CHAINS

1. INTRODUCTION

While the study of Markov chains is over one hundred years old, their applica-

tions have proven to be an integral tool for modern scientific computing and physical

modeling. Monte Carlo methods and Gibbs sampling are powerful means of estimat-

ing values and distributions that may be difficult to compute directly, and Markov

chains enable both of those techniques. These chains are also useful in many ran-

domized algorithms which find approximate solutions to computationally intractable

problems such as counting large sets, sampling from combinatorial structures, etc.

Their power comes with a trade off however, as one must know how long to allow

the Markov chain to evolve before sampling. In computer science this may be referred

to as the “burn-in” period, during which the effect of the chain’s initial bias decays and

we approach a tolerable approximation of the chain’s stationary distribution, which

may be constructed to coincide with the distribution we desire to sample from.

The present thesis offers a new paradigm for proving the rate at which a Markov

chain approaches stationarity. Let
(
x(n),L(n),P(n)

)
n≥1

be a sequence of Markov chains

x(n) with state spaces L(n) and Markov operators P(n) so that, writing µ(n) = {µ(n)
t :

t ≥ 0} for the distribution of x(n),

P(n)µ
(n)
t = µ

(n)
t+1.

We restrict our attention to Markov chains evolving on sublattices of Zd, which en-
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ables the use of powerful approximations from local limit theory, and we assume

diam
(
L(n)

)
= Θ(n). The stationary distribution of x(n) is written π(n).

Under certain regularity assumptions on P(n), the evolution of µ(n) over time

can be well approximated by solutions to limiting ordinary or stochastic differential

equations (ODEs and SDEs, respectively) within various regions of the state space. In

particular, suppose the drift of the process at a point x, i.e. E
[
x

(n)
t+1 − x

(n)
t

∣∣∣x(n)
t = x

]
,

converges to an analytic function in x/n as n becomes large. If this function is the

gradient (i.e. of the form −∇V ) of a potential function V on Rd, then we can employ

Stroock-Varadhan theory to estimate the dynamic of µ(n) in a weak sense.

In particular, if−∇V is bounded away from zero on some set containing n−1x
(n)
0 ,

the distribution essentially obeys an ODE until it exits the region. The distribution

µ(n) will be concentrated within a neighborhood of diameter o(n) about the solution

to

dX/ds = lim
n→∞

E
[
x

(n)
ns+1 − x

(n)
ns

∣∣∣x(n)
ns ≈ nXs

]
,

where we write ≈ to identify the lattice-valued x
(n)
ns with the lattice point nearest the

real-valued nXs. So we see that in regions of “high drift,” rescaling time and space by

a factor of n gives the natural scale of the process, see Section 3.4 and Lemma 3.7.3.

On the other hand, if the drift is very small (i.e. in a small enough neighborhood

of a zero of −∇V ) the chain behaves diffusively, and using classic results on the

convergence of Markov chains to diffusion processes (we prefer the martingale methods

of Stroock and Varadhan, [51]) we have weak convergence of µ(n) to the solution of

an SDE. Here a diffusive rescaling in a polynomial order of n (e.g. n5/6) is the

‘natural’ scale for µ(n) to evolve, and this will lead to mixing times of polynomial

order (e.g. Θ(n5/3)). This low-drift region might be stable, in which case the limiting

SDE is ergodic, or it could be unstable or semistable, in which case the limiting SDE is

transient and we can use this weak limit to estimate the time needed for the Markov
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chain to exit the region. In the intermediate regimes, where neither approximation

by ODE nor by SDE are valid, we apply several approximations (homogenization,

martingale methods, Doob maximal inequality, etc.) to estimate the time spent before

the chain exits and the direction of exit, that is, whether it moves with or against

the drift. Details are in Section 3.5 and a more detailed discussion of this heuristic is

found in Section 3.1.

Using this dynamical point of view, we are able to accurately measure the time

needed for µ(n) to converge weakly to the stationary distribution. It also follows that if

there are multiple stable regions, the Markov chain mixes at an exponential rate, that

is, very slowly (see Theorem 3.7.1 and its use in the proof of 4.3.1). This provides

a proof of concept for proving slow mixing times in systems where the stationary

distribution is unknown, and so Cheeger inequalities may be difficult to use. (Usually,

one has some information based on large deviations results which allows one to apply

the Cheeger, or “bottle-neck” argument but this is not required for our argument.)

Treating the Markov process as a random dynamical system also gives us enough

control to prove the existence or absence of cutoff phenomena in these systems (Section

4.4).

However, mixing in total variation distance requires a strong convergence of

distributions, which may explain why the foregoing methods (all based upon quite

classical mathematics) have not been used to find mixing times before. We ameliorate

this situation by proving that local mixing occurs. Suppose S(n) is a region with

diam(S(n)) = nα for α ∈ (1/2, 1), such that π(n)(S(n)) > 1 − ε. The local mixing

condition is satisfied if there are constants sn, rn > 0 with rn = Θ(nα), satisfying

limn→∞ r
2
n/sn ∈ (0,∞), and that given two starting states, xa, xb ∈ S(n), we have
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that

t ≥ sn and |xa − xb| < rn imply
∥∥∥µ(n)

a,t − µ
(n)
b,t

∥∥∥
TV

< ε,

where µ
(n)
a and µ

(n)
b are the distributions of x(n) corresponding to the two different

initial data. It is not hard to show that if this property holds and if µ
(n)
0 and π(n) are

close enough in a weak sense, then we have ‖µ(n)
t − π(n)‖TV < ε for t > sn, and so

mixing has occurred (see Theorem 4.2.1).

The organization of the rest of the dissertation is as follows. In Chapter 2 we

introduce the basic objects under study and their classical theory; broadly we discuss

Markov chains, their distributions, total variation distance, mixing times, and cutoff.

In the third chapter we compile the major results and estimates needed for our proofs

in the following chapters; this work is often restricted to the so-called case of ‘simple

structure.’ Finally Chapters 4 and 5 elaborate our proofs of mixing times and cutoff

for systems in the case of simple and composite structures, respectively. In Chapter

6 the preceding theory is applied in a number of spin systems drawn from the field of

statistical physics. We conclude with some general thoughts for expanding this work

and discussion of its relationship to other methods.



5

2. MARKOV CHAINS AND MIXING TIMES

2.1 Definitions and notation

A nearest-neighbor discrete Markov chain x = {xt : t ≥ 0} on a graph G =

(V, E), where V is the vertex set and E is the edge set, can be visualized as a particle

inhabiting a vertex x0 and at each time step the particle moves to another vertex,

chosen randomly among the neighboring states; i.e. for each t ≥ 0, xt+1 is chosen

from the set {y ∈ V : (xt, y) ∈ E} with probability one. The particle’s current state is

called the source node or vertex, while the state that it transitions to is referred to as

the target node or vertex.

The probability distribution on V describing the likelihood that, given that x

is the current vertex, that y will be the target vertex is described by the transition

kernel q(·, ·) : V × V → [0, 1] so that q(x, y) = P (xt+1 = y | xt = x). Unless we make

an explicit statement to the contrary, we assume in the sequel that this probability

does not change over time, i.e. that the chains are time-homogeneous, and so our

notation for q need not indicate the current time, t. We also require this sequence to

satisfy the Markov property; that is, for any vertices {vk}tk=1

P (xt+1 = y | xt = vt) = P (xt+1 = y | x0 = v0, x1 = v1, . . . , xt = vt) . (2.1)

In this way the chain has ‘no memory,’ as its next transition depends only on its

current state and not on any prior history. Of course, the time-homogeneous property

is a stronger condition in this setting.

The chain is then a sequence x = (x0, x1, . . . ) of random variables xt ∈ V,

indicating the chain’s state at time t, with transitions governed by the kernel q(·, ·).

Let {xt}t≥0 be a Markov chain on a graph G = (V, E); then we write µx,t for the
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distribution of the particle with x0 = x:

µx,t(y) = P (xt = y | x0 = x), t ≥ 0, y ∈ V.

We write P for its Markov transition operator. For countable V if we arrange µx,t as

a column vector, then this can be thought of as a matrix of dimension |V| × |V| such

that P(x, y) = q(x, y). In any case, we express the evolution of µx under P by a left

multiplication, and a numerical subscript indicates iteration:

Pµx,t = µx,t+1, Psµx,t = µx,t+s, s, t ∈ N. (2.2)

If, for each pair of states x0 and x1, there exists a t ≥ 0 such that µx0,t(x1) > 0

we say that the chain is irreducible. In other words, an irreducible Markov chain can

eventually reach any given state from any starting point in the state space. Further-

more, given any starting state x0, if the times at which the chain x can reach some

arbitrary target state x1 ∈ V have no common divisor greater than one, i.e.

{k ∈ N : if µx0,t(x1) > 0, then k divides t} = {1},

the chain is said to be aperiodic. We will denote by (x,V,P) the triple of the Markov

chain, its state space V, and the transition operator P. The subscript x0 denoting the

initial state of the chain will often be dropped as the starting state is often understood

from context or irrelevant.

Example 2.1.1. Let L(n) = {1, 2, . . . , n} be the first n positive integers, and let

q(n)(x, y) =


1
2 if y = x+ 1( mod n),

1
2 if y = x− 1( mod n),

0 otherwise.

The resulting Markov chain x(n) is a random process which, given that x
(n)
t = k, will

transition, or jump, to either k − 1 or k + 1 (mod n) with uniform probability. One
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can consider the distribution µ
(n)
t of x

(n)
t to be an n-vector with µ

(n)
t (k) the probability

that x
(n)
t = k ∈ L(n). The operator P(n) then becomes the n × n matrix with entries

1/2 on the sub- and super-diagonal, as well as the (1, n)- and (n, 1)-entries, and with

0 entries elsewhere.

Clearly, if n is even, then t and x
(n)
t − x

(n)
0 must share the same parity. At any

positive time t one sees that µx,t is supported on only half of the state space, the even

states or the odd states. Note that for 1 ≤ x ≤ n the sequence (µ
(n)
0 (x), µ

(n)
1 (x), µ

(n)
2 (x), . . . )

cannot converge to a positive number, as half of its entries are 0. This illustrates how

periodicity impairs the existence of lim
t→∞

µt.

2.2 Stationary distributions

For each irreducible, aperiodic, time-homogeneous Markov chain (x,V,P) with

finite state space, there exists a unique stationary distribution, denoted by π and

satisfying

lim
t→∞

µt = π (2.3)

independently of the initial distribution, µ0. This fact follows from the Perron-

Frobenius theorem, which was formulated in 1912 [30]. We restate it here in a form

useful for our probabilistic setting.

Theorem 2.2.1. Given a transition operator P for a time-homogeneous aperiodic,

irreducible Markov chain, 1 is an eigenvalue of P corresponding to a one-dimensional

eigenspace, and any other eigenvalue r′ of P satisfies |r′| < 1. The left eigenvector

corresponding to 1 is e1 = (1, 1, . . . , 1), and the right eigenvector is a vector with

positive entries, denoted π. Any other eigenvector has both positive and negative

entries.
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For an interesting discussion of various applications and proofs of this theorem,

see [41]. It is also known that the Perron projection given by limk→∞(P)t is equal

to matrix multiplication by πe1. Clearly this vector π coincides with the stationary

distribution of the Markov chain governed by P.

Example 2.2.1. Continuing the example above, let x(n) be the simple random walk

on the n-cycle, with n odd. By symmetry, it is clear that its stationary distribution

π(n) must be the uniform distribution on Z/nZ. For if σ is the translation operator

σf(x) = f(x + 1), then since the transition probabilities to move left or right do not

depend on the position of the chain, P(n)σ = σP(n). It follows that by shifting the

starting state, µx−1,0 = σµx,0, and by uniqueness of the stationary dsitribution

π(n)(a+ 1) = σ
(

lim
t→∞
P(n)
t

)
µx,0(a) =

(
lim
t→∞
P(n)
t

)
µx−1,0(a) = π(n)(a),

so π(n) must be constant on L(n).

2.3 Mixing times

The mixing time of the chain tries to answer the question of how long the chain

must evolve before it is near its stationary distribution. Here we will measure distance

between distributions using total variation distance, defined variously by

dTV (µ, ν) = ‖µ− ν‖TV

=
1

2
sup

{∑
x∈V

f(x) (µ(x)− ν(x)) : f : V → R such that ‖f‖L∞ ≤ 1

}
= max

A⊂V

∑
x∈A

µ(x)− ν(x)

=
1

2

∑
x∈V
|µ(x)− ν(x)|

=
1

2
‖µ− ν‖L1(V). (2.4)
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Remark 2.3.1. One can easily show the equivalence of these norms, but the final

definition suggests that we could generalize our definition by replacing the L1 norm

with an Lp norm with 1 < p < ∞, as done in [16], for example. However, on finite

graphs the Lp norm is bounded above by the L1 norm:

‖µ− ν‖pLp(V) =
∑
x∈V
|µ(x)− ν(x)|p ≤

(∑
x∈V
|µ(x)− ν(x)|

)p
= ‖µ− ν‖p

L1(V)
.

Therefore we work only with total variation and only note that the results hold under

the Lp norm.

In the following pages ε is considered a small (less than 1/2, say) positive con-

stant. The ε-mixing time is defined as

tmix(ε) = max
x0∈V

min
t≥0
{‖µx0,t − π‖TV < ε}, (2.5)

the first time that the distribution µx0,t is within ε of π in the total variation norm,

regardless of the starting state x0. Likewise, by linearity of P, the inequality

‖µtmix(ε)−π‖TV < ε holds for any initial distribution µ0. It can be shown (see Section

4.4 of [40]) that

tmix(ε) ≤ dlog2(ε−1)etmix(1/4).

For this reason, results on tmix(ε) are equivalent for any ε ∈ (0, 1/2), so we standardize

our discussion by writing tmix := tmix(1/4).

While there are many systems, such as card-shuffling, where studying the mixing

time of a fixed chain is of particular interest, in many applications we would like to

know how the size of the system (number of cards in the deck, number of particles

in a box, etc.) affects the mixing time. Computer science applications and models

in statistical mechanics often need relatively fast mixing times to be viable. In these

cases we deal with a sequence of Markov chains indexed by n:
(
x(n),V(n),P(n)

)
. Now



10

the mixing time is a function of n, which we denote by t
(n)
mix, and our main interest lies

in estimating the growth rate. Of special interest is distinguishing polynomial and

exponential growth.

Example 2.3.1. Let x(n) be the simple random walk on the n-cycle, as in Example

2.1.1 above. Then we claim that t
(n)
mix = O(n2). With an eye for the following develop-

ments, we use the local limit theory of Section 3.6. By taking s = 2 in Theorem 3.6.1,

we have that if y(n) is the simple random walk on Z with distribution ν(n), and t is even,

then for any ε > 0 we can take t large enough that for any k ∈ {−t,−t+2, . . . , t−2, t},

∣∣∣ν(n)
t (k)− 2t−1/2φ(t−1/2k)

∣∣∣ < ε

(1 + |k|2/t)n
(2.6)

where φ(x) = (2π)−1/2 exp
(
−x2/2

)
is the standard normal distribution.

By the obvious projection (Z → Z/nZ) of the process y(n) onto x(n), for t and

k even

µ
(n)
t (k) =

∑
q∈Z

ν
(n)
t (qn+ k),

and since y
(n)
t must lie in the interval [−t, t],

µ
(n)
t (k) =

dt/ne∑
q=−dt/ne

ν
(n)
t (qn+ k)

=

dt/ne∑
q=−dt/ne

2t−1/2φ
(
t−1/2(qn+ k)

)
+

cqε

(1 + |qn+ k|2/t)n

for {cj} a uniformly bounded set of constants. Taking t = sn2, this becomes

µ
(n)
t (k) =

2

n

 dsne∑
q=−dsne

√
1

2πs
exp

(
−(q + k/n)2/2s

)+ Cε/n, (2.7)

for some C > 0 independent of ε and n. This is Riemann sum for the distribution

2
ns
−1/2φ(xs−1/2) with function values sampled at x ∈

{−t+k
n , . . . ,−1 + k

n ,
k
n , 1 + k

n , . . . ,
t+k
n − 1

}
.
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These are 2dsne points distributed evenly throughout the interval [−sn, sn]. Impor-

tantly, the variation of this sum as a function of k can be tuned with s.

If s is small enough we will be able to restrict the samples so that a single choice

of q in (2.7) dominates the sum (first panel of Figure 2.1). In this case, for any k

between 1 and n,

µ
(n)
t (k) ≈ 2

n

(
φ

(
k

n

)
+ φ

(
−1 +

k

n

)
)

)
,

and so µ
(n)
t is far from uniform. However, for s large enough, the values of s−1/2φ(xs−1/2)

will vary less than ε over unit subintervals (third panel of Figure 2.1). In fact, the sum

in (2.7) is equal to
∫
φ(x)dx+ o(1/

√
s), and so for any choice of k, k′ ∈ {1, . . . , n},

|µ(n)
t (k)− µ(n)

t (k′)| < 4Cε/n

for s > 0 a large enough constant, independent of n. It follows that for the simple

random walk on the n-cycle,

t
(n)
mix = Θ(n2).
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FIGURE 2.1: The distribution of ν
(n)
sn2 with n = 100; from top to bottom we have s =

0.1, s = 1, and s = 10. Vertical lines appear at qn+ k for k = 20 and q ∈ {−5, ..., 4}.

2.4 Cutoff phenomena

Let us briefly describe what it means for a system to exhibit a cutoff in its

mixing behavior. This property was first observed by Diac and Shasha, Alduous ? in

[?] for the rand walk on Sn?, and was later expanded on by ??? in [?]. Many open

problems and conjectures in the field of mixing times concern necessary and sufficient

conditions for cutoff. We revert, for the moment, to the notation tmix(ε) indicating

the threshold ε on total-variation distance to stationarity required for mixing:

tmix(ε) = min{t ≥ 0 : max
x∈L(n)

‖µ(n)
x,t − π(n)‖TV < ε}.

Definition 2.4.1. A family
(
x(n),L(n),P(n)

)
of Markov chains is said to exhibit a
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cutoff if

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1

for all ε ∈ (0, 1)

That some Markov chains exhibit this sudden convergence to stationarity was

originally described by Aldous and Diaconis in the papers [1, 2, 3], and perhaps the ear-

liest example of this behavior was discovered in [21] where Diaconis and Shahshahani

studied the random walk on the symmetric group generated by random transpositions.

FIGURE 2.2: ‖µ(n)
t − π(n)‖TV as a function of t for a system exhibiting cutoff.

There are several other definitions one may use. The defining feature of a cutoff

is that for at least some starting state x(n) ∈ L(n), the norm ‖µ(n)
t − π(n)‖TV goes

from being greater than 1−ε to being less than ε within an interval whose length is of

smaller order than the mixing time. To put it another way, x(n) experiences a cutoff

with window-size γ(n) if for any ε > 0 there is an N ∈ N so that n > N implies∥∥∥∥µ(n)

t
(n)
mix−γ(n)

− π(n)

∥∥∥∥
TV

≥ 1− ε,
∥∥∥∥µ(n)

t
(n)
mix

− π(n)

∥∥∥∥
TV

< ε, and γ(n)/t
(n)
mix → 0.

This behavior is observed in many rapidly mixing systems (see [15, 20, 25, 40] for

examples) and is related to the degeneracy of the second largest eigenvalue of P(n). In

the sequel we will find that in our setting, where chains have nice regularity properties,

cutoff is observed exactly when the chains are rapidly mixing, t
(n)
mix = O(n log n). By

the results in [32] this is the fastest possible mixing rate for these chains.
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3. PRELIMINARIES FOR THE DYNAMICAL APPROACH

In this chapter we collect a variety of results that will allow us to describe the

dynamics of the Markov chains’ distributions in the three regimes: high-drift (ODE

behavior), low-drift (SDE behavior), and the intermediary regions. In Section 3.1 we

give a deeper discussion of what defines these regions, and what is gained by this

partition of the state space, as well as outline our fundamental strategy of proof.

Section 3.2 gives a brief discussion of other approaches to the mixing time problem

and how they differ from the present work. Next we discuss our assumptions on the

family of Markov chains for our theory to apply in Section 3.3. In Sections 3.4 and

3.6 we bring together some classical theory whose role in our arguments will, at that

point, be clear. The former section is immediately put to use in Section 3.5 collecting

some results on the limiting behavior of our Markov processes in the weak topology.

Finally, in Section 3.7 we collect results that give useful estimates of passage times

of the chains through unstable regions, as well as the time required to escape stable

regions.

3.1 Heuristic

In this thesis we seek to give a simple set of conditions to determine the mixing

time asymptotics for a broad class of Markov chains. Consider a sequence {x(n)}n∈N

of Markov chains evolving on state spaces L(n) ⊂ Zd, with transition probability

functions

q(n)(x, x+ h) = P
(
x

(n)
t+1 = x+ h

∣∣∣x(n)
t = x

)
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defined for x, h ∈ Zd, n ∈ Z, where h must take values in some finite set B. We will

consider only irreducible, aperiodic, time-homogeneous chains. Suppose that for each

fixed h the transition probability functions {q(n)(·, · + h)}n∈Z may be extended to a

function that is real analytic in x and 1/n.

Fixing a large value of n, the expected displacement from x ∈ Zd over a single

time step of the chain x(n) is
∑

h∈B hq
(n)(x, x+ h). Under a rescaling, this expected

drift must be close to the gradient function:

−∇V (x) :=
∑
h∈B

lim
n→∞

(
h

n

)
q(n)(nx, nx+ h), x ∈ 1

n
Zd.

Our goal is to infer the mixing time asymptotics of {x(n)}n∈N from this function. If

the transition probability functions have this regularity, elementary calculus typically

suffices to determine the mixing time of chains. In Chapter 6. we obtain quite easily

some of the recent mixing time results for spin system models of Curie-Weiss type

(mean-field models).

In the one-dimensional case it is immediate, and in the multidimensional case it

is assumed, that we can integrate the gradient function to find a potential V (x), hence

our choice of notation above. We call the minima of V the equilibrium points or stable

points for the collection of Markov chains; other critical points of V are called unstable

points. When an unstable point is not a local extremum, we say that is semistable

and typically refer to it as a saddle point. In Chapter 6. these are also referred to as

spinodal states in the context of statistical mechanical systems.

It is also notable in that it gives conditions for a system to exhibit mixing times

of polynomial order, which have been traditionally harder to analyze than rapid mixing

systems with O(n log n) mixing times. Further, we characterize (weakly) the invariant

distribution of the chains using the Fokker-Planck equation (this is independent of the

work in [28] by Ellis and Newman, see Lemma 3.5.1), and observe which polynomial
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rates of mixing are possible for our class of Markov chains: t
(n)
mix(ε) = Θ(nγ) where

γ ∈ {2k/(k + 1) : k ∈ N\{1}} = {4/3, 3/2, 8/5, 5/3, . . . }.

The cutoff behavior in these systems is also determined with no additonal work;

in Theorem 4.4.1 below we give conditions on the gradient function which determine

the existence of cutoff phenomena, and describe the window-size. In short, if −∇V

has a unique and simple zero (i.e. the Hessian is nonsingular at the zero), the system

exhibits cutoff with window size O(n); otherwise no cutoff is observed.

Note that ∇V (x) vanishes at all of the stable and unstable points of the system.

At any such critical point, one may learn much about the evolution of the Markov

chain’s distribution by passing to the weak limit of {x(n)}. This is a diffusion process,

X = {Xs : s ≥ 0}, when scaled appropriately. (In what follows, lower case characters

x(n) will denote Markov chains evolving on a discrete state space, with various dec-

orations denoting scale and conditioning, while upper case characters X will signify

space and time continuous diffusion processes. Lower case greek letters µ, ν, etc. will

represent the associated distributions.)

The dynamics of X are characterized by a Taylor series expansion of V . Near

the critical points of V (low-drift regime) the time scale of the diffusion determines

the natural time scale on which the Markov chain’s distribution evolves. For example,

suppose we have for some α > 0{
n−αx

(n)
sn2α : s ≥ 0

}
=⇒ {Xs : s ≥ 0} ,

with =⇒ signifying weak convergence of processes. Then the timespan required

for the distribution to begin and finish experiencing measurable change on sets of

diameter Θ(nα) occurs over Θ(n2α) time steps.

When the chain is traveling between stable and metastable points the drift

becomes large enough that the dynamics are nearly deterministic (high-drift regime).
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Assuming bounded increments, it is clear that
∑
h∈B

hq(n)(nx, nx + h) is a bounded

function of x ∈ L, so −∇V (x) as defined above has magnitude Θ(1/n) in the high-

drift regime. Therefore, with high probability we require Θ(n) time-steps for x(n) to

travel a distance of order n, and approach a zero of −∇V .

The movement within the intermediary regions separating these two regimes

may be estimated with families of approximating random walks and several tools

from martingale theory. Combining these approximations of x(n) in each region of L(n)

suffices to estimate the time required for the distribution of x(n) to weakly converge

to the stationary distribution. One then approximates the process locally using the

local limit theory of Bhattacharya and Rao [9] (Theorem 3.6.1) to demonstrate strong

convergence.

Now if the family of chains are not slow mixing, we can determine the presence

of cutoff from the structure of V . Suppose that d = 1, V has a unique stable point at

z1, and the gradient function has a κth order zero (κ > 1) at the point z2, and that

this point is unstable. Then as shown in Lemma 3.7.5, with high probability a particle

will exit a nκ/(κ+1)-neighborhood of nz2 in Θ(n2κ/(κ+1)) time steps. If this passage

time dominates the other dynamics in the low-drift regions about the other critical

points of V , then mixing near the stable point occurs on a shorter time scale. This

can be used to show cutoff fails to occur for such a system, see Theorem 4.4.1 and

preceding discussion. If the system has a single zero of order κ = 1, then the particle

requires Θ(n log n) time steps to place significant probability mass near the origin.

By controlling the variance of x
(n)
t , we show that the approach phase may bring x(n)

within O(n) steps of the equilibrium point, but with variance small enough to prove

‖µ(n)
t − π(n)‖TV is still near one, using a Chebyshev inequality. On the other hand, it

only takes Θ(n) time steps for the weak convergence to π(n) to take place, and Θ(n)
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time steps for local mixing to occur. Hence, cutoff is displayed in such a system with

window-size γ(n) = O(n).

3.2 Prior work

Typical approaches to the mixing time problem include demonstrating analyti-

cal inequalities such as the Poincaré or logarithmic Sobolev inequalities [4, 47, 48]; us-

ing spectral tools to bound the spectral gap; or applying coupling methods[19, 38, 40],

especially the path-coupling of Bubley-Dyer [13]. The aggregate path coupling method

(see [33, 36]) is another variation on the classical path coupling method, which has

been used to prove rapid mixing. The references give extensive treatments of the

topics. We note that the analytical tools often require passing to a continuous-time

Markov chain which transitions after exponential holding times, and that the path-

coupling method fails when the chain is not fast-mixing, meaning t
(n)
mix(ε) = Ω(n log n)

(e.g. chains with polynomial mixing times such as the mean-field Ising model at crit-

icality). The class of chains studied here contains examples where these traditional

methods are impractical to apply, and we hope the reader will find the heuristic behind

this method a more satisfactory explanation of the mixing dynamics (see Subsection

3.7 in particular).

A recent paper of Croyden, Hambley, and Kumagai [16] takes an approach

that is similar to our own in that they utilize a weak limit of the Markov chains to

determine the mixing behavior. As we do here, they infer the mixing time order by

considering the time scale conversion from the Markov chains with integral time step to

those which approximate diffusions (see equation (3.12) and surrounding discussion).

While these authors take advantage of the existence of an approximating Hunt process

on the limiting metric space, their method relies on the compactness of that space.
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The combination of compactness and continuity of mixing times is the core of the

argument.

One typically observes compactness of the limiting space when the dynamic is

stationary distribution is approximately uniform. For example, in the simple random

walk (SRW) on the n-cycle if we rescale distances by a factor of n−γ and γ ∈ (0, 1), as

n grows large the rescaled distance across the cycle diverges; the time required for the

chain to reach equilibrium is of a longer timescale than n2γ , so the limiting process

(Brownian motion on R) does not have an invariant probability measure. However,

if the dynamics have a distinguished equilibrium point where the invariant measure

of the diffusion is concentrated, one expects a natural central limit scaling of smaller

order than the diameter of the graph, which is determined by the fluctuations of the

process. This will force the limiting metric space to be non-compact, since one must

rescale by n−γ for some γ ∈ (0, 1) in order to resolve the fluctuations of the chain

about the equilibrium point, and the diameter of n−γL(n) is of order n1−γ , and so

diverges. In particular, the theory in [16] will not apply to the case of the mean-

field Ising model nor the classic example of the Ehrenfest urn model rescaling to an

Ornstein-Uhlenbeck process. Both of these chains are analyzed with our methods

below (see Sections 4.5 and 6.1).

3.3 Assumptions for simply structured potentials

Suppose
(
x(n),L(n),P(n)

)
n≥1

is a sequence of discrete time, irreducible, aperi-

odic, time-homogeneous finite Markov chains x(n) = {x(n)
t : t = 0, 1, 2, . . . } evolving

on state spaces L(n) ⊂ Zd for all n. Define q(n) to be the transition kernel for the
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chain:

q(n)(x, y) = P
(
x

(n)
t+1 = y

∣∣∣x(n)
t = x

)
.

We abbreviate the transition probability function for an increment h ∈ Zd as

p
(n)
h (x) = q(n)(nx, nx+ h), x ∈ n−1Zd. (3.1)

This notation is useful, as we will spend most of this chapter exploiting the regularity

of the functions p
(n)
h .

Definition 3.3.1. Let F (x) be an analytic function on Rd, with a critical point at x0.

We say that F has simple structure about x0 or that x0 is simply structured, if either

1. there is an affine transformation T : Rd → Rd such that T (x0) = 0 and

(F ◦ T )(x) = ‖T (x)‖κ+1
2 +O(‖T (x)‖κ+2

2 ) for an odd integer κ

or

2. under the additional assumption that d = 1, F (x) = c(x−x0)κ+1+O(|x−x0|κ+2)

with κ a positive integer, c ∈ R.

We express κ as κ(x0) when we need to reference the critical point explicitly.

The following bullets describe our main assumptions for the family of chains.

Assumption 3.3.1. (i) The state space L(n) ⊂ Zd is finite for each n and diam(L(n)) =

Θ(n). We define d(n) = inf
{
r ∈ R : L(n) ⊂ [−rn, rn]d

}
and note that the num-

bers d(n) are bounded.

(ii) Let L be a neighborhood of ∪∞n=1[−d(n), d(n)]d, so that for any n, L(n) ⊂ nL, and

let U be a neighborhood of zero. We assume that there are real analytic functions

{ph : U × L → R}h∈Z that extend the transition kernel in the sense that

ph
(
n−1, x

)
= p

(n)
h (x)
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= q(n)(nx, nx+ h)

)
on the set U×L whenever the right-hand side is defined

(
n ∈ N and x ∈ n−1Zd

)
.

(iii) There is a finite set B ⊂ Zd of increments h such that p
(n)
h (x) 6≡ 0, and for all

(δ, x) ∈ U × L there is some h 6= 0 such that ph(δ, x) 6= 0.

(iv) The function lim
n→∞

∑
h∈B

p
(n)
h (x) is the gradient function for a scalar potential func-

tion, V : L → R, which has a global minimum within lim inf
n→∞

(
−d(n), d(n)

)
. Ad-

ditionally, the critical points of V are simply structured.

We will often want to deal with the large-n limit of the functions p
(n)
h , and so

define the real analytic functions

ph(x) := lim
n→∞

p
(n)
h (x), x ∈ L. (3.2)

These functions exist by Assumption 3.3.1 (ii), and by (iv) give rise to the vector-

valued function −∇V , as

−∇V (x) :=
∑
h∈B

hph(x). (3.3)

Write {z1, . . . , zJ} ⊂ L for the set of J ≥ 1 zeros of ∇V . When dealing with Taylor

expansions of functions about their critical points, we will always assume that an

appropriate linear transformation has taken place to ensure V has an expansion of

the form seen in Definition 3.3.1.

For an arbitrary z`, we write a
(j,k)
h for the (j, k)th coefficient in the Taylor

expansion of ph about (0, zl) ∈ U ×L, where k = (k1, . . . , kd) is a multi-index with ki

nonnegative integers, and |k| = k1 + · · ·+ kd:

p
(n)
h (x) = ph(n−1, x) =

∑
j,|k|≥0

a
(j,k)
h n−j(x− zl)k. (3.4)
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Here (x − zl)k = (x1 − z1
l )k

1 · · · (xd − zdl )k
d

when d > 1. In the sequel, we will be

considering such expansions for arbitrary `, so neglecting to annotate the particular

critical point z` on the Taylor coefficients will not lead to any confusion. The previous

display indicates that for each chosen displacement h ∈ B, the function p
(n)
h : L → R

converges uniformly to the real analytic function ph : L → R as n→∞ with error of

order n−1:

p
(n)
h (x) =

∑
j,|k|≥0

a
(j,k)
h n−jxk

=
∑
k≥0

a
(0,k)
h xk + n−1

∑
j,k≥0

a
(j+1,k)
h n−jxk

= ph(x) +O(n−1). (3.5)

Definition 3.3.2. Suppose x0 is a simply structured critical point of V . We say that

x0 is a stable point if it is a local minimum of V . Otherwise, it is either a local

maximum or a saddle point, in which case we call it unstable.

Definition 3.3.3.

1. Given z` a simply structured critical point of V , define α(z`) = α := κ
κ+1 where

κ = κ(z`) is given in Definition 3.3.1. This is called the scaling exponent of z`.

2. Rescaling the space and time coordinates in L(n) × N0 via a transformation of

the form

(x, t) 7→ (n−α(x− nz`), n−2αt)

is referred to as the diffusive scaling about z`.

3. A neighborhood of the form B(nz`, Rn
α) = {x ∈ L(n) : |x−nz`| < Rnα} is called

a scaling neighborhood of z`.

The next lemma quantifies the regularity of the transition probability functions

in a scaling neighborhood of a stable point.
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Lemma 3.3.1. Let {x(n),L(n),P(n)} be a sequence of Markov chains with transition

functions
{
p

(n)
h

}
h∈B

satisfying Assumption 3.3.1. Let z0 be a stable critical point of

the potential, let ε > 0, and choose R > 0. Take nx and nz to be in B(nz0, Rn
α)∩Zd.

We have

1.
∑
h∈B

p
(n)
h

(
x− hn−1

)
− p(n)

h (z) = n−1∆V (x) +O(n−2),

2.
∑
h∈B

h
(
p

(n)
h (x− hn−1)− p(n)

h (z)
)

= −∇V (x) +∇V (z) +O(n−1).

Proof. Notice that, with k ∈ Zd component-wise nonnegative,

(
x− hn−1

)k − xk = −h
n
· ∇
(
xk
)

+O(n−2). (3.6)

Now without loss of generality we can take z0 = 0. Furthermore, by item (iv) of

Assumption 3.3.1, (modulo a linear transformation) the lowest order monomials in

the expansion of −∇V about z0 are of order κ = κ(z0). Assimilating this with the

expansion in (3.3)

−∇V (x) =
∑
h∈B

hph(x)

=
∑
h∈B

h
∑
|k|≥0

a
(0,k)
h xk

=
∑
|k|≥0

∑
h∈B

ha
(0,k)
h xk, (3.7)

we find that for each 1 ≤ s ≤ d,
∑

h h
sa

(0,k)
h = 0 for any multi-index k with |k| < κ.

We have
∑

h p
(n)
h (z) = 1 =

∑
h p

(n)
h (x), so we may replace z with x in 1. Expand

p
(n)
h (x) in n−1 and x about (0, 0) and use (3.6) to find

∑
h∈B

p
(n)
h (x− hn−1)− p(n)

h (x) =
∑
h

∑
j,|k|≥0

a
(j,k)
h n−j

(
(x− hn−1)k − xk

)
= −n−1

∑
|k|≥0

∑
h∈B

(
a

(0,k)
h h

)
· ∇
(
xk
)

+O(n−2).
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Now applying (3.7), we may discard terms with |k| < κ:∑
h∈B

p
(n)
h (x− hn−1)− p(n)

h (x) = −n−1
∑
|k|≥κ

∑
h∈B

a
(0,k)
h

(
h · ∇

(
xk
))

+O(n−2).

One easily checks that this double sum is equal to −∆V (x). This proves assertion 1.

To prove 2. we again expand the transition probabilities and employ (3.6), (3.7):∑
h∈B

h
(
p

(n)
h (x− hn−1)− p(n)

h (z)
)

=
∑
h∈B

∑
j≥0,|k|≥κ

ha
(j,k)
h n−j

(
(x− hn−1)k − zk

)
=

∑
h∈B

∑
|k|≥κ

ha
(0,k)
h

(
x− hn−1

)k
+∇V (z) +O(n−1)

=
∑
h∈B

∑
|k|≥κ

ha
(0,k)
h

(
xk +O(n−1)

)
+∇V (z) +O(n−1)

= −∇V (x) +∇V (z) +O(n−1).

3.4 Stroock-Varadhan theory

In this section we cite the main theorem on weak convergence of Markov chains

which we will need. We work in d-dimensional euclidean space, and when expressing

the coefficients a, b, a(n), or b(n), a subscript i or ij denotes the ith component of a

vector or (i, j)th entry of a matrix. Elsewhere vector components are denoted with

a superscript, but we make an exception for the drift and diffusion coefficients to

streamline the notation in the next two sections. Let {x(n) : n ≥ 1} be a family of

Markov processes x(n) = {x(n)
t : t ≥ 0} with distributions µ(n), time increments γ(n),

and transition operators Π(n)(x, y), i.e. for a measurable set A ⊂ Rd,

µ
(n)
t+γ(n)(A) =

∫
Rd

∫
A

Π(n)(x, y)dy µ
(n)
t (x)dx.

We define respectively the drift and diffusion coefficients of each x(n) by

b
(n)
i (x) :=

1

γ(n)

∫
|x−y|≤1

(yi − xi)Π(n)(x, dy), (3.8)
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a
(n)
ij (x) :=

1

γ(n)

∫
|x−y|≤1

(yi − xi)(yj − xj)Π(n)(x, dy), (3.9)

as well as the probability that x
(n)
t exits a ball of radius ε in a single step, with ε > 0

constant:

∆(n)
ε (x) =

1

γ(n)

∫
|x−y|>ε

Π(n)(x, dy).

We say that a Markov process xt = (x1
t , . . . , x

d
t ) taking values in Rd solves the

martingale problem for coefficients a : Rd → Sd and b : Rd → Rd with Sd the set of

positive semi-definite real d× d matrices, where a(x) = (aij(x)) and b(x) = (bi(x)) if

for each 1 ≤ i, j ≤ d,

xit −
∫ t

0
bi(Xs)ds and xitx

j
t −

∫ t

0
aij(Xs)ds

are local martingales. The solution is well-posed if it is unique and the process does

not explode. For a sequence of nonincreasing real numbers γ(n)→ 0, let x(n) = {x(n)
t :

t ∈ γ(n)Z≥0} be a sequence of random processes whose paths x(n)(ω) : [0,∞) → Rd

lie in (D,D), the set of cádlàg paths with Skhorokhod topology. We assume that x(n)

is piecewise constant on the intervals [Nγ(n), (N + 1)γ(n)).

The possible coefficients a and b arising from a Taylor expansion of the ph

of Section 3.3 are all locally Lipschitz, implying the existence and uniqueness of a

solution to the corresponding SDE, dXt = b(Xt)dt+ a(Xt)dWt where W is a driving

brownian motion. (Actually, near unstable critical points of V , one must truncate

the limiting drift coefficient, b(x); cf. the coefficient b̂ of Lemma 3.5.2 below.) The

martingale problem associated to a and b is well-posed, so we will be able to apply

the next theorem to such systems.

We will denote the associated measure on D([0, T ]), paths in D restricted to

the time interval [0, T ], by µ
(n)
[0,T ]. When the initial data is convergent, x

(n)
0 → x̃ ∈ Rd,

we will denote the weak limit of the path measures µ
(n)
[0,T ] by η[0,T ] if it exists, and
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the associated Markov process by X = (X1, . . . , Xd) ∈ (D,D). Of course X0 =

x̃. Versions of the following theorem may be found in Section 8.7 of [26], and the

penultimate chapter of [51].

Theorem 3.4.1. Choose a T > 0. Suppose (aij) and (bi) are continuous coefficients

defined on Rd for which the martingale problem is well-posed. Let
(
x(n),L(n),P(n)

)
be

a sequence of Markov chains x(n) = {x(n)
tγ(n) : t ∈ N} with L(n) ⊂ Rd and define b(n)

and a(n) as in (3.8) and (3.9). For each i, j, and R <∞ and ε > 0, suppose

1. lim
n→∞

sup
|x|≤R

∣∣∣a(n)
ij (x)− aij(x)

∣∣∣ = 0,

2. lim
n→∞

sup
|x|≤R

∣∣∣b(n)
i (x)− bi(x)

∣∣∣ = 0,

3. lim
n→∞

sup
|x|≤R

∆(n)
ε (x) = 0.

Let K be a compact subset of Rd. If x
(n)
0 → x̃ ∈ K uniformly in x̃, then

µ
(n)
[0,T ] ⇒ η[0,T ]

where X is the solution to the martingale problem associated to b and a, and X0 = x̃,

η is the distribution of X, and this convergence is uniform in the initial data x̃ ∈ K.

The rest of this section is dedicated to the proof of Theorem 3.4.1, and is of

independent interest as this formulation of the result is not readily available in the

literature. However, no other part of this dissertation relies on this section.

The difference between the result in Theorem 3.4.1 and the original theorem

in [26] is that Durrett does not claim uniform convergence on compact sets K ⊂ Rd.

We require this to apply the result to initial distributions {µ(n)
0 }n≥1 supported on

a compact set, rather than initiated from (a convergent sequence of) single points.

Towards demonstrating the uniformity in x̃, we begin with a simple lemma:



27

Lemma 3.4.1. Let ε be any positive number and K a compact subset of Rd. If

X = {Xt : t ≥ 0} is a non-explosive, weakly Feller process, then there exists a constant

M > 0 such that

sup
x∈K
{P (|Xt| ≥M for some t ∈ [0, T ]|X0 = x)} < ε.

Proof. Define the event WM (x) := {|Xt| ≥ M for some time t ∈ [0, T ] and X0 =

x}. We proceed by making the contradictory assumption that infinitely often as M

increases through 1, 2, 3, . . . there can be found an x(M) in the set K so that

P (WM (x(M))) ≥ ε. (3.10)

Let {Mk}∞k=1 be the subsequence Z satisfying (3.10). As K is compact, we may find

a limit point of the sequence x(Mk) which converges to some z in K. By the weak

Feller property there is a δ > 0 so that if |x− z| < δ, then

|P (WMk
(x))− P (WMk

(z))| < ε/2.

Let N be large enough that, for k > N the distance |x(Mk) − z| is smaller that δ so

that for every k > N ,

P (WMk
(z)) > ε/2,

and since {Mk} is unbounded, and P (WM (z)) is decreasing inM , we have limM→∞ P (WM (z)) >

ε/2. This contradicts the hypothesis that X is a non-explosive process.

We will refer to the following result from [12]; it is Theorem 15.5 in that text.

Take T > 0 an arbitrary positive constant, and let wδ(ω) be the modulus of continuity

of the path ω ∈ D([0, T ]):

wδ(ω) = sup
s,t∈[0,T ]

{|ω(t)− ω(s)| : |s− t| < δ}.
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Lemma 3.4.2. Let ε > 0 be given. The set
{
µ

(n)
[0,T ]

}
of probability measures on

(D([0, T ]),D) is tight if for each sequence
{
µ

(n)
[0,T ]

}∞
n=1

, there is r ∈ R large enough,

and n0 large enough that

1. µ
(n)
[0,T ](|ω(0)| > r) ≤ ε,

2. µ
(n)
[0,T ](wδ(ω) > σ) ≤ ε for δ small enough, and n > n0.

Furthermore, any limit µ[0,T ] of a subsequence of the µ
(n)
[0,T ] has the property that

µ[0,T ](C) = 1.

Here C denotes the set of continuous functions from [0, T ] to Rd. We defer to

[12] for the proof.

Proof of Theorem 3.4.1. Let ε, T > 0 be arbitrary positive numbers. We begin by

assuming that the theorem is proved under the following conditions:

Assumption 3.4.1. Suppose a and b are continuous, bounded diffusion and drift

coefficients, and that for 1 ≤ i, j ≤ d,

1. lim
n→∞

sup
x∈L(n)

∣∣∣a(n)
ij (x)− aij(x)

∣∣∣ = 0,

2. lim
n→∞

sup
x∈L(n)

∣∣∣b(n)
i (x)− bi(x)

∣∣∣ = 0,

3. lim
n→∞

sup
x∈L(n)

∆(n)
ε (x) = 0,

4. sup
n→∞

sup
x∈L(n)

∣∣∣a(n)
ij (x)

∣∣∣ <∞,

5. sup
n→∞

sup
x∈L(n)

∣∣∣b(n)
i (x)

∣∣∣ <∞,

6. sup
n→∞

sup
x∈L(n)

∆(n)
ε <∞.

Then we have that x(n) =⇒ X if x
(n)
0 → X0 = x, uniformly in x ∈ K.

Let φM be a C∞(Rd) function such that 0 ≤ φM ≤ 1, φM = 1 on B(0,M), and

φM = 0 on B(0,M+1)c := Rd\B(0,M+1). Now taking a and b to be any continuous

coefficients on Rd, we note that the above conditions are satisfied for the coefficients

aM (x) = φM (x)a(x), bM (x) = φM (x)b(x).
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Define as above

Π(n)(x,E) = P
(
x

(n)
t+1 ∈ E

∣∣∣ x(n)
t = x

)
and define the truncated transition kernels

Π
(n)
M (x,E) = φM (x)Π(n)(x,E) + (1− φM (x))δx(E).

Call the process generated by Π
(n)
M the Markov chain x(n),M = {x(n),M

t : t ≥ 0}.

Then Π
(n)
M = Π(n) on B(0,M), but interpolates between Π(n) and a constant or fixed

process on B(0,M)c such that x
(n),M
t+s = x

(n),M
t for all s > 0. Let x

(n),M
0 → x̃ ∈ K.

Defining the unique limit point of the sequence {x(n),M
t } to be XM

t , with XM
0 = x̃,

since {x(n),M
t } satisfies Assumption 3.4.1 we have x

(n),M
t =⇒ x

(n)
t uniformly for

x ∈ K. The law of x(n),M agrees with the law of x(n) up until the stopping time

τM := inft≥0

{
|x(n),M
t | ≥M

}
.

We will write W(n) for the measure on the path space D := D([0, T ],Rd) of

cádlàg paths in d-dimensional euclidean space induced by x(n), and likewise W(n),M

andW∞ for the measure on D induced by the chains x(n),M and X, respectively. Now

let H be an open set in D, and

GM = {ω ∈ D : ω(t) ∈ B(0,M) for all t ∈ [0, T ]}

is another open set in D. Recall the Prokhorov metric on the space of path measures,

which topologizes weak convergence of measures:

Definition 3.4.1. Let A be a set in D and Aε = {ω : infω′∈A ‖ω − ω′‖ < ε} the ε

fattening of A, then the Prokhorov distance between two path measures W1 and W2 is

dP (W1,W2) := inf
ε>0

sup
A∈D

{ε > 0 :W1(A) ≤ W2(Aε) + ε and W2(A) ≤ W1(Aε) + ε}.

We will show that for n and M large enough, dP (W(n),W(n),M ) < ε uniformly

in the starting position x̃. This will show that

dP (W(n),W∞) ≤ 3ε (3.11)
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independent of x̃ = X0, i.e. the Markov chains x
(n)
t converge uniformly in a weak

sense to Xt within K ⊂ Rd.

To prove the claim, we will divide the set H into H1 := H∩GM , H2 := H\{H1}.

It is immediate that W(n),M (H1) = W(n)(H1) ≤ W(n)(Hε
1) + ε and W(n)(H1) =

W(n),M (H1) ≤ W(n),M (Hε
1) + ε. For the set H2, we choose M large enough so that

according to Lemma 3.4.1 both processes will assign a probability of at most ε to GcM .

Thus W(n),M (H2) ≤ W(n),M (Gck) ≤ W(n)(Hε
2) + ε and W(n)(H2) ≤ W(n)(GcM ) ≤

W(n),M (Hε
2) + ε, so we conclude that dP (W(n),M ,W(n)) ≤ ε for all M and n large

enough, and independent of x̃ ∈ K.

To finish the proof, recall that we take as given that x
(n),M
t =⇒ XM

t as n gets

large, uniformly over K, and applying Lemma 3.4.1 again, XM
t =⇒ Xt as M → ∞

uniformly over K as well. So

dP (W(n),W∞) ≤ dP (W(n),W(n),M ) + dP (W(n),M ,WM ) + dP (WM ,W∞)

but for n and M large enough, the first and last terms are less than ε, so

dP (W(n),W∞) ≤ 3ε.

Thus, Theorem 3.4.1 is proven as soon as we show Assumption 3.4.1 implies uniform

weak convergence x
(n)
t =⇒ Xt over a compact set K. The proof is given exactly

as in [26] with the following additional observation: the equations (7.9a) and (7.12)

in that text hold uniformly over y ∈ K. This confirms 2. in Lemma 3.4.2 for all

processes originating in K, and 1. likewise holds by hypothesis. Therefore the path

space measures associated to {x(n) : x
(n)
0 = x ∈ K}n∈N are tight.
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3.5 Weak limit results

In this section we collect the implications of the weak convergence of Theorem

3.4.1 in the context of the setting described in Section 3.3. Throughout the section

we assume the family
(
x(n),L(n),P(n)

)
satisfies Assumption 3.3.1. Fix a critical point

z of V , and with α = α(z) as in Definition 3.3.3, define the chain x̃(n) = {x̃(n)
s : s ≥ 0}

by

x̃(n)
s := n−α

(
x

(n)
t − nz

)
where t = bsn2αc, s ∈ R≥0. (3.12)

This puts the chain into diffusive scaling, mentioned in the same definition. Write µ̃
(n)
s

for the distribution of x̃
(n)
s on the rescaled lattice n−α

(
L(n) − nz

)
. An important fact

that follows from our assumptions is that this rescaled process x̃(n) converges weakly

to an ergodic diffusion as n goes to infinity. As in the previous section, we define the

functions

b
(n)
j (x) =

1

n−2α

∑
h∈B

(n−αhj)p
(n)
h (nα−1x+ z),

a
(n)
ij (x) =

1

n−2α

∑
h∈B

(n−αhi)(n−αhj)p
(n)
h (nα−1x+ z),

on Rd, measuring the drift and diffusion of the discrete Markov process x̃(n). The drift

and diffusion coefficients of the limiting diffusion process (as n→∞) will be defined

as the pointwise limits of the functions b(n) and a(n), and once again we define

∆(n)
ε (x) = P

(∣∣∣x(n)
t+1 − x

(n)
t

∣∣∣ > εnα
∣∣∣x(n)

t = nαx
)
.

We begin this section with the following proposition:

Proposition 3.5.1. Assume the family of chains {x(n)}n≥1 satisfies Assumption

3.3.1. Fix a critical point z of the potential V . The functions b(x) = lim
n→∞

b(n)(x)
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and a(x) = lim
n→∞

a(n)(x) are continuous on Rd, and a is positive definite. For each

R > 0 we have

1. lim
n→∞

sup
|x|<R

∣∣∣a(x)− a(n)(x)
∣∣∣ = 0,

2. lim
n→∞

sup
|x|<R

∣∣∣b(x)− b(n)(x)
∣∣∣ = 0,

3. lim
n→∞

sup
|x|<R

∆(n)
ε (x) = 0.

Furthermore, the diffusion coefficient a(x) is constant, a(x) = a ∈ M(d,d) (R>0), and

the drift coefficient b(x) is, up to a linear transform, of the form

• b(x) = −|x|κ−1x or

• b(x) = cxκ with c ∈ R

according to whether d ≥ 1 and κ is odd, or d = 1 and κ is even, respectively.

Proof. Clearly, since the set of possible increments, B, is finite, the maximum incre-

ment length, mB := max{|h| : h ∈ B}, is finite. We may take n large enough that

n−αmB < ε, so 3. obviously holds independently of R. Using (3.4) and (3.5),

a
(n)
ij (x) =

∑
h∈B

hihjp
(n)
h (nα−1x+ z)

=
∑
h∈B

hihj
∑
k∈Zd

a
(0,k)
h (nα−1x)k +O(n−1)

=
∑
h∈B

hihja
(0,0)
h +O(nα−1) +O(n−1).

As |x| < R, the remainder terms are o(1). Then as n→∞,

aij(x) = lim
n→∞

a
(n)
ij (x) =

∑
h∈B

hihja
(0,0)
h =: aij ∈ R.
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Assertion 1. clearly follows, and by assumption (iii) we know hihja
(0,0)
h 6= 0 for some

i and j, so a 6= 0.

For 2. we proceed in much the same way. Suppose, under a linear transforma-

tion, that −∇V (x+ z) = −|x|κ−1x+O(|x|κ+1). Then we calculate

b(n)(x) = nα
∑
h∈B

hp
(n)
h (nα−1x+ z)

= nα
∑
h∈B

hph(nα−1x+ z) +O(n−1)

=
(
−∇V (nα−1x+ z)

)
nα +O(n−1)

= −|x|κ−1x+O(n−1). (3.13)

In the previous step we use the definition of α, that is, α = κ/(κ+ 1).

Alternatively, assume −∇V has an order κ zero at z with d = 1, and we have a

number c satisfying

−∇V (nα−1x+ z) = c(nα−1x)κ +O
(∣∣xnα−1

∣∣κ+2
)

= cxκn−α +O
(
nα−2

)
So the drift of x̃(n) is expressed as

b(n)(x) = cxκ +O
(
n2(α−1)

)
. (3.14)

Taking n to infinity gives us b(x) = cxκ. This with (3.13) proves 2.

We are ready to show that the sequence of measures on the space D([0, T ]) of

cádlàg paths from [0, T ] into Rd induced by the chains x̃(n) converges to a path space

measure of a diffusion. Write

X = {Xs : s ≥ 0}

for the diffusion governed by the stochastic differential equation

dXs = b(Xs)ds+ adWs.
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Here the functions a, b are as defined in Proposition 3.5.1, while W is a driving brow-

nian motion or Wiener process. We write η = {ηs : s ≥ 0} for the distribution of X.

We show below that if the associated critical point z` is stable, then the diffusion X

has an invariant measure, which we label π.

Then given a collection of paths A ⊂ D([0, T ]), we have P ({zt : 0 ≤ t ≤ T} ∈

A) = ξ[0,T ](A). The notation ξ
(n)
[0,T ] =⇒ η[0,T ] signifies that the sequence ξ

(n)
[0,T ] of path

measures converge weakly to η[0,T ] on D([0, T ]) as n→∞.

Lemma 3.5.1. Suppose the family of chains {x(n)}∞n=1 satisfies Assumption 3.3.1

above, consider a stable critical point z of V , and choose R > 0. For any T > 0

and any choice of x̃ ∈ B(0, R), if the sequence x̃
(n)
0 = n−α(x

(n)
0 − nz) converges to

x̃ ∈ B(0, R), then as n approaches infinity,

µ̃
(n)
[0,T ] =⇒ η[0,T ]

where X0 = x̃. Furthermore, the diffusion X has, up to a linear transformation,

invariant measure given by

π(x) = C exp

{
− |x|κ+1

|a|(κ+ 1)

}
,

with C > 0 chosen to normalize the distribution, and the covariance a as in Proposition

3.5.1 above.

Proof. We utilize Theorem 3.4.1, above. As the coefficients a and b, calculated in

Proposition 3.5.1, are Lipschitz continuous on compact sets the associated martingale

problem is well-posed (the associated diffusion is non-explosive and unique, see [51],

Chapter 10). By Proposition 3.5.1 the rescaled chain x̃(n) = n−αx(n) satisfies the

hypotheses of Theorem 3.4.1. So we see that with X0 as above, and X0 = x̃ =

limn→∞ x̃
(n), then for any finite time T > 0,

µ̃
(n)
[0,T ] =⇒ η[0,T ].
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Critically, this convergence is uniform in x̃ on compacts.

We quote here the criteria for a one-dimensional diffusion to be recurrent or

transient, which can be found in [42], or the forthcoming text [10] for example. The

corresponding theorem in the multi-dimensional case is quite similar, but has a cost in

space and notation that we will avoid here. The interested reader can find the details

in [8], page 548.

If X is a one-dimensional diffusion solving the SDE dXs = b(Xs)ds+a(Xs)dWs,

then X is recurrent if the integrals∫ ∞
0

exp

(
−
∫ y

0

2b(w)

a2(w)
dw

)
dy,

∫ 0

−∞
exp

(∫ 0

y

2b(w)

a2(w)
dw

)
dy (3.15)

both diverge. On the other hand, if only the first integral converges the diffusion

escapes towards ∞; if only the second integral converges it escapes towards −∞; if

both converge the diffusion is transient and may escape in either direction.

If a diffusion is recurrent and the following two integrals both converge then it

is positive recurrent (ergodic):∫ ∞
0

2

a2(y)
exp

(∫ y

0

2b(w)

a2(w)
dw

)
dy,

∫ 0

−∞

2

a2(y)
exp

(
−
∫ 0

y

2b(w)

a2(w)
dw

)
dy. (3.16)

It follows that since κ is odd at a stable point, both integrals of (3.15) diverge

and the diffusion X is recurrent. (If z is a local maximum of V , then we replace b

with −b, we see that the integrals are both convergent, so an unstable maximum of V

gives rise to a transient diffusion X, which may escape in either direction.) One also

checks that the integrals of (3.16) are both convergent, so X is an ergodic diffusion

and has an invariant measure.

By solving the Fokker-Planck equation one finds that for κ = 1, 3, 5, . . . , the

invariant measure is

π = lim
s→∞

η0,s ∝ exp

{
− |x|

κ+1

a(κ+ 1)

}
, (3.17)
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where one scales the exponential to have unit total mass. This describes the possible

behaviors of the invariant measure near a simply structured stable point and, in a

weak sense, the asymptotic behavior of the stationary distribution π(n).

We mention that as the convergence is uniform on compact sets, if µ̃
(n)
0 is a

probability distribution supported on K∩n−αL(n) for each n with K ⊂ Rd a compact

set, then taking any f ∈ Cb(Rd × [0, T ]) we have an N ∈ N such that if n > N and

η0 = µ̃
(n)
0 , then∣∣∣∣∫ T

0

∫
R
f(x, t)µ̃(n)

s (dx)ds−
∫ T

0

∫
R
f(x, t)η̃s(dx)ds

∣∣∣∣ < ε.

If our Markov chain is near an unstable point, the weak convergence of the

process to a transient diffusion provides an estimate on the passage time, as seen in

the following lemma.

Lemma 3.5.2. Suppose d = 1 and the family of chains
(
x(n),L(n),P(n)

)∞
n=1

satisfies

Assumption 3.3.1 above and select an unstable critical point z of V . Define α := α(z)

and choose constants δ > 0, ε > 0, and R > 0. There exists N ∈ N so that if n > N ,

we have a T > 0 such that x
(n)
0 ∈ B(nz,Rnα) implies

P
(

inf
{
t ≥ 0 : x

(n)
t 6∈ B(nz,Rnα)

}
> Tn2α

)
< ε.

Proof. Suppose b(x) = cxκ for c > 0 and κ even. If x
(n)
0 ∈ B(nz,Rnα), then x̃

(n)
0 lies

in the closure of B(0, R), a compact set. The martingale problem associated to a, b is

not well-posed, so we truncate the drift coefficients as follows:

b̂(x) =

 b(2R) if x ≥ 2R,

b(−2R) if x < −2R.

This preserves the continuity of b̂ and its behavior on the ball of interest, but is

now bounded. Therefore the diffusion associated to the coefficients b̂, a, written X̂
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with distribution η̂, is well-posed as it is not an explosive process. Likewise, we may

replace the transition functions p
(n)
h of x(n) outside of B(nz, 2Rnα) by their values at

nz ± 2Rnα. We write x̂(n) for the process defined in this manner.

Evaluating the integrals in (3.15) for the pairs b̂, a, we find that each diffusion

X̂ is transient, and that X̂ has limit ∞. (If we had taken c < 0 this limit would be

−∞.) Therefore, there exists T > 0 so that η̂s((−∞, R)) < ε for all s > T . Since the

path measures of x(n) and x̂(n) agree up until the chain exits B(nz, 2Rnα), we have

lim
n→∞

P
(
x

(n)
t ∈ B(nz,Rnα) for all 0 ≤ t ≤ Tn2α

)
= P

(
X̂s ∈ B(0, R) for all 0 ≤ s ≤ T

)
< ε.

An analogous argument can be made for critical points of the other unstable type: κ

odd, c > 0, b(x) = c|x|κ−1x, and d ≥ 1.

Another immediate benefit of utilizing the weak convergence in D([0, T ]) is the com-

putation of lower bounds on the mixing time asymptotics. The order of the lower

bound given in the following corollary is optimal except when −∇V has only a single

zero z, with κ(z) = 1. (This exception must be argued separately, see Corollary 3.7.4.)

Corollary 3.5.1. Suppose {x(n)}n≥1 is a sequence of Markov chains satisfying As-

sumption 3.3.1, and the potential function has critical points z1, . . . , zJ with α =

max
`=1,...,J

{α(z`)} > 1, then t
(n)
mix ≥ Cn2α for some constant C.

Proof. Suppose z` is a stable point of V . For each n ∈ N, let x
(n)
0 ∈ B

(
nz`, Rn

α(`)
)

so that x̃
(n)
0 → x̃ ∈ B(0, R). Let δ > 0, then

lim
n→∞

P
(
x̃(n)
s ∈ B(x̃0, δ) for all 0 ≤ s ≤ T

)
= P (Xs ∈ B(x̃0, δ) for all 0 ≤ s ≤ T ) .
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Define τR = inf{s ≥ 0 : Xs 6∈ B(0, R)}. Since Xs∧τR is a continuous process, we

can choose δ > 0 small enough that B(x̃0, δ) ⊂ B(0, R) and T > 0 small enough

that P (τ̃δ < T ) < ε/3 where τ̃δ := inf {s ≥ 0 : Xs 6∈ B(x̃0, δ)}. Then taking n large

enough,

P
(∣∣∣x̃(n)

s − x̃
(n)
0

∣∣∣ > δ for some 0 ≤ s ≤ T
)
< 2ε/3.

Hence x(n) remains within B(0, R) for Tn2α(`) time steps with high probability. That

is, for 0 ≤ s ≤ T

µ
(n)

sn2α(`)

(
B(nx̃0, δn

α(`))
)
> 1− 2ε/3.

Taking δ (and so T ) smaller if necessary, we have π(n)
(
B(x

(n)
0 , δnα(`))

)
< ε/3, so

∥∥∥µ(n)

sn2α(`) − π(n)
∥∥∥

TV
> 1− ε

for 0 ≤ s ≤ T . If z` is unstable we perform the same estimate with the truncated

process X̂, see Lemma 3.5.2 above. As this holds for each critical point of V , the

proof is complete.

3.6 Local limit theory

The above theorem will be applied to show that when there is a unique stable point

the distribution µ
(n)
t assigns the same measure to large sets near a stable point as

π(n) for times of order n2α (Theorem 4.1.1). Once the probability mass is distributed

appropriately on such sets we will need to show that the local mixing condition (The-

orem 4.2.2) holds for {x(n))}. This is achieved through a local limit theorem due to

Bhattacharya and Rao [9], given in the present section. For results in the same vein,

see also [18, 37].

For a sequence of real constants {χν} with ν = (ν1, . . . , νd) an integral vector,
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s ∈ Z, write

χs(z) = s!
∑
|ν|=s

χν
ν!
zν .

Define the polynomial P̃r(z : {χν}) by identifying coefficients of u in the following

formal power series:

∞∑
s=0

P̃s(z : {χν})us = exp

{ ∞∑
s=1

χs+2(z)

(s+ 2)!
us

}
. (3.18)

The first few of these are

P̃0(z : {χν}) := 1,

P̃1(z : {χν}) =
χ3(z)

3!
,

P̃2(z : {χν}) =
χ4(z)

4!
+

χ2
3(z)

2!(3!)2
.

Suppose V1, V2, . . . are i.i.d. d-dimensional lattice random variables (i.e. random

vectors taking values in a lattice L ⊂ Rd) with V = E[V1]. If η1, . . . , ηd are vectors

such that L = {
∑d

i=1 aiηi : (a1, . . . , ad) ∈ Zd}, then we define the determinant of L to

be det (η1, . . . , ηd), the determinant of the matrix formed by the ηi. Let the constants

χν be given by the cumulants of V1. We shall also write φb,a for a N (b, a) normal

random variable with mean b and covariance matrix a. As a short-hand we write

φ := φ0,I for the standard normal. Then we define the following quantity used in

asymptotic expansions of characteristic functions:

Ps(−φ : {χν}) := P̃s((−1)|ν|Dν : {χν})(−φ),

where we have substituted (−1)|ν|Dν for zν in P̃s and apply the resulting operator to

−φ. Here Dν designates the νth differential operator, ∂ν11 · · · ∂
νd
d .
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Definition 3.6.1. Define the homogenized random walk (HRW) associated to z ∈

L(n) to be the discrete time Markov chain y
(n)
z = {y(n)

z,t : t ≥ 0} on L(n) satisfying

P
(
y

(n)
z,t+1 = x+ h | y(n)

z,t = x
)

= P
(
x

(n)
t+1 = z + h | x(n)

t = z
)

= p
(n)
h (z/n) for all x ∈ L(n).

We denote the distribution at time t of the HRW by ν
(n)
z,t . Its transition operator is

written Q(n)
z and iteration of Q(n)

z is denoted by a subscript (as with P(n)), so that

ν
(n)
z,t = Q(n)

z ν
(n)
z,t−1 = Q(n)

z,t ν
(n)
z,0 .

We will write y
(n)
z = E[y

(n)
z,t+1 − y

(n)
z,t ] for the expected increment of y

(n)
z , and define

σ2 = Var(y
(n)
z,t+1 − y

(n)
z,t ), the covariance matrix.

The required theorem (Theorem 22.1 in [9]) can be restated as

Theorem 3.6.1. Let x(n) n = 1, 2, . . . be a sequence of Markov chains satisfying

Assumption 3.3.1, and let y
(n)
z be the HRW associated to z ∈ L(n) with p

(n)
h (z), ν

(n)
z ,

and Q(n)
z defined as above. Write w(t, x) for the map

w(t, x) = t−1/2σ−1
(
x− x(n)

0 − ty(n)
z

)
.

Letting s ≥ 2 be some integer, we have

sup
x∈L(n)

(1 + |w(t, x)|s)

∣∣∣∣∣ν(n)
z,t (x)− lt−1/2

s−2∑
r=0

t−r/2Pr (−φ : {χν}) (w(t, x))

∣∣∣∣∣ = o(t−(s−1)/2)

and ∑
x∈L(n)

∣∣∣∣∣ν(n)
z,t (x)− lt−1/2

s−2∑
r=0

t−r/2Pr (−φ : {χν}) (w(t, x))

∣∣∣∣∣ = o(t−(s−2)/2).

3.7 Dynamics Estimates

Our first subsection here discusses first the rate at which a chain escapes an

order n neighborhood of a stable point z ∈ L. This gives us a proof of slow mixing
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whenever the potential function V has multiple stable points. Moreover, the slow

rate of escape is crucial in demonstrating some of our other lemmas, both here and

in Chapter 5.. A further lemma describes the time required to exit a small annulus,

which is centered on a stable point of V , at the inner edge.

The next subsection describes the speed at which the particle x(n) approaches

and, in the unstable case, leaves critical points, as a function of κ. The dynamics of this

transient stage of the walk involve alternating between weak convergence arguments

(employing an approximating diffusive process when passing through metastable points,

or a deterministic integral curve when traversing the O(n) distances between them)

and comparisons to families of HRW’s. These random walks approximate the evolution

of x(n) when it passes between the two regimes (diffusive/low-drift and deterministic/high-

drift). We end the section with a theorem stating the asymptotics of the time to

approach a scaling neighborhood from any initial state.

Exit times and escape rates

Let {x(n) : n ∈ N} be a family of Markov chains satisfying Assumption 3.3.1. We

have the following estimate of the rate of escape from a set containing an equilibrium

point of V . Recall

τesc(δ) = inf{t ≥ 0 : x
(n)
t 6∈ B(nz, δn)} (3.19)

is the exit time of x(n) from a δn-neighborhood about a stable point.

Theorem 3.7.1. Suppose z is a simply structured stable point of V . Let x
(n)
0 ∈

B(nz,Rnα) with α as in Definition 3.3.1 and take δ > 0 any positive number. Then

P (τesc(δ) < t) = O
(
tn−2α exp (−Cn)

)



42

for some C > 0 and n sufficiently large.

Remark 3.7.1. In [24], the authors are able to use conductance arguments to ac-

curately estimate the commute time between two points of the state space. However,

their analysis exploits the nearest-neighbor nature of the Glauber dynamics of the Ising

model’s magnetization chain, and leads to global estimates on commute times. The

following proof relies only on the semimartingale nature of the Markov chains consid-

ered, but does not extend to high-drift regions, and so is insufficient to prove Kramers’

Law, for example (see Section 7.1).

Before proving Theorem 3.7.1, we prove a supporting lemma. Let r = {rt :

t ≥ 0} be a discrete one-dimensional Markov chain with bounded increments and

transition kernel q(·, ·). Let B be the finite set of possible increments,

B = {h ∈ R : q(x, x+ h) > 0 for some x ∈ R},

and let mB = max{|h| : h ∈ B}. Consider next the two stopping times τa = inf{t ≥

0 : rt ≤ a} and τb = inf{t ≥ 0 : rt ≥ b}.

Lemma 3.7.1. With r and q as above, assume q is constant, i.e. q(x, x + h) =

P (rt+1 = x+ h | rt = x) is a function only of h. Assume P (τb < τa) 6∈ {0, 1}. Then

either r is a martingale and

P (τb < τa) =
r0 − a
b− a

, (3.20)

or there exists a number λ∗ so that, given any interval [a, b] and any initial data

a < r0 < b,

P (τb < τa) =
eλ
∗r0 − eλ∗a

eλ∗b − eλ∗a
. (3.21)

In the latter case, if µ = E[rt+1 − rt] and σ2 = E
[
(rt+1 − rt)2

]
, then

|λ∗| > min

{
1

mB
,
|µ|
σ2

}
. (3.22)
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Proof. As q(x, x+h) is independent of x, we abbreviate it as q(h). Define τ = τa∧ τb.

If r is a martingale, it is immediate that

r0 = E[rτ ] = aP (τa < τb) + bP (τb < τa) ,

and (3.20) obtains. Now assume rather that r is a supermartingale (since q(x, x+ ·) is

independent of x and t, the only other possibility is that r is a submartingale, which

is handled in a symmetric fashion). We define the process w(λ) := exp (λr) for λ > 0

and calculate its expected increment:

E [wt+1(λ)− wt(λ)] = wt(λ)
∑
h∈Z

q (h) (exp(λh)− 1) .

For |x| < 1, we have ex − 1 − x − x2 ≤ 0, with equality only at x = 0. Thus, for

λ < 1/mB,

∑
h∈B

q(h) (exp(λh)− 1) ≤
∑
h∈B

q(h)
(
λh+ λ2h2

)
= λE[rt+1 − rt] + λ2E

[
(rt+1 − rt)2

]
= λµ+ λ2σ2

where µ = E [r1 − r0] < 0 and σ = E
[
(r1 − r0)2

]
. Then 0 < λ < −µ/σ2 implies

E[wt+1(λ)− wt(λ)] < 0 and the process w(λ) is a supermartingale.

On the other hand, the hypothesis that P (τb < τa) 6= 0 means P (rt+1 > rt) > 0.

So as λ → ∞ we have E[wt+1(λ) − wt(λ)] → ∞, so for λ large enough the process

w(λ) is a submartingale. By continuity, there exists a number

λ∗ ∈
(

min

{
1

mB
,
−µ
σ2

}
,∞
)

(3.23)

so that w(λ∗) is a martingale. Now (3.21) follows from (3.20), completing the proof.
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Remark 3.7.2. If 0 > µz = O(n−γ) for some γ > 0 as n→∞, as it does for z near

the zeros of ∇V , then we can choose instead an ε > 0 and a δ > 0 so that

exp (x) < 1 + x+
x2

2− ε
for x ∈ [−δ, δ].

Then for n large enough, (3.23) becomes

min{−(2− ε)µmin/σ
2
max, δ/mB} = −(2− ε)µmin/σ

2
max,

and so one can take λ∗ arbitrarily close to −2µmin/σ
2
max. This recovers the natural

speed and scale transformation for diffusions.

Corollary 3.7.2. The solution λ∗ in the previous lemma is unique. If r is a su-

permartingale (submartingale), for any λ between 0 and λ∗ the process exp (λr) is a

supermartingale (submartingale).

Proof. Again, we only deal with the supermartingale case. Consider the function

∆(λ) := E [exp (λ (rt+1 − rt))]. Clearly ∆(0) = 1 and ∆′(0) = E[rt+1 − rt] < 0, so the

function is decreasing at λ = 0. Furthermore, by its definition ∆(λ∗) = 1 with λ∗ > 0

from the lemma above. If we write hmin := min{h ∈ B}, then

∂2
λ∆(λ) = E

[
(rt+1 − rt)2 eλ(rt+1−rt)

]
(3.24)

≥ eλhminσ2, (3.25)

which is strictly positive for λ on (0,∞). Hence ∆ is everywhere concave up, so the

equality ∆(λ) = 1 is achieved at most twice. Since this occurs for λ = 0 and λ = λ∗

for λ∗ as in Lemma 3.7.1, we conclude that λ∗ is the unique positive solution.

Since ∆′(0) < 0 and E
[
eλrt+1 − eλrt

]
= (∆(λ)−1)eλrt , clearly w(λ) = exp (λr) is

a martingale when λ = 0, λ∗ and is a supermartingale for the intermediate arguments,

λ ∈ (0, λ∗).
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Proof of Theorem 3.7.1. Let {gj} be a sequence of integers such that for some r < R,

0 < g0 = Rnα < g1 < · · · < gN−1 ≤ δn < gN and gj − gj−1 = rnα. (3.26)

Define the sets Bj = B (nz, gj) for j = 0, 1, . . . , N and A(a, b) = B(nz, b)\B(nz, a)

and Aj = A(gj−mB, gj+mB). The chain x(n), initiated at a point x
(n)
0 ∈ A1, induces

a sequence of times (tk)k≥0 and integers ξ = (ξk)k≥0 satisfying

• t0 = 0 and ξ0 = 1,

• x(n)
tk
∈ Aξk for all k ≥ 0,

• tk+1 = inf
{
t ≥ tk : x

(n)
t ∈ Aξk−1 ∪ Aξk+1

}
.

Since the chain x(n) has increments bounded by mB, one sees that the process ξ is a

nearest-neighbor random walk on the integers {0, 1, . . . , N}. Let us define the stopping

times τ0(ξ) = min{k ≥ 0 : ξk = 0} and τN (ξ) = min{k ≥ 0 : ξk = N}. Furthermore,

if x
(n)
tk

exits B(0, nδ) before returning to B(nz,Rnα), then ξk = N , so we may study

the rate of escape of x(n) from the δn-ball about nz through the probability that ξ

exits {0, 1, . . . N} at N rather than 0. In particular, by Doob’s maximal inequality, if

x
(n)
t0
∈ A0, then

P

(
max
t0≤s≤t

∣∣∣x(n)
s − E[x(n)

s ]
∣∣∣ > (g1 − g0)

)
= O((t− t0)n−2α).

Therefore, if τ0(ξ) < τN (ξ), that is if x(n) returns to B(nz,Rnα) at a time t0 < τesc(δ),

then the time until the next excursion can begin (that is, until x(n) returns to A1 and

a new ξ process may begin) is Θ(n2α) with high probability. Applying the law of large

numbers to this lower bound on the time of each excursion, there is a number cm > 0

independent of n such that

P (τesc(δ) < t) <
t

cmn2α
P (τN (ξ) < τ0(ξ)| ξ0 = 1) . (3.27)
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The random walk ξ has transition probabilities given by

pk = P (ξt+1 = k + 1 | ξt = k) , qk = P ((ξt+1 = k − 1 | ξt = k) = 1− pk. (3.28)

According to a classic result on nearest-neighbor random walks,

P (τN (ξ) < τ0(ξ) | ξ0 = 1) =

N−1∑
k=1

k∏
j=1

qj
pj

−1

, (3.29)

so we seek a tight enough upper bound on pk.

Consider an arbitrary point z ∈ Ak and let y
(n)
z be the associated HRW given in

Definition 3.6.1. Applying Corollary 3.7.2 to the radial process r
(n)
z :=

∣∣∣y(n)
z

∣∣∣ there is

some λ∗z such that exp
(
λr

(n)
z

)
is a supermartingale for all λ ∈ (0, λ∗z). The minimum

of these, λk = min{λ∗z : z ∈ Ak}, is such that

wk := exp
(
λk

∣∣∣x(n)
∣∣∣)

is a supermartingale onA (gk−1, gk+1), and we remark that from Lemma 3.7.1 we know

that with µz := E
[∣∣∣y(n)

z,t+1 − y
(n)
z,t

∣∣∣] and σz defined analogously, λk ≥ min
{
|µz|/σ2

z : z ∈ A(gk−1, gk+1)
}

.

We also write σmax for the maximum value of σz on B(nz, nδ) which is, of course,

positive. Then given the stable and simple structure of z, our estimates on E[x
(n)
t+1 −

x
(n)
t |x

(n)
t = x] in (3.3.1) lead to µz = −c|z/n|κ +O(n−1), and

λk ≥ c(gk−1/n)κ/σ2
max +O(n−1). (3.30)

It is clear that if τk = inf{t ≥ 0 : x
(n)
t 6∈ A(gk−1, gk+1)} we can write

pk = P
(
|x(n)
τk
| > gk+1

)
= P (wk,τk > exp (λkgk+1)) .

Applying the optional stopping theorem to wk, this becomes

pk ≤
exp (λkgk)− exp (λkgk−1)

exp (λkgk+1)− exp (λkgk−1)
+O

(
e−mB/gk−1

)
,
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which when applied in (3.29) leads to

P (τN (ξ) < τ0(ξ) | ξ0 = 1) ≤

N−1∑
k=1

k∏
j=1

eλjgj+1 − eλjgj
eλjgj − eλjgj−1

+O(e−n
α
)

−1

(3.31)

≤

N−1∑
k=1

k∏
j=1

eλj(rn
α) +O(e−n

α
)

−1

(3.32)

≤ exp

− N∑
j=1

λjrn
α

 . (3.33)

When we apply (3.30) we find this is at most

exp

− c

σ2
max

N∑
j=1

(gj−1

n

)κ
rnα

 = exp

(
−n c

σ2
max

∫ δ

0
gκdg +O(1)

)
.

Together with (3.27), this completes the proof.

By using the same methods in the simpler one-dimensional case, one can prove

a similar inequality in the case where V is simply structured but has saddle critical

points; we state this next.

Corollary 3.7.3. Suppose d = 1 and z is a critical point of V that is not an extremum.

Say V (z+ δ) > V (z) for δ > 0. Fix a positive δ and let x
(n)
0 ∈ (−∞, nz+ δnα) with α

as in Definition (3.3.3). If τδ = inf{t ≥ 0 : x
(n)
t ≥ n(z+ δ))}, then there is a constant

C > 0 such that

P (τδ < t) = O
(
tn−2α exp (−Cn)

)
.

Recall that a, b > 0 define the annulus A(a, b) = {x ∈ L(n) : a ≤ |x| ≤ b}. Given

a set E, define

z∗(E) := arg max
x∈E

{
E
[
|x(n)

1 | − |x
(n)
0 |
∣∣∣x(n)

0 = x
]}

, (3.34)

the point in E where the chain achieves its maximal outward radial drift, as well as

µmax(E) = E
[
|x(n)

1 | − |x
(n)
0 |
∣∣∣x(n)

0 = z∗
]
. (3.35)
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If the annulus is centered on a stable point nz, translate nz to the origin and suppose

a, b are small enough that the chain has a negative radial drift:

µmax(A(a, b)) < 0.

Lemma 3.7.2. Let
(
x(n),L(n),P(n)

)
n≥1

be a sequence of Markov chains satisfying

Assumption 3.3.1, and suppose that z is a stable point of V . Translate z to the origin

and let x
(n)
0 ∈ A(a, b) for a, b > 0. Defining, for any process η defined on R, the

stopping time τa(η) = inf{t ≥ 0 : ηt < a},

P
(
τa(|x(n)|) ≥ t

)
≤ C1t

(b− a)2
+
C2(|x(n)

0 | − a)

t |µmax|
+O(e−C3n).

where µmax := µmax(A(a, b)).

Proof. Let us define the (not necessarily Markov) one-dimensional process r(n) =∣∣x(n)
∣∣. The point where r(n) attains its maximum drift (smallest in magnitude) is |z∗|.

Then let y∗ be the HRW associated to r(n) at the point |z∗|, i.e.

P
(
y∗t+1 − y∗t = h

)
= P

(
r

(n)
1 − r(n)

0 = h
∣∣∣x(n)

0 = z∗
)

for all t ≥ 0 and all h ∈ R.

We initiate the HRW at y∗0 = (2b + a)/3. The quantity y∗ represents the (constant)

average increment of the y∗ process, E[y∗t+1 − y∗t ].

Clearly {y∗t − ty∗} is a martingale which will hit (−∞, a] with probability one,

so using the optional stopping theorem,

y∗0 = E[y∗τa − τay∗] ≥ a−mB − y∗E[τa].

But then

P (τa(y
∗) ≥ t) ≤ t−1E[τa(y

∗)] ≤ y∗0 +mB − a
|y∗|

t−1 =
C2(b− a)

|y∗|t
. (3.36)

On the other hand, the process y∗− r(n) is a submartingale on [a, b], so it has a Doob

decomposition of the form Mt + At where M is a martingale process originating at
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0 and A is an increasing predictable process starting at A0 ≥ (b − a + mB)/6. Now

apply the Doob maximal inequality to conclude for t ≥ 0

P

(
min

0≤s≤t
y∗s − r(n)

s < 0

)
≤ P

(
min

0≤s≤t
Ms < A0

)
≤ P

(
max
0≤s≤t

|Ms|2 > A2
0

)
≤ E

[
|Mt|2

]
/A2

0. (3.37)

As M has independent increments bounded by 2mB, its variance grows linearly with

time. We have the rough bound

E
[
|Mt|2

]
≤ t(2mB)2,

which leads to

P

(
min

0≤s≤t
r(n)
s − y∗s < 0

)
≤ (12mB)2t

(b− a−mB)2
≤ C1t

(b− a)2
. (3.38)

Combining (3.36), (3.38), and Theorem 3.7.1 leads to the sought inequality:

P (τ(r) ≥ t) = P (τ(r) ≥ t, τa(r) < τb(r)) + P (τ(r) ≤ t, τb(r) < τa(r))

≤ P (τa(r) ≥ t) + P (τb(r) < τa(r))

≤
[
P

(
τa(r) ≥ t, min

0≤s≤t
r(n)
s − y∗s > 0

)
+

C1t

(b− a)2

]
+ P (τb(r) < τa(r))

≤ P (τa(y
∗) ≥ t) +

C1t

(b− a)2
+ P (τb(r) < τa(r))

≤ C2(b− a)

|y∗|t
+

C1t

(b− a)2
+O(e−C3n).
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Approaching stable points

Choosing a positive number δ, small enough that B(zj , δ) ∩ B(zk, δ) = ∅ in L,

define the sets

Scrit(δ) =
J⋃
j=1

B(nzj , nδ) and Ssta(δ) =
⋃
j∈J

B(nzj , nδ)

where J = {j ∈ {1, . . . , J} : zj is a stable point of V }. The Markov chain travels

through the high-drift regions outside of Scrit(δ) with velocity of order n−1/step. Thus

after O(n) steps, it will enter Scrit(δ) from the basin of attraction of some critical point

nzj :

τcrit(δ) = inf{t ≥ 0 : x
(n)
t ∈ Scrit(δ)}. (3.39)

This is the content of Lemma 3.7.3. In the same manner, we define the stopping time

τsta(δ) = inf{t ≥ 0 : x
(n)
t ∈ Ssta(δ)}. (3.40)

We write

τann(R, j) = inf{t ≥ 0 : |x(n)
t − nzj | < Rnα(j)}. (3.41)

Once the chain is within Scrit, we consider a sequence of concentric annuli whose radii

grow geometrically, covering B(nzj , nδ)\B(nzj , Rn
α(j)). To preserve our eyesight, we

write α(j) instead of α(zj). As x(n) enters each annulus in turn we may choose a local

HRW to compare |x(n) − nzj | to. This estimation, found in Lemma 3.7.4, shows that

τann(R, j), the time needed to enter B(nzj , Rn
α(j)) from outside of B(nzj , δn) (or to

exit B(nzj , δn) from within B(nzj , Rn
α(j))), is of the same order as the diffusive time

scale, n2α(j). Likewise, the weak convergence arguments in Lemma 3.7.5 show exit

from unstable critical points take O(n2α(j)) time steps as well: for j ∈ {1 . . . , J}\J ,

τexit(R, j) = inf{t ≥ 0 : x
(n)
t 6∈ B(nzj , Rn

α(j))} = O(n2α(j)). (3.42)
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As shown in Theorem 3.7.5 below, iterating these results shows that the time required

to enter Ssta(δ) is order n2α time, where α = max{α(j)}.

We write that an event occurs with high probability (w.h.p.) if given any ε > 0

we may choose constants (n, δ, etc.) so that the probability of the event is greater

than 1 − ε. The stages just described take the particle through each saddle point,

nzj , separating it from the origin, and each stage requires n2α(j) time steps with high

probability.

Lemma 3.7.3. Suppose x(n) satisfies Assumption 3.3.1 and δ is as in the paragraph

above. Then τcrit(δ) = O(n) with high probability.

Proof. We assume x
(n)
0 6∈ B(nz, nδ) to avoid the trivial case. By Theorem 3.4.1, if the

sequence n−1x
(n)
0 converges to x̃ ∈ L, then the solution to the differential equation dXs = −∇V (Xs)ds,

X0 = x̃,

is the weak limit of the process x̃(n) =
{
x̃

(n)
s = x

(n)
bnsc : s ≥ 0

}
. As a result, for any

T > 0, ε > 0, there is a positive integer N such that for n > N , and any time

s ∈ [0, T ],

µ̃(n)
s (B(z, δ)) = P

(
x

(n)
bnsc ∈ B(nz, nδ)

)
≥ P (Xs ∈ B(z, δ))− ε.

The integral curve X will move along the gradient field of V and asymptotically will

approach a fixed point z of the dynamic, where −∇V = 0. Since lims→∞Xs = z,

choosing s large enough then gives P (Xs ∈ B(z, δ)) = 1.

For example, in Section 4.5 we show that the Ehrenfest urn model has gradient

function −∇V (x) = −x/2, so X satisfies dX/ds = −X/2, or

X(s) = x̃ exp(−s/2).
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With x
(n)
0 ≈ nx̃, we have τcrit(δ)/n→ 2 log(|x̃|/ε) as n becomes large.

Lemma 3.7.4. Let
(
x(n),L(n),P(n)

)
satisfy Assumption 3.3.1.

1. Suppose d ≥ 1, zj is a stable point of V , δ > 0 is as taken as above, and

x
(n)
0 ∈ B(nzj , nδ). Then τann(R, j) = O(n2α(j)) with high probability.

2. Suppose we have the following simple case: −∇V has a unique and stable zero

at the origin, so after a linear transformation V = C|x|2/2. Then τann(R, j) =

O(n log n) with high probability.

Proof of 1. We will drop the argument from α(j) as we are only considering a single

stable point in this proof. Recall that A(a, b) is the annulus centered on zj with inner

and outer radii of a and b, respectively. We write mB = max{|h| : h ∈ B}, and for

λg > 1 some number, define a sequence of numbers g0 = Rnα < g1 < · · · < gN−1 ≤

δn < gN , such that gj+1 = λggj for all j = 0, 1, . . . , N − 1. Now create a sequence of

stopping times

τj = inf{t ≥ 0 : |x(n)
t | < gj−1}

and annuli Aj = A(gj−mB, gj +mB). Last, with λt > 0 an arbitrary constant, define

the times

t0 = 0 < t1 = λtn
2α < t2 < . . . , so that tj+1 = λttj .

We apply Lemma 3.7.2 from the last subsection in the second inequality of

the following display, then we bound |µmax| below by c|gj−1/n|κ/2 in the annulus

A(gj−1, gj+1). Let t∗ =
∑

j tj , and the Ci below denote positive constants;

P (τann > t∗) ≤
N∑
j=1

P (τj > tj)

≤
N∑
j=1

C1tj
(gj+1 − gj−1)2

+
C2(gj − gj−1)

tj |µmax|
+O(e−Cn)
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≤
N∑
j=1

C3λ
j
t

R2λj−1
g

+
C4Rλ

j−1
g

λjtn
αc |gj−1/n|κ /2

+O(e−Cn)

≤
N∑
j=1

C5

R2

(
λt
λg

)j
+

C6

Rκ−1

(
1

λtλ
(κ−1)
g

)j
+O(e−Cn). (3.43)

Taking λt = 2λ1−κ
g , λg > 41/κ, and fixing R large enough, (3.43) becomes

P (τann > t∗) ≤ ε

2

N∑
j=1

(
2

λκg

)j
+
ε

2

N∑
j=1

(
1

2

)j
+O(e−Cn).

≤ ε+ o(n−γ) (3.44)

for any γ > 0. Finally, check that t∗ = Θ(n2α). This completes the proof of 1.

Proof of 2. Now we turn to the case z is the unique zero of −∇V and a stable

point with κ = 1, so α = 1/2. Take x
(n)
0 ∈ B(nz, nδ). Translating z to the origin and

performing a linear transformation of Zd if necessary, we have on B(0, δ) for δ > 0

small enough V (x) = C
2 |x|

2 +O(|x|3). Then

E
[
x

(n)
t · x

(n)
t+1

∣∣∣x(n)
t = x

]
= |x|2 − C

n
|x|2 +O(|x|3/n2) +O(|x|/n).

Define, as usual, r =
∣∣x(n)

∣∣; we will take R large enough that h/R < ε. Then since

rt ≤ Rn1/2 implies t > τsta, we can assume rt > Rn1/2, i.e. |xt+1 − xt|2 < r2
t ε

2/n.

The above estimate gives us

E [rt+1|Ft] ≤ rtE

(1 + 2
x

(n)
t · (x

(n)
t+1 − x

(n)
t )

r2
t

+
ε2

n
+ h.o.t.

)1/2


≤ rt

(
1− C

n
+
ε2

2n

)
+O(n−3/2). (3.45)

Taking δ and ε smaller if necessary, there exists a constant c∗ such that, uniformly for

x
(n)
t ∈ B(0, δn),

E [rt+1|Ft] ≤ rt

(
1− c∗

n

)
. (3.46)
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Note that as n → ∞ we may take δ, ε arbitrarily small, so c∗ → C from above.

Iterating this estimate, the expectation at time t then is bounded according to

E[rt] = E[rt; τesc(δ) > t] + E[rt; τesc(δ) < t]

≤
(

1− c∗

n

)
E[rt−1] + δnP (τesc(δ) < t)

≤
(

1− c∗

n

)2

E[rt−2] +

(
1− c∗

n

)
δnP (τesc(δ) < t− 1) + δnP (τesc(δ) < t)

...

≤
(

1− c∗

n

)t
r0 + δn

t∑
s=1

(
1− c∗

n

)t−s
P (τesc(δ) < s) (3.47)

For arbitrary ∆ ∈ (0, δ), setting

t =
n log n

2c∗
− n log (∆)

c∗

in (3.47) above,

E [rt] ≤
∆nO(n−1)

n1/2
r0 +O(n3/2)P (t ≥ τδ). (3.48)

Taking n larger if necessary, we can conclude via Theorem 3.7.1 that

E [rt] ≤
∆r0

n1/2
+ o(n−γ)

for any γ > 0. Citing Lemma 4.4.1 and taking ∆ > 0 small enough, a Chebyshev

bound shows

P
(
rt ≥ Rn1/2

)
≤ ∆

R

r0

n
≤ ε.

Corollary 3.7.4. If d = 1 and V has a single stable critical point at z with κ :=

κ(z) = 1, say V (x) = c1x
2 up to translation, then given ε > 0 there exists a constant

c2 such that as n→∞,

t <
n log n

2c1
− c2n

implies ‖µ(n)
t − π(n)‖TV ≥ 1− ε.



55

Proof. We continue with the notation of the previous proof and consider x
(n)
0 ∈

(δn/2, δn). One may perform the same conditioning on {t ≤ τesc(δ)} and note that

the expectation E[x
(n)
t ] is nonnegative for all t > 0 to find that for some ε′ > 0, which

goes to zero as δ → 0,

E[x
(n)
t ] ≥ E

[(
1− c1 + ε′

n

)
x

(n)
t−1 − C/n

∣∣∣∣ {t < τesc(δ)}
]
P (t < τesc(δ))

≥

((
1− c1 + ε′

n

)t
x

(n)
0 − C/n

t−1∑
s=0

(
1− c1 + ε′

n

)s)
P (t < τesc(δ)).

With r > 0 arbitrary, we take

t =
n log n

2(c1 + ε′)
− n log ((R+ r)/δ)

c1 + ε′
. (3.49)

As before, P (t ≥ τδ) → 0 at an exponential rate as n → ∞ by Theorem 3.7.1, so

finally

E[x
(n)
t ] ≥

(
1− c1 + ε′

n

)t
δn+O(1) ≥ (R+ r)n1/2 +O(1).

An application of the Chebyshev inequality shows that

P
(∣∣∣x(n)

t − E[x
(n)
t ]
∣∣∣ ≥ rn1/2

)
≤

sup
x
(n)
0 ∈L(n)

Var(x
(n)
1 )

2(c1 + ε′)r2

Now take r large enough to conclude that

P
(
x

(n)
t < Rn1/2

)
≤ ε

But by a large enough choice of R we can assume π([−R,R]) > 1 − ε, where π

is the invariant measure of the diffusion that is the weak limit of x̃(n) = {x̃(n)
s } ={

n−1/2
(
x

(n)
sn − nz

)}
. Hence,

‖µ(n)
t − π(n)‖TV ≥

∣∣∣µ(n)
t (B(0, Rn1/2))− π(n)(B(0, Rn1/2))

∣∣∣
≥

∣∣∣π(B(0, R))− π(n)(B(0, Rn1/2))
∣∣∣+ 1− 2ε
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≥ 1− 3ε.

Note ε′ may be made arbitrarily small by lowering δ, which may require in turn a

larger n to maintain the bound on P (t ≥ τesc(δ)) above. Thus, as n increases we

have P
(
τsta ≤ (2c1)−1n log n− c2n

)
< ε with c2 given as in (3.49) and the corollary

follows.

Lemma 3.7.5. Suppose x(n) satisfies Assumption 3.3.1, that d = 1 and zj is a saddle

point of V . Then with high probability, if x
(n)
0 ∈ B(nzj , Rn

α(j)),

τexit(R, j) = O(n2α(j)).

The proof is very similar to the proof of 1. in Lemma 3.7.4.

Proof. We again drop the argument j from α(j). Suppose x
(n)
0 ∈ B(nzj , Rn

α). As

discussed in Lemma 3.5.2, rescaling the chain as x̃(n) = n−α
(
x(n) − nzj

)
, we have

P
(∣∣∣x̃(n)

s

∣∣∣ < R
)
< ε for some s > 0 independent of n, and so

P
(
τesc(nzj , Rn

α) > sn2α
)
< ε.

The same lemma tells us that the chain exits w.h.p. in the direction of decreasing V ;

suppose that this is the positive x direction: V (nzj + x) < V (nzj) for x ∈ (0, δn). As

in Lemma 3.7.4 we now define the numbers g0 = Rnα < g1 < · · · < gN−1 ≤ δn < gN

so that gj+1 = λggj for some λg > 1 to be chosen, and create a sequence of growing

intervals Ij := (nzj + gj−1, nzj + gj+1), j = 1, . . . , N . Define the stopping times

τj := inf
{
t ≥ 0 : x

(n)
t > nzj + gj+1

}
and the deterministic times t0 = 0 < t1 = λtn

2α < t2 < · · · < tN , where again

tj+1 = λttj .
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Some thought shows that we can apply the results of Lemma 3.7.2 by replacing

µmax with

µmin(j) := min
{
E
[
x

(n)
1 − x(n)

0

∣∣∣x(n)
0 = x

]
: x ∈ Ij

}
.

The situation of increasing, positive drift away from nzj is, in one dimension, es-

sentially the same as that of decreasing negative drift. One can prove that for

|x(n)
0 − gj | < mB,

P (τj > t) ≤ C1t

(gj+1 − gj−1)2
+
C2(gj − gj−1)

tµmin
+O(e−Cn) (3.50)

using the same tools of submartingale HRWs (initiated to the left of gj), the optional

stopping theorem, and Doob maximal inequality. Inserting this inequality into

P (τesc(nzj , δn) > t∗) ≤
N∑
j=1

P (τj > tj) ,

we follow the same steps as in the proof of Lemma 3.7.4 to conclude τesc(nzj , δn) =

Θ(n2α) with high probability.

The three lemmas of this subsection measure closely the time required to ap-

proach the origin. The following theorem builds off of the lemmas to provide the time

to approach a stable point of V , as well as intuition regarding cutoff. We define an-

other stopping time, which measures the length of the transient phase of the Markov

chain (time until it enters a scaling neighborhood of a stable point):

τJ (R) = inf{t ≥ 0 : x
(n)
t ∈

⋃
`∈J

B(nz`, Rn
α(`))}. (3.51)

where J is the set of stable critical points of V .

Theorem 3.7.5. Let the Markov chains
(
x(n),L(n),P(n)

)
satisfy Assumption 3.3.1

and fix ε > 0. There exists a positive integer N such that the following holds for
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n > N . Given an arbitrary starting position x
(n)
0 ∈ L(n), we have that for t > t1(n),

P (τJ (R) > t) = P

(
x

(n)
t1(n) 6∈

⋃
`∈J

B(nz`, Rn
α(`))

)
< ε

and

t1(n) =

 c0n log(n) if V has only one critical point, with κ = 1,

c0n
2α otherwise,

for a constant c0 independent of n, and with α := max{α(j) : j = 0, 1, . . . , J}.

Proof. We take δ > 0 small enough and n and R large enough that each of Lemmas

3.7.3, 3.7.5, and 3.7.4 hold. Choose x
(n)
0 ∈ L(n). By Lemma 3.7.3, τcrit(δ) = O(n). If

we are in the case where V has a single nondegenerate critical point, z1, then part 2.

of Lemma 3.7.4 shows that τann(R, 1) = O(n log n).

Consider V otherwise. Then once x(n) hits Scrit(δ) Lemmas 3.7.5 and 3.7.4 show

that if x
(n)
τcrit ∈ B(nz`, δn) for z` a saddle point or unstable point, then x(n) will enter

B(nz`, Rn
α(`)), then escape the ball B(nzl, δn)) at a point x

(n)
τexit = x for which

V (x/n) < V (z`)

within O(n2α(`)) time steps. Repeating this process if necessary, eventually x(n) will

hit Ssta(δ); this is because once x(n) leaves a δn-ball of an unstable critical point

Lemma 3.7.3 says that it will follow the gradient flow with high probability, which

leads away from the unstable point. Therefore taking α′ = max{α(j) : j 6∈ J },

τsta(δ) = O(n2α′).

Once x(n) is within a δn-ball of a stable point z`, part 1. of Lemma 3.7.4 shows that

O(n2α(`)) steps are required to have entered B(nz`, Rn
α(`)) with high probability.

As the initial condition x
(n)
0 could be chosen so that ` is any of the members of J ,
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we must consider the longest of the n2α(`) time scales possible. Setting α′′ equal to

max{α(j) : j ∈ J }, we see that

τJ (R) = τsta(δ) +O(n2α′′).

This completes the proof.
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4. MIXING TIMES - SIMPLE POTENTIAL STRUCTURE

This chapter will utilize the work of Chapter 3. to establish our mixing time

theorem in the case of a simply structured potential V .

4.1 Weak mixing

Suppose that V has a collection J of stable points with ` ∈ J , then Lemma

3.5.1 asserts that if under the diffusive scaling near nz` we have x̃
(n)
0 ∈ B(0, δ) (i.e.

x
(n)
0 ∈ B(nz`, Rn

α(`)) ) then the evolution of the distribution µ̃
(n)
0 is approximated by

an ergodic diffusion X with invariant measure π. We choose R > 0 so that Theorem

3.7.5 holds, and with S̃ = B(0, R),

π
(
S̃
)
≥ 1− ε

for each ` ∈ J . For each j ∈ J define the corresponding balls in L(n) to be

S
(n)
j := nα(j)S̃ + nzj (4.1)

= B
(
nzj , Rn

α(j)
)
∩ Zd.

Then x
(n)
t ∈ S(n)

j ⇐⇒ x̃
(n)
s ∈ S̃ under the local diffusive rescaling at nzj . The sets

S
(n)
j describe neighborhoods of a natural size about the critical points of the process

x(n).

The following theorem is a restatement of the weak convergence of x(n) to an

ergodic diffusive process while on S
(n)
j , j ∈ J . We will write x

(n)
m = {x(n)

m,t : t ≥

0} for m = I, II to indicate two instances of the Markov chain x(n), both evolving

independently on a common probability space with transition operator P(n). The

corresponding distributions are
{
µ

(n)
m,t : t ≥ 0

}
, m = I, II.



61

Theorem 4.1.1. Let ε > 0 be given and suppose the initial distributions µ
(n)
I and

µ
(n)
II are supported on S

(n)
j , j ∈ J . Let {Ũk}Kk=1 be a collection of compact subsets of

S̃ and define the sets Uk := nα(j)Ũk = {x ∈ S(n)
j : n−α(j)x ∈ Ũk}. Then there exists

a constant c2 > 0 independent of n and a number N = N({Ũk}, V ) depending on the

sets Ũk and the local structure of V so that for all n > N and t ≥ c2n
2α(j),

∣∣∣µ(n)
I,t (Uk)− µ

(n)
II,t(Uk)

∣∣∣ < ε/K for k = 1, . . . ,K.

Proof. Recall that x
(n)
I and x

(n)
II are two Markov chains satisfying Assumption 3.3.1

with distributions µ
(n)
I , µ

(n)
II supported on S

(n)
j . By Lemma 3.5.1, as n grows the

measure µ̃
(n)
m,[0,T ] on D([0, T ],R) induced by the rescaled walk

x̃(n)
m {x̃(n)

m,s} =
{
n−α(j)

(
x

(n)

m,sn2α(j) − nzj
)}

converges to that induced by the diffusion Xm = {Xm,s : s ≥ 0} for m = I, II. Let

ηm,s be the distribution of Xm,s on R; by the Portmanteau theorem there is an integer

N(k, s) such that if n > N(k, s),

∣∣∣µ̃(n)
m,s(Ũk)− ηm,s(Ũk)

∣∣∣ < ε/3K. (4.2)

As shown in Lemma 3.5.1, the diffusions Xm are ergodic with a unique invariant

measure, π. Therefore there exists a constant s2 > 0 so that for each k

|ηI,s(Ũk)− ηII,s(Ũk)| < ε/3K (4.3)

for s > s2. Fix such an s. Since µ
(n)
m,t(Uk) = µ̃

(n)
m,s(Ũk) for t = sn2α(j) we assume

n > N(k, s) for all k ∈ {1, . . . ,K} and combine (4.2) and (4.3) to get

∣∣∣µ(n)
I,t (Uk)− µ

(n)
II,t(Uk)

∣∣∣ ≤ |ηI,s(Ũk)− ηII,s(Ũk)|+ 2ε/3K

≤ ε/K for all k.
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4.2 Local mixing

Our next theorem describes a local mixing condition that implies a mixing rate for

chains originating near a stable point.

Theorem 4.2.1. Let x(n) be a Markov chain satisfying Assumption 3.3.1 and let x
(n)
I

and x
(n)
II be instances of x(n) with initial data x

(n)
m,0 = xm, m = I, II for two points

xm ∈ S(n)
j . Suppose that there exist constants r, s? > 0 such that

|x(n)
I,0 − x

(n)
II,0| < rnα0 =⇒ ‖µ(n)

I,t − µ
(n)
II,t‖TV ≤ ε

for t ≥ s?n2α(j). Then for any two inital distributions µ
(n)
I , µ

(n)
II supported on S

(n)
j ,

there exists a constant sε > 0 so that if t > sεn
2α(j),

‖µ(n)
I,t − µ

(n)
II,t‖TV ≤ ε.

Note that this must be combined with Theorem 3.7.5 in order to lead to a

mixing time bound. To apply the previous theorem we require the following:

Theorem 4.2.2. Consider two instances of the Markov chain x(n), satisfying As-

sumption 3.3.1. We denote these chains {x(n)
I,t : t ≥ 0} and {x(n)

II,t : t ≥ 0} and assume

they have the point masses δxI and δxII for their respective initial distributions, with

xI , xII two points in S
(n)
j , j ∈ J . Write µ

(n)
I,t := P(n)

t δxI and µ
(n)
II,t := P(n)

t δxII for

their distributions at time t. There exist appropriate universal constants N, r, υ > 0

such that if n > N , |xI − xII | < rnα(j), and t ≥ υn2α(j),

‖µ(n)
I,t − µ

(n)
II,t‖TV < ε.

The proofs of these two theorems appear in the next section.
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4.3 Main Theorem

The next theorem is the central result of this chapter. We will show how this

result follows from the previous theorems before moving on to their proofs.

Theorem 4.3.1. Under Assumption 3.3.1, if ∇V has only one zero and that zero is

simple (κ = 1), then the sequence of Markov chains {(x(n)
t ,L(n),P(n))}n≥1 satisfies

t
(n)
mix =

1

2C
n log n+O(n)

for C as in −∇V (x) = −C|x|. For ∇V with more than one zero (counting multiplic-

ities) and letting α = max{α(j) : j = 1, . . . , J}, if V has a single local minimum at

z1, say,

t
(n)
mix = Θ

(
n2α
)
.

If, on the other hand, V has multiple local minima, then for some C > 0,

t
(n)
mix = Ω (exp(Cn)) .

The notation f = Ω(g) indicates that g(n)/f(n) is bounded as n→∞. We will

demonstrate that this result follows from the others before moving on to the proofs.

We refer to the hypothesis that ∇V has a simple (κ = 1) and unique zero at the origin

as the simple case. We write µ
(n)
t ( · |A) to signify the distribution µ

(n)
t conditioned

on the event A:

µ
(n)
t (x|A) = P

(
x

(n)
t = x|A

)
.

Proof. With S̃ and S
(n)
j as in (4.1) and the paragraph preceding it, choose N large

enough to satisfy both Lemma 3.7.5 and Theorem 4.2.2. Applying Lemma 3.7.5, we

have P (τJ > t1) < ε for

t1 ≥

 c1n log(n) in the simple case,

c1n
2α otherwise

(4.4)
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and c1 > 0 a constant independent of n. In the simple case we define α = 1/2.

We consider the first two cases, where there is a single minimum of the potential:

J = {1}. By choice of S
(n)
1 we know π(n)(S

(n)
1 ) > 1 − ε. Define the probability

distributions π̂
(n)
0 =

(
π(n)(S

(n)
1 )
)−1

1
S
(n)
1

π(n) and π̂
(n)
t = P(n)

t

(
π̂

(n)
0

)
. Notice that

∥∥∥π̂(n)
t − π(n)

∥∥∥
TV

=
∥∥∥P(n)

t

(
π̂

(n)
0 − π(n)

)∥∥∥
TV

≤
∥∥∥π̂(n)

0 − π(n)
∥∥∥

TV

≤

∥∥∥∥∥
(

1

π(n)(S
(n)
1 )
− 1

)
1
S
(n)
1

π(n)

∥∥∥∥∥
TV

+ π(n)(L(n)\S(n)
1 )

≤ ε+ ε (4.5)

for all t ≥ 0.

By Theorem 4.2.2 it is clear that the hypotheses of Theorem 4.2.1 are satisfied,

so we have

∥∥∥µ(n)
τJ+t2

− π̂(n)
t2

∥∥∥
TV

=
∥∥∥P(n)

t2

(
µ(n)
τJ − π̂

(n)
0

)∥∥∥
TV
≤ ε (4.6)

for t2 ≥ sεn
2α(1) with sε a positive constant independent of n. Finally, by (4.5) and

(4.6),

∥∥∥µ(n)
t1+t2

− π(n)
∥∥∥

TV
≤ P (τJ < t1)

∥∥∥µ(n)
t1+t2

( · |τJ < t1)− π(n)
∥∥∥

TV
+ ε

≤
∥∥∥P(n)

t1−τJ

(
µ

(n)
τJ+t2

− π(n)
)∥∥∥

TV
+ ε

≤
∥∥∥µ(n)

τJ+t2
− π(n)

∥∥∥
TV

+ ε

≤ 4ε.

For times greater than t1 + t2, mixing has occurred.

t
(n)
mix ≤

 Cn log(n) in the simple case,

Cn2α otherwise,
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and we need only show the corresponding lower bounds on t
(n)
mix. However, these follow

from Corollaries 3.5.1 and 3.7.4.

Finally, if V has multiple stable points {z`1 , z`2 , . . . } ⊂ J , then by Theorem

3.7.5 we have

P (τJ (R) > t) < ε

and π(n)
(⋃

`∈J S
(n)
`

)
> 1 − ε. However, for ε < 1/(1 + |J |), there must exist some

`∗ ∈ J such that π(n)
(
S

(n)
`∗

)
> ε. For x

(n)
0 ∈ S(n)

`j
with `j 6= `∗, Theorem 3.7.1 shows

that if t < O
(
n2α(`j) exp (Cn)

)
then x

(n)
t has a small chance of exiting B(nz`j , δn).

For t = o
(
n

2α`j eCn
)

,

µ
(n)
t

(
L(n)\S(n)

`j

)
< P (τesc(δ) < t) < ε/2.

So for some C > 0, if t < Cn
2α`j eCn, then

‖µ(n)
t − π(n)‖TV ≥ π(n)

(
S

(n)
`∗

)
− µ(n)

t

(
S

(n)
`∗

)
> ε/2.

Then we need only to prove the two theorems from the previous section. We be-

gin with the first, showing that local mixing implies convergence in the total variation

norm, ‖ · ‖TV.

Proof of Theorem 4.2.1. Choose sets {Ẽk}Kk=1 of diameter at most r to form a disjoint

covering of S̃, and define

E
(n)
k := nα(j)Ẽk =

{
x ∈ L(n) : n−α(j) (x− nzj) ∈ Ẽk

}
.

By assumption there is a constant s? so that for any xI , xII ∈ E(n)
k , and any t ≥ t2 =

s?n2α(j), we have for µ
(n)
I,t , µ

(n)
II,t, the distributions of x

(n)
I,t and x

(n)
II,t,

‖µ(n)
I,t − µ

(n)
II,t‖TV ≤ ε. (4.7)
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If the µ
(n)
m,0 are distributed throughout E

(n)
k rather than point-masses (i.e. we require

only that µ
(n)
m,0(E

(n)
k ) = 1 for both m = I, II) then the above inequality remains true

by linearity.

Now suppose µ
(n)
I,0 and µ

(n)
II,0 are two probability distributions such that

∣∣∣µ(n)
I,0 (E

(n)
k )− µ(n)

II,0(E
(n)
k )
∣∣∣ < ε/K (4.8)

and evolving according to P(n). Condition on
[
x

(n)
m,t1
∈ E(n)

k

]
. Fix k and define the

conditional distribution

µ̂(n,k)
m,τ :=

1

µ
(n)
m,t1

(E
(n)
k )
P(n)
τ

(
1
E

(n)
k

µ
(n)
m,t1

)
, τ ≥ 0,

so that µ̂
(n,k)
m,0 is the normalized restriction of µ

(n)
m,t1

to the set E
(n)
k (m = I, II). In

particular, µ̂
(n,k)
m,τ is susceptible to the bound in (4.7). Using this with (4.8) gives

∥∥∥P(n)
τ

(
1
E

(n)
k

µ
(n)
I,t1
− 1

E
(n)
k

µ
(n)
II,t1

)∥∥∥
TV

≤ µ
(n)
I,t1

(E
(n)
k )

∥∥∥µ̂(n,k)
I,τ − µ̂

(n,k)
II,τ

∥∥∥
TV

+
∣∣∣µ(n)
I,t1

(E
(n)
k )− µ(n)

II,t1
(E

(n)
k )
∣∣∣ · ∥∥∥µ̂(n,k)

II,τ

∥∥∥
TV

≤ µ
(n)
I,t1

(E
(n)
k )

∥∥∥µ̂(n,k)
I,τ − µ̂

(n,k)
II,τ

∥∥∥
TV

+ ε/K.(4.9)

Now taking t = t1 + t2 we may use (4.9), and applying (4.7) in the final step below,

it is true that

‖µ(n)
I,t − µ

(n)
II,t‖TV =

∥∥∥P(n)
t2

(
µ

(n)
I,t1
− µ(n)

II,t1

)∥∥∥
TV

≤
K∑
k=1

∥∥∥P(n)
t2

(
1
E

(n)
k

µ
(n)
I,t1
− 1

E
(n)
k

µ
(n)
II,t1

)∥∥∥
TV

+ µ
(n)
I,t (L(n)\S(n)

j ) + µ
(n)
II,t(L

(n)\S(n)
j )

≤
K∑
k=1

µ
(n)
I,t1

(E
(n)
k )

∥∥∥µ̂(n),k
I,t2
− µ̂(n),k

II,t2

∥∥∥
TV

+ ε+ 2 max
m=I,II

{µ(n)
m,t(L(n)\S(n)

j )}

≤ 2ε+ 2 max
m=I,II

{µ(n)
m,t(L(n)\S(n)

j )}.
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Without loss of generality, assume that the maximum is attained for j = I. Let us

define the distribution

π̂
(n)
0 :=

1

π(n)(S
(n)
j )

1
S
(n)
j

π(n), π̂
(n)
t := P(n)

t π̂
(n)
0 .

But as in (4.5), ‖π(n) − π̂(n)
t ‖TV < 2ε and using Theorem 4.1.1 again we can take s2

larger so that |π̂(n)
t1

(E
(n)
k )− µ(n)

I,t1
(E

(n)
k )| < ε/K as well. Since π(n)(L(n)\S(n)

j ) < ε,

|(µ(n)
I,t − π

(n))(L(n)\S(n)
j )| ≤

K∑
k=1

|µ(n)
I,t (E

(n)
k )− π̂(n)

t (E
(n)
k )|+ ‖π̂(n)

t − π(n)‖TV

≤ 3ε

so ‖µ(n)
I,t − µ

(n)
II,t‖TV ≤ 8ε.

It remains to prove Theorem 4.2.2, showing that the Markov chains studied here

satisfy a local mixing theorem in the form of Theorem 4.2.1.

The next lemma demonstrates that µ
(n)
t may be approximated by the distri-

bution ν
(n)
z,t of an HRW y

(n)
z,t with z chosen near to x

(n)
0 (recall the definition of the

homogenized random walk associated to z in Section 3.6). This is the crucial estimate

used to prove Theorem 4.2.2.

Lemma 4.3.1. For two distributions µ
(n)
0 = δx0 and ν

(n)
z,0 = δx0, each initially a point-

mass concentrated on x0 ∈ S(n)
j , j ∈ J , with µ

(n)
t obeying the transition operator P(n)

and ν
(n)
z,t obeying Q(n)

z where |z − x0| < rnα(j), there exists N ∈ N and s ≥ 0 so that

‖µ(n)
t − ν

(n)
z,t ‖TV ≤ ε

for t ≥ sn2α(j) and n ≥ N .

Proof. Let us recall here the definition of the map

w(t, x) := t−1/2σ−1
(
x− x0 − ty(n)

z

)
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and the random process

wt := t−1/2σ−1
(
y

(n)
z,t − x0 − ty(n)

z

)
where σ is a square root of the covariance matrix of the increment of the HRW y

(n)
z .

Let Λt be the distribution of wt. Then

ν
(n)
z,t (x) = P

(
y

(n)
z,t = x|y(n)

z,0 = x0

)
= P (wt = w(t, x)|w0 = w(0, x0))

= Λt(w(t, x)),

and since Λt is amenable to Theorem 3.6.1, we may use that result to estimate ν
(n)
z,t .

Define the function ζτ (x) = `τ−1/2
[∑5

j=0 τ
−j/2Pj (−φ : {χν})

]
w(τ,x)

, as in Theorem

3.6.1, so that

sup
x∈L(n)

(
1 + |w(τ, x)|5

) ∣∣∣ν(n)
z,τ (x)− ζτ (x)

∣∣∣ = o(τ−(d+3)/2), and∑
x∈L(n)

∣∣∣ν(n)
z,τ (x)− ζτ (x)

∣∣∣ = o(τ−3/2).

The terms Pj (−φ : {χν}) represent differential operators acting on the standard nor-

mal distribution. As such, ζτ is smooth, integrable, and
∑
L(n) ζτ (x) = O(1) as τ →∞.

We begin by expressing ‖µ(n)
t − ν

(n)
z,t ‖TV as a telescoping sum:

∥∥∥(P(n)
t −Q(n)

t

)
δx0

∥∥∥
TV

=

∥∥∥∥∥
t∑

τ=1

P(n)
t−τ

(
P(n) −Q(n)

z

)
Q(n)
z,τ−1δx0

∥∥∥∥∥
TV

≤
t∑

τ=1

∥∥∥(P(n) −Q(n)
z

)
ν

(n)
z,τ−1

∥∥∥
TV

.

Now, utilizing our estimate on ν
(n)
z,τ and the mean-value theorem,

∥∥∥(P(n) −Q(n)
z

)
ν(n)
z,τ

∥∥∥
TV

=
∑

x∈L(n)

∣∣∣∣∣∑
h∈B

(
p

(n)
h

(
x− h
n

)
− p(n)

h

( z
n

))
ν(n)
z,τ (x− h)

∣∣∣∣∣
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≤
∑

x∈L(n)

∣∣∣∣∣∑
h∈B

(
p

(n)
h

(
x− h
n

)
− p(n)

h

( z
n

))
ζτ (x)

∣∣∣∣∣+ o(τ−3/2)

+
∑

x∈L(n)

∣∣∣∣∣∑
h∈B

(
p

(n)
h

(
x− h
n

)
− p(n)

h

( z
n

))(
−τ−1/2σ−1h · ∇ζτ (x∗)

)∣∣∣∣∣
where x∗ represents an appropriate choice from {x− th : 0 ≤ t ≤ 1}. Now we need an

estimate on the transition probabilities, p
(n)
h , which we pull from Lemma 3.3.1. Using

both parts 1. and 2. of that lemma in the previous display we have∥∥∥(P(n) −Q(n)
z

)
ν(n)
z,τ

∥∥∥
TV

≤
∑

x∈L(n)

∣∣∣(n−1∆V
(x
n

)
+O

(
n−2

))
ζτ (x)

∣∣∣+

+τ−1/2
∑

x∈L(n)

∣∣∣σ−1
(
∇V

(x
n

)
−∇V

( z
n

))
· ∇ζτ (x∗)

∣∣∣
+O(n−1τ−1/2) + o(τ−3/2). (4.10)

Finally, by assumption there exists a constant CV > 0 such that |∇V (x)| ≤

CV |x|κ(j), and as |z| ≤ (R + r)nα(j) we have |∇V (z/n)| = O(n−α(j)). Recalling

∇ζτ (x) = ∇
(
f(τ−1/2x)φ (w(τ, x))

)
for some polynomial f , and defining w = τ−1/2x

to be a translate of w(τ, x) we can write

τ−1/2
∑

x∈L(n)

∣∣∣(∇V (x
n

)
−∇V

( z
n

))
· ∇ζτ (x)

∣∣∣
≤ τκ(j)/2

nκ(j)

∫
R
CV (w)κ(j)−1w · ∇ζτ (x)dw +O

(
τ−1/2n−α(j)

)
≤ O

(
τ (κ(j)−1)/2n−κ(j)

)
+O

(
τ−1/2n−α(j)

)
.

In the same manner,
∑

x∈L(n)
∣∣(∆V (x/n) +O

(
n−2

))
ζτ (x)

∣∣ = O(τ (κ(j)−1)/2n−κ(j)).

Plugging this into (4.10),∥∥∥(P(n) −Q(n)
z

)
ν(n)
z,τ

∥∥∥
TV

≤ O
(
τ (κ(j)−1)/2n−κ(j)

)
+O

(
τ−1/2n−α(j)

)
+ o(τ−3/2)

as n → ∞. Summing over τ gives Riemann sums in u = τn−2α(j), du = n−2α(j). As

τ ranges from 1 to t, the variable u goes from n−2α(j) to s := tn−2α(j), and we have
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∥∥∥µ(n)
t − ν

(n)
z,t

∥∥∥
L1(L(n))

≤ C1n
α(j)(κ(j)−1)−κ(j)

t∑
τ=1

(τn−2α(j))(κ(j)−1)/2

+C2n
−2α(j)

t∑
τ=1

(
τn−2α(j)

)−1/2
+ o

(
n−3α(j)

t∑
τ=1

(τn−2α(j))−3/2

)

≤ C1

∫ s

0
u(κ(j)−1)/2du+ C2

∫ s

0

du

u1/2
+ o

(
n−α(j)

∫ s

n−2α(j)

du

u3/2

)
≤ C ′1s

(κ(j)+1)/2 + C ′2
√
s+ o(1)

where the Cm and C ′m are independent of both n and t for m = 1, 2. Choosing s

appropriately small completes the proof.

Finally, we prove Theorem 4.2.2. This shows that our usual assumptions imply

the hypotheses of Theorem 4.2.1, and is the last item we need in order to complete

the proof of the mixing time result in Theorem 4.3.1.

Proof of Theorem 4.2.2. Let ε > 0 be a fixed, arbitrary positive number, and choose

a point z ∈ S(n)
j so that |xm − z| < Rnα(j) for m = I, II. We will write φb,a for the

normal distribution with mean b ∈ Rd and positive variance a ∈Md,d(R). Recall that

the standard normal is abbreviated φ := φ0,I . Clearly
∫
Rd |φ− φδ,I | dx→ 0 as |δ| → 0.

Define

δ∗ := sup

{
δ > 0 :

∫
Rd
|φ(x)− φ(x+ δ)| dx < ε

}
.

Consider now the two processes, {x(n)
I,t } and {x(n)

II,t} which have initial distributions δxI

and δxII for two points xI , xII ∈ S(n)
j . Writing µ

(n)
I and µ

(n)
II for their distributions,

fix z ∈ S
(n)
j and write ν

(n)
m for the distribution of the homogenized random walk

y
(n)
m associated to z, starting from y

(n)
m,0 = xm (with constant transition probabilities,

p
(n)
h (z/n), as in Definition 3.6.1 above). Lemma 4.3.1 gives N ∈ N and s > 0 so that

‖µ(n)
I,t − µ

(n)
II,t‖TV ≤ ‖µ(n)

I,t − ν
(n)
I,t ‖TV + ‖ν(n)

I,t − ν
(n)
II,t‖TV + ‖ν(n)

II,t − µ
(n)
II,t‖TV
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≤ 2ε+ ‖ν(n)
I,t − ν

(n)
II,t‖TV.

for n > N and t ≤ sn2α(j). Define the two maps

wm(t, x) := t−1/2σ−1(x− xm − tym) for m = I, II,

with σ as in Definition 3.6.1 and y
(n)
m = E[y

(n)
m,t+1 − y

(n)
m,t]. Applying Theorem 3.6.1 we

get∥∥∥ν(n)
I,t − ν

(n)
II,t

∥∥∥
TV

≤
∑

x∈L(n)

∣∣∣ν(n)
I,t (x)− ν(n)

II,t(x)
∣∣∣

≤
∑

x∈L(n)
`t−1/2 |(φ(wI(t, x))− φ(wII(t, x)))|+ o(1) (t→∞)

≤ C2

∫
Rd

∣∣∣(φ(w)− φ(w + t−1/2σ−1(xI − xII))
)∣∣∣ dw + o(1).

where C2 depends only on the minimal lattice of the Markov chains. Fix now υ ∈ (0, s)

and take r to be less than δ?
√
υ/|σ−1|. Then∣∣∣t−1/2σ−1(xI − xII)

∣∣∣ ≤ |σ−1|r
√
n2α(j)

t
≤ δ∗

√
υn2α(j)/t,

so that if t ≥ υn2α(j) we have

‖ν(n)
I,t − ν

(n)
II,t‖1 ≤ C2

∫
Rd

∣∣∣(φ(w)− φ(w + t−1/2σ−1(xI − xII))
)∣∣∣ dw +O(n−α(j))

≤ C2ε+O(n−α(j)).

With t = υn2α(j), both Lemma 4.3.1 and the above estimate hold, giving

‖µ(n)
I,t − µ

(n)
II,t‖TV ≤ (2 + C2)ε. (4.11)

As the left-hand side above is non-increasing in t, this proves our theorem.

4.4 Cutoff

Generally, the variance of a diffusive process increases linearly in time. In

the simple case the drift of the process towards the unique stable point is strong
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enough to counteract this diffusive behavior. For any x
(n)
0 , the variance does not

grow larger than O(n). This is the content of the following lemma. For δ > 0 recall

τesc(δ) = inf{t ≥ 0 : x
(n)
t 6∈ B(0, δn)}.

Lemma 4.4.1. Let {x(n)} satisfy Assumption 3.3.1 and suppose V is simple, i.e.

−∇V has a unique zero, z1, with κ(z1) = 1. Then for some δ > 0, if x
(n)
0 ∈ B(nz1, δn)

we have

Var(x
(n)
t ) = O(n)

for t = O(n log n).

Proof. Let us translate z1 to the origin and fix δ > 0 small enough that it is the only

critical point of V , and for some c > 0 small enough we have

c|x| < |∇V (x)| for all x ∈ B(0, δ).

Take T ∈ N to be subexponential in n, and define the event

E = {x(n)
t ∈ B(0, nδ) for all 0 ≤ t ≤ T}.

By theorem 3.7.1, P (E) = O
(
Tn−1 exp(−Cn)

)
for some C > 0. We write Ft for the

filtration generated by {x(n)
s , 0 ≤ s ≤ t}. Using the law of total variation,

Var
(
x

(n)
t

)
≤ Var

(
x

(n)
t

∣∣∣E)+ e−Θ(n)

= E
[
Var

(
x

(n)
t

∣∣∣F1, E
) ∣∣∣E]+ Var

(
E
[
x

(n)
t

∣∣∣F1, E
] ∣∣∣E)+ e−Θ(n) (4.12)

Defining νt = sup
{

Var
(
x

(n)
t

∣∣∣E) : x
(n)
0 ∈ B(0, nδ)

}
, one sees that by conditioning on

E the point x
(n)
1 is in B(0, nδ), so

Var
(
x

(n)
t

∣∣∣F1, E
)
≤ νt−1. (4.13)
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Note that if X and X̂ are two independent copies of a random variable (on the same

probability space), Var(X) = 1
2E[|X − X̂|2]. Applying this fact and (4.13) to display

(4.12),

Var
(
x

(n)
t

)
≤ νt−1 +

1

2
E
[∣∣∣E [x(n)

t

∣∣∣F1, E
]
− E

[
x̂

(n)
t

∣∣∣F1, E
]∣∣∣2 ∣∣∣E]+ e−Θ(n) (4.14)

Notice that because the transition kernel is analytic in n and x, there is M > 0

independent of n so that∣∣∣E [x(n)
1 − x(n)

0

]
+∇V (x

(n)
0 /n)

∣∣∣ < M/n.

Now by choice of c, there is N ∈ N such that if n > N , then for any x
(n)
0 ∈ B(0, nδ)∣∣∣E [x(n)

1

]∣∣∣ =
∣∣∣x(n)

0 −∇V (x
(n)
0 /n)

∣∣∣+M/n ≥
(

1− c

n

) ∣∣∣x(n)
0

∣∣∣ ,
and likewise, by conditioning on Ft−1, if x(n) and x̂(n) are two independent instances

of the Markov chain with x
(n)
0 = x̂

(n)
0 ∈ B(0, nδ),∣∣∣E [x(n)

t

∣∣∣E]− E
[
x̂

(n)
t

∣∣∣E]∣∣∣ ≤ (
1− c

n

) ∣∣∣E [x(n)
t−1

∣∣∣E]− E
[
x̂

(n)
t−1

∣∣∣E]∣∣∣ . (4.15)

Of course, the same estimate holds when conditioning on F1 for t > 1. Iterating this

inequality and plugging it into (4.14),

Var
(
x

(n)
t

)
≤ νt−1 +

1

2

(
1− c

n

)2(t−1)
E
[∣∣∣x(n)

1 − x̂(n)
1

∣∣∣2 ∣∣∣E]+ e−Θ(n)

≤ νt−1 +
(

1− c

n

)2(t−1)
ν1 + e−Θ(n). (4.16)

Taking the supremum over starting states x
(n)
0 in B(0, nδ), the same inequality holds

with νt on the left-hand side. We may apply the same argument to νt−1; iterating in

this fashion

Var
(
x

(n)
t

)
≤ ν1

t−1∑
s=0

(
1− c

n

)2s
+ e−Θ(n).

This last expression is of order n, so we are done.
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Corollary 3.7.4 above implies the existence of cutoff in fast mixing (i.e. t
(n)
mix =

O(n log n) ) systems with d = 1. On the other hand, Corollary 3.5.1 implies that since

the limiting diffusion process takes a positive finite time to move through a region, the

rescaled Markov chains require a finite time on the diffusive time-scale, n2α, in order

to redistribute their probability mass in a measurable way. However, since the exit

time of the diffusion, or the time required for it to approach its invariant measure π

are continuous random variables, the corresponding random variables for the Markov

chains (e.g. τexit(R)) are distributed over intervals of length Θ(n2α): there are some

numbers 0 < s1 < s2 so that

P
(
τexit(R) < s1n

2α
)
> ε =⇒ ‖µ(n)

s1n2α − π(n)‖TV < 1− ε,

P
(
τexit(R) > s2n

2α
)
> ε =⇒ ‖µ(n)

s1n2α − π(n)‖TV > ε.

One can easily show that this removes the possibility of cutoff. To summarize,

Theorem 4.4.1. 1. Suppose d = 1, and V is simple. That is, V has a single,

stable critical point with κ = 1 there. Then by Corollary 3.5.1, {x(n)} experiences

a cutoff with window-size O(n).

2. Suppose V has a critical point zl such that the scaling exponent α(z`) is greater

than one, and equal to the scaling exponent for the whole system: α = α(z`).

Then no cutoff is observed in the system.

It is worth noting that the proof here can be adapted to the SRW on the n-cycle

(Example 2.1.1), as mentioned below in Chapter 7.. Since the weak limit of the SRW

is a Brownian motion under the diffusive scaling with α = 1, we find t
(n)
mix = Θ(n2) in

this case. By Corollary 3.5.1 we know that cutoff does not occur in this case.
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4.5 Example - the Ehrenfest urn model

Consider the following model: you have two urns with 2n balls distributed

between them, and each ball is labelled uniquely from the numbers {1, . . . , 2n}. One

iteration of the Ehrenfest process proceeds by first choosing a number between 1 and

2n uniformly at random, and removing that ball from its urn. Then you select either

urn, each with probability 1/2, and place the ball into the chosen urn. If we subtract

the number of balls in the second urn from the number in the first we have a statistic

that tells us (up to a permutation of the balls) what state the model is in. This will

serve as our Markov chain x(n), with n denoting system size.

This model is notoriously well-studied, and its stationary distribution as well as

its mixing time may be determined in a number of ways. It serves as a nice testing

ground for the theory in this section though, so we will approach it through its scaling

limits. If the Markov chain is in state x ∈ L(n) := {−2n,−2(n− 1), . . . , 2(n− 1), 2n},

one calculates the increments of the process to be

p
(n)
2 (x/n) = P

(
x

(n)
t+1 − x

(n)
t = 2|x(n)

t = x
)

=
2n− x

4n

1

2
, (4.17)

p
(n)
−2 (x/n) = P

(
x

(n)
t+1 − x

(n)
t = −2|x(n)

t = x
)

=
2n+ x

4n

1

2
, (4.18)

p
(n)
0 (x/n) = P

(
x

(n)
t+1 − x

(n)
t = 0|x(n)

t = x
)

= 1/2. (4.19)

The resulting gradient function is −∇V (x) = lim
n→∞

2∑
h=−2

hp
(n)
h (x) = −x/2, and so we

must have V (x) = x2/4 on L = [−2, 2]. This has a single critical point at z1 = 0, and

locally −∇V (x) = −(x − z1)/2, so the order of the zero of −∇V is κ(1) = 1, and so

α(1) = κ(1)/(κ(1) + 1) = 1/2.

Appealing to Theorems 4.3.1 and 4.4.1, we see that t
(n)
mix = n log n + O(n) and

the chain does exhibit a cutoff phenomenon, with window-size O(n). Despite its
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simplicity, the Ehrenfest urn model demonstrates the efficiency of the theory developed

here. No spectra need be computed nor couplings constructed. We may also conclude

that the entire class of Markov chains evolving on L(n) whose transition probabilities

{p(n)
h : h ∈ Z} are within O(1/n) of those calculated above will give rise to the same

mixing behavior. Chapter 6. gives further applications to spin systems, and we will

see there examples of systems with polynomial mixing and thus no cutoff.
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5. MIXING TIMES - COMPOSITE POTENTIAL STRUCTURE

The results of this chapter are the summit of our results, extending the the-

orems of the previous two chapters to a larger class of Markov chains evolving on

Zd that approximate gradient dynamical systems under rescaling. Many applications

require the Markov chains one would like to study to be multidimensional, but higher

dimensionality can create somewhat exotic structures about the critical points of the

chain’s potential function V . See [46] and [31] for examples of normal forms which are

qualitatively more complex than those found in dimension one, even in the presence of

analyticity of V . While we cannot give a statement of our results for the most general

class of potentials, we do put forward a simple criterion under which the preceding

theory easily generalizes. This allows us to give independent proof of some known

mixing behaviors of mean-field spin systems (see Chapter 6.) as well as identify en-

tirely new behaviors within these systems, utilizing only elementary calculus and the

theorems of this chapter.

5.1 Composite systems

We begin with the definition of composite structure.

Definition 5.1.1. Let Πk for k = 1, 2, . . . , f be a collection of projections onto sub-

spaces of Rd so that

f⊗
k=1

Πk has kernel {0}. We say the function F : Rd → R has

composite structure about a critical point z if, after translating z to the origin, F may

be written, modulo a linear transformation, as

F (x) =

f∑
k=1

Fk(Πkx), f ∈ {1, . . . , d},
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where each Fk is a potential on Πk(Rd) that is simply structured about zero. We write

αj(z) for the scaling exponent of Fj and set J = {j : αj(z) is stable, 1 ≤ j ≤ f}.

We say F is stable at z or that z is a stable critical point if each Fj is a stable,

j = 1, . . . , f , and in this case

α(z) = max{αj : 1 ≤ j ≤ f}.

Otherwise, in the case that some subset of the Fj’s are unstable we say that F is

unstable at z, and write

α(z) = min{αj : j 6∈ J }.

That is, for an unstable critical point z, α(z) is the smallest scaling exponent associated

to an unstable Fj.

The projections Πk will act on distributions via a pullback: if the random

variable x has distribution µ,

P (Πkx ∈ E) = (Πkµ)(E) = µ
(
Π−1
k (E)

)
= P

(
x ∈ Π−1

k (E)
)
.

(Here Π−1
k indicates the preimage of the projection.) Similarly, the maps Πk induce

Markov transition operators P(n,k):

P(n,k)
(

Πkµ
(n)
t

)
:= Πk

(
P(n)µ

(n)
t

)
= Πkµ

(n)
t+1.

In particular, Πkπ
(n) = Πk

(
limt→∞ P(n)

t µ
(n)
0

)
= limt→∞ P(n,k)

t Πkµ
(n)
0 , so the station-

ary distribution of Πkµ
(n) is Πkπ

(n).

The sequences of Markov chains are now assumed to satisfy the following con-

ditions, only one of which differs from those defined in Section 3.3.

Assumption 5.1.1. Let
(
x(n),L(n),P(n)

)
be a sequence of Markov chains satisfying

points (i) - (iii) of Assumption 3.3.1; that is, the state space L(n) ⊂ Zd has diameter of
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order Θ(n), the chain has bounded increments, and the transition probability functions

p
(n)
h (x) := q(n)(nx, nx+ h) have analytic extensions to L×U , as above. Additionally,

the chains satisfy

(iv) there exists a function V : Rd → R such that

lim
n→∞

∑
h∈B

hp
(n)
h (x) = −∇V (x)

The set {z1, . . . , zJ} of zeros of ∇V is finite and V has composite structure about

each zj.

Remark 5.1.1. Given a critical point z with composite structure, the main obstruc-

tion to the previously developed theory is the inherent separation of spatial and tem-

poral scales; if 0 is a stable point for V (x) = V1(x) + V2(x), and α1 = 3/4 while

α2 = 1/2, then the process Π2x
(n) approaches B(0, Rn1/2) and fluctuates much more

quickly than Π1x
(n) approaches B(0, Rn3/4). We must show that while the ‘slow’ coor-

dinate, Π1x
(n), is approaching the origin the other coordinate Π2x

(n) does not escape

the ball B(0, nδ), since many of the approximations in Chapter 3. depend on the chain

x(n) being in an n-neighborhood of the critical point.

5.2 Results

Suppose V has composite structure about z = 0, and scaling exponents {αj}.

Take J as before to be the indices of stable Vj . Define the set

S(n)(R) =
⋃
j∈J

B(nzj , Rn
α1)×B(nzj , Rn

α2)× · · · ×B(nzj , Rn
αf ) (5.1)

and its hitting time, τS(R) = inf{t ≥ 0 : x
(n)
t ∈ S(n)(R)}. This is the analog of τJ in

the case of composite structure.
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Lemma 5.2.1. Suppose
(
x(n),L(n),P(n)

)
satisfies Assumption 5.1.1 and that z = 0

is a stable critical point with composite structure. With the decomposition V = V1 +

· · ·+ Vf we have a constant s > 0 independent of n such that

P
(
τS(R) > t

∣∣∣x(n)
0 ∈ B(0, nδ)

)
< ε

for t > sn2α(0), R large enough, and δ > 0 sufficiently small.

Remark 5.2.1. It is true that if αj = 1/2 for all j that t should be taken to be of order

n log n, rather than n = n2α(z). However, in such a case the theory of the previous

chapter applies; one need not view such a potential as being composite. Throughout

this chapter we tacitly assume that at least one of the αj(z) are greater than 1/2.

Proof. Without loss of generality, suppose α1 ≥ α2 ≥ · · · ≥ αf . By Lemma 3.7.4, as

long as δ is small enough, R large enough, and x(n) ∈ B(0, 2δn), the projected chain

Π1x
(n) requires O(n2α1) time steps to have a high probability of being in B(0, Rnα1/2).

I.e. there exists an s1 > 0 such that for t1 ≥ s1n
2α1 ,

P
(

Π1x
(n)
t1
∈ B(0, Rnα1/2)

∣∣∣Π1x
(n)
0 ∈ B(0, δn), {x(n)

s : 0 ≤ s ≤ t1} ⊂ B(0, 2δn)
)
> 1−ε.

Since P
(
x

(n)
s 6∈ B(0, 2δn) for some 0 ≤ s ≤ t1

)
= P (τesc(2δ) < t1), Theorem 3.7.1

shows that the probability that x(n) leaves B(0, 2δn) before Π1x
(n) hits B(0, Rnα1/2)

is at most s1e
−Cn.

Once Π1x
(n) hits B(0, Rnα1/2), we consider the process Π2x

(n)
t1+t. Then there

exists some s2 > 0 so that if t2 ≥ s2n
2α2 the process Π2x

(n) reaches B(0, Rnα2/2) with

high probability. Repeating this we generate a collection of times tj = O(n2αj ) for

j = 3, 4, . . . , f . Moreover, Π2x
(n) will hit the ball B(0, Rnα2/2) without x(n) leaving

the 2δn-ball about z = 0 with high probability. Note that P
(

Π1x
(n)
t1+t2

6∈ B(0, Rnα1)
)

can be made less than a given threshold ε > 0 by taking R larger, and if α2 < α1 the
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probability that Π1x
(n) makes an excursion outside of B(0, Rnα1) goes to zero like

nα2−α1 .

In this way, once the slowest coordinate is within an (Rnα1/2)-ball of zero, it

remains within an Rnα1-ball with high probability for the following time interval t ∈

[0, t2+t3+· · ·+tf ]. Thus the time required for x(n) to hit S(n)(R) is O(n2α1) time steps

longer than the time required for
⊗f

j=2 Πjx
(n) to hit B(0, Rnα2)× · · · × B(0, Rnαf ),

and since t1 = s1n
2α1 is the dominating term in the sum t1 + t2 + · · ·+ tf , it is clear

that τS(R) = O(n2α1) with high probability. This completes the proof.

Next, define the stopping time τexit(δ) = inf{t ≥ 0 : x
(n)
t 6∈ B(0, δn)}.

Lemma 5.2.2. If V has composite structure about z = 0 and z is an unstable critical

point, then

P
(
τexit(δ) > sn2α(0)

)
< ε

for s > 0 a large enough constant, independent of n.

Proof. If z is unstable then one of the Vk, k = 1, . . . , f are unstable about Πkz = 0,

say V1. Then for δ > 0 small enough, one can apply the argument in Theorem 3.7.5 to

see that the one-dimensional process Π1x
(n) requires O(n2α1) steps to exit the δn-ball

about zn with high probability. If we assume that α1 is equal to the minimum of the

unstable scaling exponents, then this is the minimum order of time steps required for

a coordinate to exit the neighborhood: choosing s ∈ R large enough,

P (τexit(δ) > t) < P
(

Π1x
(n)
t 6∈ B(0, δn)

)
≤ ε

for t = sn2α1 . Since α1 is minimizing among the unstable exponents, α(z) = α1.

Combining Lemmas 5.2.1 and 5.2.2 with Theorem 3.7.5 we can adapt Theorem

4.3.1 to the setting of composite potentials.
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Theorem 5.2.1. Let ε > 0 be given. With {αj}fj=1 as in Definition 5.1.1 and(
x(n),L(n),P(n)

)
satisfying Assumption 5.1.1, there exists an n large enough and a

number s > 0 independent of n so that

P (τS(R) > t) < ε

for t > sn2α where α = max{α(zj) : 1 ≤ j ≤ J} is the largest scaling exponent among

all critical points of V .

Proof. Since Lemma 3.7.3 does not rely on the structure of V about the zj , it may be

applied here as in Chapter 4.. So withinO(n) time steps x(n) encounters

J⋃
j=1

B(nzj , δn).

If the neighborhood x(n) enters corresponds to an unstable zj , then Lemma 5.2.2 shows

that with high probability x(n) will exit it within O(n2α(j)) time steps. On the other

hand, by Lemma 5.2.1 if the neighborhood contains a stable critical point nz` then

x(n) will hit S(n)(R) within O(n2α(`)) time steps with high probability.

Finally, we prove the mixing time theorem for multidimensional Markov chains

with composite potential.

Theorem 5.2.2. Suppose
(
x(n),L(n),P(n)

)
is a sequence of Markov chains satisfying

Assumption 5.1.1, and let α = max{α(zj) : 1 ≤ j ≤ J}. Suppose V has a unique

stable point, z1. Then there exist N ∈ N, and s > 0 such that for n > N

wwwt
(n)
mix < sn2α. (5.2)

If, on the other hand, V has multiple stable points, then

t
(n)
mix ≥ Ce

Cn (5.3)

for some C > 0.
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Proof. The second conclusion depends only on Theorem 3.7.1, and so may be argued

exactly as in the proof of Theorem 4.3.1. So assume that there is a unique stable

critical point z1 of V . By the previous theorem, τS(R) = O(n2α) with high probability.

This is the same order as the bound we seek on t
(n)
mix, so it does no harm to assume that

this transient period has passed and, by the Markov property, consider x
(n)
0 ∈ S(n)(R).

We will prove mixing by invoking Theorem 4.2.1, and generalizing Theorem

4.2.2 to the composite setting. We need only show that given any ε > 0 there exists

an r > 0, and s > 0 so that if two independent copies of x(n) have initial data x
(n)
I,0

and x
(n)
II,0 starting at a distance of at most rnα apart, then for large enough n,∥∥∥µ(n)

I,t − µ
(n)
II,t

∥∥∥
TV

< ε (5.4)

for t > sn2α. It suffices to prove this in the case that f = 2, where V = V1 + V2 and

α = α1 > α2, as the general result is achieved by iterating this argument.

But we observe that if
∣∣∣x(n)
I,0 − x

(n)
II,0

∣∣∣ < rnα, considering the Π1x
(n)
m (m = I, II)

processes evolving on the projected lattice Π1L(n), Theorem 4.2.2 tells us that for

some s1 > 0, after t1 = s1n
2α1 time steps we have∥∥∥Π1µ

(n)
I,t1
−Π1µ

(n)
II,t1

∥∥∥
TV

< ε.

Thus for any subset E of Π1S
(n)(R) with radius less than rnα2 , we have∣∣∣µ(n)

I,t1

(
Π−1

1 (E)
)
− µ(n)

II,t1

(
Π−1

1 (E)
)∣∣∣ < ε.

Now condition on x
(n)
I,t1

and x
(n)
II,t1

lying in the same preimage so that they begin within

rnα2 steps of one another. Rescaling space by n−α2 and time be n−2α2 ,

x̃(n)
m,s = n−α2

(
x

(n)

m,sn2α2
− nz1

)
, m = I, II,

and using the coordinate system suggested by the projections Π1 and Π2 (i.e. as

vectors, x̃
(n)
m = (Π1x̃

(n)
m ,Π2x̃

(n)
m ) for m = I, II) Lemma 3.5.1 tells us the processes x̃

(n)
I
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and x̃
(n)
II are both converging weakly toward X, the solution of

dXs =
(
0,−c(X2

s )κ2
)

+ σ(dB1
s , dB

2
s )

where the Bi are driving Brownian motions, and σ is a positive definite matrix. For s

large enough, then, these two distributions are weakly convergent. An application of

the local limit theory of Bhattacharya and Rao (see Theorem 3.6.1) then shows that

for t2 = s2n
α2 for s2 > 0 large enough,

∥∥∥µ(n)
I,t1+t2

− µ(n)
II,t1+t2

∥∥∥
TV

< ε.

The proof is finished.

The foregoing theorem is sufficient to determine mixing times for a variety of

lattice-based Markov chain families. Of particular importance are the Gibbs samplers

for mean-field models, of which we study several noteworkthy examles in the next

chapter.

Recall that the simple case (V having a unique critical point z1 with κ(z1) = 1)

of Chapter 4. displays a cutoff, while the systems with κ(z`) > 1 for some ` do not. We

note that the same lack of cutoff results in the case of V with composite structure. The

mixing time is Θ(n2α`) for some ` ∈ {1, . . . , J}, but the argument of Corollary 3.5.1

shows that for each process Πkx
(n), the Markov chain requires at least order n2αk(`)

time to leave B(nz`, δn) (in the case of unstable Vk at z`) or to begin to converge

weakly to Πkπ
(n) (in the case that z` is a stable point of V ). Therefore cutoff cannot

occur in this case, just as before.
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6. APPLICATION TO MEAN-FIELD MODELS

In this chapter we exercise the theorems of the two prior chapters. The class

of mean-field models in statistical mechanics provides many examples to be worked;

these systems are typically determined by a few “macroscopic” variables, which often

take discrete values, and as they fall under the umbrella of Gibbs samplers, their

transition probability functions are as smooth as their Hamiltonian functions. We

begin with the Ising model, whose mean-field mixing behavior was explored in [24]

and [39]. We recover many of the known results discerning fast, slow, and polynomial

(O(n3/2)) mixing behaviors. While we do not do so here, it is just as straightforward

to study the so-called ‘censored’ dynamics, where the chain is forced to have positive

magnetization at all times, for example. The fast mixing behavior and existence of

cutoff for the censored model was elaborated in [22], but it is notable that one may

recover those results very quickly via our Theorems 4.3.1 and 4.4.1.

Next we turn to the Potts model [17], which is known to exhibit a discontinuous

phase transition, leading to a polynomial order of mixing time (Θ(n4/3)) not seen in the

Ising model. This model allows q different “colors” or so-called spins to be associated

to the vertices of a graph, and its dynamics evolve naturally in a q-dimensional simplex.

This multidimensional chain is studied via Theorem 5.2.2, and we recover the fast,

polynomial, and slow mixing regimes in a few pages.

Finally, we study the mean-field Blume-Capel model. The equilibrium distri-

bution was studied in [27] through large deviations, then its fast and slow mixing

behavior was elucidated in [36] via the new technique of aggregate path coupling.

The present study recovers those mixing results, but also determines three distinct

polynomial mixing behaviors at various parameter values.
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6.1 The Ising model

The Ising model has been studied for nearly a century, and is the first statistical

mechanical model many students encounter. In 2009 the mixing behavior of the

mean-field Ising model was determined [24]. We restrict ourselves to the so-called

magnetization chain and easily recover its mixing behavior using our results.

In its mean-field incarnation, the Ising model consists of a state space (or set of

configurations) Cn := {+1,−1}n and a probability measure defined on Cn by

P
(n)
β (σ) = Z−1

n,β exp (−βHn(σ)) where Hn(σ) = − 1

n

∑
i>j

σiσj .

Here σ ∈ Cn is an n-tuple of ±1 valued spins, with σi the spin in the ith component.

Zn,β :=
∑

σ∈Cn e
−βH(σ) is a normalizing constant called the partition function, β is

a positive parameter representing inverse temperature, and H is the Hamiltonian

function.

One may sample from this distribution on Cn by running Glauber dynamics on

the state space Cn, with σ and τ neighboring configurations if there is a j, 1 ≤ j ≤ n,

such that σi = τi for all i 6= j, j ∈ {1, . . . , n}. I.e., neighboring configurations disagree

in at most one component. In short, the Glauber dynamics define transition prob-

abilities q(n)(·, ·) so that the associated Markov chain
(
x(n), Cn,P(n)

)
has stationary

distribution π(n) equal to P
(n)
β . By observing the chain’s coordinate x

(n)
t for t large

enough, we should have a good approximation of the desired distribution. We will not

go into detail here, but the reader may refer to [40] and [39] for more background.

One finds that the magnetization of the state σ, m(σ) :=
∑n

i=1 σi, determines

the transition probabilities (to states with one more +1 spin, one more -1 spin, or

back to σ itself). It is easy to see that P
(n)
β is constant over states with a fixed

magnetization, i.e. if η is a permutation on n elements we have P
(n)
β (σ) = P

(n)
β (η(σ))
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for all σ ∈ Cn. Thus µ
(n)
t must assign approximately the same probability to the sets

{m(σ) =
∑n

i=1 σi = m ∈ Z} as π(n) = P
(n)
β , as well as distribute that mass evenly over

the configurations (states) σ within these sets. This latter issue can be taken care of

nicely by a coupling argument that shows that any two permutations of an n-tuple of

spins couple with high probability within O(n) time. While this is an important step

in the proof, we cannot offer a better method than the argument in Section 3 of [39].

Therefore we restrict our attention to the magnetization chain, m
(n)
t := m(x

(n)
t ).

Since the transition probabilities of x
(n)
t depend only on m(x

(n)
t ), one easily sees

that the projected chain m
(n)
t is Markov, with transition probabilities given by

p
(n)
2 (m) := q(n)(m,m+ 2) =

n−m
2n

eβ(m+1)/n

eβ(m+1)/n + e−β(m+1)/n
,

p
(n)
−2 (m) := q(n)(m,m− 2) =

n+m

2n

e−β(m−1)/n

eβ(m−1)/n + e−β(m−1)/n
,

p
(n)
0 (m) := q(n)(m,m) =

n−m
2n

e−β(m+1)/n

eβ(m+1)/n + e−β(m+1)/n
+ . . .

n+m

2n

eβ(m−1)/n

eβ(m−1)/n + e−β(m−1)/n
.

Clearly we satisfy points (i) and (ii) of Assumption 3.3.1. As ph(m) = limn→∞ p
(n)
h (mn),

p2(m) =
1−m

2

eβm

eβm + e−βm
,

p−2(m) =
1 +m

2

e−βm

eβm + e−βm
,

p0(m) =
1

2
+
m

2
tanh(βm).

So point (iii) is satisfied. Finally, point (iv) is also fulfilled as we have

−∇V (m) =
∑

h∈{−2,0,2}

hph(m) = tanh(βm)−m.

If β ≤ 1 this gradient function has a unique zero at m = 0, and V (m) a corresponding

minimum. On the other hand, if β > 1 we have three zeros of V ′, and two minima
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of V . By the last statement of Theorem 4.3.1, for this range of β values one observes

torpid (i.e. slow, or exponential) mixing of the Glauber dynamics.

For β < 1 we have

−V ′(m) = tanh(βm)−m = (β − 1)m+O(m3),

so the gradient function grows linearly near zero, and so we find κ = 1, α = 1/2. Thus,

we satisfy points (i) - (iv) of Assumption 3.3.1, and find that t
(n)
mix = 1

2(1−β)n log(n) +

O(n) for the magnetization chain.

If, on the other hand, we take β = 1, then the linear term in −V ′ vanishes and

−V ′(m) = −m
3

3
+O(m5).

Then κ = 3 and α = 3/4. Applying Theorem 4.3.1, we have t
(n)
mix = Θ(n2α) = Θ(n3/2).

Since the configurations mix in O(n) steps after the magnetization chains, we find

that the mixing time of x
(n)
t is Θ(n log(n)) or Θ(n3/2), as β < 1 or β = 1, respectively.

This reproduces the known mixing behavior as expounded in [39].

FIGURE 6.1: The potential function for the Ising model with no magnetization. From

left to right, the β values are 0.8, 1, and 1.2.
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With magnetization

One may make a simple modification of the Hamiltonian function of the Ising

model by adding a term to Hn representing the interaction between each individual

spin and a constant external magnetic field of strength h:

Hn,h(σ) = − 1

n

∑
i>j

σiσj + h

n∑
j=1

σj .

Take Cn to be the space of configurations as before, now with probability measure

P
(n)
β,h (σ) = Z−1

n,β,h exp (−βHn,h(σ))

where Zn,β,h is a normalizing constant. Recall that the magnetization of σ ∈ Cn is

defined to be m(σ) =
∑n

j=1 σj . Again, for the purpose of determining the mixing time

of the chain
(
x(n), Cn,P(n)

)
evolving under Glauber dynamics, it suffices to determine

the mixing time of the magnetization chain, m
(n)
t = m(x

(n)
t ).

The large-n limits of the transition probability functions are then

p
(n)
2 (m) =

1−m
2

eβ(m−h)

eβ(m−h) + e−β(m−h)
,

p
(n)
−2 (m) =

1 +m

2

e−β(m−h)

eβ(m−h) + e−β(m−h)
,

p
(n)
0 (m) =

1

2
− m

2
tanh(β(m− h)),

leading to a gradient function of

−∇V (m) = tanh (β(m− h))−m. (6.1)

We need only determine the order of the zeros of this function to invoke Theorem

4.3.1. Fixing a β > 0, we consider the intersections of tanh(β(m − h)) with m as h

varies.
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If β ≤ 1 there is only ever a single intersection, as the slope of m is every-

where greater than or equal to the slope of tanh(β(m− h)). The intersection will be

transversal except in the case that both β = 1 and h = 0, discussed in the previous

section.

FIGURE 6.2: Graphs of tanh(β(m − h)) versus m; the intersections of this graph

are the critical points of the potential function for the mean-field Ising model with

magnetization h. From left to right, h decreases past hs(β).

If we fix β > 1, then with h = 0 there are three transversal intersections of the

two functions, which we label by order ma < mb < mc. Two of these correspond to

local minima of the potential, V (m). Decreasing h forces ma to increase and mb to

decrease; at some value hs(β) the two points coalesce. For 0 ≥ h > hs(β), the presence

of two minima of V implies the system is slow mixing. Elementary calculus shows

that at h = hs(β), the resulting zero of −∇V is second order while mc > 0 remains a

simple zero. Thus we have z1 = mc, κ1 = 1, z2 = ma = mb, and κ2 = 2. By Theorem

4.3.1 we have α = 2/3 and t
(n)
mix = Θ(n4/3). Mimicking the physics literature, we call

this magnetization hs(β) the spinodal magnetization and the saddle point ma causing

the polynomial mixing behavior the spinodal state. In general, these are unstable

saddle points of V , which x(n)/n may spend long periods of time near before moving

back into the high-drift regime.
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If we take h < hs(β) there is only a single transversal intersection of tanh(β(m−

h)) with m, and we once again observe the simple case, with κ1 = 1 and t
(n)
mix(ε) =

Θ(n log n). With a little more work one can find the constant C such that t
(n)
mix =

1
2Cn log n; by Theorem 4.4.1 the system also exhibits cutoff with a window-size of

O(n).

It is worth noting that the polynomial mixing behavior seen at spinodal external

magnetization, hs(β), is also witnessed in the mean-field Potts model at the spinodal

temperature [17], studied in the next section. We will show that as the temperature

is lowered in that system, there arise a number of spinodal states. When the walk is

close to one of these states, in one of its coordinates it will exhibit the same qualitative

local drift as the Ising model at β > 1, h = hs(β) (i.e. there is a coordinate j so that

(−∇V )j (x) = −(xj)2 + h.o.t.) while in the complementary subspace there is a strong

stabilizing drift. In this way, we will see that the higher dimensional structure of

−∇V (as usual, modulo an affine transformation) is quite analogous to that of the

Ising model at inverse temperature β > 1 and external magnetization h = hs(β).

6.2 The Potts model

In this section we explore another well-known spin system whose mixing dy-

namics are known, though in this case the relevant Markov chain evolves on a multi-

dimensional lattice. The mean-field Potts model is a generalization of the Ising model

which allows q = 2, 3, 4, . . . spin states or “colors” of particle, making the configu-

ration space Cn,q := {1, 2, . . . , q}n. Particles in each group have a predilection for

particles of the same type, which is quantified by the Hamiltonian

Hn,q(σ) = − 1

n

∑
i>j

1{σi=σj}(σ), σ ∈ Cn,q.
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As before we construct a probability measure on Cn,q via

P
(n)
q,β (σ) = Z−1

n,q,β exp (−βHn,q(σ)) ,

and use the single-site Glauber dynamics to define a Markov chain
(
x(n), Cn,q,P(n)

)
with stationary distribution π(n) = P

(n)
q,β .

Analogous to the magnetization chain of the mean-field Ising model, the vari-

ables of interest are the numbers ρk(σ) :=
∑n

j=1 1{σj=k}(σ), so that ρk(σ)/n is the

proportion of sites in Kn with spin k and ρ(σ) :=
(
ρk(σ)

)q
k=1

is the vector of propor-

tions. Mapping x(n) to its proportions vector, we obtain the proportions chain:

ρ(n) := ρ
(
x(n)

)
=
(
ρ1
(
x(n)

)
, . . . , ρq

(
x(n)

))
.

As before, it can be shown through a coupling argument that up to an error of O(n)

time steps, mixing on all of Cn,q is determined by mixing of the proportion chains on

ρ(Cn,q) (see [17]). This is less than the error terms in our theorems, and so will not

affect our conclusions regarding mixing and cutoff.

Let us remark that writing ê = (1, . . . , 1) for the q-vector with all entries one,

our state space of interest, ρ(Cn,q) may be expressed as

ρ(Cn,q) = {ρ ∈ Rq : ρ · ê = n, ρk ∈ [0, n] ∩ Z for each 1 ≤ k ≤ q}. (6.2)

Now we study the drift of the proportions chain ρ(n) =
{
ρ

(n)
t : t ≥ 0

}
. Constructing

Glauber dynamics leads us to the following expression of the drift:

1

n
E
[
ρ

(n)
t+1 − ρ

(n)
t

∣∣∣ ρ(n)
t = nρ

]
= −∇V (ρ) +O(n−2) (6.3)

=
(
g1
β(ρ), . . . , gqβ(ρ)

)
+O(n−2) (6.4)

where we write

gkβ(ρ) = −ρk +
e2βρk∑q
j=1 e

2βρj
k = 1, . . . , q. (6.5)
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Clearly, V (ρ) = 1
2‖ρ‖

2
2 − 1

2β log
(∑q

k=1 exp
(
2βρk

))
is the potential function, up to an

additive constant. Notice that gkβ(ê/q) = 0 for all β ≥ 0 and any choice of k, so that

the vector z0 := ê/q = (1/q, . . . , 1/q) is a critical point of V .

We begin by showing that for β small enough, if ρ(n),1 > n/q, then the drift

−∇V has negative first coordinate. Following [17], we define

Dk
β(s) = max{gkβ(ρ) : nρ ∈ ρ(Cn,q), ρ

k = s}, k = 1, . . . , q, (6.6)

and using Lagrange multipliers we find

D1
β(s) = g1

β

((
s,

1− s
q − 1

, . . . ,
1− s
q − 1

))
= −s+

(
1 + (q − 1)e

2β 1−qs
q−1

)−1
, (6.7)

so that the maximum drift in the 1-coordinate always occurs along the line

z0 + tu1, t ∈ R, where (6.8)

u1 :=

(√
q − 1

q
,− 1√

q(q − 1)
, . . . ,− 1√

q(q − 1)

)
. (6.9)

One finds that for ρ on this line,

Du1g1
β(ρ) < ∂sD

1
β(s) = −1 + 2βqe

2β 1−qs
q−1

(
1 + (q − 1)e

2β 1−qs
q−1

)−2
→ −1

as β → 0+, for all s ∈ [1/q, 1]. By compactness and D1
β(1/q) = 0, for β small enough

we have D1
β(s) < 0 for all s ∈ (1/q, 1]. Since for any ρ 6= z0 we have some coordinate

larger than 1/q, we may assume without loss of generality that ρ1 > 1/q, and so by

the previous sentence, g1
β(ρ) < 0. For this β then, the only critical point of V is the

proportion vector z0.

Let ρ ∈ 1
nρ(Cn,q) be a rescaled proportions vector. Taking a directional deriva-

tive of −∇V in the u-direction for some unit vector u ∈ ê⊥ = {u ∈ Rq : u · ê = 0},

Du (−∇V ) (ρ) := lim
t→0

1

t
(−∇V (ρ+ tu) +∇V (ρ))
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=

−uk +
2βuke2βρk∑q
j=1 e

2βρj
−
e2βρk2β

(∑
j u

je2βρj
)

(∑q
j=1 e

2βρj
)2


q

k=1

.

Suppose now the vector ρ lies along the line z0 + su1, so that ρ2− ρ1 = ρj − ρ1 for all

j = 2, . . . , q. Using this and the fact that
∑

j u
j = 0,

Du (−∇V ) (ρ)

=

−uk +
2βuke2β(ρk−ρ1)(

1 + (q − 1)e2β(ρ2−ρ1)
) − 2βu1e2β(ρk−ρ1)

(
1− e2β(ρ2−ρ1)

)
(
1 + (q − 1)e2β(ρ2−ρ1)

)2
q

k=1

.

(6.10)

This expression tells us several things about the gradient system. First, if we take

ρ = z0,

Du (−∇V ) (z0) = −u+
2β

q
u, u ∈ ê⊥, so we see

• z0 is a stable point as long as β < q/2.

Next, using (6.10) with u = u⊥ ∈ (u1)⊥ we have

Du⊥ (−∇V ) (z0) = −u⊥ +
2βe2β(ρ2−ρ1)

1 + (q − 1)e2β(ρ2−ρ1)
u⊥

since the first component (u⊥)1 is necessarily zero. It follows that

• for ρ ∈ z0 + Span{u1}, the drift in the (u1)⊥ subspace is stabilizing (that is, for

any uk ∈ u⊥, Duk(−∇V )(ρ) < 0) if

2β − (q − 1) < e2β(ρ1−ρ2).

Taking s ∈ (1/q, 1] so that ρ = ρ(s) :=
(
s, 1−s

q−1 , . . .
1−s
q−1

)
, this condition becomes

2β − (q − 1) < exp

(
2β
qs− 1

q − 1

)
.
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Finally, consider (6.10) taking ρ = ρ(s) as before but with u = u1. By symmetry,

−∇V (ρ(s)) must be parallel to u1. Therefore Du1 (−∇V ) (ρ(s)) = G(s)u1 for some

smooth function G which is proportional to D1
β(s). This allows us to study stability

in the u1 subspace by considering derivatives of D1
β.

Now, if we increase β continuously and another zero of −∇V appears with ρ1 >

1/q, then by the definition ofD1
β, this zero must lie on the line

{
ρ(s) =

(
s, 1−s

q−1 , . . . ,
1−s
q−1

)}
(recall (6.6)). As some coordinate of ρ must be greater than 1/q, by symmetry of ∇V ,

there is a point with ρ1 > 1/q that is also a zero of ∇V . Furthermore, at such a

critical point of V we must have D1
β(s) = 0 for some s ∈ (1/q, 1) and β > 0. This

motivates our definition of the spinodal temperature for this model as

βs(q) = sup

{
β ≥ 0 :

(
1 + (q − 1)e2β(1−qx)/(q−1)

)−1
− x 6= 0 for all x ∈ (1/q, 1)

}
.

One may show that βs < q/2 for all q ≥ 3; for example, in [17] the authors observe

D1
β(s) is positive for βc(q) := q−1

q−2 log(q−1) and some s in a neighborhood of q−1
q , and

so βs(q) < βc(q) < q/2.

Let us define s∗(q) to be the solution to D1
βs(q)

(s) = 0. By our second bullet

point above, the drift in the (u1)⊥ subspace is stabilizing for β < q/2 as

q/2 <
(

(q − 1) + e
2β qs−1

q−1

)
/2 for s > 1/q. (6.11)

Therefore, stability and the value of κ at the critical point ρ(s∗(q)) will be determined

by the structure of D1
βs(q)

near s∗(q). Simply taking a derivative in s and applying

the equality D1
β(s∗(q)) = 0,

∂sD
1
β(s∗(q)) = −1− 2qβs(q) (s∗(q))2 . (6.12)

This shows ∂sD
1
β(s) < 0 for all s ∈ (1/q, 1), and in particular, that s∗(q) is a local

maximum of the drift, and has the form D1
β(s− s∗(q)) = −cs2 + h.o.t..
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Locally, then, expanding ρ− ρ(s∗(q)) in the {uk} basis,

ρ− ρ(s∗(q)) =

q∑
k=1

ρ1u1 + ρ2u2 + · · ·+ ρquq.

Since u1 is linearly independent of the other vectors, ρ1 is uniquely determined. After

translating ρ(s∗(q)) to the origin, we have V (ρ) = V1(ρ1) + V2((ρ2, . . . , ρq)), where

V1(ρ1) = c1

(
ρ1
)3

+h.o.t. and V2

(
(ρk)qk=2

)
= c2

(
ρ2
)2

+· · ·+cq (ρq)2, so α1 (ρ(s∗)) = 2/3

and α2 (ρ(s∗)) = 1/2 for some positive {ck}qk=1. Applying Theorem 5.2.2 we see the

presence of the spinodal states such as ρ(s∗(q)) create the polynomial asymptotic

mixing time:

t
(n)
mix = Θ(n4/3) for β = βs(q).
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FIGURE 6.3: Left: The potential V for the 3-spin mean-field Potts model is plotted

over the simplex ρ1 +ρ2 +ρ3 = 1. Green represents higher values, while blue indicates

a lower value.

Right: The graph of D1
β(s) is plotted for s ∈ (1/q, 1). The values of β increase along

the rows from top to bottom, with β = βs(3) in the third row.
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In broad strokes, the {2, . . . , q} coordinates of ρ(n) are within order n1/2 steps of

the saddle point ρ(s∗) after O(n) time steps and remain within B(nρ(s∗), δn), δ > 0,

for the O(n4/3) steps it takes for the 1-coordinate to enter and exit B(0, δn2/3). After

leaving this spinodal region, the drift in the u1 direction is negative and bounded away

from zero. From this position, the chain requires only O(n log n) steps to mix.

Finally, for β > βs(q) there exists an ŝ such that at ρ(ŝ) we have −∇V (ρ(ŝ)) = 0,

D1
β(ŝ) = 0, and ∂sD

1
β(ŝ) < 0, so that there is a stabilizing drift in the u1-direction with

κ = 1, α = 1/2. One can check that if ŝ =
(

1 + (q − 1)e
2β 1−qŝ

q−1

)−1

, then ŝ > 1− q−1
2β

is equivalent to

(2β − q + 1)e
2β 1−qŝ

q−1 < 1,

which is true for all positive s. Thus (6.11) holds and we have a stabilizing drift in the

hyperplane complementary to u1. This makes ρ(ŝ) a stable equilibrium point, as well

as the q − 1 points given by permutations of the coordinates. As there are multiple

stable points of V for β > βs(q), Theorem 5.2.2 tells us that the mean-field Potts

model exhibits exponential mixing in this regime;

t
(n)
mix ≥ cn exp(Cn) for β > βs(q).

6.3 The Blume-Capel model

As a final application we will study the mean-field Blume-Capel model, giving

an alternate proof of results in [36] and expanding upon those results. Consider the

configuration space Cn = {−1, 0,+1}n and the associated Hamiltonian defined on Cn:

Hn,K(σ) =
n∑
j=1

σ2
j −

K

n

 n∑
j=1

σj

2

.
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We again formulate a probability measure P
(n)
n,β on Cn proportional to the measure

exp (−βHn,K(σ)). Once again we formulate transition probability functions under the

Glauber dynamics, altering spins one site at a time. These transition functions turn

out to depend only on the total magnetization, m(σ) =
∑n

j=1 σj , and the total number

of zeros, z(σ) :=
∑n

j=1(1 − σ2
j ), of the configuration, a slight complexity in compar-

ison to the Ising case. Thus, we project our Markov chain
(
x(n), Cn,P(n)

)
to the

two-dimensional chain, (m(n), z(n)) := (m(x(n)), z(x(n))), and compute the following

transition functions

p
(n)
(2,0)((m, z)) =

1−m− z
2

e2βKm

2 cosh(2βKm) + eβ
+O(1/n),

p
(n)
(1,1)((m, z)) =

1−m− z
2

eβ

2 cosh(2βKm) + eβ
+O(1/n),

p
(n)
(1,−1)((m, z)) = z

e2βKm

2 cosh(2βKm) + eβ
+O(1/n),

p
(n)
(−1,−1)((m, z)) = z

e−2βKm

2 cosh(2βKm) + eβ
+O(1/n),

p
(n)
(−1,1)((m, z)) =

1 +m− z
2

eβ

2 cosh(2βKm) + eβ
+O(1/n),

p
(n)
(−2,0)((m, z)) =

1 +m− z
2

e−2βKm

2 cosh(2βKm) + eβ
+O(1/n).

The following gradient function is then easy to find,

−∇V (m, z) =

(
2 sinh(2βKm)

2 cosh(2βKm) + eβ
−m, eβ

2 cosh(2βKm) + eβ
− z
)
, (6.13)

and we note that it always has a zero at
(

0, eβ

2+eβ

)
. Writing the gradient as a column

vector and expanding about this critical point,

−∇V ((m, z)) =


(

4βK

2 + eβ
− 1

)
m+

2(2βK)3
(
eβ − 4

)
(2 + eβ)2

m3 +
2(2βK)5

(
e2β − 26eβ + 64

)
(2 + eβ)3

m5 +O(m7)

eβ

2 + eβ
− z +O(m2)

 ,

we draw the following conclusions:
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1. for any fixed β, if K < Kc(β) := 2+eβ

4β , then (m1, z1) is a stable point with κ = 1;

2. for any β, if K > Kc(β) then this point is unstable with κ = 1;

3. if K = Kc(β), then for β < βc := log 4 the point (m1, z1) is stable with κ = 3;

4. if K = Kc(β) and β = βc, then the first- and third-order terms of (−∇V )1

vanish, and (m1, z1) becomes a stable point with order κ = 5;

5. for all β > βc, if K = Kc(β) the drift is unstable in the m-coordinate, with

κ = 3, so it takes Θ(n3/2) steps for the chain to exit a ball of radius δn, δ > 0

when initiated near (m1, z1).

Note that the second component of the drift is stable in all the cases above, and

with exponent 1, so it will not influence the value of κ for this critical point, nor the

stability.

To conclude the mixing time asymptotics, we must know if there are any other

critical points of V . Clearly it is the number of solutions to the equation

m =
2 sinh(2βKm)

2 cosh(2βKm) + eβ
(6.14)

which determines the number of zeros of the gradient. We make the substitution

u = 2βKm and consider the altered equation

φβ(u) :=
2 sinh(u)

2 cosh(u) + eβ
=

u

2βK
.

These functions are odd, so any nonzero solution u will give rise to a second solution,

−u, so it suffices to restrict our attention to u ∈ (0,∞).

Observe that φβ is smooth, increasing, φβ → 1− as u→∞, and

φ′′β(u) is


positive for 1 < cosh(u) < e2β−8

2eβ
,

zero at cosh(u) = e2β−8
2eβ

,

negative for cosh(u) > e2β−8
2eβ

.
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Clearly if β ≤ log(4) then φ′′β is never positive. This agrees with the above discussion,

in that for β < log 4 the function φβ is concave on (0,∞) so the line u/2βK crosses

φβ transversally at the origin when K is small; then at K = Kc(β) this crossing is

tangential (so the first order term of φβ(u)−u/2βK vanishes) and there is still only a

single solution; and finally as K continues to increase a transversal intersection of φβ

and u/2βK appears at u+(β). The coordinate function u+(β) originates at u = 0 for

β = βc and increases with K. Of course φ′β(u+(β)) < 1/2βK at this positive transver-

sal intersection, so the corresponding point in m-space has a stabilizing drift nearby.

Symbolically, if we write m+(β) = u+(β)/2βK and z+(β) = eβ/(2 cosh(u+(β)) + eβ),

(−∇V )

 m−m+(β)

z − z+(β)

 =

 −c1m

−c2z

+ h.o.t.

This makes the critical point (m+(β), z+(β)) stable with linear drift in each coordi-

nate. As another such point exists at (−m+(β), z+(β)), we conclude from Theorem

5.2.2 that

t
(n)
mix(β,K) ≥ exp (Cn) for β ≤ βc,K > Kc(β). (6.15)

We also can conclude from the discussion in this paragraph above that for β ≤ βc =

log 4 and for K ≤ Kc(β), the critical point (0, eβ/(2+eβ)) is the solitary critical point

of V . Thus, by our observations 1. and 3. above, we see that

t
(n)
mix(β,K) =

2 + eβ

2(4βK − 2− eβ)
n log n+O(n) for β < βc, K < Kc(β);

t
(n)
mix(β,Kc(β)) = Θ

(
n3/2

)
for β < βc, K = Kc(β).

while for K = Kc(β) and β = βc, since κ = 5 is the only critical point, the theorem

tells us

t
(n)
mix(βc,Kc(βc)) = Θ

(
n5/3

)
.
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Remark 6.3.1. This last result is, to the knowledge of the author, the first spin

system to exhibit a mixing time of this polynomial order. Though novel, it should

not necessarily be surprising. In the Ising model, the single parameter β gives enough

‘room’ to cause the first coefficient of the Taylor series to vanish; in the present case,

the additional parameter K gives us enough degrees of freedom to simultaneously set

the first two Taylor series coefficients to zero. By our theorem above, then, if what

remains of the series about the critical point is still stabilizing, we should expect κ = 5

and a mixing time of order n5/3.

Now take β > log 4, so that the function φβ has two distinct intervals of concav-

ity. In this case, as K increases and the slope of u/2βK decreases, there will be a first

K value such that the two functions φβ and u/2βK intersect tangentially, denoted

Ks(β) := inf{K > 0 : ∃u∗(β) ∈ (0,∞) such that φβ(u∗(β)) = u∗(β)/2βK}.

That is, φβ(u) = u/2βKs(β) and φ′(u) = 1/2βKs(β) are solved simultaneously by

u = u∗(β). The s subscript denotes this as the spinodal interaction strength.

While we can show that for 1/2βK ∈
(

2
2+eβ

, e2β

4(e2β−4)

)
the equation φ′β(u) =

1/2βK has two solutions, only the larger solution may solve φβ(u) = u/2βK. To see

this, consider that if u−(β) is the smaller solution, φ′′β(u) > 0 for u < u−(β), so

φβ(u) =

∫ u−(β)

0
φβ(u)du <

∫ u−(β)

0
1/2βKdu = u−(β)/2βK.

Hence u∗(β) 6= u−(β). So for β > βc and K = Ks(β), there is a stable (see observation

1. above) critical point of V at (m1, z1), and another critical point at (m∗(β), z∗(β)),

where

m∗(β) =
u∗(β)

2βKs(β)
and z∗(β) =

eβ

2 cosh(u∗(β)) + eβ
.

As u∗ is larger than (e2β − 8)/2eβ the function φ′′β is negative there. Summarizing,

φβ(u∗(β)) = u∗(β)/2βKs(β), φ′β(u∗(β)) = 1/2βKs(β), φ′′β(u∗(β)) < 0.
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This then shows that up to first order, the drift about (m∗(β), z∗(β)) in the m-

coordinate vanishes, but the second order term has a negative coefficient. Therefore

−∇V ((m−m∗(β), z − z∗(β))) =

 −c1m
2

−c2z

+ h.o.t.

So we see that this point is not stable, and κ = 2. We may then conclude from Theorem

5.2.2 that, as in the Potts model at spinodal temperature, κ((m∗(β), z∗(β))) = 2 and

t
(n)
mix(β,Ks(β)) = Θ

(
n4/3

)
. (6.16)

For β > βc and K larger than Ks(β), of course we see u/2βK make two transver-

sal intersections with φβ(u) on (0,∞), and the second intersection is seen to be stable

since φ′β is less than 1/2βK there (leading to a linear stabilizing drift nearby, as

seen before with β ≤ βc, K > Kc(β)). As there is a corresponding stable point on

(−∞, 0), the system has multiple equilibrium points at these parameter values. This

then demonstrates that

t
(n)
mix(β,K) ≥ Cn exp (Cn) for some C > 0 when β > βc, and K > Ks(β). (6.17)

This concludes our analysis of the mean-field Blume-Capel mixing behavior.
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7. EXTENSIONS AND FUTURE WORK

7.1 Further applications

The present work has yet to be applied in any of a number of situations where

it may prove effective. What follows is a short list of problems that are solvable or

may yield interesting results using our approach, that is, employing scaling arguments

and local mixing to prove convergence in total variation and demonstrate cutoff.

1. Essential mixing: the following question has been asked in a variety of set-

tings. Let ε(n) be a positive function such that ε(n) = O(e−Cn) for some C > 0.

If one removes a set E(n) of small stationary measure, π(n)(E(n)) < ε(n), from

the set of possible starting states, x
(n)
0 , how is the mixing time affected? In the

situation considered in this thesis, it may be simple to prove that in the case of

a single stable point, z1, of V that π(n)
(
S

(n)
1

)
> 1− ε(n). Then if the starting

state is chosen from S
(n)
1 , the chain will mix within Θ

(
n2α(z1)

)
time steps. For

some systems, e.g. the mean-field Ising model at either high-temperature (rapid

mixing) or at critical temperature with external magnetization (h 6= 0, polyno-

mial mixing) for example, the theory created here shows that this would lower

the order of the mixing time. In both cases, the time required to mix would be

just Θ(n) steps.

2. Censored dynamics: in [22] the authors study the Ising model when it is

conditioned to always have positive magnetization. They discover that it is rapid

mixing and displays cutoff with window-size O(n). Of course, in these situations

the censored potential V has only one stable point (with scaling exponent α =

1/2) and one unstable point (the local maximum at zero magnetization, also
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with α = 1/2), so the theorems of Chapter 4. recover these results immediately.

By analyzing the unstable critical points of V for the low-temperature Potts

model, for example, one may be able to easily prove the same behavior in that

case.

3. Zero-drift: if the Markov chain family experiences no drift in the large-n limit

(i.e. ∇V = 0 on L) then the above methods will still yield mixing times. A sim-

ple example is given by the simple random walk an (Z/nZ)d, the d-dimensional

discrete torus. The limiting diffusion process in this case is a Brownian motion

on Tn, which converges weakly to the uniform measure. The time-scale used

here is n−2, and the local limit theory of Bhattacharya and Rao again yields

local mixing. Thus in this case we see t
(n)
mix = Θ(n2) and no cutoff occurs.

4. Kramers law: Kramer’s law is a statement regarding the escape rate of parti-

cles from a potential well, and can prove that the time required for a particle to

leave the basin of attraction of an equilibrium point is an exponential random

variable with intensity of the form exp(−f(U)) where f is some positive func-

tion and U is the potential well height. For details and review in the context of

diffusion processes, see [6].

A version of Kramer’s law has been proven for randomly perturbed dynamical

systems in euclidean space, see [44]. It seems possible that a similar law holds

for a family of Markov chains where V has multiple minima. Proving that such

a law holds would enable an analysis of the long-term chain dynamics in slow

mixing systems. One might suspect that the chain 1
nx

(n), when observed on

long enough time scales, will converge to a continuous time Markov process

transitioning between the local minima of V at exponential rates.
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5. Non-lattice graph topology: There exist chains
(
x(n),L(n),P(n)

)
where L(n)

is not a lattice, yet the chains may still have a diffusive weak limiting process

on the metric measure space limit of n−γL(n) for some γ ∈ (0, 1). In such a

situation the local limit theory we employed in Chapter 4. would not apply,

but this is only needed to demonstrate that the local mixing condition holds.

Results of Benjamini and Mossel [5] suggest that replacing the lattice Zd with

a supercritical percolation cluster will not affect the mixing behavior.

For other topologies (e.g. random trees), one could replace the local limit theory

with a ‘local coupling’ method, wherein two chains with nearby initial states are

shown to couple within a short (on the diffusive time scale) interval of time.

This could replace Theorem 4.2.1, extending the reach of Theorems 5.2.2 and

4.4.1

6. Non-diffusive limiting processes The diffusion processes found here serve

only to capture the proper time scale on which the distribution µ(n) converges

weakly to π(n). This could be replaced with any limiting process, such as a Lévy

process, as long as it is ergodic. This could give results on a class of chains with

highly non-local transitions.
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