Towards quantifying the reaction network around the sulfate–methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

Citation

DOI
10.1016/j.gca.2014.05.032

Publisher
Elsevier

Version
Accepted Manuscript

Terms of Use
http://cdss.library.oregonstate.edu/sa-termsofuse
Towards quantifying the reaction network around the sulfate-methane-transition-zone in the Ulleung Basin, East Sea, with a kinetic modeling approach

Wei-Li Hong1, Marta E. Torres1, Ji-Hoon Kim2, Jiyoung Choi2, Jang-Jun Bahk2

1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Bldg, Corvallis, OR 97331, USA
2Petroleum and Marine Research Division, Korea Institute of Geosciences and Mineral Resources, 124 Gwahang-no Yuseong-gu, Daejeon 305-350, South Korea

Abstract

We present a kinetic model based upon pore water data collected from eight sites drilled during the second Ulleung Basin gas hydrate drilling expedition (UBGH2) in 2010. Three sites were drilled at locations where acoustic chimneys were identified in seismic data, and the rest were drilled on non-chimney (\textit{i.e.} background) environments. Our model, coupled a comprehensive compositional and isotopic data set, is used to illustrate the different biogeochemical processes at play in those two environments, in terms of reactions around the sulfate-methane-transition-zone (SMTZ). Organic matter decomposition is an important process for production of methane, dissolved inorganic carbon (DIC) and consumption of sulfate in the non-chimney sites, whereas anaerobic oxidation of methane (AOM) dominates both carbon and sulfur cycles in the chimney environment. Different sources of methane mediate AOM in the two settings. Internally produced methane through CO$_2$ reduction (CR) and methanogenesis fuels AOM in the non-chimney sites, whereas AOM is sustained by methane from external sources in the chimney sites. We also simulate the system evolution from non-chimney to chimney conditions by increasing the bottom methane supply to a non-chimney setting. We show that the higher CH$_4$ flux leads to a higher microbial activity of AOM, and more organic matter decomposition through methanogenesis. A higher methanogenesis rate and a smaller CR contribution relative to AOM in the chimney sites is responsible for the isotopically light DIC and heavy methane in this environment, relative to the non-chimney sites.
Introduction

Anaerobic oxidation of methane (AOM) in marine sediments is an effective microbial filter that prevents methane from leaking into the water column and potentially the atmosphere (Barnes and Goldberg, 1976; Heeschen et al., 2005; Chuang et al., 2006; Yang et al., 2006; Reeburgh, 2007; Regnier et al., 2011). A thorough understanding of AOM is thus critical to assessing the role of deep-subseafloor methane (e.g., gas hydrate, gas/oil reservoirs, etc) on the carbon cycle under past, present or future environmental changes. The sulfate-methane-transition-zone (SMTZ) in marine sediments, where sulfate is exhausted and methane concentration starts to increase, is intuitively related to the strength of AOM (Borowski et al., 1996; Dickens, 2001; Chuang et al., 2010); though the actual reaction pathways can not be easily inferred solely from concentration profiles and may require consideration of carbon isotopic data (Borowski et al., 1997; Chatterjee et al., 2011; Hong et al., 2013).

Previous studies have sketched a first-order picture of the many interdependent biogeochemical reactions around the SMTZ (Borowski et al., 1996; Dale et al., 2006; Wallmann et al., 2006; Chatterjee et al., 2011; Regnier et al., 2011; Hong et al., 2013), and it is now widely accepted that the depth of SMTZ is controlled by the interaction of several reactions, such as organoclastic sulfate reduction (Fossing et al., 2000; Wallmann et al., 2006), additional CO₂ reduction (Borowski et al., 1997; Pohlman et al., 2008; Hong et al., 2013), and methanogenesis (Chatterjee et al., 2011). To better understand the system, we need a more comprehensive and quantitative understanding of how the carbon and sulfur cycles are connected at this active biogeochemical zone. Hong et al. (2013) presented a box model calculation, based on the balances of mass, flux, and isotopes of carbon, which allows for first-order estimates of the relative weight of these different reactions based on the geochemical profiles in various diffusion-dominated locations. This box model is, however, restricted to steady state conditions and only applicable to environments where diffusion is the dominant mechanism supplying methane to the SMTZ. Seismic surveys in the Ulleung Basin, however, revealed the presence of abundant acoustic chimneys known to act as advective methane gas conduits that fuel massive gas hydrate formation near the seafloor (Haacke et al., 2009; Horozal et al., 2009; Torres et al., 2011; Yoo et al., 2013; Kim et al., 2012; Choi et al., 2013).
In this work, we present a kinetic model that simulates the concentration and isotopic profiles of pore water from eight sites drilled in Ulleung Basin, offshore Korea, during the second gas hydrate drilling expedition (UBGH2) (Figure 1). We build our kinetic model using data from the five sites that are apparently diffusion-dominated, as they were drilled away from seismic blanking structures (non-chimney sites hereafter). These data were used by Hong et al. (2013) in their box model, and permit comparison between the steady state and kinetic model approaches.

We also apply the kinetic model to three additional sites that were drilled at acoustic blanking zones observed on seismic profiles (chimney sites hereafter). Such acoustic blanking zones are indicative to upward migration of free gas through the sediments, which lowers the acoustic velocity, and thus these sites correspond to a high methane flux end member in the Ulleung Basin and elsewhere (Torres et al., 2011; Kim et al., 2012). The very shallow SMTZ (<3 mbsf) and the appearance of massive gas hydrate in shallow sediments (<7 mbsf) is also indicative of a strong methane supply (KIGAM, 2011). We compare carbon and sulfur cycles in these two environments and study the biogeochemical response of the system to an increase of methane flux.

Model architecture

The model was implemented using CrunchFlow, a FORTRAN routine developed by Steefel (2009), which has been applied to various geochemical simulations (Maher et al., 2009; Yang et al., 2010). The details of model setup, including the full considerations of fundamental parameters and reactions, the geochemical database and input files for CrunchFlow, can be found from the Appendices. A brief introduction is provided below.

Model framework

We chose to model the first 20 meters of sediments at non-chimney sites, since the SMTZ in these settings range from 6.2 to 7.7 mbsf, and within this depth range we have the higher resolution of composition and isotopic data. For chimney sites, we chose to model only the first 5 meters, as the SMTZ here occurs between 1.2 to 2 mbsf and gas hydrate was observed as shallow as ~6 mbsf at site UBGH2-3 and UBGH2-7 (Table A3). Such choice of model frame does not correspond to the extent of methanogenesis, which should exist below our model length (Kim et al., 2011, 2013b; Choi et al., 2013).
We ran the simulation for 400 and 100 kyr at the non-chimney and chimney sites, respectively. These time periods correspond to the time needed for the first sediment parcel to move through the model frame (see Appendix 1 for sedimentation rate considerations). Although steady state is not assumed, the simulation time is long enough for all dissolved and solid species to reach steady state.

We chose 15 primary species as the fundamental building blocks of the model. In addition, we selected ten secondary species, five gases, and five minerals, which can all be formulated exclusively by primary species. The full list of species considered is listed in Table A1 as well as the corresponding reactions in Table A2. We chose Dirichlet-type (i.e., fixed-concentration) upper and lower boundary conditions and assigned them based on the measured concentrations: bottom water composition for the upper boundary and the available measurements nearest to 20 mbsf as the lower boundary. Bottom water composition was used as the initial condition at each site.

Reaction network

Our model includes 19 reactions, which are listed in Table A2 with the corresponding abbreviations used in this paper. The reaction network is illustrated in Figure A1, and comprises the carbon (upper middle in Figure A1) and sulfur (lower left in Figure A1) cycles, which are linked via AOM (Eq. A22). Particulate organic matter (POC) is consumed via either sulfate reduction (POCSR) (Eq. A25) or methanogenesis (ME) (Eq. A26). ME implicitly includes both fermentation and CO$_2$ reduction which can be summarized as:

\[
\begin{align*}
2CH_2O + 2H_2O &\rightarrow 2CO_2 + 4H_2 \quad \text{(fermentation)} \\
CO_2 + 4H_2 &\rightarrow CH_4 + 2H_2O \quad \text{(CO}_2\text{ reduction)}
\end{align*}
\]

(1)

Acetoclastic methanogenesis is not considered in our model as previous studies indicate that this metabolic pathway does not contribute significantly to methane generation in marine sediments (Whiticar, 1999; Heuer et al., 2009). Furthermore, the carbon and deuterium isotopes of methane sampled in the Ulleung Basin also demonstrate that CO$_2$ reduction is the primary methane production pathway in this
basin (Choi et al., 2013). Our model includes an additional CO$_2$ reduction reaction (CR, Eq. A23), which is described as methane generated from the dissolved inorganic carbon (DIC) produced primarily from AOM and, to a lesser extent, from ME below SMTZ. This reaction was often overlooked in previous studies (Wallmann et al., 2006; Chatterjee et al., 2011; Chuang et al., 2013). However, Hong et al. (2013) demonstrated its significant role to achieve an isotopic mass balance of carbon around the SMTZ. Authigenic carbonate (CP, Eq. A24) removes dissolved calcium, magnesium and carbonate species from the pore water (Nehza et al., 2012). Methane in our model can be generated in-situ through CR and ME or delivered to our modeled sediment layer by external source, which includes the contribution of methanogenesis below the model frame.

Hydrogen sulfide is produced from both AOM and POCSR. Formation of pyrite (Eq. A27) down to the depth of SMTZ has often been associated with these reactions (e.g., Wallmann et al., 2006; Lim et al., 2011), but the exact formation mechanism remains controversial (Burdige, 2006). For our modeling purposes we assume pyrite precipitation from the less crystalline mineral mackinawite, as has been proposed from both theoretical calculations and lab experiments (Rickard, 1997; Rickard and Luther, 1997, 2007; Dale et al., 2009). This process fixes hydrogen sulfide from pore water and produces hydrogen gas, which supports CR. The most likely iron sources for mackinawite formation are the labile Fe oxyhydroxides. Other minerals, such as hematite may also act as Fe sources. The minerals providing Fe are not considered in the current model.

To correctly account for the change of alkalinity and pH, we included all major cations and anions, as well as various acid-base pairs of carbon, sulfur, nitrogen, and phosphate species (Eq. A11 to A18). The acid-base pairs are treated as secondary species in CrunchFlow, and are assumed to reach immediate equilibrium. CH$_4$ and CO$_2$ gases are allowed to form (Eq. A19 and A20), but for simplicity in this current version of the model, the gas phase is pinned to the pore water; in other words, it is not allowed to migrate as a separate phase and the fluid is assumed to be fully saturated. Kim et al. (2012) presented evidence from carbon isotopic fractionation in support of a two-phase transport (gas and liquid) at chimney sites. We acknowledge this process but have not included this two-phase transport in the current model.
The carbon isotopic profiles were modeled by tracking ^{12}C and ^{13}C in all carbon species individually. Within our formulation, the measured isotopic variability can be explained by four different processes. First, a diffusion-induced fractionation has been quantified by Zeebe and Wolf-Gladrow (2001), who showed that the diffusion coefficients are inversely proportional to the square root of the reduced masses. Secondly, isotopic changes can result in mixing of carbon with different isotopic signatures and without any isotopic fractionation. For example, DIC released from POCSR (Eq. A25) has a constant carbon isotopic signature that is similar to the organic matter. We used the values of -23 or -19‰ reported by Kim (2007) for non-chimney and chimney sites, respectively (see Table A4). ME (Eq. A26) releases methane and DIC with very different isotopic signatures (Table A4) that reflect the isotopic fractionation during this reaction. The authigenic carbonate has a constant carbon isotopic signature of -38‰, and no significant difference in carbon isotopes was observed on authigenic carbonates from chimney and non-chimney sites (Nehza et al., 2012). The third type of isotopic fractionation is the equilibrium reaction between the various carbonate species, which can be as large as 9‰ between CO$_2$(aq) and HCO$_3^-$ (Mook, 1986; Zhang et al., 1995). This is accounted for in our model by including the ^{12}C and ^{13}C carbonate species. The last source of fractionation comes from the kinetic effect of the non-equilibrium reactions such as AOM and CR. We estimated this fractionation effect by assigning different kinetic constants for each of these reactions as detailed in Appendix 1.

Model experiment setup

To investigate how the system responds to an increase in methane diffusional flux, we let the model simulate the changes from the geochemical conditions of UBGH2-1_1 (a non-chimney site) to the conditions observed in UBGH2-3 (a chimney site) by increasing the methane concentration in the bottom boundary condition by a factor of 17, while the concentration of other solutes remained unchanged. Such increase in the bottom boundary condition of methane concentration will result in a higher diffusive flux of methane, which delivers more methane into the model frame during the time length of interest.

Pore water data and geochemical environment
The available data allow us to constrain our model results by comparison with measured carbon isotopes of DIC and methane (Figure 2) as well as the concentration of sulfate, calcium, magnesium, ammonium, alkalinity, hydrogen sulfide (only available in 3 sites), and pH (Figure 3). All these data and their corresponding analytic procedures have been reported elsewhere (e.g., Ryu et al., 2012; Choi et al., 2013; Hong et al., 2013; Kim et al., 2013a).

At the non-chimney sites, the depth of SMTZ ranges from 5 to 10 meters below seafloor (mbsf) (Table A3), and gas hydrates occurred disseminated within the sediment or concentrated within coarse layers at depths ranging from ~70-190 mbsf (Table A3), where it occupies 12 to 79% of the pore space (Bahk et al., 2013). In contrast, the shallow depths of the SMTZ (<2 mbsf) at the three chimney sites point to a higher methane flux, which is thought to support formation of massive gas hydrate at shallow depths (<7 mbsf) (Table A3; Torres et al., 2011; Kim et al., 2012, 2013b; Choi et al., 2013).

Distinct geochemical features can be observed from the isotopic profiles between the two groups. There is no significant difference in the isotopic signatures in the deep fluids and gases (>150 mbsf) among all sites (Figure 3 and Table A3). However, around the SMTZ, $\delta^{13}C$-DIC is ~12-20‰ lighter at chimney sites relative to the non-chimney sites, while $\delta^{13}C$-CH$_4$ is enriched (~10-15‰) in chimney sites. These patterns indicate that reactions around the SMTZ, rather than variations in the fluid source, are responsible for these isotopic patterns.

Results and Discussion

By fitting our model results to the available data (Figure 3), we are able to derive reaction rate profiles. From these, we calculated the depth-integrated rates in terms of DIC, methane, and hydrogen sulfide production/consumption and reported them in Table 1 and Figure 4. The difference in reaction rates between the non-chimney and chimney sites is discussed in the following paragraphs.

DIC cycling around SMTZ

At all sites, we calculated a ΔF_{DIC} parameter (Figure 4a), defined as the difference
between inflow and outflow of DIC, a negative value of this parameter represents a net outflux (i.e., DIC outflux > DIC influx). The larger outflux of DIC is due to the permanent low concentration of DIC at seafloor (~2.2 mM), which sustains a concentration gradient between depth of SMTZ and seafloor. The excess of DIC outflux plus the net DIC consumption through reactions (CR and CP) equals to the net DIC production through organic matter degradation (POCSR+ME) and AOM. For all of the non-chimney sites, the DIC production rates through organic matter degradation (POCSR+ME) within the model frame are at least 76% of the ΔF_{DIC}, indicating that the DIC produced through organic matter degradation can account for most of the excess DIC outflux. At these sites, DIC production rate via AOM is always lower than that from organic matter decomposition and accounts for only ~25 to 46% of the total ΔF_{DIC}. On the other hand, at chimney sites, organic matter degradation contributes only slightly to the overall rate, and AOM accounts for more than 85% of the total ΔF_{DIC}.

At non-chimney sites, the primary pathway for organic matter degradation is POCSR, which can account for up to 96% of total organic matter degradation. At chimney sites, however, POCSR within the shallow SMTZ becomes less important. In order to fit the isotopic data at the chimney sites, it is necessary to use higher kinetic constants for ME, which in turn result in higher ME rates in this setting. These results illustrate how the shallow sulfate reduction zone typical of chimney sites in the Ulleung basin (and elsewhere), acts to deliver more labile organic matter to the methanogenesis zone, where high ME rates lead to enhanced methane generation.

CR, the reaction via which methane is produced by reduction of in situ DIC plus that derived from AOM, is an important sink of DIC for all sites (7-8%). However, the ratio of CR to AOM, which represents the portion of self-supported AOM fueled by the cycling between AOM and CR, is remarkably different between the non-chimney and chimney sites. These ratios range from 19 to 33% at non-chimney sites, but are only <10% at chimney sites. These differences indicate that CR is less important, when AOM is actively fueled by high methane flux.

CH$_4$ cycling around SMTZ

Methane produced by organic matter degradation (i.e., ME) within the model frame
supports a fraction of the AOM at all sites (Figure 4b). At the non-chimney sites, up to 35% of methane consumed by AOM comes from ME, whereas a maximum 18% of AOM is supported by ME at chimney sites. Notice that as our model does not include the ME presents beneath the model frame, the rate estimated for ME represents only the contribution within this corresponding depth range and could underestimate the overall contribution. The other internally-produced source of methane, CR, mediates about 19 to 33% of the AOM in the non-chimney sites and less than 10% in the chimney sites.

This reaction describes the carbon cycling between AOM and CR, which helps stabilize the SMTZ when the methane flux is low (i.e., non-chimney sites) and becomes less important when methane flux is high (i.e., chimney sites). The methane that is delivered externally fuels only 44 to 63% of AOM in non-chimney sites but becomes much more important (fuels >74% of AOM) at chimney sites.

The externally-delivered methane is the sum of all methane produced below our model frames (i.e., 20 meters in non-chimney sites and 5 meters in chimney sites) regardless of its origin. The source of methane from outside the model frame cannot be directly constrained by our model, but we can make educated inferences based on the assigned boundary conditions. At the chimney sites, the carbon isotopic composition of the methane present at the lower model boundary is similar to that reported for the gas hydrate-bounded methane recovered from the Ulleung Basin (Choi et al., 2013; Kim et al., 2013b), and it is commonly heavier than that for the non-chimney sites (Table A4). However, at all sites the methane isotopic data reflects a microbial source (Choi et al., 2013; Kim et al., 2011, 2012, 2013b), indicating that a large portion of the methane is produced by ME at depths deeper than those defined by our model frames. It is also possible that migration of methane in the free gas phase is responsible for the high methane flux in chimney sites, as suggested by Kim et al. (2012); however the current model does not include a two-phase transport.

If we compare the magnitude of the external methane flux with the SMTZ depth in our sites (Figure 5a), we can observe how the external methane flux increases exponentially as SMTZ depth shoals. Such non-linear relationship was already emphasized by the global dataset of AOM rates relative to the corresponding SMTZ depths compiled by Regnier et al. (2011). If we were to use a linear extrapolation based on the depth of SMTZ at sites UBGH2-5 and UBGH2-7 and assume that AOM is totally fueled by
external methane, we would predict the external methane flux at site UBGH2-7 to be only four times higher than that at site UBGH2-5. A better estimate based on our model shows that the methane flux at site UBGH2-7 is ~10 times higher than that at site UBGH2-5.

From Figure 5b, a loosely proportional relationship between external methane flux and the thickness of gas hydrate occurrence zone (GHOZ; BSR depth minus depth of first gas hydrate observed) suggests that the thickness of gas hydrate reservoir may indeed influence the external methane flux. However, using the strength of external flux to infer the thickness of GHOZ may be problematic as factors such as lithology also influence the abundance and the type of gas hydrate reservoir in Ulleung Basin (Bahk et al., 2013) and elsewhere (Torres et al., 2008). A universal relationship between geochemical- or geophysical-defined boundaries (e.g., SMTZ, BSR, or GHOZ) and external methane fluxes as proposed by Bhatnagar et al. (2008) maybe possible, but to fully constrain this possibility will require more data.

Sulfur cycling around SMTZ

The entire sulfate flux into the sediments from the overlying seawater is converted to hydrogen sulfide by either POCSR or AOM within the model frame (Figure 4c). For the non-chimney sites, POCSR accounts for 40 to 65% of the total sulfate reduction but only less than 8% is consumed by POCSR in the chimney sites. Our model suggests a rapid hydrogen sulfide turnover rate, since the pore water hydrogen sulfide content predicted by the model is low (Figure 3). Most of the pore water sulfide is sequestered in the solid phase through pyrite and mackinawite formation (Figure 2). Our model estimates that sulfide mineral formation (pyrite plus mackinawite) is responsible for a 2 to 5 wt% increase of sulfur-containing minerals (Figure 6). A full inventory of the sulfur-phase partitioning in the Ulleung Basin is not available, however, a first order mass balance of sulfur species both in pore water and solid phases is illustrated by comparing the measured profiles of the relevant species (i.e., sulfate and sulfide in pore water as well as total sulfur from sediments) with our model results from two non-chimney sites (UBGH2-1_1 and UBGH2-10) and one chimney site (UBGH2-7) where data are available (Figure 6).

The model reproduces the observed low hydrogen sulfide concentration in the pore
water (Figure 6). The pyrite content estimated for these three sites is usually half of the measured total sulfur (TS) content in the sediments (KIGAM, 2011). By including the model-estimated mackinawite content, the observed level of TS in the sediments can be better accounted for. The SEM photos (Kim, unpublished data) in Figure 6d shows the framboidal pyrite observed below SMTZ in UBGH2-1_1 which has been attributed to authigenic processes (Wilkin, 1997; Butler and Rickard, 2000; Campbell et al., 2002; Park et al., 2005).

Admittedly, our current model includes only a basic consideration of the sulfur cycle but the pyrite formation mechanism considered here is one of the three potential pathways for pyrite formation (see Rickard and Luther (2007) for reviews). Butler and Rickard (2000) successfully synthesized framboidal pyrite from mackinawite and dissolved hydrogen sulfide, and we use their results as a basis for the proposed mechanism operational in the Ulleung Basin. However, more work is clearly needed both in terms of analytical efforts to partition the sulfur species in the Ulleung Basin and an associated model development to investigate the reaction network between carbon and sulfur cycles in marine sediments. Nevertheless, the first-order agreement between modeled and observed profiles in both solid and pore water phases (Figure 6) suggests a satisfactory mass balance of sulfur species, as well as a reasonable estimate of sulfide turnover rate (i.e., from dissolved phase to solid phase). The sequestration of sulfide from pore water into solid phase proposed here supplies the hydrogen gas required in CR, which is essential to achieve carbon isotopic mass balance.

The significance of CR around SMTZ

AOM has been long identified as the solo connection between dissolved methane and carbonate species in pore water. In our study, however, we emphasize CO₂ reduction as a reverse connection that counteracts the effect of AOM. Our previous effort (Hong et al., 2013) and other studies (Borowski et al., 1997; Pohlman et al., 2008) have demonstrated the need to include CO₂ reduction to satisfy isotopic mass balance of carbon. In this work, in addition to the balance in mass and isotope budgets of dissolved carbon species (i.e., DIC and methane), we also account for the dissolved hydrogen source required in CO₂ reduction via pyrite formation (Figure 6 and Table 1). The satisfactory agreement of sulfur species profiles in two non-chimney sites and one chimney sites (Figure 6), indicate that the pyrite formation rates derived from our
model are reasonable, and furthermore, mass balances in carbon and sulfur cycling supports the proposed reaction network, which includes the additional CO$_2$ reduction within the SMTZ as a significant component of the carbon cycle in this biogeochemically active zone.

At non-chimney sites, the dissolved hydrogen gas production rate (i.e., pyrite formation) is less than 7 μmol/cm2/yr. This value is within 10% of the estimated hydrogen gas consumption rate through CR (i.e., 4 times of CR rate in Table 1 due to the stoichiometry in Eq. A23), and indicates a rapid turnover rate in non-chimney sites. In contrast, there is a significant imbalance between production and consumption of dissolved hydrogen gas at the three chimney sites: production rates are generally twice as large as consumption rates. Pyrite formation in chimney sites is strongly stimulated by the rapid AOM rates fueled by the enhanced bottom methane flux in the chimney sites. CR is also stimulated by the enhanced AOM in the chimney sites (Table 1) but not to the degree of pyrite formation since CR is inhibited by the presence of sulfate above SMTZ. As mass balance is strictly satisfied in the model, the difference between production and consumption rates is accounted by diffusional lost of dissolved hydrogen to seafloor and bottom of the model frame.

Model experiment result

To develop an understanding of the change that a system experiences when subjected to an increase in bottom methane supply, we allowed our model to evolve from the concentration and isotopic profiles currently observed at non-chimney site UBGH2-1_1, to the conditions observed at the chimney site UBGH2-3. In addition to the increase in bottom methane supply, to simulate the conditions at chimney locations (Figure 7a to 7c), two other modifications are required to accurately match the pore water suite observed at the high methane flux environment. First, the simulation necessitates a larger AOM kinetic constant, which indicates that at high methane flux sites there is a higher microbial activity. Second, when there is more methane delivered externally to the system, more organic matter is subject to the degradation through ME rather than POCSR, due to the shoaling of the SMTZ.

If only the strength of external methane source is increased, the AOM rate calculated
for the non-chimney sites is not able to keep up with the flux of methane from the bottom supply, and the model will yield the erroneous result of a high methane concentration in the sulfate reduction zone. With a higher AOM kinetic constant methane is now exhausted in the sulfate reduction zone at a faster rate, and SMTZ becomes shallower. The predicted increase in AOM rate by 2-orders-of-magnitude (Figure 7d and 7e) is in agreement with the higher concentration of methyl coenzyme M reductase (mcrA) observed at chimney sites relative to the non-chimney sites (KIGAM, 2011; Choi et al., 2013). Wegener and Boetius (2009), who studied the response of AOM strength to changes in methane flux in a flow-through simulator, also observed a timely increase in AOM rate in response to an increase of methane supply.

If only a high AOM rate fueled by the high methane flux is considered, the pH and carbon isotopes resulting from this enhanced reaction rate will not match our observations. A good fit to the data is obtained by increasing the decomposition rate of organic matter through ME rather than POCSR (Figure 7f). Collectively, these changes (lower CR to AOM ratios and higher ME rates), are responsible for the isotopically light DIC and heavy methane observed in the SMTZ region of the chimney sites, relative to the non-chimney sites (Figure 2).

An increase in organic matter decomposition via ME is consistent with the fact that a shallow sulfate reduction zone will limit the extent of POCSR, since the organic matter will not spend enough time in that redox zone before burial in sediments devoid of sulfate, where it is then available for ME. This effect is further enhanced because the newly-deposited organic matter is more labile than older more-degraded organic carbon. Thus by limiting the time the organic matter resides in the sulfate-bearing zone, there is an increase in both the total amount as well as in the labile fraction of organic matter available for methane production in shallow (<10 mbsf) sediments. This effect has not been considered in current global methane hydrate inventories based on methane generation potential of continental margin sediments (Burwicz et al., 2011; Wallmann et al., 2012; Pinero et al., 2013) and should be considered in future global assessments.

The change in degradation mode intuitively suggests a positive feedback in high methane flux systems. However, due to the different response time between the
dissolved and solid phases, such positive feedback is limited. As the external methane
flux is enhanced, driven by changes in state of the deep gas reservoirs (e.g., gas hydrate,
pore pressure, seismicity etc), the SMTZ rapidly migrates upwards and adjusts itself to
a new position, determined by the strength of the external methane flux. Such
adjustment is complete in couple thousand years (2 kyr in our model simulation),
depending on the attendant sedimentation rate (i.e., less time required if sedimentation
is higher). With the sedimentation rate (5.6×10^{-5} m/yr) assigned in our model, only ~10
cm of sediments will be buried during this time. However, due to the shoaling of SMTZ,
more sediment is now exposed to the attack by ME. The carbon isotopic data and pH
will begin to reflect the increase in ME rate after 2 kyr. The depth of SMTZ also slightly
deares in this stage (~10 cm). Due to the lower ME rate relative to the AOM rate, it
takes in the order of 10^4 years (50 kyr in our model simulation) for the system to reach
steady state.

Conclusions
Our kinetic model can successfully reproduce the compositional and isotopic profiles
observed at the eight UBGH2 drilled sites. Striking differences in the biogeochemical
processes between the chimney and non-chimney environment were revealed and
illustrated in Figure 8. As a result of the study, we conclude the following:

1. Organic matter that is buried in a non-chimney environment is degraded in the
6-8 m thick sulfate reduction zone through POCSR, and is responsible for the
majority of the DIC production in the pore water. This process consumes 40-65% of the sulfate inflow from the seafloor while the rest of sulfate reacts with the
methane from beneath the SMTZ. 19-33% of the AOM is mediated by the
methane produced internally through CO_2 reduction in non-chimney
environments, which utilizes hydrogen gas produced from pyrite formation.
Methane produced by organic matter degradation through ME can also account
for 8.2-35% of the AOM rate. External methane pool contributes less than 65%
of the total AOM rate in all non-chimney sites.

2. In contrast, the strong external methane inflow dominates the consumption of
sulfate and production of DIC through AOM in the chimney sites. Organic matter
degradation becomes less important. While most (80~98\%) of the organic matter is degraded through POCSR in the non-chimney sites (comparing the contributions from ME and POCSR in Figure 4a), more organic matter (35~100\%) is now degraded through ME at the chimney sites due to the shrink of sulfate reduction zone (i.e., shoaling of SMTZ). This change in organic matter degradation modes and the resulting increase in methane production potential should be considered in the future assessment of global gas hydrate inventories.

3. Although the consideration of sulfur cycle in our model is still pre-matured, our model can, to a first order, account for the mass balance of several sulfur and carbon species in both pore water and solid phases. Such results infer the necessity and likelihood of an additional CO$_2$ reduction (CR), which utilizes the hydrogen gas produced from pyrite formation. The reactions proposed serve as a novel link, other than AOM, between carbon and sulfur cycles in the marine sediments.

4. Our model experiment demonstrates that the evolution from a non-chimney site to a chimney site requires both a higher bottom methane supply and higher AOM microbial activity. Pathway of organic matter degradation changes in response to the shoaling of SMTZ: more organic matter is degraded through ME than POCSR.

5. From our model assessment, we conclude that the different carbon isotopic signatures observed around SMTZ in high and low methane flux conditions is the result of a lower CR to AOM rate ratio and a higher ME reactivity in sites experiencing a higher methane flux.

Acknowledgements

This project was made possible with the funding support from US Department of Energy, contract numbers: DE-FE0004000 and DOE Award No.: DE-FE0010496. In addition we acknowledge support from Korea Institute of Geosciences and Mineral Resources (KIGAM) (GP2012-026) and the Hanse-Wissenschaftskolleg, Institute for Advanced Study in Delmenhorst, Germany through a fellowship to MT. The authors would like to thank Dr. Robert Harris, Dr. Clare Reimers, and two anonymous
reviewers for the insightful comments help shaping this manuscript.
Figure Captions

Figure 1: Map of the eight sites drilled during the 2010 Ulleung Basin gas hydrate drilling expedition (UBGH2) used in this study. The three sites drilled on acoustic chimneys (Torres et al., 2011) were plotted in red triangles.

Figure 2: Carbon isotopic profiles of dissolved inorganic carbon (DIC) and methane. (a) DIC carbon isotopes from all eight sites investigated. Detailed DIC isotope profiles in the upper 25 meters are plotted in (b) and (c) for chimney (blue) and non-chimney (green) sites, respectively. (d) Methane carbon isotopes in the void and headspace gas samples from all sites (blue symbols: chimney sites; green symbols: non-chimney sites). (e) The methane carbon isotope for the first 25 m. These DIC and methane carbon isotopic profiles suggest that the fluid source (> 150 mbsf) is not noticeably different in terms of the carbon isotopic signature at all sites. It is the reactions around the SMTZ that cause the observed variation.

Figure 3: Model results for (a) the five non-chimney sites and (b) the three chimney sites, showing good fit to pore water composition and isotopic profiles.

Figure 4: Depth-integrated rates estimated from our kinetic model at all sites. Note the different scales between the non-chimney (upper 5 panels) and chimney (lower 3 panels) sites. (a) Rates of the five DIC production/consumption reactions and their percentages relative to the ΔF dic, defined as the flux difference of input and output DIC (negative values represent net outflux). (b) Rates of the three methane sources and their percentages relative to AOM rate. (c) Rates of the four hydrogen sulfide production/consumption reactions and their percentage relative to total hydrogen sulfide production rate (or total sulfate reduction rate, total sulfate influx from seafloor). The very different carbon and sulfur cycles between the chimney and non-chimney sites are apparent from this comparison. See text for details.

Figure 5: Correlations between external methane flux and (a) SMTZ depth and (b) thickness of gas hydrate occurrence zone (GHOZ). Thickness of GHOZ is calculated from the difference between depths of BSR and first gas hydrate occurrence listed in Table A3. The non-linearity in both plots suggests that both the depth of the SMTZ and
the thickness of the GHOZ are not solely dependant on the magnitude of an external methane flux. Other factors or processes are may be of the same importance.

Figure 6: Profiles of pore water sulfate, sulfide, and sedimentary total sulfur (TS). (a)-(c) Results from two non-chimney sites (UBGH2-1_1 and UBGH2-10) and one chimney site (UBGH2-7) were shown. The TS data are from KIGAM (2011). The agreement between modeled and observed profiles suggests that our model can satisfactory account for the mass balance of different sulfur species. The resulting hydrogen production rate from pyrite formation estimated from our model is therefore reasonable and could sustain the CR rate required to fulfill the isotopic mass balance of carbon. (d) SEM photos of the framboidal pyrite observed from UBGH2-1_1 at 13.45 mbsf (Kim, unpublished) which suggests the authigenic origin of pyrite.

Figure 7: Evolution of a system from a low methane flux (red: non-chimney site UHGH2-1_1) to one of high methane flux (blue: chimney site UBGH2-3). In response to an increase in bottom methane supply (17 times larger), the AOM and CR rates increase by two orders of magnitude (note change in x axis scale), but the fraction of AOM fueled by CR drops from 30% in the initial low flux condition to 10% in the final high flux condition. POCSR is the primary organic matter degradation pathway in the initial low flux condition while more organic matter is degraded through ME in the final condition. This change in degradation pathways is related to the shoaling of SMTZ driven by an increase in bottom methane supply and it is an important consideration in estimates of methane-generation potential in marine sediments.

Figure 8: Cartoon illustrates the different modes of carbon cycling around SMTZ in the (a) non-chimney and (b) chimney environments in the Ulleung Basin. Size of the arrows represents the strength of fluxes or rates. See text for details.
References

Heuer VB, Pohlman JW, Torres ME, Elvert M & Hinrichs K-U (2009) The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in...

Maher K, Steefel CI, White AF & Stonestrom DA (2009) The role of reaction affinity
and secondary minerals in regulating chemical weathering rates at the Santa Cruz Soil Chronosequence, California. Geochimica et Cosmochimica Acta 73: 2804-2831.

Table 1: Depth integrated rates for all study sites

(A) μmol DIC/cm² porous medium/yr

<table>
<thead>
<tr>
<th></th>
<th>UBGH2-1_1</th>
<th>UBGH2-2_1</th>
<th>UBGH2-5</th>
<th>UBGH2-6</th>
<th>UBGH2-10</th>
<th>UBGH2-3</th>
<th>UBGH2-7</th>
<th>UBGH2-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cal-Ca</td>
<td>-0.9</td>
<td>-0.9</td>
<td>-0.6</td>
<td>-0.7</td>
<td>-1.6</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.5</td>
</tr>
<tr>
<td>Cal-Mg</td>
<td>-1.0</td>
<td>-1.5</td>
<td>-1.3</td>
<td>-0.4</td>
<td>-1.0</td>
<td>-0.3</td>
<td>-0.2</td>
<td>-0.4</td>
</tr>
<tr>
<td>POCSR</td>
<td>14.9</td>
<td>11.9</td>
<td>14.8</td>
<td>11.1</td>
<td>18.5</td>
<td>0.1</td>
<td>5.2</td>
<td>4.6</td>
</tr>
<tr>
<td>ME</td>
<td>0.3</td>
<td>2.9</td>
<td>0.4</td>
<td>2.2</td>
<td>0.5</td>
<td>10.7</td>
<td>2.9</td>
<td>6.0</td>
</tr>
<tr>
<td>AOM</td>
<td>4.0</td>
<td>9.0</td>
<td>4.0</td>
<td>6.4</td>
<td>5.5</td>
<td>58.8</td>
<td>28.3</td>
<td>58.9</td>
</tr>
<tr>
<td>CR</td>
<td>-1.3</td>
<td>-1.7</td>
<td>-1.1</td>
<td>-1.4</td>
<td>-1.6</td>
<td>-4.9</td>
<td>-2.7</td>
<td>-4.1</td>
</tr>
<tr>
<td>DIC flux</td>
<td>-16.1</td>
<td>-19.6</td>
<td>-16.3</td>
<td>-17.2</td>
<td>-20.3</td>
<td>-64.1</td>
<td>-33.4</td>
<td>-64.5</td>
</tr>
</tbody>
</table>

(B) μmol CH₄/cm² porous medium/yr

<table>
<thead>
<tr>
<th></th>
<th>UBGH2-1_1</th>
<th>UBGH2-2_1</th>
<th>UBGH2-5</th>
<th>UBGH2-6</th>
<th>UBGH2-10</th>
<th>UBGH2-3</th>
<th>UBGH2-7</th>
<th>UBGH2-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>0.3</td>
<td>2.9</td>
<td>0.4</td>
<td>2.2</td>
<td>0.5</td>
<td>10.7</td>
<td>2.9</td>
<td>6.0</td>
</tr>
<tr>
<td>AOM</td>
<td>-4.0</td>
<td>-9.0</td>
<td>-4.0</td>
<td>-6.4</td>
<td>-5.5</td>
<td>-58.8</td>
<td>-28.3</td>
<td>-58.9</td>
</tr>
<tr>
<td>CR</td>
<td>1.3</td>
<td>1.7</td>
<td>1.1</td>
<td>1.4</td>
<td>1.6</td>
<td>4.9</td>
<td>2.7</td>
<td>4.1</td>
</tr>
<tr>
<td>CH₄ flux</td>
<td>2.4</td>
<td>4.3</td>
<td>2.5</td>
<td>2.8</td>
<td>3.4</td>
<td>43.2</td>
<td>22.7</td>
<td>48.7</td>
</tr>
</tbody>
</table>

(C) μmol HS⁻/cm² porous medium/yr

<table>
<thead>
<tr>
<th></th>
<th>UBGH2-1_1</th>
<th>UBGH2-2_1</th>
<th>UBGH2-5</th>
<th>UBGH2-6</th>
<th>UBGH2-10</th>
<th>UBGH2-3</th>
<th>UBGH2-7</th>
<th>UBGH2-11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrite</td>
<td>-4.9</td>
<td>-6.1</td>
<td>-5.2</td>
<td>-5.0</td>
<td>-6.5</td>
<td>-37.9</td>
<td>-20.1</td>
<td>-44.6</td>
</tr>
<tr>
<td>Mack</td>
<td>-7.4</td>
<td>-8.8</td>
<td>-6.2</td>
<td>-7.0</td>
<td>-8.3</td>
<td>-20.9</td>
<td>-10.8</td>
<td>-16.6</td>
</tr>
<tr>
<td>POCSR</td>
<td>7.5</td>
<td>5.9</td>
<td>7.4</td>
<td>5.6</td>
<td>9.3</td>
<td>0.1</td>
<td>2.6</td>
<td>2.3</td>
</tr>
<tr>
<td>AOM</td>
<td>4.0</td>
<td>9.0</td>
<td>4.0</td>
<td>6.4</td>
<td>5.5</td>
<td>58.8</td>
<td>28.3</td>
<td>58.9</td>
</tr>
<tr>
<td>Tot SO₄ reduction</td>
<td>11.5</td>
<td>14.9</td>
<td>11.4</td>
<td>12.0</td>
<td>14.7</td>
<td>58.9</td>
<td>31.0</td>
<td>61.2</td>
</tr>
</tbody>
</table>
Fig 4a

+ : DIC production
- : DIC consumption
Fig 4b

UBGH2-1_1
8.2% 33.0% 59.0%
100.0%

UBGH2-5
10.0% 28.0% 61.0%
100.0%

UBGH2-10
9.0% 28.0% 63.0%
100.0%

UBGH2-2_1
33.0% 19.0% 48.0%
100.0%

UBGH2-6
35.0% 21.0% 44.0%
100.0%

UBGH2-3
18.0% 8.0% 74.0%
100.0%

UBGH2-7
10.0% 10.0% 80.0%
100.0%

UBGH2-11
10.0% 7.0% 83.0%
100.0%

+: CH₄ production
-: CH₄ consumption

Click here to download high resolution image
Fig 4c

UBGH2-1_1

UBGH2-2_1

UBGH2-3

UBGH2-4

UBGH2-5

UBGH2-6

UBGH2-7

UBGH2-10

UBGH2-11

POCSR AOM Pyrite Mack

- : HS production
 (or sulfate consumption)
- : HS consumption
Low CH₄ flux (UBGH2_1-1)

- Sulfate
- POC
- DIC
- POCSR
- Methane
- AOM
- DIC
- CR
- ME
- SMTZ

High CH₄ flux (UBGH2-3)

- Sulfate
- POC
- DIC
- POCSR
- Methane
- AOM
- CR
- ME
- Auth. Carb.
- SMTZ
Click here to download Appendix: Appendix1.doc
Click here to download Appendix: Appendix2_Hong_etal_UBGH2-1_1.pdf