Method development for extraction and purification of dermal RNA from FVB/N mice treated with environmental PAH mixtures

Andy Larkin

Department of Bioresource Research, Oregon State University, Corvallis, Oregon, 97331

Oil Plume Is Not Breaking Down Fast, Study Says

By JUSTIN GILLIS and JOHN COLLINS RUDOLF Published: August 19, 2010

New research confirms the existence of a huge plume of dispersed oil deep in the Gulf of Mexico and suggests that it has not broken down rapidly, raising the possibility that it might pose a threat to wildlife for months or even years.

Mapping a Plume

Scientists mapped the location of an underwater oil plume stretching more than 20 miles from the site of the Macondo well during surveys conducted June 19-28.

The study, the most ambitious scientific paper to emerge so far from the Deepwater Horizon spill, casts some doubt on recent statements by the federal government that oil in the gulf appears to be dissipating at a

FACEBOOK
SIGN IN TO E- MAIL
+ SHARE
October 15

brisk clip. However, the lead scientist in the research, Richard Camilli, cautioned that the samples were taken in June and circumstances could have changed in the last two months.

The paper, which is to appear in Friday's issue of the journal <u>Science</u>, adds to a welter of recent, and to some extent conflicting, scientific claims about the status of the

Overview

Introduction to PAHs

- Structure and properties
- Mechanisms of toxicity
- Regulation and risk assessment

Method development and results

- Objectives
- Initial method and results
- Modified method and results

Discussion

- Analysis of results
- Comparison of methods

Conclusions, future directions

Overview

Introduction to PAHs

- Structure and properties
- Mechanisms of toxicity
- Regulation and risk assessment

Method development and results

- Objectives
- Initial method and results
- Modified method and results

Discussion

- Analysis of results
- Comparison of methods

Conclusions, future directions

Polycyclic Aromatic Hydrocarbons (PAH)s

Structure

- Fused aromatic rings
- Planar
- Classified by molecular weight (low or high)

Napthalene

Sources

- Incomplete combustion of biofuels
 - Coal tar, diesel exhaust, forest fires

Environmental Fate

- Lipophilic, persistent in the environment
- Differences in distribution, persistence

Benzo[a]pyrene - B[a]P

Mechanisms of B[a]P Toxicity

1. Dihydrodiol epoxide

Mechanisms of B[a]P Toxicity

1. Dihydrodiol epoxide

2. Radical cation

3. Binding to the aryl hydrocaron receptor (AhR)

Mechanisms of B[a]P Toxicity

High Priority PAHs

Benzo(a)pyrene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyrene

Benzo(ghi)perylene

Priority PAHs in Cigarette Smoke Residue

PAH components	Concentration	Concentration (µg/920 mg RES)			
Napthalene	1300				
Fluorene	860				
Phenanthrene	780				
Pyrene	350				
Chrysene	80				
Benzo[a]pyrene	50				
Total	3420	Rodgman <i>et al.,</i> 2000			
Napthalene Fluorene	Phenanthrene Pyrene C	Thrysene Benzo(a)pyrene			

Benzo[a]pyrene equivalents (B[a]P_{eq}s)

Toxic Equivalent (TEQ)

Toxic Equivalent (TEQ)

PAH components	Concentration (µg/920 mg RES)			
Napthalene	1300			
Fluorene	860			
Phenanthrene	780			
Pyrene	350			
Chrysene	80			
Benzo[a]pyrene	50			
Total	3420	Rodgman <i>et al.,</i> 2000		
Napthalene Fluorene Phenanthrer	ne Pyrene Chr	ysene Benzo(a)pyrene		
$X_1 B[a]P_{eq} + X_2 B[a]P_{eq} + X_3 B[a]P_{eq}$	+ X ₄ B[a]P _{eq} + X	$_{5}$ B[a]P _{eq} + X ₆ B[a]P _{eq}		

Why Study PAHs?

TEQs are not ideal

- Based on studies of individual PAHs
- Differences between regulatory agencies

EPA - 2002

- Study PAHs "as they occur together in common mixtures"
- Initiated study results still not available

President's Cancer Panel –2010

 Risk of environmentally induced cancer has been "grossly underestimated"

Overview

Introduction to PAHs

- Structure and properties
- Mechanisms of toxicity
- Regulation and risk assessment

Method development and results

- Objectives
- Initial method and results
- Modified method and results

Discussion

- Analysis of results
- Comparison of methods

Conclusions, future directions

Objectives

Elucidate the molecular mechanisms by which PAH mixtures induce basal cell and squamous cell carcinogenesis

- Develop method for harvesting epidermal RNA from mice treated with PAH mixtures
- Compare RNA expression levels between control mice and mice exposed to PAH mixtures

Hypothesis

Mice treated with PAH solutions will undergo changes in gene expression that promote tumor initiation, specifically at the site of application, the epidermal layer

Changes in gene expression in mice treated with environmental PAH mixtures differ from changes in gene expression in mice treated with PAH standards

Method Overview

- Treat mice with environmental PAH mixtures
- Harvest skin, isolate epidermal layer
- Extract and purify RNA
- RNA quality control analysis
- Synthesize cDNA
- Focused PCR microarrays
- Gene expression analysis

Animal Preparation

- FVB/N strain
 - Inbred
 - Susceptible to carcinoma genesis
 - Resting phase of hair growth (7-8 weeks old)
- Application area shaved 48 hours before treatment

Animal Treatment

Control	PAH standards		Environmental PAH mixtures		S	
Ctrl	B[a]P	DBC	Mix1	Mix2	Mix3	C
200 μL	200 μL Το Ιωσαιο	200 μL	200 μL	200 μL	200 μL	
Ioluene	10luene	Ioluene	1 mg DPF	1 mg DPF	1 mg DPF	
				1 mg CTE	1 mg CTE	
				0	2 mg CSC	***

CSC – cigarette smoke condensate CTE – coal tar extract DBC – dibenzo(*def,p*)chrysene DPE – diesel particulate extract

Epidermal Cell Harvest

- Mice euthanized 12 h after treatment
- Area of application cleaned and excised
 - Gauze pads, Milli Q water, NAIR
- Skin placed into heat bath (58°C), then ice bath
 - Separates epidermal layer from dermal layer
- Epidermal layer scraped off, stored in Trizol
 - Inactivated endogenous RNases

RNA extraction

- Epidermal cells homogenized
- RNA separated from DNA and protein using chloroform and centrifugation
- Ethanol washes

RNA purification

- RNeasy mini prep kit
 - Samples loaded onto column
 - Wash sample with buffers, centrifuge samples in between washes
 - Elute RNA from column using RNAse-free water and centrifugation

RNA quality control analysis

- Nanodrop Spetrophotometry
 - Nucleic acid concentration > 100ng/ μ L
 - 260/280 ratio ≥ 1.9
- Bioanalyzer analysis
 - RNA integrity analysis
 - RNA integrity number (RIN)
 - Scale of 1-10: 10 correlates with intact RNA
 - 18s and 28s rRNA

Results - Nanodrop

- 30 samples analyzed
 - 28 samples 260/280 ≥1.9
 - 2 ctrl samples < 1.9
- B[a]P samples < 100ng/ μ L
 - Rotary evaporator

Results - Bioanalyzer

- 28 samples submitted
- RNA integrity numbers
 - range: 2.4-6.3
 - mean: 3.5
 - significant degradation

Possible sources of RNA degradation

- RNase activity during epidermal harvest
- Chemical degradation NAIR
- Thermal degradation during heat treatment
- Contamination of stock solution
- Sample contamination during RNA extraction/purification

Cell harvest method modifications

- Dermal rather than epidermal cell harvest
 - Eliminate thermal degradation
- Forego NAIR application
- Snap freeze samples in liquid nitrogen

Dermal cell harvest method variations

group	1	2	3	4
animal preperation	none	none	shaved	shaved
cleaning solution	ethanol	ethanol	ethanol	RNA-zap
snap freezing conditions	no solution	no solution	Trizol	Trizol
thaw conditions	15-20 min	Trizol	Trizol	Trizol
	no solution			

- Animal Preparation: shaved vs none
- Cleaning solution: ethanol vs. RNA-zap
- Snap freezing conditions: no solution vs. Trizol
- Thaw conditions 15-20 min no solution vs. Trizol

RNA extraction

Samples homogenized

- 2 aliquots taken from each sample
- RNA separated from DNA and protein using chloroform and centrifugation
- Ethanol washes

Results - Nanodrop

- 12 samples
- 9 samples 260/280 ratios ≥ 1.9
 - 2 samples from group 2 < 1.9
 - Limited analysis
 - 1 sample from group 3 <1.9

Results – Bioanalyzer

- 11 samples submitted
- 6 RNA integrity numbers
 - range: 6.3 9.2
 - mean: 7.6

Discussion

Introduction to PAHs

- Structure and properties
- Mechanisms of toxicity
- Regulation and risk assessment

Method development and results

- Objectives
- Initial method and results
- Modified method and results

Discussion

- Analysis of results
- Comparison of methods

Conclusions, future directions

Interpreting RIN

Minimum RNA integrity levels

- No improvement RIN > 5 (Mueller *et al*. 2004)
- RIN \geq 7 widely accepted
- RIN ≥ 6 widely accepted with RT-qPCR follow up

Epidermal RNA samples

• 1 out of 28 RIN \geq 6

Dermal RNA aliquots

• 6 out of 6 RIN \geq 6

Comparing epidermal and dermal RIN

Statistically significant difference between epidermal and dermal RINs (p = 0.005)

Comparing dermal method variations

Group 3

Group 4

Comparing dermal method variations

RIN = 9.1 RIN = 2.6M3-2

Comparing dermal method variations

Group 1 < Group 2 \leq Group 3 = Group 4

Epidermal vs. dermal RNA

Epidermal RNA

- Detect small fold changes in gene expression in the epidermal layer
- Does not elucidate changes in surrounding tissues
- More difficult to harvest intact RNA

Dermal RNA

- Gene expression in the entire dermal layer
- Established methods to harvest intact RNA
- Miss small fold changes in gene expression in epidermis

Conclusions, future directions

Introduction to PAHs

- Structure and properties
- Mechanisms of toxicity
- Regulation and risk assessment

Method development and results

- Objectives
- Initial method and results
- Modified method and results

Discussion

- Analysis of results
- Comparison of methods

Conclusions, future directions

Conclusions

Initial attempts to harvest epidermal RNA from mice resulted in degraded RNA samples (RIN mean 3.5)

Sources of RNA degradation were identified, including RNase activity and heat treatment

Method to harvest dermal RNA produced dermal RNA samples with acceptable integrity (RIN mean 7.6)

Rnase activity contributes to epidermal and dermal RNA degradation - storing samples in Trizol limits RNA degradation

Future directions

Epidermal RNA harvesting

• Ammonium thiocycanate

RT-qPCR analysis of B[a]P-induced genes

• CYP1A1, CYP1B1, AhR

Protein expression in skin tumors

• CYP1A1, CYP1B1, AhR

Ladder (50kp) CYP1B1 (59.9°C AhR $(62.4^{\circ}C)$ $AhR(59.9^{\circ}C)$ $AhR(58.1^{\circ}C)$ AhR (56.8°C) $AhR(56.0^{\circ}C)$ β -actin (62.4°C) β -actin (59.9°C) β -actin (58.1°C) β -actin (56.8°C) β -actin (56.0°C)

Acknowledgements

Baird Lab

- Lisbeth Siddens
- Professor William Baird

Williams Lab

- Dr. Sharon Krueger
- Professor David Williams
- Lindsey Shorey

Associates

- Center for Genome Research and Biocomputing
- Pacific Northwest National Laboratories
- Professor Arup Indra

Funding

- NIEHS grant P42ES016465
- NIEHS grant P42ES016405-S1

References

Mueller, O., Lightfoot, S., and Schroeder, A. (2004). RNA integrity number (RIN)– Standardization of RNA Quality Control. Agilent Application Note, Publication, 1–8.

Rodgman, A., Smith, C. J., and Perfetti, T. A. (2000). The composition of cigarette smoke: a retrospective, with emphasis on polycyclic components. Hum Exp Toxicol 19, 573-595.