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Malmquist input-oriented productivity index. The results of this analysis

indicate that the industry experienced modest average annual declines in

productivity and technical change during the 1970s, but experienced strong

productivity growth and technical change during the 1980s and 1990s.

Chapter 3: In an analysis of the Oregon and Washington sawmilling

industry, stochastic frontier analysis (SFA) was employed to examine
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change, efficiency change, and scale efficiency change. The results of this

analysis indicate that productivity growth was strong over the 30-year study

period. Productivity growth was found to be due almost exclusively to

technical progress. Efficiency change was found to be very small and negative

throughout the study period and scale efficiency change was found to be very

small, but positive during the 1990s and zero in earlier years. Morishima
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Chapter 4: In an analysis of the Oregon and Washington sawmilling
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INTRODUCTION

Although its relative shares of the Oregon and Washington economies have

slowly declined over the past decades, the forest products industry in the

Northwest continues to be a major source of employment and economic

output. Changes in timber supply from private and public lands and ever

increasing competition from lumber manufacturers in other regions of North

America and abroad have resulted in an industry that looks much different

today than it did 30 years ago. There are fewer sawmills in the Northwest

today. Mills are larger, more automated, and, based on anecdotal evidence,

more productive. Over the past decade, the share of logs harvested from

Northwest forest and processed by the region’s sawmills has increased as log

exports (to Asia) have dramatically declined and many of the region’s veneer

and plywood mills have closed. Today sawmills are by far the largest

consumers of Northwest logs.

Because of its historic and continued importance to the economy of the

Northwest and its particular importance to individual communities in the

Northwest, it is important to understand how the structure of the forest

products industry has changed in recent decades. The purpose of this study is

to examine the production structure of the Northwest forest products industry

and how it has changed over the past three decades. The results of this

analysis should prove valuable to the public and policy makers in the

Northwest, as well as decision makers within the forest products industry.

The sawmilling industry of the Pacific Northwest experienced substantial

swings in lumber production between the early 1970s and late 1990s (see

Figure 1). Lumber output dropped substantially between the mid-1970s and

the early 1980s, due in large part to the national recession. As the national

economy grew out of the recession, lumber production soared, increasing by

more than 50% between 1982 and 1988. However, the increased production

was short lived. Due to national concerns about rapid loss of old growth

forests in the Northwest and the 1990 listing of the spotted owl as a
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threatened species (under the Endangered Species Act), lumber production in

the Northwest dropped precipitously. Bottoming out in the early 1990s,

lumber production in the Northwest has grown relatively slowly since.

Figure 1: Northwest Sawmill Employment and Lumber

Production, 1968-1998
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Source: Oregon and Washington mill survey data

The relationship between lumber production and sawmilling employment

(SIC 242) began to diverge in the 1980s. As lumber production spiked in the

mid-1980s, employment grew only modestly, and as production grew through

the mid-1990s, employment continued to decline.

Over this same period, a similar but not nearly so extreme relationship

existed between lumber production and log use (see Figure 2). Log use and

lumber production track very closely throughout the study period. However

the quantity of logs necessary to produce a given amount of lumber continued

to decreased between 1968 and 1998.1 This is most apparent after 1992. As

lumber production increased through the mid 1990s, it did so with

                                                  

1 Note that log use is measured in Scribner, not in cubic meters. Average log diameter has

decreased substantially between the early 1970s and late 1990s and Scribner is widely

criticized for under-measurement of smaller sawlogs.
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progressively less (Scribner) log volume. On an average annual basis, lumber

production per MBF of sawlog input increased by approximately 1.2% in the

Northwest. The rate of growth in lumber production per MBF of sawlog

differed for westside (1.3% per year) and eastside mills (0.8% per year).

Westside lumber production as a percentage of total Northwest lumber

production grew from 75% in 1968 to 85% in 1998.

Figure 2: Log Use and Lumber Production, 1968-2002
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Through the 1970s and early 1980s, capacity did not rapidly adjust to

declining lumber production. This is not an unreasonable finding, as one

would expect a delayed response in the adjustment of capital stock to a change

in lumber production. Likely, many producers believed that lower demand for

their lumber would be temporary and so adjusted their use of variable inputs

(e.g. unskilled labor), but did not adjust their lumber-producing capacity.

Milling capacity in the Northwest did dip in the late 1970s and early 1980s,

likely due to the least economically efficient mills closing.

The impact on lumber capacity to declining log volumes and lumber

production in the late 1980s and early 1990s was very different. The flow of

logs from federal forests declined rapidly beginning in the late 1980s and has
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never recovered. Perhaps (correctly) believing that log flows from federal

forests would not recover, lumber-producing capacity dropped precipitously

over this period as the mills throughout the Northwest most reliant on federal

timber permanently shut down. Milling capacity has remained relatively

stable since the early 1990s, even as lumber production has grown.

Figure 3: 8-Hour Lumber-Producing Capacity and Lumber

Production, 1968-1998
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Source: Oregon and Washington mill survey data

Not shown in these figures are changes that occurred over the last three

decades in the number and size of mills. In 1968 there were more than 500

sawmills operating in Oregon and Washington.
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Figure 4: Average Lumber Production Per Pacific Northwest Sawmill
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By 1998, there were less than 170.  Accompanying the closure of mills over

this time was a strong trend toward larger mills. As Figure 4 shows, the

average sawmill in the Pacific Northwest produced approximately 20 MMBF

of lumber in1968. By 1998, the average mill production had almost tripled to

60 MMBF.

As Figure 1, Figure 2, and Figure 3 indicate, partial productivity measures,

such as labor productivity, would indicate that the Northwest sawmilling

industry has experienced productivity growth. However, partial productivity

measures do not provide a complete picture of the changing structure of the

production function of the sawmilling industry. Rather, total factor

productivity (i.e., the ratio of output to all inputs) must be examined.

To examine the changing structure of the Northwest sawmilling industry, this

project addresses five important questions. 1) How has the average rate of

technical efficiency in the Northwest sawmilling industry changed during the

1968 to 2002 time period? 2) Has the sawmilling industry operated at a scale

efficient level during this period? 3) What has been the rate of productivity
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growth during the 1968 to 2002 time period? 4) How have the three

components of productivity change (i.e., technical change, efficiency change,

and scale efficiency change) impacted productivity growth over this period? 5)

Has the substitutability relationship between inputs changed over this period

and if so, how?

To answer these questions, data envelopment analysis (DEA) and stochastic

frontier analysis (SFA) methods were employed. Neither of these techniques

have been previously applied to the Northwest sawmilling sector. The two

methods differ from traditional econometric approaches in two fundamental

ways: first, as the names imply, DEA and SFA are methods of estimating the

frontier or limit of the data. With respect to the production function, DEA and

SFA estimate the production frontier (also referred to as the “best practices

frontier”). Conversely, traditional econometric approaches estimate the

average production function. Second, unlike traditional econometric

approaches, DEA and SFA do not require assumptions regarding firm

behavior, such as cost minimization or profit maximization. In addition to the

questions posed above regarding changes in the structure of the Northwest

sawmilling industry, this project also provides a comparison of results

obtained through DEA and SFA. There is a relatively large and growing body

of literature that employs either DEA or SFA methods. However, to the best of

our knowledge there are very few analyses that compare results obtained

through these two methods.

The project is comprised of three separate but unified analyses.

In Chapter 2, DEA is employed to examine the technical and scale efficiency of

the Washington State sawmilling industry. In addition, the industry’s rate of

productivity growth and technical change are estimated using the Malmquist

input-oriented productivity index. Analysis is based on a 3-input, 1-output

production process.
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In Chapter 3, SFA is employed to examine productivity growth and the

components of productivity growth: technical change, efficiency change, and

scale efficiency change, in the Oregon and Washington sawmilling industry.

In addition, output elasticities and input substitution elasticities are

examined for three different time periods. Analysis in Chapter 3 is based on a

4-input, 1-output production process.

In Chapter 4 DEA is employed to examine the technical and scale efficiency of

the Oregon and Washington sawmilling industry. The industry’s rate of

productivity growth and technical change are estimated using the Malmquist

output-oriented productivity index. Analysis is based on a 4-input, 1-output

production process. Following the methods described by Simar and Wilson

(1998, 1999, 2000a, 2000b, 2002), the smoothed bootstrap technique is used to

construct confidence intervals for the technical efficiencies and Malmquist

productivity indices. The results of this analysis are compared to the results

obtained in Chapter 3.
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PRODUCTIVITY GROWTH, TECHNICAL EFFICIENCY, AND

RETURNS TO SCALE IN THE WASHINGTON STATE

SAWMILL INDUSTRY

INTRODUCTION

Beginning in the mid-to-late 1980s, the timber industry in the U.S. Pacific

Northwest began experiencing significant and highly publicized employment

declines. Between 1980 and 1990, employment in Washington’s sawmill

industry declined almost 14%, and between 1990 and 2000 employment

declined 20%. Lumber production in Washington State did not decline by a

corresponding amount, but instead increased by 27% between 1980 and 1990

and by 11.5% between 1990 and 2000.2  Given these changes in employment

and lumber production, it is clear that the Washington State sawmill industry

was making labor-saving changes to its production processes. It is unclear if

the changes in employment and lumber production resulted in changes in the

overall productivity of the industry.

In this paper we answer two important questions concerning the sawmill

industry of Washington State: what was the industry’s rate of technical

change over the past several decades, and how did technical change impact

the industry’s productivity growth? We use data envelopment analysis (DEA)

to address these two questions by estimating the change in total factor

productivity (TFP) that occurred in the sawmill industry of Washington State

since the early 1970s.3  In addition, we use DEA to calculate the rate of

                                                  

2 Lumber production declined in the early 1990s. Reductions in log exports and plywood

production, beginning in the mid-1990s, has resulted in a greater proportion of Washington logs

being used for lumber production. Production increases have also been attributed to increases

in technical efficiency of sawmills. We currently know of no study that tests this hypothesis.

3 Total factor productivity of a firm is the ratio of the output it produces to all inputs it uses.

Unlike partial productivity measures, such as labor productivity, TFP provides an overall

measure of productivity. Throughout this paper we use productivity and TFP interchangeably.
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technical efficiency and scale efficiency of the Washington sawmill industry at

the beginning of the 1970s, 1980s, and 1990s, as well as the end of the 1990s.

We begin with an overview of the literature related to the measurement of

productivity change in the sawmill industry. We then describe our data and

methods before presenting and discussing our empirical results.

LITERATURE REVIEW

Over the past 40 years, many studies have estimated aspects of productivity

and technical change in the North American sawmill industry. These studies

have generally been performed at a regional level, including the Pacific

Northwest and Southeast regions of the U.S. (for examples, see Stevens, 1995;

Abt, 1987) and the coastal and inland regions of British Columbia in Canada

(for examples, see Constantino and Haley, 1988; Meil and Nautiyal, 1988).

Analysis techniques have varied, with many earlier studies attempting to

measure productivity and technical change using relatively simple indices and

measures of average products (for example, see Ruttan and Callahan, 1962).

Later studies employed econometric methods to estimate productivity and

technical efficiency indirectly by first estimating profit, production, or cost

functions (for examples, see Stevens, 1995; Greber and White, 1982;

Merrifield and Haynes, 1985).

Stier and Bengston (1992) reviewed the econometric-based literature on

technical change in the forest products industry and found mixed results with

the rate of technical change. The authors noted that all of the econometric

studies reviewed used a simple time trend as a proxy for technical change.

Since there is no theoretical reason to assume that technical change occurs at

a constant rate, Stier and Bengston appropriately referred to this practice as a

“severe theoretical limitation” of the econometric approach (page 153). None of

the analyses reviewed by Stier and Bengston were based on data more recent

than 1984.
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To the best of our knowledge, the only recent analysis of productivity change

in the sawmill industry is Nyrud and Baardsen (2003). The authors used DEA

to examine firm-level data of the Norwegian sawmill industry over the period

1974-1991 in order to estimate the technical efficiency of individual producers

and the industry’s rate of productivity growth. They found that productivity

increased on average by 0.82% per year, and that technical change was

positive during the entire period and averaged about 0.5% per year.

DATA DESCRIPTION

The lumber production, milling capacity, and log-use data used in this

analysis come from the Washington Mill Survey (WMS). The WMS is a

biennial survey of sawmills and planning mills (SIC 242), which began in

1968.4  In order to protect the confidentiality of individual mills, the WMS

data were aggregated into regions. The regions represent geographical areas

of at least 50% self-reliance with respect to timber supply. The six regions are

shown in Figure 5. The Central and Inland Empire regions lie east of the

Cascade Mountains. All other regions lie on the westside of the Cascade

Range. The Washington Department of Employment Security provided

county-level employment data, which were aggregated up to the six regions.

Although the longitudinal aspect of our data set is substantial (17 surveys

conducted between 1968 and 2000), each cross-section is comprised of only six

observations. In order to increase the discriminatory power of our analysis, we

pooled data from consecutive years in the following manner.5

                                                  

4 SIC 242 includes SIC 2421 (sawmills and planning mills), SIC 2426 (hardwood dimension and

flooring mills), and 2429 (special product sawmills).

5 The fewer the number of observations in the comparison set, the greater the likelihood that

any observation will be projected to lie on the efficient frontier. By pooling the data in the

manner described above, we increase the number of observations per cross-section from 6 to 18.

DEA results are presented as the geometric mean of each period.
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• “Early 1970s” – consisting of data from 1968, 1970, 1972

• “Early 1980s” – consisting of data from 1978, 1980, 1982

• “Early 1990s” – consisting of data from 1988, 1990, 1992

• “Late 1990s” – consisting of data from 1996, 1998, 2000

Table 1 presents descriptive statistics of the output and input variables

considered in the analysis. As shown in Table 1, lumber production has

increased as mill capacity has increased. Over the three decades, however,

both log and labor usage have declined.

METHODS OF ANALYSIS

Farrell (1957) is the seminal work in the empirical literature related to the

measurement of technical and productive efficiency. He showed how

information on firms’ input and output quantities could be represented in a

piecewise manner in order to estimate the industry’s production frontier. His

notion of the production frontier is based on the performance of the industry’s

most efficient firms rather than theoretical engineering considerations. These

ideas were later adapted by Charnes, Coopers, and Rhodes (1978) (CCR) into

a linear programming (LP) framework.

CCR advanced Farrell’s work in several ways. First, they showed that an

analysis of technical efficiency posed as a nonlinear programming problem

could be converted into a simple linear programming problem equivalent to

Farrell’s technical efficiency. They dubbed this approach data envelopment

analysis (DEA) and emphasized its general applicability by coining the term

decision making units (DMUs). CCR also showed the duality of linear

programming-derived technical efficiency measures to other, more common

economic functions, such as the cost and Shephard distance function.
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Technical Efficiency

To estimate the technical efficiency of each region of Washington State for

each period of observation, we employ DEA and estimate Farrell input-

oriented technical efficiency. We prefer DEA to traditional regression analysis

because we are interested in identifying the best practice rather than an

average relationship. Each DMU’s performance is compared to the

performance of all other DMUs in the industry, thus producing relative

measures of technical efficiency. In addition, unlike traditional econometric

analyses, the linear programming approach neither requires assumptions

regarding firm behavior, such as cost minimization or profit maximization,

nor requires imposing a specific functional form for technology, such as Cobb-

Douglas, CES, translog, or others.

The best practice frontier or isoquant is constructed from the sample data as

illustrated in Figure 6, where all three DMUs (A, B, and C) produce the same

amount of output, but with varying amounts of inputs X1 and X2. DMUs A and

B are the most technically efficient in their use of the inputs, and, thus, are

used to construct the technically efficient frontier and have a Farrell input-

oriented technical efficiency measure of unity. DMU C is interior to the

frontier and has a technical efficiency score computed as the ratio:

( )
( )CO

DO
F

C

I
,

,
=  , (4.1)

where C

IF  is the Farrell input-oriented measure of technical efficiency for

DMU C. More formally, the Farrell input-oriented measure of technical

efficiency is defined as

( ){ }yLxxyFI = :min),( , (4.2)

where IF  refers to the Farrell input-oriented measure of technical efficiency,

(y, x) are the vectors of inputs and outputs for the i-th DMU, _ is the minimum

amount the input bundle can be scaled in order to operate on the efficient
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frontier, and L(y) is the input requirement set, which contains all

combinations of inputs that can be used to produce the output vector y.

The input requirement set used to construct the efficient frontier is formally

constructed as follows:

  L y |C,S( ) = x1,x2,...,xN( ){ :

=

=

K

k

mkmk Mmyyz

1

,,...,1,

=

=
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k
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1

,,...,1,

           }Kkzk ,...,1,0 = , (4.3)

where C denotes constant returns to scale (CRS), S denotes strong

disposability of inputs, and kz  are the intensity variables computed by the

model. In this formulation CRS is satisfied.

Under the assumption of CRS, a proportional change in all inputs results in a

proportional change in output. However, a proportional change in all inputs

may not be globally possible. If, for example, one or more inputs are fixed,

quasi-fixed, or otherwise restricted, the production process may exhibit

decreasing returns to scale (DRS). In such a case, a proportional increase in

all inputs will result in a less than proportional change in output—at least

along a segment of the production function. Alternatively, if a proportional

change in all inputs allows for a more efficient means of production and a

greater-than proportional change in output, the production process exhibits

increasing returns to scale (IRS) along that segment of the production

function. The scale efficiency and returns to scale of a DMU have important
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economic implications. Namely, a DMU not exhibiting CRS may be either too

large or too small.6

Under the assumption of CRS, technical inefficiency exhibited by a DMU may

be wholly or partially explained by scale efficiency rather than by the

inefficient use of inputs. By decomposing technical efficiency measures

derived under the assumption of CRS into a pure technical efficiency

component and a scale efficiency component, we are able to determine what

portion of a DMU’s inefficiency is due to the way inputs are used (technical

efficiency), and what portion is due to operating in an area of the production

function where either IRS or DRS prevails.

In order to measure scale efficiency, an additional LP problem is solved with

the constraint that the sum of the intensity variables (the z’s) equal unity.

This constraint yields a technology allowing for variable returns to scale

(VRS).  Following the method described by Färe, Grosskopf, and Logan (1983),

scale efficiency is defined as the ratio of technical efficiency under CRS to

technical efficiency under VRS.

A DMU whose production process exhibits CRS (scale efficiency = 1.0) is said

to be scale efficient, whereas a DMU with a scale efficiency less than unity is

said to be scale inefficient. To determine if a DMU’s scale inefficiency is due to

operating at a point of IRS or DRS, an additional DEA model is required. This

model is estimated under the assumption of non-increasing returns to scale

(NIRS). If a DMU is operating at a point of scale inefficiency (i.e.,

( ) 1|, <SxyS ), then scale inefficiency is due to IRS if

( ) ( )SCxyFSNxyF
ii

,|,,|, = , and due to DRS if ( ) ( )SCxyFSNxyF
ii

,|,,|, > .

                                                  

6 It important to note we are examining the behavior of “DMUs in the aggregate,” not

individual DMUs. Nevertheless, the economic implications regarding scale efficiency are still

valid, but certainly difficult or even impossible to ascribe to individual DMUs.
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Productivity Growth

Measurements of technical efficiency are the building blocks for measuring

TFP (Färe and Grosskopf 1998). Productivity growth is a measure of changes

in performance over time, and in the simplest case (single input, single

output) it is the change in average product between two periods.  In the case

of multiple inputs and/or outputs, the distance function is used to aggregate

inputs and outputs in order to measure TFP.7  The input distance function,

ID , is the reciprocal of the Farrell input-oriented technical efficiency measure,

FI.8 Because of this reciprocal relationship, one can use linear programming to

estimate the distance function measures necessary to construct the input-

oriented Malmquist productivity index

( ) ( )
( )

( )
( )

2/1

,|,

,|,
*

,|,

,|,
,,, =

+

+++++
++
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SCyxD

SCyxD

SCyxD
yxyxM

ttkt

I

ktktkt

I

ttt

I

ktktt

Ittktkt

I , (4.4)

where ( )SCyxD
ktktt

I
,|,

++
 is the input-oriented distance function calculated

using technology from time period t, input and output quantities from time

period t + k, and assuming constant returns to scale and strong disposability

of inputs. ( )SCyxD
ttt

I
,|,  is based on technology from time period t, and input

and output quantities from time period t. The remaining distance function

components are similarly defined and allow for intertemporal comparisons of

productivity.

All of the distance functions are defined relative to CRS technology, which

ensures that the Malmquist index can be interpreted as a measure of TFP.  As

pointed out by Coelli et al. (1998), and others, the Malmquist index will not

                                                  

7 For more information on the distance function, quantity indexes, and productivity indexes, see

Chambers, Färe, and Grosskopf (1994).

8 Under the assumption of CRS, the input and output distance functions are reciprocals.

Likewise, the input-oriented and output-oriented Farrell technical efficiency measures are

reciprocals. The distance function measures used in the development of the Malmquist TFP

index can be estimated using either the input-oriented or output-oriented Farrell efficiency

measures.
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correctly measure TFP change (in the sense of changes in ratios of average

products as usually defined) when VRS is assumed for the production process.

Therefore, it is important that the distance function estimates used in the

calculation of the Malmquist index be computed under the assumption of

CRS.

The Malmquist productivity index can be decomposed into various factors

affecting productivity change. We employ the decomposition into efficiency

change and technical change as in Färe, Grosskopf, Norris and Zhang (1994).

Efficiency change is a measure of how well a DMU is adjusting its production

function to the existing state of technology. Efficiency change can be thought

of as a measure of how well a DMU performed at “catching up” to the state of

technology. Efficiency change is computed as:

( )
( )SCyxD

SCyxD
ehangfficiencyCE

ttt

I

ktktkt

I

,|,

,|,
+++

= . (4.5)

Again, the distance functions are reciprocals of the Farrell input-oriented

technical efficiency measure and are estimated using DEA.

The other component of productivity change is technical change, a measure of

shifts in the production frontier. As such, it can be thought of as a measure of

how much impact a DMU had in shifting out the efficient frontier of all

DMUs. Technical change is computed as:

( )
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As in the calculation of the Malmquist productivity measure, this component

of productivity is derived through the calculation of the reciprocals of the

distance functions (Farrell technical efficiency) as the solutions to DEA-type

linear programming problems. Technical change is the geometric mean of the

technology shift between periods t and t + k, evaluated at (
tt

yx, ) and

(
ktkt

yx
++

, ).
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EMPIRICAL RESULTS

We begin by examining the scale efficiency and returns to scale of the sawmill

industry by region for each time period (Table 2).9  For the early 1980s we find

that the industry in each region operated at a point of CRS. For the other

periods, we find evidence that the industry operated at points of modest scale

inefficiency—either at a point of increasing or decreasing returns to scale. The

strongest evidence of scale inefficiency is observed for the Central region in

the late 1990s (0.76). For the other periods, our findings indicate only modest

scale inefficiency and, when averaged across the regions, scale efficiency is

consistently above 90%. It should be noted that there are no formal statistical

tests for assessing the statistical significance of scale efficiency or returns to

scale estimates in DEA models.10  Therefore, we are unable to conclude with

statistical confidence that any of our estimates of scale efficiency differ or do

not differ from unity.11 The fact that our estimates of scale efficiency are (with

the one exception noted above) greater than 0.9, indicates that CRS may not

be an unreasonable assumption of the industry’s technology.

Technical efficiency was estimated under two alternative assumptions. First,

we estimated Farrell technical efficiency scores under the assumption of VRS,

which results in a measure of technical efficiency that is free of any scale

inefficiency. More precisely,

( ) ( ) ( )SxySSCxyFSVxyF
ii

|,,|,,|, = . (5.1)

                                                  

9 We used GAMS to solve the LPs used to calculate technical and sale efficiency, productivity

growth, and technical and efficiency change.

10 Simar and Wilson (2002) discuss hypothesis testing of returns to scale in DEA. The authors

also propose a bootstrap technique, which they claim yields appropriate critical values for the

test statistics.

11 In other words, we are unable to test the null hypothesis that Sit = 1, where Sit is the scale

efficiency of sawmill region i evaluated in time period t.
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These results are presented in Table 3. Farrell input-oriented technical

efficiency scores were also estimated under the assumption of CRS, and

represent an overall measure of a DMU’s technical efficiency. 12 Table 4

presents these scores.

Based on the assumption of VRS (Table 3), the sawmill industry in each

region appears to be operating at near technical efficiency. However, as the

results in Table 4 show, when scale efficiency (or rather inefficiency) is part of

the measure of technical efficiency (i.e., under the assumption of CRS), only

the South Sound, Southwest, and Inland Empire regions are operating at

more than 90% technical efficiency. More telling, based on the assumption of

VRS, the Central region’s estimate of technical efficiency is 0.99 for the late

1990s. Under the assumption of CRS, this drops to 0.75 because of scale

inefficiency.

Our results to this point represent only static measures of technology.

However, the production function of Washington sawmills has shifted over

time as new technologies have become available. Using the Malmquist

productivity index, we found that between the early 1970s and early 1980s

productivity actually declined in Washington by 0.25% on an average annual

basis, as both technical change and efficiency change experienced modest

declines (see Table 5, Table 6, and Table 7).

For the rest of the study period we found dramatically different results.

Between the early 1980s and early 1990s, productivity increased by 2.1% on

an average annual basis, while technical change increased by 1.9% and

efficiency experienced modest increases. Although slowing a bit in the ensuing

decade, between the early 1990s and late 1990s productivity increased by

1.2% per year and technical change increased by 1.8%. The difference between

these two growth rates is explained by negative efficiency change (-0.53%)

                                                  

12 What we refer to as overall efficiency does not include allocative efficiency, which is

concerned with choosing the minimum cost bundle of inputs to produce a given level of output.
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over the period.13 As positive technical change continued to push out the

industry’s production frontier, many individual producers were unable to

increase their own technical efficiency at the same rate as the industry

leaders. Thus, though the industry was more productive at the end of the

1990s than it was at the beginning of the decade, the distance of the average

DMU from the efficient frontier actually increased. When considering the

entire period, the early 1970s through late 1990s, technical efficiency

increased at 1.1% per year, and productivity increased at just less than 1.0%

per year.

At the aggregate level, producers in each of the six regions experienced

productivity growth over the three-decade study period. However, the rate of

productivity growth differed greatly between regions. At an average annual

rate of 0.16%, producers in the Central region experienced the lowest rate of

productivity growth. At the other extreme, producers in the Coast region

experienced average annual productivity growth of 1.77%.

Our results are consistent with Nyrud and Baardsen (2003), who found that

productivity growth in the Norwegian sawmill industry averaged 0.82% per

year between 1974 and 1991. Though not perfectly overlapping our time

periods, Nyrud and Baardsen found that productivity was negative between

1974 and 1982, declining by 2.0% per year on average, and was strongly

positive between 1982 and 1991, increasing on an average annual basis of

3.14% per year.

The econometric studies of the Pacific Northwest and Canadian sawmill

industry discussed at the beginning of this paper were based on data that, at

most, overlap only the first half of our study period. Therefore, comparisons of

results are limited to only these earlier years. Constantino and Haley (1988)

                                                  

13 Under the assumption of CRS, the efficiency change component of the Malmquist

productivity index is actually composed of technical efficiency change and scale efficiency

change. See Färe et al. (1994) for a discussion on the decomposition of efficiency change into

these two components.
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found that over the period 1957-1981, technical change averaged 0.6% per

year for the British Columbia coast and the U.S. Pacific Northwest.

Unfortunately, the authors did not provide technical change estimates for just

the last decade of their analysis, so truly meaningful comparison is not

possible. Abt (1987) did not provide estimates of productivity or technical

change, but found that the industry operated under CRS between 1963 and

1978. Merrifield and Haynes (1985) concluded that over the period 1950-1979,

technical change was “slight.” Meil and Nautiyal (1988) found no significant

increases in productivity between 1968 and 1984 for the British Columbia

coast or interior. Stevens (1995) reported “neutral” technical change occurred

in western Washington between 1980 and 1988, but the author did not report

the rate of technical change.

According to Stevens (1991), the sawmill industry made little investment in

machinery and equipment between 1980 and 1988, and little technical change

occurred over the period. Stevens’ findings appear to be contrary to the results

of our study, which found strong technical change between the early 1980s

and early 1990s. The discrepancy in findings may be due to the slight

difference in time periods considered. Alternatively, it may be due to the fact

that Stevens (1991), like other econometric approaches, attempts to measure

technical change through a time proxy, whereas DEA allows for the direct

measurement of technical change.

DISCUSSION

The results of this study provide quantitative answers to two fundamental

questions concerning the sawmill industry of Washington State over the past

few decades. Namely, what has been the rate of technical change in the

industry and how has it impacted productivity growth? We found that while

the industry experienced slightly declining productivity in the 1970s, it

experienced rapid growth in productivity during the 1980s and 1990s.
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Decomposing productivity growth into efficiency change and technical change,

we found that it was technical change that was responsible for the rapid

growth in productivity over this period. However, our analysis does not shed

light on why productivity and technical change were flat during the 1970s but

were strong during the subsequent periods.

The decline in the size and quality of logs that occurred over the study period

is widely believed to have increased sawmill productivity. Although less

valuable, the processing of smaller logs is less labor intensive and more

amenable to mechanization. Lower quality logs also lend themselves to

mechanization as they are unsuitable for higher valued processing, which is

generally more labor intensive. The 1980s also saw a decline in union

representation of sawmill workers, leading to the relaxation of rigid work

rules and perhaps to greater productivity (Stevens, 1991).

This study is the first in many years to examine productivity growth in the

Washington State sawmill industry. To our knowledge, it is also the only

study to examine any portion of the Pacific Northwest sawmill industry using

DEA. Given the strong growth in productivity that we found for the 1980s and

1990s, it is surprising that greater attention has not been paid to this

important regional industry.
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Table 1: Descriptive Statistics for Lumber (output) and Logs,

Labor, Capital (inputs), 18 DMUs per Time Period

Variable Stat

Early 1970s

(1970-1972)

Early 1980s

(1980-1982)

Early 1990s

(1990-1992)

Late 1990s

(1996-2000)

Mean 598,100 570,494 691,316 727,729

SD 206,927 214,344 277,256 318,253

Min 316,760 234,160 359,187 302,888

Lumber – Output

(MBF, lumber

tally) average

annual

production Max 960,780 1,060,200 1,190,400 1,245,573

Mean 479,141 424,798 454,645 408,536

SD 167,607 147,345 173,898 160,094

Min 257,870 168,270 223,315 201,249

Logs (MBF, net

scale) average

annual

consumption
Max 731,340 768,590 834,660 711,020

Mean 3,008 3,186 2,681 2,268

SD 1,079 1,413 1,334 1,393

Min 1,334 1,355 1,397 1,041

Labor (SIC 242)

average annual

employment

Max 5,045 5,884 5,543 5,135

Mean 1,798 1,975 2,065 2,139

SD 576 605 749 952

Min 1,082 980 1,063 883

Capital (max

capacity per 8-

hour shift, MBF,

lumber tally)
Max 2,721 2,933 3,036 3,944

Note: “MBF” is read as “thousand board feet.” A board foot, the traditional unit of measure of log volumes in

the Pacific Northwest, is a 12-inch square piece of wood that is 1-inch thick. Log scale is a centuries-old

measurement used to approximate the number of board feet of lumber that can be produced from a log.

Lumber tally is a measure of the actual amount of lumber produced.

Table 2: Scale Efficiency Estimates and Returns to Scale

Region Early 1970s

(1970-1972)

Early 1980s

(1980-1982)

Early

1990s

(1990-1992)

Late 1990s

(1996-2000)

North Sound 0.97 – DRS 1.00 – CRS 0.99 – DRS 0.99 – DRS

South Sound 1.00 – CRS 1.00 – CRS 1.00 – CRS 0.99 – DRS

Coast 0.91 – IRS 1.00 – CRS 0.94 – DRS 0.96 – DRS

Southwest 0.99 – DRS 1.00 – CRS 1.00 – CRS 0.90 – DRS

Central 0.99 – IRS 1.00 – CRS 0.92 – DRS 0.76 – DRS

Inland Empire 0.91 – IRS 1.00 – CRS 0.99 – DRS 0.94 – DRS

Washington 0.96 – DRS 1.00 – CRS 0.97 – DRS 0.92 – DRS
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Table 3: Input-Oriented Farrell Technical Efficiency Scores

Under VRS

Region

Early 1970s

(1970-1972)

Early 1980s

(1980-1982)

Early

1990s

(1990-1992)

Late 1990s

(1996-2000)

North Sound 0.92 0.86 0.88 0.88

South Sound 1.00 0.98 0.98 0.97

Coast 1.00 0.81 0.95 0.99

Southwest 0.91 0.97 0.99 1.00

Central 0.93 0.95 0.94 0.99

Inland Empire 1.00 0.90 0.98 0.98

Washington 0.96 0.91 0.95 0.96

Table 4: Input-Oriented Farrell Technical Efficiency Scores

Under CRS

Region

Early 1970s

(1970-1972)

Early 1980s

(1980-1982)

Early

1990s

(1990-

1992)

Late 1990s

(1996-2000)

North Sound 0.90 0.86 0.87 0.87

South Sound 1.00 0.98 0.98 0.96

Coast 0.91 0.81 0.89 0.95

Southwest 0.90 0.97 0.99 0.90

Central 0.92 0.95 0.86 0.75

Inland Empire 0.91 0.90 0.97 0.92

Washington 0.92 0.91 0.93 0.89



28

Table 5: Malmquist Productivity Growth, Average Annual

Growth Rates

Region

Early 1970s

to

Early 1980s

Early 1980s

to

Early 1990s

Early

1990s

to

Late 1900s

Early 1970s

to

Late 1990s

North Sound -0.60% 1.34% 2.12% 0.74%

South Sound 0.26% 2.54% 1.69% 1.11%

Coast -0.98% 2.30% 3.31% 1.77%

Southwest 0.79% 3.41% -0.01% 1.16%

Central -0.58% 0.25% 0.07% 0.16%

Inland Empire -0.39% 3.00% 0.26% 0.91%

Washington -0.25% 2.13% 1.23% 0.98%

Table 6: Technical Change, Average Annual Growth Rates

Region

Early 1970s

to

Early 1980s

Early 1980s

to

Early 1990s

Early

1990s

to

Late 1900s

Early 1970s

to

Late 1990s

North Sound -0.07% 1.17% 2.13% 0.86%

South Sound 0.46% 2.50% 2.05% 1.27%

Coast 0.12% 1.32% 2.53% 1.60%

Southwest 0.10% 3.07% 1.31% 1.20%

Central -0.87% 1.29% 1.65% 0.89%

Inland Empire -0.21% 2.14% 0.93% 0.86%

Washington -0.08% 1.91% 1.76% 1.11%
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Table 7: Efficiency Change, Average Annual Growth Rates

Region

Early 1970s

to

Early 1980s

Early 1980s

to

Early 1990s

Early

1990s

to

Late 1900s

Early 1970s

to

Late 1990s

North Sound -0.47% 0.17% -0.01% -0.12%

South Sound -0.20% 0.06% -0.34% -0.16%

Coast -1.07% 0.98% 0.76% 0.16%

Southwest 0.65% 0.33% -1.32% -0.03%

Central 0.28% -1.06% -1.55% -0.71%

Inland Empire -0.12% 0.79% -0.68% 0.04%

Washington -0.16% 0.21% -0.53% -0.14%
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Figure 5: Washington State Sawmill Regions

Figure 6: Best Practices Frontier in Input Space
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PRODUCTIVITY GROWTH, TECHNICAL CHANGE, AND

TIME-VARYING ELASTICITY OF SUBSTITUTION IN THE

NORTHWEST SAWMILL INDUSTRY:  A STOCHASTIC

FRONTIER APPROACH

INTRODUCTION

Beginning in the late 1980s and continuing into the 21st century, the sawmill

industries of Oregon and Washington (“the Northwest”) experienced

substantial employment declines. Beginning even earlier and continuing into

the new century, the northwest sawmill industry is believed to have

experienced substantial technical change, which resulted in productivity

growth. Much of the speculation regarding technical change and productivity

growth in the industry has been anecdotal and, to the best of the author’s

knowledge, has not been empirically validated. In this paper estimates of

technical change, efficiency change, and productivity growth are developed for

the Northwest sawmill industry. In addition, output elasticities, scale

efficiency, and Morishima elasticities of substitution between input factors are

estimated. These economic measures are developed based on the formulation

and estimation of a stochastic frontier production function (SFPF) model, a

method of analysis which has not been previously applied to the Northwest

sawmill sector. The analysis uses a unique panel of mill-level data, as well as

data from published reports of regionally-aggregated information of mill

characteristics and activity.

Although its relative shares of the Oregon and Washington economies have

slowly declined over the past decades, the forest products industry in the

Northwest continues to be a major source of employment and economic

output. Because of its historic and continued importance to the economy and

culture of the Northwest and its particular importance to individual

communities in the Northwest, it is important to understand how the
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structure of the forest products industry has changed. The results of this

analysis provide such valuable insights.

This analysis departs from past analyses of the Northwest sawmill industry

and from analyses of the sawmill industry in other North American regions.

First, the SFPF allows for the direct estimation of technical efficiency, as well

as the estimation of technical change through time. Second, earlier studies

assumed lumber producers to be successful cost minimizers or profit

maximizers, and thus employed OLS or other regression techniques to

estimate cost, profit, or production functions. Implicit within these approaches

is the assumption that any deviation from minimum cost or maximum profit

is simply random noise. In contrast, the SFPF approach both estimates the

frontier of the industry production function and measures the technical

efficiency of individual producers (or aggregates of producers) relative to the

frontier. The SFPF does not require the assumption that producers are acting

in an economically optimal fashion. Third, this study pays closer attention to

regularity conditions than previous studies.

The two principal methods of frontier estimation are stochastic frontier

analysis (SFA) and data envelopment analysis (DEA).14 Although the two

methods differ in many ways, the primary difference is that SFA relies on

econometric-based estimation methods, whereas DEA relies on mathematical

programming. Both of these approaches were alluded to, but not actually

estimated, in Farrell’s (1957) seminal work.15 The two methods estimate the

industry’s technical frontier based on the performance of the most technically

efficient (i.e., most productive) decision making units (DMUs). Measures of

the technical efficiency of each DMU are then estimated based on the distance

of the DMU from the technical frontier. Estimates of productivity and/or

                                                  

14 The stochastic frontier production function is one model within the stochastic frontier analysis

method.

15 Farrell (1957) suggested that technical efficiency could be estimated by either piecewise

linear programming or a parametric function.
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technical efficiency derived from SFA and DEA methods are relative

measures, not absolute measures.

STOCHASTIC FRONTIER ANALYSIS OF THE FOREST PRODUCTS

INDUSTRY

There are few studies of the wood products industry that employ stochastic

frontier analysis and none conducted specifically for the sawmill industry.

Carter and Cubbage (1995) estimate a stochastic frontier production function

using firm-level data from the southern U.S. pulpwood harvesting industry for

1979 and 1987. However, the data do not include a firm identifier, and so

there is no means of linking a firm’s production in 1979 with its production in

1987. The data set consists of two cross-sections, but it is not a panel.

The authors estimate four stochastic production frontier models, one each

based on the 1979 and 1987 data, and two models based on combining the two

years of data. Included in the two combined models is a dummy variable for

time. The authors find the industry’s average level of technical efficiency to be

60% in both 1979 and 1987, and that the industry experienced positive

technical change that averaged 1.8% per year over the eight-year period. In

the second stage of the analysis, the authors use OLS to regress the estimated

technical efficiency measures (from the “first stage”) on characteristics of the

pulpwood producers. The purpose of this second stage model is to explain the

sources of technical inefficiency. Variables on the RHS of the OLS regression

model include owner age, years of experience, and number of employees. The

second stage model was able to explain approximately 20% of the variation in

the technical efficiency measures.

This analysis has two important limitations. First, the authors consider a

production function of average weekly pulpwood production using only two

inputs, labor (the number of employees plus the owner) and capital (the

replacement value of the assets). Other inputs, such as energy, supplies, and

most importantly stumpage, were not considered because there were no data.

Second, the specification and estimation of the stochastic production function
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is done under the assumption that the technical inefficiency effects are

identically distributed.16 The second stage model requires the specification of

a regression model for the predicted technical inefficiency measures, thus

contradicting the assumption of identically distributed inefficiency effects in

the stochastic production frontier model.

Siry and Newman (2001) study the efficiency of Polish state timber production

and management policies for the years 1993-1995, a period of rapid change in

Polish forestry. In 1989, timber prices were released from state control and

the Forest Act of 1991 was intended to help speed the transition of the state-

controlled forests to more market-based management. The authors examined

data for 40 forest districts over the three year-period. The measure of output

was volume of timber sales, and inputs included forestland area, growing

stock volume, permanent and temporary forest workers, administrative

employees, kilometers of roads, personnel vehicles, logging trucks and

tractors, and, as a measure of privatization, the share of external costs to total

operating costs. A time-invariant Cobb-Douglas production function was used

to represent technology.

The authors note that the use of the Cobb-Douglas function is potentially

problematic because it is inflexible and restrictive. A translog model was

specified and estimated, but failed due to the large number of coefficients (50)

and relatively small number of observations (120). The time-invariant

specification was tested against a time-varying specification using a likelihood

ratio test. The null hypothesis of time-invariant technical change could not be

rejected. It may be that the time span of the panel (only three years) was too

short to observe changes in technical efficiency. All estimated elasticities had

the expected positive sign, except administrative employees, which was

negative and statistically significant. Because of this negative elasticity, the

estimated production function violates the properties of monotonicity and

                                                  

16 For more information on the assumptions of the one-sided (inefficiency effects) error term, see

Battese and Coelli (1995).
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quasiconcavity, “casting some doubt on the validity of the function” (Siry and

Newman, 2001 p530). Nevertheless, the authors believe that this result may

be consistent with management practices during this period, which included

incentives to maintain and even add administrative personnel.

The mean technical efficiency of the 40 forest districts over the three years of

analysis is 0.49, and the individual technical efficiencies range between 0.25

and 0.88, indicating that many of the forest districts could vastly improve

their efficiency. The authors do not examine technical change or productivity

change over the three-year study period.17 Technical change could have been

estimated through the derivative method had the authors included time in the

production function (see Kumbhakar and Lovell, 2000 pp284-287), or through

the ratio of distance functions derived from the technical inefficiencies

estimates (see Coelli, Raw, O’Donnell, and Battese 2005 chap 11).

Yin (2000) analyzes the productive efficiency of global producers of bleached

softwood kraft pulp (BSKP). The author employs SFA, estimating both a

translog stochastic production frontier and translog stochastic cost frontier on

a 1996 cross-section of 102 producers.18 The author finds that the estimated

technical efficiency of every producer was above 0.99, indicating essentially no

variation in relative technical efficiency. He surmises that the lack of

variation could be due to the nature of the production process, the data

generating process, and the SFA method. He concludes that DEA “could be a

better approach in the current context” and that “different methods [of

analysis] can cause variations in empirical outcomes.”

                                                  

17 In fact, the authors do not include time in the production function.

18 The author also analyzes the efficiency of the BSKP producers using DEA.
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THE THEORETICAL MODEL

The stochastic frontier production function was developed independently by

Aigner, Lovell, and Schmidt (1977), and Meeusen and van Den Broeck (1977).

The approaches presented in the two papers are substantively the same, but

differ with respect to the distributional assumptions of the error term. The

two papers share the same convention of assuming an error term that is

composed of two random variables, 
i

v  and 
i

u . The first component, 
i

v , is a

random variable that accounts for measurement error and other random

factors, and it can be positive or negative. The second component, 
i

u , is a non-

negative random variable that measures the deviation from the efficient

frontier of the i-th observation. Since 1977, researchers have introduced

modifications and innovations to the stochastic frontier model. However, the

basic structure of the model remains unchanged. Stochastic frontier analysis

models the frontier production (or cost) function, rather than the average

function estimated in a least squares-based analysis. The stochastic

production function is defined by

iiii uvxy ++= . (1)

Where iy  is the natural logarithm of output for the ith decision making unit

(DMU)19 and (i = 1,…, N), 
i

x  is a (1 _ k) vector of the natural logarithm of

input quantities used by the ith DMU, and is an (k _ 1) vector of coefficients

to be estimated. The components of the disturbance term, 
i

v  and 
i

u , are

assumed to be independent. The model is called a stochastic frontier

production function because the output values are bounded from above by the

stochastic variable 
( )ux

ie
+

 (Coelli et al. 1998 p185).

                                                  

19 The term DMU was introduced by Charnes, Cooper, and Rhodes (1978) and refers to any

level of decision maker, e.g. an individual, a group of individuals, a firm or group of firms, or a

government agency.
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Battese and Coelli (1995) show that the (cross-sectional) stochastic frontier

production function presented in equation 1 can also be specified for panel

data as

itititit uvxy ++= , (2)

where ity  is the natural logarithm of output for the ith DMU (i = 1,…, N) in the

tth time period (t = 1,…, T), xit is a (1 _ k) vector of the natural logarithm of

input quantities used by the ith DMU in the tth time period, 
it

v  and 
it

u  are the

components of the disturbance term, and  is a (k _ 1) vector of coefficients to

be estimated.

Kumbhakar, Ghosh, and McGuckin (1991), and Reifschneider and Stevenson

(1991) proposed models for cross-sectional data that simultaneously estimate

the stochastic production function and an explicit model of the inefficiency

effects associated with the stochastic production function. Battese and Coelli

(1995) extended these ideas to panel data models, allowing for both the

estimation of technical change (in the stochastic production function) and the

estimation of time-varying inefficiency effects (Battese and Coelli 1995). The

inefficiency effects specification for the panel data model is as follows:

ititit wzu +=  , (3)

where itu  is the estimated one-sided inefficiency for the ith DMU in time period

t, 
it

z  is a vector of characteristics intended to explain the inefficiency of the ith

DMU in time period t,  is a vector of coefficients estimated in the

inefficiency model, and 
it

w  is defined by the truncation of the normal

distribution with zero mean and variance 
2
.20

                                                  

20 Battese and Coelli (1995) state “the W-random variables are not identically distributed nor

are they required to be non-negative…”
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The stochastic production function and inefficiency effects model are

estimated simultaneously using maximum likelihood methods. The estimates

of technical efficiency for ith DMU in time period t is given by

ititit
wzU

it eeTE == . (4)

The stochastic frontier production function has several advantages over DEA.

First and foremost, because SFA is an econometric-based method, it allows for

the estimation of standard errors and, hence, hypothesis testing using

standard maximum likelihood techniques. As the name indicates, the

estimated frontier allows for random noise within the data, thus not all

deviations from the efficient frontier are attributed to technical inefficiency.

SFA also supports panel data estimation, whereas with DEA, a new

production possibilities frontier must be established for each year of data.

The stochastic frontier production function is not without shortcomings.

Perhaps the most often cited criticism of this model is that there is not an a

priori theoretical reason to choose one distributional assumption for the ui

over another. Typically, the error term is assumed to be distributed

normal–half-normal or normal–exponential, both of which are single-

parameter distributions.21 Green (1997) found little difference in the

parameter estimates and the estimated uis between models estimated with

either of these distributions. Green (1990) proposed a more general two-

parameter gamma distribution, but as he later states in Green (2002), “the

gamma model brings with it a large increase in the difficulty of computation

and estimation.” Another criticism of more practical importance is the choice

of functional form for technology. There are numerous choices varying from

the restrictive, such as the Cobb Douglas or CES, to the flexible, such as the

                                                  

21 Actually, these distributions contain two distribution parameters, 
v

 and 
u

, where 
v

 is

the variance of the normally distributed random error term and 
u

is the variance of the half-

normal or exponentially distributed (non-negative) random variable that measures deviations

from the efficient frontier. It is the distribution of this portion of the error term that is of

interest here.
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translog. Theory often provides little guidance in the choice of functional form,

and this lack of guidance may explain why the majority of published studies

that estimate the SFPF use the flexible translog functional form.

There are advantages to panel data (relative to cross-sectional data) when

estimating SFA models. Because a panel data set contains multiple

observations on each DMU, it contains information not available from adding

DMUs to a cross-section. As the time dimension of the panel data gets larger,

the consistency of the technical efficiency estimates of each DMU is increased

(Kumbhakar and Lovell, 2000 p96). In the cross-sectional SFA model, it is

assumed that the iu s are distributed independently of the regressors and each

other. This is likely an unrealistic assumption for many industries. In the

panel data-based SFA model, the independence assumption is relaxed and the

additional observations on each DMU provide additional information with

which to estimate technical inefficiency for the DMU.  Perhaps most

important in the context of SFA, panel data allows for the simultaneous

examination of technical change and changes in technical efficiency over time

(Coelli, Prasada Rao, Battese, 1998 p202). Kumbhakar and Lovell (2000 p285)

shows how the components of productivity change can be estimated within the

SFPF framework.

THE DATA

This analysis assumes that the production of lumber is a function of four

inputs: sawlogs, labor, capital, and other inputs. The variables are discussed

in greater detail below and descriptive statistics are presented in Table 8.

Data were collected from Oregon and Washington mill studies. Mill-level data

on lumber production, sawlog consumption, and milling capacity were

obtained for Washington sawmills from The Washington Department of

Natural Resources (WDNR). The WDNR collects these data through its

biennial mill survey. Data for 1968 through 2002 (a total of 18 time points)

are used in this analysis. In order to protect the confidentiality of the

individual mills, the mill-level data were aggregated into regions. Several



41

regional designations were considered. For western Washington, the regional

breakout presented in Adams et al. 1992, as well as breakouts resulting in a

greater number of smaller regions were considered. Because of the relatively

large number of lumber producers on the westside, it was theoretically

possible to create a large number of regions while still maintaining mill-level

confidentiality. However, problems arose when trying to merge mill-level data

aggregated to the county level with county-level data on sawmill

employment.22 In Washington as well as other states, employers are required

to report on a quarterly basis the hours and earnings of all employees covered

by workers compensation insurance (i.e., unemployment insurance). However,

employers are not required to report the hours and earnings of an employee

from the actual physical location that the work occurred, although it is

common for many companies to do so.23  A company with two or more mills in

a state may report the hours and earnings of all employees as associated with

just one of the mill locations, even when the two mills are not within the same

county. Thus, county-level employment data do not necessarily coincide with

the number of employees who actually worked in the county.

Employment data were available at the county or multi-county level that

matched each of the regional designations considered for the westside of

Washington. However, by calculating simple labor productivity measures

(lumber production divided by employment), it became apparent that county-

level employment in SIC 242 in western Washington, as reported by the

Washington Employment Security Department, did not correspond well with

county-level lumber production levels. It was also not possible to reallocate

the county-level employment data to the counties in which the work was

actually performed.

                                                  

22 Employment data were not collected in the mill surveys, and therefore employees per mill is

not known. The mill surveys collected information on hours per shift, number of shifts per day,

and number of operating days per year.

23 As unemployment insurance programs are operated at the state-level, hours and earnings

information must be reported within the state in which the work occurred, but not within the

actual county.
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To alleviate the disparity between the county-level employment data and the

mill-level production data, only two regions were designated for western

Washington. All westside counties known to contain one or more mills owned

by certain large lumber producers were placed in one region (Region 2) and all

other westside counties were placed in the other (Region 1) (see Figure 7).24

The employment reporting problems observed for western Washington either

did not exist or were not particularly severe in eastern Washington. Although

producing substantially less lumber than western Washington (especially in

recent years), eastern Washington was segmented into three regions: north

central (Region 3), south central (Region 4), and the Inland Empire (Region 5)

(see Figure 7).

Mill surveys similar to those for Washington State were also conducted for

Oregon sawmills, however mill-level data are not available, and mill surveys

were not conducted as often as they were in Washington. Survey data were

obtained for Oregon for the years 1972, 1976, 1982, 1985, 1988, 1992, 1994,

and 1998. Data from the surveys were published at the county or multi-county

level by the Pacific Northwest Forest and Range Experimental Station.25

From these data, four regions were configured (Regions 6 through 9) (see

Figure 7). The Oregon mill surveys provide information on the lumber-

producing capacity, the volume of sawlogs processed, and the amount of

lumber produced per county/county group. Data on SIC 242 employment by

county/county group were obtained from the Oregon Employment Department

for all relevant years.

                                                  

24 Consolidating the counties this way ensured that the employment and lumber production of

western Washington’s larger lumber producers were aggregated correctly. A simple calculation

of labor productivity (output/employment) for each of the two western Washington regions over

the 18 year of observation appeared reasonable and trended in a similar manner.

25 Because the number of sawmills in Oregon decreased substantially between 1970 and 1998,

county groups have become consistently larger and fewer.
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Output and Input Variables

Lumber is the total volume in million board feet (MMBF) lumber tally of

hardwood and softwood lumber produced by the mills of each region.

Capital is measured as the total installed lumber producing capacity in

thousand board feet (MBF) per 8-hour work shift.

Labor is the total man hours worked by each region’s SIC 242 employees

during the year. Labor is calculated as Labor = Total SIC 242 Employment *

Average Operating Days26 * Average Number of Eight-hour Work Shifts27 * 8

Hours.

Sawlogs is the total volume in MMBF log scale of hardwood and softwood

sawlogs utilized by the region’s mills.28

Other Inputs is an estimate of the quantity of energy and operations and

maintenance supplies used in the manufacture of lumber deflated to 1970

dollars. These costs were not measured in either the Washington or Oregon

mill surveys and could not be directly obtained from other sources. Rather, the

costs were approximated for each region by developing indices of the average

quantity of energy and supplies used in the manufacture of lumber.29 The

                                                  

26 Average Operating Days is calculated from mill-level data and was weighted based on each

mill’s lumber production.

27 Average Number of Eight-hour Shifts is also calculated from mill-level data and was

weighted based on each mill’s lumber production.

28 For westside mills, log volumes are measured on a 32-foot Scribner basis, whereas eastside

mills measure logs based on a 16-foot Scribner basis. The reason for the difference is due the

typical log lengths produced from westside and eastside forests. It is assumed in this analysis

that the different scaling bases are incorporated into the production function of each mill and

are a function of estimated lumber recovery.

29 Separate indices were developed for Oregon’s and Washington’s westside and eastside mills

(four indexes in total), based on historical input cost data published by Resource Information

Systems, Inc. (RISI). The indices were created by deflating the current year cost of energy and

supplies required to produce one MBF of lumber. Energy costs were deflated based on

Industrial Sector Energy Prices obtained from the Energy Information Administration.

Operation and maintenance supply costs were deflated by the Producer Price Index for

Intermediate Materials: Supplies and Components.
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indices were multiplied by the lumber output of each DMU in each year,

resulting in a quantity-like measure of energy and operation and maintenance

supplies usage (“other inputs”).

EMPIRICAL MODEL

In this study, the translog functional form is used to represent the state of

technology:

= ==

++++++=
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ititkitktttjitkitkj

k

tkitkit uvxttxxtxy , (5)

where

 ity  represents the quantity of lumber output of the ith DMU in time period t;

it
x

1
 represents the milling capacity per 8-hour shift of the ith DMU in time

period t;

it
x

2
 represents the total man hours utilized by the ith DMU in time period t;

it
x

3
 represents the quantity of sawlogs consumed by the ith DMU in time

period t;

it
x

4
 represents the quantity of the input “other” utilized by the ith DMU in

time period t;30

t represents the year of observation (1968 = 1)

it
v  and 

it
u  are, respectively, the symmetric and one-sided random error terms

defined above.

                                                  

30 By construction, “other inputs” is strongly correlated with the dependent variable. Because of

this, the production relationship was simplified by not including the cross-product or squared

terms for “other.” A likelihood ratio test was conducted to test the null hypothesis that the sum

of the coefficients was indeed zero. The results of the likelihood ratio test are presented in the

Empirical Results section.
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The inefficiency effects model is specified as:

OregonTimeuit ** 310 ++= , (6)

where Time represents the year of observation (1968 = 1), and Oregon is a

dummy variable that equals 1 for regions located in Oregon. The dummy

variable for Oregon regions was included to account for possible differences in

mill survey development and data collection, as well as differences in species

composition of logs delivered to the respective mills.

The purpose of the inefficiency effects model is to explain differences in the

estimated inefficiencies of the DMUs. A primary reason for conducting

frontier-based estimation is to obtain estimates of inefficiency and to explain

variation in inefficiency across DMUs and through time. Because of the

assumption that the inefficiency effects are identically distributed, estimation

of an inefficiency effects model must occur simultaneously with the estimation

of the underlying production function, as opposed to through a second-stage

model.31

Based on the specification of equation 6, it is assumed that a major source of

heterogeneity between the lumber-producing regions is due to inefficiency

differences between producers in the two states.

Measuring Productivity Change

Productivity change occurs when the rate of change in output differs from the

rate of change in the use of an index of inputs (Kumbhakar and Lovell, 2000

p279). Total factor productivity (TFP) can be measured using either

mathematical programming techniques or econometric methods to construct

the Malmquist productivity index. The Malmquist productivity index neither

requires price information for a firm, nor requires the traditional economic

                                                  

31 See Battese and Coelli (1995) for further explanation.
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behavior assumptions of cost minimization or profit maximization. Rather, it

requires only a representation of the production technology, such as the

translog production function. The Malmquist productivity index is a measure

of TFP of a DMU based on the ratio of total output quantity to an index of all

input quantities. Unlike partial productivity measures, such as labor

productivity, TFP provides an overall measure of productivity. Throughout

this paper, productivity and TFP are used interchangeably.

Productivity change is the sum of three components: technical change,

efficiency change, and scale efficiency, each of which can be derived from

coefficients estimated in the SFPF.32 Assuming the time-varying production

function expressed in equation 1, the three components of productivity change

are developed as follows (Kumbhakar and Lovell, 2000 p284-286; Coelli, Rao,

O’Donnell, and Battese, 2005 p301):

Technical Change: ++=

k

kitktttt xtT lnˆˆˆˆ , (7)

Efficiency Change: isit
uu

eeTE = , (8)

where it
u

e  and is
u

e are the estimated technical efficiencies of the i-th DMU in

time periods t and s (t > s) and it
u

e  and is
u

e are bounded by zero and unity.

Scale Efficiency: ( )
n

n
n

x
ˆ

ˆ
1ˆ . (9)

Where ++=

k

ntkitnknn tx ˆlnˆˆˆ  is the output elasticity of input n, and k

represents the index of other inputs (k = 1,2,3,4).

                                                  

32 If price information were available, productivity change could be further decomposed into a

fourth component, allocative efficiency, which is concerned with choosing the minimum cost

bundle of inputs to produce a given level of output.
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 ++=
n k

ntkitnk
txn ˆlnˆˆˆ  is the returns to scale, calculated as the sum

of the output elasticities that characterizes the estimated frontier production

function (_ >=< 1.0).

Technical change is a measure of shifts in the production frontier and can be

estimated for individual DMUs, or for the industry as a whole. At a given

point in time, the most productive DMUs determine the technical frontier.

Technical change is the percent growth (or decline) in productivity between

the most productive DMUs in time period t and the most productive DMUs in

time period t-1.

Efficiency change is a measure of how well the average DMU is adjusting its

production function to the existing state of technology. Under the assumption

that (over a sufficiently long time horizon) technology has a positive effect on

an industry’s productivity growth, efficiency change can be thought of as a

measure of how well the typical DMU is doing at “catching up” to the ever-

changing state of technology.

Under the assumption of constant returns to scale (CRS), a proportional

change in all inputs results in a proportional change in output, and the DMU

(or industry) is said to be scale efficient. For the scale efficient DMU, an

increase or decrease in the use of inputs will make no contribution to

productivity change. That is, under the assumption of CRS, 1ˆ =  and

( ) 0
ˆ

ˆ
1ˆ =

n

n

n
x . Therefore, scale efficiency implies that productivity

change is a function of technical change and/or efficiency change.

On the other hand, if the DMU or industry is operating at a point of

decreasing returns to scale (DRS), (i.e., 1ˆ < ), then ( ) 0
ˆ

ˆ
1ˆ <

n

n

n
x  and

the scale inefficiency of the DMU or industry will have a negative effect on

productivity change. Conversely, if the DMU or industry is operating at a



48

point of increasing returns to scale (IRS), (i.e., 1ˆ > ), then

( ) 0
ˆ

ˆ
1ˆ >

n

n

n
x  and the scale inefficiency of the DMU or industry will

have a positive effect on productivity change.

Kumbhakar and Lovell (2000 p284) show that the impact on productivity of

the three components is additive. That is,

( ) ++= TExTPFT
n

n

n
&& 1 .  (10)

Regularity Conditions

Because of its flexibility, the translog function has become the most common

specification for estimating the stochastic production frontier. However, most

empirical applications do not test for the regularity conditions of monotonicity,

diminishing marginal productivity, and quasi-concavity. Sauer and

Hockmann (2005) review eight published studies that estimate a stochastic

production frontier using the translog functional form. Sauer and Hockmann

(2005) found that monotonicity was violated for at least one input in four of

the articles and that diminishing marginal productivity and quasi-concavity

were violated in all of the articles.33  The authors note that although the

frontiers possess the desired flexibility, the regularity conditions do not hold

(at least at the sample mean) and thus the estimated efficiency scores derived

from the functions are not theoretically consistent. More importantly, as

Sauer and Hockmann (p14) state, the derived efficiency scores “… are not an

appropriate basis for the formulation of policy measures focusing on the

relative performance of the investigated decision making units.”

Regularity of the estimated production frontier can only be done a posteriori,

perhaps explaining why this important step is often neglected or not reported.

                                                  

33 Sauer and Hockmann (2005) use the sample mean as their point of approximation for testing

the regularity conditions.
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Ideally, the regularity conditions should be checked for each data point; if the

conditions do not hold, the function should be re-estimated with the conditions

imposed. However, doing so for the translog function will result in significant

loss of flexibility, thus, eliminating its validity as a flexible functional form.34

Hence, regularity conditions are almost never examined globally for translog

or other functions. Instead, the function is checked at a point or a set of points

of approximation, generally the sample mean. This is the process followed

here.

Monotonicity

For a production function to be a monotonic function, all inputs must have

non-negative marginal products,

0
i

xy . (11)

The marginal productivity of an input is always non-negative, and thus a

small increase in the quantity of an input used in a production process cannot

lead to a decrease in the amount of output produced.

Diminishing Marginal Productivity

The law of diminishing marginal productivity states that as the use of an

input increases, holding all other inputs constant, the associated marginal

increase in production cannot increase. With a twice, continuously

differentiable function, such as the translog, diminishing marginal

productivity implies:

0
22

i
xy . (12)

                                                  

34 A valid flexible form must contain at least _(k + 2)(k + 1) independent parameters. As

Diewert and Wales (1987) discuss, a potentially serious problem associated with imposing

global curvature conditions on the translog function is the destruction of the function’s flexible

property. The translos is only assured to be a second-order approximation at one point.
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Chambers (1988 p12) makes two notes related to equation 12. First, equation

12 rules out the possibility of increasing marginal productivity occurring in

the first region of production. This is justified on the basis that production in

the first region is not economically feasible (at least in the long run). Second,

economists typically assume that equation 12 only holds within a restricted

region of the production function and one should not assert that it applies

everywhere.

Quasi-Concavity

The condition of quasi-concavity is directly tied to the condition of convexity of

the input requirement set.35 Simply put, convexity of the input requirement

set implies that if x1 and x2 can produce y, then any weighted average (i.e.,

“convex combination”) of these two inputs can also produce y (Chambers 1988

p10). Meeting the conditions of quasi-concavity implies that the input

requirement set is convex. Quasi-concavity is relatively simple to determine

via the Hessian matrix, derived from the second-order derivatives of the

translog production function,

=

44434241

34333231

24232221

14131211

ffff

ffff

ffff

ffff

H ,

where

H denotes the Hessian matrix;

4,...,1,
22

== ixyf
iii

;

jiijjiij
ffjijixxyf ==== ;;4,...1;4,...,1,

2
.

                                                  

35 The input requirement set is the set of all combinations of inputs capable of producing a

given level of output.
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The necessary and sufficient conditions for quasi-concavity of the production

function (at the point(s) of approximation) require that H be negative semi-

definite.36

Substitution Between Inputs

The degree of substitutability between inputs in response to changes in

quantity ratios of inputs is examined through the Morishima elasticity of

substitution. The elasticity of substitution, first introduced by Hicks (1932), is

a unit-free measure of the substitutability between inputs. It represents a

measure of the curvature of the isoquant describing the relationship between

inputs i and j. Although there are several alternative measures of the degree

of substitutability between inputs, only the Morishima elasticity of

substitution is considered in this study. Chambers (1988 p35) shows that the

Morishima elasticity of substitution can be derived from components of the

estimated production function.

F

F

x

f

F

F

x

f
ij

j

jij

i

jM

ij
= , (11)

where F is the determinant of the bordered Hessian:
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f  is the marginal product of input j  ( )

jj
xyf = ;

                                                  

36 Negative semi-definiteness is determined by checking each of the four determinants of H. The

determinants should alternate in sign, beginning with negative.
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i
x  is the mean value of input i

j
x  is the mean value of input j.

The Morishima elasticity was selected over the Allen elasticity because, as

stated in Chambers (1988 p96), the Morishima elasticity is a much more

economically relevant concept than the Allen elasticity, since it is an exact

measure of how the i and j input ratio responds to a change in the price of j (i

 j).37

Although the vast majority of studies that have examined the substitutability

between input factors in the production of lumber have estimated the Allen

elasticity, Blackorby and Russell (1989, pp882-883) conclude that the Allen

elasticity of substitution is not actually a measure of the ease of substitution

or curvature of the isoquant, and that “As a quantitative measure, it has no

meaning.” The authors conclude that the Allen elasticity is “incrementally”

and completely uninformative. Comparatively, Blackorby and Russell (1989

p883) state that the Morishima elasticity of substitution is a measure of the

curvature of the isoquant and the ease of substitution, as well as a

“…sufficient statistic for assessing—quantitatively and qualitatively—the

effects of changes in price or quantity ratios on relative factor shares...”

EMPIRICAL RESULTS

Maximum likelihood estimates of the parameters of the preferred SFPF model

were obtained using Limdep 8.0, and are presented in Table 9. Alternative

model specifications were considered and are discussed below.

The inclusion of time and time2 in the production function is intended to

measure the rate of Hicks Neutral technical change over the three decades of

                                                  

37 Note that Chambers (1988 p96) is referring to the derivation of the Morishima from the cost

function. With respect to the production function (which does not consider prices), the elasticity

of substitution is actually concerned with the response of input i to a change in the ratio of j and

i.
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data.38 Likewise, the coefficients on the interaction terms between time and

each of the inputs in the frontier production function are intended to measure

the rate of biased technical change over the period. The coefficient on time and

time2 are positive and statistically significant, indicating that Hicks neutral

technical change occurred over the period.39 The coefficient on the interaction

term between capital and time is of the expected sign and is statistically

significant. Technical change in the Northwest sawmill industry has on

average been capital-using, growing at a rate of about 1.0% per year. Over

this same time, technical change has also been labor saving, with total man

hours declining by 0.6% per year. The coefficient estimate on the interaction

between time and sawlogs indicates that sawlog-use grew over time by a very

small amount. However, the coefficient estimate is not statistically significant.

The coefficient estimate for the interaction between time and other inputs

indicates other input usage declined over the study period, however it too is

not statistically significant.

Coefficient estimates of the regional dummies (the fixed effects) represent

shifts in the y-intersection of the frontier production function. Oregon’s Region

4 (central & eastern Oregon) is the base case. The coefficient estimates of the

regional dummies for Washington are negative and not statistically

significant, indicating the position of the production frontier of these regions

is no different than Oregon’s Region 4. Conversely, the coefficient estimates

on the dummy variable for Oregon’s westside regions are positive and

statistically significant, indicating their respective production frontiers extend

beyond that of Region 4.

Whereas time in the frontier production function captures technical change

over time (i.e., shifting of the production frontier), time in the inefficiency

                                                  

38 Technical change is Hicks neutral if it can be shown to be separable from any of the inputs of

production.

39 The coefficient on time is statistically significant at the 0.05 level and the coefficient on time2

is significant at the 0.10 level.
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model is intended to capture efficiency change over time (i.e., changes in the

distance of the average DMU from the industry production frontier). The

positive sign on the coefficient of the time variable indicates that inefficiency

is increasing over time. Likewise, the positive value on the coefficient of the

dummy variable for the Oregon regions is also positive, indicating that

relative to Washington regions, Oregon regions are on average further from

the efficient frontier.40

The last four coefficients 
s
, 

2

s
, _, and _ are measures related to the

variance of the random variables 
it

V  and 
it

U . 
s
 and 

2

s
 are, respectively, the

standard deviation and variance of the composed error term, and are

measures of the total residual of the estimated frontier production function.41

_ and _ are measures of the relative importance of the inefficiency error.

_ is the ratio of 
u

 to 
v
, and is a measure of the relative importance of the

inefficiency error. The value of 0.73 _ indicates that less than half the

composed residual is due to the inefficiency error. _ is a measure of the

percent of the composed error that is attributable to the one-sided inefficiency

residual.42 The value of _, 0.35 indicates that only 35% of the total “noise” in

the estimation of the stochastic production function is attributable to

inefficiency effects. Stated another way, most of the deviation from the

efficient frontier is due to random noise. Had the frontier production function

been estimated in a deterministic model, all of the residual would have been

attributed to inefficiency.

                                                  

40 It is important to remember that the industry is experiencing positive technical change, thus

the industry’s efficient frontier is expanding. The inefficiency effects model measures changes

in the location of the typical DMU relative to the expanding frontier.

41 ( ) 2/122
ˆˆ
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The time-varying SFPF model (the “preferred model”) was tested against five

alternative specifications. Alternative 1 is the Cobb Douglas specification that

includes the four input factors and time. However, this model could not be

estimated because the OLS residuals possessed the wrong skew (positive in

the case of the frontier production function), indicating that the Cobb Douglas

was not the correct specification for the empirical production function43.

Alternative 2 is a three-input translog production function that excludes other

inputs, but is otherwise identical to the preferred model. Alternative 3 has the

same specification for the production function and inefficiency effects equation

as the preferred model, however it also includes four additional interaction

variables: capital*other, labor*other, sawlogs*other, other*other. Alternative 4

is a four-input translog production function that excludes Hicks neutral and

biased technical change. Alternative 5 has the same production function

specification as the preferred model, but does not explicitly model inefficiency

effects. Finally, Alternative 6 has the same specification for the production

function and inefficiency effects equation as the preferred model, but excludes

the fixed effects for the sawmill regions.

Likelihood ratio tests were used to test the above specifications and are

reported in Table 10. All tests were conducted at the 0.05 level of significance.

As stated above, the Cobb Douglas model could not be estimated, so the

likelihood ratio test could not be performed. For Alternative 2, the likelihood

ratio was 63.6, indicating rejection of the null hypothesis that all the

coefficients on “other” were equal to zero. Alternative 3 is the only likelihood

ratio test in which the null hypothesis is not rejected (LR = 1.7 vs. critical

                                                  

43 As discussed previously, the error term of the stochastic production function is composed of

i
v , the symmetric random noise component, and 

i
u , the non-negative technical inefficiency

component. The error term 
iii

uv=  is negatively skewed because 0>
i

u , under the

assumption that the stochastic production function contains technical inefficiency effects. Prior

to estimation of the stochastic production function model using maximum likelihood methods,

the model is estimated using OLS and the presence of technical inefficiency in the data is

tested. If 0
i

, then either the data do not support the estimation of the stochastic

production function, or the model is misspecified.
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value of 9.49). This result provides statistical evidence that the production

relationship is better represented without the additional interaction terms

involving “other” inputs. There was sufficient evidence to reject the null

hypothesis represented by Alternative 4 that neither Hicks neutral, nor

biased technical change occurred over the study period (likelihood ratio =

77.6). For Alternative 5, the likelihood ratio test was 52.7, thus rejecting the

null hypothesis that the explanatory variables in the inefficiency model are

jointly insignificant, despite the fact that none of the explanatory variables

are individually statistically significant. Finally, the likelihood ratio for

Alternative 6 (104.7) indicates there is sufficient evidence to reject the null

hypothesis that the coefficients on the fixed effects are equal to zero.

Regularity Conditions

Table 11 shows the results of the examination of the conditions of

monotonicity and diminishing marginal productivity at the mean of the data.

The marginal product of each of the four inputs is positive, with sawlogs and

other being significantly different from zero. Each of the marginal products is

also decreasing in inputs, implying diminishing marginal productivity. The

standard errors on labor, sawlogs, and other inputs are statistically significant

at the 0.01 level. The fact that the marginal product estimates for capital are

of the correct sign, but are not statistically significant, implies that the

industry generally operated with at least a small amount of excess capacity.44

Building the Hessian matrix for the production function in the same order as

the inputs are listed above, results in the following determinants, which show

the matrix to be negative semi-definite at the sample means.

[ ] 06e97.8
1

==
cc

fH

                                                  

44 That is, a small percentage increase in capacity, holding all other inputs constant, would not

lead to an increase in output.
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Output Elasticities and Productivity Growth

Table 12 presents the elasticity of output for each input, the returns to scale,

and estimates of technical change, efficiency change, and productivity change.

These measures were estimated at the mean of the entire sample and at the

mean of each decade of the study period.45 With two exceptions, all of the

output elasticities have the expected sign. The exceptions, the estimated

elasticities on capital for the 1970s and labor for the 1990s, are negative, but

are not statistically significant. The output elasticity of capital evolves from

being negative and not statistically significant for the 1970s, to being positive,

but not statistically significant for the 1980s, and finally to being positive and

statistically significant for the 1990s.

The time path for the output elasticity of labor is the opposite of that for

capital. For the 1970s, the output elasticity of labor is positive and

statistically significant; for the 1980s it is positive, but not statistically

significant; for the 1990s, it is neither positive, nor statistically significant.

These results are consistent with anecdotal evidence of increasing automation

in the sawmill industry and the highly publicized declines in forest industry

employment that occurred throughout the latter-half of the study period.

                                                  

45 Data for the State of Washington for 2000 and 2002 were included in the 1990 estimates.
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Changes in the elasticity of output with respect to capital and with respect to

labor are also consistent with the coefficient estimates on the capital-time and

labor-time interaction variables in the estimated production function (0.0107

and -0.006, respectively). Technical change has been both capital-using and

labor-saving. As the sawmill industry adopted greater and greater

productivity-enhancing technology, the sensitivity of lumber production to a

small change in labor declined from 0.13 in the 1970s to zero in the 1990s.

Comparatively, the output elasticity with respect to capital grew from zero in

the 1970s to 0.16 in the 1990s.

The output elasticity with respect to sawlogs increased in magnitude over the

period, and was statistically significant at the mean value for each decade.

The impact on lumber production from a marginal increase in sawlogs,

holding all other inputs constant, increased from 0.58 for the 1970s to 0.73 for

the 1990s. Nevertheless, the estimated output elasticity for each decade is

within the 95% CI of the output elasticity for the other decades. The output

elasticity on other inputs declined in magnitude from decade to decade, and

was statistically significant for each decade.

Estimates of the returns to scale in the Northwest lumber industry grew from

0.98 for the 1970s to 1.07 for the 1990s, indicating changes in scale efficiency

over the three decades. However, given the standard error on each estimate,

the assumption of constant returns to scale cannot be rejected for the overall

sample, or for any of the individual decades. It is unclear how estimates of

returns to scale at the regional level can be extrapolated down to the firm

level.

The last four rows of Table 12 show estimates of technical change, efficiency

change, and productivity change for each decade and for the entire sample.

Productivity change is a measure of the percent increase in output for a fixed

level of inputs. Productivity is composed of technical change, efficiency

change, and changes in scale efficiency. Technical change represents

movement (generally outward) of the industry’s production frontier; efficiency
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change represents change in the position of the average DMU relative to the

production frontier. Efficiency change is a measure of a DMU’s progress (or

regress) at incorporating the industry’s available technology into its own

production function.  Efficiency change is often referred to as the “catching-

up” effect, when a DMU is nearer the production frontier in time period t+1

than it was in time period t. Scale efficiency change is a measure of movement

of a DMU’s operation either toward or away from its technically optimum

scale (Coelli et al., 2005 p75).

The results of the analysis indicate that substantial technical change occurred

throughout the study period. For the 1970s, technical change grew on an

average annual basis by 1.6%. For the 1980s and 1990s, the rate of change

was even greater (2.1% and 2.2% per year). As the efficient frontier expanded

during the 1970s, 1980s, and 1990s, the distance of the average DMU from

the efficient frontier also increased, but only slightly. For the 1970s, the rate

of efficiency change was very slight, averaging only -0.02% per year. The rate

of change increased to -0.28% per year for the 1980s, and to -0.033% per year

in the 1990s. The most obvious explanation for this seemingly contradictory

phenomenon is that some DMUs were the leaders in adopting productivity-

enhancing technologies, and thus pushed out the industry’s production

frontier. For the other DMUs, the adoption of the new technologies was not

immediate, so distance from the production frontier increased. The point

estimates of scale efficiency change were very small and positive in each

decade, but were not significantly different from zero.

Productivity growth (TFP change) is the sum of technical change, efficiency

change, and scale efficiency.46 The rate of productivity growth during the

study period closely mirrors the rate of technical change and is presented in

                                                  

46 If technical efficiency is assumed time invariant, then productivity growth reduces to

technical change plus scale efficiency.
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Table 12, both exclusive of and including efficiency change.47 Excluding the

effects of efficiency change (or alternatively assuming time-invariant technical

efficiency), productivity growth averaged 1.6% per year in the 1970s, 2.1% in

the 1980s, and 2.4% during the 1990s. For the entire period, the average

annual technical change was 2.0%. Including the effects of efficiency change

(last row of Table 12), the estimates of productivity were similar, but slightly

lower.

Elasticity of Substitution

The Morishima elasticity of substitution is a measure of the response of input

i to a change in the ratio of inputs i and j, and represents movement along the

isoquant. Unlike the Allen partial elasticity of substitution, the Morishima

elasticity of substitution is not symmetric. The response of input i to a change

in the ratio of the i and j inputs is not constrained to equal the response of

input j to a change in the j and i input ratio (
M

ji

M

ij
). Table 13 shows for

each pair of inputs, the ability of input j to substitute for input i.48

Considering first the relationship between labor and capital, Table 13 shows

that labor is not substitutable for capital, but capital is substitutable for labor.

Thus, a change in the input ratio of capital to labor would have no impact on

the usage of labor, but a change in the input ratio of labor to capital would

result in a change in the use of capital relative to labor. The substitutability of

capital for labor observed for each decade of the study period allowed labor

productivity to increase, but at the cost of decreasing employment in the

                                                  

47 Efficiency change is calculated outside of the model based on the estimated technical

efficiencies. Only point estimates were calculated. Horrace and Schmidt (1996) propose a

method for constructing confidence intervals for estimates of efficiency change derived from

panel data models. Because of the very small size of the efficiency estimates calculated in this

analysis (i.e., smaller than standard errors of the technical change estimates), confidence

intervals were not computed.

48  0<
M

ij
 indicates that with respect to input i, the inputs are Morishima complements;

0>
M

ij
  indicates that with respect to input i, the inputs are Morishima substitutes;

0=
M

ij
 indicates that with respect to input i, the inputs are Leontief (i.e., fixed factor).
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sawmilling industry. These findings appear to support Stier’s (1980)

observation that future growth in lumber production by Northwest sawmills

would generate only small increases in employment.

A similar relationship exists between labor and sawlogs. A change in the

input ratio of sawlogs to labor would have no effect on the usage of labor

( )0, =LW , but a change in the input ratio of labor to sawlogs would result in

the substitution of sawlogs for labor. However, this result is not consistent

across the three decades of analysis. For the 1970s, labor and sawlogs are

Morishima complements (with respect to a change in the relative price of

labor), thus an increase in the relative price of labor would result in less of

both inputs being used.

A change in the input ratio of other inputs to labor would also have no effect

on the usage of other inputs, but the two are Morishima complements when

considering a change in the input ratio of other inputs to labor.

The input-substitution relationship between sawlogs and capital is also of

particular importance. With respect to an increase in the relative price of

capital, the two inputs are Morishima complements, although the degree to

which this is the case has changed over the study period. In the 1970s,

sawlogs and capital were also Morishima complements with respect to an

increase in the relative price of sawlogs, but they were not strongly

complementary. This relationship has changed and now capital is weakly

substitutable for sawlogs.

Comparison of the estimated elasticities of substitution to other studies is

difficult. Most previous studies estimate only Allen elasticities, which are not

directly comparable to the Morishimo measure. Three relatively recent

analyses which report Morishima elasticites are Puttock and Preston (1992),

Baardsen (2000), and Latta and Adams (1999).

Puttock and Preston (1992) estimated Morishima elasticities for Ontario

hardwood sawmills based on a translog cost function, which included three
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inputs: sawlogs, labor, and energy. Data on 21 mills were observed between

1980 and 1984 and the authors estimated Morishima elasticities for each pair

of inputs. However, the authors seemingly assumed the Morishima elasticity

to be symmetric and computed only one estimate for each input pair.

Therefore, their estimate of the elasticity of substitution for labor and sawlogs

(0.595) is difficult to compare to those estimated in this study because it is

unclear as to whether they report 
M

WL,
 or 

M

LW ,
. Even without this

inconsistency in their reported results, meaningful comparison is difficult

because of the very short time-span of their data, relative to this study, and

because the majority of lumber production in the Northwest is softwood, while

Puttock and Preston (1992) consider hardwood.

Using a very large panel data set of individual Norwegian sawmills, Baardsen

(2000) derives Morishima elasticities from an 8-input translog cost function.

Included within the eight inputs are sawlogs, labor, and capital which

correspond to sawlogs, labor, and capital in the present analysis, as well as

other materials, electricity, fuel oil, and other inputs, which correspond to

other in the current analysis. For each of the elasticities of substitution of

greatest interest to this study, Baardsen (2000) finds the pairs of inputs to be

substitutes.

Latta and Adams (1999) employ a normalized, restricted profit function to

estimate various economic measures for three regions of Canada’s softwood

lumber industry: the British Columbia Coast (BCC), the British Columbia

interior and Alberta (INT), and the rest of Canada (EAST). The authors

formulate a three-input production process (softwood sawlogs (W), labor (L),

and other inputs) that produces a single output (lumber + chips). Latta and

Adams examine the Morishima elasticity of substitution between labor and

sawlogs and find them to be substitutes and statistically significant in BCC

and INT. For the EAST, they find that 
M

WL,
 > 0 and 

M

LW ,
  0, but neither

estimate is statistically significant.
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Technical Efficiency

The estimates of technical efficiency are high over the entire study period for

all regions (see Table 14).49 The technical efficiency results are especially high

through the mid 1980s and are strikingly similar to the results obtained by

Yin (2000) in his study of global pulp producers. Perhaps the high efficiency

estimates in this study should not come as a surprise, considering that there

are only nine regions and for many years there are data for only five regions.

The paucity of data for any one year results in estimated production frontiers

with limited ability to discriminate, as most of the DMUs are needed to

construct the frontier. This is a substantial limitation of this data set when

considering results in the cross-section, but should not affect the reliability of

estimates of technical change or productivity growth over time.

The descriptive statistics in Table 14 show that the average, relative technical

efficiency declined over the study period, from essentially 1.0 in 1968 to 95.5

in 2002. Over the same period, the minimum estimated technical efficiency

declined from 0.993 to 0.926, whereas the maximum declined very little (from

0.997 to 0.981). The greater spread between the minimum and maximum

efficiency scores indicates heterogeneity between the regions increased over

the three decades of analysis. Figure 8 shows the increasing heterogeneity

more clearly. During the first decade of data (1968-1980), there was little

variability in the estimated technical efficiency scores of the nine regions. This

changed in the early 1980s as the distribution of technical efficiency scores

widened and the average score declined.

Taking a closer look at the data, Table 15 shows the geometric mean technical

efficiency estimates for Oregon (4 regions), Washington (5 regions), the

Eastside (4 regions), and the westside (5 regions).50 Regardless of how the

                                                  

49 The measures of technical efficiency are equal to it
u

e , where uit is the estimated one-side

inefficiency error for i-th DMU in time period t.

50 Note: these are not mutually exclusive aggregations.
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regions are aggregated, technical efficiency declined over the study period.

The degree to which technical efficiency declined varied considerably between

the two states, with the Oregon regions declining much more than the

Washington regions. The decline in the relative technical efficiency of Oregon

lumber producers may indicate a persistent difference in sawlog supply,

management effectiveness, innovation, or investment, relative to Washington

mills. Nevertheless, it should be remembered that the estimates of technical

efficiency are relative to the position of the industry production frontier at a

specific point in time. Even as the relative technical efficiency of Oregon

producers appears to decline over time, the production frontier, to which

technical efficiency is measured, is shifting out. Thus, Oregon sawmills are

also experiencing technical progress and productivity growth, but seemingly

at a slower rate than Washington mills.

DISCUSSION

Analysis of more than three decades of production data for the Pacific

Northwest sawmilling industry reveals that lumber producers in Oregon and

Washington experienced substantial productivity gains. The vast majority of

these gains were due to technical change (i.e., expansion of the industry’s

production frontier). The statistical evidence indicates that scale efficiency

played no role in productivity growth, and efficiency change had a very small,

but negative effect on productivity growth.51 Negative efficiency change

indicates that, even as the industry’s production frontier expanded over time,

the distance of the average DMU to the industry’s production frontier actually

increased. The result is that, even though all regions experienced technical

change and productivity growth over the study period, some regions

experienced less than others.

Under the assumptions that (1) individual mills are price takers in the output

market and (2) there are substantial opportunities for arbitrage in the input

                                                  

51 Statistical results were not computed for the efficiency change estimtes.
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markets, mills are not only competing with other lumber producers within

their same region, but are also competing with mills throughout the

Northwest. The result is that as technical innovation allowed the most

innovative mills to push out the industry’s production frontier, other

Northwest mills were forced to adopt productivity-enhancing technology in

order to keep up with the expanding frontier, or shut down. A portion of the

productivity growth observed over the study period may be due to the least

technically efficient firms shutting down, thus resulting in efficiency change

and productivity growth through attrition (Stevens 1991).52 Estimates of

technical efficiency are high for all regions for all time points (> 0.89). The

high technical efficiency scores are due in part to the small number of DMUs,

but may also be due to rapid transfers of technology and innovation between

sawmills in the Northwest, thus resulting in little variation in technical

efficiency between the sawmilling regions.

The results of this analysis indicate that over the 34-year study period,

technical change was labor-saving and capital-using, and was neutral with

respect to sawlog usage. Neutral technical change in sawlog usage may be

contrary to one’s a priori assumption that technical change would be wood-

saving, due to the adoption of sawing technologies that are capable of

increasing yields per unit of sawlog input (Stier and Bengston 1992). Results

from the empirical literature are mixed on this issue. Abt (1987) reports wood-

using bias for Pacific Northwest sawmills over the period 1963-1978.

Martinello (1987) found that technical change was neutral with respect to

sawlog usage for coastal British Columbia (BC), but technology was wood-

saving for interior BC. Analyzing data from 1957-1981 for the U.S. Pacific

Northwest and BC, Constantino and Haley (1988) found that technical change

was both labor- and wood-saving. Meil and Nautiyal (1988) found that with

                                                  

52 Stevens states, “When the closure of older, less (sic) labor-intensive mills is permanent then

technological change through attrition takes place.” In fact, the closure of older, more labor-

intensive mills leads to efficiency change in the industry. That is, the industry’s production

frontier is not shifted out by the closure of the older, more labor-intensive mills, but rather the

average proximity to the frontier of the remaining mills is reduced.
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few exceptions, technical change was labor-saving and sawlog using for the

major lumber producing regions of Canada.

The lack of consensus in the literature on the existence and direction of

technical bias with respect to sawlog usage may be due to the spatial and

temporal heterogeneity of sawlogs. That is, sawlog size and quality vary

across space and time. In the Northwest, average sawlog diameter decreased

through the 1970s, 1980s, and 1990s, and it is generally agreed that sawlog

quality declined over this period. The trend toward smaller sawlogs has led to

increased productivity because the milling of small logs is less labor intensive

and more amenable to mechanization. Consist with decreases in the size and

quality of sawlogs over the past few decades has been a decrease in lumber

quality. This is not captured in the analysis. The average quality of labor has

likely also changed as many unskilled workers have been displaced due to

changes in technology.

This study is the first to utilize a stochastic frontier production function to

examine productivity growth, technical change, and other economic measures

of the Northwest sawmilling industry. SFA methods allows for the relaxation

of the assumptions that lumber producers are successful cost minimizers

and/or profit maximizers. Instead of estimating the average production

function and assuming deviations from this function (either positive or

negative) are simply random disturbance, SFA estimates the production

frontier and provides estimates of each DMU’s inefficiency, relative to the

estimated frontier. This study is also the first in more than a decade to

examine the technical structure of the Oregon and Washington lumber

producing industry, and to examine changes in that structure. Despite

substantial declines in harvest on Northwest National Forests over the past

two decades, Oregon is still the largest lumber producing state in the U.S. and

Washington produces more lumber today than it did in the 1970s, 1980s, or

1990s. Strong productivity growth over the last three decades has helped NW

lumber producers remain competitive in an ever-increasing global

marketplace.
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Table 8: Summary Statistics for Variables in the Stochastic

Frontier Production Function

Variable Mean St. Dev. Median Min. Max.

Lumber Production (MBF

lumber tally, softwood +

hardwood)

1,020,347 945,315 527,840 136,030 3,706,856

Sawlogs (MBF Log Scale) 694,017 635,217 361,980 89,957 2,683,044

8-Hour Capacity (MBF Lumber

Tally)
3,152 2,876 1,760 365 11,675

Labor (Thousands of Total

Person Hours)
12,966 13,336 7,148 1,148 57,510

Other (Energy & Supply Costs

in Thousands of 1970 Dollars)
7,515 6,829 4,268 893 28,020
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Table 9: Estimation Results of Preferred SFPF and Inefficiency

Effects Model

Variable Coefficient
Standard

Error
t-ratio P-value

Constant -11.4480 5.9507 -1.924 0.054

Capital -0.1933 0.8650 -0.223 0.823

Labor 2.3301 1.0647 2.189 0.029

Sawlogs -1.8022 1.4006 -1.287 0.198

Other 0.3796 0.0859 4.420 0.000

Capital _ Capital -0.0452 0.1459 -0.310 0.757

Labor _ Labor -0.2266 0.1046 -2.166 0.030

Sawlogs _ Sawlogs -0.2722 0.1954 -1.393 0.164

Capital _ Labor 0.0049 0.0774 0.064 0.949

Capital _ Sawlogs 0.0504 0.1485 0.339 0.734

Labor _ Sawlogs 0.2286 0.1378 1.659 0.097

Time 0.0419 0.0168 2.498 0.013

Time _ Capital 0.0107 0.0025 4.191 0.000

Time _ Labor -0.0060 0.0019 -3.207 0.001

Time _ Sawlogs 0.0049 0.0047 1.043 0.297

Time _ Other -0.0054 0.0046 -1.187 0.235

Time _ Time 0.0004 0.0002 1.697 0.090

Region 1 (Western WA) -0.1085 1.1237 -0.097 0.923

Region 2 (Western WA) -0.1896 1.1465 -0.165 0.869

Region 3 (Central WA) -0.1905 1.1195 -0.170 0.865

Region 4 (Central WA) -0.2362 1.1192 -0.211 0.833

Region 5 (Eastern WA) -0.1958 1.1217 -0.175 0.861

Region 6 (Western OR) 0.1951 0.0288 6.774 0.000

Region 7 (Western OR) 0.2472 0.0356 6.954 0.000

Region 8 (Eastern OR) 0.1834 0.0509 3.603 0.000

Parameters in One-Sided Inefficiency Model

Constant -0.2517 0.3671 -0.686 0.493

Time 0.2943 1.1433 0.257 0.797

Oregon Indicator 0.0171 0.9579 0.018 0.986

Variance Parameters for Compound Errors

Lambda  ( )( )vu /= 0.7316 0.5141 1.423 0.155

Gamma  ( )( )222
/ vuu += 0.3487

Sigma ( )( )22

vus sqrt += 0.0390 0.0037 10.621 0.000

Sigma-square ( )2s 0.0015 0.0003 5.314 0.000

Log Likelihood Function 237.79
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Table 10: Likelihood Ratio Tests

Variable Log

Likelihood

Likelihood

Ratio Test

Statistic

Critical

Value

(_ = 0.05)

Decision

Preferred Model: 4-input

translog (with time-varying

technical change & inefficiency

effects model)

237.79

Alternative 1: 4-input Cobb

Douglas

H0: _ij = 0, i  j = sawlogs, labor,

capital, other, time

OLS residuals have wrong skew. OLS is MLE.

Reject H0. Cobb-Douglas is not correct

Specification

Reject H0

Alternative 2: 3-input translog

H0: _i = _i,t = 0;

i = other; t = time

206.00 63.59 5.99 Reject H0

Alternative 3: 4-input translog

with “other” interactions

Ho: 0=ij ; i = other;

j = capital, labor, sawlogs, other

236.94 1.70 9.49
Fail to

Reject H0

Alternative 4: 4-input translog

with NO technical change

H0: _t = _tt = _it = 0;

i  = sawlogs, labor, capital, other

198.98 77.62 12.59 Reject H0

Alternative 5: 4-input translog

without explanatory variables

for inefficiency effects

H0: _0 = _1 = _2 = 0

211.44 52.70 7.81 Reject H0

Alternative 6: 4-Input translog

without fixed effects

H0: _1 = … = _8 =  0

185.46 104.66 15.51 Reject H0

Table 11: Results of Tests for Monotonicity and Diminishing

Marginal Productivity

Monotonicity
Diminishing Marginal

Productivity
Input

Marginal

Product
St. Error

_(Marginal

Product)
St. Error

Capital 1.36E-02 1.75E-02 -8.97E-06 1.60E-05

Labor 3.83E-06 3.69E-06 -1.67E-12 6.05E-13

Sawlogs 9.59E-01 9.43E-02 -1.96E-03 4.07E-04

Other 3.85E-02 6.02E-03 -5.13E-06 8.00E-07
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Table 12: Elasticities of Mean Output, Returns to Scale,

Technical Change, Efficiency Change, and Total Factor

Productivity Growth1

Input 1970s 1980s 1990s2 All Years

-0.079 0.043 0.161 0.042
Capital

0.067 0.054 0.054 0.054

0.127 0.053 -0.038 0.049
Labor

0.053 0.048 0.050 0.047

0.584 0.651 0.727 0.652
Sawlogs

0.097 0.061 0.074 0.064

0.349 0.282 0.221 0.284
Other

0.065 0.045 0.074 0.044

0.981 1.029 1.071 1.027
Returns To Scale3

0.041 0.040 0.037 0.039

0.016 0.021 0.022 0.020Technical Change

(Avg. Annual Change)
0.003 0.003 0.004 0.003

-0.0002 -0.0028 -0.0033 -0.0021Efficiency Change

(Avg. Annual Change)
Point Estimates Only

0.0003 0.0001 0.0018 0.0002Scale Efficiency

Change
0.0008 0.0004 0.0017 0.0005

0.016 0.021 0.024 0.020TFP Change

(Excluding Efficiency

Change) 0.003 0.003 0.005 0.003

0.016 0.019 0.021 0.018TFP Change

(including Efficiency

Change) Point Estimates Only

1. Asymptotic standard errors in italics.

2. The “1990s” actually spans the period 1990 – 2002. Only data for Washington were available for 2000

and 2002.

3. At the 0.05 level of significance, constant returns to scale can not be rejected for any period analyzed.
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Table 13: Morishima Elasticity of Substitution Between Inputs

Substitution 1970s 1980s 1990s All Years

Labor for Capital (_C,L) 0.001 0.000 0.000 0.000

Capital for Labor (_L,C) 3.872 0.820 1.516 0.909

Sawlogs for Labor (_L,W) -6.863 4.661 4.377 5.035

Labor for Sawlogs (_W,L) 0.000 0.000 0.000 0.000

Sawlogs for Capital

(_C,W) -5.233 -0.366 -1.540 -0.476

Capital for Sawlogs

(_W,C) -0.174 0.004 0.067 0.007

Other for Labor (_L,O) -0.952 -0.891 -0.840 -0.846

Labor for Other (_O,L) 0.000 0.000 0.000 0.000

Other for Capital (_C,O) 0.343 0.163 0.151 0.186

Capital for Other (_O,C) 0.179 -0.041 -0.298 -0.066

Other for Sawlogs (_W,O) 0.339 0.241 0.173 0.239

Sawlogs for Other (_O,W) -5.302 -5.233 -7.833 -5.942
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Table 14: Descriptive Statistics of Estimated Technical

Efficiencies

YEAR

Geometric

Mean

Standard

Deviation Minimum Maximum Median

1968 0.995 0.001 0.993 0.997 0.995

1970 0.996 0.000 0.995 0.996 0.996

1972 0.993 0.004 0.987 0.996 0.995

1974 0.995 0.001 0.995 0.996 0.995

1976 0.993 0.004 0.986 0.996 0.996

1978 0.995 0.000 0.995 0.996 0.995

1980 0.995 0.000 0.995 0.996 0.995

1982 0.980 0.018 0.955 0.996 0.994

1984 0.995 0.001 0.993 0.996 0.995

1985 0.957 0.007 0.952 0.967 0.955

1986 0.994 0.001 0.993 0.995 0.994

1988 0.966 0.031 0.921 0.994 0.990

1990 0.990 0.002 0.986 0.992 0.991

1992 0.952 0.042 0.901 0.993 0.983

1994 0.945 0.044 0.896 0.987 0.981

1996 0.974 0.009 0.964 0.987 0.971

1998 0.939 0.040 0.896 0.981 0.961

2000 0.960 0.008 0.952 0.973 0.956

2002 0.955 0.023 0.926 0.981 0.958
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Table 15: Geometric Mean Technical Efficiency Estimates for

Oregon, Washington, Eastside, and Westside

Year Oregon Washington Eastside Westside

1968 0.994 0.995 0.995 0.995

1970 0.994 0.996 0.996 0.996

1972 0.989 0.995 0.993 0.992

1974 NA 0.995 0.996 0.995

1976 0.989 0.996 0.994 0.992

1978 NA 0.995 0.995 0.995

1980 NA 0.995 0.996 0.995

1982 0.961 0.995 0.989 0.973

1984 NA 0.995 0.995 0.995

1985 0.957 NA 0.984 0.973

1986 NA 0.994 0.995 0.993

1988 0.935 0.992 0.977 0.957

1990 NA 0.990 0.992 0.988

1992 0.910 0.987 0.963 0.943

1994 0.899 0.983 0.960 0.933

1996 NA 0.974 0.974 0.973

1998 0.898 0.973 0.953 0.928

2000 NA 0.960 0.957 0.964

2002 NA 0.955 0.941 0.978
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Figure 7: Pacific Northwest Sawmill Regions
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Figure 8: Distribution of Technical Efficiency Estimates, High,

Low, and Geometric Mean
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PRODUCTIVITY AND EFFICIENCY ANALYSIS OF THE

NORTHWEST SAWMILL INDUSTRY USING DATA

ENVELOPMENT ANALYSIS

INTRODUCTION

Changes in the supply of timber from private and public lands in the Pacific

Northwest and ever increasing globalization have resulted in a forest products

industry in the Northwest that looks much different today than it did 30 years

ago. There are fewer sawmills in the Northwest today; the mills today are

larger, more automated, and, based on anecdotal evidence, more productive

than their predecessors . Although its relative importance has shrunk over the

past few decades, the forest products industry continues to be an important

part of the economy and culture of the Northwest. The purpose of this analysis

is to examine how the structure of the industry has changed over the past few

decades.

In this paper data envelopment analysis (DEA) is used to approximate the

production frontier of the sawmill industry in the U.S. Pacific Northwest

(PNW or NW), comprising Oregon and Washington. Utilizing data that extend

from 1968 through 2002, technical efficiency, productivity growth, technical

and efficiency change, and returns to scale in the Northwest sawmill industry

are estimated. In addition, using methods described by Simar and Wilson

(1998, 1999, 2000a, 2000b, 2002), confidence intervals are developed using a

bootstrap technique. The data used in this analysis were also used in Chapter

3 to estimate a stochastic frontier production function (SFPF). Estimates of

technical efficiency, productivity growth, and technical and efficiency change

developed in Chapter 3 are compared in this study to estimates obtained

through DEA.

DEA models measure efficiency relative to a non-parametric estimate of the

true efficient frontier. The estimated frontier is constructed based on the

coordinates in input-output space of the most technically efficient decision



83

making units (DMUs). In DEA, the technical efficiency of a DMU is estimated

based on a frontier of best performing DMUs and hence the technical

efficiency estimate is a relative, not absolute, measure. Further, as Simar and

Wilson (1998) point out, because the statistical estimators of the estimated

frontier are based on finite samples, the corresponding measures of technical

efficiency are sensitive to the sampling variations of the frontier obtained.

The observed data are the result of an underlying and unobserved data

generating process (DGP) (Simar and Wilson 2000a). DEA and other non-

parametric methods offer an advantage over econometric-based techniques

since they do not require the imposition of possibly incorrect functional

relationships between the inputs and outputs of production. However, this

advantage comes at the expense of obtaining “deterministic” results, with

unknown or assumed non-existent statistical properties. Because DEA is a

deterministic technique, hypothesis testing and other statistical analysis has

traditionally not been conducted within a DEA framework. The bootstrapping

techniques developed by Simar and Wilson (1998, 1999, 2000a, 2000b, 2002)

effectively eliminate this shortcoming.

DATA ENVELOPMENT ANALYSIS IN THE FOREST PRODUCTS

INDUSTRY

DEA has become an increasingly popular approach for measuring technical

efficiency and productivity change. Gattoufi, Oral, and Reisman (2004) cite

more than 1,800 articles since 1951 that have appeared in refereed journals

and employ DEA methods. Most of the studies cited by Gattoufi et al. were

published during the past two decades. There is a small number of recent

studies that employ DEA to analyze technical efficiency and/or productivity

growth in the forest products sector. Most of these studies focused on the pulp

and paper industry, but a handful of studies have examined technical

efficiency in the logging industry, forest management, and the sawmill

industry.
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Salehirad and Sowlati (2005) examine data on 82 British Columbia (BC)

sawmills for the year 2002. Although the authors theorize a production

process that uses sawlogs, labor, capital, and energy to produce lumber and

chips, they construct their DEA models using only sawlogs and labor as

inputs. The authors find that under the assumption of variable returns to

scale (VRS), 11 of the 82 mills are technically efficient and the average

technical efficiency of all mills is 83%. Under the alternative assumption of

constant returns to scale (CRS), only 6 mills are technically efficient and the

average technical efficiency is 80%. The authors compute scale efficiency and

find it to be 0.97. They do not, however, go on to determine if the scale

inefficiency measure is statistically different from 1.0. The authors do report

that about half of the scale inefficient lumber producers were operating at a

point of increasing returns to scale and that the other half at a point of

decreasing returns to scale. They conclude from this that in general BC

sawmills have a VRS production function.

Nyrud and Baardsen (2002) examine technical efficiency and productivity

growth in the Norwegian sawmilling industry over the period 1974-1991. The

authors rely on an unbalanced panel data set of 1,320 observations that

includes information on 220 individual sawmills. Of these, 66 sawmills

remained in business throughout the study period and, therefore, these mills

were used to investigate productivity change. The authors divide the 18 years

of data into six 3-year periods (1974-1976. 1977-1979, etc.). Under the

assumption of CRS, they find that average efficiency was lower in the first

three periods than in the last three, and that technical efficiency was

substantially lower in period 3 (1980-1982) than in any other period.

The authors find that the average scale efficiency (SE) ranged from 0.90 in

period 3 to 0.96 in period 6. Based on these results they conclude that the

industry is scale efficient. The authors do not, however, test for scale
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efficiency.53 Because the authors cannot say with statistical confidence that

the mills are scale efficient, it would have been prudent to determine if the

average scale efficiency for each period indicated increasing or decreasing

returns to scale. The authors found that productivity declined on average by

2.0% per year between 1974 and 1985, but grew at a rate of 3.14% per year

between 1985 and 1992. Averaged over the entire period, they estimate

productivity grew by 0.82% per year. Also over the entire period, they find

efficiency change (i.e., the catching-up effect) grew at 0.47% per year and

technical progress (shifting of the efficient frontier) increased by 0.29%.54

Although not related to the sawmill industry, Yin (2000) employs both DEA

and stochastic frontier analysis (SFA) to analyze the technical efficiency of

global producers of bleached softwood kraft pulp (BSKP). The author performs

the analyses on a 1996 cross-section of 102 producers. He then compares

results obtained with DEA and SFA The author finds that the estimated

technical efficiencies based on DEA range from 0.89 to 100 and averaged 0.97.

For SFA, all of the technical efficiencies were above 0.99, indicating

essentially no variation in relative technical efficiency. Yin conjectures that

the lack of variation could be due to the nature of the production process, the

data generating process, and the SFA method. He concludes that DEA “could

be a better approach in the current context” and that “different methods (of

analysis) can cause variations in empirical outcomes.”

MEASURING TECHNICAL EFFICIENCY & PRODUCTIVITY

GROWTH

The methods introduced by Charnes, Coopers, and Rhodes (1978) (hereafter

referred to as “CCR”) are used to estimate the aggregate technical efficiency of

lumber producers in the Pacific Northwest. These estimates of technical

                                                  

53 The non-parametric test of returns to scale described by Simar and Wilson (2002) was

published one year after the Nyrud and Baardsen (2001) article.

54 Technical change and technical progress are used interchangeably in this study.
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efficiency are then used in conjunction with the methods introduced by Färe et

al. (1994) to estimate total factor productivity (TFP), technical and efficiency

change, and scale efficiency of the lumber producing regions. CCR developed a

method to measure the technical efficiency of a decision making unit (DMU)

relative to the technical efficiency of a set of other DMUs.55  The linear

programming model developed by CCR neither requires the common economic

assumptions that the DMUs are either successful profit maximizers, or cost

minimizers, nor does it require the imposition of a specific functional form,

such as the Cobb-Douglas, CES, or translog. The CCR technique, data

envelopment analysis, was inspired by Farrell (1957), which was the first

study to put forth the empirical concept of measuring technical efficiency.

Farrell showed how information on firms’ input and output quantities could

be represented in a piecewise manner in order to estimate the industry’s

production frontier. CCR advanced Farrell’s work in several ways. First, they

showed that an analysis of technical efficiency posed as a nonlinear

programming problem could be converted into a linear programming problem

equivalent to Farrell’s technical efficiency. CCR also showed the duality of

linear programming-derived technical efficiency measures to other, more

common economic functions, such as the cost function and Shephard distance

function.

Technical Efficiency

Technical efficiency is a measure of a DMU’s ability to obtain the maximum

amount of output from a given level of inputs.56 Technical efficiency is

                                                  

55 Note 1: CCR coined the term “decision making unit,“ which includes such otherwise diverse

entities as individual firms, aggregates of firms, government agencies, countries, etc.

Note2: The technical efficiency estimates (or “scores”) are relative, not absolute, measures of

technical efficiency.

56 This type of technical efficiency is referred to as “output-oriented” technical efficiency.

Alternatively, “input-oriented” technical efficiency is a measure of the minimum amount of

inputs required to produce a given level of output. Under conditions of constant returns to scale

and strong disposability of inputs and outputs, output-oriented and input-oriented technical

efficiency are identical.
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measured using DEA methods. The reference frontier from which technical

efficiency of each DMU is measured is constructed from the subset of DMUs

determined to be most technically efficient from the set of all DMUs. As such,

the measures of technical efficiency obtained through DEA are relative, not

absolute, measures of performance. The measurement of technical efficiency

does not require information on prices, costs, or revenue and, therefore, is not

a pure economic measure of efficiency.57

The reference or “best practices” frontier is constructed from the most

technically efficient DMUs in the sample. Figure 9 illustrates a two-dimension

efficient frontier in input space (i.e., an isoquant) in which all three DMUs (A,

B, and C) produce the same amount of output, but with varying amounts of

inputs X1 and X2.

The efficient frontier, L(y), shown in Figure 9: Best Practices Frontier in Input

Space is defined by A and B while DMU C is said to operate interior of the

frontier because C requires more of each input to produce the same amount of

output as either A or B. Because A and B are on the efficient frontier, they are

referred to as technically efficient (i.e., technical efficiency = 1.0) and DMU C

is technically inefficient (i.e., technical efficiency < 1.0). Point D represents the

location on the efficient frontier where a technically efficient hypothetical

DMU utilizing the same input ratio as C would operate.

The measure of technical efficiency of DMU C is defined by the ratio

( )
( )CO

DO
F

C

I
,

,
= . (1)

                                                  

57 Pure measures of economic efficiency would be concerned with minimizing input cost for a

given level of output, or maximizing output revenue for a given input set. Economic efficiency

can be measured using DEA techniques if input cost and/or output prices are known.
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Where FI
C

 is the (“Farrell”) input-oriented measure of technical efficiency for

DMU C.58

The underlying assumption is that C could proportionally reduce its input mix

and still produce the same amount of output. In principle this reduction could

be done by adopting the technology and/or best practices utilized by the

technically efficient DMUs. More formally, the input-oriented measure of

technical efficiency is defined as

( ){ }yLxxyF
i

= :min),( .       (2)

Where Fi refers to the input-oriented measure of technical efficiency, (y, x) are

the vectors of inputs and outputs, respectively, for the i-th DMU, _ is the

minimum amount the input bundle can be scaled in order to operate on the

efficient frontier, and L(y) is the input requirement set, which contains all

combinations of inputs that can be used to produce the output vector y.

The input requirement set used to construct the efficient frontier is

constructed as follows:
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Where C denotes constant returns to scale (CRS),59 S denotes strong

disposability of inputs, x1, x2, …, xn are the input factors, k is the DMU being

                                                  

58 Because of his pioneering work dealing with the empirical measurement of technical

efficiency, this measure of technical efficiency is often referred to as Farrell input-oriented

technical efficiency (as opposed to the Farrell output-oriented technical efficiency measure).
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considered (k = 1,..., K),  M is the number of outputs, N is the number of

inputs, and kZ  are the intensity variables computed by the model.60 Implicit in

the input requirement set shown in equation 3 are the following regularity

conditions (Bates et al. 2004):

1. Feasibility: All observed input-output combinations are feasible,

( ) ( )NjLyx jj ,...2,1;, = .

2. Convexity: ( ) Lyx 00,  and ( ) ( ) ( )( ) LyyxxLyx ++ 10101 1,1,
1

, 10 .

3. Free disposability with respect to inputs: ( ) Lyx 00,  and

( ) Lyxxx 0101 ,

4. Free disposability with respect to outputs: ( ) Lyx 00,  and

( ) Lyxyy 1001 ,

Scale Efficiency

Estimates of technical efficiencies derived under the assumption of a CRS

technology are in fact composed of a measure of scale efficiency and a measure

of true technical efficiency.61 True technical efficiency is simply technical

efficiency estimated under the assumption of VRS. A DMU that is technically

efficient relative to a CRS technology is also technically efficient relative to a

VRS technology, but the reverse is not necessarily the case. If a DMU is

technically efficient relative to a CRS technology it is referred to as scale

efficient. For the DMU that is technically efficient relative to a VRS

                                                                                                                                           

59 In this formulation CRS is satisfied. However, technical efficiency could be estimated relative

to a variable returns to scale or non-increasing returns to scale technology.

60 The intensity variables are computed based on the values of both the inputs and outputs of

each DMU.

61 What we estimate as true technical efficiency could actually be further decomposed into

measures of congestion and residual technical efficiency.
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technology, but is not technically efficient relative to a CRS technology, the

difference is explained by scale inefficiency.

In Figure 10 a VRS production function is represented by the dashed lines

connecting points A, B, and C. All three of these points have a technical

efficiency of 1.0 under the VRS technology assumption, but only point B is

technically efficient under the CRS assumption and is, therefore, also scale

efficient.

Because points A and C are technically efficient under the assumption of VRS,

they are said to have a true technical efficiency of 1.0, but since they are not

technically efficient under the assumption of CRS, they are not scale efficient.

Point A is operating at a point of increasing returns to scale (IRS) and point C

is operating at a point of decreasing returns to scale. The vertical distance

from points A and C to the CRS-based production frontier is the measure of

scale inefficiency, respectively, for the two points.

Point D is neither technically efficient nor scale efficient. The output-oriented

true technical inefficiency for point D is the distance D-DV.62 The distance DV-

DC is the scale inefficiency for point D. The measure of technical inefficiency

under the assumption of CRS is composed of the distance D-DV (true technical

inefficiency) plus the distance DV-DC (scale inefficiency). Scale efficiency can

be determined for a DMU by the ratio of two technical efficiency measures

(Färe, Grosskopf, and Logan, 1983).

( ) ( )SVxyDSCxyDSxyS
OOE

,|,,|,)|,( =   (4)

Where

                                                  

62 We say “output-oriented” because we hold input use constant and project point D (vertically)

onto the VRS frontier. For the “input-oriented” measure of technical inefficiency, we would hold

output constant and project point D horizontally onto the VRS frontier. Output-oriented

technical efficiency measure is the reciprocal of the input-oriented technical efficiency measure.
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)|,( SxyS
E

 is the scale efficiency of the input-output set x, y under the

assumption of strong disposability of outputs.

( )SCxyD
O

,|,  is the output distance function of the input-output set x, y

under the assumptions of constant returns to scale and strong disposability of

outputs.63

( )SVxyD
O

,|,  is the output distance function of the input-output set x, y

under the assumptions of variable returns to scale and strong disposability of

outputs.

If  1=
E

S , then the DMU is said to be scale efficient. If  1<
E

S , then the DMU

is said to be scale inefficient. SE does not provide any information as to

whether scale inefficiency is due to operating at a point of increasing or

decreasing returns to scale. To determine the type of scale efficiency, an

additional technical efficiency measure must be derived relative to a non-

increasing returns to scale (NIRS) production technology and compared to

CRS-based technical efficiency measure.

If ( ) ( )SCxyDSNxyD
OO

,|,,|, =  then the DMU is operating at a point of

increasing returns to scale.64

If ( ) ( )SCxyDSNxyD
OO

,|,,|, >  then the DMU is operating at a point of

decreasing returns to scale.

Decomposing efficiency measures into a scale component and a true efficiency

component is important because it sheds light on the reason(s) for deviation

                                                  

63 The output distance function is equivalent to the input-oriented Farrell technical efficiency

measure.

64 Where ( )SNxyDO ,|,  is the output distance function of the input-output set x, y under the

assumptions of NIRS and strong disposability of outputs.
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from the efficient frontier. Armed with this information, producers can make

adjustments to their production processes to achieve greater levels of

productivity.

Productivity Growth

Productivity growth is a measure of the change over time in a DMU’s ability

to produce output from a fixed level of input.65 In the simplest case (single

input, single output) productivity growth is the change in average product

between two periods. In the case of multiple inputs and/or multiple outputs,

distance functions are used to aggregate inputs and outputs in order to

measure productivity growth. Distance functions allow one to describe a

multi-input and/or multi-output production technology without the need to

specify a behavioral objective (such as cost minimization or profit

maximization) (Coelli, et al., 1998 p222). 66 Distance functions also have

attractive mathematical properties, including linear homogeneity, and input

and output distance functions are reciprocals.67

The measurement of TFP change using DEA methods was introduced by Färe

et al. (1994) and is often referred to as the Malmquist productivity index.68

The Malmquist TFP index measures the change in TFP between two points in

time based on the geometric mean of ratios of distance functions.

                                                  

65 Alternatively, productivity growth is a measure of the change over time in a DMU’s ability to

reduce input use while still producing the same amount of output.

66 For more information on the distance function, quantity indexes, and productivity indexes see

Chambers et al. (1994).

67 These properties follow from a CRS specification of the distance functions.

68 The Malmquist productivity index was introduced by Caves, Christensen, and Diewert

(1982). The basis of the index dates back to Malmquist (1953) introduction of input quantity

index as ratios of distance functions.
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Where: ( )SCyxD
ktktt

O
,|,

++
 is the output-oriented distance function based on a

representation of technology from time period t, input and output quantities

from time period t+k, and assuming constant returns to scale and strong

disposability of inputs. ( )SCyxD
ttt

O
,|,  is the output-oriented distance

function based on technology from time period t, input and output quantities

from time period t, and assuming constant returns to scale and strong

disposability of inputs. The remaining distance function components are

similarly defined and allow for intertemporal comparisons of productivity.

The output distance function, 
O

D , is the reciprocal of the Farrell output-

oriented technical efficiency measure, OF .69 It is a straightforward matter to

use linear programming to estimate the distance function measures necessary

to construct the output-oriented Malmquist productivity index.

Following the method described in Färe et al. (1994), all of the distance

functions are defined relative to CRS technology, which ensures that the

Malmquist index can be interpreted as a measure of TFP.  As pointed out by

Coelli et al. (1998), among others, the Malmquist index will not correctly

measure TFP change (in the sense of changes in ratios of average products as

usually defined) when VRS is assumed for the production process.

More recently, Coelli et al. (2005) discuss criticisms of the Färe et al. (1994)

assumption of CRS for the distance functions used in the Malmquist TFP

index. The main point of criticism deals with the decomposition of the

Malmquist TFP index into components of technical change, efficiency change,

                                                  

69 Under the assumption of CRS the output and input distance functions are reciprocals.

Likewise the output-oriented and input-oriented Farrell technical efficiency measures are

reciprocals. Thus, the distance function measures used in the development of the Malmquist

TFP index could be estimated using either the input-oriented or output-oriented Farrell

efficiency measures.
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and, most importantly, scale efficiency change. The criticism is that if scale

efficiency is found to change between time periods t and t + k, this reflect a

changing VRS technology, not a changing CRS technology. Ray and Desli

(1997) propose an alternative decomposition of TFP change that measures

technical change relative to a VRS technology and an alternative method for

computing scale efficiency change. Coelli et al. (2005) point out that, although

the assumption of CRS may impose an internal inconsistency in the

calculation of the individual distance functions, the difference in the

estimation of TFP between the Färe et al. (1994) approach, which assumes

technical change of a CRS technology, and the Ray and Desli (1997) approach,

which assumes technical change of a  VRS technology, “…will only be

substantive when there are firms within the sample with significantly different

scales, and there are scale economies, and there are non-neutral rates of

technical change across the different sized firms.”70 Grosskopf (2003) points out

that the Ray and Desli (1997) overall measure of productivity reduces to the

ratio of distance functions evaluated relative to CRS technology. Thus, it

remains the case that to ensure TFP is measured correctly (as a ration of

output to input), equation 5 must be evaluated relative to a CRS technology.

For the i-th DMU, a total of four distance functions must be specified and

estimated to compute the Malmquist TFP index between period t and t+k. For

a sample of n DMUs over T-time periods, a total of n*(T-2) distance function

must be computed. Thus, as the number of DMUs and/or time periods gets

large, the number of LPs that must be specified and estimated gets very large.

Efficiency change is a measure of the change in the relative distance of a

DMU from the efficient frontier. For the case where a DMU operated closer to

the efficient in time period t+k than it did in time period t, efficiency change is

positive. Efficiency change is often referred to as the “catching up” effect and

is computed as:

                                                  

70 In addition, Coelli et al. (2005) state that within DEA, the VRS approach can result in

infeasibilities in some inter-period distance function calculations.
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Again, the distance functions are reciprocals of the Farrell output-oriented

technical efficiency measure and are estimated using DEA.

The other component of productivity change, technical change, is a measure of

shifts in the production frontier. As such, it can be thought of as a measure of

how much impact a DMU had in shifting out the efficient frontier of all

DMUs. Technical change is computed as:
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As in the calculation of the Malmquist productivity measure, this component

of productivity is derived through the calculation of the reciprocals of the

distance functions (Farrell technical efficiency) as the solutions to DEA type

linear programming problems. Technical change is the geometric mean of the

technology shift between periods t and t + k, evaluated at ( )tt
yx ,  and ( )ktkt

yx
++

, .

BOOTSTRAPPING IN NON-PARAMETRIC FRONTIER MODELS

Perhaps the most obvious shortcoming of the empirical DEA literature is the

lack of statistical testing and inference. Implicit in virtually all of the

published studies that employ DEA is either the assumption that DEA

methods are non-statistical or the statistical properties are unknown and

cannot be approximated. Regardless of the assumption, the result is that the

empirical literature is comprised of only a few recent studies that attempt to

make confidence statements on the efficiency measures of interest. The vast

majority of the literature provides only point estimates of efficiency measures

and statements by the author(s) regarding the strength of the results are

purely conjecture. Based on recent research by Simar and Wilson (1998, 1999,
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2000, 2002), statistical inference and hypothesis testing are now possible with

DEA.

Simar and Wilson (2000) describe a method for determining the statistical

properties of the DEA technical efficiency estimators. The method the authors

propose allows for the construction of confidence intervals on the true

technical efficiency, as well as a method for estimating potential bias of the

technical efficiency estimates. DEA is a frontier-based estimation method,

thus only the most technically efficient DMUs are used to construct the

efficient frontier. Because the frontier from which the technical efficiency of

each DMU is measured is constructed from a finite sample of DMUs, the

technical efficiency estimates are sensitive to the sampling variations of the

empirical frontier (Simar and Wilson, 1998). Bias in the estimation of

technical efficiency occurs when the empirical frontier is not equivalent to the

actual, but unobserved frontier. The bootstrapping method proposed by Simar

and Wilson (2000) allows one to estimate the extent of this bias.

( )
kkPk,Ñ

Ebias ˆˆ*

ˆˆ
=

Where P̂  represents the estimate of the data generating process (DGP) based

on the known bootstrap distributions, 
k

ˆ  is the measurement of technical

efficiency based on the empirically estimated frontier (and unknown DGP),

and 
*ˆ
k

 is the measurement of technical efficiency for the k-th DMU based on

the known bootstrap distribution. Please refer to Simar and Wilson (1998) for

detailed information on how to estimate the bias of 
k

ˆ .

The bootstrap method is used to approximate the DGP of the underlying

distribution of technical efficiency scores. From the bootstrap distribution,



97

measures of bias can be estimated for technical efficiency.71 The naïve

bootstrap approach of constructing pseudo samples by re-sampling from the

empirical distribution of input-output combinations does not adequately

approximate the DGP (Simar and Wilson, 2002).72 Rather, the smooth

bootstrap approach described by Simar and Wilson (1998, 2000b) must be

used. The problem with the naïve bootstrap is quite simple. The density

function, F, of the process that generates the inefficiency scores, , is by

definition continuous on the interval (0-1]. The empirical density function, F̂ ,

however contains positive mass at 1ˆ = . i.e., the empirical density function

includes at least one (and likely more than one) DMU that is perfectly

technically efficient. Thus, for DMUs at or very near the upper bound (1.0),  ˆ

is a biased estimator of .

The approach outlined by Simar and Wilson (1998, 2000b) improves the

estimation of F by smoothing the empirical density function F̂ and then using

the reflection method described by Silverman (1986) to overcome the

boundary condition that 1< .73 Following this same bootstrapping

methodology, confidence intervals can be derived for Malmquist productivity

indices (Simar and Wilson, 1999) and for tests of returns to scale (Simar and

Wilson, 2002).

                                                  

71 In addition, confidence intervals for measures of technical efficiency and Malmquist

productivity growth indices can be constructed and critical values for testing hypothesis on

returns to scale can be derived.

72 The problem with the naïve bootstrap is that it put equal probability (1/n) on each input-

output combination in the sample.

73 That is, the true (unobserved) technical efficiency scores will be less than unity. The

reflection method transforms (“reflects”) each empirical efficiency score, 1ˆ
i

 by its

symmetric image 1ˆ2
i

 and then estimates the kernel density from the resulting 2n set of

scores (see Simar and Wilson 1998 p55).
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THE DATA

This analysis assumes that the production of lumber is a function of four

inputs: sawlogs, labor, capital, and “other” inputs. These variables are

discussed in greater detail below and descriptive statistics are provided in

Table 16. Mill-level data on lumber production, sawlog consumption, and

milling capacity were obtained for Washington sawmills from The Washington

Department of Natural Resources (WDNR). The WDNR collects these data

through its biennial mill survey. Data for 1968 through 2002 (a total of 18

time points) are used in this analysis. County (or multi-county) level

employment data for SIC 242 were obtained from the Washington

Employment Security Department. Washington was segmented into five

regions: westside (Regions 1 and 2), north central (Region 3), south central

(Region 4), and the Inland Empire (Region 5). The regions are shown in

Figure 11.74

Mill surveys similar to those for Washington State were also conducted for

Oregon sawmills, however, neither mill-level data were available, nor were

mill surveys conducted as often as they were in Washington. Survey data

were obtained for Oregon for 1968, 1972, 1976, 1982, 1985, 1988, 1992, 1994,

and 1998. Data from the surveys were published at the county or multi-county

level by the Pacific Northwest Forest and Range Experimental Station.75

From these data, four regions were configured (see Figure 11). The Oregon

mill surveys provide information on the lumber-producing capacity, the

volume of sawlogs processed, and the amount of lumber produced per

county/county group. Data on SIC 242 employment by county/county group

were obtained from the Oregon Employment Department for all relevant

years.

                                                  

74 See Chapter 3 for more information on the data for Washington and Oregon used in this

analysis.

75 Because the number of sawmills in Oregon decreased substantially between 1970 and 1998,

county groups have become consistently larger and fewer.
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Output and Input Variables

Lumber is the total volume in million board feet (MMBF) lumber tally of

hardwood and softwood lumber produced by the mills of each region.

Capital is a measure of the maximum service flow represented by the total

installed lumber producing capacity in thousand board feet (MBF) per 8-hour

work shift.

Labor is the total man hours worked by each region’s SIC 242 employees

during the year. Labor is calculated as Labor = Total SIC 242 Employment *

Average Operating Days76 * Average Number of Eight-hour Work Shifts77 * 8

Hour shift.

Sawlogs is the total volume in MMBF log scale of hardwood and softwood

sawlogs utilized by the region’s mills.78

Other Inputs is an estimate of the cost of energy and operations and

maintenance supplies used in the manufacture of lumber deflated to 1970

dollars. These costs were not measured in either the Washington or Oregon

mill surveys and could not be directly obtained from other sources. They were

approximated for each region by developing an index of the average quantity

of energy and supplies used in the manufacture of lumber.79 The index was

                                                  

76 Average Operating Days is calculated from mill-level data and was weighted based on each

mill’s lumber production.

77 Average Number of Eight-hour Shifts is also calculated from mill-level data and was

weighted based on each mill’s lumber production.

78 For westside mills, log volumes are measured on a 32-foot Scribner basis, whereas eastside

mills measure logs based on a 16-foot Scribner basis. The reason for the difference is due the

typical log lengths produced from westside and eastside forests. It is assumed in this analysis

that the different scaling bases are incorporated into the production function of each mill and

are a function of estimated lumber recovery.

79 A separate index was developed for Oregon and Washington and for westside and eastside

mills (a total of four indexes), based on historical input price data published by Resource

Information Systems, Inc. (RISI). The indices were created by deflating the current year cost of

energy and supplies required to produce one MBF of lumber. Energy costs were deflated based

on Industrial Sector Energy Prices obtained from the Energy Information Administration.
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multiplied by the lumber output of each DMU in corresponding years,

resulting in a quantity-like measure of energy and operation and maintenance

supplies usage (“other inputs”).

The Full Cumulative (FC) DEA Method

As discussed above, the data set is an unbalanced panel consisting of only

nine DMUs, five of which are observed on a biennial basis (Washington

regions) and four of which are observed periodically over the analysis period

(Oregon regions). For any year within the panel, there are data on as few as

four DMUs (in 1985) and for all other years there are data on either five or

nine DMUs. To estimate productivity growth (as well as technical and

efficiency change) between points in time using DEA methods, one must

construct the empirical production frontier for each point in time. Four or five

data points provide far too few degrees of freedom when the production

process is theorized to consist of four inputs and one output (i.e., five

dimensions). Banker et al. (1989) proposes a rule that the number of

observations used to project the efficient frontier should be equal to or greater

than 3(m + s), where m is the number of inputs and s is the number of

outputs. This rule suggests that for our 5-dimension problem, a minimum of

15 observations are required for each cross-section.

Nghiem and Coelli (2002) faced a similar problem in their analysis of

productivity change in Vietnamese rice production. The authors used

aggregated data for eight agricultural regions and hypothesized a production

process that required five inputs to produce one output (rice). They proposed

two methods to alleviate the degrees of freedom problem. The first was a

moving average approach, which entailed constructing overlapping windows

of data, where the size of each window was equal to size S. For their study the

                                                                                                                                           

Operation and maintenance supply costs were deflated by the Producer Price Index for

Intermediate Materials: Supplies and Components.
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authors arbitrarily chose S to equal three periods. Thus, the first window

included data for periods 1, 2, and 3. The second included periods 2, 3, and 4;

and so on. Each window of data would then be used to construct a production

frontier and from these the distance functions necessary to calculate the

Malmquist indices.

The second method proposed by Nghiem and Coelli, andthe one adopted for

this analysis, is referred to as the Full Cumulative (FC) DEA Method. It also

entails constructing overlapping windows of data, but instead of an arbitrarily

sized window (e.g. three periods) each window retains all of the data from the

previous window plus the current year’s data. Thus, for period 1 the

production frontier would be constructed from the most technically efficient

DMUs observed in period 1, for period 2 the production frontier would be

constructed from the most technically efficient DMUs observed in periods 1

and 2, and so on. For the final period, the production frontier would be

constructed from the most technically efficient DMUs observed at any time

during the analysis period. Each period’s production frontier is, therefore,

constructed from the cumulative experience of the current period and all

previous periods. This formulation implicitly assumes that technical progress

cannot be negative—not an extreme assumption. That is, the production

frontier can either be static between time periods t and t+1 or can shift

outward, but it cannot shift inward. The FC formulation does not affect

efficiency change in the same way. Thus, the position of a DMU relative to the

production frontier can increase, decrease, or remain unchanged. As a result,

productivity can also increase, decrease, or remain unchanged.

EMPIRICAL RESULTS

Figure 12 shows the weighted average and minimum and maximum technical

efficiency scores for each year of the analysis. The weighted average and

range of the data represented in Figure 12 are based only on the actual data
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for each year, but, as discussed above, the FC method was used to create the

efficient frontier for each year.80 It is interesting to note that for a number of

years (1970, 1974, 1978, 1980, 1986, 1990, and 2000) the maximum technical

efficiency score is less than unity. This implies that the most technically

efficient DMU in that year was not as technically efficient as one or more

DMUs from earlier years. Figure 12 also shows that the minimum technical

efficiency score decreases over time. Decreases in the minimum technical

efficiency imply that the least efficient regions are increasingly falling behind

the most efficient regions. The regions that are found to be falling behind are

consistently north central and south central Washington and eastern Oregon

(regions 3, 4, and 9). The weighted average of the technical efficiency

estimates is much nearer the top of the range, indicating that it is one or more

of the smaller regions setting the lower range. This implies that it is the

smaller regions that are falling behind the larger regions in technical

efficiency and, more importantly, productivity.

Appendix Tables A1 – A9 show the technical efficiency and bias-adjusted

technical efficiency estimates for each region for each year of the analysis. The

tables also show the upper and lower bounds of the 95% confidence interval on

the true technical efficiency measure. These results are shown for both the

CRS and VRS models. The bias-adjusted measure of technical efficiency is

derived by subtracting the bias estimate from the technical efficiency

estimate. VRS is a much less restrictive assumption than CRS, therefore, the

estimates of technical efficiencies under VRS are at least as great as those

estimated under CRS. For most regions the difference between the VRS and

CRS technical efficiency estimates is not great, but for north-central and

south-central Washington the difference is substantial.

For the eight years in which data were collected for both Oregon and

Washington, regions 6, 7, and 8 consistently posted the highest technical

                                                  

80 Thus, Figure 12 represents the current-year subset of the FC data set.
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efficiency scores. All of these regions are located in western Oregon, which has

historically had the highest concentration of lumber producers and lumber

production in the Northwest. This preeminence in lumber production has

faded to some extent since the late 1980s, but western Oregon lumber

producers still produce approximately as much lumber as all other regions

combined. Based on the estimates of technical efficiency, it appears that

western Oregon lumber producers remain the industry leaders in terms of

technical efficiency.

Table 17 presents the results of the analysis of scale efficiency. Scale efficiency

was calculated for those years in which data were collected on all nine regions

and for 2002 for the Washington regions. The Frontier Efficiency Analysis

with R (FEAR) software (Wilson, 2005) was used to compute critical values

used to test the hypothesis of CRS.81 For the four Oregon regions, the null

hypothesis of CRS could not be rejected for any year. For the five Washington

regions, returns to scale varied year by year. The two western Washington

regions (regions 1 and 2), generally  operated at a point of CRS, but Region 1

operated at points of IRS in some earlier years and Region 2 operated at a

point of DRS in 1976 and 1998.

In aggregate, Region 3 producers operated at a point of IRS in all periods and

Region 4 producers operated at a point of IRS in 1972, 1992, 1994, 1998, and

2002. Regions 3 and 4 are the two smallest regions in terms of lumber

production and sawlog supply. Regions 5 and 9 are also relatively small, but,

in aggregate, producers were scale efficient over the past two decades. The

difference in scale efficiency between regions 5 and 9 and regions 3 and 4 may

be due to environmental characteristics of the regions, as well as differences

in the willingness and ability of mill owners and managers to make

adjustments toward scale efficiency.

                                                  

81 Following the procedure described in Simar and Wilson (2002), the null hypothesis of CRS is

rejected if EŜ , the estimate of scale efficiency is less than the critical value (alpha = 0.01).
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Productivity growth, technical progress, and efficiency change were estimated

using the Malmquist-type productivity indices. Growth rates were estimated

for the following three periods:

• Period 1: 1968-198282

• Period 2: 1982-199283

• Period 3: 1992-200284

For each period, the starting and ending year corresponds to a year in which

mill surveys were conducted for both Oregon and Washington—with one

exception. As discussed above, 1998 was the last year in which survey data

were obtained for Oregon.85 For Period 3, therefore, the average annual TFP

growth and technical and efficiency change for the Oregon regions is based on

1992 and 1998 data. Table 18, Table 19, and Table 20 show the average

annual percent changes in the respective productivity measure for each region

for each period.86 Following the methods developed in Simar and Wilson

(1999), the FEAR software was used to construct the upper and lower bounds

of the 95% confidence intervals for the true value of each of the productivity

measures.

                                                  

82 During this period, the U.S. experienced strong housing demand. Harvest levels on federal

lands were high and the average diameter of sawlogs was relatively large. Inflation grew

substantially over this period, which ended in a major recession.

83 Housing demand was relatively low during this period. Public cut was high except after 1990

and average log size declined gradually over the period. Inflation also declined throughout the

1980s, but the period ended in a minor recession.

84 During this period the U.S. experienced steady housing growth and low inflation. Log supply

contracted substantially as harvests on federal lands declined precipitously.

85 The mill survey was conducted in Oregon in 2002-2003. I was not able to obtain these data

for the analysis.

86 Average annual (compound) growth rates were computed using the formula ( ) nII nttln ,

where tI  and ntI  are the index values in time t and t + n, respectively, and n is the number of

years.
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For the PNW as a whole, productivity growth increased by approximately

0.5% per year during Period 1 (1968 - 1982), but growth between the nine

regions varied greatly. The regions that experienced the greatest growth were

all in Washington and included both westside regions and the north central

region. On the other extreme, Region 9 (Central and Eastern Oregon) actually

declined in productivity during Period 1. Sawmill productivity grew by almost

1.0% per year in Washington as a whole, but was not statistically different

from zero in Oregon. Productivity growth was decomposed into technical and

efficiency change. Mills in both states experienced technical progress during

Period 1, with technical progress increasing on average by 0.75% per year for

Washington sawmills and the average technical progress of Oregon mills

increasing by 0.52% per year.

The two states differed considerably with respect to efficiency change. While

efficiency change for Washington sawmills was not statistically significantly

different from zero, Oregon mills actually experienced negative efficiency

change (-0.33% per year). Thus, even as Oregon’s sawmilling industry

experienced technical progress between 1968 and 1982, the industry ended

the period further from the technical frontier than it started. Because of this,

there was no discernable growth in productivity for the period.

Oregon’s sawmill industry fared better during Period 2 (1982-1992),

experiencing an average annual rate of productivity growth of 0.47% (see

Table 19). Technical change was positive and very similar to the rate of

technical progress experienced in Period 1. Productivity growth for

Washington’s sawmill industry was a little stronger than Oregon (0.54%), but

only half the rate experienced during Period 1. Like Oregon, Washington

experienced positive technical progress and essentially no efficiency change.

Productivity change varied between the regions, with Washington’s Region 1

experiencing the greatest rate of growth (1.03%) and Washington’s Region 3

and Oregon’s Region 9 experiencing negative growth.
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Productivity growth among the regions showed the greatest variability in

Period 3 (1992-2002), with Oregon’s regions 7 and 9 experiencing the greatest

rate of productivity growth at 2.16% and 1.87%, respectively (see Table 20).87

Conversely, Washington’s Region 4 and Oregon’s Region 6 experienced

negative productivity growth of -0.70% and -0.30%, respectively. For the PNW

as a whole, productivity increased by a little more than 1.0% per year, with

Washington’s mills outpacing Oregon’s mill by a small margin. Technical

change was positive and strong for all regions and efficiency change varied

substantially across region, with some regions experiencing positive efficiency

change and other regions experiencing no efficiency change or negative

change.

Which regions were the leaders in productivity growth and technical change?

None of the nine regions consistently posted the highest rate of productivity

growth or technical change during all three periods. Nevertheless, when

considering average annual growth over the 30 years of data, four regions

stand out. Regions 1 and 2 (western Washington), Region 5 (Inland Empire),

and Region 7 (in northwest Oregon) experienced the highest average annual

rates of productivity growth at 1.1%, 1.0%, 0.9%, and 2.8%, respectively. Most

of the productivity growth experienced by these four regions was attributable

to technical change and, not coincidentally, none of these regions experienced

negative efficiency change.

There are only two comparable analyses that examine productivity growth in

the sawmill industry using DEA. In their analysis of the Norwegian sawmill

industry, Nyrud and Baardsen (2002) estimated that over the period 1974-

1991 productivity growth, technical progress, and efficiency change increased

on an average annual basis by 0.82%, 0.29%, and 0.47%, respectively (See

Table 21). Comparatively, productivity growth in the PNW over the period

                                                  

87 Please note, Oregon data only extends through 1998. Average annual growth rates for

Oregon regions are based on this 6-year period, whereas annual growth rate for Washington

regions are based on entire 10-year period.
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1974-1992 is estimated to have increased by 0.78% per year and the upper

bound on the 95% CI for the true growth rate is 0.92%, thus encompassing the

productivity growth rate for the Norwegian sawmill industry. With respect to

technical and efficiency change, the estimates for Norway are much different

from those derived for the PNW. This difference is not unexpected. Direct

comparison between the Nyrud and Baardsen analysis and this analysis is

complicated by three factors: (1) the substantial environmental differences

between Norway and the U.S. PNW, (2) the fact that Nyrud and Baardsen

analyze mill-level data, whereas aggregated data are analyzed in this study,

and (3) Nyrud and Baardsen model a 6-input, 3-output production process,

whereas a 4-input, 1-output production process is modeled in this analysis.

Using a sub-set of the data employed in this analysis, Helvoigt and Grosskopf

(2005) estimated that productivity in the Washington State sawmill industry

increased by almost 1.0% per year between the early 1970s and late 1990s

(see Table 21). They found that technical change was strongly positive

(1.11%), but efficiency change was small and negative (-0.14%). The authors

did not perform the bootstrap procedure on the Malmquist indices suggested

by Simar and Wilson (1999) so confidence intervals on the true index values

were not estimated. It should also be noted that Helvoigt and Grosskopf

(2005) formulate a 3-input production process consisting of sawlogs, labor, and

capital. This formulation differs from the current study, which in addition to

these three inputs includes the other variable.

COMPARISON TO RESULTS FROM STOCHASTIC FRONTIER

ANALYSIS

Employing the same data relied upon in this analysis, Chapter 3 specifies and

estimates a stochastic frontier production function (SFPF). Of relevance to the

current analysis are the estimates of technical efficiency, productivity growth,

technical and efficiency change, and returns to scale. Like DEA, stochastic
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frontier analysis (SFA)88 allows one to estimate the production frontier for a

group of DMUs, based on the performance of the most technically efficient

members, and to obtain productivity related measurements. However, the two

methods differ in many ways. First, SFA is an econometric-based technique,

providing standard error estimates and allowing for hypothesis testing. SFA

also allows for the direct estimation of panel data models. This is a

substantial advantage over DEA, which requires the construction of a

production frontier for each period of data. Measures such as output

elasticities and elasticities between inputs are also easily estimated through

the regression-based approach.

The econometric-based SFA technique also has disadvantages relative to

DEA. SFA requires the imposition of a (potentially incorrect) functional form,

thus opening the door to possible model misspecification. Relying on a flexible

functional form, such as the translog, can reduce or eliminate this potential

problem, however, this flexibility often comes at the cost of failing one or more

of the regularity conditions. Sauer and Hockman (2005) review eight recently

published empirical studies that estimate a stochastic production function.

They find that whereas many of the analyses meet the regularity condition of

monotonicity for each input, all of the analyses fail the regularity condition of

diminishing marginal productivity for at least one input, and all of the

analyses fail the regularity condition of quasi-concavity.89 Failure to meet the

regularity conditions for a production function may lead to efficiency-related

estimates that are not theoretically consistent. By not requiring a functional

form a priori, DEA avoids the complexity of testing for, and possibly imposing,

regularity conditions required by SFA methods. By comparison, regularity

conditions (as is discussed above) are incorporated directly into DEA model.

And these conditions are incorporated globally. For the SFA model developed

                                                  

88 The stochastic frontier production function (SFPF) is a subset of SFA.

89 See Chapter 3 for more information on the regularity conditions for a production function.
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in Chapter 3, regularity conditions were examined and shown to hold only at

the mean value of the data.

Technical Efficiency Comparison

As Figure 13: Scatter Plot of SFPF and DEA Technical Efficiency Estimates

(each point is a DMU for a Specific Year) shows, there appears to be a weak

relationship between the technical efficiency estimates derived from the DEA

and SFPF approaches. The correlation coefficient between the two sets of

efficiency scores is 0.17, a further indication of their weak linear relationship.

Nevertheless, over the entire study period (1968-2002), the average technical

efficiency estimate for the SFPF and DEA approaches were almost identical at

97.6% and 97.2%, respectively.90 In his analysis of bleached softwood kraft

pulp producers (BSKP), Yin (2000) found that all of the technical efficiency

estimates derived from his SFPF model were greater than 99.0%. Based on

these results, he did not bother with a comparison to his DEA results. He

conjectures that the consistently high scores could have been caused by: “the

production process, the data generating mechanism, and the SFA (SFPF)

procedure.”

A phenomenon similar to that described by Yin (2000) could be observed with

the SFPF estimated in Chapter 3. The estimated technical efficiencies for the

first half of the analysis period (1968 - mid-1980s) were consistently above

98.0% and most were above 99.0%. Over the latter half of the analysis period

the technical efficiency estimates showed much greater variability with scores

ranging from 89.5% - 99.5%.

The differences in the technical efficiency scores obtained through SFPF and

DEA in this analysis and Chapter 3 are likely explained by differences in the

two techniques and by the relatively small sample size used in the two

                                                  

90 Comparatively, the average technical efficiency estimates derived using DEA under the

assumption of CRS was 93.4% and the variance on the estimates was substantially greater

than SFPF or DEA-VRS.
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analyses. Unlike DEA, stochastic frontier analysis does not assume that all

deviation from the efficient frontier is due to technical inefficiency. Rather,

deviations from the frontier are assumed to be composed of a (one-sided)

inefficiency error and a (symmetric) random disturbance. Using maximum

likelihood methods, the SFPF model decomposes the total error into the two

parts. As discussed in Chapter 3, very high estimates of technical efficiency

(greater than 0.98) were derived for all DMUs for the first half of the analysis

period (through 1984). It is likely that, for the SFPF model estimated in

Chapter 3, the vast majority of the error for the first half of the analysis

period was projected to be random disturbance and not inefficiency.

In the DEA analysis the production frontier is re-estimated for each year (or

period) of data. This is not the case with SFPF. Rather, all of the data are

used to estimate the parametric function from which technical efficiency for

each DMU for each year is estimated. DEA is a deterministic procedure and,

by definition at least one—and generally more than one—DMU will form the

efficient frontier and will, therefore, have a technical efficiency of 1.0. This is

not the case with the SFPF. As the name implies, the SFPF estimates a

“stochastic” frontier from which the technical efficiency of each DMU is

measured. Although many DMUs may be found to lie very close to the

efficient frontier, no DMUs lie exactly on the frontier.91 Further, as Figure 13

indicates, for many DMUs, what DEA assumes to be inefficiency, the SFPF

found to be (symmetric) random noise.

Which method produces the most reliable estimates of technical efficiency? It

is difficult to discern. According to the SFPF model, all DMUs were essentially

technically efficient from 1968–1984.92 In other words, according to the SFPF

results, essentially all of the deviation between the DMUs and the efficient

frontier over this period was due to random noise. Comparatively, the DEA

                                                  

91 That is, there is no positive mass at the value 1.0.

92 I.e., the estimated technical efficiencies of all DMUs were greater than 0.98.
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results indicate that technical efficiency ranged from 0.89 to 1.0 during the

period 1968-1984. Does this greater level of variation in the DEA-based

estimates represent actual variation in the technical efficiency of the DMUs or

is DEA confusing technical inefficiency with random noise?

Returns to Scale Comparison

Returns to scale (RTS) is estimated from the SFPF coefficient estimates in the

same manner as a traditional production function.93 Although RTS is

estimated much differently in DEA, the measure can be compared across

estimation methods. In Chapter 3, RTS was estimated for the entire PNW, not

for individual regions. RTS was estimated for three individual periods: the

1970s, 1980s, and 1990s, as well as for the entire study period (the “long

run”). Because the SFPF method requires the estimation of only one

production frontier, which can account for shifts in the frontier over time and

changes in the position of DMUs relative to the frontier, it was not necessary

to estimate RTS for individual years. Thus, though the econometrically-

derived and LP-derived estimates of RTS are theoretically comparable, the

RTS estimates for Chapter 3 and this study are not exactly comparable.

Nevertheless, they were derived using the same set of data and one should

expect a priori that they would not be contradictory.

Table 22 shows the RTS results for the two studies. For Chapter 3, CRS could

not be rejected for any period of the analysis, though the point estimate of

RTS has increased over time indicating that the sawmill industry of the PNW

has moved from a point of slightly decreasing RTS scale to points of slightly

increasing RTS. Nevertheless, the results of Chapter 3 indicate that RTS was

                                                  

93 In Chapter 3, the author estimated the SFPF using a translog functional form, therefore,

returns to scale for a 4-input production function is estimated by 
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not statistically significantly different from CRS over the study period. The

results from this study also indicate that most regions operated at a point of

CRS throughout the study period, though the results suggest that some

regions operated at a point of IRS in certain years and Region 2 operated at a

point of DRS in 1976 and 1998. The DEA results also indicate that the four

Oregon regions were scale efficient throughout the study period.

Productivity Growth and Technical and Efficiency

Change Comparison

Unlike DEA, where productivity growth is measured by the ratio of distance

functions, in SFA productivity growth is measured as the sum of technical

progress, efficiency change, and changes in scale efficiency. In SFA, technical

progress is measured from time variable(s) within the production function,94

efficiency change is measured as the ratio of technical efficiency estimates,95

and changes in scale efficiency are measured from estimates of RTS derived

from the production function coefficients. Although productivity is measured

differently in DEA and SFA, the two methods are intended to measure the

same phenomenon and, therefore, are comparable.

Table 23 provides a comparison of the estimates of productivity growth and

technical and efficiency change estimated in this analysis and in Chapter 3.

For each period of comparison, the SFA-derived estimates of productivity

growth are greater than those derived through DEA. For the 1970s the

average annual estimate of productivity growth from the SFPF is 3-times

                                                  

94 In Chapter 3, time enters the translog production function in linear and quadratic form, as

well as through interaction with the four inputs.

95 The measures of technical efficiency estimated from the stochastic production function are

computed as the ratio of the observed output for the i-th DMU relative to that DMU’s potential

output (defined by the estimated production frontier). These measures of technical efficiency

are output-oriented “Farrell-type” measures of technical efficiency. The computation of

efficiency change from a SFPF is analogous to the computation in DEA.
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greater than the DEA estimate. The SFPF estimate of productivity growth

climbs to 4-times the DEA estimate in the 1980s, and then drops to 2-time the

DEA rate in the 1990s.

The estimates of efficiency change from the two studies match somewhat more

closely. The SFPF estimates for the 1970s and 1990s fall within the DEA-

based confidence intervals and fall only slightly outside of the DEA confidence

interval for the 1980s. The results of the two methods differ greatly, however,

with respect to technical progress. It is the substantial difference in the

estimates of technical progress that is responsible for the sizeable difference

in the estimates of productivity change. For each of the three periods, the

SFPF-based estimates of productivity growth increase on an average annual

basis by 1.6% to 2.1%. The DEA-based estimates of technical progress never

exceed 1.2% average annual growth.

Do the DEA and SFPF results support or contradict each other? The

substantial difference in the estimates of technical progress and productivity

growth between the two methods should certainly be of concern especially for

those instances where the confidence intervals derived from the two methods

do not overlap. Why the sizeable difference in technical and productivity

change when the same data were used to in both analyses? The answer may

be related to the functional form imposed on the SFPF model. The translog,

although a flexible functional form, imposes more structure than do DEA

models. The SFPS model consists of 25 variables in the production function (8

of which are regional dummies) and the simultaneously estimated inefficiency

effects equation has three variables. With 126 observations, degrees of

freedom should not be of too great of concern. However, there are at most only

9 observations in any one cross-section and this may have affected the model’s

ability to construct and evolve the production frontier.

Although the rate of technical progress differs substantially between the two

methods of analysis, it is important to note that the estimates of efficiency
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change are very similar and the direction of change of all the measures is

consistent.

DISCUSSION

In this study, the performance of the NW sawmill industry was examined over

a 3-decade period using DEA techniques. On a period-by-period basis the

relative technical efficiency of each sawmilling region was estimated and it

was found that the range of the technical efficiency scores increased over time.

The increase in the range of scores was due to decreases in the minimum

technical efficiency, as the maximum score (given the nature of DEA) was

consistently at or near 1.0. Over the study period, the (weighted) average

technical efficiency of the NW sawmill industry remained roughly constant or

even increased slightly (even as the minimum scores declined), indicating that

it was the smaller regions that were at or near the minimum of the range of

technical efficiency scores.

Estimates of technical efficiency are based on a point in time and are not

comparable across time. This is because technical efficiency is measured

relative to the efficient frontier and the frontier shifts over time. In order to

compare performance over time, productivity change, technical progress, and

efficiency change were examined using the Malmquist productivity indices.

Average productivity of the Northwest sawmill industry was found to have

grown by approximately 0.65% per year. Productivity growth was decomposed

into technical and efficiency change. Technical progress (i.e., shifting out of

the efficient frontier) increased on an average annual basis by 0.76% and

efficiency change (i.e., movement of the average DMU toward the efficient

frontier) was negative (-0.11% per year on average). While technical progress

pushed out the efficient frontier of the NW sawmilling industry, it did not

affect all regions equally. Because some regions experienced less technical

progress than others, they actually moved further away from the (shifting)

efficient frontier.



115

The bootstrap method developed by Simar and Wilson (1998, 1999, 2000a,

2000b, 2002) is applied in order to construct confidence intervals and perform

hypothesis testing. This study is the first to extend the Simar and Wilson

bootstrap technique to an examination of technical efficiency in the forest

products industry. The lack of hypothesis testing and statistical examination

has long been recognized as the major shortcoming of the DEA method. This

study is a part of the small, but growing body of empirical DEA literature that

includes statistical analysis. It is the author’s opinion that future studies of

the forest products industry that utilize DEA methods should also incorporate

statistical analysis based on or similar to the Simar and Wilson bootstrap

technique. Incorporating the bootstrap techniques into this analysis allowed

for hypothesis testing of estimates of scale efficiency, as well as the

construction of confidence intervals for the technical efficiency and

productivity change estimates, thus providing a means of placing statistical

confidence on these otherwise non-parametric calculations.

The final purpose of this study was to compare the DEA-based results with

those obtained in Chapter 3 using SFPF. While there is a small but growing

literature devoted to comparative analysis of the SFA and DEA techniques,

there are very few studies that compare the two techniques with respect to

productivity growth and its components. Yin (2000) relies on SFA and DEA to

examine data on a cross-section of pulp producers. Murillo-Zamorano and

Vega-Cervera (2000) compare the results from a Cobb-Douglas SFPF and

DEA in their examination of a cross-section of 70 U.S. electric utilities. The

authors of each of these studies discuss the relative merits of the two

approaches and conclude that their results encourage continued collaboration

between DEA and SFA. Based on the results of this analysis, the collaborative

use of DEA and SFA is arguably even more important when working with

panel data as a means to corroborate, contradict, or improve upon the results

derived through either method.

In comparing the results of this study with those from Chapter 3, it was found

that the DEA-based estimates of technical efficiency neither corroborate nor
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contradict the SFPF-based estimate of technical efficiency. Rather, the two

techniques provide alternative estimates of technical efficiency. With respect

to RTS, DEA corroborates the results obtained through SFPF and, perhaps,

improve upon those results by providing region-level estimates. With respect

to efficiency change, DEA clearly corroborates the results obtained through

SFPF. For productivity growth and technical progress, the DEA estimates are

substantially lower than those obtained through SFPF. This is an important

finding and one that should lead to caution when relying on the results

derived from only one of the two methods. It is unclear why productivity

growth and technical progress estimates differed so substantially between the

two methods
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Figure 12: DEA-based Technical Efficiency Estimates Assuming CRS

Production Function

Figure 13: Scatter Plot of SFPF and DEA Technical Efficiency Estimates

Table 16: Descriptive Statistics for Output and Input Variables

(per region)

Variable Mean St. Dev. Median Min Max

Lumber Production (MBF

lumber tally, softwood +

hardwood)

1,020,347 945,315 527,840 136,030 3,706,856

Sawlogs (MBF Log Scale) 694,017 635,217 361,980 89,957 2,683,044

8-Hour Capacity (MBF Lumber

Tally)
3,152 2,876 1,760 365 11,675

Labor (Thousands of Total

Person Hours)
12,966 13,336 7,148 1,148 57,510

Other (Energy & Supply Costs

in Thousands of 1970 Dollars)
7,515 6,829 4,268 893 28,020
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Table 17: Scale Efficiency Estimates and Critical Values for

Testing Null Hypothesis of Constant Returns to Scale

Region
Year

1 2 3 4 5 6 7 8 9

0.931 1.000 0.907 0.936 0.899 1.000 1.000 1.000 1.000

(0.973) (0.960) (0.926) (0.914) (0.925) (0.919) (0.941) (0.896) (0.884)1968

IRS CRS IRS CRS IRS CRS CRS CRS CRS

0.949 1.000 0.912 0.916 0.928 1.000 1.000 1.000 1.000

(0.979) (0.970) (0.971) (0.948) (0.972) (0.961) (0.968) (0.929) (0.929)1972

IRS CRS IRS IRS IRS CRS CRS CRS CRS

0.979 0.953 0.932 1.000 0.925 0.988 1.000 1.000 1.000

(0.953) (0.964) (0.955) (0.924) (0.954) (0.955) (0.956) (0.901) (0.892)1976

CRS DRS IRS CRS IRS CRS CRS CRS CRS

0.968 0.994 0.865 0.968 0.982 1.000 1.000 0.993 0.999

(0.968) (0.966) (0.889) (0.957) (0.967) (0.924) (0.963) (0.934) (0.962)1982

CRS CRS IRS CRS CRS CRS CRS CRS CRS

0.970 0.992 0.847 0.971 0.977 1.000 1.000 0.975 0.995

(0.978) (0.976) (0.927) (0.966) (0.970) (0.965) (0.977) (0.947) (0.980)1988

IRS CRS IRS CRS CRS CRS CRS CRS CRS

0.981 0.961 0.890 0.880 0.968 1.000 1.000 0.952 0.979

(0.971) (0.960) (0.912) (0.969) (0.953) (0.936) (0.868) (0.925) (0.975)1992

CRS CRS IRS IRS CRS CRS CRS CRS CRS

0.981 0.965 0.891 0.884 0.969 1.000 1.000 0.952 0.979

(0.976) (0.963) (0.912) (0.972) (0.955) (0.943) (0.876) (0.921) (0.978)1994

CRS CRS IRS IRS CRS CRS CRS CRS CRS

0.984 0.964 0.899 0.912 0.977 1.000 1.000 0.952 0.982

(0.980) (0.973) (0.921) (0.976) (0.966) (0.955) (0.867) (0.932) (0.977)1998

CRS DRS IRS IRS CRS CRS CRS CRS CRS

1.000 0.965 0.765 0.867 0.979

(0.895) (0.911) (0.850) (0.962) (0.950)2002

CRS CRS IRS IRS CRS

Critical Value (alpha = 0.01) in parentheses

Note: Only years in which survey was conducted for both Oregon and Washington (and 2002) are shown.
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Table 18: Productivity Change, 1968-1982

Productivity Change Technical Progress Efficiency Change

Regio

n

Annual

Chang

e

Lower

95%

Upper

95%

Annua

l

Chang

e

Lower

95%

Upper

95%

Annua

l

Chang

e

Lower

95%

Upper

95%

1 1.19% 1.00% 1.35% 0.82% 0.70% 1.04% 0.36% 0.04% 0.50%

2 1.05% 0.82% 1.14% 0.77% 0.69% 0.99% 0.27% -0.12% 0.35%

3 1.35% 1.23% 1.88% 0.62% 0.27% 0.91% 0.73% 0.50% 1.45%

4 0.03% -0.43% 0.20% 0.65% 0.39% 1.00% -0.62% -1.28% -0.41%

5 0.58% 0.34% 0.85% 0.62% 0.48% 0.98% -0.04% -0.49% 0.17%

6 0.46% 0.07% 0.61% 0.56% 0.42% 0.94% -0.11% -0.77% 0.01%

7 0.59% 0.32% 0.98% 0.59% 0.21% 0.83% 0.00% -0.42% 0.61%

8 0.39% -0.08% 0.49% 0.50% 0.31% 0.89% -0.11% -0.88% 0.02%

9 -0.51% -1.14% -0.43% 0.50% 0.19% 0.90% -1.02% -1.82% -0.84%

PNW 0.50% 0.13% 0.65% 0.61% 0.41% 0.93% -0.12% -0.69% 0.08%

OR 0.19% -0.27% 0.35% 0.52% 0.27% 0.89% -0.33% -1.03% -0.10%

WA 0.97% 0.73% 1.12% 0.75% 0.63% 0.99% 0.22% -0.18% 0.37%

Table 19: Productivity Change, 1982-1992

Productivity Change Technical Progress Efficiency Change

Regio

n

Annual

Chang

e

Lower

95%

Upper

95%

Annua

l

Chang

e

Lower

95%

Upper

95%

Annua

l

Chang

e

Lower

95%

Upper

95%

1 1.03% 0.99% 1.44% 0.69% 0.42% 0.86% 0.34% 0.21% 0.93%

2 0.44% 0.42% 0.71% 0.38% 0.28% 0.58% 0.06% -0.04% 0.31%

3 -0.77% -1.37% -0.64% 0.82% 0.60% 1.36% -1.59% -2.62% -1.39%

4 0.51% 0.46% 0.96% 0.43% 0.22% 0.71% 0.08% -0.15% 0.66%

5 0.82% 0.71% 1.18% 0.59% 0.41% 0.87% 0.23% -0.01% 0.65%

6 0.06% -0.02% 0.32% 0.27% 0.17% 0.51% -0.22% -0.40% 0.02%

7 0.61% 0.26% 1.01% 0.61% 0.40% 1.14% 0.00% -0.74% 0.48%

8 0.87% 0.82% 1.31% 0.72% 0.40% 0.87% 0.15% 0.02% 0.81%

9 -0.36% -0.45% 0.04% 0.30% 0.15% 0.63% -0.66% -0.93% -0.24%

PNW 0.50% 0.40% 0.86% 0.52% 0.33% 0.78% -0.01% -0.26% 0.42%

OR 0.47% 0.33% 0.87% 0.55% 0.32% 0.85% -0.09% -0.41% 0.43%

WA 0.54% 0.48% 0.85% 0.47% 0.33% 0.70% 0.07% -0.09% 0.41%
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Table 20: Productivity Change, 1992-2002

Productivity Change Technical Progress Efficiency Change

Regio

n

Annual

Chang

e

Lower

95%

Upper

95%

Annua

l

Chang

e

Lower

95%

Upper

95%

Annua

l

Chang

e

Lower

95%

Upper

95%

1 1.13% 0.88% 1.62% 1.01% 0.54% 1.28% 0.13% -0.32% 0.99%

2 1.30% 1.21% 1.62% 0.94% 0.66% 1.08% 0.36% 0.21% 0.87%

3 0.64% 0.51% 1.11% 1.40% 0.98% 1.59% -0.76% -0.97% 0.04%

4 -0.70% -1.04% -0.45% 1.25% 1.03% 1.61% -1.96% -2.49% -1.64%

5 1.36% 1.16% 1.76% 0.94% 0.71% 1.30% 0.42% 0.06% 0.87%

6 -0.30% -0.45% 0.48% 0.87% 0.35% 1.33% -1.18% -1.50% -0.01%

7 2.16% 1.52% 2.89% 2.16% 1.31% 2.70% 0.00% -0.91% 1.37%

8 0.15% -0.47% 0.63% 1.23% 0.78% 1.91% -1.08% -2.11% -0.34%

9 1.87% 1.62% 2.48% 1.21% 0.92% 1.78% 0.66% 0.04% 1.32%

PNW 0.99% 0.67% 1.49% 1.20% 0.76% 1.59% -0.21% -0.74% 0.58%

OR 0.83% 0.35% 1.46% 1.39% 0.84% 1.97% -0.57% -1.36% 0.41%

WA 1.17% 1.02% 1.53% 0.98% 0.67% 1.18% 0.19% -0.05% 0.77%

Table 21: Comparison of Productivity Growth Estimates to Two

Other DEA-based Sawmill Studies

U.S. Pacific Northwest (1974-1992)*
Norway

 (1974-1991)

Washington

State

 (1970-1998)**
Index

Point

Estimate

Lower

Bound

of 95% CI

Upper

Bound

of 95% CI

Nyrud &

Baardsen

(2002)

Helvoigt &

Grosskopf

(2005)

Productivity 0.78% 0.64% 0.92% 0.82% 0.98%

Technical

Progress
0.75% 0.62% 0.90% 0.29% 1.11%

Efficiency

Change
0.03% -0.19% 0.19% 0.47% -0.14%

*Based on average of the nine regions weighted by 1992 lumber output.

** Because of the small number of data in each cross section, the “1970” period consisted of data for 1968,

1970, and 1972 and the “1998” period consisted of data for 1996, 1998, and 2000.
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Table 22: Comparison of RTS Estimates Based on Stochastic

Frontier Analysis and Data Envelopment Analysis

SFA (Chapter 3) Data Envelopment Analysis

Period RTS
St.

Err.*
Decision Year CRS Regions

IRS

Regions

DRS

Regions

1968 2, 4, 6, 7, 8, 9 1, 3, 5

1972 2, 6, 7, 8, 9 1, 3, 4, 5
1970s

(1968-1978)
0.981 0.041 CRS

1976 1, 4, 6, 7, 8, 9 3, 5 2

1982 1, 2, 4, 5, 6, 7, 8, 9 31980s

(1980-1988)
1.029 0.040 CRS

1988 2,4,5,6,7,8,9 1, 3

1992 1,2,5,6,7,8,9 3,4

1994 1,2,5,6,7,8,9 3,4

1998 1,5,6,7,8,9 3,4 2

1990s

(1990-2002)**
1.071 0.037 CRS

2002** 1,2,5 3,4

* Asymptotic standard error. The null hypothesis is RTS = 1.0, vs. the alternative hypothesis RTS  1.0 (2-

sided test). The critical value from the t-distribution with infinite dof and alpha = 0.5 is 1.96. Thus, one

cannot reject the null hypothesis of CRS.

** Data for Oregon run through 1998 only
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Table 23: Comparison of Average Annual Productivity Growth,

Efficiency Change, and Technical Progress in the Pacific

Northwest Sawmill Industry

SFPF (Chapter 3) DEA

Time

Period

Economic

Measure Point

Estimate

Lower

Bound

(95%

CI)

Upper

Bound

(95%

CI)

Point

Estimate

Lower

Bound

(95%

CI)

Upper

Bound

(95%

CI)

Prod.

Growth*
1.60% 1.01% 2.19% 0.50% 0.13% 0.65%

Eff.

Change
-0.02%

St. error not

computed
-0.12% -0.69% 0.08%

1970s

(Period

1)

Tech. Prog. 1.60% 1.01% 2.19% 0.61% 0.41% 0.93%

Prod.

Growth*
1.90% 1.31% 2.49% 0.50% 0.40% 0.86%

Eff.

Change
-0.28%

St. error not

computed
-0.01% -0.26% 0.42%

1980s

(Period

2)

Tech. Prog. 2.10% 1.51% 2.69% 0.52% 0.33% 0.78%

Prod.

Growth*
2.10% 1.12% 3.08% 0.99% 0.67% 1.49%

Eff.

Change
-0.33%

St. error not

computed
-0.21% -0.74% 0.58%

1990s

(Period

3)

Tech. Prog. 2.20% 1.42% 2.98% 1.20% 0.76% 1.59%

* Note 1: The SFPF estimates of productivity growth explicitly incorporate changes in scale efficiency, with

DEA it is assumed that the DMUs operate at a point of CRS, thus changes in scale efficiency are not

considered.

  Note 2: The SFPF-based estimates of productivity growth incorporate technical progress, efficiency

change, and changes in scale efficiency. The standard errors used to compute the confidence intervals for

the true rate of (SFPF-based) productivity are based on estimates of productivity growth exclusive of

efficiency change.
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Table A1: Region 1 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 0.98 0.973 0.96 0.98 0.91 0.89 0.87 0.91

1970 0.97 0.963 0.95 0.97 0.92 0.91 0.89 0.92

1972 0.96 0.943 0.93 0.96 0.92 0.90 0.87 0.92

1974 0.99 0.979 0.97 0.99 0.96 0.95 0.93 0.96

1976 0.95 0.927 0.91 0.94 0.93 0.91 0.88 0.92

1978 0.94 0.919 0.90 0.93 0.92 0.90 0.88 0.91

1980 0.97 0.955 0.94 0.97 0.94 0.92 0.90 0.94

1982 0.98 0.966 0.96 0.98 0.95 0.94 0.93 0.95

1984 1.00 0.938 0.87 1.00 1.00 0.93 0.88 0.99

1986 1.00 0.980 0.97 1.00 0.99 0.97 0.96 0.98

1988 0.94 0.926 0.91 0.94 0.92 0.90 0.89 0.92

1990 0.93 0.912 0.90 0.92 0.90 0.88 0.87 0.89

1992 1.00 0.958 0.94 1.00 0.99 0.95 0.93 0.98

1994 1.00 0.957 0.92 1.00 1.00 0.96 0.93 0.99

1996 1.00 0.970 0.94 1.00 1.00 0.97 0.94 0.99

1998 0.91 0.882 0.84 0.91 0.89 0.85 0.81 0.88

2000 0.96 0.938 0.91 0.95 0.94 0.91 0.89 0.93

2002 1.00 0.935 0.90 1.00 1.00 0.93 0.91 0.99
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Table A2: Region 2 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 0.92 0.91 0.90 0.92 0.92 0.90 0.87 0.91

1970 0.92 0.92 0.91 0.92 0.92 0.91 0.89 0.92

1972 1.00 0.99 0.98 1.00 0.95 0.93 0.91 0.95

1974 0.96 0.95 0.93 0.96 0.96 0.95 0.94 0.96

1976 0.97 0.94 0.91 0.96 0.93 0.91 0.89 0.92

1978 1.00 0.98 0.97 1.00 0.93 0.92 0.90 0.93

1980 0.92 0.90 0.88 0.91 0.92 0.91 0.89 0.91

1982 0.95 0.94 0.93 0.95 0.95 0.95 0.94 0.95

1984 0.97 0.95 0.94 0.96 0.90 0.88 0.87 0.89

1986 1.00 0.98 0.97 1.00 0.94 0.92 0.91 0.93

1988 1.00 0.97 0.94 1.00 0.95 0.94 0.93 0.95

1990 0.95 0.93 0.91 0.95 0.92 0.90 0.88 0.92

1992 0.99 0.97 0.96 0.98 0.96 0.94 0.93 0.96

1994 1.00 0.98 0.96 1.00 0.96 0.95 0.93 0.96

1996 1.00 0.94 0.90 1.00 1.00 0.97 0.95 0.99

1998 1.00 0.95 0.90 1.00 0.94 0.91 0.89 0.94

2000 1.00 0.96 0.92 1.00 0.92 0.90 0.88 0.92

2002 1.00 0.93 0.89 1.00 0.99 0.96 0.94 0.99

Table A3: Region 3 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 1.00 0.98 0.93 1.00 0.90 0.88 0.86 0.90

1970 1.00 0.97 0.93 1.00 0.87 0.86 0.84 0.87

1972 1.00 0.97 0.92 1.00 0.90 0.88 0.85 0.90

1974 1.00 0.97 0.94 1.00 0.93 0.93 0.91 0.93

1976 1.00 0.94 0.87 1.00 0.99 0.96 0.94 0.98

1978 0.96 0.93 0.88 0.95 0.89 0.87 0.85 0.88

1980 1.00 0.94 0.87 1.00 0.90 0.88 0.86 0.90

1982 1.00 0.94 0.87 1.00 1.00 0.95 0.91 1.00

1984 1.00 0.94 0.87 1.00 0.97 0.95 0.93 0.97

1986 1.00 0.93 0.85 1.00 0.95 0.92 0.91 0.94

1988 0.95 0.93 0.90 0.95 0.87 0.86 0.85 0.87

1990 1.00 0.95 0.90 1.00 0.91 0.88 0.86 0.90

1992 1.00 0.93 0.86 1.00 0.85 0.84 0.82 0.85

1994 1.00 0.93 0.86 1.00 0.86 0.84 0.83 0.85

1996 1.00 0.93 0.86 1.00 0.83 0.81 0.78 0.83

1998 1.00 0.93 0.85 1.00 0.77 0.73 0.70 0.76

2000 1.00 0.93 0.87 1.00 0.90 0.86 0.84 0.89
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Table A4: Region 4 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 1.00 0.98 0.93 1.00 0.92 0.89 0.84 0.92

1970 1.00 0.98 0.93 1.00 0.97 0.96 0.93 0.97

1972 1.00 0.97 0.92 1.00 1.00 0.93 0.88 1.00

1974 1.00 0.96 0.91 1.00 0.99 0.98 0.96 0.99

1976 1.00 0.95 0.90 1.00 1.00 0.94 0.91 0.99

1978 0.93 0.91 0.89 0.93 0.92 0.91 0.89 0.92

1980 0.94 0.92 0.90 0.94 0.92 0.90 0.89 0.91

1982 0.90 0.88 0.86 0.89 0.84 0.83 0.81 0.84

1984 0.98 0.96 0.94 0.97 0.94 0.93 0.91 0.94

1986 0.96 0.95 0.94 0.96 0.91 0.90 0.89 0.91

1988 0.92 0.90 0.89 0.92 0.85 0.83 0.82 0.84

1990 0.95 0.93 0.91 0.95 0.83 0.81 0.79 0.82

1992 1.00 0.93 0.89 1.00 0.85 0.82 0.80 0.85

1994 1.00 0.97 0.94 1.00 0.86 0.85 0.83 0.86

1996 1.00 0.94 0.89 1.00 0.88 0.85 0.84 0.87

1998 1.00 0.93 0.84 1.00 0.88 0.85 0.83 0.88

2000 0.87 0.84 0.82 0.87 0.68 0.66 0.63 0.68

2002 0.80 0.78 0.76 0.80 0.70 0.68 0.67 0.70
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Table A5: Region 5 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 1.00 0.98 0.93 1.00 0.89 0.87 0.84 0.89

1970 0.94 0.93 0.92 0.94 0.87 0.86 0.85 0.87

1972 0.92 0.90 0.89 0.92 0.87 0.85 0.84 0.86

1974 0.97 0.96 0.95 0.97 0.93 0.92 0.91 0.93

1976 0.98 0.95 0.92 0.97 0.95 0.93 0.91 0.95

1978 0.91 0.89 0.87 0.91 0.90 0.89 0.88 0.90

1980 0.93 0.91 0.89 0.93 0.92 0.91 0.90 0.92

1982 0.98 0.95 0.91 0.98 0.89 0.88 0.86 0.89

1984 0.99 0.97 0.95 0.98 0.98 0.96 0.95 0.98

1986 0.98 0.96 0.95 0.98 0.97 0.96 0.95 0.97

1988 0.98 0.96 0.94 0.98 0.98 0.96 0.94 0.98

1990 1.00 0.97 0.95 1.00 0.97 0.93 0.91 0.96

1992 0.92 0.90 0.88 0.92 0.91 0.89 0.87 0.91

1994 0.98 0.96 0.95 0.98 0.95 0.93 0.92 0.95

1996 0.89 0.87 0.86 0.89 0.85 0.83 0.82 0.85

1998 0.97 0.95 0.92 0.97 0.94 0.91 0.89 0.94

2000 1.00 0.97 0.94 1.00 0.99 0.97 0.95 0.99

2002 0.97 0.95 0.92 0.96 0.95 0.93 0.90 0.95

Table A6: Region 6 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-

Adj

Low

95%
Up 95%

1968 1.00 0.98 0.94 1.00 1.00 0.96 0.92 1.00

1972 0.98 0.97 0.95 0.98 0.98 0.96 0.93 0.98

1976 1.00 0.94 0.90 1.00 1.00 0.94 0.91 0.99

1982 1.00 0.98 0.97 1.00 0.99 0.97 0.96 0.98

1985 1.00 0.97 0.94 1.00 1.00 0.96 0.94 0.99

1988 1.00 0.96 0.93 1.00 1.00 0.95 0.93 0.99

1992 0.98 0.97 0.96 0.98 0.96 0.95 0.94 0.96

1994 0.99 0.97 0.96 0.99 0.98 0.96 0.95 0.97

1998 0.98 0.95 0.93 0.98 0.97 0.94 0.92 0.97
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Table A7: Region 7 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 1.00 0.98 0.96 1.00 1.00 0.97 0.93 1.00

1972 1.00 0.97 0.92 1.00 1.00 0.94 0.90 1.00

1976 1.00 0.96 0.92 1.00 1.00 0.95 0.92 0.99

1982 1.00 0.96 0.93 1.00 1.00 0.95 0.92 0.99

1985 1.00 0.95 0.92 1.00 1.00 0.94 0.92 0.99

1988 1.00 0.93 0.87 1.00 1.00 0.92 0.87 0.99

1992 1.00 0.96 0.94 1.00 1.00 0.96 0.94 0.99

1994 1.00 0.96 0.93 1.00 1.00 0.95 0.92 0.99

1998 1.00 0.93 0.86 1.00 1.00 0.91 0.86 0.99

Table A8: Region 8 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 1.00 0.98 0.93 1.00 1.00 0.95 0.91 1.00

1972 1.00 0.97 0.93 1.00 0.98 0.96 0.94 0.98

1976 1.00 0.94 0.88 1.00 1.00 0.97 0.93 1.00

1982 0.99 0.97 0.95 0.98 0.99 0.97 0.96 0.98

1985 1.00 0.94 0.90 1.00 1.00 0.98 0.95 1.00

1988 1.00 0.94 0.90 0.99 0.97 0.94 0.92 0.96

1992 1.00 0.95 0.93 1.00 1.00 0.95 0.94 0.99

1994 1.00 0.96 0.93 1.00 1.00 0.96 0.94 0.99

1998 1.00 0.95 0.92 1.00 0.98 0.94 0.91 0.98
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Table A9: Region 9 Technical Efficiency, Bias, 95% Confidence

Interval

Variable Returns to Scale (VRS) Constant Returns to Scale (CRS)

Year
TE

Bias-Adj Low

95%

Up 95%
TE

Bias-Adj Low

95%
Up 95%

1968 1.00 0.98 0.93 1.00 1.00 0.94 0.90 1.00

1972 0.90 0.89 0.88 0.90 0.89 0.87 0.84 0.89

1976 1.00 0.96 0.93 1.00 1.00 0.97 0.95 0.99

1982 0.87 0.85 0.84 0.87 0.87 0.85 0.84 0.87

1985 0.88 0.85 0.84 0.87 0.88 0.86 0.84 0.87

1988 0.89 0.87 0.86 0.88 0.87 0.86 0.84 0.87

1992 0.83 0.81 0.79 0.82 0.81 0.79 0.78 0.81

1994 0.85 0.84 0.83 0.85 0.85 0.84 0.83 0.85

1998 0.91 0.89 0.87 0.90 0.90 0.88 0.86 0.90

Figure 9: Best Practices Frontier in Input Space
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Figure 10: Production Functions Showing CRS and VRS
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Figure 11: Pacific Northwest Sawmill Regions
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Figure 12: DEA-based Technical Efficiency Estimates Assuming

CRS Production Function: Lumber Volume-Weighted Mean and

Min-Max Range
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Figure 13: Scatter Plot of SFPF and DEA Technical Efficiency

Estimates (each point is a DMU for a Specific Year)
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RELATIONSHIP TO HISTORICAL LITERATURE

The econometric studies of the Pacific Northwest and Canadian sawmilling

industry discussed in chapters 2, 3, and 4 were based on data that, at most,

overlap only the first half of the study period examined in these chapters.

Therefore, comparisons of results are limited to only these earlier years.

Constantino and Haley (1988) found that over the period 1957-1981, technical

change averaged 0.6% per year for the British Columbia coast and the U.S.

Pacific Northwest. Unfortunately, the authors did not provide technical

change estimates for just the last decade of their analysis, so truly meaningful

comparison is not possible. Abt (1987) did not provide estimates of

productivity or technical change, but found that the industry operated under

CRS between 1963 and 1978.

 Merrifield and Haynes (1985) concluded that over the period 1950-1979,

technical change was “slight.” Based on data for 1955-1979, Merrifield and

Singleton (1986) found technical change in the U.S. PNW sawmilling industry

to have a capital-using and labor-saving bias. These results are consistent

with the results of the stochastic frontier production function analysis of

Chapter 3. Meil and Nautiyal (1988) found no significant increases in

productivity between 1968 and 1984 for the British Columbia coast or interior.

Stevens (1995) reported “neutral” technical change occurred in western

Washington between 1980 and 1988, but the author did not report the rate of

technical change.

According to Stevens (1991), the sawmilling industry in western Washington

made little investment in machinery and equipment between 1980 and 1988,

and little technical change occurred over the period. He found that technical

change was capital saving and skilled labor-using. Stevens’ findings appear to

be contrary to the general results of chapters 2 and 4 (i.e., of positive technical

change), and specifically contradictory to Chapter 3, in which technical change

for the Northwest sawmilling industry was found to be capital-using and

labor-saving. In all three studies technical change and productivity growth
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was statistically significant and positive during the 1980s. The discrepancy in

findings may be due to the slight difference in time periods considered and/or

to the larger geography considered in these analyses. It is also important to

point out that Stevens (1991) finding of labor-using technical change was

specific to skilled labor.

Finally, it is important to place the three analyses presented in this thesis

into an historical context. Over the past four decades, forest economists have

employed increasingly sophisticated econometric and mathematical

programming techniques in their analysis of the forest products industry.

Application of such techniques by forest economists often occurs subsequent to

widespread acceptance by general economists. This is certainly the case with

DEA and SFA. Though the foundations of each of these techniques were well

established by 1990, there have been relatively few analyses in the forest

economics literature in which these methods have been employed. To the best

of our knowledge, Carter and Cubbage (1995) were the first to apply SFA in a

forestry context and Nyrud and Baardsen (2003) were the first to apply DEA.

Although there are still only a handful of frontier-based economic analyses

that examine the production structure and technical and productivity growth

in the forest products industry, the number will certainly grow. In Stier and

Bengston’s (1992) review of econometric analyses of the forest products

industry, the authors classify studies as first-, second-, or third-generation

approaches. Each study’s designation is based on its degree of sophistication

in representing the production and/or profit and cost structure of the

respective forest products sector. Following the Stier and Bengston’s

classification system, production-oriented, frontier-based techniques can be

thought of as a fourth-generation approach. DEA and SFA bring the reality to

empirical economic analysis that producers, despite their best efforts, often do

not successfully operate on their respective production frontier. As this

“fourth-generation” of analyses becomes increasingly established in the

literature, forest economist will likely move on to frontier-based cost and

profit function analyses—i.e., “fifth-generation” studies.
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CONCLUSIONS

There have been few analyses over the past decade that have examined the

structure of production in the U.S. Pacific Northwest sawmilling industry and

no analysis that has employed frontier-based estimation methods. A

consequence of this gap in the empirical literature is that statements made by

policy makers, the public, and industry representatives regarding changes in

productivity or advances in technology in the sawmilling industry may be

based on the observation of individual producers, anecdotal information, or

merely speculation. The three analyses comprising this project bridge this

information gap by providing a thorough examination of changes in the

production structure of the Northwest sawmilling industry. In doing so, these

studies provide answers to the five questions posed in the introduction.96

1. How has the average rate of technical efficiency in the

Northwest sawmilling industry changed during the 1968 to

2002 time period?

Technical efficiency is measured relative to the efficient frontier at a certain

point in time. Therefore, assuming the production frontier is shifting over

time, estimates of technical efficiency are not directly comparable across time.

Nevertheless, comparing the technical efficiency of a particular region

provides insight into how that region performed, relative to the most efficient

regions. Likewise, comparing the (weighted) average technical efficiency of all

regions over time provides insight into how the “average” region performed,

relative to the most efficient regions.

On a period-by-period basis the relative technical efficiency of each sawmilling

region was estimated in the DEA and SFA studies. The range of these

efficiency scores increased over time. DEA and SFA differed in the size of this

                                                  

96 The answers to these questions are “generally” based on all three analyses, but specific

estimates are based on chapters 3 and 4.
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range, with maximum DEA range extending from 0.7 to 1.0 and the maximum

SFA range extending from 0.88 to 0.99. The increase in the range of scores

was due to decreases in the minimum technical efficiency, as the maximum

score (given the nature of DEA and SFA) was consistently at or near 1.0.

Based on the DEA results, the (weighted) average technical efficiency of the

Northwest sawmill industry remained roughly constant or even increased

slightly over the study period. Conversely, based on the SFA results, the

geometric mean technical efficiency declined slightly over the period, but

remained above 0.95 in all years.97

2. Has the sawmilling industry operated at a scale efficient level

during this period?

The results of the SFA-based study indicate the null hypothesis of constant

returns to scale (CRS) (i.e., scale efficiency) could not be rejected for

Northwest sawmilling industry. This is despite the fact that the point

estimates of returns to scale increases from 0.98 in the 1970s to 1.03 in the

1980s and 1.07 in the 1990s. In the DEA-based study, returns to scale were

examined for each of the nine regions. The results indicated that the four

Oregon regions operated at a point of CRS in all years examined and the two

western Washington regions operated a point of CRS for most years. North

central Washington, the smallest of the nine sawmill regions, was found to

operate at a point of increasing returns to scale (IRS) in all years examined.

South central Washington and the Inland Empire were found to operate at

points of either CRS or IRS.

3. What has been the rate of productivity growth during the 1968

to 2002 time period?

The methods used to estimate growth in total factor productivity differ

between DEA and SFA, but the resulting estimates are comparable. In DEA,

                                                  

97 Note, the weighted average technical efficiencies computed from the SFA results were not

effectively different from the geometric mean technical efficiencies.
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the Malmquist productivity index was computed based on estimates of

distance functions. In SFA, time-based technology parameters were estimated

and calculus was used to estimate productivity change. The results from both

the DEA and SFA analyses indicated that productivity growth was positive

throughout the study period, ranging from approximately 0.65% per year in

the DEA study to approximately 1.8% per year in the SFA study. The

difference in the magnitude of productivity growth estimated from the two

methods is somewhat disconcerting. Confidence intervals were constructed for

each of the estimates of productivity growth, but the two intervals do not

overlap. The conclusion to draw from this is that the two studies represent

independent estimates of productivity growth and their respective magnitudes

represent upper and lower bounds on the productivity growth rate.

4. How have the three components of productivity change (i.e.,

technical change, efficiency change, and scale efficiency

change) impacted productivity growth over this period?

Productivity growth can occur due to three separate phenomena: 1. Technical

change (i.e., expansion of the production frontier), 2.  Efficiency change (i.e.,

DMUs adopting the existing “best practices” technology), and 3. Scale

efficiency change (i.e., DMUs moving from a point of increasing or decreasing

returns to scale to a point of constant returns to scale). The results of both the

DEA and SFA studies indicate that the vast majority of productivity growth in

the Northwest sawmilling industry between 1968 and 2002 was due to

technical change. Improvements in scale efficiency played a very small role in

productivity growth, and efficiency change was zero or even negative.

Negative efficiency change indicates that, even as the industry’s production

frontier expanded over the past 30 years, the distance of the average DMU to

the industry’s production frontier actually increased. The results of the SFA

study indicate that technical change was labor-saving and capital-using, and

was neutral with respect to sawlog usage.
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5. Has the substitutability relationship between inputs changed

over the period and if so, how?

From the SFA study, Morishima elasticities of substitution were computed for

each pair of inputs based on the mean value of the data for the 1970s, 1980s,

1990s, and over the entire study period. Consistent across each of the time

periods, labor was not substitutable for the other inputs. Thus, an increase in

the relative price of sawlogs, capital, or other inputs would not result in

substituting more labor for any of these other inputs. The converse was not

true. Capital was found to be consistently substitutable for labor. Sawlogs

were found to be a complement to labor in the 1970s, but substitutable for

labor in the subsequent decades. This is likely due to decreasing sawlog size.

Smaller sawlogs are more amenable to mechanization, which is labor saving.

6. Do the DEA and SFA analyses provide corroborating or

contradicting findings?

The final purpose of this study was to compare the DEA-based results with

those obtained using SFA methods. While there is a small but growing

literature devoted to comparative analysis of the SFA and DEA techniques, I

know of no studies that compare the two techniques with respect to

productivity growth and its components. In comparing the results of the DEA

and SFA studies, I found that the DEA-based estimates of technical efficiency

neither corroborate, nor contradict the SFPF-based estimate of technical

efficiency, but rather improved upon the SFPF estimates. With respect to

returns to scale, DEA corroborates the results obtained through SFPF and,

perhaps, improved upon those results by providing region-level estimates.

With respect to efficiency change, DEA clearly corroborates the results

obtained through SFPF. For productivity growth and technical progress, the

DEA estimates were substantially lower than those obtained through SFPF.

This is an important finding and one that should lead to caution when relying

on the results derived from only one of the two methods. It is unclear why
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productivity growth and technical progress estimates differed so substantially

between the two methods.

This project is the first to employ DEA and SFA to examine technical

efficiency, scale efficiency, and productivity growth and its decomposition in

the Northwest sawmilling industry. These two methods allowed for the

relaxation of the typical economic assumptions that lumber producers were

successful cost minimizers and/or profit maximizers. Thus, instead of

estimating the average production function, DEA and SFA allowed us to

estimate the production frontier and provide estimates of each DMU’s

inefficiency, relative to that frontier. This project is also among the first

empirical studies to employ the bootstrap methods developed by Simar and

Wilson (1998, 1999, 2000a, 2000b, 2002) in order to construct confidence

intervals and perform hypothesis testing on DEA estimates. Simar and

Wilson’s bootstrapping technique eliminates the primary criticism of all DEA-

based analyses—the ability to draw statistical inference.
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APPENDIX: STUDY DATA

Appendix Table 1: Oregon & Washington Sawmill Production

Data

Year Region Capacity Sawlogs

SIC 242

Employment Other Lumber

Operating

Days Shifts

1968 1 1,509 400,024 1,981 3,459,388 450,514 234 1.53

1970 1 1,585 319,348 1,749 3,233,221 397,706 224 1.60

1972 1 1,769 371,976 1,971 4,088,077 500,083 238 1.72

1974 1 1,894 341,287 2,255 3,236,289 444,643 225 1.76

1976 1 1,935 386,465 2,487 3,434,627 526,659 236 1.80

1978 1 1,868 421,433 2,836 4,288,657 598,128 236 1.78

1980 1 1,751 315,553 2,427 3,081,701 466,326 229 1.78

1982 1 1,582 305,913 1,992 2,776,837 437,686 216 1.81

1984 1 1,616 212,031 1,894 2,703,043 380,307 219 1.64

1986 1 1,572 325,794 1,948 3,633,047 522,622 242 1.92

1988 1 1,682 341,341 2,189 3,647,607 523,698 240 2.07

1990 1 1,614 335,536 1,895 3,670,222 506,684 242 1.91

1992 1 1,772 329,277 1,639 3,784,452 580,168 255 1.84

1994 1 2,615 350,137 1,540 4,682,238 640,135 249 1.82

1996 1 2,791 357,895 1,607 6,054,067 662,842 259 1.79

1998 1 2,153 361,725 1,577 6,016,744 680,419 255 1.86

2000 1 2,370 408,058 1,678 6,762,268 810,524 251 1.98

2002 1 2,126 453,138 1,609 6,997,056 937,475 248 1.98

1968 2 6,151 1,725,419 12,243 15,617,034 2,033,797 243 1.75

1970 2 6,436 1,558,192 11,625 15,774,855 1,940,404 246 1.79

1972 2 6,516 1,703,585 12,810 18,735,243 2,291,830 248 1.84

1974 2 6,875 1,700,523 13,905 14,377,605 1,975,380 235 1.79

1976 2 7,610 1,867,580 14,600 15,235,906 2,336,244 241 1.83

1978 2 7,570 1,950,758 14,775 19,083,916 2,661,585 242 2.01

1980 2 7,686 1,486,516 12,514 13,121,565 1,985,568 222 1.87

1982 2 7,056 1,332,365 11,162 11,275,740 1,777,286 213 1.85

1984 2 7,951 1,643,419 11,459 16,495,023 2,320,782 220 1.89

1986 2 6,672 1,663,622 9,973 16,709,402 2,403,685 234 1.92

1988 2 7,608 1,930,866 11,574 19,762,933 2,837,424 244 1.94

1990 2 8,091 1,665,918 10,854 18,964,005 2,618,032 239 1.95

1992 2 7,524 1,565,604 9,526 16,408,343 2,515,449 241 1.95

1994 2 8,098 1,679,836 10,061 20,561,690 2,811,104 240 2.10

1996 2 7,124 1,607,769 10,334 26,025,312 2,849,435 242 2.06

1998 2 7,502 1,602,952 9,730 26,630,955 3,011,630 234 2.08

2000 2 8,460 1,584,031 8,873 24,872,828 2,981,252 235 2.11

2002 2 7,015 1,472,581 7,913 22,470,553 3,010,635 250 2.16

1968 3 1,033 333,614 1,373 2,742,441 349,702 240 1.63
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Year Region Capacity Sawlogs

SIC 242

Employment Other Lumber

Operating

Days Shifts

1970 3 776 169,561 680 1,574,182 196,319 225 1.79

1972 3 857 256,285 790 2,473,454 286,158 241 1.82

1974 3 894 215,947 946 1,925,773 257,972 243 1.81

1976 3 679 183,442 977 1,616,308 251,192 238 1.91

1978 3 878 202,076 1,142 1,896,888 269,014 235 1.90

1980 3 750 134,232 807 1,271,101 188,339 219 1.67

1982 3 842 136,045 489 1,208,333 168,332 167 1.76

1984 3 692 153,367 461 1,456,271 203,726 240 1.78

1986 3 365 106,688 697 893,383 136,030 249 2.58

1988 3 646 154,987 752 1,473,160 208,168 234 2.35

1990 3 407 121,788 1,005 1,347,970 165,955 247 2.14

1992 3 463 106,096 889 1,415,351 151,017 252 1.91

1994 3 483 103,709 909 1,681,061 153,244 250 1.79

1996 3 503 104,495 349 1,516,594 151,173 246 1.76

1998 3 623 89,957 364 1,458,778 141,759 227 1.92

2000 3 588 109,548 364 2,166,681 180,387 231 1.86

2002 3 407 90,290 342 1,581,184 142,834 234 2.00

1968 4 823 302,602 1,650 2,644,657 337,233 244 2.30

1970 4 850 253,935 1,543 2,568,081 320,270 248 2.24

1972 4 643 275,023 1,793 3,361,453 388,892 245 2.23

1974 4 710 212,939 1,570 2,097,446 280,969 229 2.04

1976 4 772 294,458 1,621 2,255,722 350,564 252 1.88

1978 4 940 276,817 1,849 2,437,346 345,661 241 2.05

1980 4 862 225,756 1,446 1,903,686 282,069 220 2.17

1982 4 947 194,540 1,178 1,795,545 250,136 202 1.85

1984 4 870 225,404 1,254 2,235,230 312,699 240 1.76

1986 4 1,540 270,103 1,140 2,443,474 372,053 245 1.65

1988 4 775 170,625 1,127 1,598,773 225,918 214 1.77

1990 4 835 182,661 921 2,062,198 253,887 226 1.85

1992 4 573 159,519 827 1,961,511 209,292 245 1.67

1994 4 608 137,051 897 2,193,055 199,917 234 1.74

1996 4 447 109,910 747 1,633,368 162,813 234 1.84

1998 4 386 112,642 677 1,658,105 161,129 226 1.91

2000 4 720 123,811 744 2,270,146 189,001 237 1.72

2002 4 963 149,281 893 2,461,156 222,325 220 1.62

1968 5 1,365 386,802 1,307 3,332,059 424,887 236 1.71

1970 5 1,119 292,152 1,217 2,539,912 316,757 234 1.77

1972 5 1,093 275,997 1,415 2,892,110 334,593 242 1.86

1974 5 1,199 292,161 1,459 2,680,198 359,033 230 1.84

1976 5 1,071 274,430 1,506 2,289,446 355,805 243 1.87

1978 5 1,096 282,859 1,836 2,564,557 363,702 242 2.21
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Year Region Capacity Sawlogs

SIC 242

Employment Other Lumber

Operating

Days Shifts

1980 5 1,019 247,193 1,562 2,235,163 331,184 225 2.40

1982 5 854 159,375 1,327 1,602,478 223,240 212 2.06

1984 5 1,196 331,308 1,760 3,405,251 476,380 238 2.21

1986 5 1,421 367,167 1,463 3,503,640 533,478 240 2.40

1988 5 1,444 417,016 1,756 4,246,694 600,088 259 2.13

1990 5 1,278 362,234 1,468 4,297,007 529,025 236 2.11

1992 5 1,396 351,136 1,835 4,852,044 517,710 241 2.02

1994 5 1,263 308,013 1,618 5,280,229 481,341 220 2.05

1996 5 1,071 253,635 1,239 3,653,366 364,165 239 2.08

1998 5 857 250,610 1,302 3,897,390 378,735 241 2.03

2000 5 926 277,952 1,231 5,070,086 422,110 245 2.07

2002 5 979 314,617 1,109 5,035,071 454,836 248 2.53

1968 6 3703 884178 3754 8,354,934 1199683 223 1.44

1972 6 4331 968613 3801 10,195,106 1348744 234 1.55

1976 6 3979 815092 4001 7,779,113 1283602 227 1.53

1982 6 2964 324108 2595 2,967,758 482897 181 1.60

1985 6 3214 695732 3159 6,713,214 1122249 233 1.66

1988 6 3633 829455 3281 9,419,464 1382723 233 1.66

1992 6 2125 396371 2448 3,926,457 627925 225 1.60

1994 6 1747 373372 2497 4,424,407 625159 225 1.73

1998 6 2836 691633 2431 9,175,667 1084209 229 1.79

1968 7 4539 905921 3626 8,339,550 1197474 229 1.42

1972 7 4641 877629 3262 9,940,089 1315007 232 1.53

1976 7 4558 778664 3551 6,962,950 1148930 226 1.50

1982 7 3765 599284 2657 5,181,078 843036 188 1.56

1985 7 4411 918908 3592 8,847,925 1479109 233 1.68

1988 7 5513 1139756 3793 13,419,220 1969864 237 1.60

1992 7 3805 693989 2794 7,464,548 1193742 231 1.61

1994 7 3738 653445 2855 8,485,086 1198924 236 1.62

1998 7 3244 565250 3063 10,987,665 1298317 233 1.67

1968 8 10538 2595497 10289 24,290,318 3487842 235 1.39

1972 8 11675 2683044 11157 28,019,981 3706856 237 1.51

1976 8 11605 2256582 11380 19,856,397 3276429 229 1.46

1982 8 9192 1400906 8012 12,161,543 1978858 188 1.48

1985 8 10170 1982916 8906 19,149,638 3201248 234 1.64

1988 8 9898 2154885 9345 23,761,036 3487983 242 1.61

1992 8 5479 994962 6561 11,187,642 1789145 241 1.64

1994 8 5652 1030619 6598 13,369,826 1889127 250 1.46

1998 8 5537 1117241 5626 17,873,598 2111968 231 1.44

1968 9 4164 1477728 6751 13,418,449 1859064 237 1.47

1972 9 4885 1611343 7701 14,859,287 1841115 234 1.60
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Year Region Capacity Sawlogs

SIC 242

Employment Other Lumber

Operating

Days Shifts

1976 9 5199 1554018 8009 10,259,863 1705760 239 1.56

1982 9 4833 1086557 5850 9,144,749 1311021 194 1.61

1985 9 6029 1389785 5695 11,371,963 1663706 227 1.55

1988 9 5703 1323401 6127 11,693,571 1697720 234 1.66

1992 9 2328 628547 4528 7,207,393 803804 256 1.85

1994 9 2632 574156 3563 8,918,298 835609 235 1.59

1998 9 1895 500194 2721 7,404,691 753476 239 1.68
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