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When the nonconformities are independent, a multivariate control chart for

nonconformities called a demerit control chart using a distribution approximation

technique called an Edgeworth Expansion, is proposed. For a demerit control chart,

an exact control limit can be obtained in special cases, but not in general. A proposed

demerit control chart uses an Edgeworth Expansion to approximate the distribution of

the demerit statistic and to compute the demerit control limits. A simulation study

shows that the proposed method yields reasonably accurate results in determining the

distribution of the demerit statistic and hence the control limits, even for small sample

sizes. The simulation also shows that the performances of the demerit control chart

constructed using the proposed method is very close to the advertised for all sample
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Since the demerit control chart statistic is a weighted sum of the

nonconformities, naturally the performance of the demerit control chart will depend on

the weights assigned to the nonconformities. The method of how to select weights

that give the best performance for the demerit control chart has not yet been addressed

in the literature. A methodology is proposed to select the weights for a one-sided

demerit control chart with and upper control limit using an asymptotic technique. The

asymptotic technique does not restrict the nature of the types and classification scheme

for the nonconfonmties and provides an optimal and explicit solution for the weights.

In the case presented so far, we assumed that the nonconfonnities are

independent. When the nonconformities are correlated, a multivariate Poisson

lognormal probability distribution is used to model the nonconformities. This

distribution is able to model both positive and negative correlations among the

nonconformities. A different type of multivariate control chart for correlated

nonconformities is proposed. The proposed control chart can be applied to

nonconformities that have any multivariate distributions whether they be discrete or

continuous or something that has characteristics of both, e.g., non-Poisson correlated

random variables. The proposed method evaluates the deviation of the observed

sample means from pre-defined targets in terms of the density function value of the

sample means. The distribution of the control chart test statistic is derived using an

approximation technique called a multivariate Edgeworth expansion. For small

sample sizes, results show that the proposed control chart is robust to inaccuracies in

assumptions about the distribution of the correlated nonconformities.
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MULTIVARIATE CONTROL CHARTS FOR
NONCONFORMITIES

GENERAL INTRODUCTION

Consider a batch process where the quality of the finished product is

determined by the number and types of nonconformities on the product. For example,

a weaving process for wire mesh from which rolls of finished wire are produced.

Quality of the finished product is accessed by complete inspection of the finished

product. The quantity, type, and severity of the nonconformities determine the overall

quality of the product. The finished product is considered acceptable as long as the

number of nonconformities of each type remains within preset limits.

We consider a multivariate control chart to monitor several types of

nonconformities. When the nonconfonnity types are independent the demerit control

chart can be used. The demerit control chart combines the nonconformities of

different types into a single control chart statistic and hence a single control chart.

The demerit control chart is more advantageous than separate control charts for each

type of nonconformity because the number of control charts could grow quickly and

may be difficult or impossible for an operator to manage. In addition, and possibly

more importantly, the overall probability of obtaining a false alarm from one or more

of the control charts is a direct and very undesirable result of adding more control

charts.

The first contribution of this work is that we propose a control chart to

simultaneously monitor several types of independent nonconfonnities as a generalized
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demerit control chart that allows any arbitrary classification and weighting scheme to

be used. A distribution approximation technique other than a traditional normal

approximation is used to approximate the control chart statistic and produces a much

more accurate control limit and hence better control chart properties than the

conventional method.

The second contribution we propose is a methodology called an asymptotic

technique to design the weights for a generalized demerit control chart. The technique

provides an optimal and explicit solution for the weights that merely depends on the

relative seventies of the nonconformity types. The proposed technique assigns more

relative weight to the more severe types of nonconformities.

The last contribution presented is an approach to statistically model correlated

nonconformities and we propose two forms of a multivariate control chart that are in

turn more robust and less dependent on the distribution for the nonconformities that is

chosen. The proposed multivariate control chart statistically monitors changes in the

mean of one or more of the nonconformities by judging the deviation of the observed

sample means from known targets in terms of the density function of the sample

means. The proposed method uses a distribution approximation technique to

approximate the density function of the sample means and to empirically calculate a

single sided control chart with an upper control limit.

In general, the exact control limit for the demerit control chart can be obtained

for special cases only. The demerit control chart statistic is a weighted sum of the

nonconformities and the performance of the demerit control chart depends on the
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weights given to the nonconformities. Dodge and Torrey (1977) developed and

presented a classification scheme of nonconformity types into four types, i.e., very

serious, serious, moderately serious, and minor and the weighting scheme is fixed

values for weights for the four nonconformity types. This method of classifying and

weighting has since been adopted as standard practice. They defined the number of

demerits as the weighted sum of the nonconformities of different types and based the

control chart on the assumption that the number of demerits is approximately normally

distributed and suggested 3-sigma control limits. Jones et al. (1999) observed that if

the normality assumption is violated, the performance of the demerit control chart is

severely compromised and, in response, developed an exact distribution for the

demerit statistic using a numerical method to determine the distribution of the statistic

and then compute the control limits. In particular, if the weights in the demerit

function are not chosen as the ratio proposed by Jones et al. (1999), then the exact

distribution for the demerit statistic cannot be obtained. Moreover the method of how

to select weights that gives the best performance for the demerit control chart

proposed by Dodge and Torrey (1977) or any other arbitrary weighting scheme has not

yet been addressed in the literature.

In the first contribution, we present an integrated approach for dealing with the

demerit control chart. First we propose a method of constructing the control limits of

the demerit control chart with any weighting scheme. The proposed method uses a

distribution approximating technique called an Edgeworth Expansion to approximate

the distribution of the number of demerits and to compute the demerit control limits.
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The proposed method removes the restriction on the weights and provides, in

general, a more accurate estimation than the normal distribution. A simulation study

shows that the proposed method yields reasonably accurate results in determining the

distribution of the demerit statistic, the control limits and, estimating the properties of

the control chart even for small sample sizes.

For the second contribution we propose a methodology to select the weights

for the number of demerits. An asymptotic technique is used to find the weights and a

one-sided demerit control chart is developed. The asymptotic technique does not

restrict the nature of the types of nonconformities and can be applied to the weighting

scheme suggested by Dodge and Torrey (1977) but also to any general weighting

scheme. The asymptotic technique chooses weights for the demerit control chart that

maximizes the probability of detecting an out-of-control condition and has several

useful and advantageous properties. For example, the asymptotic technique provides

an optimal and explicit solution for the weights and the solution does not depend on

the magnitude of a shift or shifts in one or more of the nonconformity types but rather

depends on the directions and the relative seventies of the nonconformity types. The

asymptotic technique assigns more weight to the more severe type of nonconformities.

The last contribution is a multivariate control chart for nonconformities, i.e.,

for nonconformities that are correlated. We present two forms of a multivariate

control chart: the adjusted chi-square control chart if parameter values are known and

the adjusted T2 control chart if parameter values are unknown. Both control charts

statistically monitor changes in the mean of one or more of the nonconformities. The



work on multivariate control charts for nonconformities has seldom been addressed

in the literature. Pate! (1973) proposed a statistical quality control method for a

multivariate Poisson and multivariate binomial random variable. Patel (1973) assumes

that the sample size is sufficiently large so that the Chi-square distribution is very

nearly normally distributed and therefore the T2 statistic can be applied to test for

changes in the means of binomial or Poisson random variables; see Montgomery

(2001) for the T2 control chart. If the sample size is "small" or the test statistic is not

distributed as multivariate normal, the performance of the control charts by Pate!

(1973) could be problematic; see Ajmani (1997). The performance of a multivariate

control chart for nonconformities can be improved if the distribution of the test

statistic were known or if a close approximation it could be found. We propose two

forms of a multivariate control chart for correlated nonconformities that are more

robust to the changes in the distribution of the nonconformities and to changes in the

parameters of those distributions.

To develop the proposed multivariate control charts, a multivariate Poisson

Lognormal distribution is used as a general model for the numbers of nonconformities.

This distribution assumes the nonconformities are Poisson and also that the means of

the Poisson random variables are also random variables and distributed as lognormal.

The form of the test statistic was developed and a technique called a Multivariate

Edgeworth Expansion was used to approximate the joint distribution of the sample

means of the control chart statistic. A single sided control chart is presented, i.e., a

single upper control limit is proposed for the multivariate control chart and the control



limit was obtained empirically. An advantage of the empirically obtained control

limit is that it does not rely on large sample properties, that is, it is also accurate for

small sample sizes especially if the sample size is one. Results show that for a single

sample size the proposedcontrol chart is very robust to changes in the distributional

assumption of the correlated nonconformities.
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A DEMERIT CONTROL CHART USING AN EDGE WORTH
EXPANSION

ABSTRACT

In general, the exact distribution cannot be obtained for the statistic of a

demerit control chart. A methodology is proposed that uses a technique called an

Edgeworth Expansion to approximate the distribution of a demerit control chart

statistic and hence to compute the control limits. A simulation study is performed to

test the accuracy of the proposed technique. The results show that the proposed

methodology yields more accurate results than the customary normal distribution

approximation for small to large samples. For very large samples, the proposed

technique performs equivalently with the normal distribution approximation. The

propose methodology is more precise in estimating properties of the control chart.

The results also show that the demerit control limits constructed using the proposed

methodology have a probability of a false alarm very close to the desired for all

sample sizes and an actual performance of the control chart is very closed to the

advertised.



INTRODUCTION

Consider a process where the quality of the finished product is determined by

both the number and type of nonconformities (NCs) that occur on the product. For

example in a wire mesh weaving process there are different types of NCs, e.g., large

gaps between adjacent wires or a broken wire in the mesh. The quality of a roll of

finished wire mesh is determined by counting the number of NCs found for each type.

The product is considered defective if the number ofNCs in a sample exceeds the

desired maximums set for each NC type. Suppose several product varieties of wire

mesh need to be monitored using control charts. One alternative is to use a separate

control chart for each NC type and for each product type. In this alternative, the

number of control charts needed is potentially very large. For example, for fiveNC

types and four product types, this scenario would need 20 separate control charts. A

more reasonable alternative might be to use a demerit control chart that can

simultaneously monitor multiple NCs. The number of control charts would be reduced

to one chart per product variety. In the previous example, this would be four demerit

control charts.

The demerit control chart was developed by Dodge and Torrey (1977). They

defined the number of demerits as a weighted sum of the number ofNCs of different

types. The NCs were weighted by their importance or severity. They based the control

chart on the assumption that the number of demerits is approximately normally

distributed and suggested 3-sigma control limits. Jones et al. (1999) observed that if

the normality assumption is violated, the performance of the demerit control chart is



severely compromised, i.e., the probability of a false alarm is considerably larger. In

response, Jones et al. (1999) developed a methodology to find the exact distribution of

the number of demerits using a numerical method. A requirement of the methodology

is that the weights in the weighted sum are restricted to a specific ratio. It follows that

if the weights in the demerit function cannot be chosen in the specified ratio then the

exact distribution for the demerit statistic cannot be obtained.

An alternative methodology is proposed to approximate the distribution of the

number of demerits that removes the restriction on the weights and that provides, in

general, a more accurate estimation than the normal distribution. The proposed

methodology uses a distribution approximating technique called an Edgeworth

Expansion (EL) to approximate the distribution of the number of demerits. AnEE

uses relatively few computations in contrast to the iterative numerical method

developed by Jones et al. (1999). Simulation studies are performed and the results

show that an EE yields a very accurate approximation of the distribution of the

demerit statistic and conespondingly accurate control limits. As a result of a more

accurate distribution for the demerit statistic, the simulation study shows that the

demerit control chart is able to perform considerably better than the demerit control

chart developed by Dodge and Toney (1977). Moreover, an EE works well, in our

case, even for very small sample sizes whereas, as we would expect, the 3-sigma

control limits by Dodge and Torrey (1977) results seriously in-accurate results. Better

performance is measured by a lower rate of false alarms. Finally, if it is undesirable to
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choose weights for the demerit function that conform to the ratio specified by Jones

et al. (1999), then an EE seems the only clear alternative.

The rest of the paper is organized as follows. The next section defines the

notation and assumptions for the demerit control chart and explains how to determine

control limits for the demerit control chart using an EE. A numerical example is

presented using data from a wire mesh weaving process. The following section

explains the details and results of a simulation study used to compare the control limits

obtained from the EE approximation and the normal approximation with the control

limits obtained from the simulation for various sample sizes. The next section gives

the results of how the simulation study was used to assess the performance of the

proposed EE demerit control chart. The performance of the EE demerit control chart

and the demerit control chart based on the normal approximation was compared to the

performance of a control chart obtained from simulation. The last section provides the

conclusions.

COMPUTING CONTROL LIMITS USING THE EDGEWORTH
EXPANSION TECHMQUE

Let the random variable (rv) X,3 represent the count of NCs for the thNC type

in the7 inspection unit in a random sample. Montgomery (1996) explains a sample

in this context as an "area of opportunity" for the occurrence of NCs and it is typically

a unit of length, area, or volume of product from the process. A sample consists of

one or more inspection units, where an inspection unit is chosen for its "operational or

data-collection simplicity" while the sample size is "chosen according to statistical
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considerations" such as insuring that a sufficient number of NCs are observed per

sample; see Montgomery (1996). Assume that the types of NCs and inspection units

are independent and that X are distributed Poisson with parameter 2, V j.

Let U4 be the weight assigned to the jth NC type and then, for each inspection

unit, define the number of demerits as D = where I is the total number

of NC types. The mean and variance of are E [D 1= aA1 and

v[D] = w22 , respectively. Compute the average number of demerits per

inspection unit as U D, /N where N is the number of inspection units per

sample. We can write U in terms of X as U = I1N1w,X/N and compute the

mean and standard deviation of U as

and

(1)

=(v[u]) [w2A/NJ

If the distribution of U is known, the control limits for the demerit U are

computed as follows: The centerline (CL) is determined by letting CL = p. The

lower and upper control limits (LCL, UCL) are determined from the probability

distribution of U , i.e., P[u u. Select the probability of a false alarm, a, and find

values for LCL and UCL so that sum of the area under the distribution of U to the left
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of LCL and to the right of UCL equals a, i.e.,

a = P [U LCL] + (1 P [U UCL]). Let the areas under the distribution of U that

are below and above the control limits be a and a2, respectively, such that

a1 + a2 = a, in this way a need not equal a2. Choose LCL and UCL such that

P[U LCL] = cc and (i P[U <UCL]) = a2. For the case where a is divided

equally, i.e., cc = a2 = at 2 , the control limits are computed as

LCL=max{u1:P[Uu1]a/2} and
(2)

UCL=min{u2 :P[U <u211a12}.

If there is no LCL that satisfies eqn. (2), then set LCL=O and in order to preserve the

same probability of a false alarm compute the UCL as

UCL=min{u:P[U<u]1a}.

Jones et al. (1999) proposed a method to obtain the exact cumulative

distribution function (CDF) of U. If the weights are chosen such that every possible

pair of weights conforms to the rule that, for all pairs of weights, the larger weight say

U4 is an integer multiple of the smaller weight w1, i.e.,

(a/w1)E {1,2,...} V{i,j :i jand w, w1} ,then the exact CDFcan be found.

However, for a general weighting scheme the exact CDF cannot be obtained and

therefore an approximation must be used. For "large" samples, the CDF is

approximated well by a normal distribution but for "small" samples, the normal

distribution approximation is inaccurate.



A more accurate approximation for the CDF of U can be obtained using an

Edgeworth Expansion and the approximate CDF can be defined explicitly. An EE

involves computations of third and fourth order standardized cumulant functions.

Details about the EE approximation are provided in Appendix. The approximate

CDF found by applying an EE is

where

and

[p3h2(z) p4h3(z)
(3)u)=P[Uu]=(z)Ø(z)[

6Ji 24N 72N j

-u-puz , (4)
o.0

1 /7 / 3/2

p3=w3A/iw2A
1=1 / '\i1 )

p4=U) /ii=1 i=1 )

(5)
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and where k(z) = (z2 1), h3(z) = (z3 3z), h5(z) = (z5 10z3 +15z). The functions

c1(z) and 0(z) are the CDF and the probability density function (PDF) of a standard

normal rv, respectively.

If A are unknown, estimates can be obtained from data. Say we have K

samples each containing Nk inspection units from an in-control process. An estimate

of can be computed as the grand average number of NCs of type i per inspection

unit, i.e., as
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A = xJk/ Nk. (6)
1=1 k=I k=1

Notice that for the purposes of estimating A1 the number of inspection units per

sample Nk need not be equal. To estimate p and o,, substitute A, from eqn. (6)

into eqn. (1). Likewise, to estimate p3 and p4. substitute A, from eqn. (6) into eqn.

(5). Finally, using the estimates and ó,, values for F (u) can be computed from

eqn. (3).

Example - Computing control limits for the EE demerit control chart

Consider a wire weaving process at the Siam Wire Netting (SWN) factory in

Thailand. The wire mesh product TMA-725 is to be monitored for multipleNCs. The

mesh is produced in rolls where the width and length of each roll varies according to

customer requirements, e.g., 1.5mx3Om, 1.25mx30m or, 1.25mx40m. An

inspection unit is chosen as one roll but since there are several roll dimensions, the

most frequently produced roll size, i.e., 1.25mx40m = 50m2 is chosen as the

inspection unit. The sample size to be statistically monitored is chosen to be N = 25

inspection units, which was chosen for the statistical property of having a sufficient

number ofNCs per sample. Five NC types are of interest. The names of the NCs have

been coded as 1, 2, 3, 4 and 5 at the request of SWN.

Over a two-month period, data on the number of NCs for 36 samples of

presumably acceptable quality TMA-725 were collected. Estimates for
A1 were



15

computed using eqn. (6). The estimates are A3 = 0.126, A2 = 0.042, A3= 0.094,

24=0.025 and 25 = 0.051. In the selection of weights, the relative importance of the

NC types was not the overriding consideration. Since the relative importance of each

NC type is considered fairly equal, it seems reasonable to choose weights as the

reciprocal of the standard deviation, i.e., = iiJ. Choosing weights in this

manner has a standardizing effect on the different types of NCs. The weights are

computed as = 2.817, 2 = 4.879, (03 = 3.262, (04 = 6.326 and w =4.428. It is

apparent that these weights do not have a structure such that, for all pair of weights,

the larger weight is an integer multiple of the smaller. Therefore, an EE is used to

approximate the CDF of U. From eqns. (1) and (5) we get jI,, = 1.25, d =0.44,

p3 = 1.94 and p4 = 4.07. SWN is interested in monitoring the average daily

production of TMA-725, which is, approximately 25 inspection units. Therefore, a

sample consists of approximately N= 25 inspection units. From eqn. (3), the CDF of

Uis

F(u) = c1(z) _z)[13 4.07*h3(z) 3.77*1)1
600 1800 j (7)

withz
(u-1.25)= . The centerline of the demerit U chart is CL = 1.25. If we choose

0.44

a= 0.0027 and divide a into two equal parts, i.e., cc = a2 = 0.00135, then from eqn.

(2), LCL = max{u : F(u)0.00135} = 0.18 and UCL =min{u : F(u)1-0.00135}

= 2.81.
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A SIMULATION STUDY TO COMPARE THE EE AND NORMAL
APPROXIMATIONS

Comparison of Tail Probabilities

A simulation was conducted to assess the accuracy of the EE approximation

for various sample sizes N =5, 10, 15, 20 and 25. For the simulation, an inspection

unit of 50m2 was used. For instance with N=25, five values of Poisson random

variates representing NCs of each type were generated for each inspection unit using

the five estimates A computed in the example. A total of (5)(25)= 125 values ofNCs

were generated for a single sample. For each sample, the average number of demerits

per inspection unit (USim) was computed using the weights from the example. A total

of 250,000 samples were generated and a total of 250,000 computed values of U51m

were used to form the empirical distribution of U represented as FJIm (u). Since

FJIm (u) is based on a very large number of samples, it's very close to an exact

distribution of U and hereby assumed.

The EE approximation is much more accurate in approximating the CDF of U

than the normal distribution not only for the specific control limit values but also in

the tails of the distribution in general. Simulation results show that the EE demerit

control chart consistently outperforms the demerit control chart with 3-sigma control

limits in estimating the tails probabilities even when N is small. For moderate sample

size of N equal 25 and 20, Figures 1 and 2 show that the plot of CDF of U calculated

using an EE from eqn. (5) represented as F(u) falls very close to the (u). The
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CDF using the normal distribution approximation, computed as b((u-1.25)/0A4)

and denoted by F(7°"' (u) , consistently over-estimates the values of FJIm (u) in both

tails. These approximate CDFs of U were plotted against the standardized values of

U, i.e., (u -Ji, )/o , for values ranging from (-3.00, -1.00), (1.00, 3.00) in Figure 1

and 2 respectively. The F (u) is more accurate in both extreme tails than the

Fj'0! (u). For typical values of a, e.g., a=O.0027, the control limits will lie in

both extreme tails, therefore the accuracy in approximating the CDF of U in the

extreme tails is very important in determining the control limits.
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Figure 1: Plot of FJim (u), F,fE (u), and F7° (u) vs. Standardized Values of U
for N=25.
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Figure 2: Plot ofFJIm (u), F(u), and Fr70(u) vs. Standardized Values of U
for N=20.

For moderate to small N, the FIJEE (u) is more accurate in approximating the

tails probabilities, especially in the upper tail, than (u) even for small sample

size such as N=5. The normal distribution approximation consistently over-estimates

the upper tail probabilities. When N get smaller, the distribution of U is highly right

skew. The minimum standardized value of U varies according to the sample sizes of

15, 10 and 5 are -2.16, -1.76, and -1.25 respectively. So, the approximate CDFs of U

were plotted against the standardized values of U ranging from the minimum values to



zero instead and (1.00, 3.00) in figure 3 to 5. If a one-sided demerit control chart

with only UCL is adopted, it's apparent that an EE will yield very precise UCL than

the normal distribution approximation even for small sample size. These results

indicate that the EE demerit control chart works well for both small and moderate

sample size.
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Figure 3: Plot OfFJIm (u), F(u), and vs Standardized Values of U for
N=15.
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Figure 4: Plot ofF7 (u), F(u), and F7°'(u) vs Standardized Values of U for
N=1O.
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Figure 5: Plot of FJ1m (u), FJIE (u), and F17° (u) vs Standardized Values of U for
N=5.

Comparing control limits of the EE and the normal Approximations

The EE approximation is much more accurate in calculating the control limits

than the normal distribution approximation. For comparison, Table 1 shows values for

control limits obtained using FJ'' (u), FJE (u), and Fu0P7 (u) for N equal 5, 10, 15,

20 and 25. The empirical lower and upper control limits, denoted by LCLSIm and

UCLSim were found by selecting the lower and upper percentiles from FJIm (u) that
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correspond to the chosen probability of false alarm a. In the example, a was

divided evenly between the lower and upper limits therefore the LCLim is chosen as

the largest number satisfying FJIm (u) = P[U,m u] a/2 and the UCLim is chosen

as the smallest number satisfying FJ1m (u) = p [Ujp, <u] 1 a/2. In other words,

find the largest value U so that at most (a/2)xl00% of the USim values are

below LCLSIm Likewise, find the smallest value of USim such that at

least (1 a/2) xl 00% of the USim values are below UCLSim If there is no LCL that

satisfies the condition FJIm (u) = P[Uim u] a/2, then set LCL5im =0 and find UCL

using a instead of a /2. For the normal distribution 3-sigma limits were assumed,

i.e., the limits were computed as UCLNO,m = + 3ã1 and

LCLNO = max{0,j 3ô, }. For each N, the values øf LCLSim UCL5im LCLNO,

UCLNO and the EE control limits were calculated. The absolute deviations of an EE

and 3-sigma limits from the simulated (ILCL L CL5,m
I

UCLsim I) for all N were

summarized in Table 2. When sample size is small to moderately small, i.e., between

5 and 15, there is no LCL that satisfies eqn. (2), then LCLs were set equal to 0 and

UCLs were computed using a = 0.0027.

Table 2 shows that the absolute error of the control limits for an EE,

LCL L CL5im and UCL51m were comparatively and consistently smaller than

that of the 3-sigma limits for all sample sizes. For instance, with moderate N=25

where we expect the normal approximation to work reasonably well, the EE limits is
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still much more accurate than the 3-sigma limits. For moderate sample size of 25,

we expect the normal distribution approximation to work well and the control limits

should be close to the actual. Even so, the absolute error for the normal distribution

approximation is much larger with values 0.13 and 0.20 for the lower and upper limits

respectively while the absolute error of the control limits for an EE is merely 0.05 for

the lower limit and 0.02 for the upper limit. The absolute errors of the normal

distribution approximation are consistently and approximately about 10 times larger

than an EE at the upper limit. This affirms that the EE limits are uniformly more

accurate than the 3-sigma limits. The more accurate the control limits, the more

precise the performances of the demerit control chart. Therefore, the demerit control

chart with the control limits computed using an EE, called theEE demerit control

chart, has more precise performance than the demerit control chart using normal

distribution approximation.

Table 1: Comparison of Control Limits.

N Simulation EE Approx. Normal Dist. Approx.
(3cr limits)

LCL UCL LCL UCL LCL UCL
5 0 4.90 0 4.92 0 4.25
10 0 3.66 0 3.68 0 3.37
15 0 3.16 0 3.17 0 2.98
20 0.14 3.01 0.09 3.02 0 2.75
25 0.13 2.79 0.18 2.81 0 2.59
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Table 2: Comparison of Absolute Errors of Control Limits.

N EE Approx. Normal Dist. Approx.
(3o limits)

LGLSm
I

IUcL U c'Lsim
I

ILC'L LGLSm
I

!UCL UCLim
I

5 0 0.02 0 0.65
10 0 0.02 0 0.29
15 0 0.01 0 0.18
20 0.05 0.01 0.14 0.26
25 0.05 0.02 0.13 0.20

ASSESSING THE PERFORMANCE OF THE EE DEMERIT
CONTROL CHART

The performance of the EE demerit control chart can be determined by

comparing it to the demerit control charts created from the simulation and the demerit

control chart using normal distribution approximation. To compare the charts, the

average run length (ARL) is used. The average run length for an in-control process

(ARL) is related to the probability of a false alarm a by the relationship

ARI =1/a.

To assess ARL, an additional 250,000 samples of size 25 were randomly

generated using the estimates A. and weights from the example and 250,000 values of

USIm were computed for each N. The desired false alarm probability chosen for the

EE demerit control chart in the example and throughout the simulation studies is

a = 0.0027 so that the extreme accuracy of the approximations in the tails can be

investigated. Depending on the accuracy of the EE approximation, the actual EE false
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alarm probability (aEE) could be different. Assume that USim values are

representative of values for U that would be obtained from an in-control wire mesh

weaving process. Then, the proportion of U,m that are outside the EE control limits

in Table! is an accurate estimate of the aEE that we would experience when using the

EE demerit control chart. In a similar fashion, the actual false alarm probability of the

demerit control chart using the normal distribution approximation (ctNO,,,) can be

determined in similar fashion. The corresponding ARLs were computed as

ARI = !/a' ARLE = 1/dEE and, ARJO = l/dNo,m Table 3 shows values of

the ARLE, and ARLO1 and the differences from ARLJd =370.37 denoted as

IMR1I, for each approximation.

The EE demerit control chart produces the actual false alarm rate that is closer

to the desired than the demerit control chart using normal distribution approximation.

From Table 3, the ARLE is different from ARJ'' about 9.40%, 14.60%, 4.01%,

15.19% and 12.90% for N=5, 10, 15, 20 and 25 respectively whereas the is

different from the desired about 69.40%, 56.17%, 47.43%, 52.33% and 37.79%. The

large difference from ARI.eSd of the demerit control chart using normal distribution

approximation occurs such that the demerit control chart will falsely signal an out-of-

control condition more frequent than the advertised.
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Table 3: Comparison of ARLJ and IMRLO I

N EE Approx. Normal Dist. Approx.
(3a limits)

ARLE IMRL0I ARL0 MRLII
5 405.19 34.82 113.33 257.04
10 424.45 54.08 162.34 208.03
15 385.21 14.84 194.70 175.67
20 426.62 56.25 176.55 193.82
25 322.58 47.79 230.41 139.96

CONCLUSION AND DISCUSSION

Based on the simulations, an EE is more accurate than the normal distribution

approximation for all sample sizes. The Fj(u) is closer to FJ" (u) than Fj0(u)

especially in the extreme tails. The normal distribution approximation tends to over

estimate the CDF of U than an EE does in both tails. Hence, the EE control limits are

closer to the exact than those obtained using the normal distribution approximation.

The EE demerit control chart has actual performances in terms of ARLs very

close to the advertised whereas the demerit control chart using normal distribution

approximation has actual ARLs significantly departing from the advertised. The EE

demerit control chart produces the actual a that is closer to the desired than the

demerit control chart with 3-sigma control limits.

Consequently, an EE improves the performance of the demerit control chart.

The normal approximation to the distribution of U is likely to results in LCL being



zero whereas an EE does riot. With the downward shifts, the 3-sigma control limits

limit will has very small probability of detecting the shift even for the large downward

shift. The proposed EE demerit control chart has more detection area for the

downward shift and thus more efficient.

The EE approximation yields reasonable accurate result in determining the

performance of the control chart when the exact distribution is not obtainable. As in

the example, we can see that it is very common and natural to come up with a

weighting scheme in which the technique provided by the Jones et al. (1999)

technique is not applicable. When the exact distribution is not obtainable, determining

the performance of the demerit control chart must rely on some approximation. Even

if it does, evaluating the performance of the demerit control chart using exact

distribution requires an extensive tabulation among possible ?J, p,. An EE requires

a simple numerical computation to obtain the control limits comparing to the

technique by Jones et al. (1999). Therefore, the proposed demerit control chart using

EE technique is recommended because of its simplicity.

Lastly an EE would be a fast, easy and very effective tool in determining the

best set of w. To choose the best weight set, one might have to determine the

performance of the demerit control chart across not only ? but also w. Even if we

restrict ourselves to a class of weight such that the specific requirement is satisfied, the

technique by Jones et al. (1999) could result in an exponentially intensive tabulation

for the CDF of U. An EE would require comparatively small fraction of time to do

so. Besides, this proposed technique allows us to search for weights in a wider class
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with less effort. If one wants to search for the best weights regarding to some

criteria, the EE approximation presented in this paper will definitely better suite this

type of problem and therefore is recommended.
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APPENDIX: DEVELOPMENT OF THE EDGEWORTH
EXPANSION

The cumulant generating function (CGF) of a rv Y is defined as log E(et)

provided that the expectation of etY, denoted as E(et}'), exist for some t; see Stuart

and Ord (1994). For example, the CGF of a Poisson is K (t) = 2. exp(t 1). The

CGF of D can be derived as

log E(e") = log[E [ex t *± w X
JJ]

= log[E(exP((ta)x1i))]

= log[E(exp((ttv)X))]

= Kx (tw)

=A1exp(t-1)

Without loss of generality, assume that a sample consists of N inspection units. The

average number of demerits per inspection unit, U = IN can also be viewed as

the sample mean of independent and identically distributed (iid) n's, D1. The

U-1u

standardized rv G U has a mean zero and a unit variance. The cumulant
c7
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generating function of G is KG(t) = log[E(exp(t(u )/o
))1

which is equal to

log [E (exp(tU/o ))] [(tp )/o . Note that

log[E(exp(tu/a))] = log[E[exp [t*[D INJ/au]J]. Since is assumed

independent, the expectation of the product is the product of the expectation, i.e.,

E[exP[t*[Dj /NJ/7]J= flE(exp[(t/(Nu))*Dj]). Then the CGFof G is

Gis

KG(t) = N*log[E(exp(tD/(No- )))]_[(t )/°u]

(t
=N*KD.tNJ_[(tPU)/oU] (Al)

Using results from Kolassa (1997), it can be shown that an EE to the CDF of

l(z)
p)(z) 4J(z)1

(A2)[6J2N72Nj

wA1 + wA, +... +w21 w1A1 + + ... + w21where p3
2

3/2
and p4 are the

(a+wA2+...+w1A1) (wA1+wA2+...+w,21)2

standardized third and fourth cumulant respectively, 1z2(z) = (z2 1), h3(z) = (z3 3z),

h5(z)=(z5 10z3 +15z), I(z), 0(z) are CDF,PDFof N(O,1). See Kolassa (1997)

for a theoretical discussion on the Edgeworth Expansion (EL) and its properties.
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Thus, anEEforthe CDFof U isFU(u)=P[Uu]=P[Gu]__FG[uI4JJ

where F was defined as in eqn. (A2).

Kolassa (1997) mention that the error of an EE in approximating the discrete

distribution can be claimed to be uniformly as O(1IsJi) according to a jump of size

O(1I/i) at the discontinuity points of any discrete distribution. See Vaart (1998) for

the definition of "big" and "little 0" notation. Since X1 takes on discrete values, the

CDF of U is a step function with a discontinuity at each discrete value of U. The size

of the steps decreases as N increases. There is no approximation for the CDF of a

discrete rv that will out-govern the rate at which the size of the steps decrease at the

discontinuity points as N increases, i.e., no approximation has an error rate less than

the decreasing rate of the step size. However, the accuracy of the approximation to the

CDF of a discrete rv can be improved at non-discontinuity points and an EE uniformly

yields at least as good or better of an approximation than the normal distribution for all

N; see Kolassa (1997).
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AN ASYMPTOTIC TECHNIQUE FOR DESIGNING A DEMERIT
WEIGHTING SCHEME FOR A ONE-SIDED DEMERIT CONTROL
CHART

ABSTRACT

A methodology to design the demerit weights for a demerit control chart with

general classification scheme is proposed. The proposed method assigns the optimal

weights to the number of demerits such that the demerit control chart has the

maximum probability of detecting an increase in the mean numbers of

nonconformities. The optimal weights depend on the directions of the shifts in the

mean numbers of nonconformities rather than the magnitudes of the shifts. The

proposed method assigns more relative weight to more severe types of

nonconformities. The solution is explicit and is easily computed.

INTRODUCTION

Consider a process where the quality of the finished product is determined by

the number and type of nonconformities (NC) that occur on the product. The product

is considered "defective" only if the numbers ofNCs for one or moreNC types

exceeds predefined limits. Dodge and Torrey (1977) developed a demerit control

chart to monitor such a process. They classified the NCs into four types, i.e., very

serious, serious, moderately serious, and minor and used fixed values for weights for

those four NC types. This method of classifying and weighting the types of NCs has

since been adopted as standard practice for demerit control charts; see Montgomery
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(1996). The performance of the demerit control chart depends on the weights given

to the NCs. The method of how to select weights that give the best performance for

the demerit control chart presented by Dodge and Torrey (1977) and then other

classification schemes has not yet been addressed in the literature.

A methodology of selecting values of weights for a one-sided demerit control

chart (OSDCC) using a method called an asymptotic technique is proposed. The

asymptotic technique does not restrict the nature of the types of NCs and can be

applied not only to the classification scheme suggested by Dodge and Torrey (1977)

but also to a general scheme. The asymptotic technique chooses weights for the

demerit control chart that maximize the probability of detecting an out-of-control

condition. The asymptotic technique has many useful and desirable properties. For

example, the asymptotic technique provides an optimal and explicit solution for the

weights and the solution does not depend on the absolute magnitude of a shift or shifts

in one or more of theNC types but rather depends on the directions. The asymptotic

technique always assigns more weight to the more severe type of NC.

The rest of the paper is organized as follows. Notation and assumptions and

the procedure for determining a control limit for the OSDCC is presented in the first

section. The following section gives the development of the asymptotic technique and

the procedure for obtaining the weights. This section also presents several properties

of the asymptotic technique. In the next section, a numerical example from an actual

wire mesh weaving process is given. The last section is the conclusion.
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DEVELOPMENT OF THE ASYMPTOTIC TECHNIQUE FOR
OSDCC

Consider a OSDCC that is used to simultaneously monitor an increase inNCs

of several types. For example in a wire mesh weaving process there are different

types of NCs, e.g., large gaps between adjacent wires or a broken wire in the mesh.

The demerit control chart is constructed as follows. First, determine an inspection

unit, e.g., in wire mesh weaving we let an inspection unit equal fifty square feet. At

equal time intervals, take a sample consisting ofN inspection units, e.g., a finished roll

of wire mesh with a total area of 500 square feet is inspected and the number of NCs is

counted. Let the random variable (rv) represent the count ofNCs for the th NC

type in the Jth inspection unit in the random sample. Assume that the types of NCs and

inspection units are independent and that X are distributed Poisson with parameter A.

V j. Let a be the weight assigned to the jth NC type. For each inspection unit,

define the demerit value, D. as a weighted sum of the number of NCs of different

types, i.e., let D = where I is the number ofNC types. The mean and

variance of are E [D and V [D3] = coA1 , respectively. Next,

compute an average demerit value per inspection unit as U = D /N where N is

the number of inspection units per sample. The mean and standard deviation of U are

I I

= and cr respectively.
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The control limits for the OSDCC are determined by letting the centerline

equal The upper control limit (UCL) is determined from the probability

distribution of U , i.e., P[u u}. Select the probability of a false alarm, a, and find

values for the UCL so that the area under the distribution of U to the right of the UCL

equals a, i.e., a = P[u UCLI. For instance, if the normal distribution is used to

approximate the distribution of U, the UCL becomes UCL = + ZaOU where za is

the 100(1 - a)" percentile of the standard normal distribution.

Generally, the properties and performance of the OSDCC depend heavily on

the weights, o = [w1,...,w1] in the demerit function = w,X,1 , therefore it is

reasonable to select weights that will optimize the performance of the OSDCC.

Performance is measured as a trade-off between the probability of a false alarm a and

the probability of detecting an out-of-control condition (1 /3). Assume that the

probability of a false alarm is selected and fixed, then the performance of the OSDCC

is measured in terms of (1 /3). The goal is then to find the weights, o, that

maximize the probability of detection, (1fl).

A change in can occur from a change in the mean of one or more NC

types, i.e., a change in any = [A1, A2,..., 2k]. Without loss of generality, represent

the shifts by a vector ö = [bj, 2 5 1. Unfortunately, there does not exist a unique

solution for w such that the OSDCC will have the maximum probability of detecting



all possible shift vectors ö. For instance, the weight w = [1, 0,..., 0] results in the

maximum probability of detection for ö of the form [o, 0,..., 0] whereas the weight

=[o, 1,..., 0] resultinthatif ö isoftheform [0, 2'' O]

An asymptotic technique presented here determines the weights for detecting a

special class of shifts for the OSDCC. First, the probability of detecting a shift

certainly depends on P [U u} which in turn depends on I and . The exact

distribution of U cannot be obtained for all sets of w but can be approximated well by

the normal distribution if N is large enough. Jones et al. (1999) developed a numerical

method to obtain the exact distribution for P[u u] but it requires that, 0) have

specific ratios, element-wise, which does not allow for a comprehensive selection of

o. The proposed asymptotic technique determines weights by using the approximate

distribution of U when N is large. Define the limiting probability as the approximate

probability P[u <u] in the limit as N -> oo.

The limiting probability for an arbitrary shift will approach one, regardless of

its magnitude; see Appendix 1 for verification. So, it is not informative to consider

just any arbitrary shift. To avoid this difficulty, consider a class of ö such that

tim ö =0 element wise. Let ö be represented in the form o = [icr /../ii,..., k1

where k = [k1 ,..., k1] are fixed constants. When N is large, the probability of detection

converges to a constant less than one; see Appendix 2 for details. Therefore, the

asymptotic technique takes advantage of the limiting probability of detection and



determines a set of weights, assumingN is reasonably large. The derivation of the

asymptotic technique invokes the properties of the Central Limit Theorem. The

asymptotic technique finds the set of w that maximizes the limiting probability of

detecting the shift of type k / The maximization problem is represented as

or equivalently

where

I / Ij

Mar
i=1 I 1

r>oY=i

r_W2A/(0)2A+W2A.++W22)

The interpretation of i is as the proportion or contribution of the variance of the 1th

39

(1)

(2)

(3)

NC type to the total variance of see Appendix 3 for the derivation of eqn. (2). Let

the optimal solution to eqn. (2) be denoted r* (if,..., rj*).

In what follows, some properties of the asymptotic technique are given.

Property 1: The solution to eqn. (2) depends only on (k1/..J .....

and has both a unique and explicit optimal solution r* = [r*, i,.. if]. The solution

is
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*(k/)2/[(k/)2J
for i=1,...,I; (4)

see Appendix 4 for the proof.

Property 2: For a given solution r* the solution for w is determined uniquely

up to a scalar multiple of

0) = (k/A1 ..... , k, /A);
(5)

see Appendix 5 for the proof.

Property 3: The asymptotic technique computes larger relative values for i

for larger values of . If the values k/j are all equal to a positive constant,

viz., if k/j = C where C >0 Vi then i = 1/I Vi; see Appendix 6 for the proof.

Property 4: The asymptotic technique assigns non-zero weights only to NC

types with non-zero k/.j; see Appendix 7 for the proof.

COMPUTING THE WEIGHTS FOR A OSDCC

The asymptotic technique obtains values for r* and 0) from the values

(k1/J and (k1/A1 .....,k1/21)which are simply the shift size weighted

by the standard deviation and variance of NC, viz., the NC type with a larger variance

receives a lower weight for the same magnitude shift. Values for [A1, A2,. . . ,2
J

are

either known or can be estimated using data from an in-control process. The values
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[k1, k2,..., k1 J are the direction of the shifts that we are interested in detecting. The

simplest method for specifying k is to let k1 = k2 = k1 = C where C is a positive

constant and then the NC type with the smallest variance will have the largest

comparative loss and correspondingly will have the highest relative weight. Assigning

weights reciprocally to variance is a common method in many statistical techniques,

e.g., weighted least squares regression.

The asymptotic technique possesses several appealing properties. Firstly, there

always exists a unique and explicit solution for r and explicit solution for o.

Secondly, from Property 4, larger values of i (and so are assigned to larger values

of k1/j. For each NC type, the technique considers the direction of the absolute

shift relative to the standard deviation or equivalently the variance. The NC

type with a relatively higher value for the weighted shift size is more important than a

NC type with a lower weighted shift size and is therefore assigned a larger weight.

Simply stated, larger weights o are given to the type ofNC that matter most. If the

values of k/j are all equal to a positive non-zero constant, this means that theNC

types are equally important. Then, as we would expect, the asymptotic technique will

produce equal weights r. Thirdly, the asymptotic technique only assigns non-zero

weights to types ofNC where k. /2 >0. The condition k. /2, = 0 holds ¶ k =0 since

2, is strictly positive. Since, an out-of-control condition can occur from a change in

the mean of one or moreNC types, the type ofNC that has k, /j = 0 means that the



42

jth type ofNC does not contribute to the out-of-control condition. Therefore, to

maximize the power of detecting the shift for NC types with non-zero k1/J or

k. /2 , we must assign a zero weight to the type ofNC that has no effect on the quality

of the product.

Example computing the Weights for a OSDCC

Consider a weaving process for wire mesh at the Siam Wire Netting (SWN)

factory in Thailand. The overall product quality for wire mesh is accessed by the

quantity, type, and severity of NC found on a finished roll. More than 20 types of NC

are to be inspected during the inspection process. SWN has initially planned to adopt

a control chart to statistically monitor the mean number ofNC for the product type

TMA-725 and has plans to monitor other product types in the near future. Since the

there are several types of products each with several types of NC, to avoid an

unmanageable number of control charts, a single OSDCC is to be used for each

product. For TMA-725, a Pareto chart was constructed for the different types of NC.

The Pareto chart in Figure 1 shows that the first 5 types of NC, coded at the request of

SWN as 1, 2, 3, 4 and 5, accounts for about 73 % of the total number ofNC found on

the product. Therefore, it was decided that these five NC types would be monitored

using the OSDCC.
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Figure 6: Pareto Chart for the Number of NC for Wire Mesh TMA-725.

It was decided that the values for CL would be determined by defining values

for k1/J. Estimates for A., were computed using the data from 1,697 rolls of good

product that was collected from several different looms over a two month period. In

total, thirty-six samples were collected, each sample containing a different number of

rolls of TMA-725. Let XUk be the count ofNC for the ith NC type in thejth inspection

unit in kth sample. Let Nk be the number of inspection units in the kth sample. Then,

estimate A., as the average number ofNC of type i per inspection unit, i.e.,



= x1 / Nk. The estimates for were calculated as A1 = 0.126,
j=1 k=1 k=1

A2 =0.042, A3 =0.094, 24=0.025 and A3=0.051.

For k, information about the desired direction of the shift to be detected was

not known, so it was decided to let k1 = k2 = k3 = k4 = k5 =1. Therefore, the severity of

the NC type was determined by the magnitude of its corresponding variance estimate,

i.e., by A1. From the estimates A1, all five values for k/j are computed as

[2.81, 4.87, 3.26, 6.32, 4.421. The NC type with smallest variance is assigned the

largest comparative loss value and therefore has the largest relative weight.

From eqn. (4), r* is computed as r* = [0.07, 0.23, 0.10, 0.39, 0.19] and eqn. (5) the

w is easily calculated to be w = C[7.936 23.809 10.638 40 19.607] for some

C>0.

From the example we can see that theNC type with a relatively higher value

for the weighted shift size is more important and is assigned a larger weight. For

instance, since k1 = = k3 = = =1, then an increase in one unit of the mean for

NC type 4 is considered 2.24 times more important than that forNC of type 1, i.e.,

ki/sj=1//öi6 = 2.81 and k4/j= 6.32 and

= 6.32/2.8 1 = 2.24. The impact of increasing the mean ofNC

type 4 one unit is considered comparatively 2.24 times more critical than that of type

1. As a result, the asymptotic technique has assigned a larger weight to NC type 4



than to NC type 1, i.e. = 4.04 and (04 = 20.4. Then, for the same magnitude of

increase in the means of type 1 and 4, the OSDCC detects the increase in the mean for

NC of type 4 quicker than type 1. This implies that the loss or cost from increasing the

mean for NC of type 4 is comparatively higher than that of type 1. Since

k1 = k2 = k3 = k4 = k5 =1 in the Example, the asymptotic technique will give the same

results for any positive values of k. Hence the asymptotic technique assign the

weights that depend on the directions of the shifts instead of the magnitudes.

CONCLUSION

The major characteristics of the asymptotic technique are that the asymptotic

technique provides an explicit solution in terms of r and w which do not depend on

the shift size chosen but depend on the direction of the shift. This constitutes one of

the critical properties of the asymptotic technique. If the values [k1 , k2,. . . ,k1 are set

equally, the asymptotic technique first adjusts the out-of-control direction

[k1,k2,. . .,k1] according to the NC variances and assigns weights in the same order (as

is common in many statistical techniques) by assigning weights reciprocally to the

standard deviation. Since the asymptotic technique has these important and practical

properties, it is a logical method for determining the weights for the OSDCC.
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APPENDICES

Appendix 1: Limiting Probability for an Arbitrary Shift

Given the non-negative shift vector ö, the mean of the individual NC becomes

=[A1 +8,...,A, +8,1 = 1--ö and the mean and standard deviation of U is

=
+

and o =jo +a?4/N. respectively. The probability that the

OSDCC detects the shift (1fl) is computed

asP[U UCLIo] = P[(U p,)/c, (UCL_p)/a]. First, re-write the UCL as

+ ccrIL, with c = (UCL pu )/cr. Then, (UCL 'u,, ) / o can be written as

1
/ '\ - * a8. The term getsI / / / I *

0u '.0ui i=i

(u"i I_________large as N increases whereas the term
J

I = I ,,.
approaches a°) +28/NJ

constant while the term * w8 approaches oo. Then,
)

will

approach oo as N gets large. Let G = (U ) / o be an arbitrary standard rv with

zero mean and unit variance. The, P [U UCL] is simply P [G _oo] which is one.
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Appendix 2: Limiting Probability of Detection Converges to a Constant
Less Than One

Suppose is of the form = +k/sJ. Then, as N approaches

?, i.e., lim?. = ., and o converges to o. Given , the mean and standard

deviation of U become = + and o, =jo +o1c/(NT).

respectively. Then,

(i/3)=P[U UCLJ = P[(U p,)/ _{cou The term

approaches one whereas

which is equal to '' will
frw2A +o2k1/J

w1k1

approach the constant . Then, the
0)22

P[u UCL] = P[G



Appendix 3: Derivation of The Maximization Problem

To incorporate the notion of sequences depending on N, let UN, '1N (

aN () and UCLN denote the statistic U, the mean of U, the standard deviation of U,

and the UCL for the OSDCC based on N inspection units assuming no shift, i.e., for an

in-control process with parameter ?.. When the process is in-control, the UCLN can

be expressed as UN (A) + c (1)aN (A) with CN (A) (UCLN PN (A))/aN (A).

In the presence of a mean shift of the form k! the parameter for the out-

of-control process becomes ? = + k/i7. Denote the shifted mean and standard

deviation of U as IuN(*) and aN (c), respectively. The limiting probability of

detecting the shift is P[UN UCLNI?*1 = P[G (UCLN IN (*))/crN (*)1 where

G =(UN JN (*))/aN (f). First, expand 1u.()using a Taylor series about to

get /N () = /N () + [k/-.J]V/iN () where V/iN () is the gradient column vector

r5PNO) and since V/IN()=
L o o

L om rn

for m2. Notethat ( '- w,2,. I = a',, Vi, therefore V/iN ()) is simply
z=1 )

equal to the weight vector, i.e., V/iN () T Next, substituting for the expressions

11N () and UCLN, the probability of detecting the out-of-control parameter can then

be expressed as



P[UN UCLNI?.* I = P[G (UCLN PN())/aN()]. Note that

UCLN flNO) =[PN()+cN(X)oN()1{PN ()+[k/J] V/IN ()}

= CN(?)aN() [k/[J/]vUN (i).

Therefore,

P[UN UCLNI*I =P[G

=P[G cN()* [k/]vpN() 1

N()J (N*)
N()

By the Central Limit Theorem, UN = DJ/N converges to a normal rv

with mean 'tIN () and standard deviation aN (?). So, the UCLN converges to an

upper limit calculated from a normal distribution, i.e., CN (?) converges to Za where

za is a 100(1 percentile of a standard normal distribution. Also, the i-v G

converges to a standard normal distribution. Note that

= 2()+w2 k/(NJii) converges toaN(). So, the ratio

0N ()/aN as well as its reciprocal converge to 1. Finally, the probability of

detecting the shift reduces to p[z Za {[k//] V/IN (1)/0N ()}].

The Asymptotic technique finds the set of o that maximize the limiting

probability of detection which is equivalent to maximizing [k/J] V/IN (1)/aN (i).
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Maximizing [k/ ]vpN()/oN() is the same as maximizing

,since [k/ is

equal to (kj/)/I2/1v = k/o221. Letting

r a22/(w2 +wA2 +...+w?A1), we can rewrite

=

Appendix 4: Proof of Property 1

as

To show that a unique optimal solution exists, notice that the function

f(r):= is a linear combination of the function

[a2g.(r)l
for i =1,...,!. The second derivative of g (r),

L
2

jis (_(k/J)
r312 J

V i

and is negative for all r. Therefore, f(r) is a concave function since it is a linear

combination of only concave functions. Since f(r) is the concave for all values of r

it's also concave on a restricted region i =1. Hence the function

f(r > 0): i =1 possess a global unique optimal solution r*.
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The explicit solution to eqn. (4) is found by rewriting eqn. (2) as

/-1 I i-_i '1

Mar with a gradient vector of
r>O I'

i=1 i=1
j

The optimal solution is

found by setting the gradient vector equal to the zero vector and solving the

simultaneous system of 1-1 equations, i.e., solve an equation

=[(k/)2/(k//)2] for i =1,...,I-1.

Since =lthis implies r. =1 which in turn yields a

solution of r, (kl/j)2/(k1/.J)2. Hence the optimal solution

r* =[i,r,...,i] is if =(k/j)2 /I±(kj//)2J for i=1,...,I.
/

Appendix 5: Proof of Property 2

Recall that , =
+...+w122,

where ,

Next rewrite w2 as ü2 =(kj/A)2(a2A+wA+...+w?AJ)/(kj/R)2J. Since

both iz2A1 + wA2 + + w?21 and (k1/.J)2 are constant, we can rewrite 04 as
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ü =(k1/A.)*constant. So there exists a unique solution for 0) up to a scalar

multipleof w=[k1/A1... k1/21].

Appendix 6: Proof of Property 3

Denote the ordered (k/J)) as ..,AIM where A(1) is the smallest and

is the largest then eqn. (4) can be rewritten as = A()
J.

It is clear that

the order of i depend on and is the same as the order of 4. If for i = 1,2,. . . , I the

k/j are equal then eqn. (4) becomes i = 1/I Vi.

Appendix 7: Proof of Property 4

Consider the case of a shift in only the mean NC of type i with

k = [o,...,k,,...,O]. A uniformly most powerful OSDCC to detect such a class of shifts

isoftheform w=[O,...,a,...,O] forsome O. SeeLehman(1997)forthe

definition of the most powerful statistical hypothesis test. If k = (0,..., k1 , ..., 0) then

It1
eqn. (1) reduces to Max w1k //o2A = Max which is maximized

I j=1 r:ç=1

iff i =1 and then asymptotic technique results in a solution of the form
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MULTI VARIATE CONTROL CHART FOR
NONCONFORMITIES

ABSTRACT

A multivariate control chart is developed to monitor the quality of a product

that is based on the number of different types of nonconformities. The

nonconformities are correlated and assumed to be distributed with a multivariate

Poisson distribution. Since multivariate Poisson probability distributions cannot

model negative correlations, the distribution used in this work is the multivariate

Poisson lognormal probability distribution. This distribution is able to model both the

positive and negative correlations that exist among the nonconformities.

A different type of multivariate control chart for correlated nonconformities is

proposed. The technique developed for the proposed control chart can be applied to

nonconformities that have any multivariate distribution, discrete or continuous or other

correlated random variables. The proposed method evaluates the deviation of the

observed sample means from pre-defined targets in terms of its density function value.

The distribution of the control chart test statistic is derived using an approximation

technique called a multivariate Edgeworth expansion. For small sample sizes, the

results show that the proposed control chart is very robust to inaccuracies in the

assumption of the distribution for the correlated nonconformities.
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INTRODUCTION

Consider a process where the quality of the finished product is determined by

both the number and type of nonconformities (NCs) that occur on the product. For

example in a wire mesh weaving process there are different types of NCs, e.g., large

gaps between adjacent wires or a broken wire in the mesh. The quality of a roll of

finished wire mesh is determined by counting the number of NCs found for each type.

The product is considered defective if the numbers of NCs in a sample exceeds the

desired maximums set for each NC type. These types of NCs are typically correlated

and in the presence of such dependencies, separate control charts (CCs) for eachNC

type could be misleading; see Mason and Young (1998). For this reason, a

multivariate control chart (MCC) is proposed to monitor multiple dependent NCs.

Work on MCCs, when NCs are distributed with a multivariate discrete

distribution has rarely been visited in the literature. Patel (1973) proposed a CC for a

multivariate Poisson (MP) and multivariate binomial random variable (rv). Patel

(1973) assumed that the sample size is sufficiently large so that the Chi-square

distribution approximation of the T2 statistic for testing the means of binomial or

Poisson rvs can be applied; see Montgomery (2001) for the Hotelling CC. Lu et al.

(1998) proposed a multivariate np chart for monitoring the number of defective

products, called a multivariate np (MNP) chart. The MNP chart uses a weighted sum

of the count of the number of defective products as a test statistic. Shewhart 3-sigma

limits are used for the MNP, which assumes that the test statistic is normally

distributed. If the sample size is "small" or the test statistic is not distributed
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multivariate normal, the performance of the CCs by Pate! (1973) and Lu et al.

(1998) could be problematic; see Ajmani (1997).

In this work, two forms of a MCC for correlated NCs is proposed; the first

form is an adjusted chi-square CC (used when model parameters are known) and the

second form is an adjusted T2 CC (used when model parameters must be estimated

from data). The proposed MCC takes into account higher order joint moments, which,

unlike multivariate normal rvs, are not necessarily zero. The T2 control chart (CC)

using data for NCs is used to compare with the adjusted T2 CC. Test results show that

the adjusted T? CC is more robust to the distributional assumptions of the NCs than the

T2 CC. This allows one to construct an appropriate CC for monitoring NCs without

complete certainty about the distribution of the NCs. In multivanate cases, it is not

uncommon for the distribution to be uncertain or unknown. To construct the proposed

MCC a MP with a multivariate lognormal distribution for the parameters (MPLN) is

assumed for the NCs, i.e., the mean of the Poisson NCs are assume random.

Measuring the deviation of the sample means of NCs from the targets is a natural

approach for deciding if the process is in-control, i.e., the expected means of the NCs

are chosen as targets. Then the technique called a Multivariate Edgeworth Expansion

(MEE) is used to approximate the joint distribution of the sample means of the NCs.

A test statistic for the MCC is developed that is a function of the sample means with

an adjustment factor for higher order moments. This technique can be applied to the

NCs or any correlated rvs that may have any multivariate distribution, discrete or
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continuous. The single upper control limits of the proposed MCC were obtained

empirically that does not rely on large sample properties.

The rest of the paper is organized as follows. The next section defines the

notation and the distributional assumptions for the NCs. A numerical example shows

how to fit the distribution to NCs using data from a wire mesh weaving process and

the method for obtaining the parameter estimates is discussed. The section following

shows how to apply the MEE technique to approximate the distribution of the sample

means and obtain the test statistic. The next section explains how to determine the

control limits of the proposed MCC and explains the details of the method used to

obtain the control limits. A numerical example is presented using data from the wire

mesh weaving process. The following section gives results showing the robustness of

both the proposed adjusted chi-square MCC and the adjusted T2 MCC when the NCs

are not distributed MPLN. The last section provides a conclusion and discussion.

MODEL

To develop the MCC for multiple correlated NCs, a multivariate discrete

distribution for the NCs is needed; see Johnson et al (1997) for the general definitions

of discrete multivariate distributions. Because count data are reasonably modeled

marginally by the Poisson distribution, theMP distribution seems a natural choice for

the multivariate case. The MP, although, is restricted to the class of distributions

where the correlation among the Poisson rvs is positive; see Johnson et al. (1997). To

model the multivariate NCs with a general correlation structure while maintaining a



marginal Poisson distribution for the NCs a hierarchical modeling technique is

commonly adopted.

Moreover in a batch process, i.e., weaving process consider here it is sensible

to conceive that quality of product such as expected means of NCs could be different

to some extent among different batches depending on machine set-up for each roll.

Also the mean nonconformities even for the same nonconformity type could be

varying among batches for some degree. The hierarchical modeling technique we

adopted not only provides us as a general tool for modeling the correlated

nonconformities with a general correlation structure but also accommodates the

possible batch-quality dependent situation. Steyn (1976) considered a class ofMP

distributions where the parameters of the marginal Poisson n's were themselves

assumed to be i-vs and distributed multivariate normal. Nelson (1985) considered aMP

distribution where the parameters were distributed multivariate gamma. See Kotz et al

(2000) for an excellent source of continuous multivariate distributions.

In this work, the multivariate lognormal is chosen for the distribution of the

parameters. The multivariate lognormal distribution for the parameters of a

multivariate Poisson (MPLN) was first considered by Aitchison and Ho (1989).

Problems modeling very low counts may arise when assuming a normal distribution

for the parameters, specifically, negative estimates could be obtained when estimating

the parameters. Choosing multivariate lognormal for the parameters does not have

this difficulty and produces a suitably wide range of correlation structures; see
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Aitchison and Ho (1989). Closed forms of the joint moments can be derived and

used to obtain estimates for the parameters.

Let the i-vs in the column vector XJk = (XlJk,..., XlJk denote the count of each

NC type in the JIh inspection unit of the kr/I sample with NC types i =1,2,. . . I. Each

sample consists of an integer number of inspection units. Assume that XJk are

independently distributed MPLN V j,k conditioning on the parameters

jk = (AlJk 21fk Let V j, k be independently and identically distributed

(i.i.d.) multivariate lognormal with mean i = (p1,...,p1 and variance-covariance

matrix . A joint probability mass function for Xik is expressed as

/ \1
P(XIJk X!Jk,...,X!Ik =xlJk)= f exP[-2Uk Ifl(A1k/x!)f (1)

{R'o} 1=1 ) 1=1

where

-1/2 exP{_(Iofk -)T (logJ _)} (2)f(Alfk,...,AJfk) Hkk (2r)

is a joint density function of the multivariate lognormal n's See Kotz et a!

(2000). The mean, and covariance matrix ofXJk, denoted by t = (;,...,r1 and V

respectively, are

r, =exp[u +/2] i=1,...,I (3)



i=i'
(4)=rr(exp[1,]i) ii'

We see that depending on the sign of in eqn. (4) the MPLN can represent both

negative and positive correlation.

ESTIMATING pi AND

Standard estimators such as the maximum likelihood estimator (MLE) and the

method of moments estimator (MOM) can be used to estimate p and ; see Casella

and Berger (1990), Kendall et a! (1991) for definitions of MLE and MOM. To

estimate p and assume that data is available from a presumably in-control process

that we are interested in statistically monitoring with the MCC. Say K samples are

taken where the samples are of possibly different sizes. Let .Jk denote the number of

inspection units in the ktF sample. The MLE estimates of p and denoted as ?MLE

and MLE' respectively, are determined by finding a set of PMLE and MLE that

maximizes the total likelihood function value or equivalently the log-likelihood

function value of the data such as

[ K k

Mimize Argument
I fill P ( XlJk = jk ., XJfk = XJJk)] (5)
Lk=I j=1
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where P(XIIk = XlJk,..., XlJk = X!Jk ) is calculated from eqn.(1). Aitchison and Ho

(1989) provide a good discussion on the mathematical issues regarding optimization of

the log-likelihood function for MLE estimators.

The MOM estimates denoted PMOM and MOM are obtained by first computing

from the data the overall sample means for each NC type denoted by = ( ,...,

KJk 1K
where = x,1

/
'k is a grand average of NC of type i'1' over samples and

k=1 1=1 k=1

inspection units. Next, represent the data in a matrix by concatenating XJk side-by-

side into a matrix, x = [x . . Xlk XJk] of size I by k and compute the

sample variance-covariance matrix, s = [x - i] [x iJ where

1 = [1,.. .,iJ is a row vector of l's of length ; see for example Johnson and

Wichern (1988) for details of these computations. To obtain theMOM estimates,

equate the expected values of the means, variances, and covariances of XJk from eqns.

(3) and (4) to the sample means, variances, and covariances and solve for MOM and

MOM The estimates are

= iog((S _)/.2 +i) (6)



log (s11/ (,) + i)
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(7)

log !log((S11 _)/2 +i). (8)

There are advantages and disadvantages for each estimation method. For MLE

an advantage is that a valid solution always exists and can be found theoretically.

Another advantage of anMLE is the nice asymptotic properties, e.g., the MLE would

result in an asymptotically unbiased estimator. The one major drawback of using a

MLE is that it is considerably more difficult to compute, especially when the number

of NC types increases.

ForMOM, the primary benefit is in its computational ease, which is quite

significant relative to the MLE. Unfortunately, depending on the covariance structure

of the data,MOM estimates are sometimes unobtainable or invalid. Observe that for a

solution to exist the quantity on which the log is taken in eqns. (6), (7), and (8) must

be positive. For example, to satisfy eqn. (6) one of the following must hold;

S > (1 ). Likewise, to satisfy eqn. (7) S./ () + I must be positive and from

eqn. (8) must be positive definite for all I. Another drawback is that if a solution is

obtained, it may be invalid. For example MQM may not be positive definite.

AlthoughMOM estimates do not posses the asymptotic properties of the MLE, it can

be argued that when the data set is large, theMOM estimates will, with high

confidence, be very close to the true parameter values.
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Example 1 Estimating parameters: t and .

Data from a wire mesh weaving process is used for this example. A single

sample of 36 observations of NC counts for two types ofNCs was collected from the

process when it was considered to be in-control. The data for twoNC types are shown

in Table 1. The sample mean vector and vanance-covariance matrix for the NC counts

E28.82 4.021
were computed as = (5.52, 2.25)T and S= I

[-4.02 8.36

Notice the sample variances are much larger than the sample means suggesting

a lack of fit to the Poisson distribution marginally. A chi-square goodness of fit test

was performed for each NC type against the Poisson distribution. The results show

that there is statistically strong evidence that the NC types are not Poisson.

Knowledge of the weaving process and the characteristics of the wire mesh suggest

that these two types of NCs are dependent. Due to uncertainty about the distribution

of the NCs, to avoid complications with distributional dependence the nonparametnc

Spearman rank test was performed to test for dependence between the NC types. The

highly significant Spearman rank correlation suggests that theNCs are indeed

correlated.

Both MLE and MOM estimates were obtained. To find theMLE estimates,

eqn. (5) was optimized using the data in Table 1. The optimization was performed on

a Linux operating system with dual processor AMD Athlon MP2000 CPUs using

software Matlab version "6.5". The results for the MLE estimates are
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r 0.43 0.241(1.47,0.42)T and MLE
L-o.24 0.67]

. To find the MOM estimates,

eqns. (6), (7), and (8) were solved. The MOM estimate results are

[0.57 -°1
MOM = (1.43, 0.41)T,

MOM
L0.39 0.79]

Both I'MLE and JMOM are very similar.

The log-likelihood value can be used as a measure of how well the estimates fit

the data. The log-likelihood measures for the MLE andMOM estimates are -167.86

and -187.54, respectively, and since we are interested in maximizing the log-

likelihood measure, the results suggest that the MLE estimates are better.

Two alternative distributions for were considered a multivariate

exponential and a multivariate gamma; see Gumbel (1960); and Gupta and Wong

(1984). MLE estimates were obtained for each alternative distribution. Table 2 shows

the estimated mean and variance r and V of Xik calculated from theMLE of these

two distributions which are very similar to theMPLN for the given data set.
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Table 4: Count of NCs in Wire Mesh.

Observation NC Type 1 NC Type 2 Observation NC Type 1 NC Type 2

1 6 1 19 2 2

2 0 2 20 8 2
3 8 3 21 5 7

4 1 4 22 1 4
5 9 0 23 9 0
6 0 3 24 2 3

7 5 1 25 8 0

8 6 1 26 5 0

9 5 0 27 6 1

10 11 3 28 3 1

11 30 1 29 3 3

12 16 0 30 5 2

13 4 8 31 4 1

14 3 14 32 4 0
15 6 0 33 5 2

16 3 1 34 0 6

17 3 5 35 8 0
18 1 0 36 4 0

Table 5: The Estimates of Mean, Covariane and Correlation of Xjk.

MLE estimates Estimate of t Estimate of V Estimate Correlation
Multivariate Lognormal (s.41 r21.32 -2.441 [

1 0.21
( 2.12) [-2.44 6.45] [-0.21 1

Multivariate Exponential (5.33') [33.93 -2.641 [
1 0.17

I 2.19) [-2.64 6.93 j [-0.17 1

Multivariate Gamma (4.92') [9.62 -0.971 [
1 0.15

2.01) L-o.97 4.24] [-0.15 1



DEVELOPMENT OF THE MCC TEST STATISTIC

Assume we would like to statistically monitor a process for the change in one

or more of the mean NCs t away from an expected target value. At equal time

intervals, a sample is taken from the process and the number of each type of NC found

on the product is counted, then a test is performed to determine if one or more of the

mean NCs has changed. This can be restated as the hypothesis test

H0 : E( X,ik ) r ViE {1,..., I} versus H1 : E ( XUk) r, for some i. (9)

Suppose the in-control V and T are known. The traditional chi-square (2) CC based

on the 2 statistic

= J(k V'(k -t) (10)

could be used to test the hypothesis in eqn. (9) where k = X1 / are the sample

means of the NCs. This test statistic is theoretically for k distributed multivariate

normal (MVN). See Alt (1985), Jackson and Morris (1957), Jackson (1985) and

Lowry and Montgomery (1995) for the MCC for MVN. If k is not approximately

MVN, which is a typical assumption in practice, a different test statistic than the 2 in

eqn. (10) should be used. To develop such a test statistic, one approach would be

considering the differences D = (D1,...,DI)T of k from the targets t, i.e.,



D = Xk t. The MCC should signal an out of control condition if the magnitude of

one or more : i = 1,...,! are larger than a corresponding critical value, i.e., if

I> C for some >0. (11)

The critical values C = (C1,..., C1 are chosen so that the MCC has a desired false

alarm probability a. Unfortunately, values for C that satisfy eqn. (11) are not

unique.
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We propose an approach for choosing an acceptance region (AR) for the MCC

from the set of 5k that satisfies a given condition, i.e., we choose an AR for
k

such

that the density function value, denoted by f (k) , is greater than some limit, sayf,

i.e., AR ={'k : f (k) > f}. 1f
k

is MVN, then the2 CC can be used to test the

hypothesis in eqn. (9) and theAR in two dimensions is an ellipsoid or a region where

the density function value of aMVN distribution is greater than some limit. Moreover

as the number of inspection units J in a sample becomes large, the joint distribution of

Xk converges to the MVN distribution. If we choose AR = {k : f (k) > f}. when

fik (k) converges to theMVN theAR converges to that of the 2 statistic as

expected. It is worth noting that this method can be used for any multivariate

distribution discrete or continuous.

It is apparent that the density function of
k

must be known. With small to

moderate sample sizes with discrete n's such as counts of NCs, asymptotic properties
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like the convergence to a known distribution do not usually exist. Therefore, the

work presented here uses a distribution approximating technique called a Multivariate

Edgeworth Expansion (MEE) to approximate the density of k; see McCullagh (1987)

for the details and derivations of an MEE. Theoretically the more the higher order

joint moments adjusted or used in the MEE function the more accuracy of the

approximation. The MVN distribution approximation is simply theMEE function

with only the first two joint moments. Let the approximate density for k
obtained

from an MEE be denoted (). The computation of the MEEwith joint moment

of order four or more becomes exponential intensive. Thus the MEE approximation of

], () uses only the first three moments in the approximation yet theoretically

produces at least or more accuracy than the MVN approximation. When XJk is

distributed MPLN, with log normal mean and variance ji, and MPLNmean and

variance r and V respectively, f () can be written as

where

(12)
a=1 b=1 c=1

ø(k ,t,V/J) = (27r)"2
IV/J2
exP{_(k t)T V1 ( (13)

+hb(Ik\rVh1 +hC(k)EV'1 (14)
L Jb,e IL Jae L Ja,bI
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ha (k) = j [v' I (k T) (15)

JE(XaJkX bIkXelk ) _TaE(XblkX elk ) bE(XajkXcjk) }/J2 (16)Kabc (k)
L_rfE(XfljkXblk )+ 2rarbre

E(XajXbjXcj)=exp(3fla)+3rexp(aa)+rfl fora=b=c
=rr exp(ac)+rr. exp(aa +2 )for (a =b) C (17)
=rarcexP(ab+ae+bc) for abc

E(XajXbj)=ra+rexp(aa) fora=b
(18)=rr,exp() forab

The quantity [V']b is the (a,b)t' element of V' and [V'] is the ath row

of V'. Theoretically, when modeling NCs, the MEE density function of
k is more

accurate than the MVN density function; see example 2. Under the assumption that

the process is in-control, i.e., E(XUk )= , the condition J () > f can be

simplified to

forsomeL (19)
a=1 b=1 c=1

where the functions and Kabe are defined as in eqns. (14), (15), and (16). So, the

MCC for NCs will signal an out-of-control condition when the value of the expression
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on the left side of eqn. (19) is larger than some limit L. Therefore, the test statistic

for the MCC for NCs and the hypothesis test in eqn. (9) is

III
_T)T' (k (20)

a=1 b=1 e=1

The proposed MCC statistic will be called an adjusted chi-square (2') CC

statistic. Notice when
k

is multivariate normal, the second term in eqn. (20) is zero

and the test statistic reduces to eqn. (10) and the MCC to the traditional chi-square

(2)
cc.

When and p,t are unknown the estimates and p1 and consequently the

estimates and V as in example 1 can be obtained from data. Using these estimates,

the statistics 2 and 2'J (1k) become 7 and 7 (1 ) respectively, i.e.,

T2 =J(1k-)TV'(1k-) (21)

I I I

(22)
a=I b=1 e=I

where the functions and KObC are computed as before now using ft. , and V.

The CC based on the T2 statistic in eqn. (21) is similar to a Hotelling T2 CC except

and V are computed using eqn. (3) and (4).
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Example 2 Comparing the MPLN joint density with the MEE and the
MVN joint densities.

Consider two types of NCs distributed MPLN. To see how well the MEE and

the MVN densities approximate a MPLN for the i and computed from the weaving

process in example 1, consider a MPLN distribution using = P1MLE
= (1.47,0.42)T

[0.43 0.241
and = MLE [o.24 0.67]

For each vector XJk = (Xlfk X ) with

0 XlJk 10 and 0 X23k 15 compute the probability P(XlJk =XlJk,X2jk =x2Jk)

using eqns. (1) and (2). These MPLN probabilities are plotted in Figure 1. Next

compute the sample mean vector and sample variance-covariance matrix of XJk i.e.,

[21.32 2.431
T= (5.41,2.12)T and V=i

[-2.43 6.44]'
respectively. For each XJk, compute the

MVN probability from eqn. (13). The MVN probabilities are plotted against the MPLN

in Figure 2. Similarly, for each Xik an MEE probability is computed using the same

values for v and V in eqns. (12) (18). The MEE probabilities are plotted against

the MPLN in Figure 3. Figure 2 shows that the MEE for this set of p and is a

better approximation to the density of xfk than the MVN density.
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DETERMINING AN UPPER CONTROL LIMIT FOR THE MCC

The exact distributions for 2' () or 7 (k) are unknown and cannot be

derived explicitly. Therefore, the upper control limit (UCL) for theMCC is derived

empirically. When i, , T, and V known the upper control limit for the MCC is

UCL(z) and when j.i, , t, and V are unknown, the UCLis UCL(T). To find

the empirical UCL for the MCC the empirical distribution of Zadj (k) or T (k) is

used.

If p, , t, and V are known, the empirical distribution of () is
computed as follows. First, generate J i.i.d.

jk
mean vectors one for each of the J

inspection units in the sample. For each in the sample, randomly generate an

independent Poisson random vector XJk. Next compute the sample averages of the

NCs of each type
k (

x and calculate the (k )statistic for the sample

using eqn. (20) using the parameters pi, , T and V. Repeat this procedure many

times; for this study, 250,000 samples were generated for each sample size J in Table

3. The UCL() is determined by selecting a probability of false alarm, a and then

letting UCL(%) = [(1 a) * ØØ] percentile of the empirical distribution of

z1jJ(xk).



When pt, , T and V are unknown, the empirical distribution of 1 (k) is

generated to compute UCL(T). The empirical distribution and subsequently the

corresponding UCL is obtained using the same procedure as for UCL(%) except

that the estimates p1, , and V are used in eqn. (22). For comparison, the UCL of

T2statistic, UCL(T2), is also empirically computed using the estimates and eqn. (21).

Example 3: Computing UCL(T2) and UCL(T).

Recall the example 1 in which two types of NCs are considered. We assumed

the data in Table 1 was collected from an in-control condition. The estimates for the

mean and variances of NCs of type 1 and 2 were calculated to be i

V = I from the estimates
r21.32
[-2.43 6.44 PtMzi' MLE Based on a sample of size, say

three, i.e., three independent vectors of MPLN Xik with parameters P1MLE' MLE were

generated for a single sample. The sample means = (X were calculated and

the T2 and (1k) statistics were computed for the sample using eqn. (21) and (22)

with the estimates p1, , and V. A total of 250,000 samples were generated with a

total of 250,000 computed values of T2 and T (1k). Suppose a is chosen as 0.05

which is the 95th percentile of the T2 and T (1k ) representing the UCL(T2) and

UCL(T,) were computed to be 6.52 and 5.79 respectively.
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To use the CC on-line plot values of T1 (k) for each sample and if

TIJ (k) exceeds the control limit of 5.79 the 7 CC signals indicating that one mean

NC or a combination of mean NCs are different from the in-control target(s)

= (5.41, . The process is stopped and investigated for an assignable cause;

Once found it is repaired and the process continues. For example the data in Table 1

was grouped into 12 samples of size 3 and then the sample means and the

statistics were calculated for each sample and plotted on the control chart with upper

limit of 5.79 in figure 4. Figure 4 shows that sample number four is above the control

limit and considered out-of-control.
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Figure 10: Control Chart for NCs - T.

For a=0.05, Table 3 shows the values for the UCL(T2) and UCL(TJ) , along

with the actual a's, for various sample sizes. The actual values of a were computed

as the proportion of 150,000 samples whose computed values, T2(k) and (k)'

exceeded their corresponding control limits. Note that I ( ) converges to the

Hotelling T2 statistic for large sample sizes. The simulation study shows that the

UCL(T2) and UCL(T) are similar for very large sample sizes, i.e., J ?150.
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Table 6: The UCL(T2) and UCL(TQJ) for a = 0.05 and Various Sample Sizes.

Sample Size T2 CC T CC

J UCL(T2) Actual a UCL(T) Actual a

1 6.49 0.0472 8.81 0.0603

2 6.68 0.0500 5.26 0.0502

3 6.52 0.0507 5.79 0.0508

4 6.39 0.0496 5.52 0.0502

5 6.34 0.0502 5.28 0.0510

10 6.14 0.0505 5.42 0.0501

15 6.10 0.0494 5.62 0.0493

20 6.03 0.0507 5.64 0.0507

25 6.08 0.0491 5.75 0.0493

ROBUSTNESS OF THE T CONTROL CHART WHEN NCs ARE
NOT DISTRIBUTED MPLN

Typically the distribution of
jk

and XJk may not be known exactly. It is

possible that the distributional assumption of and hence XJk could be mis-specified

or the distribution of could change even though the target t could remain the

same. We would like the CC to perform as desired whenever the means of the NCs

are still on target. If CC less affected by the underlying assumption of but is still

able to perform as expected the CC is considered better or robust in some sense. In

example 3, UCL(T2) and UCL(T) were computed under the assumption that the



NCs were distributed MPLN. The question is, how well would the MCC forNCs

with those limits perform if the NCs were not really distributed MPLN. The following

sections show the results of such a robustness study for the CC.

Robustness of when are Not All Lognormal

Three cases are considered where the distribution of are not multivariate

lognormal but the means of XJk remain as before, i.e., i The three

cases are shown in Table 4. The first case considers the mean ofNC type 1 as a

constant and the mean ofNC type 2 distributed as lognormal. The second case

assumes the first mean is distributed lognormal but the second mean is a constant and

the third case lets both means be constant. As a result,
jk

are no longer distributed as

multivariate lognormal. The third case assumes the NCs, between inspection units are

independent Poisson rvs and Cases 1 and 2 make theNC types independent.

The reasoning behind choosing these types of changes for the parameters is

that for a process the values of the parameters j1MLE and MLE are likely to change but

if these changes do not translate into a change in the mean number of NCs, the MCC

should not show an out-of-control condition. Table 5 shows the computed values for

p. ,
t, V,andcorrelation matrix p of XIk.
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Table 7: The Three Cases for

Cases AlJk A2Jk

Case 1
Constant

A2Jk - logNormal(1à2, 22)AlJk =5.41

Case2 Alfk 1ogNorinal(A,Eii)
Constant

A21k =2.12

Constant Constant
Case3 JkS.41

Table 8: Parameters ji and of for Three Cases.

MPLN Case 1 Case 2 Case 3

(1.47 (1.69 (1.47' (1.69
O.42) O.42) O.75) O.75

r -0.241 1° 0
1

[0.43 01 [0 0

[-0.24 0.67] [o 0.67] [ 0 0] [o 0

(s.41 (5.41 (5.41 (5.41
2.12) 2.12) 12.12) (2.12

V [21.32 -2.441 [5.41 0
1

[21.32 0
1

[5.41 0
[-2.44 6.45] [ 0 6.45] L 0 2.12] [ 0 2.12

P
[

1 -0.211 [1 01 [1 iJ [1 0

[-0.21 1 ] [o 1] [o 1] [o 1



To assess the performance of the MCCs, the in-control ARL (ARI) is used,

i.e., the average number of points plotted on the MCC between false alarms. The

theoretical ARL is computed as the reciprocal of the probability of a false alarm,

i.e., ARL0 = 1/a. Theoretically for a = 0.05 the T2 and MCCs will have an

ARL = 20. This is called the advertised ARL. In practice, the ARL.0 may be

different than the advertised. The ARL one experiences during actual use of the MCC

is called the actual ARL. To test the robustness of the T2 and MCCs to changes

in while r remains unchanged, the actual ARLQ is compared to the advertised

ARL1, for both MCCs. The comparison is performed for the number of inspection

units equal to J = 1,..., 5, 10, 15, 20, 25 and a = 0.05 ( ARLJ = 20) for the three cases

in Table 4. The control limits for the T2 MCC from Table 3 are used when computing

the ARLJ values for both the T2 and MCCs. A MCC is considered more robust

to changes if its actual ARL1, is closer to the advertised ARI. For example, to

compute the actual ARL for the T2 CC with a sample of size five with a = 0.05 for

case 1, first randomly generate five independent vectors XIk , X2k ,. . . , X5k from an

MPLN using the parameters values from column two of Table 5. Each vector

represents one inspection unit and the five vectors make up the single sample k. This

is the same as, for a single sample, randomly generating five i.i.d. Poisson rvs with

mean 5.41 and five independent Poisson rvs with random meanA2Jk where is

distributed i.i.d. lognormal with mean 0.42 and variance 0.67. The sample means



Xk = (, are calculated and the T2 statistic is computed for the sample using

eqn. (21) and the estimates ji, , and V from example 3. A total of 150,000

samples are generated for a total of 150,000 values of T2. The actual a is computed

as the proportion of the 150,000 T2 statistics that exceed the control limit 6.34; see

Table 64 for J = 5. The process is repeated for cases two and three with their

respective parameters.

Table 9: Case 1 Comparison of Actual ARI for T2 and MCCs.

Sample Size

J
T2CC T CC

Actual a Actual AJ?LJ Actual a Actual ARL

1 0.0173 57.80 0.0557 17.95*
2 0.0270 37.04 0.0412 24.27*
3 0.0270 37.04 0.0376 26.60*
4 0.0248 40.32 0.028 1 3559*
5 0.0259 38.61* 0.0234 42.74
10 0.0235 42.55* 0.0206 48.54
15 0.0223 44.84* 0.0201 49.75
20 0.0223 44.84* 0.0202 49.50
25 0.0220 4545* 0.0202 49.50



Table 10: Case 2- Comparison of Actual ARID for T2 and T MCCs.

Sample Size T2 CC T CC
J Actual a Actual ARL Actual a Actual ARL

1 0.0499 20.04* 0.0610 16.39

2 0.0260 38.46 0.0442 22.62*
3 0.0250 40.00 0.045 1 22.17*
4 0.0255 39.22 0.0394 25.38*
5 0.0242 41.32 0.0324 30.86*
10 0.0231 43.29 0.0261 38.31*
15 0.0236 42.37 0.0246 40.65*
20 0.0229 43.67 0.0248 40.32*
25 0.0216 46.30 0.0230 43.48*

Table 11: Case 3- Comparison of Actual ARL for T2 and T MCCs.

Sample Size T2 CC T CC
J Actual a Actual ARI Actual a Actual ARI

1 0.002 1 >400 0.0593 16.86*

2 0.0004 >500 0.0240 41.67*
3 0.0003 >500 0.0227 44.05*
4 0.0002 >500 0.0106 9434*
5 0.0002 >500 0.0030 >300*

10 0.0002 >500 0.0003 >500

15 0.0001 >500 0.0001 >500

20 0.0001 >500 0.0002 >500

25 0.0001 >500 0.0001 >500



Table 6, Table 7, and Table 8 correspond to the three cases, respectively,

and compare the actual ARLJ for the T2 and T CCs. Values in bold and marked

with an * indicate the CC whose actual ARL0 closest to the advertised. From the

results, it we see that the T CC is nearer to the advertised ARI = 20 and therefore

quite robust for small sample sizes.

In Table 8 theARL for the T2 CC is not robust for all sample sizes while the

Tajj CC is very robust especially if it's applied to the individual observation. For the

sample size of two and three both are not robust but the MCC has a significantly

smaller difference between the actual and the advertised ARL. Considering the case

of applying a MCC for an individual observation the T2 MCC is only robust for case 2

but the propose 7 MCC is very robust for all three cases.

Note that in all three cases the variance of XJk are significantly smaller than the

variance of XJk in theMPLN case, i.e., in case 1 the variance of NCs of type 1 was

significantly reduced from 21.32 to 5.41 which translates to an approximate decrease

of 75%. In this situation the XJk and accordingly the observed sample means 1k will

tend to cluster closer to the target mean . When this occurs the T2 and T statistics

tend toward zero. So we would expect any MCC to signal even less frequently than

the advertised a. Moreover, this trend is intensified as the sample gets larger, i.e., the

ci delivered by the control chart decreases as J increases. Both the T2 MCC and the



MCC have this property but mostly it is less severe with the Ta MCC the T2

MCC.

Robustness of when the variances of MPLN increases

Consider three cases where the distribution of
jk

are multivariate lognormal

or XJk distribute MPLN but with higher variances while the means of XJk remain as

before. Again we want the CC to perform as desired whenever the means of theNCs

are still on target. Consider the cases where both variances of NCs of type 1 and 2

were increased simultaneously by 50%, 75% and 100%. The three cases are shown in

Table 9 along with the computed values for p1, , r, V, and correlation matrix p of

XJk.



Table 12: Parameters u and of
jk

for Increasing Variances.

MPLN Case 4 Case 5 Case 6

1' (1.47') (1.36') (1.32') (1.28
t0.42) 0.25) 0.19) 10.14

[0.43 -0.241 [0.65 -0.241 [0.74 -0.241 [0.82 -0.24
[-o.24 0.67] [-0.24 0.99] [-0.24 1.11] [-0.24 1.22

T (5.41') (5.41') (5.41') (5.41
(2.12) 2.12) 2.12) 2.12

V [21.32 -2.441 [31.99 -2.441 [37.32 -2.441 [42.64 -2.44
[-2.44 6.45] [-2.44 9.67] [-2.44 11.28] [-2.44 12.89

P
[

1 -0.211 [
1 -0.141 [

1 -0.121 [
1 -0.10

[-0.21 1 ] [-0.14 1 ] [-0.12 1 ] [-o.io 1

To test the robustness of the T2 and T MCCs to changes in V while t

remains unchanged, the actual ARI is compared to the advertised ARLtJ for both

MCCs as in previous cases with the same control limits for the T2 MCC from Table

64 and the same total number of samples 150,000. Table 10, Table 11, and Table 12,

correspond to the three cases respectively and compare the actual ARL for the T2

and T CCs. Values in bold and marked with an * indicate the MCCwhose

actual ARL is closest to the advertised.



Table 13: Case 4- Comparison of Actual ARI for T2 and T MCCs.

Sample Size

J
T2 CC T CC

Actual a Actual ARID Actual a Actual ARI

1 0.0702 14.25 0.0684 14.62*
2 0.0812 12.32 0.0768 13.02*
3 0.0860 11.63 0.0800 12.50*
4 0.0898 11.14 0.0878 11.39*
5 0.0918 10.89* 0.0960 10.42
10 0.1040 9.62* 0.1113 8.98
15 0.1102 9.07* 0.1174 8.52
20 0.1148 8.71* 0.1209 8.27
25 0.1163 8.60* 0.1228 8.14

Table 14: Case 5- Comparison of Actual ARI for T2 and T MCCs.

Sample Size

J
T2 Cc T CC

Actual a Actual AiJ Actual a Actual ARLØ

1 0.0765 13.07 0.0726 13.77*
2 0.0928 10.78 0.0871 11.48*
3 0.0972 10.29 0.0896 11.16*
4 0.1029 9.72 0.1022 9.78*
5 0.1089 9.18* 0.1145 8.73
10 0.1268 7.89* 0.1383 7.23
15 0.1367 7.32* 0.1482 6.75
20 0.1459 6.85* 0.1553 6.44
25 0.1493 6.70 * 0.1578 6.34



Table 15: Case 6 Comparison of Actual ARID for T2 and T MCCs.

Sample Size T2 CC T CC
J Actual a Actual j%J'?i. Actual a Actual ARLIJ

1 0.0824 12.14 0.0750 13.33*
2 0.0994 10.06 0.0925 10.81*
3 0.1088 9.19 0.0990 10.10*
4 0.1154 8.67 0.1144 8.74*
5 0.1225 8.16* 0.1304 7.67
10 0.1469 6.81* 0.1631 6.13
15 0.1612 6.20* 0.1765 5.67
20 0.1759 5.69* 0.1892 5.29
25 0.1783 5.61* 0.1909 5.24

Similarly in these three latter cases the variance of Xik are larger than those of

Xik in the MPLN case. In this situation even though the XJk is still distributed around

the target mean the proportions of XJk that are farther away from has increased

along with the observed sample means k This results in a considerably larger

proportion of T2 and the T1 values exceeding the control limit. In this case, the

MCCs will signal more frequently. Even though the changes in a for the T MCC is

less than that of the T2 MCC for small sample sizes the performance does not seem

significantly different.



Robustness of when
jk

are Multivariate Exponential or
Multivariate Gamma

To further test the robustness of the proposed MMC for NCs, suppose that

instead of
jk

following the multivariate lognormal distribution, 1jk follow a

multivariate exponential or multivanate gamma instead. We show that the proposed

MCC is robust to such departures in the assumption of jk Suppose the T2 and the

MCCs are tested with the control limits in Table 3 even though XIk are distributed

the multivariate exponential and multivariate gamma distribution for the parameters of

a multivariate Poisson, MPE and MPG respectively. Since the values of i computed

based on MPE and MPG are very close to the target of MPLN in Table 3. We can

assume that the actual unknown values of r based on MPE, and MPG are

insignificantly different from of the MPLN in Table 3. Hence the XJk we generate

from the MPE and MPG are considered to be generated from an in-control condition.

The test procedure is, randomly generate 250,000 samples from both the MPE

and MPG distributions. Compute T2 and from eqns. (21) and (22) for each

sample using i, , and V. Find the actual a 's as the proportion of T2 and

that exceed the corresponding control limit. Table 13 and Table 14 show the actual

ARL for both MCCs. Values in bold and marked with an * indicate the MCC whose

actual ARI is closest to the advertised. The results show that for small samples sizes,

the proposed MCC is more robust to the two different distributional assumptions for

jk
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Table 16: Comparison of Actual ARL. for T2 and T MCCs when
Xjk are distributed MPE.

Sample Size

J
T2 Cc T CC

Actual a Actual ARL Actual a Actual ARL+

1 0.0835 11.98 0.0742 13.49*
2 0.0850 11.76 0.0815 12.27*
3 0.0866 11.55* 0.0877 11.40
4 0.0892 11.21* 0.1016 9.84
5 0.0903 11.08* 0.1089 9.18
10 0.0998 10.02* 0.1141 8.76
15 0.1053 9.50* 0.1133 8.83
20 0.1079 9.27* 0.1144 8.74
25 0.1084 9.23* 0.1129 8.85

Table 17: Comparison of Actual ARL for T2 and T MCCs when
Xik are distributed MPG.

Sample Size

J
T2 CC T CC

Actual a Actual ARI Actual a Actual ARL

1 0.0127 78.74 0.0499 20.04*
2 0.0095 >100 0.0210 47.62*
3 0.0075 >100 0.0199 50.25*
4 0.0069 >100 0.0139 71.94*
5 0.0066 >100 0.0086 >100*
10 0.0052 >100 0.0068 >100*
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CONCLUSION AND DISCUSSION

The MPLN distribution was fittted to a real data set of bivariate NCs as well as

the MPE and the MPG. The MLE was used to estimate the parameters of the MPLN

which require the optimization procedure whereas the MOM estimate can be obtained

readily and could be used because of its simplicity. To choose between the two

estimates one may consider the total loglikelihood value as a statistical measure or

subject to the practical conveniences. Nonetheless statistical property of the estimates

chosen must be taken into account.

MCCs were developed for monitoring changes in mean NCs when the in-

control means and variances of the NCs are unknown, the CC. The comparison

study when NCs are not distribute MPLN shows that the T2 CC has a false alarm rate

not very close to the advertised for small sample size whereas the proposed MCC is.

So this justifies the CC to be worth of the needed computation and hence

recommended to use as the MCC for individual or small sample size.

The proposed statistic is invariant under affine transformation, i.e.,

XJk AxJk + B for all invertible matrix A. The computed value of the statistic

remains the same whether we works on XJk or AxJk + B and so is the control limit.

The statistic can be deemed as independent of a particular scale in which the rvs

are considered. So the T statistics is, so to speak, a legitimate statistic.



93

The T (k) statistic can be both positive and negative while the 2 or T2

statistics are nonnegative definite. It can be shown that the2 or T2 statistics is a

measure of Euclidean distance D between
k

and the in-control target i, D =

The further the difference or the distance the greater value of the 2 or T2 statistics.

The value of 7J statistic decreases in some case even the difference D increases. In

fact the statistic does not only measure the Euclidean distance as the T2 statistics

does. It measures both the Euclidean difference D and the deviation of the

observation
k

from the higher moment targets. Thus the T statistic is not actually

the Euclidean measure but rather a distributional measure, in some sense, that account

for the deviation from the target distributional moments.

Finally this study shows that the CC is superior than the T2 CC for the

bivariate case and a specific set of parameters using ji, and hence worth the extra

computation. Even though generalization of the results to an arbitrarily case may or

may not be appropriate we believe that the CC is superior to the T2CC for small

sample sizes. Nonetheless further investigation on a wider range of parameter and

more general type of NC is needed.
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GENERAL CONCLUSION

We proposed multivariate control charts for a batch process in which the

quality of the finished product is determined by how large the number and types of

NCs are on the product. The weaving process for wire mesh is used as a motivating

example in which a large number of NC types with different NC seventies can

determine the overall quality of the product.

The multivariate control chart proposed in the form of the demerit control chart

is used when the types ofNC are independent. Demerit control charts in the past have

rarely received attention. If it is desired that a large number of NC types are to be

statistically monitored with a minimal number of control charts then the demerit

control chart is one of the right control charts to use. If separate control charts are

used, the number of control charts becomes unmanageable for most practical

situations and using such a large number of control charts will likely be ineffective

and instead of being cost saving could be an expense. The demerit control chart, if

designed properly, can really enhance control chart usage, especially in a shop floor

level, because of its simplicity and ease of use. To generalize the demerit control chart

to any number and types of NC two characteristics of the demerit control chart must be

addressed; how to determine the control limits for general classification schemes and

how to determine the weights for that scheme.

To generalize the demerit control chart we proposed an integrated

methodology that both determines the weights and computes the control limits for an
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arbitrary classification scheme. The asymptotic technique developed for

determining the weights was able to achieve sensible and basic properties since it

assigns more weight to the more severe types of NCs which is determined by drawing

out the direction of the shifts that might occur in an out-of-control condition. That

direction is then adjusted by the variances of the number of NCs since we normally

want the type of NCs with larger variance to receive comparatively less weight. The

asymptotic technique considers the direction of the shift rather than the magnitude of

the shift.

The distribution approximation technique called an Edgeworth Expansion is

proposed to construct the control limits of the demerit control chart that has an

arbitrary weighting scheme. As expected, in general, the Edgeworth Expansion

technique provides a more accurate estimation than the normal distribution

approximation and gives more accurate results when determining the characteristics

and properties of the control chart even for small sample sizes.

When the NCs are correlated we presented a methodology to first model the

NCs and then construct a multivariate control chart, the adjusted T2 control chart. In

the batch process of the type considered here it is sensible to assume that the quality of

the product may be different in some degree among batches. It is also reasonable to

assume that the mean number of NCs even for the same NC type could be varying

among batches to some extent yet still be acceptable product. The hierarchical

modeling technique adopted here not only provides a general tool for modeling

correlated NCs with a general correlation structure but also accommodates the batch-



quality dependent scenario. The hierarchical modeling is likely to result in an

implicit joint marginal distribution for the NCs whose parameter estimation is usually

implicit. When modeling conelated NCs the multivariate Poisson Lognormal

distribution has the advantage that there is an explicit and straightforward way to

estimate the parameters using method of moment estimators. If a large amount of in-

control data is available for fitting the NCs to the multivariate Poisson Lognormal

distribution then the method of moments works well and is comparatively

computationally easier than maximum likelihood estimation.

A test statistic for the the adjusted 7 control chart was developed using the

differences between the sample means of the NCs and pre-defined targets for the NCs.

The deviation of these differences is translated in terms of the density function value

of the sample means. A Multivariate Edgeworth Expansion is used to approximate the

joint distribution of the sample means and allows us to determine the test statistic.

The test statistic is a function of the joint sample means with an adjustment factor for

higher order joint moments. A single upper control limit for the adjusted T2 control

chart is obtained empirically. For small samples, especially for individual

observations, simulation results showed that the proposed control chart is robust to the

distributional assumption chosen for the correlated NCs. The proposed statistic is well

approximated by a chi-square distribution approximation. The proposed control chart

performs well and is recommended for the individual observation or for small

samples.
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