SD 433

452
no. 463 UTs. Department of Agticilurus Fores Service
In cooperation with the University of Wisconsin MADISON, WISCONSIN

CHEMICAL CONTROL OF THE KRAFT PROCESS

By OTTO KRESS
In Charge, Section of Pulp and Paper

CHEMICAI CONIROI OFTTHE
 KRAFT PROCESS
 By UlIU KRESS, Ph.D. Chairman of Committee on Sulphate Pulp, Technical Association of the Pulp and Paper Industry

COYPLEIE METHOD OF ANATYSIS OF WHITE LIOUOR

The following complete method of analysis includes a determination of sulphites and thiosulphates that are ordinarily neglected in the analysis of white liquor but which play an important part in the cook. This is especially true of thiosulphate, which in the presence of caustic soda, acts to a large extent similarly to sodium sulphide. This method has been worked out and checked by Sidney E. Lunak, of the Forest Products Laboratory, Madison, Wis., and found to be accurate except in the presence of polyaulphide, where an error is introduced into the iodine titration. For all ordinary work, this error is not serious ennugh to be appreciabl
(a) Iotal Alkali Expressed in lerms of $\mathrm{Na}_{2} \mathrm{O}$

Lwo Cc. of the solution are withdrawn with a pipette and titrated with half normal acid, using methyl arange as an indicator. The number of Cc. of acid used represents the al kali existing in the solution as $\mathrm{Na}_{2} \mathrm{CO}_{3}$, $\mathrm{NaOH}, \mathrm{Na}_{2} \mathrm{~S}$, and $1 / 2$ $\mathrm{Na}_{2} \mathrm{SO}_{3}$.
(0) soda as $\mathrm{NaOH}+\mathrm{Na}_{2} \mathrm{~S}$

To 2 Cc . of the solution contained in a 100 Cc . graduated flask add 20 Cc . of a 10 -percent solution of barium chloride and make up to mark with boiling distilled water; srake for a few minutes and allow to settle; cnol and draw off 50 Cc . of the clear liquid and titrate with half normal acid, using methyl orange as an indicator. The number of Cc, indicates the amount of acid necessary to neutralize the NaOH and $\mathrm{Na}_{2} \mathrm{~S}$ in the sample. The difference between this titration and the previous titration represents the number of Cc . it takes to neutralize the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1,2 \mathrm{Na}_{2} \mathrm{SO}_{3}$, borium sulphite being practically insolúble in a iarge volums of water.

[^0]
(c) Sodium Sulphide $+\mathrm{Na}_{2} \mathrm{SO}_{3}+\mathrm{Na}_{2} \mathrm{SO}_{3}$

This is determined by adding the sulphide solution to an amount of iodine within half a Cc. of the end point, which can be found by trial. Iwo Co. of this solution is added to this amount of iodine in about 200 Cc . of distilled oxygen-free water and acidified with an excess of acetic acid. The titration is then completed, using starch as an indicator. une Cc. of a decinormal iodine solution is equal to .003908 Gm . of $\mathrm{Na}_{2} \mathrm{~S}$ and. 003105 Gm . of $\mathrm{Na}_{2} \mathrm{O}$. This titration indicates the amount of $\mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{~S}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{3}$ in the sample.
(d) Sodium Thiosulphate and Sodium Sulphite

To 5 Cc . of the solution in a graduated 250 Cc . flask add an excess of an ajkaline solution of zinc chloride; make up to mark, shake for a few minutes and allow to settle; draw off 50 Cc . of the clear solution with a pipette and neutralize with normal sulphuric acid, using methyl orange as indicatnr. This converts the sulphites present to acid sulphites, When acid sulphites are titrated with iodine solution the following reaction takes place:

$$
\mathrm{NaHSO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}=\mathrm{NaHSO}_{4}+2 \mathrm{HI}
$$

Thus one molecule of acid sulphite on titration with iodine solution liberates acid equivalent to three molecules of sodium hydroxide.

The solution is then titrated with tenth normal iodine solution, using starch as an indicator. It is then decolorized with one drop of sodium thiosulphate solution and titrated to neutral with tenth normal sodium hydroxide solution. The number of Cc. multiplied by .0042 gives the amount of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ in the sample, and this figure divided by .0063 gives the iodine value of the sodium sulphite. Subtract this from the iodine titration previously obtained, which will give the iodine equivalent to the sodium thiosulphate present.

CALCULATION OF RESULTS

$\mathrm{Na}_{2} \mathrm{SO}_{3}$.
c-d gives the Cc. of iodine for sodium sulphide. $\mathrm{a}-\mathrm{b}$ gives the number of Cc . for $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $1 / 2$ I Cc. second normal ($\mathrm{N} / 10$) $\mathrm{H}_{2} \mathrm{SO}_{4}=.0265 \mathrm{Gm}$. of $\mathrm{Na}_{2} \mathrm{CO}_{3}=.0155 \mathrm{Gm}$. of $\mathrm{Na}_{2} \mathrm{O}$.

The titration in (b) expressed in $\mathrm{Na}_{2} \mathrm{O}$, minus the sodium sulphide as $\mathrm{Na}_{2} \mathrm{O}$, gives the $\mathrm{Na}_{2} \mathrm{O}$ as NaOH .
1.29 Na O $=\mathrm{NaOH}$.
I.Cc, tenth normal iodine $=.0158 \mathrm{Gm}$. of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.

> BLACK LIQUOR?

The examination of black liquor is conducted as follows:
(1) A 50 Cc, portion of black liquor is evaporated to dryness in a platinum dish. The residue is ashed over a bunsen burner and the soluble salts are leached out with hot distilled water, The entire solution obtained is titrated With nosmal sulphuric acid, using methyl orange as an indicator. The number of cubic centimeters of acid required to produce the end point multiplied by 0.62 gives the grammes per liter of total sodiura oxide ($\mathrm{Na}_{2} \mathrm{O}$) in the black liquor.
(2) A 100 Cc , portion of the same black liquor is mixed with 50 Cc , of 10 per cent barium chloride solution in a 500 Cc. calibrated flask. The mixture is then diluted to 500 Cc. with neutralized or fleshly distilled water, free from carbon dioxide and thoroughly agitated. After settlin r, 50 Cc . of the clear supernatant liquor is titrated with tenth normal hydrochloric acid, using phenolphthalein as indicator. The number of cubic centimeters of acid required for the end point multiplied by 0.401 gives the number of grammes per liter of free caustic soda (NaOH) in the black liquor. ${ }^{2}$
$\mathrm{I}_{\text {Taken }}$ from Bulletin of the U. S. Department of Agriculture No. 80, (Professional Paper), "Effects of Varying Certain Cooking Conditions in Producing Soda Pulp from Aspen, " by Henry E. Surface, Engineer in Forest Products, Foryst Products Laboratory, Madison, Wisconsin.

This result must be corrected if Nazs is found to be present in the black liquor, which can be determined by the methnd given. $\mathrm{Na}_{2} \mathrm{~S}$, on titration with acid, using phenolphthalein as indicator, turns, when half of it is neutralized, to NaSH.
(3) The causticity of the black liquor was calculated from the following equation:
$\frac{A(0.775) 100}{B}=$ percent causticity.
In which:
 caustic soda (NaOH). (Correct for $\mathrm{Na}_{2} \mathrm{~S}$ if present.)
$B=t h e$ number of grammes per liter concentration of total sodium oxide $\left(\mathrm{Na}_{2} \mathrm{O}\right)$.

Sulphide, if present in black liquor may be determined as follows:

> DETERMINATION OF $\mathrm{NA}_{2} \mathrm{~S}_{4}$ (VOLUMETRIC METHOD)
(a) Standard Zinc Solution: $(301.44 \mathrm{Gm}$. for $18 \mathrm{~L}: 1\}$ Cc. $=.02$ Gm. $\mathrm{Na}_{2} \mathrm{~S}$.)
16.746 grammes of C. P. powdered $(30-\mathrm{mesh})$ zinc are dissolved in a small excess of nitric acid; ammonia is then added until the precipitate formed is completely redissolved. The solution is diluted to $2,000 \mathrm{Cc}$. Enough ammonia must be present to just keep the zinc from precipitating when diluted to this volume.
$1 \mathrm{Cc} .=.010 \mathrm{Gm} \cdot \mathrm{Na}_{2} \mathrm{~S}$.
(b) Ammoniacal NiSO_{4} indicator:

Nickel ammonium sulphate made alkaline with am:sonia.
(c) Manipulation:
$50 \mathrm{Cc} . \mathrm{black}$ liquor is diluted to $1,000 \mathrm{Cc} .$, and 20 Cc. (equivalent to l Cc, original black liquor) is diluted to about 100 Cc . with distilled water and the standard zinc solution run in from a burette. The end reaction is determined by noting whether a precipitate of black Ni is formed when 3. little of the solution being titrated is added to three drops of ammoniacal NiSO_{4} indicator on a spot plate or white waxed surface.

[^1](1) Take 5 Cc . of the liquor and dilute to 100 Cc . with water. of this diluted liquor take 20 Cc . and titwate it with $\mathbb{N} / 4 \mathrm{HCl}$, using methyl orange as an indicator. This titra: ion indicates the number of Cc . of $\mathrm{N} / 4$ acid required to neutralize all the alkali presenc.
(2) Then take 5 Cc . liquor and precipitate with BaCl_{2} adding enough water to make 100 Cc . Aftel precipitation, take 20 CC . and titrate with $\mathrm{N} / 4 \mathrm{HCl}$, using pherolphthalein as an indicator. After the color changes add methyl orange indicator and titrate again.

Suppose amount of acid used with phenolphthalein indicator to be represented by "A", and the total acid for both titrations by "B", then
$A=C c . N / 4 \mathrm{HCl}$ equivalent to NaOH plus $1 / 2 \mathrm{Na}_{2} \mathrm{~S}$.
$\mathrm{B}=\mathrm{Cc} . \mathrm{N} / 4 \mathrm{HCl}$ equivalent to NaOH plus $\mathrm{Na}_{2} \mathrm{~S}$.
$\mathrm{A}-(\mathrm{B}-\mathrm{A})=\mathrm{Cc} . \mathrm{N} / 4 \mathrm{HCl}$ equivalent to NaOH .
$2(\mathrm{~B}-\mathrm{A})=\mathrm{Cc} . \mathrm{N} / 4 \mathrm{HCl}$ equivalent to $\mathrm{Na}_{2} \mathrm{~S}$.
Total alkali=Cc. $N / 4 \mathrm{HCl}$ equivalent to $\mathrm{Na}_{2} \mathrm{CO}_{3}$ plus
$\mathrm{Na}_{2} \mathrm{~S}$ plus NaOH.
Total alkali-($A-(B-A)-2(B-A)=C c . N / 4 \mathrm{HCl}$ equivalent to $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
lotal alkali-B=Cc. $\mathrm{N} / 4 \mathrm{HCl}$ equivalent. to $\mathrm{Na}_{2} \mathrm{CO}_{3}$. exaraple:
Suppose total alkali $=12.4 \mathrm{Cc}$.
Suppose. A=7.7 Cc.
$\mathrm{NaOH}=$

$$
\text { Suppose } B=9.1 \mathrm{Cc} \text {. }
$$

$\mathrm{A}-(\mathrm{B}-\mathrm{A})$
$7.7-(9.1-7.7)=6.3$ Cc. $\mathrm{N} / 4 \mathrm{HCl}$
6. $3 \times 04 / 4 \times 1000=63$ grammes per litre.
$\mathrm{Na}_{2} \mathrm{~S}=$
$\mathrm{Na}_{2} \mathrm{CO}_{3}=$

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned}\left(\begin{array}{l}
B-A) \\
9.1-7.7)=2.8 \mathrm{Cc}, \mathrm{~N} / 4 \mathrm{HCl}
\end{array}\right.
$$

2. $8 \times 039,4 \times 1000=27.3$ grammes per litre

> Total alkali-B
$12.4-9.1=3.3 \mathrm{Cc} . \mathrm{N} / 4 \mathrm{HCl}$
$3.3 x .053 / 4 \times 1000=43.725$ grammes per litre.

CAUSTIC LIQUUR

As a matter of every day work to secure a sufficiently accurate knowledge of the causticity of the liquor, take first, 5 Cc . of the liquor, dilute to 100 Cc . with water and titrate, using methyl orange as indicator.

Place 50 Cc . of the liquor in a 500 Cc . flask, add about 50 Cc . distilled water and precipitate by BaCl_{2}, dilute to mark, mix and settle. Withdraw 50 cc . of the clear liquor, or filter and titrate with $1 / / 4 \mathrm{HCl}$, using methyl orange as indicator.

Suppose first titration to have used 12.4 Cc . of $\mathrm{N} / 4$ HCl and the second $10,5 \mathrm{Cc}, \mathrm{N} / 4 \mathrm{HCl}$. To get causticity divide 10.5 by 12.4 or 84 plus percent caustic.

[^0]: $1_{\text {Report }}$ of committee of the Technical Association of the Pulp and Paper Industry on standardization of methods of chemical control of the Kraft process, George S.Holmes, Joseph E. Hedin and Otto Kress.

[^1]: This method has been carefully checked by G. C. McNaughton of the Forest Products Laboratory and found to give good results.

