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Mutation analysis is the gold standard for evaluating test-suite adequacy. It involves

exhaustive seeding of all small faults in a program and evaluating the effectiveness of

test suites in detecting these faults. Mutation analysis subsumes numerous structural

coverage criteria, approximates fault detection capability of test suites, and the faults

produced by mutation have been shown to be similar to the real faults.

This dissertation looks at the effectiveness of mutation analysis in terms of its ability

to evaluate the quality of test suites, and how well the mutants generated emulate real

faults. The effectiveness of mutation analysis hinges on its two fundamental hypotheses:

The competent programmer hypothesis, and the coupling effect . The competent pro-

grammer hypothesis provides the model for the kinds of faults that mutation operators

emulate, and the coupling effect provides guarantees on the ratio of faults prevented by

a test suite that detects all simple faults to the complete set of possible faults. These

foundational hypotheses determine the limits of mutation analysis in terms of the faults

that can be prevented by a mutation adequate test suite. Hence, it is important to

understand what factors affect these assumptions, what kinds of faults escape mutation

analysis, and what impact interference between faults (coupling and masking) have.

A secondary concern is the computational footprint of mutation analysis. Mutation

analysis requires the evaluation of numerous mutants, each of which potentially requires

complete test runs to evaluate. Numerous heuristic methods exist to reduce the number

of mutants that need to be evaluated. However, we do not know the effect of these



heuristics on the quality of mutants thus selected. Similarly, whether the possible im-

provement in representation using these heuristics are subject to any limits have also

not been studied in detail.

Our research investigates these fundamental questions to mutation analysis both

empirically and theoretically. We show that while a majority of faults are indeed small,

and hence within a finite neighborhood of the correct version, their size is larger than

typical mutation operators. We show that strong interactions between simple faults can

produce complex faults that are semantically unrelated to the component faults, and

hence escape first order mutation analysis. We further validate the coupling effect for

a large number of real-world faults, provide theoretical support for fault coupling, and

evaluate its theoretical and empirical limits. Finally, we investigate the limits of heuristic

mutation reduction strategies in comparison with random sampling in representativeness

and find that they provide at most limited improvement.

These investigations underscore the importance of research into new mutation opera-

tors and show that the potential benefit far outweighs the perceived drawbacks in terms

of computational cost.
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Chapter 1: Introduction

The ideal measure of the efficacy of a test suite is its fault detection adequacy based on a

set of faults discovered during the lifetime of the program under consideration. However,

it is often hard to measure even in a research setting [42] due to the unavailability of

an exhaustive set of real faults for a given program. The most popular alternative is

the coverage criteria [7], which describes the degree to which various program structures

were exercised by the test suite. However, relying on the coverage criteria misses out on

the actual verification of execution results – that is, the strength of its assertions. If one

considers both parts – coverage, and assertion strength, mutation score is considered to

be the best proxy [7, 31] for the efficacy of a test suite. The mutation score is obtained

from mutation analysis1, which involves the introduction of simple syntactic changes to

the program, followed by evaluation of the ability of the test suite under consideration

to detect these changes. Indeed, it is easy to show that mutation analysis subsumes

numerous coverage criteria [7,69,81] in that a corresponding set of mutants can only be

detected if a given criterion is satisfied. A mutation adequate test suite detects more

bugs than the coverage adequate (edge-pair, all-uses, prime-paths) test suites [61], and

produces faults that are more similar to real-world bugs when compared to hand-seeded

faults [8, 9]. We also found that mutation score tracks the fault detection capability of

test suites [3]. These factors make mutation analysis an attractive tool for researchers

investigating test suite quality.

Mutation analysis assumes two fundamental hypotheses [31]: The competent pro-

grammer hypothesis2 and the coupling effect . The competent programmer hypothesis

asserts that a non-pathological [17] program written by a competent programmer is syn-

tactically very close to the correct version. The coupling effect is concerned with the

semiotics3 of fault interaction. According to the coupling effect , complex faults are cou-

pled to simple faults such that a test suite capable of detecting all simple faults in isolation

will, with high probability, detect most of the complex faults in a program [55,76,77].

1Also called program mutation and mutation testing.
2Also called the finite neighborhood hypothesis
3The relation between syntax and semantics of faults
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The effectiveness of mutation analysis as a test suite adequacy measure is reliant on

these foundational hypotheses. However, whether the real world faults actually obey

these axioms, and if they do, to what extent, has not been adequately investigated.

Indeed, it is possible that not all the faults are covered by the competent programmer

hypothesis and the coupling effect . Secondly, mutation analysis suffers from a heavy

computational footprint [17, 55], which makes traditional mutation analysis infeasible

for even moderately large code bases. Hence, numerous heuristics have been proposed to

limit the number of mutants evaluated. However, it is an open question whether these

heuristics are uniformly good for all programs, and whether there are any limits to the

improvement that they can provide.

We expand on the limits of mutation analysis in the coming sections.

1.1 Limits of the Foundational Hypotheses of Mutation Analysis

In this section, we consider the limits of mutation analysis due to the foundational

hypotheses.

1.1.1 The competent programmer hypothesis

The competent programmer hypothesis asserts that programmers tend to make small

mistakes. That is, given a program P , and the set of mutants described by Φδ(P ), which

are at most δ changes away from P , the competent programmer hypothesis asserts that

the correct program lies within Φδ(P ). The traditional mutation operators rely on a

stricter assertion in that they typically tend to produce mutants that differ from the

correct version by a single token. That is, δ = 1. Indeed, if we consider large programs

with numerous bugs, this traditional interpretation without qualifications is obviously

incorrect. However, the idea is that if we consider specific independent bugs, these tend

to be fairly small. While it is certainly plausible, are a majority of fault fixes similar to

the mutation operators that are traditionally single token modifications? What effect

does the language have, on the syntactic size of faults? Are some languages more likely

to lead to larger or smaller fixes? The mutation operators implicitly assume that the

possibility of a fault at any point in the source code is proportional to the number of

valid modifications that can be made at that point. Is this assumption correct? Does
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the ratio of possible mutations correspond to the actual faults? The correspondence

of the competent programmer hypothesis to the real world determines the faults that

mutation analysis can emulate and hence prevent. This thesis investigates the limits to

the correspondence of competent programmer hypothesis and the real world, especially

under different languages.

1.1.2 The coupling effect

A fault subsumes another when any test case capable of detecting the former is guar-

anteed to detect the later. The coupling effect asserts that simple faults subsume most

complex faults. Mutation analysis relies on the coupling effect to limit the mutation

operators to only first order modifications. Unfortunately, the coupling effect is rather

ambiguous as to what is a simple fault and vague about the ratio of higher order faults

that can be expected to be found by the test suite that detects all simple faults. An

exhaustive empirical validation of the coupling effect assumption is infeasible as there is

an exponential number of higher order mutants for any set of first order mutants. Hence,

empirical evaluation has been limited to just until mutants of third order [76]. Previous

theoretical analysis [92] has been limited in that it considers only programs with same

domain and range. It is also incomplete in that it does not account for recursion and

iteration, which are common constructs in programming. This thesis provides a stronger

axiomatization of the coupling effect– The composite fault hypothesis: Tests detecting a

fault in isolation will (with probability K ≈ 99%) continue to detect the fault even when

it occurs in combination with other faults. Our theory of composite faults clarifies what

an atomic fault is, and provides theoretical support and strong empirical evidence for

the composite fault hypothesis. The composite fault ratio is the lower limit of the general

coupling ratio. That is, we can expect more test cases to fail for complex faults than for

the component faults due to the strong interaction between faults.

1.2 Limits of Mutation Reduction Strategies

The biggest problem with mutation analysis is its heavy computational footprint due to

the enormous number of mutants that need to be evaluated for even a moderately large

program. Numerous strategies have been proposed to reduce the number of mutants
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to be evaluated, and these strategies often report a high ratio of reduction. However,

what impact these strategies have, on the effectiveness of the reduced mutant set, and

whether the improvement in effectiveness has any limits has not been investigated. This

thesis comprehensively investigates the limits of mutation reduction strategies in terms

of improvement possible with respect to a random sample of mutants of the same size.

We show that there is a theoretical limit to the amount of improvement possible using

any mutation reduction strategies, and provide empirical evidence for the same.

This thesis investigates these fundamental limits in mutation analysis empirically as

well as theoretically.

1.3 Research Goals

This dissertation has the following high-level goals

1. Investigate the limits of the competent programmer hypothesis: Identify the limita-

tions in using first order mutation to emulate simple faults, especially with regard

to the typical size of real faults, and the factors that affect the distribution of

faults. Investigate whether all atomic faults are first order faults.

2. Investigate the limits of the coupling effect : Investigate the interference between

faults in terms of both constructive (coupling effect) and destructive (fault mask-

ing) interference. Can we rely on coupling effect even on extremely large code

bases?

3. Evaluate the empirical and theoretical limits of redundancy reduction using selec-

tive mutation strategies.

1.4 Structure

This thesis is based on the following papers:

• Chapter 2 presents our paper “Mutations: How close are they to real faults?”

which was published at ISSRE 2014. This paper primarily investigates the first

high-level goal. It investigates real-world faults in 5, 000 real-world programs es-

pecially with regard to the validity of the competent programmer hypothesis. We
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investigate the typical program neighborhood, and the real-world distribution of

faults corresponding to different mutation operators. We also evaluate the impact

of programming language on the distribution and size of changes.

• Chapter 3 presents our paper “The Theory of Composite Faults” which was pub-

lished at ICST 2017. In this paper, we investigate the first as well as the second

high-level goal, and we make two major contributions: As the first contribution,

we investigate the precise definitions of what an atomic fault is, and also whether

all atomic faults are first order. We further provide a stronger theory of faults:

The composite fault hypothesis. Our second contribution is an empirical evaluation

of the general coupling effect, resulting in precise empirical values of the general

coupling ratio as well as the composite fault ratio.

• Chapter 4 presents our paper “On The Limits Of Mutation Reduction Strategies”

which was Published at ICSE 2016. This paper investigates the third high-level

goal. We make two main contributions. The first is a theoretical framework to

model the limits of mutation reduction strategies against random samples given

the distribution of mutants. We further evaluate the theoretical limits of selection

strategies in a simple system with uniform mutant redundancy. The second con-

tribution is the identification of empirical limits of heuristic mutation reduction

strategies in selecting non-redundant mutants.

• Chapter 5 concludes this dissertation and presents our ideas on how to take our

research forward.

1.5 Contributions

The contributions of this dissertation are:

1. Identification of the size of typical program neighborhoods, and the impact of

programming language on the distribution of faults. (Chapter 2)

2. A formal and precise definition of the atomic fault (Chapter 3): An atomic fault

is a fault that can not be semantically decomposed.
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3. An improved theory of fault masking called the theory of composite faults (Chap-

ter 3) Composite fault hypothesis: Tests detecting a fault in isolation will (with

probability K ≈ 99%) continue to detect the fault even when it occurs in combina-

tion with other faults.

4. Empirical evaluation of general coupling ratio and the composite fault ratio (Chap-

ter 3)

5. A theoretical framework for evaluating the limit of improvement possible using

selective reduction strategies given the distribution of mutants (Chapter 4)

6. A precise empirical limit for improvement possible using selective reduction strate-

gies in real world (Chapter 4)
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Chapter 2: Mutations: How close are they to real faults?

2.1 Introduction

Mutation analysis is a fault injection technique originally proposed by Lipton [63] and

is often used in software testing. It is used as a means of comparison between different

testing techniques [9], as a means of estimating whether a test suite has reached ade-

quacy [103], and as a means of emulating software faults for the purposes of estimating

software reliability [15]. In fact, the validity of mutation analysis is an assumption un-

derlying considerable work in other suite evaluation techniques, such as code coverage

criteria [42].

Mutation analysis involves systematic transformation of a program through intro-

duction of first order syntactical changes, and determines whether tests can distinguish

the mutated code from the original (presumed correct) source code. A mutation score,

which measures how many mutants were distinguished from the original code by at least

one test, is used as a measure of the effectiveness of the test suite [7] because it is believed

to correlate well with the effectiveness of the test suite in detecting real faults [8].

Mutation analysis relies on two assumptions: (1) the competent programmer hypoth-

esis and (2) the coupling effect [18]. The competent programmer hypothesis suggests

that the version of program produced by a competent programmer is close to the final

correct version of a program, while the coupling effect claims that a test suite capable

of catching all the first order mutations will also detect most of the higher order muta-

tions. In practice, a strong competent programmer hypothesis (that for programs of any

size the initial version is syntactically close to correct) is fairly obviously incorrect for

large programs. However, mutation analysis only rests on a weaker version: that the

competent programmer hypothesis holds with respect to each individual fault.

For mutation analysis to be successful, the mutants it produces should ideally be

similar in character to the faults found in real software. This property has been used in

practice by many researchers [9, 40, 47, 83], for generating plausible faults1. While this

1These articles do not explicitly call upon the competent programmer hypothesis, but we believe
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has been investigated by a few researchers [8, 27, 75, 86], the evidence is largely based

on the real faults from a single program. Further, except for the study by DeMillo et

al. [86], the similarities investigated were constrained to the error trace produced [27],

and the ease of detection [8, 75].

The existing body of work, especially by DeMillo et al. underscores the necessity

of further studies, with a much larger sample of programs, especially in light of the

proliferation of programming languages and availability of open source software. We

expand the work by DeMillo et al. — which investigated 296 bug-fixes from a single

program (TeX) — to faults from 5,000 programs in four different programming languages

(C, Java, Python, and Haskell) — a total of 240,000 bug-fixes.

We also extended our investigation to local patches that contain just a single mod-

ification in them, which should contain a simple fault, and hence should be similar to

those produced by mutation operators. The incidence of bug fixes and local changes in

the overall population is summarized in Table 2.1. The details of our data collection are

summarized in Section 3.4.

Our analysis, summarized in Section 3.5, suggests there is a huge variation in the inci-

dence of different classes of mutations, which are dependent on the kind of programming

language chosen. Further, there are a significant number of change patterns which are

different from the single token change captured by standard mutation operators. Hence,

using all mutations equally would not be representative of the real faults in software, and

most real faults do not match any mutation operator. Further, the choice of mutation

operators also needs to be guided by the programming language used. We provide a

basis for future investigations in this regard.

The data for this study is available at Dataverse [43].

2.2 Related Work

Our work is an extension of the work done by DeMillo et al. [86], Daran et al. [27]

Andrews et al. [8] and Namin et al. [75] which attempts to relate the characteristics of

mutation operators to that of real faults. In the remainder of this paper, we use the

term mutation operator to indicate, in context, either actual mutation operators applied

that their use of mutation analysis-generated faults instead of a fault seeding approach based on fault
distributions is essentially based on the Competent Programmer assumption.



10

during mutation analysis, or the actual small changes made to code in bug fixes.

DeMillo et al. [86] were the first researchers to investigate the representativeness of

mutations to real faults empirically. They investigated the 296 errors in TeX, and found

that 21% were simple faults (single token changes), while the rest were complex errors.

Daran et al. [27] investigated the representativeness of mutation operators to real

faults empirically. They studied the 12 real faults found in the program developed

by a student, and 24 first order mutants. They found that 85% of the mutants were

similar to the real faults. While this paper highlights the importance of relating the

actual mutations to real faults, they were constrained by their small sample size, a single

program. More importantly, the conclusions were based on only 12 real faults.

Another important study by Andrews et al. [8] investigated the ease of detecting a

fault for both real faults and hand seeded faults, and compared it to the ease of detecting

faults induced by mutation operators. The ease is calculated as the percentage of test

cases that killed each mutant. Their conclusion was that the ease of detection of mutants

was similar to that of real faults. However, they based this conclusion on the result from

a single program, which makes it unconvincing. Further, their entire test set was eight

C programs, which makes the statistical inference drawn liable to type I errors. We also

observe that the programs and seeded faults were originally from Hutchins et al. [51]

where the programs were chosen such that they were subject to certain specifications

of understandability, and the seeded faults were selected such that they were neither

too easy nor too difficult to detect. In fact they eliminated 168 faults for being either

too easy or too hard to detect, ending up with just 130 faults. This is clearly not an

unbiased selection. More seriously, this selection can not tell us anything about the ease

of detection of hand seeded faults (because the criteria of selection itself is confounding).

These acute problems were highlighted in the work of Namin et al. [75] who used the

same set of C programs, but combined them with analysis of four more Java classes from

JDK. They used a different set of mutation operators on the Java programs, and used

fault seeding using student programmers on them. Their analysis concluded that we

have to be careful when using mutation analysis as a stand-in for real faults. They found

that programming language, the kind of mutation operators used, and even test suite

size has an impact on the relation between mutations introduced by mutation analysis

and real faults. In fact, using a different mutation operator set, they found that there

is only a weak correlation between real faults and mutations. However, their study was
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constrained by the paucity of real faults available for just a single C program (same as

Andrews et al. [8]). Thus they were unable to judge the ease of detection of real faults

in these Java programs. Moreover, the students who seeded the faults had knowledge

of mutation analysis which may have biased the seeded faults (thus resulting in high

correlation between seeded faults and mutants). Finally, the manually seeded faults in C

programs, originally from Hutchins et al. [51], were confounded by their selection criteria

which eliminated the majority of faults as being either too easy or too hard to detect.

These previous efforts prompted us to look at evaluating mutation analysis from a

different direction. We wondered if the ease of detection was the only relevant criteria

when comparing mutation operators and real faults. Why not compare them directly,

by comparing the syntactical patterns of both? Even if it is argued that there may be

interdependent changes that make it difficult to compare, we can still get a reasonable

result by restricting our analysis to small local changes that are limited to a single change

in a single file.

There has been other research in related fields that takes a similar approach. Christ-

mansson et al. [20, 21] analyzed field data to come up with an error model that mimics

real faults, and used these to inject errors to simulate faults. Their study classified the

defects based on their semantics using Orthogonal Defect Classification [19]. While this

research is useful in its domain, it is inapplicable to mutation analysis, which is primarily

a syntactical technique. We want to easily generate bugs that look like and feel like real

bugs with relatively little context. We certainly don’t want to understand the semantic

content, e.g. whether a mutation introduces a functional error, an algorithmic error, or

a serialization error (classifications of ODC).

Duraes et al. [37, 38] analyzed the change patterns in 9 open source C projects, and

collected a total of 668 faults. They adapted Orthogonal Defect Classification to provide

a finer classification of errors into missing, wrong, and extraneous language constructs.

They find 64% of the faults were due to missing constructs, 33% due to changes, and only

2.7% were due to extraneous constructs. While this study is the closest to our approach,

they are also limited by concentration on a single language (C), and a comparatively

small number of faults (532 faults) to ours. Further, while the classification they provide

is finer grained than ODC, it is still at a higher level than the typical mutation operator

implementations. In comparison, our analysis of a larger set of data indicates that

addition and deletion were relatively similar in prevalence, while changes dominated in
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all the languages we analyzed.

A larger study of similar nature by Pan et al. [82] extracted 27 bug fix patterns

from the revision history of 7 projects, which cover up to 63.3% of the total changes,

and computed the most frequent patterns. Their study, like the previous one by Duraes

analyzed the patterns from a higher level than typical mutation operators, and hence is

not directly applicable to mutation analysis. Further, their analysis is restricted to Java

programs which, along with the limited number of projects reduces their applicability.

Our research uses machine learning techniques to automatically classify patches as

bug-fix or non bug-fix based on an initial set of changes that we manually classified.

Mokus et al. [70] first used a classifying approach that relied on the presence of keywords.

They classified changes into categories of fixes, refactoring and features.

Another related study is by Purushotam et al. [84] who analyzed the change history

of a large software project, specifically focusing on small (one line) changes. They were

interested in finding the patterns of changes that can induce an error with high prob-

ability in software. The study is interesting for the distribution they found for small

changes, which we also consider. They found that 10% of the total changes involved

a single line of code, and 50% were below 10 lines, dropping to 5% for those above 50

lines. They also suggest that most changes involved inserting new lines of code. Our

study found that small (local) changes can range from 26.2% in C to 62.7% in Haskell

(see Table 2.1).2

Table 2.1: Localized changes and bug-fixes prevalance in %

C Java Python Haskell

Localized changes 26.241 27.278 43.770 62.685
Bug-fixes 44.314 29.612 34.395 31.009

Localized bug-fixes 10.464 9.053 16.541 16.486

2.3 Methodology

We were primarily interested in finding answers to the following questions.

Q Can we find empirical evidence for or against the competent programmer hypoth-

2The percentages given in Table 2.1 are overlapping. The set of changes is divided into bug-fixes and
feature updates, and orthogonal to that, as local (single line), and non-local (mult-line) changes
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Figure 2.2: Density plot of added vs removed number of tokens in replacement changes
for full distribution

esis? Can we find any support for the assumption that real faults look like those

produced by typical mutation operators? Can we do this by analysis of patches

(whether it be the complete set of changes or a subset that is identified as bug-fixes

or local small bug-fixes that should be fixes for simple faults)?

Q How much of an effect does programming language have on the distribution of

change patterns? Can we extend the results from the distribution of syntactical

changes or fault patterns in one language to another? We especially want to make

sure that we compare apples to apples here and look at a common set of mutation
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Figure 2.3: Average length of added vs removed tokens

operators across different languages.

Q What are the most common mutation operators? Are they different from the

traditional mutation operators that are commonly used? Can we provide any

guidance to future implementors of mutation tools so that mutation operators

produced look similar to real faults?

We wanted our results to be applicable to a wide variety of languages and ensure

that our analysis did not suffer from bias for a particular language group. We chose

four languages, each representative of an important kind of development. We chose C as

the dominant systems programming language, widely used in the most critical systems



15

1

2 class MyClass {

3 int loop(int counter) {

4 int i = 0;

5 while(i < counter) {

6 * <count = count +1 | i++ >;

7 }

8 * return <count | i>;

9 }

10 }

Listing 1: An example patch

for testing. Java was chosen as a popular programming language used in enterprise

applications. The choice of Python was driven by its status as one of most popular

languages in the dynamically typed community, and its use in many domains including

statistics, mathematics, and web development. Finally Haskell, while less popular than

the other three, is a popular strongly typed functional language preferred in academic

research.

To ensure that we had a relatively unbiased population from each language, we

searched for projects in Github [41] with criteria stars :>= 0 and filtered by the language

side bar. We used this criteria since this is a nil-filter—the stars start from ‘0’—and hence

no project was excluded. This search resulted in 1850 projects for C, 1128 for Java, 1000

for Python, and 1393 for Haskell.

2.3.1 Classifying patches

Each project from Github came with its entire revision history, which is accessible as

a set of patches. To answer our research questions we had to differentiate between

bug-fixes—where some pre-existing fault was fixed—and patches that were not bug-

fixes. Since we lacked resources to manually classify our entire dataset, we made use of

machine learning techniques. We manually classified 1200 patches as bugs or non-bugs

for each of the languages. Out of these 4800 classified patches, we used 4000 to train

our classifiers, and used 800 (200 from each) to cross validate our trained classifiers.

We achieved an accuracy of 78.87% using CRM114 classifier [26] which gave us the
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highest accuracy out of Bayesian, Bishop, LSI, and SVM classifiers. The acceptance

accuracy (i.e. the percentage of bugs in the validation set that were correctly classified

as bugs) for bugs was 73.19%, while the rejection accuracy (the percentage of non-

bugfixes that were correctly classified as non-bugfixes) was 81.24%. We got overall better

results by combining training examples from all the languages than by training on each

in isolation. For example, using individual training, accuracy obtained for Java was

76.5% (acceptance: 64.4%, rejection 81.5%), 77% (acceptance: 76.8%, rejection: 77.1%)

for Python, 71% (acceptance: 69.7%, rejection: 71.8%) for C, and 76% (acceptance:

70.9%, rejection: 76.9%) for Haskell. This rate is close to the rate obtained by leading

research [11] in classification of bugs and non-bugs, which obtained an accuracy between

77% to 82% using change tracking logs.

After classification, we found that 44.31% of commits in C were bug fixes, 29.6% for

Java, 34.39% for Python and 31.01% for Haskell. The distribution is given in Table 2.1.

2.3.2 Generating normalized patches

Next, we wanted to collect the patches corresponding to commits in each project, after

discounting for the differences due to whitespace and formating changes. To accomplish

this, for each project, the following procedure was applied to collect normalized patches

for each projects.

First, the individual revisions of files were extracted, and they were cleaned up by

stripping comments, joining multi-line statements, and hashing string literals. These

were then re-formated by passing through a pretty-printer. This removed the differences

due to addition or removal of comments or due to formating changes. Next, successive

revisions were diffed against each other using a token-based diffing algorithm, and the

patches thus produced were collected.

2.3.3 Sampling

We were interested in finding the distribution of token changes, unbiased by effects of

project size, developer or project maturity, or other unforeseen factors. For statistical

inference to be valid to a given population, the observations from which the inference is

drawn should be randomly sampled from the targeted population. For this purpose, we
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decided to generate random samples of patches from the projects we had.

We generated 10 random samples, with each containing 1,000 patches for combina-

tions of the following sets—whether they are bugs or not (bug, nonbug, all), whether the

bug fix was local or otherwise (small, all), and each of the languages (C, Java, Python,

Haskell). This generated 3× 2× 4× 10 = 240 samples (240,000 patches, but some may

be repeated in multiple samples).

2.3.4 Collecting chunks

Each patch is composed of multiple segments in the file where some text was removed, or

added, or some text was replaced (remove + add). An example patch is given in Figure 1.

This patch contains two chunks. The first chunk is in line 6 and involves removal of 5

tokens, and addition of two tokens. The second one is in line 8, and involves removal

of a single token and addition of another. These chunks were extracted and processed

further by eliminating syntactic sugar elements such as parenthesis3, commas, etc. and

collapsing strings to their checksums for easier processing. The tokens thus identified

were then passed through a lexical identifier which replaced each lexical element by its

mutation operator class. We use chunk and change interchangeably in this paper.

2.3.5 Identifying mutation operators

For ease of comparison between different languages, we chose to use a single set of muta-

tion operators applicable across different programming languages. We started with the

original 77 operators proposed for the C programming language by Agrawal et al. [2].

We then removed operators that could not be matched from the context of changes.

The mutation operator variants that were mirror images were collected under a single

name. Further, a few mutation operators were discarded because they were inapplica-

ble in other languages. The mutation operators were further grouped into classes for

analysis. Further, the added, removed and changed patterns that could not be classified

under any existing mutation operators were grouped in their own categories, resulting

in ten mutation operator categories. A complete listing is provided in Table 2.6. The

3We may therefore miss some changes that involved semantically meaningful parenthesis additions,
but this is also not a standard mutation operator.
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distribution of average token count is provided in Table 2.13 where max ε is the largest

percentage detected in the remaining token bins.

Table 2.2: Summary of mutation operators for all changes

C Java Py Hs

Add:oth 16.483 17.757 17.082 30.114
Change:oth 32.219 25.115 29.443 32.363

Rem:oth 13.372 14.526 12.215 23.263
Twiddle 0.219 0.057 0.047 0.070

Const 5.425 2.515 6.205 2.270
Var.Const 4.981 2.045 3.372 1.045

Var 26.641 37.744 31.487 10.721
BinaryOp 0.119 0.031 0.033 0.026
Negation 0.428 0.186 0.098 0.102

Table 2.3: Summary of mutation operators for local changes

C Java Py Hs

Add:oth 28.781 29.805 22.699 31.607
Change:oth 23.352 21.078 26.439 29.294

Rem:oth 12.877 13.139 11.614 19.742
Twiddle 0.614 0.286 0.094 0.160

Const 12.126 13.086 21.442 8.545
Var.Const 5.533 4.095 4.384 2.240

Var 14.979 17.279 12.881 7.979
BinaryOp 0.453 0.307 0.158 0.054
Negation 0.932 0.728 0.189 0.332

2.4 Analysis

According to a naive interpretation of the competent programmer hypothesis, a majority

of changes we see should be simple and local and look like traditional mutants. The

traditional mutation operators all operate on changing a single token. In order to inves-

tigate whether this is the case, we plotted the number of tokens added versus the number

of tokens deleted in each change. The result of this analysis is shown in Figure 2.2 for

each language. This figure shows that while there are a significant number of changes
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Table 2.4: Summary of mutation operators for bug-fixes

C Java Py Hs

Add:oth 15.705 19.519 18.714 29.788
Change:oth 32.823 27.470 29.971 33.395

Rem:oth 13.284 15.418 13.529 23.352
Twiddle 0.126 0.049 0.010 0.020

Const 4.242 2.741 7.614 2.101
Var.Const 3.648 2.240 4.808 1.511

Var 29.776 32.314 25.094 9.726
BinaryOp 0.058 0.013 0.019 0.011
Negation 0.296 0.222 0.229 0.086

Table 2.5: Summary of mutation operators for local bug-fixes

C Java Py Hs

Add:oth 29.861 33.103 26.629 33.162
Change:oth 21.686 19.032 28.097 28.149

Rem:oth 12.168 13.082 11.308 18.696
Twiddle 0.852 0.392 0.161 0.259

Const 11.899 10.779 14.226 8.060
Var.Const 5.359 3.634 4.461 2.156

Var 15.856 18.366 14.678 8.773
BinaryOp 0.646 0.326 0.163 0.130
Negation 1.198 1.093 0.165 0.490

that are one token (ε changes), there is a large number of changes that include more

than one token in both added and deleted counts. We note that these are not captured

by the traditional mutants.

A second concern we had was about the difference between the distributions of bug-

fixes and other changes, and the impact of different languages. We plotted the histograms

of average change lengths (computed as the average of added and removed tokens per

change) for each of the languages. This is shown in Figure 2.3. The plot indicates that

bug-fixes do not significantly differ from the main change patterns. However, the figure

indicates a difference in distribution between different languages.

To confirm our finding, we use statistical methods. Students two-sample t-test is a

statistical test that checks whether two sets of data differ significantly. We use it to

determine whether essential characteristics of changes differ between bug-fixes and other
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Figure 2.4: Relative occurrence of mutation operators

commits, and between different languages. We also provide a comparison with difference

in mean between the two distributions obtained by running Students t-test. These were

significant for p < 0.05 except where indicated. The difference between the bug-fix

changes and others are tabulated in the Table 2.7. The columns are as follows: Bug-fix

column provides the mean of bug-fix changes; Nonbug provides the mean of non bug-fix

changes; *SBug provides the mean of local (i.e. small) bug-fixes; LowCI and HighCI

provides the confidence intervals for the mean; MeanD provides the mean difference;

and Pval provides the p-value. The SBug is marked with a star (*) to indicate that

the subjects for this column are different from the other columns (only a subset of all

changes are local changes), and hence the p-value doesn’t apply to this column. We note

that the difference between bug-fix and others changes is universally very low for all four
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Table 2.6: Explanations of mutation operator classes

Class Explanations

Add:oth Added tokens not including twiddle, negation, unary and statement mutation operators
Change:oth Replaced tokens not classified under any of other changes
Rem:oth Removed tokens not including twiddle, negation, unary and statement mutation operators
Twiddle Addition or removal of +/- 1 or the use of unary increment or decrement operators
Const Change in constant value
Var.Const Changing a constant to a variable or reverse
Var Changing a variable to another variable
BinaryOp Changing a binary operator to another
Negation Negation of a value (includes arithmetic, bitwise, and logical)

programming languages, confirming our initial finding from Figure 2.3.

Table 2.7: Average tokens changed between bug-fixes and other changes

Bug-fix Nonbug *SBug LowCI HighCI MeanD Pval

C 4.19 4.17 3.08 -0.06 0.09 0.02 0.65
Java 4.22 4.18 3.18 -0.07 0.14 0.03 0.53

Python 4.39 4.22 3.91 0.07 0.27 0.17 0.00
Haskell 4.48 4.46 3.93 -0.08 0.13 0.02 0.69

Next we compare the distributions of tokens between different languages. The mean

difference from Students t-test is given in Table 2.8. These were not significant for the

pair C and Java, but was significant with p < 0.05 for all other language pairs4

Table 2.8: Mean difference for average tokens changed between different languages (p <
0.05 except C x Java)

C Java Python Haskell
MD LCI HCI MD LCI HCI MD LCI HCI MD LCI HCI

C 0 0 0 -0.02 -0.09 0.04 -0.1 -0.2 -0.06 -0.3 -0.4 -0.2
J -0.02 -0.09 0.04 0 0 0 -0.1 -0.2 -0.03 -0.3 -0.3 -0.2
P -0.1 -0.2 -0.06 -0.1 -0.2 -0.03 0 0 0 -0.2 -0.2 -0.09
H -0.3 -0.4 -0.2 -0.3 -0.3 -0.2 -0.2 -0.2 -0.09 0 0 0

We observe here that while the difference between languages seems small, there is a

large similarity between C and Java patterns, and Haskell is closer to Python than others.

This seems somewhat intuitive if we consider that C and Java are descendants of the

4 After applyong Bonferroni correction for 12 comparisons.
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Figure 2.5: Op× Language interaction

Algol family, while Python to a large part supports functional programming paradigms,

of which Haskell is an exemplar.

2.4.1 Mutation operator distribution

A major part of our analysis is the comparison of mutation operator distributions across

different languages and kinds of patches. We analyze the difference between the com-

plete distribution, that of just bug-fixes alone, and local bug-fixes. This is visualized

in Figure 2.4. The summary of mutation operators are also provided as in Table 2.2,

and a summary of mutation operators for local changes are given in Table 2.3. Finally,

Table 2.4 tabulates the distribution of mutation operators for bug-fixes, and Table 2.5

the distribution of local bug fixes. The mutation operator class explanations are given

in Table 2.6.

2.4.2 Regression Analysis

Regression analysis is a statistical process that helps us to understand the relative con-

tributions of different variables. Here, we make use of regression analysis to assess

the contribution of class of mutation operator, programming language, and the kind of

change (bug-fix or otherwise) to the prevalence of the mutation operator.

First we run our analysis for the complete distribution, analyzing which model fits

best. Next, we run our analysis on only the patches classified as bug-fixes, and finally
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Figure 2.6: Op×Bug interaction

on those local bug-fixes. We use the keys given in Table 2.9 to refer to the variables in

the model.

Table 2.9: Explanations of model variables

Variable Name

P Prevalence of mutation operator
O Operator (Mutagen operator)
L Language
B Bug-fix or otherwise

2.4.2.1 Complete Distribution

We started with the full model containing the full interactions between all given variables.

µ{P |O,L,B} = O + L+B +O × L+O ×B + L×B +O × L×B

However, not all the variables were significant contributors towards the prevelance of the

mutation operator. We sequentially eliminated non-significant variables resulting in

µ{P |O,L,B} = O + L+O × L

This provides us the best fit given in Table 2.10, and has correlation coefficient
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Table 2.10: Results of the model fit for complete distribution

Df Sum Sq Mean Sq F value Pr(>F)

Op 9 101703.67 11300.41 1724.49 0.0000
Language 3 0.00 0.00 0.00 1.0000
Op:Language 27 10669.20 395.16 60.30 0.0000
Residuals 760 4980.20 6.55

R2 =0.955. This suggests that a patch has similar change patterns irrespective of whether

it is a bug-fix or otherwise. This is also suggested by the interaction plot between

mutation operator bug-fixes given in Figure 2.6. Further, we also see the evidence of non

additive interaction between mutation operators and language in Figure 2.5 and in the

ANOVA results in Table 2.10.

2.4.2.2 Localized Change Distribution

Next, we analyze the local changes. These are changes that modify only a single file in

a single part such that the change is restricted to a single chunk. We investigate local

changes because they are closest to the changes produced by mutation operators.

µ{P |O,L,B} = O + L+B +O × L+O ×B + L×B +O × L×B

Interestingly, for local distribution, the interaction between mutation operators, lan-

guage, and bug-fix is significant, which makes the full model the one with the best fit.

The model has R2 =0.955, and the model ANOVA is given in Table 2.11.

Table 2.11: Results of the model fit for local distribution

Df Sum Sq Mean Sq F value Pr(>F)

Op 9 79759.07 8862.12 4088.18 0.0000
Language 3 0.00 0.00 0.00 1.0000
Bug 1 0.00 0.00 0.00 1.0000
Op:Language 27 5319.62 197.02 90.89 0.0000
Op:Bug 9 1378.17 153.13 70.64 0.0000
Language:Bug 3 0.00 0.00 0.00 1.0000
Op:Language:Bug 27 860.12 31.86 14.70 0.0000
Residuals 720 1560.77 2.17
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2.4.2.3 Localized Bug-fix Distribution

The previous result induced us to also look at the distribution of local bug-fixes. These

are local changes that were also identified as bug-fixes. This results in a very close fit

model with a coefficient of correlation R2 =0.991. The result of ANOVA is given in

Table 2.12.

µ{P |O,L} = O + L+O × L

Table 2.12: Results of the model fit for complete distribution

Df Sum Sq Mean Sq F value Pr(>F)

Op 9 42910.04 4767.78 4880.83 0.0000
Language 3 0.00 0.00 0.00 1.0000
Op:Language 27 2002.98 74.18 75.94 0.0000
Residuals 360 351.66 0.98

2.5 Results

Our first question was whether we could quantify the competent programmer hypothesis,

and verify whether real faults look like mutation operators. Our analysis shows that a

significant number of changes are larger than the common mutation operators. A typical

change modifies about three to four tokens in all the programming languages surveyed.

This increases to addition or removal of about six to eight tokens if we consider addition

or removal changes rather than replacement. This increases to five tokens (ten tokens

for addition or removal) if we wish to include at least 80% of the real faults, and remains

relatively the same even when we consider local bug-fixes which we had expected to have

a distribution similar to that produced by mutation analysis, provided the competent

programmer hypothesis is applicable to the mutants produced. This suggests that our

understanding of the competent programmer hypothesis, at least as suggested by typical

mutation operators, may be incorrect.

This also suggests that in at least one dimension—that of patterns of change—

mutations are different from real faults.

Our next effort was to identify whether programming language had any effect on
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Table 2.13: Cumulative density(%) of average token changes

C all J all P all H all C bug J bug P bug H bug

0.5 4.9 6.1 6.2 10.5 5.5 6.3 4.2 10.8
1 29.7 23.6 20.5 31.9 30.2 23.9 19.4 34.7

1.5 36.4 32.2 26.5 42.3 36.4 32.0 24.8 41.7
2 47.2 41.7 38.2 50.7 47.5 42.2 37.3 51.4

2.5 52.1 48.9 42.5 56.3 51.9 48.5 40.8 55.5
3 63.9 65.5 59.9 64.6 63.9 65.7 59.2 64.7

3.5 67.9 70.3 64.8 68.3 67.7 69.9 63.7 67.8
4 72.6 74.9 72.3 72.2 72.5 74.8 71.8 72.4

4.5 75.5 77.6 74.9 75.4 75.3 77.4 74.1 75.0
5 81.1 81.2 80.4 78.1 81.0 81.0 80.2 78.1

5.5 82.8 83.1 82.6 80.2 82.7 82.9 82.1 79.9
6 85.1 84.6 84.8 82.0 85.0 84.5 84.6 82.1

6.5 86.2 86.0 86.2 83.7 86.1 85.8 85.8 83.5
7 88.1 87.5 88.3 85.1 88.0 87.5 88.1 85.0

7.5 89.0 88.5 89.3 86.6 88.9 88.4 89.0 86.3
8 90.0 90.2 90.4 87.5 89.9 90.1 90.3 87.5

8.5 90.6 90.9 91.3 88.4 90.5 90.8 91.0 88.2
9 91.4 91.9 92.2 89.2 91.4 91.8 92.1 89.1

9.5 92.0 92.3 92.9 90.0 91.9 92.2 92.6 89.8
10 92.7 92.9 93.5 90.6 92.6 92.8 93.3 90.6

maxε 0.5 0.6 0.6 0.7 0.5 0.6 0.7 0.6

the distribution of mutants, first without considering the different mutation operators,

and later, including the differences between mutation operators. Our initial analysis

in Table 2.7 and Table 2.8 indicated that while there are interesting affinities between

different languages with regard to the syntactical distance, the effect itself was weak

when different mutation operators were not considered. However, once we consider the

different classes of mutation operators, as shown in the interaction plot in Figure 2.5,

there is a significant difference in mutation distribution between different programming

languages. Finally we conclusively showed using regression analysis that language is an

important contributor to the mutation operator distribution in Table 2.10. The result

holds true even for local bug-fixes as shown in Table 2.12.

This quite strongly suggests that while the average change involves touching about

four tokens in all languages examined, different languages encourage different mutation
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patterns. This suggests that we have to be careful while adapting the results from a

different language.

As our final step, we investigated the most common mutation operators. Our re-

sults shown in Figure 2.4, and tabulated in Table 2.2, Table 2.3, and Table 2.5 show

that different languages have different mutation patterns. Addition, deletion, and the

replacement of tokens, especially those that did not come under traditional mutation

operators, dominated the mutation operator distribution. This suggests a need for more

effective ways to simulate real faults.

An interesting result is also that the distribution we identified between changes of ad-

dition and removal (which are somewhat similar in magnitude in each language surveyed)

is somewhat at odds with previous research [37] which finds addition of statements to

be the highest category (64%), while deletion was small at 2.7%.

Another interesting finding is also the difference between Haskell and other languages

in the prevalence of local changes. We found that for Haskell, more than 60% of the

changes were local changes. Further, we also found that Haskell showed a higher affinity

with Python than other languages with regard to change length distribution (Table 2.8).

2.6 Discussion

Mutation analysis is a very useful technique that is commonly used by researchers as a

stand-in for test suite quality. Its theoretical foundations rely on two important concepts:

that of the competent programmer hypothesis, and the coupling effect . While the coupling

effect has been investigated to some extent both theoretically [93,95] and empirically [77],

relatively little research has investigated the competent programmer hypothesis.

In this paper, we investigated the competent programmer hypothesis. According to

Budd et al. [17] and DeMillo [28], a competent programmer constructs programs that are

at most one simple fault [77] away from correctness, and the program, together with the

mutants generated—the finite neighborhood Φ(P )—would include the correct program.

The implicit claim is that real world programmers are in fact competent, at least most

of the time and with regard to a particular program unit and fault. Mutation analysis

looks for tests that are adequate relative to Φ.

For the ease of discourse, we define different versions of the competent programmer

hypothesis, differentiated by their syntactical finite neighborhood Φ̄δ(P ), that is, Φ̄1(P )
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are all the mutants that are at most one token away.

The current generation of mutation operators are overwhelmingly members of Φ̄1

(excepting a few OO operators for Java [66] and the statement deletion operator [78]).

However, our finding is that real faults appear to have a mean token distance of three

to four, for all languages examined.

This also brings us to the question of effectiveness of the coupling effect on these

larger changes. Coupling has been demonstrated to work only using the entire domain

of higher order faults. We note that the actual empirical data indicates that real faults

occur in such a way as to ensure that the real higher order faults are drawn not from

the entire domain, but a much restricted domain of (what we suspect is) a semantic

neighborhood of the correct program. It could be that detecting mutants from the Φ̄1

family does detect 90% or more of mutants from the full Φ̄δ>1 family, but that real faults

fall heavily into the 10% of mutants hard to detect, for example, since the distributions

do not resemble the syntactic space of higher order operators. Hence, we suggest further

research needs to be done to empirically show that the Coupling Effect holds on real

faults, especially on those belonging to Φ̄δ>1.

We also note that the effectiveness of mutation analysis need not be tied to its

theoretical basis. That is, if suites that effectively kill mutants based on Φ̄1 also have a

very high likelyhood, in a purely empirical sense, of also detecting faults very well, that

the mutants do not resemble the faults does not matter. However, this itself is in fact

the real Coupling Effect that needs to be demonstrated, and as we noted in Section 4.2

the current evidence is not strong enough to place mutation analysis on a sound footing.

2.7 Threats to Validity

While we have taken utmost care to avoid errors, our results are subject to various

threats. First, our samples have been from a single source —open source projects in

Github. This may be a source of bias, and our inferences may be limited to open source

programs. However, in our (personal) experience, we have not seen any evidence of open

source programs differing from closed source programs in terms of fault patterns.

Github selection mechanisms favoring projects based on some confounding criteria

may be another source of error. However, we believe that the large number of projects

sampled more than adequately addresses this concern. We also sampled exclusively
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from the main branch for each projects. We note that if differing fix patterns apply for

different branches, our conclusions especially regarding the token length may be affected.

Another source of error is in the bug classification of patches. However, we have

followed current research recommendations, and obtained a result in classification that

is close to that obtained from current best research in the field.

2.8 Conclusion

One of the main assumptions in mutation analysis is the competent programmer hypoth-

esis, which claims that real programs are very close to correct. If this assumption holds

true, then mutation analysis will produce faults that are similar to real faults. How-

ever, except for an initial small scale research by DeMillo et al., there has been a lack

of research quantifying the syntactic changes involved in real faults, especially with an

adequate number of subjects.

Our research attempts to quantify the syntactic differences found in real faults, and

finds that faults produced by typical mutation operators are not representative of real

faults. Therefore the competent programmer hypothesis, at least from a syntactical

perspective, may not be applicable. This suggests that mutation analysis requires further

research to place the use of mutants to evaluate suites on a firm empirical footing.

Moreover, the differences between results for different programming languages suggest

that mutation operators may need to vary even more than has been suspected in order

to work in new languages.
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Chapter 3: The theory of composite faults

3.1 Introduction

Fault masking occurs when interactions between component faults in a complex fault

result in expected (non-faulty) values being produced for particular test inputs. This

can result in faults being missed by test cases, and undeserved overconfidence in the

reliability of a software system.

The coupling effect [31] hypothesis concerns the semiotics1 of fault masking. It asserts

that “complex faults are coupled to simple faults in such a way that a test data set that

detects all simple faults in a program will detect a high percentage of the complex

faults.” [55, 76,77].

This is relied upon by software testers to assert that fault masking is indeed rare.

However, our understanding of the coupling effect is woefully inadequate. We do not

know when (and how often) fault coupling can happen, whether multiple faults will

always result in fault coupling, or the effect of increase in number of faults on the

number of faults masked. Further, the formal statement of the coupling effect itself is

ambiguous and inadequate as it covers only the case where all simple faults are detected.

Even worse, it has no unambiguous definition of what a simple (or atomic) fault is. We

propose a stronger version of the coupling effect (called the composite fault hypothesis to

avoid confusion):

Composite fault hypothesis: Tests detecting a fault in isolation will (with high

probability κ) continue to detect the fault even when it occurs in combination with other

faults.

We investigate our hypothesis theoretically and empirically. The terms used in this

paper are given in Note 1.

1The relation between syntax and semantics of faults.
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3.1.1 Theory

Wah et al. [92, 93,96] investigated the theory of the coupling effect , which assumes that

any software is built by composition of q independent functions, with a few restrictions:

• Functions have the same domain and range (order n), and the functions are bijec-

tive. The non-bijective functions are modeled as degenerate functions.

• Separability of faults: A program with two faults can be split into two independent

faulty programs 2.

• Democratic assumption: Any applicable function may be chosen as the faulty

representation with equal probability.

• The number of functions considered, q, is much smaller than the size of the domain.

That is, q � n. Wah suggests that as q nears n, the coupling effect weakens.

For q functions, the survival ratio of I and II order test sets are 1
n and 1

n2 . Wah

also makes an observation, used as a heuristic, that the survival ratio of a multi-fault

alternate is p+1
n if there are p fault free functions left over after the last faulty function.

That is, there are 2p−1 − 1 multi fault alternates with last faulty function at p, and the

expected number of survivors for q-function composition is:

1

nr

q∑
p=1

(2p−1 − 1)(q − p+ 1)r

for test sets of order r. Wah’s analysis lacks wider applicability due to these constraints.

Real programs vary widely in their domain and co-domain. Second, the number of

mathematical functions with same domain and co-domain is not identical to that of

programs with same type. Third, the democratic assumption ignores the impact of

syntactical neighborhood. That is, it is possible that a quick sort implementation can

have a small bug, resulting in an incorrect sort. However, it is quite improbable that it is

replaced by an algorithm for — say — random shuffle, which has the same domain and

co-domain as that of a sorting function. While syntactical nearness does not completely

capture semantic nearness, it is closer than assuming any function is a plausible fault for

2 Wah assumed this to be true for all general functions, but Section 3.3 shows that it is not.
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(Semantic) Separability of faults: Two faults present in a function are said to be separable
if and only if the smallest possible chunk containing both faults can be decomposed into
two functions g and h such that each fault is isolated within a single function (providing
ga and hb as faulty functions), the behavior of composition h ◦ g equals the behavior of
the original chunk in terms of input and output , and composition hb ◦ ga equals the
behavior of the chunk with both faults.
Simple fault (first order fault): A fault that cannot be lexically separated into other
independent smaller faults.
Complex fault : (or higher order or combined fault) A fault that can be lexically sepa-
rated into smaller independent faults.
Constituent fault : A fault that is lexically contained in another.
Atomic fault : A fault that cannot be semantically separated.
Composite fault : A fault that can be semantically separated.
Traditional coupling ratio (C): The ratio between the percentage of complex faults de-
tected and the percentage of simple faults that were detected by a test suite.
Composite coupling ratio (κ): The ratio between the percentage of complex faults de-
tected by the same set of test cases that detected the constituent simple faults, and the
percentage of constituent simple faults detected.
Domain of a function: The set of all values a function can take as inputs (this is prac-
tically the input type of a function).
Co-Domain of a function: The set of all values that a function can produce when it is
provided with a valid input from its domain (this is practically the output type of a
function).
Range of a function: The set of all values in co-domain that directly maps to a value in
the domain.
Syntactic neighborhood : The set of functions that can be reached from a given function
by modifying its syntactical representation in a given language a given number of times.

Note 1: Terms used in this paper
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any other function. Next, the separability of complex faults, as we show in Section 3.3,

is valid only in certain cases, and does not account for recursion and iteration. Finally,

Wah’s analysis suggested that the survival ratio of mutants is dependent on the domain

of the function. We show that the survival ratio of a mutant is actually dependent on

the co-domain of the function examined, but bounded by domain.

We propose a simpler theory of fault coupling that uses a similar model to Wah’s, but

with relaxed constraints, and incorporates differing domain and co-domain. We clarify

the semantic separability of complex faults, and show how it affects the coupling effect.

We also show that certain common classes of complex faults may not be semantically

separable. This provides us with a definition of an atomic fault : a fault that cannot

be semantically separated into simpler faults. This is important because two faults that

may be lexically separate but inseparable can be expected to produce a different behavior

than either fault considered independently. Further, we consider the impact of syntactic

neighborhood. Using both case analysis and statistical argument, we show that our

analysis remains valid even when the syntactic neighborhood is considered.

3.1.2 Empirical Validation

Lipton et al. [31, 64], and Offutt [76, 77], observed that the tests for first order mutants

were sufficient to kill up to 99% of all 2nd order mutants, and 99% of 3rd order mutants

sampled. Further research [8, 9, 30, 36, 56, 61] confirms that mutants are coupled to real

faults.

Offutt suggests [76, 77] that there are two distinct definitions of coupling involved.

The general coupling effect : simple faults are coupled to more complex faults such that

test data adequate for simple faults will be able to kill a majority of more complex faults.

The mutation coupling effect : test data adequate for simple first order mutants will be

able to detect a majority of more complex mutants. Previous research validates mutation

coupling effect but not general coupling effect.

Our empirical analysis aims to accomplish the following: First, we empirically eval-

uate the composite coupling ratio κ for numerous real-world projects. This gives us

confidence in the assumptions made in the theoretical analysis, and serves to validate

the composite fault hypothesis. Second, we empirically evaluate the general coupling

effect for faults, and compute the traditional coupling ratio C. Lastly, as the size of the



35

faults increase, it is possible that strong interactions also increase, which can produce se-

mantically different faults. Hence, it is important to empirically validate both composite

coupling and the general coupling effect for syntactically large fault clusters.

What is the relation between the composite coupling ratio κ and the traditional

coupling ratio C? We can regard the composite coupling ratio as a lower limit of the

traditional coupling ratio. As we explain further, the general coupling ratio does not

discount the effect of strong fault interactions, which can produce complex faults se-

mantically independent from the constituent faults. Hence, C is not bounded by any

number, and will often be larger than κ, with κ < 1.

Contributions:

• We propose the composite fault hypothesis that resolves vagueness and ambiguity

in the formal statement of the coupling effect for non-adequate mutation scores.

• Our theoretical analysis results in the composite fault hypothesis for general func-

tions. We find the composite coupling ratio to be 1− 1
n , where n is the co-domain.

• We show that our analysis remains valid even when considering recursion and loops.

• Using 25 projects, we compute the composite coupling ratio κ to be greater than

0.99, with 95% confidence. This helps substantiate the impact of composite cou-

pling.

Our full data set is available for replication3.

3.2 Related Work

Fault masking in digital circuits was studied before it was studied in software. Dias [35]

studies the problem of fault masking, and derives an algebraic expression that details the

number of faults to be considered for detection of all multiple faults. Morell [72] provided

a theoretical treatment of fault based testing, and also [71] gave a formal treatment of the

coupling effect . and shows impossibility of a general algorithm to identify fault coupling.

Wah et al. [92–94, 96] using a simple model of finite functions (the q-function model,

where q represents the number of functions thus composed) showed that the survival

3 http://eecs.osuosl.org/rahul/icst2017/

http://eecs.osuosl.org/rahul/icst2017/
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ratio of first and second order test sets are respectively 1
n and 1

(n2−n) where n is the

order of the domain [55]. A major finding of Wah is that the coupling effect weakens as

the system size (in terms of number of functions in an execution path) increases (i.e. q

increases), and it becomes unreliable when the system size nears the domain of functions.

Another important finding was that minimization of test sets has a detrimental effect.

That is, for n faults, one should use n test cases, with each test case able to detect

n− 1 faults (rather than a single fault) to ensure that the test suite minimizes the risk

of missing higher order faults due to fault masking. Kapoor [57] proved the existence

of the coupling effect on logical faults. Voas et al. [91] and later Woodward et al. [99]

suggested that functions with a high DRR (domain to range ratio) tend to mask faults.

Al-Khanjari et al. [4], found that in some programs there is a strong relationship between

DRD (Dynamic Range to Domain) ratio and testability.

Androutsopoulos et al. [10] found that one in ten tests suffered from failed error prop-

agation. Clark et al. [23] found that likelihood of collisions was strongly correlated with

an information theoretic measure called squeeziness, related to the amount of information

destroyed on function application.

Our research is an extension of the theoretical work of Wah [93] and Offutt [76, 77].

The major theoretical difference from Wah [93] is that, given a pair of faulty functions

that compose, we try to find the probability that, for given test data, the second function

masks the error produced by the first one. On the other hand, Wah [93] tries to show

that the coupling effect exists considering the entire program composed of q functions,

each having a single fault (given by q in the q-function model). Next, Wah [93] assumes

semantic separability of all complex faults. However, as we show, there exist a class

of complex faults that are not semantically separable. We make this restriction clear.

Further, our analysis shows that the probability of coupling is related to the co-domain,

not the domain, as Wah [93] suggests. In fact, Wah [93] considers only functions which

have exactly same domain and range, and hence are more restricted than our analysis.

Finally, we show that even if syntax is considered, our analysis remains valid.

While Offutt [77] evaluates the traditional coupling effect, and shows the empirical

relation with respect to all simple faults and their combinations, we aim to demonstrate

the composite fault hypothesis and evaluate the relation between any pair of faults, and

the combined fault including both.
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3.3 Theory of Fault Coupling

We start with a function compositional view of programs (similar to Wah [96]). While

Wah considered composition of q functions, with as many as q faults, we consider only

pairs of faulty functions, since any faulty program with a number of separable faults can

be modeled as composition of two functions with (possibly complex) faults.

We have the following assumptions, and simplifications (also made by Wah [93]): our

biggest simplification is modeling programs by mathematical functions. While, theoret-

ically, there can be an infinite number of alternatives to any given program, practically,

the domain and co-domain often determines the plausible syntactical alternatives. Next,

we assume a finite domain and co-domain, and consider only total functions. We also

assume that faulty versions have same domain and co-domain (that is, the same type) as

that of the non-faulty version. Since any function can be regarded as a single parameter

function by considering the input as composed of a tuple of all the original parame-

ters, we restrict our analysis to single parameter functions. While Wah considers how a

known number of test inputs (1, 2, 3, or more than 3), some of which can detect some of

the component faulty functions, can together detect the composite faulty function, we

consider the probability of any single test input that can detect a fault being masked by

a new fault. This allow us to significantly simplify our analysis.

Note that the theory does not rely on the constituent faults being considered to be

simple.

A major idea in our analysis is the semantic separability of faults. Two faults present

in a function are said to be separable if and only if the smallest possible chunk contain-

ing both faults can be decomposed into two functions g and h such that each fault is

isolated within a single function (providing ga and hb as faulty functions), the behavior

of composition h ◦ g equals the behavior of the original chunk in terms of input and

output , and composition hb ◦ ga equals the behavior of the function with both faults. A

chunk here is any small section of the program that can be replaced by an independent

function preserving the behavior.

That is, given a function:

1 def functionX(x, y, n)

2 for i in (1..n):

3 y = faultyA(x) (1)
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4 if odd(i): x = faultyB(y) (2)

5 x += 1

The lines (1) and (2) together form a chunk. The interaction between the faults and

their separability is discussed next.

3.3.1 Interaction Between Faults

There are two kinds of interaction between faults: weak, and strong. Weak interactions

occur when faults can be semantically separated. That is, given two faults â and b̂ in a

function f , which can be split into fab = hb ◦ ga, where ga and hb are faulty functions,

the only interaction between â and b̂ is because the fault â modifies the input of h (or

hb) from g(i0) to ga(i0) (where i0 is an input for f). That is, the interaction can be

represented by a modified input value.

Strong interactions happen when the interpretation of the second fault is affected by

the first, and hence faults can’t be semantically separated. For example, consider:

1 def swap(x,y): x,y=y,x

Say this was mutated into

1 def swap(x,y): x,y=x,y

Clearly, there were two independent lexical changes: x → y and y → x. However,

consider the disassembly:

1 >>> dis.dis(swap)

2 1 0 LOAD_FAST 1 (y)

3 3 LOAD_FAST 0 (x)

4 6 ROT_TWO

5 7 STORE_FAST 0 (x)

6 10 STORE_FAST 1 (y)

7 13 LOAD_CONST 0 (None)

8 16 RETURN_VALUE

The changes in source resulted in intertwined bytecode changes, and hence cannot be
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separated. Since the faults cannot be separated, strong interactions produce faults with

different characteristic from the component simple faults, and hence should be considered

independent atomic faults4. Why should we consider the semantically inseparable faults

as independent faults? An intuitive argument is to consider two functions that implement

id (these are not strongly interacting). That is, given any value x, we have g(x) = h(x) =

x. If two faults â, and b̂ occur as we suggest above in g and h, causing inputs i to ga

and inputs j to hb to fail, then the faulty inputs for hb ◦ ga are bounded by i ∪ j, where

i represents inputs to f that result in faulty outputs due to faulty g and j, inputs to f

resulting in faulty outputs due to faulty h.

What about fault masking? Any input i that failed for ga could possibly result in an

input value that would cause a failure for hb. For any element outside of i, there is no

possibility of two faults acting on it, and hence no possibility of fault masking. However,

if the faults are not semantically separable, one cannot make these guarantees, as the

faulty inputs may be larger than i ∪ j or even completely different. In the general case,

when the interaction is weak, we expect the faulty output for up to i ∪ j.
For formal proof, consider a function f that has domain x, represented as h◦ g using

two functions. Replacing g with ga causes i ∈ x inputs to result in faults. Similarly,

replacing h with hb causes j ∈ x inputs to f to result in faults. Joining together to

form fab, we know that any of i ∈ x has a potential to produce a faulty output unless

it was masked by hb. Similarly, any of j ∈ x also has the possibility of producing a

faulty output. Now, consider any element k not in either i or j. It will not result

in a faulty output while passing through ga because it is not in i, further, the value

ga(k) = g(k) = k1. We already know that k1 would not result in a faulty output from

hb because k /∈ j. Hence, any element k /∈ i ∪ j will not be affected by faults â and b̂.

We can make this assertion only because we can replace g and h separately. If â and

b̂ interacted strongly, any function could potentially replace f . Hence, any element in

x may potentially result in a fault when fab is applied. Harman et al. [48] calls these

de-coupled higher order mutants.

Depending on the language used, other features causing strong faulty interaction may

exist.

4Wah [93] ignores strong interaction of faults.
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3.3.2 Analysis

Consider a program f with two simple faults â, and b̂, which can be applied to f to

produce two functions fa and fb containing one fault each, and fab containing both

faults (Figure 3.2). Say such a program can be partitioned into two functions g and

h (f = h ◦ g) with restriction that â lies in g, producing alternative ga, and b̂ lies

in h producing hb, such that the new faulty version of f containing both is given by

fab = hb ◦ ga. We note that the particular kind of fault depends on the syntax and

semantics of the programming language used, and there can be fault pairs that cannot

be separated cleanly. As stated previously, we ignore these kinds of fault pairs as they

are syntax dependent and strongly interacting. Hence, no general solution is possible for

these faults.

Given that we can distinguish a fault in isolation using a given input, what is the

probability that another fault would not result in the masking of that fault for the same

input? That is, given a test input i0 for f , able to distinguish (f , fa), what is the

probability that (f , fab) can be distinguished by the same input?

Since we know that fa is distinguished from f , we know that ga(i0) 6= g(i0). Hence,

the function hb will have a different input than h. Thus, the question simplifies to: given

an alternate input for function h (or anything that can be substituted in its place), what

is the probability that a faulty h, with the new input ga(i0) will result in same output

as the old h, with the old input g(i0)?

Let us assume for simplicity that functions g and h have fixed domain and a co-

domain given by g ∈ G : L → M and h ∈ H : M → N. That is, h belongs to a

set of functions H, which has a domain M , and a co-domain N such that m = |M |
and n = |N |. Considering all possible functions in H, with the given domain and co-

domain, there will be nm unique functions in H (separated by at least one different

{input, output} pair).

The only constraint on hb we have is that hb(ga(i0)) should result in the same output

as h(g(i0)). We are looking for functions that can vary in every other {input, output}
pair except for the pair given by {ga(i0), h(g(i0))}. There are nm−1 functions that can

do that out of |H| = nm functions. That is, the composite coupling ratio is given by

κ = 1− nm−1

nm , which is simplified to 1− 1
n of the total number of eligible functions where

m is the size of domain, and n is the size of co-domain of the function. That is, given
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Figure 3.1: Recursive interaction. The blue solid lines represent the masking values
where the values are same as what would be expected before the fault was introduced,
and the red dotted lines represent values that are different from the non-faulty version
so that faults could be detected.

any test input, the probability of the composite coupling effect where the fault in one

constituent is not masked by the fault in another is 1− 1
n , and 1

n tends to be very small

when the co-domain of the function (n) is large.

A symmetric argument can be made when the function fixed is h, and g varies. There

are ml functions in G, of which ml−1 can be used as a replacement without affecting

{input, output}, in which case, the probability of composite coupling effect is 1− 1
m where

m is the co-domain5.

3.3.3 Recursion and Iteration

Recursion and iteration can present challenges to our analysis. For example, consider:

1 while y > 0: y = h(g(y)

The two functions g and h are otherwise independent. However, the input of h influences

g, and vice versa. Here, we do not know when the loop will end, and any faults will be

detected. The faults may be detected after a larger or smaller number of iterations than

the non faulty version. Hence, we consider the chances of propagation of the faulty value

after each iteration. That is, if a faulty value is present after executing the function ga

once, what are the chances that it will be caught at the end of each iteration?

Let f denote the program segment composed of g and h. After the first iteration of

5We note that the logic of probability is very similar to Wah [93], and this is the same value derived
by Wah for single test input, where n is the domain of the function as Wah does not consider functions
that have a different domain and co-domain.
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f , we will have 1
n possibility for fault masking as we discussed before, and n−1

n possibility

for detectable faulty values. Now, consider the next iteration. In this case, of the original
1
n masked outputs, 1

n will again be masked, for a total of 1
n2 , and the remaining (n−1)

n2 will

have a value that is faulty. Consider the original n−1
n that had faulty values in the first

iteration. Out of that, 1
n will be masked in the second iteration (i.e. n−1

n2 ). Similarly,
(n−1)2
n2 of the original faulty outputs will remain faulty. That is, after second iteration, we

will have 1
n2 + n−1

n2 = 1
n masked output values. Similarly, we will have n−1

n2 + (n−1)2
n2 = n−1

n

possibility of faulty output values. That is, after each iteration, we will have 1
n possibility

of fault masking (See Figure 3.1). Hence, composite fault hypothesis will hold even for

recursion and iteration.

3.3.3.1 Premature loop exits

What if a fraction of inputs – say x – diverge so much (crashes or gets detected by

asserts) that they never make it through all iterations? We can model this as the case

where the remaining fraction (y = 1 − x) of inputs belong to a function with reduced

domain and hence co-domain. This is more involved because functions with a smaller

co-domain are more prone to fault masking. We need to show that the total fraction of

masked values is lesser than the original 1
n , or show the other side

x+
ny − 1

ny
≥ n− 1

n
(3.1)

We assume that nx ≥ 1 (at least one input causes a crash) and ny ≥ 1 (at least one

input reaches the end – otherwise, there is no fault masking involved).

We simplify Equation 3.1 by first making the denominator the same (ny) and then

simplifying, which results in the equation nxy + ny − 1 ≥ ny − y. On expanding y to

1 − x, and simplifying, we get ny ≥ 1. Note that this was our original assumption.

Hence, premature loop exits result in a stronger coupling between faults.

What happens if instead of a fixed fraction, we have say r% input values detected at

the end of each iteration? Of course, any finite number of loops could be modeled as we

did above. If instead, we rely on the crashes alone to distinguish faulty values, we are

still in luck. Each iteration detects r% of the input values, and the remaining q = 1−r%
of the values restart the iteration. This results in r+ rq + rq2 + . . . rqn−1 values getting
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detected at the end of nth iteration. This infinite sum converges to 1. That is, no faults

will be masked.

3.3.3.2 Different execution paths

Another wrinkle is the pattern where iteration proceeds in different paths during different

executions. For example:

1 for i in 1..10:

2 if odd(i): x = g(y)

3 else: y = h(x)

In programs such as this, one may unroll the loop, i.e.

1 for i in 1..10:2:

2 x = g(y)

3 y = h(x)

which can make it amenable to the above treatment. Recursion can be resolved similarly.

We do not claim that this is exhaustive. There could exist other patterns of recursion

or iteration that do not fit this template. However, most common patterns of recursion

and iteration could be captured in this pattern.

Can we extend the bounds we found (i ∪ j for faulty outputs) to recursion? Un-

fortunately, it is possible for a faulty function to interact with its own output during

recursion, and hence mask a failure. Hence, we can not bound the failure causing inputs

in a doubly faulty function that incorporates recursion.

3.3.4 Accounting for Multiple Faults

What happens when there are multiple faults? Say, we have a system modeled by

p ◦ q ◦ r ◦ s ◦ t ◦ u, where any of the functions may be faulty or not faulty, for example

pa ◦ q ◦ rb ◦ sc ◦ td ◦ u. We can not directly apply the technique in recursion because

there are non-faulty functions interspersed. The thing to remember here is that a non

faulty function immediately adjacent to a faulty function can together be considered a

faulty function. Hence, the above reduces to (pa ◦ q) ◦ rb ◦ sc ◦ (td ◦ u), or equivalently



44

g
i0

h
f(i0)

ga

g
i0

hb fab(i0)
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hb′
fab(i0) = f(i0)

Figure 3.2: Fault interaction (ga(i0) is masked by hb′)

pqa◦rb◦sc◦tud. This is now amenable to the treatment in Figure 3.1 because each function

now can produce 1
n non-faulty and n−1

n faulty outputs. An additional complication is

that a general expression is not possible unless we simplify further, and assumes that

domain and co-domain of all functions are same. With this simplification, even when we

consider a number of faulty functions, the mean ratio of fault masking remains the same

at 1
n . Indeed, this is one of the significant differences from Wah. Wah does not attempt

to collapse the non-faulty functions to their neighbours. Why do we do this? Because

we know that each faulty function on its own was detected by the test suite. That is, we

know that p ◦ qa ◦ r ◦ s ◦ t ◦u would have been detected. Hence, we can certainly consider

pqa ◦ r ◦ s ◦ t ◦ u as the set of functions where the function pqa is the function with an

atomic fault.

3.3.5 Dynamically Checked Languages

In the case of dynamically checked or unityped languages, every single function has the

same type (domain, co-domain), and alternatives are large (but finite), because one may

not identify a faulty input type until execution. Hence, we can expect large composite

coupling ratio.

3.3.6 Impact of Syntax

In order to model composite coupling, we assumed that all faults are equally probable,

which is often not the case, with faults that are closer syntactically being more probable

than faults which are not in the syntactic neighborhood of correctness. In fact, we have
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some reasonable estimate of the distribution of size of faults that programmers make [46].

Implementation of functions as code need not necessarily follow the same distribution

as that of their mathematical counterparts. For example, for mathematical functions,

there exist only 4 functions that map from a boolean to a boolean. However, there can

be an infinite number of program implementations of that function. The way it can

be made tractable is again to consider the human element. The competent programmer

hypothesis suggests that faulty programs are close (syntactically) to the correct versions.

So one need only consider a limited number of alternatives (the number of which is a

function of the size of the correct version, if one assumes that each token may be legally

replaced by another).

As soon as we speak about syntactic neighborhood, the syntax of a language can have

a large influence on which faults can be considered to be in a neighborhood. However,

we note that most languages seem to follow a similar distribution of faults with a size

below 10 tokens for 90% of faults [46].

Let us call the original input to h, g(i0) = j0, and the changed value ga(i0) = ja.

Similarly, let f(i0) = k0, fa(i0) = ka, fb(i0) = kb, and fab(i0) = kab. Given two inputs

i0, and i1 for a function f , we call i0, and i1 semantically close if their execution paths

in f follow equivalent profiles, e.g taking the same branches and conditionals. We call

i0 and i1 semantically far in terms of f if their execution profiles are different.

Consider the possibility of masking the output of ga by hb (hb′ in Figure 3.2)). We

already know that h(ja) = ka was detected. That is, we know that ja was sufficiently

different from j0, that it propagated through h to be caught by a test case. Say ja was

semantically far from j0, and the difference (i.e the skipped part) contained the fault b̂.

In that case, the fault b̂ would not have been executed, and since kab = ka, it will always

be detected.

On the other hand, say ja was semantically close to j0 in terms of g and the fault b̂

was executed. There are again three possibilities. The first is that b̂ had no impact, in

which case the analysis is the same as before. The second is that b̂ caused a change in

the output. It is possible that the execution of b̂ could be problematic enough to always

cause an error, in which case we have kab = kb (error), and detection. Thus masking

requires kab to be equal to k0.

Even if we assume that the function hb is close syntactically to h, and that this

implies semantic closeness of functions h and hb, we expect the value kab to be near ka,
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and not k0. This suggests that masking, even when considered in the light of syntactical

neighborhood, is still unlikely, but this belief requires empirical verification since we are

unable to assign probabilities to the cases above. Our empirical data (provided in the

next section of this paper) should shed light on the actual incidence of masking when

syntactic/semantic neighborhoods are taken into account, since real faults are likely in

the syntactic and semantic neighborhood of the correct code.

A statistical observation can further buttress our argument. We know that if all

functions were equally probable, fault masking has low probability. Now, consider the

functions that are syntactically close to a given function. For most input values, we

can assume that the syntactically close functions will have same output as that of the

given function, more so than functions that are far away lexically. If h did not mask a

value originally, (which we know since we were able to detect fault h(ga(i0))), then the

syntactically close functions to h will with a higher probability than a uniform sample,

produce the same value as h(ga(i0)), which will be detected as faulty.

3.3.7 Can Strong Interaction be Avoided?

The coupling effect argues that if a test suite can find all atomic faults, then by composite

fault hypothesis, a large percentage (κ) of complex faults will also be found. However,

when can one assert that all atomic faults have been found? Any strong fault interaction

has the potential to produce an atomic fault.

Given that the strong interaction is dependent on the execution, can runtime envi-

ronment or compiler order computation so that strong interaction is no longer present?

Consider the function swap (a,b) = (b,a) that we examined earlier. We see how

one may mistakenly use id (a,b) = (a,b) instead, and cause a strong interaction. Now,

the question is, does there exist a way to split the two functions, so that the condition

of separability can be satisfied? Given that there are only four possible functions that

can operate on a tuple, (swap (a,b) = (b,a), id (a,b) = (a,b), dupleft (a,b) = (a,a),

dupright (a,b) = (b,b)) we could check it exhaustively. The condition is that the functions

representing single faults should individually cause a detectable deviation on their own,

and on composition, result in same behavior as id. Now, it can be seen that, neither of

the single fault functions can behave like swap since that represents no fault, so they

can not behave like id, since that suggests that the other faulty function behaves like
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swap. Hence, no compiler or runtime environment can remove the strong interaction in

swap.

Where can we expect strong interaction to appear? While we can not provide an

exhaustive overview of possible language features, we can demonstrate that even very

simple languages such as the λ-calculus are vulnerable. Consider the λ-calculus expres-

sion λx y .y x, and its faulty version λx y .x y. There are two lexical points where the

faults have been injected {x→ y, y → x}. However, they cannot be separated out. That

is, even such simple features can cause strong interaction.

3.4 Methodology for Assessment

Our methodology was guided by two principles [88]: We sought to minimize the number

of variables, and tried to be as general as possible. Hence, we selected Apache commons

for analysis.

For our set of projects, we iterated through their commit logs, and generated reverse

patches for each commit. For each patch thus created, we applied the patch on the latest

repository, and removed any changes to the test directory, thus ensuring that the test

suite we tested with was always the latest. Any patch that resulted in a compilation

error was removed. This resulted in a set of patches for each project that could be

independently applied. The complete test suite for the project was executed on each of

the patches left, and any patch that did not result in a test failure was removed. The

failed test cases that corresponded to each patch were thus collected. At this point, we

had a set of patches that introduce specific test case failures. The set of Apache projects,

along with the set of reverse patches thus found, are given in Table 3.1.

We conducted our remaining analysis in two parts. For the first part, we generated

patch pairs by joining together two random patches for any given project. For the

projects where the total number of unique pairs was larger than 100, we randomly

sampled 100 of the pairs produced. After removing patch combinations that resulted

in compilation errors, we had 1,126 patch combinations. We evaluated the test suite of

each project against the pair-patches thus generated, and collected the test cases which

failed against these. Adopting the terminology of Jia et al. [54], out of 1,126, we had

1,126 coupled higher order mutants, and 56 subsuming mutants.6 Out of these, there

6Of course, our patches are derived from actual faulty code, not mutants in the traditional sense of
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Table 3.1: Apache Commons Libraries

Projects SLOC TLOC CPatches Fails

1 commons-bcel 30,175 3,155 148 6
2 commons-beanutils 11,640 21,665 63 5
3 commons-cli 2,665 3,768 71 5
4 commons-codec 6,599 11,026 179 4
5 commons-collections 27,820 32,913 333 16
6 commons-compress 18,746 13,496 430 65
7 commons-configuration 26,793 37,806 322 78
8 commons-csv 1,421 3,168 150 8
9 commons-dbcp 11,259 8,487 98 18

10 commons-dbutils 3,064 3,699 43 1
11 commons-discovery 2,320 268 171 1
12 commons-exec 1,757 1,601 90 5
13 commons-fileupload 2,389 1,946 129 8
14 commons-imaging 31,152 6,525 174 4
15 commons-io 9,813 17,968 177 18
16 commons-jexl 10,921 9,509 54 10
17 commons-jxpath 18,773 6,137 10 2
18 commons-lang 25,468 43,981 571 49
19 commons-mail 2,720 3,869 48 5
20 commons-math 84,809 89,336 954 142
21 commons-net 19,749 7,465 454 21
22 commons-ognl 13,139 6,873 190 3
23 commons-pool 5,242 8,042 149 12
24 commons-scxml 9,524 5,119 74 7
25 commons-validator 6,681 7,926 126 17

SLOC is the program size in LOC, TLOC is the test suite size in LOC, CPatches is the
number of compiled patches, and Fails is the number of test failures.
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were only 2 strongly subsuming mutants.

We tried to reduce the number of external variables further for the second part, and

chose a single large project — Apache commons-math. We generated a set of combined

patches by joining 2, 4, 8, 16, 32, and 64 patches at random, and evaluated the test suite

for commons-math against each of these kth order patches. We removed all patches that

resulted in any compilation errors, producing 342 patch combinations.

For both parts of our analysis, we generated two sets. The first set containing the

unique failures from the constituent faults in isolation, and the second containing the

combined patches.

3.5 Analysis

There are two questions that we tackle here. The first investigates the fraction of test

cases that detect any of the constituent mutants that also detect the combined mutant.

That is, evaluates the following prediction from the model: “Given two faults, and the

test cases killing each, (assuming a sufficiently large domain and co-domain, and ignoring

the effects of strong interaction), there is a high probability for the same test cases to

kill the combined fault.”

The second investigates the general coupling effect. Since the general coupling ratio

does not distinguish between strong and weak interaction, this also serves as an evalua-

tion of the strong interaction between faults where inputs other than the original i and

j – that is, outside i ∪ j – becomes faulty (where i represents faulty inputs to f due to

faults in h, and j represents faulty inputs to f due to faults in g).

Indeed, we believe that strong interaction between different faults is rarer than weak

interaction. While there is no easy way to verify it, one may look at the newer faults

(new test failures) that are introduced by a combination of patches when compared to

the original patches as instances of strong fault interaction, which may be considered

a reasonable proxy. Our empirical evaluation does not require individual patches to be

simple faults. Our theory suggests that irrespective of whether the faults are complex

or not, we can expect the same fault masking probability.

generated modification.
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All Projects: composite coupling
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Figure 3.3: The size of set of the test cases able to detect the faults when they were
separate is in the x-axis, and the subset of the same test cases able to detect the combined
fault is in the y-axis. Colors correspond to projects.

3.5.1 All Projects

This section investigates fault pairs from all projects.

3.5.1.1 The Composite Fault Model

Here, we try to answer the question: what percentage of test cases detecting constituent

faults can detect the complex faults?

Figure 3.3 plots the set of test cases able to detect the faults when they were separate

with the set of test cases able to detect the combined fault. To analyze the fraction of

test cases expected to detect the combined mutant, we evaluate the regression model

given by:

µ{AfterT |BeforeT} = β0 + β1 ×BeforeT (3.2)

where BeforeT is the size of the test suite that includes all test cases that can detect

both faults separately, and AfterT is the size of the test suite which is a subset of
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All Projects: general coupling

●

●

●

●

●●

●

●●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●●

●

●

●●

●

● ●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

1

10

100

1 10 100
Test fails for separated faults

Te
st

 fa
ils

 fo
r 

co
m

bi
ne

d 
Fa

ul
ts

Figure 3.4: The size of the set of test cases able to detect the faults when they were
separate is the x-axis, and the set of all test cases able to detect the combined fault is
in the y-axis. Colors correspond to projects.

BeforeT that can detect the fault pair when combined. We force β0 to zero to account

for the fact that if no test cases detected the original mutant, then the question of their

fraction does not arise. This linear regression model lets us predict the number of test

fails for combined faults from the test fails for separated faults.

We note that we are interested in β1 for another purpose. β1 is also the compos-

ite coupling ratio κ. Thus this regression provides us with a model for prediction, its

goodness of fit (R2), and also the composite coupling ratio.

3.5.1.2 The General Coupling Model

Figure 3.4 plots the general coupling of faults. We evaluate the following regression

model.

µ{NewT |BeforeT} = β0 + β1 ×BeforeT (3.3)
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where BeforeT is the size of the test suite that includes all test cases that can detect

both faults separately, and NewT is the size of the test suite that can detect the fault

pair when combined. Note that we do not set β0 = 0 here as the combined fault pair

may be detected by a new test case even if its constituents were not detected. In fact,

β0 represents the complex faults that became detectable due to interaction even though

the constituent faults are not detectable.

However, if one wishes to investigate the general coupling ratio, we have to investi-

gate a simpler regression model, because the general coupling ratio does not permit an

intercept.

µ{NewT |BeforeT} = β1 ×BeforeT (3.4)

Here, similar to the previous section, β1 corresponds to the general coupling ratio C.

3.5.1.3 Strong fault interaction

The incidence of strong fault interaction may be ascertained by the average number

of new test cases that failed for the combined patch. Note that this number is not

exhaustive, as some of the original test cases may fail for new faulty behavior too, even

if the behavior is not same as that of the component faults.

3.5.1.4 Effect of size of codebase

The effect of size of codebase may be ascertained by inspecting the correlation of SLOC

with the coupling ratios.

3.5.2 Apache Commons-math

3.5.2.1 The Composite Fault Model

We try to answer the question what percentage of test cases detecting constituent faults

can detect the complex faults? for Commons-math. We rely on the regression given

by Equation 3.2. Figure 3.5 plots test cases able to detect the faults when they were

separate with the test cases able to detect the combined fault.
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Commons-math: composite coupling

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
10

100

10 100
Test fails for separated faults

Te
st

 fa
ils

 fo
r 

co
m

bi
ne

d 
fa

ul
ts

Combinations
●

●

●

●

●

●

2
4
8
16
32
64

Figure 3.5: The set of test cases able to detect the faults when they were separate is in
the x-axis, and the subset of the same test cases able to detect the combined fault is in
the y-axis. Colors correspond to number of patch combinations.

3.5.2.2 The General Coupling Model

We rely on the regressions given by Equation 3.3 and Equation 3.4. Figure 3.6 plots the

general coupling of faults for Apache commons math.

3.5.2.3 Strong fault interaction

The incidence of strong fault interaction may be ascertained by the average number

of new test cases that failed for the combined patch. The difference of note here is

that the number of patches are larger, and hence the chances of strong interaction are

correspondingly larger.
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Commons-math: general coupling
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Figure 3.6: The set of test cases able to detect the faults when they were separate is in
the x-axis, and the set of all test cases able to detect the combined fault is in the y-axis.
Colors correspond to number of patch combinations.

Table 3.2: All projects for composite coupling ratio. R2 =0.99975

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9992 0.0005 2,116.13 0.0000

3.6 Results

3.6.1 All Projects

The results for regression for Equation 3.2 for all projects is given in Table 3.2. The

correlation between the dependent and independent variable is 0.99975. The composite

coupling ratio was found to be 0.99916. The results for regression for Equation 3.3 for all

projects is given in Table 3.3. The correlation between the dependent and independent

variable is 0.99967. The results for regression for Equation 3.4 for all projects is given

in Table 3.4. The general coupling ratio was found to be 0.99931. Further, the mean

number of faulty test cases that were not present in the component faults were found to
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Table 3.3: All projects R2 =0.99967

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0399 0.0189 -2.12 0.0343

SeparateFaults 0.9997 0.0005 1,847.83 0.0000

Table 3.4: All projects for general coupling ratio. R2 =0.9997

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9993 0.0005 1,939.82 0.0000

be 0.0417. See Table 3.5 for the summary.

3.6.1.1 Effect of size of codebase

The effect of SLOC on coupling is given in Table 3.67.

3.6.2 Apache commons-math

The results for regression for Equation 3.2 for all projects is given in Table 3.7. The

correlation between the dependent and independent variable is 0.99983. The composite

coupling ratio was found to be 0.98956. The results for regression for Equation 3.3

for commons-math is given in Table 3.8. The correlation between the dependent and

independent variable is 0.99971. The results for regression for Equation 3.4 for commons-

math is given in Table 3.9. The general coupling ratio was found to be 0.9944. Further,

the mean number of faulty test cases that were not present in the component faults were

found to be 0.137. See Table 3.10 for the summary.

3.7 Discussion

Fault masking is one of the key concerns in software testing. The coupling effect hypoth-

esis asserts that fault masking is rare. Unfortunately, little is known about the theory

7 This table is not present in the published version, but generated from the data published along with
the paper. Including it here for the context.
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Table 3.5: Summary for all projects.

SeparateFaults JoinedFaults RemovedFaults AddedFaults

bcel 27.73 27.73 0.00 0.00
beanutils 4.80 1.60 3.20 0.00

cli 7.60 7.60 0.00 0.00
codec 2.50 2.50 0.00 0.00

collections 16.49 16.49 0.00 0.00
compress 11.60 11.60 0.00 0.00

configuration 37.19 37.16 0.04 0.02
csv 2.00 2.00 0.00 0.00

dbcp 10.60 10.91 0.01 0.32
exec 16.50 16.50 0.00 0.00

fileupload 4.64 4.64 0.00 0.00
imaging 6.50 6.50 0.00 0.00

io 7.93 7.55 0.54 0.17
jexl 3.58 3.56 0.02 0.00

jxpath 3.00 3.00 0.00 0.00
lang 4.46 4.46 0.00 0.00
mail 2.30 2.30 0.00 0.00

math 7.67 7.64 0.03 0.00
net 4.13 4.13 0.00 0.00

ognl 27.00 27.00 0.00 0.00
pool 4.48 4.45 0.05 0.02

scxml 36.62 36.62 0.00 0.00
validator 3.07 3.06 0.01 0.00

Table 3.6: All projects – correlation between size of codebase (SLOC) and coupling
ratios. (Significance given in lower triangle)

SLOC Coupling Ratio Composite Ratio

SLOC 0.009 0.082
Coupling Ratio . 0.666

Composite Ratio ** *
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Table 3.7: C-math for composite coupling ratio. R2 =0.99983

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9896 0.0007 1,418.94 0.0000

Table 3.8: C-math R2 =0.99971

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0924 0.0482 1.92 0.0563

SeparateFaults 0.9933 0.0009 1,090.92 0.0000

Table 3.9: C-math for general coupling ratio. R2 =0.99983

Estimate Std. Error t value Pr(>|t|)
SeparateFaults 0.9944 0.0007 1,401.55 0.0000

Table 3.10: Summary for all Commons-math.

SeparateFaults JoinedFaults RemovedFaults AddedFaults

2 7.67 7.64 0.03 0.00
4 14.67 14.70 0.05 0.07
8 30.53 30.42 0.17 0.06

16 59.25 59.09 0.42 0.25
32 109.85 108.96 1.37 0.48
64 220.25 219.50 3.00 2.25



58

behind fault coupling. We study the coupling effect and fault masking using theoretical

and empirical methods.

Our theoretical evaluation of the composite fault hypothesis. shows that for any pair

of separable faults, composite coupling effect exists. We find that composite coupling

ratio κ = 1 − 1
n , where n is the co-domain of the function being considered, and that

syntactical neighborhood does not have an adverse impact on our result. Further, while

Wah suggests that, as system size increases the coupling effect weakens exponentially,

our results suggest that the mean coupling ratio remains the same at 1
n for an idealized

system, and strengthens when premature exits from recursion or iteration is encountered.

Indeed, our results from Table 3.6 suggests that there is a very small, but statistically

significant positive correlation between composite coupling ratio and the size of the code

base8.

Why is our prediction on fault masking so important? Basic testing relies on fault

masking. Say you are unit testing a function with multiple faults, and some of the

faults are left undetected due to fault masking. Wah’s analysis suggests that when we

integrate these units into a larger system, the faults in the larger system have a much

higher (indeed exponential) tendency to self correct, and avoid failure due to masking.

Our analysis suggests that even on larger systems composed of smaller systems, the rate

of fault masking remains the same.

We proposed the existence of strongly interacting faults, which cannot be accounted

for within the formal coupling theory. Our empirical analysis (see Table 3.5 and Ta-

ble 3.10) indicates that strong interaction is possibly rare, occurring at a similar fre-

quency as fault masking. Figure 3.3 suggests that while there is some reduction in the

combined faults for the faults with smaller semantic footprint (as given by the number

of test cases that failed for that fault) with respect to constituent faults, the difference

vanishes when the size of the fault increases. This same effect is also seen in Figure 3.5.

The results for regression (Equation 3.2) also suggest a similar observation — that

test cases that are able to detect a fault in isolation will with very high probability detect

the same fault in combination with other faults.

Overall, our statistical analysis suggests that there is a very high probability (between

{0.998 & 1.000} for all projects, and {0.988 & 0.991} for commons-math — 95% confi-

8This conclusion is drawn from the data published along with the paper but was not present in the
published version. Including it here for context.
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dence interval with statistical significance p < 0.0001) that when two faults are paired

to produce a combined fault, any test cases that detected either of the faults continue

to detect the combined fault.

Our results for Table 3.4 suggests that between {0.998 & 1.000} of complex faults

are caught (95% confidence interval, p < 0.0001). This is again confirmed by the deeper

analysis of Apache commons-math, using larger size faults in Table 3.9 which suggests

that between {0.993 & 0.996} fraction of complex faults are caught (95% confidence

interval, p < 0.0001). We note that this is the first confirmation of the general coupling

effect (unlike the mutation coupling effect which has been validated multiple times).

Why is validating the general coupling effect important? We already know that faults

emulated by traditional mutants are only a subset of the possible kinds of faults (Just

et al. [56] found that up to 27% of faults were inadequately represented by mutants).

Hence, it is important to verify the general coupling effect using real faults so that our

results are applicable for faults in general, and especially for possible future mutation

operators. Indeed, the mutation coupling effect has been validated multiple times, and

we do not attempt it again here.

3.8 Conclusion

The coupling effect hypothesis is a general theory of fault interaction, and is used to

quantify fault masking. It also finds use in mutation analysis. While there is compelling

empirical evidence for the coupling effect, our theoretical understanding is lacking. The

extant theory by Wah is too restrictive to be useful for real world systems. We address

this limitation, and provide a stronger, modified version of the theory called the composite

fault hypothesis.

Our theoretical analysis suggests that the composite fault hypothesis has a high

probability of occurring (1 − 1
n , where n is the co-domain of the function under con-

sideration) under the assumptions of total functions, finite domain, and separability of

faults, irrespective of the size of the system.

Our empirical study provides validation, and an empirical approximation of the com-

posite coupling ratio κ (0.99), with 99% of the test cases that detected a fault in isolation

continuing to detect it when it is combined with other faults.
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Chapter 4: On the limits of mutation reduction strategies

4.1 Introduction

The quality of software is a pressing concern for the software industry, and is usually

determined by comprehensive testing. However, tests are themselves programs, (usually)

written by human beings, and their quality needs to be monitored to ensure that they

in fact are useful in ensuring software quality (e.g., it is important to determine if the

tests are also a quality software system).

Mutation analysis [18,63] is currently the recommended method [9] for evaluating the

efficacy of a test suite. It involves systematic transformation of a program through the

introduction of small syntactical changes, each of which is evaluated against the given

test suite. A mutant that can be distinguished from the original program by the test

suite is deemed to have been killed by the test suite, and the ratio of all such mutants

to the set of mutants identified by a test suite is its mutation (kill) score, taken as an

effectiveness measure of the test suite.

Mutation analysis has been validated many times in the past. Andrews et al. [8, 9],

and more recently Just et al. [56], found that faults generated through mutation analysis

resemble real bugs, their ease of detection is similar to that of real faults, and most

importantly for us, a test suite’s effectiveness against mutants is similar to its effectiveness

against real faults.

However, mutation analysis has failed to gain widespread adoption in software en-

gineering practice due to its substantial computational requirements — the number of

mutants generated needs to be many times the number of program tokens in order to

achieve exhaustive coverage of even first order mutants (involving one syntactic change

at a time), and each mutant needs to be evaluated by a potentially full test suite run. A

number of strategies have been proposed to deal with the computational cost of mutation

analysis. These have been classified [80] orthogonally into do faster, do smarter, and do

fewer approaches, corresponding to whether they improve the speed of execution of a

single mutant, parallelize the evaluation of mutants, or reduce the number of mutants
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evaluated.

A large number of do fewer strategies — mutation reduction methods that seek to

intelligently choose a smaller, representative, set of mutants to evaluate — have been in-

vestigated in the past. They are broadly divided into operator selection strategies, which

seek to identify the smallest subset of mutation operators that generate the most useful

mutants [79,85], and strata sampling [1,16] techniques, which seek to identify groups of

mutants that have high similarity between them to reduce the number of mutants while

maintaining representativeness and diversity [101, 102]. Even more complex methods

using clustering [33, 65], static analysis [52, 59] and other intelligent techniques [89] are

under active research [34].

These efforts raise an important question: What is the actual effectiveness of a perfect

mutation reduction strategy over the baseline – random sampling – given any arbitrary

program?

We define the efficiency of a selection technique as the amount of reduction achieved,

and the effectiveness as the selection technique’s ability to choose a representative

reduced set of mutants, that require as many test cases to kill as the original set of

mutants. The ratio of effectiveness of a technique to that of random sampling is taken

as the utility of the technique.

We approach these questions from two directions. First, we consider a simple the-

oretical framework in which to evaluate the improvement in effectiveness for the best

mutation reduction possible, using a few simplifying assumptions, and given oracular

knowledge of mutation kills. This helps set the base-line. Second, we empirically evalu-

ate the best mutation reduction possible for a large number of projects, given post hoc

(that is, oracular) detection knowledge. This gives us practical (and optimistic) limits

given common project characteristics.

Our contributions are as follows:

• We find a theoretical upper limit for the effectiveness of mutation reduction strate-

gies of 58.2% for a uniform distribution of mutants — the distribution most fa-

vorable for random sampling. We later show that for real world programs, the

impact of distribution is very small (4.467%) suggesting that uniform distribution

is a reasonable approximation.
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• We find an empirical upper limit for effectiveness through the evaluation of a large

number of open source projects, which suggests a maximum practical utility of

13.078% on average, and for 95% of projects, a maximum utility between 12.218%

and 14.26% (one sample u-test p < 0.001)1.

• We show that even if we consider a set of mutants that are distinguished by at

least by one test (thus discounting the impact of skew in redundant mutants) we

can expect a maximum utility of 17.545% on average, and for 95% of projects, a

maximum utility between 16.912% and 18.876% (one sample u-test p < 0.001).

What do our results mean for the future of mutation reduction strategies? Any

advantage we gain over random sampling is indeed an advantage, however small. How-

ever, our understanding of mutant semiotics2 is as yet imperfect, and insufficient to infer

whether the kind of selection employed is advantageous. In fact, our research shows that

current operator selection strategies seldom provide any advantage over random sam-

pling, and even strata sampling based on program elements never achieves more than

a 10% advantage over pure random sampling. Our results suggest that the effort spent

towards improving mutant selection mechanisms should be carefully weighed against the

potential maximum utility, and the risks associated with actually making things worse

through biased sampling. We note that even selection based on subsumption is not [62]

a foregone conclusion.

Our research is also an endorsement of the need for further research into new muta-

tors. Consider what would happen if one uses of new mutators to produce new mutants

and then randomly sample the same number of mutants as that of the original set. In

the theoretical framework we developed, with the simplifications such as uniform redun-

dancy of mutants, and non-overlapping test cases, the worst case is when the added

mutants duplicate the already available mutants in the population. However, sampling

from that would still result in the same number of unique mutants on average. That is,

there is no disadvantage to using new mutators, thus increasing the number of mutants,

and using sampling for reduction. On the other hand, assuming that the sample size

is larger than the number of unique mutants present, there is no upper bound on the

1We use the non-parametric Mann-Whitney u-test as it is more robust to normality assumption, and
to outliers. We note that a t-test also gives similar results.

2Here semiotics is the relation between a syntactic change and its semantic impact.
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advantage for adding new mutators (or it is dependent on the sample size).

What about the real world?, it is possible that the logic for adding new mutators

was flawed, and resulted in a set of redundant mutants in similar distribution as that

of the original population. In such a case, a random sample from the new population

will have as many unique mutants as the original population, which means no advantage

or disadvantage. (Indeed, this is not the worst case. It is possible for the new set of

redundant mutants to skew the population of mutants completely, but given that the

new mutants are to be added after adequate investigation, we believe this to be of low

probability). The best case is when all the added mutants are representatives of unique

faults. In such a case, the advantage gained by a random sample from the new population

from a random sample from the original sample can be bounded only by the sample size.

If the original sample size was much larger than the number of unique mutants, the

advantage thus gained may be huge (and potentially unbounded if one considers larger

and larger samples).

The asymmetry between improvement obtained by operator removal and operator

addition is caused by the difference in population from which the random comparison

sample is drawn. For operator selection, the perfect set remaining after removal of

operators is a subset of the original population. Since the random sample is drawn

from the original population, it can potentially contain a mutant from each strata in

the perfect set. For operator addition, the new perfect set is a superset of the original

population, with as many new strata as there are new mutants (no bounds on the number

of new strata). Since the random sample is constructed from the original population, it

does not contain the newly added strata.

Our results suggest a higher payoff in finding newer categories of mutations, than

in trying to reduce the mutation operators already available.

4.2 Related Work

According to Mathur [68], the idea of mutation analysis was first proposed by Richard

Lipton, and formalized by DeMillo et al. [31] A practical implementation of mutation

analysis was done by Budd et al. [17] in 1980.

Mutation analysis subsumes different coverage measures [16, 69, 81]; the faults pro-
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duced are similar to real faults in terms of the errors produced [27] and ease of detec-

tion [8, 9]. Just et al. [56] investigated the relation between mutation score and test

case effectiveness using 357 real bugs, and found that the mutation score increased with

effectiveness for 75% of cases, which was better than the 46% reported for structural

coverage.

Performing a mutation analysis is usually costly due to the large number of test runs

required for a full analysis [55]. There are several approaches to reducing the cost of

mutation analysis, categorized by Offutt and Untch [80] as: do fewer, do smarter, and

do faster. The do fewer approaches include selective mutation and mutant sampling,

while weak mutation, parallelization of mutation analysis, and space/time trade-offs are

grouped under the umbrella of do smarter. Finally, the do faster approaches include

mutant schema generation, code patching, and other methods.

The idea of using only a subset of mutants was conceived along with mutation analysis

itself. Budd [16] and Acree [1] showed that even 10% sampling approximates the full

mutation score with 99% accuracy. This idea was further explored by Mathur [67], Wong

et al. [97, 98], and Offutt et al. [79] using Mothra [29] for Fortran.

A number of studies have looked at the relative merits of operator selection and ran-

dom sampling criteria. Wong et al. [98] compared x% selection of each mutant type with

operator selection using just two mutation operators and found that both achieved simi-

lar accuracy and reduction (80%). Mresa et al. [73] used the cost of detection as a means

of operator selection. They found that if a very high mutation score (close to 100%)

is required, x% selective mutation is better than operator selection, and, conversely,

for lower scores, operator selection would be better if the cost of detecting mutants is

considered.

Zhang et al. [102] compared operator-based mutant selection techniques to random

sampling. They found that none of the selection techniques were superior to random

sampling. They also found that uniform sampling is more effective for larger programs

compared to strata sampling on operators3, and the reverse is true for smaller programs.

Recently, Zhang et al. [101] confirmed that sampling as few as 5% of mutants is sufficient

for a very high correlation (99%) with the full mutation score, with even fewer mutants

having a good potential for retaining high accuracy. They investigated eight sampling

3The authors choose a random operator, and then a mutant of that operator. This is in effect strata
sampling on operators given equal operator priority.
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strategies on top of operator-based mutant selection and found that sampling strategies

based on program components (methods in particular) performed best.

Some studies have tried to find a set of sufficient mutation operators that reduce

the cost of mutation but maintain correlation with the full mutation score. Offutt et

al. [79] suggested an n-selective approach with step-by-step removal of operators that

produce the most numerous mutations. Barbosa et al. [14] provided a set of guidelines

for selecting such mutation operators. Namin et al. [74, 87] formulated the problem as

a variable reduction problem, and found that just 28 out of 108 operators in Proteum

were sufficient for accurate results.

Using only the statement deletion operator was first suggested by Untch [90], who

found that it had the highest correlation (R2 = 0.97) with the full mutation score

compared to other operator selection methods, while generating the smallest number of

mutants. This was further reinforced by Deng et al. [32] who defined deletion for different

language elements, and found that an accuracy of 92% is achieved while reducing the

number of mutants by 80%.

A similar mutation reduction strategy is to cluster similar mutations together [34,50],

which has been attempted based on domain analysis [52] and machine learning techniques

based on graphs [89].

In operator and mutant subsumption, operators or mutants that do not significantly

differ from others are eliminated. Kurtz et al. [60] found that a reduction of up to

24 times can be achieved using subsumption alone, even though the result is based

on an investigation of a single program, cal. Research into subsumption of mutants

also includes Higher Order Mutants (HOM), whereby multiple mutations are introduced

into the same set of mutants, reducing the number of individual mutants by subsuming

component mutants. HOMs were investigated by Jia et al. [53,54], who found that they

can reduce the number of mutants by 50%.

Ammann et al. [6] observe that the set of minimal mutants corresponding to a minimal

test suite has the same cardinality as the test suite, and provides a simple algorithm for

finding both a minimal test suite and a corresponding minimal mutant set. Their work

also suggests this minimal mutant set as a way to evaluate the quality of a mutation

reduction strategy. Finally, Ammann et al. also found that the particular strategies

examined are rather poor when it comes to selecting representative mutants. Our work

is an extension of Ammann et al. [6] in that we provide a theoretical and empirical bound
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to the amount of improvement that can be expected by any mutation reduction strategy.

In comparison with previous work [101, 102] our analysis is backed by theory and

compares random sampling to the limit of selection. That is, the results from our study

are applicable to techniques such as clustering using static analysis, and even improved

strata sampling techniques. Further, we are the first to evaluate the effectiveness of

non-adequate test suites (Zhang et al. [101] evaluates only the predictive power of non-

adequate test suites, not effectiveness). Finally, previous research [101, 102] does not

compare the effectiveness of the same number of mutants for sampling and operator

selection, but rather different operator-selections with samples of increasing size such as

5%, 10% etc. We believe that practitioners will be more interested in comparing the

effectiveness achieved by the same numbers of mutants.

4.3 Theoretical Analysis

The ideal outcome for a mutation reduction strategy is to find the minimum set of

mutants that can represent the complete set of mutants. A mutation reduction strategy

accomplishes this by identifying redundant mutants and grouping them together so that

a single mutant is sufficient to represent the entire group. The advantage of such a

strategy over random sampling depends on two characteristics of the mutant population.

First, it depends on the number of redundant mutants in each group of such mutants.

Random sampling works best when these groups have equal numbers of mutants in

them (uniform distribution), while any other distribution of mutants (skew) results in

lower effectiveness of random sampling. However, this distribution is dependent on the

program being evaluated. Since our goal is to find the mean advantage for a perfect

strategy for an arbitrary program, we use the conservative distribution (uniform) of

mutants for our theoretical analysis (we show later that the actual impact of this skew

is less than 5% for real world mutants).

The next consideration regards the minimum number of mutants required to repre-

sent the entire population of mutants. If a mutant can be distinguished from another

in terms of tests that detect it, then we consider both to be distinguishable from each

other in terms of faults they represent, and we pick a representative from each set of

indistinguishable mutants. Note that, in the real world, the population of distinguish-

able mutants is often larger than the minimum number of mutants required to select a
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minimum test suite4 able to kill the entire mutant population. This is because while

some mutants are distinguishable from others in terms of tests that detect them, there

may not be any test that uniquely kills them5. Since this is external to the mutant pop-

ulation, and also because such a minimum set of mutants does not represent the original

population fully (we can get away with a lower number only because the test suite is in-

adequate), we assume that distinguishable mutants are uniquely identified by test cases.

We note however, that having inadequate test suites favors random sampling, and hence

lowers the advantage for a perfect mutation reduction strategy, because random sampling

can now miss the mutant without penalty. We derive the limits of mutation reduction for

this system using the best strategy possible, given oracular knowledge of mutant kills.

Impact of deviations of parameters:

Skew: The presence of skew reduces the effectiveness of random sampling, and hence

increases the utility of the perfect strategy.

Distinguishability: Any distinguishable mutant that is not chosen by the strategy (due

to not having a unique detecting test case) decreases the effectiveness of the selection

strategy, decreasing its utility.

Before establishing a theoretical framework for utility of mutation reduction strate-

gies, we must establish some terminology for the original and reduced mutant sets and

their related test suites.

Terminology: Let M and Mstrategy denote the original set of mutants and the reduced

set of mutants, respectively. The mutants from M killed by a test suite T are given by

kill(T,M) (We use Mkilled as an alias for kill(T,M)). Similarly the tests in T that kill

mutants in M are given by cover(T,M).

kill : T×M→M

cover : T×M→ T

4A minimum test suite with respect to a set of mutants is the smallest test suite that can kill all
mutants in the set, and a minimal test suite is a test suite from which no further tests can be removed
without decreaseing mutation score. Our approach tries to approximate the actual minimum test suite
using the greedy algorithm that has an approximation bound of k · ln(n) where k is the true minimum,
and n is the number of elements. Since we have a strong bound on the approximation, and since the
algorithm is robust in practice, we use the minimal computed by the greedy algorithm as a proxy for the
minimum test suite.

5 Consider the mutant×test matrix (1 implies the test kills the mutant) {{1, 1, 0}, {1, 0, 1}, {0, 1, 1}}.
While all the mutants are distinguishable, just two test cases are sufficient to kill them all.
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The test suite Tstrategy can kill all mutants inMstrategy. That is, kill(Tstrategy,Mstrategy) =

Mstrategy. If it is minimized with respect to the mutants of the strategy, we denote it by

Tminstrategy.

Two mutants m and m′ are distinguished if the tests that kill them are different:

cover(T, {m}) 6= cover(T, {m′}).
We use Muniq

killed to denote the set of distinguished mutants from the original set such

that ∀m,m′∈Mcover(T, {m}) 6= cover(T, {m′}).
The utility (Ustrategy) of a strategy is improvement in effectiveness due to using that

strategy compared to the baseline (the baseline is random sampling of the same number6

of mutants). That is,

Ustrategy =

∣∣∣∣∣kill(Tminstrategy,M)

kill(Tminrandom,M)

∣∣∣∣∣− 1

Note that Tminstrategy is minimized over the mutants selected by the strategy, and it is

then applied against the full set of mutants (M) in kill(Tminstrategy,M).

This follows the traditional evaluation of effectiveness, which goes as follows: start

with the original set of mutants, and choose a subset of mutants according to the strategy.

Then select a minimized set of test cases that can kill all the selected mutants. This

minimized test suite is evaluated against the full set of mutants. If the mutation score

obtained is greater than 99%, then the reduction is deemed to be effective. Note that we

compare this score against the score of a random set of mutants of the same size, in order

to handle the case where the full suite itself is not mutation adequate (or even close to

adequate). Our utility answers the question: does this set of mutants better represent

the test adequacy criteria represented by the full set of mutants than a random sample

of the same size, and if so, by how much?

The strategy that can select the perfect set of representative mutants (the smallest

set of mutants such that they have the same minimum test suite as the full set) is called

the perfect strategy, with its utility denoted by Uperfect
7.

We now show how to derive an expression for the maximum Uperfect for the idealized

6For the rest of the paper, we require that efficiency of random sampling is the same as that of the
strategy it is compared to, i.e. |Mstrategy| = |Mrandom|.

7Where unambiguous, we shorten the subscript such as p for perfect, and r for random.
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system with the following restrictions.

1. We assume that we have an equal number of redundant mutants for each distin-

guished mutant.

From here on, we refer to a set of non-distinguished mutants as a stratum, and the

entire population is referred to as the strata. Given any population of detected mutants,

the mutation reduction strategy should produce a set of mutants such that if a test suite

can kill all of the reduced set, the same test suite can kill all of the original mutant set

(remember that Tstrategy kills all mutants in Mstrategy). Hence,

kill(Tperfect,M) = kill(T,M)

The quality of the test suite thus selected is dependent on the number of unique mutants

that we are able to sample. Since we have supposed a uniform distribution, say we have

x elements per stratum, and total n mutants. Our sample size s would be p× k where k

is the number of strata, p is the number of samples from each stratum, and is a natural

number; i.e. the sample would contain elements from each stratum, and those would

have equal representation. Note that there will be at least one sample, and one strata:

i.e., s ≥ 1. Since our strata are perfectly homogeneous by construction, in practice

p = 1 is sufficient for perfect representation, and as we shall see below, ensures maximal

advantage over random sampling.

Next, we evaluate the number of different (unique) strata expected in a random

sample of the same size s.

Let Xi be a random variable defined by:

Xi =

1 if strata i appears in the sample

0 otherwise.

Let X be the number of unique strata in the sample, which is given by: X =
∑k

i=1Xi,

and the expected value of X (considering that all mutants have equal chance to be

sampled) is given by:

E(X) = E(
k∑
i=1

Xi) =
k∑
i=1

E(Xi) = k × E(X1)
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Next, consider the probability that the mutant 1 has been selected, where the sample

size was s = p× k:

P [Xi = 1] = 1−
(
k − 1

k

)pk
The expectation of Xi:

E(X1) = 1× P (Xi = 1)

Hence, the expected number of unique strata appearing in a random sample is:

k × E(X1) = k − k ×
(
k − 1

k

)pk
We already know that the number of unique strata appearing in each strata-based sample

is k (because it is perfect, so each strata is unique). Hence, we compute the utility as

the difference divided by the baseline.

Umax =
k −

(
k − k ×

(
k−1
k

)pk)
k − k ×

(
k−1
k

)pk =
1

( k
k−1)pk − 1

(4.1)

This converges to8

lim
k→∞

1

( k
k−1)pk − 1

=
1

ep − 1
(4.2)

and has a maximum value when p = 1.

Umax =
1

e− 1
≈ 58.2% (4.3)

Note that this is the mean improvement expected over random sampling for uniform

distribution of redundant mutants in strata (and with oracular knowledge). That is,

individual samples could still be arbitrarily advantageous (after all, the perfect strata

sample itself is one potential random sample), but on average this is the expected gain

over random samples.

How do we interpret this result? If you have a robust set of test cases that is able

to uniquely identify distinguishable mutants, then given an arbitrary program, you can

8While we can expect k to be finite for mutation testing, we are looking at the maximum possible
value for this expression.
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Table 4.1: PIT Mutation Operators. The (*) operators were added or extended by us.

IN Remove negative sign from numbers
RV Mutate return values
M Mutate arithmetic operators
VMC Remove void method calls
NC Negate conditional statements
CB Modify boundaries in logical conditions
I Modify increment and decrement statements
NMC Remove non-void method calls, returning default value
CC Replace constructor calls, returning null
IC Replace inline constants with default value
RI* Remove increment and decrement statements
EMV Replace member variable assignments with default value
ES Modify switch statements
RS* Replace switch labels with default (thus removing them)
RC* Replace boolean conditions with true
DC* Replace boolean conditions with false

expect a perfect strategy to have at least a mean 58.2% advantage over random sample of

the same efficiency in terms of effectiveness. However, if the program produces redundant

mutants that are skewed, then the advantage of perfect strategy with oracular knowledge

will increase (depending on the amount of skew). Similarly, if the tests are not sufficient

to identify distinguishable mutants uniquely, we can expect the advantage of the perfect

strategy to decrease. Finally, strategies can rarely be expected to come close to perfection

in terms of classifying mutants in terms of their behavior without post hoc knowledge of

the kills. Hence the advantage held by such a strategy would be much much lower (or it

may not even have an advantage).
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Figure 4.1: Distribution of number of mutants and test suites. It shows that we have a
reasonable non-biased sample with both large programs with high mutation scores, and
also small low scoring projects.

4.4 Empirical Analysis

The above analysis provides a theoretical framework for evaluating the advantage a

sampling method can have over random sampling, with a set of mutants and test suite

constructed with simplifying assumptions. It also gives us an expected limit for how good

these techniques could get for a uniform distribution of mutants. However, in practice, it

is unlikely that real test suites and mutant sets meet our assumptions. What advantage

can we expect to gain with real software systems, even if we allow our hypothetical

method to make use of prior knowledge of the results of mutation analysis? To find out,

we examine a large set of real-world programs and their test suites.

Our selection of sample programs for this empirical study of the limits of mutation

reduction was driven by a few overriding concerns. Our primary requirement was that

our results should be as representative as possible of real-world programs. Second, we

strove for a statistically significant result, therefore reducing the number of variables

present in the experiments for reduction of variability due to their presence.
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We chose a large random sample of Java projects from Github [41]9 and the Apache

Software Foundation [12] that use the popular Maven [13] build system. From an initial

1, 800 projects, we eliminated aggregate projects, and projects without test suites, which

left us with 796 projects. Out of these, 326 projects compiled (common reasons for

failure included unavailable dependencies, compilation errors due to syntax, and bad

configurations). Next, projects that did not pass their own test suites were eliminated

since the analysis requires a passing test suite. Tests that timed out for particular

mutants were assumed to have not detected the mutant. The tests that completely

failed to detect any of the mutants were eliminated as well, as these were redundant to

our analysis. We also removed all projects with trivial test suites, leaving only those

that had at least 100 test cases. This left us with 39 projects. The projects are given in

Table 4.2.

We used PIT [24] for our analysis. PIT was extended to provide operators that

it was lacking [5] (accepted into mainline). We also ensured that the final operators

(Table 4.1) were not redundant. The redundancy matrix for the full operator set is given

in Figure 4.2. A mutant m1 is deemed to subsume another, say m2 if any tests that kills

m1 is guaranteed to kill m2. This is extended to mutation operators whereby the fraction

of mutants in o1 killed by test cases that kills all mutants in o2 is taken as the degree of

subsumption of o1 by o2. The matrix shows that the maximum subsumption was just

43% — that is, none of the operators were redundant. For a detailed description of each

mutation operator, please refer to the PIT documentation [25]. To remove the effects of

random noise, results for each criteria were averaged over ten runs. The mutation scores

along with the sizes of test suites are given in Figure 4.1.

It is of course possible that our results may be biased by the mutants that PIT

produces, and it may be argued that the tool we use produces too many redundant

mutants, and hence the results may not be applicable to a better tool that reduces

the redundancy of mutants. To account for this argument, we run our experiment in

two parts, with similar procedures but with different mutants. For the first part, we

use the detected mutants from PIT as is, which provides us with an upper bound that a

practicing tester can expect to experience, now, using an industry-accepted tool. For the

second part, we choose only distinguishable mutants [6] from the original set of detected

9Github allows us access only a subset of projects using their search API. We believe this should not
confound our results.
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Figure 4.2: Subsumption rate between operators. Note that subsumption is not a sym-
metrical relation. No operators come close to full subsumption. This suggests that none
of the operators studied are redundant.
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Table 4.2: The projects mutants and test suites

Project |M | Mkilled M
uniq
killed |T | |Tmin|

events 1171 702 59 180 33.87
annotation-cli 992 589 110 109 38.97
mercurial-plugin 2069 401 102 138 61.77
fongo 1461 1209 175 113 70.73
config-magic 1188 721 204 112 74.55
clazz 5242 1583 151 140 64.00
ognl 21852 12308 2990 114 85.43
java-api-wrapper 1715 1304 308 125 107.04
webbit 3780 1981 325 147 116.93
mgwt 12030 1065 168 101 90.65
csv 1831 1459 411 173 117.97
joda-money 2512 1272 236 173 128.48
mirror 1908 1440 532 301 201.21
jdbi 7754 4362 903 277 175.57
dbutils 2030 961 207 224 141.53
cli 2705 2330 788 365 186.24
commons-math-l10n 6067 2980 219 119 109.02
mp3agic 7344 4003 730 206 146.79
asterisk-java 15530 3206 451 214 196.32
pipes 3216 2176 338 138 120.00
hank 26622 7109 546 171 162.88
java-classmate 2566 2316 551 215 196.57
betwixt 7213 4271 1198 305 206.35
cli2 3759 3145 1066 494 303.86
jopt-simple 1818 1718 589 538 158.37
faunus 9801 4809 553 173 146.11
beanutils2 2071 1281 465 670 181.00
primitives 11553 4125 1365 803 486.71
sandbox-primitives 11553 4125 1365 803 488.56
validator 5967 4070 759 383 264.35
xstream 18030 9163 1960 1010 488.25
commons-codec 9983 8252 1393 605 444.69
beanutils 12017 6823 1570 1143 556.67
configuration 18198 13766 4522 1772 1058.36
collections 24681 8561 2091 2241 938.32
jfreechart 99657 32456 4686 2167 1696.86
commons-lang3 32323 26741 4479 2456 1998.11
commons-math 122484 90681 17424 5881 4009.98
jodatime 32293 23796 6920 3973 2333.49
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mutants. What this does is to reduce the number of samples from each stratum to 1,

and hence eliminate the skew in mutant population. Note that this requires post-hoc

knowledge of mutant kills (not just that the mutants produce different failures, but also

that available tests in the suite can distinguish between both), and is the best one can do

for the given projects to enhance the utility of any strategy against random sampling. We

provide results for both the practical and more theoretically interesting distinguishable

sets of mutants. Additionally, in case adequacy has an impact, we chose the projects

that had plausible mutation-adequate test suites, and computed the possible advantage

separately.

4.4.1 Experiment

Our task is to find the Uperfect for each project. The requirements for a perfect strategy

are simple:

1. The mutants should be representative of the full set. That is,

kill(Tp,M) = kill(T,M)

2. The mutants thus selected should be non-redundant. That is,

∀m∈Mpkill(Tp,Mp \ {m}) ⊂ kill(Tp,Mp)

The minimal mutant set suggested by Ammann et al. [6] satisfies our requirements for

a perfect strategy, since it is representative — a test suite that can kill the minimal

mutants can kill the entire set of mutants — and it is non-redundant with respect to the

corresponding minimal test suite.

Ammann et al. [6] observed that the cardinality of a minimal mutant set is the same

as the cardinality of the corresponding minimal test suite. That is,

|Mmin
perfect| = |MinTest(T,M)| = |Tminall |

Finding the true minimal test suite for a set of mutants is NP-complete10. The best

10This is the Set Covering Problem [6] which is NP-Complete [58].
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possible approximation algorithm is Chvatal’s [22], using a greedy algorithm where each

iteration tries to choose a set that covers the largest number of mutants. This is given in

Algorithm 1. In the worst case, if the number of mutants is n, and the smallest test suite

that can cover it is k, this algorithm will achieve a k · ln(n) approximation. We note that

this algorithm is robust in practice, and usually gets results close to the actual minimum

k (see Figure 4.3). Further, Feige [39] showed that this is the closest approximation ratio

that an algorithm can reach for set cover so long as NP 6= P 11.

Since it is an approximation, we average the greedily estimated minimal test suite size

over 100 runs. The variability is given in Figure 4.3, ordered by the size of minimal test

suite. Note that there is very little variability, and the variability decreases as the size

of test suite increases. All we need now is to find the effectiveness of random sampling

for the same number of mutants as produced by the perfect strategy.

Algorithm 1 Finding the minimal test suite

function MinTest(Tests,Mutants)
T ← Tests
M ← kill(T,Mutants)
Tmin ← ∅
while T 6= ∅ ∨M 6= ∅ do

t← random(max
t
|kill({t},M)|)

T ← T \ {t}
M ← kill(T,Mutants)
Tmin ← Tmin ∪ {t}

end while
return Tmin

end function

Next, we randomly sample |Mmin
perfect| mutants from the original set Mrandom, obtain

the minimal test suite of this sample Tminrandom, and find the mutants from the original set

that are killed by this test suite kill(Tminrandom,M), which is used to compute the utility of

11 We avoided the reverse greedy algorithm given by Ammann et al. [6] for two reasons. First, while
the approximation ratio of the greedy algorithm is at most k · ln(n) where k is the actual minimum, that
of reverse greedy is much larger [49] (if any). Secondly, the number of steps involved in reverse greedy
is much larger than in greedy when the size of minimal set is very small compared to the full set. We
also verified that the minimum frequency of kills of the set of mutants by the minimal test suite was 1.
A larger minimum frequency indicates that at least that many tests are redundant, which is a rare but
well-known problem with the greedy algorithm.
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Figure 4.3: Variation of minimal test cases for each sample as a percentage difference
from the mean ordered by mean minimal test suite size. There is very little variation,
and the variation decreases with test suite size.

perfect strategy with respect to that particular random sample. The experiments were

repeated 100 times for each project, and averaged to compute Uperfect for the project

under consideration.

4.5 Results

4.5.1 All Mutants

Our results are given in Table 4.3. We found that the largest utility achieved by the

perfect strategy was 17.997%, for project faunus, while the lowest utility was 1.153%,

for project joda-money. The mean utility of the perfect strategy was 13.078%. A one

sample u-test suggests that 95% of projects have maximum utility between 12.218% and

14.26% (p < 0.001). The distribution of utility for each project is captured in Figure 4.6.

Projects are sorted by average minimal test suite size.

One may wonder if the situation improves with either test suite size or project size.
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Table 4.3: The maximum utility achievable
by a perfect strategy for each project

Project |kill(T,M)| |kill(Tr,M)| Uperf
events 702 662.97 0.06
annotation-cli 589 529.51 0.11
mercurial-plugin 401 342.91 0.17
fongo 1209 1052.99 0.15
config-magic 721 640.91 0.13
clazz 1583 1402.39 0.13
ognl 12308 11426.09 0.08
java-api-wrapper 1304 1148.52 0.14
webbit 1981 1793.96 0.10
mgwt 1065 949.96 0.12
csv 1459 1282.93 0.14
joda-money 1272 1257.55 0.01
mirror 1440 1252.50 0.15
jdbi 4362 3914.73 0.11
dbutils 961 854.83 0.12
cli 2330 2069.84 0.13
commons-math-l10n 2980 2527.66 0.18
mp3agic 4003 3620.41 0.11
asterisk-java 3206 2754.69 0.16
pipes 2176 1884.73 0.16
hank 7109 6200.08 0.15
java-classmate 2316 1969.76 0.18
betwixt 4271 3809.19 0.12
cli2 3145 2760.66 0.14
jopt-simple 1718 1546.21 0.11
faunus 4809 4078.22 0.18
beanutils2 1281 1141.73 0.12
primitives 4125 3565.83 0.16
sandbox-primitives 4125 3563.85 0.16
validator 4070 3616.71 0.13
xstream 9163 8307.12 0.10
commons-codec 8252 7455.50 0.11
beanutils 6823 6071.53 0.12
configuration 13766 12359.89 0.11
collections 8561 7392.63 0.16
jfreechart 32456 28171.19 0.15
commons-lang3 26741 22742.46 0.18
commons-math 90681 81898.25 0.11
jodatime 23796 20491.96 0.16

Table 4.4: The maximum utility achievable
by a perfect strategy for each project using
distinguishable mutants

Project |kill(T,M)| |kill(Tr,M)| Uperf
events 59 49.15 0.20
annotation-cli 110 93.68 0.18
mercurial-plugin 102 80.95 0.26
fongo 175 145.13 0.21
config-magic 204 171.60 0.19
clazz 151 129.24 0.17
ognl 2990 2835.77 0.05
java-api-wrapper 308 259.87 0.19
webbit 325 280.89 0.16
mgwt 168 140.60 0.20
csv 411 349.30 0.18
joda-money 236 230.76 0.02
mirror 532 444.17 0.20
jdbi 903 783.99 0.15
dbutils 207 170.60 0.21
cli 788 688.05 0.15
commons-math-l10n 219 177.86 0.23
mp3agic 730 639.01 0.14
asterisk-java 451 372.25 0.21
pipes 338 288.41 0.17
hank 546 465.52 0.17
java-classmate 551 450.46 0.22
betwixt 1198 1055.30 0.14
cli2 1066 903.30 0.18
jopt-simple 589 514.36 0.15
faunus 553 467.03 0.18
beanutils2 465 392.30 0.19
primitives 1365 1155.09 0.18
sandbox-primitives 1365 1155.01 0.18
validator 759 647.36 0.17
xstream 1960 1691.84 0.16
commons-codec 1393 1192.29 0.17
beanutils 1570 1341.04 0.17
configuration 4522 3934.21 0.15
collections 2091 1750.05 0.19
jfreechart 4686 3910.15 0.20
commons-lang3 4479 3663.98 0.22
commons-math 17424 15139.90 0.15
jodatime 6920 5801.10 0.19

We note that the utility Up has low correlation with total mutants, detected mutants

(shown in Figure 4.5), mutation score, and minimal test suite size (shown in Figure 4.4).

The correlation factors are given in Table 4.5.

An analysis of variance (ANOVA) to determine significant variables affecting Uperfect
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Figure 4.6: Using all mutants.

●

●

●

●

●

●

●●●

●
●

●

●

●
●

●

●
●
●●

●

●

●

●

●
●

●

●●●●
●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●
●

●
●●

●

●●

●●●

●

0.0

0.1

0.2

0.3

0.4

Projects

M
ax

im
um

 U
til

ity

colour
red

Utility Distribution of Distinguished Mutants

Figure 4.7: Using distinguished mutants.

Distribution of mean utility using distinguished mutants across projects. The projects
are ordered by the cardinality of mean minimal test suite. The red line indicates the
mean of all observations.

Table 4.5: The correlation of utility for all mutants, killed mutants, mutation score, and
minimal test suite size, based on both full set of mutants, and also considering only
distinguished mutants

R2
all R

2
distinguished

M -0.02 -0.03
Mkill -0.03 -0.01

Mkill/M -0.02 -0.00
Tmin -0.01 -0.02

suggests that the variability due to project is a significant factor (p < 0.001) and interacts

with kill(Trandom,M) strongly.

µ{Up} = project+ kill(Tr,M) + project× kill(Tr,M)

The variable project has a correlation of 0.682 with the Uperfect, and the combined terms

have a correlation of 0.9995 with Uperfect.
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4.5.2 Distinguishable Mutants

Our results are given in Table 4.4. We found that the largest utility achieved by the

perfect strategy was 26.159%, for project mercurial-plugin, while the lowest utility was

2.283%, for project joda-money.

The mean utility of the perfect strategy was 17.545%. A one sample u-test showed

that 95% of projects have a maximum utility between 16.912% and 18.876% (p < 0.001).

The utility distribution for each project is captured in Figure 4.7. The projects are

sorted by the average minimal test suite size.

This situation does not change with either test suite or project size.

The utility Up has low correlation with total mutants, detected mutants, mutation

score, and minimal test suite size. The correlation factors are given in Table 4.5.

An analysis of variance (ANOVA) to determine significant variables affecting Uperfect

found that the variability due to project is a significant factor (p < 0.001) and strongly

interacts with kill(Trandom,M).

µ{Up} = project+ kill(Tr,M) + project× kill(Tr,M)

The variable project has a correlation of 0.734 with the Uperfect, and the combined terms

have a correlation of 0.9994 with Uperfect.

4.5.3 Adequate Mutants

Finally, one may ask if adequacy has an impact on the effectiveness of selection strate-

gies. Following the industry practice of deeming well-tested projects adequate after

discounting equivalent mutants [87, 100–102], we chose large well tested projects that

had at least 10, 000 mutants and a mutation score of at least 70% (in the range of

similar studies above) which were deemed adequate. We evaluated the utility for con-

figuration, commons-lang3, commons-math, jodatime and found that they have a mean

maximum utility of 13.955%. These same projects have a distinguished mean maximum

utility of 17.893%. This suggests that adequacy does not have a noticeable impact on

the effectiveness of selection strategies.
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4.6 Discussion

Mutation analysis is an invaluable tool that is often difficult to use in practice due

to hefty computational requirements. There is ongoing and active research to remedy

this situation using different mutation reduction strategies. Hence, it is important to

understand the amount by which one can hope to improve upon the simplest baseline

strategy for reduction — pure random sampling.

Our theoretical analysis of a simple idealized system finds a mean improvement of

58.2% over random sampling for a mutation reduction strategy with oracular knowledge

of mutation kills given a uniform distribution of mutants. This serves as an upper bound

of what any known mutation reduction strategy could be expected to achieve (under the

assumption that the mutant distribution is reasonably close to uniform).

Our empirical analysis using a large number of open source projects reveals that the

practical limit is much lower, however, on average only 13.078% for mutants produced

by PIT. Even if we discount the effects of skew, by using only distinguished mutants,

the potential improvement is restricted to 17.545% on average.

It is important to distinguish the different questions that the theory and empirical

analysis tackle. The theoretical limit shows the best that can be done by a perfect

mutation strategy given the worst distribution of mutants one may encounter. On the

other hand, the empirical analysis finds the average utility of a perfect strategy without

regard to the distribution of mutants in different programs. However, given that the

effects of skew were found to be rather weak (only 4.467%) the theoretical bound is

reasonable for the empirical question too.

The empirical upper bounds on gain in utility are surprisingly low, and call into

question the effort invested into improving mutation reduction strategies. Of course, one

can still point out that random sampling is subject to the vagaries of chance, as one

can get arbitrarily good or bad samples. However, our results suggest that the variance

of individual samples is rather low, and the situation improves quite a bit with larger

projects — e.g. the variance of commons-math is just 0.397%. Hence the chances for

really bad samples are very low in the case of projects large enough to really need mutant

reduction, and drop quickly as the number of test cases increases. One may wonder if

the adequacy of test suites has an impact, but our analysis of projects with adequate test

suites suggests that there is very little difference due to adequacy (Uperfect =13.955%). In
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general, using accepted standard practices for statistical sampling to produce reasonably-

sized random mutant samples should be practically effective for avoiding unusually bad

results due to random chance. The added advantage is that random sampling is easy to

implement and incurs negligible overhead.

We note that our framework is applicable not only to selective mutation, but also

to mutation implementors looking to add new mutators. Say a mutation implementor

has a perfect set of mutation operators such that their current set of mutants does not

have any redundant mutants (practically infeasible given our shallow understanding of

mutant semiotics). Even if we consider the addition of a new set of random mutants

that do not improve the mutation set at all, in that they are redundant with respect

to the original set (rare in practice, given that we are introducing new mutants), the

maximum disadvantage thus caused is bounded by our limit (18.876% upper limit for

95% of projects). However, at least a few of the new mutants can be expected to improve

the representativeness of a mutation set compared to the possible faults. Since we can’t

bound the number of distinguishable mutants that may be introduced, there is no upper

bound for the maximum advantage gained by adding new mutation operators. Adding

new operators is especially attractive in light of recent results showing classes of real

faults that are not coupled to any of the operators currently in common use [56].

Our previous research [45] suggests that a constant number of mutants (a theoretical

maximum of 9, 604, and 1,000 in practice for 1% accuracy) is sufficient for computing

mutation score with high accuracy irrespective of the total number of mutants. This

suggests that sampling will lead to neither loss of effectiveness nor loss of accuracy,

and hence addition of new mutation operators (and sampling the required number of

mutants) is potentially a very fruitful endeavour.

4.7 Threats to Validity

While we have taken care to ensure that our results are unbiased, and have tried to

eliminate the effects of random noise. Random noise can result from non-representative

choise of project, tool, or language, and can lead to skewed strata and bias in empirical

result. Our results are subject to the following threats.

Threats due to approximation: We use the greedy algorithm due to Chvatal [22]

for approximating the minimum test suite size. While this is guaranteed to be H(|M |)
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approximate, there is still some scope for error. We guard against this error by taking

the average of 100 runs for each observation. Secondly, we used random samples to

evaluate the effectiveness of random sampling. While we have used 100 trials each for

each observation, the possibility of bias does exist.

Threats due to sampling bias: To ensure representativeness of our samples, we opted

to use search results from the Github repository of Java projects that use the Maven build

system. We picked all projects that we could retrieve given the Github API, and selected

from these only based on constraints of building and testing. However, our sample of

programs could be biased by skew in the projects returned by Github.

Bias due to tool used: For our study, we relied on PIT. We have done our best to

extend PIT to provide a reasonably sufficient set of mutation operators, ensuring also

that the mutation operators are non-redundant. Further, we have tried to minimize the

impact of redundancy by considering the effect of distinguished mutants. There is still

a possibility that the kind of mutants produced may be skewed, which may impact our

analysis. Hence, this study needs to be repeated with mutants from diverse tools and

projects in future.

4.8 Conclusion

Our research suggests that blind random sampling of mutants is highly effective compared

to the best achievable bound for mutation reduction strategies, using perfect knowledge

of mutation analysis results, and there is surprisingly little room for improvement. Pre-

vious researchers showed that there is very little advantage to current operator selection

strategies compared to random sampling [101,102]. However, the experiment lacked di-

rect comparison with random sampling of the same number of mutants. Secondly it was

also shown that current strategies fare poorly [6] when compared to the actual minimum

mutant set, but lacked comparison to random sampling. Our contribution is to show

that there is a theoretical limit to the improvement that any reduction strategy can have

irrespective of the intelligence of the strategy, and also a direct empirical comparison of

effectiveness of the best strategy possible with random sampling.

Our theoretical investigation suggests a mean advantage of 58.2% for a perfect muta-

tion reduction strategy with oracular knowledge of kills over random sampling given an

arbitrary program, under the assumption of no skew in redundant mutants. Empirically,
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we find a much lower advantage 13.078% for a perfect reduction strategy with oracular

knowledge. Even if we eliminate the effects of skew in redundant mutant population by

considering only distinguished mutants, we find that the advantage of a perfect mutation

reduction strategy is only 17.545% in comparison to random sampling. The low impact

of skew (4.467%) suggests that our simplifying assumptions for theoretical analysis were

not very far off the mark. The disparity between the theoretical prediction and empirical

results is due to the inadequacies of real world test suites, resulting in a much smaller

minimum mutant set than the distinguishable mutant set. We note that mutation re-

duction strategies routinely claim high reduction factors, and one might expect a similar

magnitude of utility over random sampling, which fails to materialize either in theory or

practice.

The second takeaway from our research is that a researcher or an implementor of

mutation testing tools should consider the value of implementing a mutation reduction

strategy carefully given the limited utility we observe. In fact, our research [44] suggests

that popular operator selection strategies we examined have reduced utility compared

to random sampling, and even strata sampling techniques based on program elements

seldom exceed a 10% improvement. Given that the variability due to projects is sig-

nificant, a testing practitioner would also do well to consider whether the mutation

reduction strategy being used is suited for the particular system under test (perhaps

based on historical data for that project, or projects that are in some established sense

similar). Random sampling of mutants is not extremely far from an empirical upper

bound on an ideal mutation reduction strategy, and has the advantage of having little

room for an unanticipated bias due to a “clever” selection method that might not work

well for a given project. The limit reported here is based on using full knowledge of the

mutation kill matrix, which is, to say the least, difficult to attain in practice.

Perhaps the most important takeaway from our research is that it is possible to im-

prove the effectiveness of mutation analysis, not by removing mutation operators, but

rather by further research into newer mutation operators (or new categories of muta-

tion operators such as domain specific operators for concurrency or resource allocation).

Our research suggests that there is little reduction in utility due to addition of newer

operators, while there is no limit to the achievable improvement.
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Chapter 5: Conclusion

The central thesis of this dissertation is in identifying limits to the effectiveness of mu-

tation analysis. The effectiveness of mutation analysis depends on its ability to emulate

the first order faults – for which it depends on the competent programmer hypothesis,

and subsume the higher order faults – for which it depends on the coupling effect . Hence,

a focus of this dissertation is to identify limits of mutation analysis with respect to the

faults that it tries to emulate and subsume. In Chapter 2 and Chapter 3, we investi-

gated the limits of mutation analysis with regard to its foundational hypothesis — the

competent programmer hypothesis and the coupling effect . The effectiveness of muta-

tion analysis also depends on generating mutants that are as non-redundant as possible.

Hence, another major focus of the dissertation is to identify the limits of removal of

redundancy possible by mutation selection. In Chapter 4, we investigated the limits of

improvement one can achieve by removing redundant mutants. We summarize the three

major findings in the coming sections.

5.1 Real faults are different from typical mutation operators

The competent programmer hypothesis or the finite neighborhood hypothesis suggests

that any program is a finite distance away from the correct version. The traditional mu-

tation analysis theory and practice assume that the distance from the correct version is

at most one single fault [17,28,77]. We investigated the size of real world faults in Chap-

ter 2 using faults from 5, 000 different programs in four different programming languages

and found that while there exist a large amount of single token changes, the majority of

them involves changes of more than a single token. Since the traditional mutation op-

erators are overwhelmingly first order, our results suggest that the traditional mutation

operators do not adequately represent the possible real-world faults. Our investigations

in Chapter 2 further suggest that the incidence of faults in real world systems are depen-

dent on the language being used. In fact, there were interesting affinities attributable to

language paradigms in the distribution of faults, and further, mutation operators that
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are adequate for emulating faults in one language may not be adequate for another lan-

guage. We found that the implicit assumption that each possible mutation point or each

mutation possible have an equal probability of occurrence does not reflect the real world.

In fact, we found that the largest category of faults does not match any of the traditional

mutation operators.

Our results from Chapter 3 also suggest that language features such as naming and

variables can produce complex faults that are not decomposable to first order faults.

Hence, our results indicate that traditional mutation analysis is limited in terms of the

representativeness of faults it generates. Indeed, for any language that supports at least

naming, one can always find faults that are larger than a fixed limit. This can be

generalized to the theory of incompleteness of program neighborhoods. That is, given a

language with facilities such as naming or recursion, no fixed size program neighborhood

will contain the complete set of atomic faults for all programs. Further, it also suggests

that one needs to consider other factors such as the language used, in order to get a

realistic sense of the fault-proneness of the program and the actual strength of the test

suite.

5.2 A theory of fault interaction

The coupling effect asserts that a test suite capable of finding all simple faults can detect

a high percentage of complex faults. Unfortunately, the coupling effect does not clarify

what is a simple fault, and what may be counted as a complex fault. It provides no

help in estimating the number of complex faults detected by a mutation adequate test

suite that detects all first order mutants. Our investigations in Chapter 3 identified the

limitations of the coupling effect . We showed that strong fault interactions can lead

to complex but non-decomposable faults and should be considered as atomic. We also

provide a stronger and precise formulation for the coupling effect , called the composite

fault hypothesis. Our investigations suggest that theoretically, the probability of coupling

is as high as n−1
n where n is the co-domain of the function being examined. Our theory

suggests that, when the effects of premature exits from loops or recursion are taken

into account, the coupling ratio can increase. This is borne out by empirical evidence.

Empirically, it was found that in the programs we examined, approximately 99% of the

higher order faults are indeed coupled to simpler faults.
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5.3 Mutation reduction strategies considered harmful

The largest impediment to wider use of mutation analysis, and indeed in interpreting its

results is the problem of redundancy in mutants generated. Numerous researchers have

tried to tackle this problem by suggesting various heuristics for identifying representative

mutants — commonly called the selective mutation strategies. While these strategies

achieve significant amounts of reduction, there are few studies that evaluate these strate-

gies with regard to the accuracy of representation of unique faults. We investigated the

limits of these heuristic reduction strategies with regard to the accuracy of representation

in Chapter 4. We found that there is a theoretical as well as an empirical limit to the

improvement possible by any given strategy when compared to the baseline – random

sampling. Considering a simple system with an equal number of redundant mutants per

unique fault, and no overlap between mutants in terms of tests, the maximum improve-

ment is limited to 58.2%. Empirically, we find a maximum limit of 15% when comparing

the representativeness of the minimal set of mutants with that of a random sample of the

same size. Our research suggests that researchers can gain better results by focusing on

increasing variation within mutation operators and using sampling to reduce the number

of mutants rather than using selective mutation strategies.

5.4 Limitations and Future Research

We have seen how first order mutation analysis is inadequate to emulate and subsume

all possible faults. One of the ways forward is to consider larger neighborhoods, with

δ nearer to real world magnitudes (10 tokens for up to 95% coverage). However, this

is likely to lead to an exponential increase in the number of mutants. One avenue to

control this explosion is to provide limited context sensitivity to mutation operators or

provide domain specific higher order mutation operators that better represent common

errors that programmers make. Indeed, as our research in Chapter 4 suggests, it is better

to increase the number of mutation operators and sample to reduce than to reduce the

number of mutation operators altogether. On the theoretical side, while we have shown

by case analysis that some of the general patterns of recursion and iteration does not

lead to an increase in fault masking, the evaluation is not exhaustive. A complete theory

of fault interaction is hence, an important avenue for future research.



92

The second area of future research is in finding better limits of mutation reduction.

We have provided in Chapter 4 the framework for evaluating the limits of mutation re-

duction strategies given a mutant distribution, and have shown how a simple system may

be evaluated. We would like to improve this framework by using a mutant distribution

that is similar to the real world, and reducing assumptions such as no overlap between

mutants. Similarly, we note that our theoretical framework in Chapter 3 for evaluating

fault interaction also depends on a few simplifying assumptions such as an assumed dis-

tribution of functions, and incomplete case analysis. This is another area that needs to

be further investigated.

An area of research that we have not touched upon, but still extremely important for

the effectiveness of mutation analysis is the question of equivalent mutants. It is well-

known that a general solution is impossible [17], and a number of heuristic methods such

as coverage and state changes have been proposed. However, a comparative study on the

merits of these techniques in large codebases have yet to happen and is one area of future

research. We would like to examine if a pragmatic solution to the equivalent mutant

problem could be the statistical sampling of the input domain, especially making use

of techniques such as combinatorial testing of multiple mutants, incremental execution,

and split stream execution.

In summary, we find that there are certain well-defined limits to the kinds of simple

faults that mutants can emulate, and even when faults can be emulated, the ratio of

faults that can be subsumed. We also find empirical as well as theoretical limits on the

accuracy of representation for any given heuristic reduction strategy. Finally, we propose

a few avenues of further research.
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