
Time-Varying Vector Field Design on Surfaces

Guoning Chen ∗ Konstantin Mischaikow † Vivek Kwatra ‡ Eugene Zhang∗

∗Oregon State University †Rutgers University ‡ Google Inc.

frame 1 frame 20 frame 50 frame 62 frame 70

Figure 1: This image shows a number of frames from a texture animation on sphere which simulates the collision of two storm systems. The
animation is driven by an orientation field and an advection field, both are designed using the techniques introduced in this paper. Note that
two vortex-like patterns (frame 1) are displaced by the advection field at the middle of the squence (frames 20 and 50). The two storms are
then merged (frame 62) and become one system (frame 70).

Abstract

Vector field design has a wide variety of applications in computer
graphics, including texture synthesis, non-photorealistic rendering,
fluid and crowd simulation, and shape deformation. This paper ad-
dresses the problem of the design of time-varying vector fields on
surfaces. The additional time dimension poses a number of unique
challenges to the design tasks such as the introduction of more com-
plex structural changes. To address these challenges, we present
a number of novel techniques to enable efficient design over im-
portant characteristics in the vector field such as singularity paths,
pathlines, and bifurcations. These vector field features are used
to generate a vector field by either blending basis vector fields or
performing a constrained optimization process. Unwanted singu-
larities and bifurcations can lead to visual artifacts, and we address
them through singularity and bifurcation editing. We demonstrate
the capabilities of our system by applying it to the design of two
types of vector fields: orientation field and advection field for the
application of texture synthesis and animation.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism I.6.3 [Simulation and Model-
ing]: Applications J.6 [Computer-Aided Engineering]: Computer-
Aided Design (CAD)

Keywords: time-varying, vector fields, bifurcations, vector field
design, texture synthesis and animation

1 Introduction

A wide variety of computer graphics applications require vector
fields as the input, such as texture synthesis [Praun et al. 2000;
Turk 2001; Wei and Levoy 2001; Kwatra et al. 2005; Lefebvre
and Hoppe 2006; Zhang et al. 2006; Fisher et al. 2007], non-
photorealistic rendering [Hertzmann 1998; Hertzmann and Zorin
2000; Zhang et al. 2006], fluid simulation [Stam 2003], hair mod-

∗{chengu|zhange}@eecs.oregonstate.edu
†mischaik@math.rutgers.edu
‡kwatra@google.com

eling [Fu et al. 2007], crowd animation [Chenney 2004], and shape
deformation [von Funck et al. 2006]. The design and control of
steady (time-independent) vector fields on two dimensional mani-
folds has been well explored in the recent years ([Zhang et al. 2006;
Fisher et al. 2007; Chen et al. 2007]). In contrast, there has been
relatively little work in designing time-varying vector fields despite
the potential benefits in applications such as controlled fluid and
crowd simulation, shape deformation design, hair animation, artis-
tic rendering of videos, and texture synthesis and animation. We
address the problem of the design of time-varying vector fields on
surfaces in this paper.

To be more precise, it has been observed that in time-varying graph-
ics applications solving for a series of time-independent vector
fields to produce each frame can lead to visual discontinuity arti-
facts. It has also been demonstrated that these types of artifacts are
less prevalent when graphic applications are generated by solving a
time-varying vector field. This suggests the desirability of design-
ing time-varying vector field V (x, t) with specific properties. This
poses a number of challenges to the design task. For example, a
number of fundamental concepts, such as a singularity of a vec-
tor field, used in steady field design are no longer mathematically
well-defined in the time-varying setting. More importantly, the the-
ory for the analysis and control of time-varying dynamics is much
more primitive than that for time-independent vector fields. On the
other hand it can be shown that solutions to the time-varying vector
field converge to families of solutions of the instantaneous vector
fields as the rate of change goes to zero. This observation motivates
the approach we take in this paper. We apply previously developed
tools of steady vector field design to a one-parameter family of vec-
tor fields V (x,λ) (referred to as a parameterized vector field) with
the desired instantaneous dynamics but then for the graphics appli-
cations treat it as a time-varying vector field.

System Overview: Based on this philosophy, we conduct the de-
sign of the parameterized vector fields using a three-stage pipeline.
Figure 2 provides an illustrative diagram for this pipeline. In the
first stage, our system supports the creation of a parameterized vec-
tor field through a number of types of user specifications, such as
singularities, streamlines, singularity paths, pathlines, and bifur-
cations. These specifications are either converted into basis fields
and summed or treated as constraints of a relaxation process (Sec-
tion 4). In the second step, the system analyzes the initial field and

provides necessary feedback to the user for further editing. To en-
able control over unwanted flow behaviors such as singularities and
bifurcations, we provide topological editing functionalities to re-
move them or move them to more desirable locations in spacetime
in the third stage (Section 5). The techniques that we use in vector
field analysis (stage 2) is based on previous research. Thus, we will
only describe the details of the initialization (stage 1) and editing
(stage 3) of our system.

Initialization

Analysis

Editing

User input

Vector Field Design

A parameterized

vector fieldTopology

info.

Editing

ops.

Figure 2: The design pipeline.

A vector field can be used to describe many physical phenomena
such as displacement, velocity, acceleration, orientation, and mo-
mentum. The definitions of features in a vector field is application-
dependent. For example, in texture synthesis and animation, one
vector field is used to guide the placement of texture patches, while
another is used to movet the patches. Therefore, understanding the
differences between vector fields involved and separating their de-
sign tasks will not only ease the discussion of different design inter-
faces and primitives, but also enable us to achieve various effects.
In this paper, we demonstrate the utility of this by separating orien-
tation and advection field design in texture synthesis and animation.

Contributions: Our work yields the following contributions.

• We have identified time-varying vector field design as an im-
portant problem in computer graphics. We present an ap-
proach to this problem by designing parameterized vector
fields to approximate time-varying vector field design. This
enables the techniques for steady vector field design to be ex-
tended to assist time-varying vector field design.

• We describe the disparate usage of various vector field char-
acteristics in diverse computer graphics applications. This
distinction shows the need of design of different types of
time-varying vector fields to serve diverse graphical purposes.
Particularly, we show the design of orientation field and ad-
vection field for the orientation and movement of the texture
structures in texture synthesis and animation.

• We present a number of techniques to enable different vector
field features such as singularity paths, pathlines, and bifurca-
tions, to be input as user specifications. The extended radial
basis field approach and an extended constrained optimization
technique are introduced to produce a parameterized vector
field with coherent transition.

• We provide operations to support topological control in a pa-
rameterized vector field, including bifurcation removal and
movement, and singularity movement.

Paper Structure: We will review the most related work in Sec-
tion 2. Section 3 will review important concepts and theories on
time-varying vector fields and parameterized vector fields. The de-
tailed description of the design system and techniques will be pre-
sented in Sections 4 and 5, respectively. Finally, the results and dis-
cussion of the application of texture synthesis and animation will be
addressed in Section 6, followed by the conclusion and a discussion
on future work in Section 7.

2 Related Work

Vector field design refers to creating a continuous vector field on a
2-manifold based on user specifications or application-dependent

requirements. Depending on the goals, there are two different
classes of vector field design techniques: One is non-topology
based; the other is topology based. Non-topology based methods
do not address vector field topology explicitly. The vector field de-
sign tools in the early applications of texture synthesis [Turk 2001;
Wei and Levoy 2001], fluid simulation [Stam 2003], and visual-
ization [van Wijk 2003] are the examples of this category. In the
mean time, other applications, such as non-photorealistic rendering
[Zhang et al. 2006], remeshing [Alliez et al. 2003], and parame-
terization [Ray et al. 2006] also employ field design, respectively.
Topology-based approaches provide the user the ability to control
the number and positions of singularities [van Wijk 2002; Zhang
et al. 2006; Fisher et al. 2007] or the topological graph [Theisel
2002]. Recently, more general N-way rotational symmetry field
design has been studied by Palacios and Zhang [2007] and Ray
et al. [2008]. Most of this work concerns time-independent (i.e.
steady) vector fields only. Some applications generate time-varying
vector fields automatically during execution without providing the
user an intermediate interface, such as fluid simulation [Stam 1999],
crowd animation [Treuille et al. 2006], shape deformation [von
Funck et al. 2006], and hair modeling [Fu et al. 2007] and video
editing [Xu et al. 2008]. However, we are not aware of any work on
the design of time-varying vector fields for the general purpose of
graphics applications.

3 Background

To better understand the parameterized vector field and provide nec-
essary background for our later discussion, we review a number of
important concepts briefly in this section.

Definition of a 2D Parameterized Vector Field: Consider a 2-
manifold M. A parameterized vector field is defined as a series of
instantaneous vector fields with respect to a parameter λ , denoted
by V (x;λ), where x ∈ M and λ ∈ R. An instantaneous field at λc is
denoted by V (x;λc). There is considerable freedom to move from
the parameterized family of vector fields V (x,λ) to a time-varying
system. For example, let g : R→R be any smooth positive function.
Then

dx
dt

= V (x,λ),
dλ
dt

= g(λ)

is a time-varying system. As a first approximation the reader
can assume that we are using the time-varying system dx

dt =

V (x,λ), dλ
dt = s where s is a positive constant. In other words,

parameter λ and physical time t possess a linear relation such that
dλ = s · dt. Therefore, if s = 1, λ is equivalent to t. Further, it
shows when s → 0, the variation of the vector field is sufficiently
small which guarantees a smooth transition. This is particularly
useful for graphics applications where an input field with smooth
transition over time is expected to achieve visually coherent results.
It also reveals the relation between a time-varying vector field and a
corresponding parameterized vector field which enables the discus-
sion of certain concepts under the parameterized vector field frame-
work, such as pathlines.

Instantaneous Topology: A point p is called a singularity at λ j if
V (p;λ j) = 0. The linearization of V (x;λ j) about p ∈ M results in a
2×2 matrix DV (p) (known as Jacobian) which has two (potentially
complex) eigenvalues σ1 + iµ1 and σ2 + iµ2. If σ1 6= 0 6= σ2, then
p is called a hyperbolic singularity. Observe that on a surface there
are three types of hyperbolic singularities: sinks σ1,σ2 < 0, saddles
σ1 < 0 < σ2, and sources 0 < σ1,σ2. A streamline passing through
p ∈ M at λ j is defined as the integral curve computed under the
instantaneous vector field V (x;λ j): x(b) = p +

∫ b
0 V (x(η);λ j)dη .

The instantaneous topology of V (x;λ) at λ j is then defined as the
topological graph of the instantaneous field V (x;λ j). It consists
of singularities, periodic orbits, and their connectivity [Chen et al.
2007] and conveys the qualitative structure of the vector field at λ j .
This information has been applied to guide the creation and control

of steady vector fields [van Wijk 2002; Zhang et al. 2006; Fisher
et al. 2007; Chen et al. 2007]. We have not identified graphics appli-
cations in which design and control of periodic orbits is important.
Consequently, we will focus on singularities and singularity-related
bifurcations in this paper.

Bifurcations: In many graphics applications structural changes of
certain graphical properties are often observed, such as the split-
ting and merging of texture structures in texture synthesis and an-
imation. In some cases, these structural changes may cause visual
artifacts. Figure 3 shows an example where the break of texture
structures could cause visual discontinuity in the animation. These
structural variations are typically associated with the topological
changes of the underlying fields, i.e. bifurcations, which we review
later.

Figure 3: This figure shows an example of saddle-node bifurcation
in an orientation vector field, the creation of a pair of saddle and
sink, which causes the break of texture structure on the back of the
bunny. Note that we sample the two frames before (left column) and
after (right) bifurcation happens to reveal the discontinuity.

Once we consider a parameterized vector field, we are able to keep
track of the evolution of its instantaneous topology of V (x;λ) with
respect to the parameter λ by extracting instantaneous topologi-
cal graph at a discrete step λ j and matching singularities and other
features. This technique has been adapted to analyze time-varying
flow datasets [Tricoche et al. 2001]. The movement of a singularity
along the λ axis gives rise to a curve which we refer to as a singu-
larity path. Singularity characteristics, such as Jacobian property,
can also be advected along the path. Therefore, the Jacobian can
be computed at any λ given a continuous path and can be used to
determine the local field structures near the singularity at λ . Two
singularity paths can intersect in domain M ×R only if they have
opposite poincaré indices, for instance, the paths of a source and
a saddle, or a sink and a saddle, respectively. Note that we have
excluded higher-order singularities in our discussion. At the inter-
sections, no hyperbolic singularities exist. Thus, these intersections
indicate certain qualitative structural changes (i.e. the number and
types of singularities vary, which results in the changes of the topo-
logical graph). We refer to these qualitative structural changes as
bifurcations, and the positions (x;λ) where they happen as bifur-
cation points. Figure 4 provides an illustration of such process in a
saddle-source bifurcation. More comprehensive introduction of the
bifurcation theory can be found in [Hale and Kocak 1991]. Bifurca-
tion points for saddle-node bifurcations can be extracted [Tricoche
et al. 2001].

Orientation Field and Advection Field: We have reviewed a
number of important concepts that help understand the instanta-

λj0-1 λj0 λj0+1

saddle source unstable singularity

(bifurcation point) λ

instantaneous vector fields

Figure 4: This example demonstrates a saddle-node bifurcation,
i.e. a source-saddle cancellation. The directional curves illustrates
the flow behaviors. Two singularities are shown in the left at λ j0−1.
They move towards each other when λ evolves and collide at λ j0
(middle). The two singularities are cancelled after they meet, which
results in a singularity-free vector field at λ j0+1 (right).

Frame 0 Frame 1 Frame 2

Figure 5: This example demonstrates the different utility of orien-
tation field and advection field.

neous fields and their evolution with respect to the parameter λ .
In graphics applications such as texture synthesis and animation,
two types of vector fields are required as the input. One is used
to orient texture patches, which we refer to as an orientation field,
while the other describes the advection of texture patches over time,
which we call an advection field. Figure 5 shows the effect of both
types of fields in texture synthesis and animation. The directions of
strip-like pattern depict the orientation field, and the cyan arrows in
the left image illustrate the advection field (difficult to see with still
images). We have specified the orientation field only for the first
frame, which is then advected by the advection field using the tech-
nique proposed by Kwatra et al. [2007]. Hence, the orientation field
over time need not be stationary. This is reflected through the tex-
ture movement in the three frames from the animation (Figure 5).
Note that the orientation field in this example does not convey any
interesting effects on the surface. It is preferrable to control this
appearance to achieve meaningful effects, for example highlight-
ing certain features of the shapes. Further, for the movement of the
graphical properties (e.g. moving a texture patch from one place to
the other), it can be valuable to allow the user to design their anima-
tion paths. Therefore, it is necessary to address the design of these
two types of fields. The singularity and streamline features are natu-
rally adaptable to the design of time-varying orientation fields in the
fashion of parameterized vector field which are concerned with the
instantaneous appearance at each discrete parameter value. In addi-
tion, they are also capable of producing advection fields. However,
we cannot use concepts limited to the spatial domain to describe
paths of moving particles. Hence we need pathlines.

Pathline: A pathline passing through (p;λ j)∈ M×R is defined as
x(b) = p+

∫ b
0 V (x(η);λ j +η)dη . Note that to define a pathline, we

have assumed λ = t. In contrast to the streamlines passing through
p at any λ , the pathline of p reflect the true path of the particle start-
ing from p moving forward along λ . [Theisel et al. 2005] provides
an example illustrating the difference between the streamlines and
pathlines of the same time-varying vector field. Comparison and
definitions of these two concepts shows that streamlines depict the
instantaneous appearance of a time-varying vector field, while path-
lines convey the real paths of the particles. With the aid of pathlines,
we can discuss the design of an advection field much more easily

because we can control the moving path of specific particles. Note
that singularity paths and pathlines are different.

4 Initialization

In this section, we discuss two approaches that we employ to gen-
erate a parameterized vector field. First, instantaneous vector fields
are created in key frames and propagated to the rest of the field. The
advantage of this approach is that we can reuse past techniques in
designing instantaneous (steady) vector fields [Zhang et al. 2006;
Fisher et al. 2007; Chen et al. 2007]. However, this approach does
not address features unique to time-varying vector fields such as bi-
furcations and pathlines. In our second approach, we allow such
features to be generated through the extended basis vector fields or
constrained optimization in a spatio-parameterized domain.

4.1 Setting

Computation Domain: Given the definition of a pa-
rameterized vector field on a 2-manifold, we de-
fine the spatio-parameterized domain as D = M × R.

Ti

Ti
λj

λj-1

In our implementation, we are con-
cerned with a sub-domain X ⊂ D such
that X = (X ;λ) where X is a triangu-
lation of a 3D surface, and λ ∈ [0,1] is
a parameter that we use to approximate
time. For representing and storing the
field, we discretize λ evenly. We denote these discretely sampled
λ values as {λ j}. A typical number for the discretization is 100 for
the examples in this paper. We then compute and store the instanta-
neous fields at these discrete {λ j} in order. The figure to the right
shows such a configuration.

Interpolation scheme: We resort to the interpolation scheme that
has been successfully applied by Zhang et al. [2006], Palacios and
Zhang [2007], and Chen et al. [2007] for continuous surface flow
construction in the spatial subspace. Over X, we employ a similar
interpolation technique proposed by Tricoche et al. [2001] to guar-
antee a linear field along the parameter λ dimension. Particularly,
in planar case this configuration can be formulated as follows.

V (x;λ) = a(λ)x+b(λ)y+ c(λ) (x; λ) ∈ X ⊂ D

where a = (ax,ay) and a(λ) =
λ j+1−λ
λ j+1−λ j

aλ j
+

λ−λ j
λ j+1−λ j

aλ j+1
, where

aλ j
and aλ j+1

are the coefficient of the linearaztion of the vector field
at λ j and λ j+1, respectively. b(λ) and c(λ) are similarly defined.

4.2 Designing Instantaneous Fields

Basis Fields: To design an instantaneous field, the user can either
specify the singular or regular design elements (locally) at desired
locations [van Wijk 2002; Zhang et al. 2006] or provide a set of
streamlines indicating the flow directions along the streamline and
in nearby regions. The provided streamlines are eventually sampled
and converted into polylines which are used to construct the regular
elements. A regular element is an arrow pointing from a basis point
to a certain direction. This idea has been employed by Chen et
al. [2008] to design street networks that follow the boundaries of
natural features such as rivers. Each design element is associated
with a Jacobian Ji, and gives rise to a basis field which we use
to compute a weighted sum to obtain the global field. Equation 1
defines such a weighted sum.

V (x) = ∑
i

e−d‖x−pi‖
2
Ji (1)

where d is a decay constant, x is a point in space, Ji is the Jacobian
corresponding to a design element, and pi is the position of the
design element in space.

Further, a brush streamline interface inspired by the brush inter-
face by Chen et al. [2008] for tensor field design is used for
instantaneous vector field design. More specifically, the user
sketches a curve. A local region with the curve as the skeleton
is found [Sethian 1996]. The vector field inside the region is com-
puted according to the derived regular elements from the curve. As
pointed out by Chen et al., the brush interface can easily introduce
large variations along boundaries of the brush region which may
be interesting to segmented texture synthesis. Figure 6 shows three
examples using brush streamlines.

Figure 6: This figure provides some results of brush stroke design.
They are the sampled frames from the accompany animations.

The radial basis field approach (equation 1) cannot be applied to
the design on surfaces without a global parameterization of the sur-
face. Consequently, we resort to the constrained optimization, or
relaxation to design a surface field.

Constrained Optimization: Given a region N of a triangular mesh
where the vector values at the boundary vertices of N are the con-
straints, the constrained optimization possesses the following form:

V (vi) = ∑
j∈J

ωi jV (v j) (2)

where vi is an interior vertex, v j’s are the adjacent vertices that are
either in the interior or on the boundary of N. V (v) is the average
vector value at vertex v. The weights ωi j’s are determined using
Floater’s mean-value coordinates [Floater 2003]. Equation 2 is a
sparse linear system, which can be solved by using a bi-conjugate
gradient method [Press et al. 1992]. Note that constrained optimiza-
tion can be used to generate a local field for brush streamline design
as well by considering the center curve as the boundary constraint.

4.3 Designing Parameterized Vector Fields

We now describe the techniques that are used to produce a parame-
terized vector field. A natural idea is to set the designed instanta-
neous fields as key frames and derive a parameterized vector field
from them.

4.3.1 Key Frame Design

In field design using key frames, the user first designs a sparse set
of instantaneous fields that indicate the desired effects at specific
frames (λ ’s). The system then generates a parameterized vector
field achieving these effects using an extended constrained opti-
mization.

Extended Constrained Optimization: By tak-
ing into account the additional parameter λ ,

vivi vi

λjλj-1 λj+1

we introduce an extended constrained op-
timization technique to create parameter-
ized vector fields on surfaces. Given a ver-
tex (vi;λ j) in the underlying mesh in do-
main X, we consider a stencil of it shown
in the figure to the right. In this stencil
configuration, we assume there are (virtual)
edges between (vi;λ j) and (vi;λ j−1), and
(vi;λ j) and (vi;λ j+1), respectively. There-
fore, the computation of discrete Laplacian

under this setting needs to consider (vi;λ j−1) and (vi;λ j+1) as the
direct neighbors of (vi;λ j). We then extend the spatial discrete
Laplace as follows:

ωV (vi;λ j) = ∑l∈N(i) ω j,lV (vl ;λ j)+ω j, j−1V (vi;λ j−1)

+ω j, j+1V (vi;λ j+1) (3)

where N(i) denotes the one-ring neighbors of (vi;λ j), V (vi;λ j)
represents the average vector value at position (vi;λ j). ω j, j−1
and ω j, j+1 are positive weights determining how fast the relax-
ation process is. In our implementation ω j, j−1=ω j, j+1 = 10. ω =
∑l∈N(i) ω j,l + ω j, j−1 + ω j, j−1 is the normalization coefficient. We
point out that this formula can be further extended by taking into ac-
count more sampled steps along λ axis to achieve smoother results
as bi-Laplace smoothing does in time-independent case [Fisher
et al. 2007].

Figure 7 shows a planar field generated using key frame design and
the extended constrained optimization. Many surface fields (Fig-
ures 1, 3, 11, and 12) shown in this paper are also generated using
this method.

......

Keyframe 1 Keyframe 2

Figure 7: An key frame design example. The purple curves are
the user specified streamlines. The flow-like textures shown in the
paper are generated using IBFV(S) techniques of van Wijk [2002;
2003].

We point out that other interpolation scheme can be employed to
obtain a parameterized vector field from a set of instantaneous field
as well, such as vector linear interpolation. This typically does not
produce smooth results due to the potential degenerate vectors and
discontinuity.

For planar field design, an extended basis field approach can also
be applied to generate a parameterized vector field from the user
specifications (singularities and streamlines) directly.

Extended Basis Field Approach: Similar to the instantaneous
field design, we have the concepts of design elements with the ad-
ditional parameter λ being considered. That is, the position of a
singular or regular element in the computation domain D has the
form of (p;λ). For instance, if the user inserts a singularity in the
spatial position pi at λi, its position in D is (pi;λi). Similarly, all
the regular elements stemming from a streamline defined at λi will
be assigned this parameter value λi. Accordingly, the generated ba-
sis field will affect not only a single instantaneous field, but also
the parameterized vector fields with the instantaneous field at λi as
center. We update our basis field summation equation as follows:

VI(x;λ) = ∑
i

e−b‖λ−λi‖
2
e−d‖x−xi‖

2
Ji (4)

where b is a decay constant along λ axis, the ratio of b/d reflects
the ratio of the propagation speeds over the spatial and parameter
spaces.

4.3.2 Singularity Path Design

In many cases, we want to animate the moving of certain singular
patterns over surfaces, for instance, the moving of a storm system
in environment modeling. Our system supports this by allowing

the user to specify the paths of the singular elements along pos-
itive λ direction. To do so, the user first specifies the path of
the singular element on the surface in the spatial domain. The
parameter information associated with the path is then provided
by the user, including the parameter value λs at the start point

Bi(x;λ)=0
λ0

(xi;λ0)

y

x
λj λn

λ

(xi;λj)
(xi;λn)

λ0

λj

λn

......

and the value λe at the end
point, or the parameter val-
ues corresponding to the dis-
crete sample points along the
paths if provided (see the hol-
low circles in the figure to the
right). We denote the singu-
larity path of ith singular ele-
ment as Bi(pi; λ) = 0 (λ ∈ [λs,λe]) . That is, given λ j ∈ [λs,λe]),
the position of this singular element (pi j;λ j) satisfies Bi(pi j; λ j) =
0. The system then induces a parameterized vector field by comput-
ing the positions of these singular elements on their paths at each
sampled parameter value and summing up all the basis fields as fol-
lows.

VSp(x; λ) = ∑
i

Vi(pi; λ)|Bi(pi; λ)=0 (5)

where VSp denotes the basis fields generated by the singularities

that are currently at λ . Vi(pi;λ) = e−d‖x−pi‖
2
Ji is the basis field

stemming from the ith singularity at λ and λ ∈ [λs,λe]). The figure
above provides an illustrative example of singularity path design.

Singularity path design on surfaces is handled differently compared
to the design on plane. Due to the lack of a global parameterization,
we resort to the constrained optimization to generate the individual
instantaneous fields at the desired sampled λ j .

4.3.3 Pathline Design

It is often necessary to specify trajectories of a particle according
to a time-varying vector field. The trajectory, a pathline, can be de-
signed using our system as follows. Note that a pathline is different
from a singularity path despite the similar design mechanisms in
our system for both. To create a field from a pathline, the user first
specifies a curve to infer the desired pathline. The system then in-
duces a parameterized vector field based on the sampled positions
along the pathline. Our technique is based on the following ob-
servation. Given a pathline P and a point p j on it at time λ j , it
was advected from previous position on P, p j−1. If p j−1 and p j
are sufficiently close, the vector pointing from p j−1 to p j approx-
imates the true vector value at (p j−1;λ j−1). We then can set this
vector as a regular element at λ j−1. In our implementation, we
offer the user a similar interface to the streamline design for sketch-
ing the desired pathline. But during the discretization process, each
sampled point will be assigned a unique λ value according to the
parameter information associated with the corresponding pathlines.

λ3

λ4

......

A user input pathline

λ0

λ1
λ2

elements for time λ0

elements for time λ1

Assume the start value λs and end value
λe are known. Then, for the ith sampled
point (out of n samples), its assigned
λ value is computed as λs + i ∗ (λe −
λs)/(n−1). Figure to the right provides
an illustrative example of pathline based
design. Note that the ith regular element
stemmed from line segment (i, i + 1) is
located at λi. The extended basis field
approach can be adapted to induce a pa-
rameterized vector field for the planar case (equation 4), while a
constrained optimization process is needed for the generation of
the individual instantaneous fields on surfaces.

Matrix-based Design is also provided by our system for
the user to determine how the vector field transforms
(rotates, scales, stretches) over λ . The matrix (field)

has the form of M(λ) =

(

M11(λ) M12(λ)
M21(λ) M22(λ)

)

, where

Mi j(λ) are functions of λ . In our implementation, we re-
quire the user to provide an affine transformation matrix
(i.e. the combination of 2D rota-
tion and scaling) to act on the ini-
tial instantaneous field (at λs) to
obtain the last field (at λe). The
system then interpolates the ro-
tation (rotation angles) and scal-
ing (scaling factors). The vec-
tor field V at λ j is computed as
V (λ j) = M(λ j)V (λ j−1), where
M(λ j) is the combination of the
rotation and scaling matrices at
time λ j . Figure to the right pro-
vides the texture synthesis results
guided by an orientation field generated using matrix-based ap-
proach where the field is rotated w.r.t. λ .

4.3.4 Bifurcation Design

As a significant and novel contribution, our system allows the
user to insert a bifurcation at specific location in the spatio-
parameterized domain. This is particually useful for the applica-
tions where the split or merge of the graphical primitives are de-
sired. Figures 1 and 11 provide examples of desirable bifurcations
in the texture synthesis and animation. Recall that we are only con-
cerned with saddle-node bifurcations in this paper. Equation 6 pro-
vides a formula we are using to create a saddle-node bifurcation
(saddle and node pair creation) at position (x,y;0) in X (see Fig-
ure 8). Similarly, we can enforce a saddle and source pair cancel-
lation at position (x,y;0) in X using equation 7. In addition, we
can scale the range of the bifurcation in both space and time, and
re-orient the axis (a straight line in this case) to control where and
how the bifurcation happens.

ẋ =

(

ẋ
ẏ

)

=

(

λ − x2

−y

)

(6)

ẋ =

(

ẋ
ẏ

)

=

(

λ + x2

y

)

(7)

Figure 8: A saddle sink creation bifurcation happens at
(0.5,0.5;0.5) in the spatio-parameterized domain X.

Other types of bifurcations [1991] can be created in the similar
manner. The global field induced from a set of bifurcations can
be computed as the weighted sum of individual bifurcations (equa-
tion 8). In other words, each bifurcation is a design element.

VB(x; λ) = ∑
i

e−d‖x−xi‖
2
Vi(x; λ −λi) (8)

where (xi;λi) is the position at which the ith bifurcation happens.
Note that the decay along λ is considered by the formula Vi(x; λ −
λi) (see equations 6 and 7). Accordingly, we define the global field
as the weighted sum of the basis fields generated using singular and
regular elements VI (equation 4), and bifurcations VB (equation 8).

V (x; λ) = ωBVB(x; λ)+ωIVI(x; λ) (9)

where ωI and ωb are positive values which we are using 0.5 in our
implementation.

There are two alternative approaches of inserting bifurcations into
the designed field. First, the user can generate a bifurcation through
key frame design. Basically, the user sets two instantaneous fields
as key frames before and after the λ value where the bifurcation
point is desired. One of these fields is trivial (similar to the left field
shown in Figure 8), while the other contains the saddle and source
(or sink) singularity pair (the right field shown in Figure 8). Then,
a bifurcation is enforced to occur by the extended constrained opti-
mization. The second approach allows the user to design the split of
a singularity path to indicate a saddle-node creation bifurcation or
intersect the end points of two singularity paths to induce a saddle-
node cancellation bifurcation. Both approaches were applied to in-
sert bifurcations into the designed fields (Figures 1and 11).

5 Editing

Editing functionality is required for a design system because of the
appearance of undesired features such as singularities and bifur-
cations in the initialization phase. Our system provides the user
with a number of options to edit a given parameterized vector field.
First, the conventional editing operations for instantaneous vector
field modification are provided. Second, the novel bifurcation re-
moval and movement are introduced along with a general smooth-
ing scheme in the spatio-parameterized domain.

5.1 Instantaneous Field Editing

First, the system extracts the instantaneous vector field topology.
Then, the user can cancel two unwanted singularities at a particu-
lar λ value using the simplification techniques proposed by Chen
et al. [2007]. This instantaneous field is then considered as a key
frame for the regeneration of the field. Note that this editing process
may potentially introduce more complex dynamics such as unin-
tended bifurcations due to the weak constraint along the parameter
axis. We relieve this by adding the constraint of maximum propa-
gation distance along λ .

5.2 Bifurcation Editing

We have demonstrated the relations between saddle-node bifurca-
tions and the structural changes in texture animations. We now de-
velop techniques to control them. To do so, we need to first know
where the bifurcations occur. In our implementation, we keep track
of singularities and extract bifurcations from the designed fields us-
ing the techniques proposed by Tricoche et al. [2001].

Bifurcation Removal: We allow the user to remove a bifurcation
if the singularities involved do not participate in other bifurcations.
We refer to these bifurcations as isolated bifurcations. If a bifur-
cation is not isolated, we can not cancel it without affecting other
features. To remove an isolated bifurcation, we keep track of the in-
volving singularities along the λ axis until their birth (saddle-node
cancellation) or their death (saddle-node creation). We assume the
λ value of their birth (or death) is λc. Then, cancelling these sin-
gularities at λc will induce the removal of the corresponding bifur-
cation. Under our setting of X, only boundary singularities will
satisfy this requirement. Figure 9 shows an example of saddle-node
bifurcation removal. More complex local control of connected bi-
furcations is possible which is beyond the scope of this paper. Note
that this operation is not valid in a real time-dependent vector field
where the range of the physical time is infinite. In that setting, the
more meaningful operation is bifurcation movement.

Bifurcation Movement: Similar to the singularity movement
functionality, a bifurcation can be moved. Moving bifurcation can
be achieved by moving the involving singularities over space at
particular λ value. The edited instantaneous field is then set as a
key frame. The extended constrained optimization will smooth the

Figure 9: Example of bifurcation editing. Left column shows the ef-
fect before editing; right column shows the results after bifurcation
removal.

rest of the field. Note that the movement of these two singulari-
ties should obey the topological constraints proposed by Zhang et
al. [2006] in their steady vector field design tool. This guarantees
no other topological features will be affected during the movement.

General Smoothing: The two aforementioned bifurcation control
techniques are typically too constrained for the design fields. We
then introduce a more relaxed editing functionality to allow the user
to modify the designed fields without concerning with the topolog-
ical constraints. We refer to this technqiue as general smoothing.

General Smoothing is a spatio-parameterized smoothing in which
the user defines a box in X. The vector values at the inner vertices of
the box are replaced with a hopefully smoother version computed
using the extended constrained optimization (equation 3), with the
boundary vertices as the constraints.

6 Application: Texture Synthesis and Anima-
tion

We have applied the designed parameterized orientation fields and
advection fields generated using our techniques to create a number
of synthetic texture animations (Figures 1, 3, 5, 6, 12, and 11).
Flow-guided texture synthesis and advection has been introduced
to visualization community for dense flow visualization by van
Wijk [2002; 2003], Laramee et al. [2003], and Neyret [2003]. Kwa-
tra et al. [2005] present an optimization-based plane texture synthe-
sis which can be used for flow-guided texture animation. Lefebvre
and Hoppe’s [2006] introduce an appearance-space texture synthe-
sis technique that can handle texture advection over static surfaces.
Later, Kwatra et al. [2007] and Bargteil et al. [2006] extend the
advected texturing techniques onto the problem of fluid texturing
on surfaces, respectively. In addition, Wiebe and Houston [2004]
and Rasmussen et al. [2004] perform fluid texturing by advecting
texture coordinates along the flow field using level sets and parti-
cles. In this paper, we employ Kwatra et al.’s [2007] texturing fluid
techniques for our texture synthesis and animation examples.

Many applications may want the animated texture on surfaces, such
as special effects, games, and digital arts. In addition, with the
proper choice of texture exemplars and careful field design, other
graphical effects can be resembled through advected textures, such
as the ripple-like advection, the time-varying caustic reflection and
the lava effect (Figure 10).

Performance: The intialization of a planar field with 100 frames
defined on a 65×65 regular grid typically takes less than 5 seconds
on a 3 GHz PC with 1GB RAM. For the design on surface (up to
20,000 vertices), it can take up to 4 minutes to generate the field
with 100 frames without optimization. The times spent on synthe-
sis vary from 8 hours to 20 hours on a 3.6 GHz PC with 2GB RAM
depending on the number of sample points being put on the sur-
faces, the volume sizes of the models, and the sizes of the input

texture exemplars.

7 Conclusion and Future Work

This paper addresses the problem of the design of time-varying vec-
tor field on surfaces. We propose the use of the parameterized vec-
tor fields to approximate the solution. Two different types of vector
fields are discussed for different purposes in texture synthesis and
animation. Various design techniques are introduced to address the
design of these two types of fields efficiently. The initial fields can
be further edited to eliminate undesired effects. To our knowledge,
the presented design framework is the first in its kind for general
time-varying vector field design with bifurcation control.

We do not currently provide an explicit solution to control the in be-
tween field generation. Therefore, unexpected behaviors may arise
which requires either post processing or re-configurating the ini-
tial setting and re-produce it again. This regeneration process is
expensive compared to steady field design and does not guarantee
more satisfiable solutions can be found. In the future, we expect a
more robust technique that can inform the user what could be pos-
sibly obtained given the specified constraints to address this prob-
lem. Second, we have only focused on a small set of vector field
features for the creation of a parameterized vector field. There are
other design primitives that may be important such as streaklines
and timelines. Third, the bifurcation control techniques proposed
in this work are still limited due to the lack of the support of a sys-
tematic time-varying dynamics theory. Fourth, it will be interesting
to experiment other vector field generation methods such as the one
based on discrete calculus (DEC) [Fisher et al. 2007].

This work opens a new range of the field design topic which can
be extended to the higher dimensional field design, such as time-
varying tensor field design.

Acknowledgments
This work was supported by NSF CCF-0546881 and CCF-
0830808.

References

ALLIEZ, P., COHEN-STEINER, D., DEVILLERS, O., LÉVY, B.,
AND DESBRUN, M. 2003. Anisotropic polygonal remeshing.
ACM Trans. Graph. 22, 3, 485–493.

BARGTEIL, A. W., SIN, F., MICHAELS, J. E., GOKTEKIN,
T. G., AND O’BRIEN, J. F. 2006. A texture synthesis
method for liquid animations. In Proceedings of the ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation.

CHEN, G., MISCHAIKOW, K., LARAMEE, R. S., PILARCZYK, P.,
AND ZHANG, E. 2007. Vector field editing and periodic orbit
extraction using morse decomposition. IEEE Transactions on
Visualization and Computer Graphics 13, 4, 769–785.

CHEN, G., ESCH, G., WONKA, P., MUELLER, P., AND ZHANG,
E. 2008. Interactive procedural street modeling. ACM Trans.
Graph. 27, 3, 103:1–103:10.

CHENNEY, S. 2004. Flow tiles. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, Eurographics Association, 233–242.

FISHER, M., SCHRÖDER, P., DESBRUN, M., AND HOPPE, H.
2007. Design of tangent vector fields. ACM Trans. Graph., 56:1–
56:8.

FLOATER, M. S. 2003. Mean value coordinates. Comput. Aided
Geom. Des. 20, 1, 19–27.

FU, H., WEI, Y., TAI, C.-L., AND QUAN, L. 2007. Sketching
hairstyles. In SBIM ’07: Proceedings of the 4th Eurographics

Figure 10: Different effects obtained using texture synthesis and animations: ripple advection (left), caustic reflection (middle), and the lava
effect (right). All the texture synthesis and animations are driven by the time-varying vector fields created using our system.

workshop on Sketch-based interfaces and modeling, ACM, New
York, NY, USA, 31–36.

HALE, J., AND KOCAK, H. 1991. Dynamics and Bifurcations.
New York: Springer-Verlag.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth sur-
faces. In SIGGRAPH ’00: Proceedings of the 27th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
517–526.

HERTZMANN, A. 1998. Painterly rendering with curved brush
strokes of multiple sizes. In SIGGRAPH ’98: Proceedings of the
25th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, 453–460.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. ACM Trans-
actions on Graphics, SIGGRAPH 2005 (August).

KWATRA, V., ADALSTEINSSON, D., KIM, T., KWATRA, N.,
CARLSON, M., AND LIN, M. 2007. Texturing fluids. IEEE
Transactions on Visualization and Computer Graphics 13, 5,
939–952.

LARAMEE, R. S., JOBARD, B., AND HAUSER, H. 2003. Im-
age space based visualization of unsteady flow on surfaces. In
Proceedings IEEE Visualization ’03, IEEE Computer Society,
131–138.

LEFEBVRE, S., AND HOPPE, H. 2006. Appearance-space texture
synthesis. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers,
ACM, New York, NY, USA, 541–548.

NEYRET, F. 2003. Advected textures. In SCA ’03: Proceed-
ings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 147–153.

PALACIOS, J., AND ZHANG, E. 2007. Rotational symmetry field
design on surfaces. ACM Trans. Graph. 26, 3, 55:1–55:10.

PRAUN, E., ADAM, F., AND HUGUES, H. 2000. Lapped textures.
In Proceedings of ACM SIGGRAPH 2000, 465–470.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 1992. Numerical Recipes in C: The Art of
Scientific Computing. New York, NY, USA: Cambridge Univer-
sity Press.

RASMUSSEN, N., ENRIGHT, D., NGUYEN, D., MARINO, S.,
SUMNER, N., GEIGER, W., HOON, S., AND FEDKIW, R.
2004. Directable photorealistic liquids. In SCA ’04: Proceed-
ings of the 2004 ACM SIGGRAPH/Eurographics symposium on
Computer animation, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland, 193–202.

RAY, N., LI, W. C., LVY, B., AND AN D PIERRE ALLIEZ, A. S.
2006. Periodic global parameterization. ACM Transactions on
Graphics.

RAY, N., VALLET, B., LI, W.-C., AND LEVY, B. 2008. N-
symmetry direction field design. ACM Trans. Graph. 27, 2,
10:1–10:13.

SETHIAN, J. 1996. A fast marching level set method for monoton-
ically advancing fronts. In Proc. Nat. Acad. Sci., vol. 93, 1591–
1595.

STAM, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH
1999, Addison Wesley Longman, Los Angeles, A. Rockwood,
Ed., 121–128.

STAM, J. 2003. Flows on surfaces of arbitrary topology. In ACM
Transactions on Graphics (SIGGRAPH 03), vol. 22, 724–731.

THEISEL, H., WEINKAUF, T., HEGE, H.-C., AND SEIDEL, H.-
P. 2005. Topological methods for 2d time-dependent vector
fields based on stream lines and path lines. IEEE Transactions
on Visualization and Computer Graphics 11, 4, 383–394.

THEISEL, H. 2002. Designing 2d vector fields of arbitrary topol-
ogy. Computer Graphics Forum (Proceedings Eurographics
2002) 21 (July), 595–604.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Continuum
crowds. ACM Trans. Graph. 25, 3, 1160–1168.

TRICOCHE, X., SCHEUERMANN, G., AND HAGEN, H. 2001.
Topology-based visualization of time-dependent 2d vector fields.
In Data Visualization 2001 (Joint Eurographics-IEEE TCVG
Symposium on Visualization Proceedings), 117–126.

TURK, G. 2001. Texture synthesis on surfaces. Computer Graph-
ics Proceedings, Annual Conference Series (SIGGRAPH 2001),
347–354.

VAN WIJK, J. J. 2002. Image based flow visualization. In SIG-
GRAPH ’02: Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, ACM, New York,
NY, USA, 745–754.

frame 1 frame 3 frame 20 frame 70 frame 100

Figure 11: This image shows a number of frames from a texture animation on venus. The animation is driven by an orientation field and
an advection field, both are designed using the techniques introduced in this paper. Note that a vortex-like pattern (frame 1) is displaced by
the advection field at the middle of the model (frames 3 and 20). The vortex is then splitted into two (frame 70), and both of them continue
moving upwards to the upper middle along the model (frame 100).

VAN WIJK, J. 2003. Image based flow visualization for curved sur-
faces. In Proceedings IEEE Visualization ’03, IEEE Computer
Society, 123–130.

VON FUNCK, W., THEISEL, H., AND SEIDEL, H.-P. 2006. Vector
field based shape deformations. ACM Trans. Graph. 25, 3, 1118–
1125.

WEI, L. Y., AND LEVOY, M. 2001. Texture synthesis over arbi-
trary manifold surfaces. Computer Graphics Proceedings, An-
nual Conference Series (SIGGRAPH 2001), 355–360.

WIEBE, M., AND HOUSTON, B. 2004. The tar monster: creat-
ing a character with fluid simulation. In SIGGRAPH ’04: ACM
SIGGRAPH 2004 Sketches, ACM, New York, NY, USA, 64.

XU, L., CHEN, J., AND JIA, J. 2008. A segmentation based vari-
ational model for accurate optical flow estimation. I: 671–684.

ZHANG, E., MISCHAIKOW, K., AND TURK, G. 2006. Vector
field design on surfaces. ACM Transactions on Graphics 25, 4,
1294–1326.

frame 1 frame 35 frame 70 frame 100

Figure 12: The designed results of an orientation field (first row) and and advection field (second row) on bunny. The sampled frames from
the corresponding texture synthesis and animation results are provided below the fields. Particularly, the third row shows the advection of the
orientation field of the first frame.

