
Ann Lanfri
PHLED45 : An Enhanced Vers ion of Caesar Suppor t i ng 4S0 Geometries

APPROVED:

Assistm~ t 'Professor i n Ch7of Maj or

)

Chairman of Department of Computer Science

Date research paper is completed Apri l 1985 ----";:__ _______________ _

J The attached paper describes a project I completed on a graphic editor
Phled45. The work was done towards a Master's of Science degree tor the Com­
puter Science Department at Oregon State University , Corvallis, Oregon. A ver­
sion or this paper was presented at the 1984 ACM /IEEE Design Automation
Conference . Reprints of the paper, entitled "Phled45: An Enhanced Version of
Caesar Supporting 45° Geometries", are available from the IEEE Computer
Society .

I have added two sections to my original paper on Phled45. In the first part I
have evaluated how well my original design decisions have been accepted by
Phled45's users . (Phled45 is a commercial product having several hundred
users.) I have also described new features that I added after my original work
for 45° geometries .

The second new section is the UNIX manual pages for Phled45. More details
about Phled45, including a tutorial, are available from Metheus-Computervision
in the Physical Design Tools volume which is part of their VLSI Tools Ma:nual.

Ann Lanlri

April 1985

PHLED45: AN ENHANCED VERSION OF CAESAR
SUPPORTING 45° GEOMETRIES

Ann R. Lanfri

Oregon State University
Corvallis, Oregon

Metheus Corporation
Hillsboro, Oregon

ABSTRACT

Caesar is an interactive graphic editor that is used
to generate layouts for VLSI circuits. It runs on a VAX-
111780 under the UNIX 1 operating system with
Berkeley extensions . Caesar has a unique and simple
user interface . Phled is an enhanced version of Caesar
that runs on a M68000-based engineering work station .
Phled45 is based on Phled; its distinctive feature is the
ability to enter layout containing 45° angles. The
design considerations for implementing the capability
to edit 45° shapes are discussed. The details of the
implementation are presented.

1UNIX is a trademark of Bell Laboratories .

INTRODUCTION

Hislory
I ~- Caesar is a color graphic editor that is

used to edit Manhattan (edges are vertical or
horizontal) layouis for VLSI circuits . It was written at
the University of California at Berkeley by John
Ousterhout [1] in the C language and contains about
15,000 lines of source code, including comments .
Caesar runs under the UNIX operating system with
Berkeley extensions on a VAX-11/780 . It uses a bit pad
with puck, a color display, and a video terminal.

In Caesar, as in most other layout editors, a design
is built hierarchically from cells . Each cell may
contain other cells (subcells) and also the geometries
that define a mask pattern . There are commands in
Caesar for editing cells in context; there are also
commands for placing, rotating, deleting and arraying
cells .[2]

There are several features in Caesar that make it
unique as compared to other layout editors .[3] For the
purposes of this paper, the most important of these
features is the way that mask geometries are entered .

Most layout editors are object-based . The objects
that are represented internally can include polygons,
wires and stretchable components. The commands
that a user issues to edit these objects may be
different for different types of objects. The user must
therefore be aware of the type of the object that he is
editing even though two different objects may result in
the same mask pattern . With this kind of editor, the
user manages the internal data structures by his
editing actions .

In Caesar, the shapes that define a mask pattern
are entered by the "painting" operations. A rectangular
box is positioned in the design area using the puck and
bit pad; a crosshair cursor selects the mask layers to
be edited . The area that is inside the box can be filled
with the mask layers ("painted"), erased or copied
("yanked"). Unlike object-based editors, Caesar itself
is responsible for managing the internal representation
of the geometries . Therefore, the user has a simple
way to create the mask pattern. He need not be
concerned with how the geometries were entered nor
by how they are represented internally in Caesar .

Caesar stores the mask pattern ("paint")
internally as rectangles . For any given shape, there is a
unique internal representation, regardless of how the
shape was entered . Thus, no matter how many times
the data base is edited, its representation will not
fracture into more and more pieces . The unique
representation is achieved by not allowing overlapping
paint and by merging the data base in a specific way :
each rectangle is as wide as possible (maximal
horizontal strip) and any two rectangles that share an
entire horizontal edge are merged into one rectangle.

Ehlcl. Phled (Physical layout editor) is an
enhanced version of Caesar that has been transported
lo a M68000-based engineering work station (Metheus
>..700 series) . The graphics part of the work station
consists of a high-resolution (1024 by 768) color
monitor that is driven by a bit-sliced display
controller . The pointing device is an optical mouse .

Like Caesar, Phled is written in the C programming
language . The source code consists of about 20,000
lines, including comments . Phled has many features
lhal are not present in Caesar .[4] Here, it is the .
similarities between Caesar and Phled that are the
most important : Phled uses the same user interface as
Caesar (the box), the same internal representations,
and the same data base management techniques .

Phjed45 . Phled45 is a version of Phled that
supports the entry of both Manhattan and 45° shapes.
It consists of approximately 23,000 lines of C code,
including comments . This paper will describe the
process of designing Phled45 from Phled . First, I will
discuss the motivation for extending Phled to have the
capability for entering 45° designs .

Manhatlan vs . Non-Manhallan Layouts . There was
a deliberate decision made in the design of Caesar to
support only Manhattan geometries . Restricting the
data base lo rectangles can greatly simplify programs
thal deal with layouts . As I will discuss later, two
operations that Caesar performs as part of its data
base management are determining whether two shapes
intersect and clipping one shape against another . Both
of these operations are simple for rectangles but are
more difficult (require more complex code and thus
execution time) for general polygons .

There are penalties incurred by a Manhattan-only
design technique . First, the layout may consume more
area . This can be a significant factor for some designs.

A designer has two concerns about chip area .
First, he wants to make the chip as small as possible
·because the smaller the chip area is, the more chips
can be put on one wafer. The second concern is to put
·as much functionality as possible in a certain size chip .
Since manufacturing costs are fixed for a certain die
size and process, putting more gates on the same size
chip decreases the cost per gate . Many designers use
45°. shapes to save space and to squeeze in as many
gates as possible.

Another disadvantage of Manhattan design is that
it may increase the length that signals must travel on
the chip. The use of 45° angles may allow the designer
to shorten this distance .

Arbitrary angles are also used by some designers
in their layouts . With such angles the user is able to
express features such as circles more closely and to
minimize the length of runs . But most commercial
designers have restricted their layouts to Manhattan
and 45° geometries even if their layout editors support
all angles .[5]

DESIGN GOALS FOR PHLED45

The goals in designing Phled45 from Phled were lo
implement the ability to edit 45° shapes while
minimizing the impact on three areas : the user
interface, the editor's performance, and the source
code itself .

It was important that a Manhattan user of Phled45
be able to enter data in the same way as is done in
Caesar . In addition, it was also important that the
method of entering non-Manhattan shapes be
consistent with the editor's user interface.

1

There were similar performanc e goals . The firsl
was lh a l a Manha llan user nol be penalized
significantly in performance by lhe additional

pabilily. In addition, entering non-Manhattan shapes
___ ad lo be done in a reasonable amount of lime .

Finally, the changes had lo be done without
massive rewriting bf the source code. If radically
different algorithms were used, lhe task of adding 45°
capability could have been more work than designing a
new editor .

IMPLEMENTATION DETAILS
The implementation of Phled45 was divided into

three parts . First, we chose the user interface for
entering 45° shapes . Next, some existing data
structures were modified and new ones created to
support the new capability . And finally, the algorithms
for the internal management of rectangles were
modified and extended to handle 45° shapes .

User Interface
We ruled out radical changes in the user interface

for Phled45 to keep it as close as possible to that of
Caesar. For example, entering 45° shapes by digitizing
the vertices of a polygon was not a reasonable option .
The idea of using a box to paint and erase was retained .

We chose to use a rotated box for entering 45°
geometries . (See Figure 1.) The box can be rotated 45°
to the left or to the right about its center . The vertices
of the box are on integral coordinates and the width
and height of the rotated box are irrational.

Rotated box
positioned for erasing.

Results of erasing .

Rotated box
positioned for paint ing.

Results of painting.

Figure 1 . Painting with Rotated Box

To enter a 45°shape, the Manhattan box is rotated
45° by pushing a mouse button . Once the box has been
rotated, it is manipulated like the Manhattan box : the
rotated box can be positioned and its size modified
with the mouse buttons and the user can paint, yank,
or erase the area inside the box . The box can be
rotated 45° back to a Manhattan box by again clicking
a mouse button . The user can thus enter 45° shapes
without typing commands from the keyboard . This is

nsistent with the way Manhattan shapes are entered
-·' Caesar .

2

Data Structures
The existing data structure for geometries (a

rectangle) was modified and new dala types created to
handle the 45° capability for the box, painting
operations, and drawing •. However, no changes were
made in Phled45 to handle the non-paint structures
like cells and labels. Labels are still rectangular and
although a cell may contain 45° shapes, its bounding
rectangle (i.e . the smallest rectangle entirely enclosing
the cell's shapes) is still rectangular . Cells may be
rotated only in increments of 90° as in Caesar, so there
were no changes necessary to their data structures .

Rotatable Box. The box has several different
functions in Caesar . The designer uses it to position
cell instances, add labels, and define areas to be
painted or erased . Internally, the box also determines
what structures from what cells are possibly affected
by a change to the data base . This last use is
important in Caesar ; it allows the editor to quickly
reject entire cells and pieces of paint from
consideration .

In Phled45, the bounding rectangle of the box (this
is the box itself when it has not been rotated) positions
labels and cell instances. Internally, the bounding
rectangle also screens cells and "paint" for the editor's
consideration . Only the painting operations use the
actual shape of the rotated box .

So, the first part of the box's data structure is a
rectangle representing its bounding rectangle . The
next part is a flag indicating whether the box has been
rotated and a list of the rotated box's vertices .

As will be seen in the next section , paint in Phled45
is represented by a trapezoid. For painting operations
where the exact shape of the box is required, the box is
fractured into a list of trapezoids that can be input to
the various data base manipulations . (See Figure 2.)
For an unrotated box, this list has one shape that is
the bounding rectangle itself .

r-------
1
I
I
I The rotated box Is fractured

Into 3 trapezoids o·nly when
necessary for painting opera­
tions. Otherwise its bounding
rectangle Is used.

Flgure 2 . Rotated Box

There is an alternative to using the box for
entering paint. Phled45 supports a "wire" for entering
a constant width path . This is not a wire in the true
sense since a wire is stored by its path and width . The
user defines the center line of the path ·and the
appropriate paint is automatically generated . (See
Figure 3.)

....------,;:f
An alternative way of entering paint Is to define a "wire".

Figure 3 . 'Wires"

Efilni . As I mentioned previously, when a rectangle
("paint ") is added to lhe data bas e in Caesar, m aximal
horizontal strips are created and then merged
wherever possible . To minimize the impact on lhe data
base manipulation algorithms , lhe internal
representation for 45° shapes needed lo be something
as close as possible lo rectangles . This ruled oul lhe
possibility of using general polygons .

We chose a sp ecial type of trapezoid : a trapezoid
whos e top and bottom edge s ar e hori zontal. The length
of lhe lop or bottom edge can be 0, i.e . lhe tr apezoid
can be a triangle . Because lhe lop and bottom edges
are horizontal, this trapezoid fl.ls very well into the
existing data base algorithms . The sides of lhe
trapezoid can be vertical, tilled 45° to the left, or lilted
45° lo the right.

The idea of using this special type of trapezoid is
not new . The horizontal lop and bottom edges are well
suited for scan line conversions of geometries, and
these scan lines are used by certain design rule
checkers and circuit extractors . A trapezoid of this
type is also used by some E-beam IC mask-making
machines . Jackson [6], gives reasons for using this data
type as a primitive for graphics applications . In Newell
and Sequin [7], an algorithm for converting a polygon
into a set of non-overlapping trapezoids is presented .

A trapezoid is described by ils bounding rectangle
and an indication of which way the left and right edges
lilt. (See Figure 4.) Rectangles are also represented by
trapezoids : a rectangle has vertical left and right edges
and its bounding rectangle is the rectangle itself . The
editor can tell a rectangle from a trapezoid if it is
nece ssary by looking al lhe slopes of lhe sides .

(x1 , y1)

(x2, y2)

A trapezoid Is stored by its
bounding rectangle ((x 1, y1),
(x2, y2)) and an Indication of
the slopes of the left and
right edges (I and r).

Figure 4 . Trapezoid Data Structure

A trapezoid is treated as a rectangle (only ils
bounding rectangle is used) whenever possible. For
example, lhe bounding rectangle of a cell is calculated
from lhe bounding rectangles of the objects inside it ,
nol from lhe objects themselves . The actu al vertic es
of lhe trapezoid can be derived whenever it is

necessa ry by adding (or subtr acting) lhe height of the
tr apezoid lo lhe bounding rectangl e 's x coordinates .

Drawine . Caesar was designed to be easily
transported lo systems having any of several kinds of
color d isplays . Since not all of these displays support
their own clipping, Caesar does its own clipping . Each
rectangle drawn in Caesar is clipped to the area
affected by lhe command .

Phled45 takes advantage of a particular sel of
hardware lhal has a display controller available for
clipping . Phled45 sets a clip window before sending a
series of shapes lo be drawn and does not need lo do
its own clipping . All shapes whose bounding rectangle
intersects the lhe area lo be redrawn are sent for
drawing.

There are no specialized routines available for
drawing trapezoids in lhe display controller , so the
general polygon drawing routines are used . Each
trapezoid is converted lo a polygon data structure .
Then the polygon is transformed into a screen
coordinate system for drawing .

Becau se dra wing re ctangl es is fas ter th an drawing
polygons on lhe hardware used by Phled45, trapezoids
that are actually rectangles are singled out and drawn
as rectangles .

Paint Data Base Manaeement
Caesar adds paint lo lhe data base in three

sleps .[3] Firs t , lhe paint is clipped against any existing
paint ; this eliminates lhe possibility of overlapping
paint. Next, lhe clipped paint is added lo lhe data
base : maximal horizontal strips are created by
splitting and horizontally merging lhe rectangles . • The
final step merges lhe rectangles vertically .

Erasing in Caesar is similar lo painting. First, lhe
existing rectangles lhal intersect the area lo be erased
are clipped against lhal area . Then lhe rectangles
formed by lhe clipping are added lo lhe data base and
lhe data base is merged vertically in lhe same way as
is done for painting .

Manipulation of paint in Phled45 follows the same
sel of steps . Bul handling 45° shapes is more complex .
The following paragraphs describe how intersection ,
clipping and merging are done in Phled45 and how this
differs from Caesar .

Intersection . In Caes ar , checking for intersection
between lwo shapes is simple : lhe shapes are always
rectangles . In Phled45, lhe shapes lo be checked are
trapezoids . Il is not enough lo check their bounding
rectangles for intersection : lhe bounding rectangles
may intersect, bul the shapes may not. (See Figure 5.)

The work involved in finding the intersection of lwo
trapezoids is similar lo lhe calculations required for
clipping . So instead of duplicating effort, trapezoids
whose bounding rectangles intersect are sent lo lhe
clipping routines (see "Clipping " below) . Actual
intersection is determined as lhe clipping proceeds .

Clippine . Caesar clips in two phases, horizontal
first, then vertical. The horizontal clipping is done first
to ensure maximal horizontal strips .

For many cases in Phled45, clipping trapezoids is
about as simple as clipping rectangles . (See Figur e 6.)

Horizonlal clipping of trape zoids is quile similar lo
lhal of rectangles because bolh shapes have horizontal
edges .

The bounding rectangles intersect but the shapes do not.

Figure 5. False Intersection

Manhattan Non-Manhattan

Clipping B against A creates 4 shapes: the top and bottom
are from horizontal clipping; the left and right are from
vertlcal clipping.

Figure 6. Clipping

Vertical clipping of trapezoids can be more
complicated than clipping rectangles . For example,
consider Figure 7. The vertical clipping proceeds one
edge at a time . First, Trapezoid B is clipped against the
lefl edge of Trapezoid A. Trapezoids 1 and 2 are split off
from B since they are definitely outside of A. The
original Trapezoid B has been fractured by this
splitting process into those trapezoids that are lo the
right of Trapezoid A's left edge. Each of lhese
remaining parts is clipped against the right edge of
Trapezoid A. This causes Trapezoids 3, 4, and 5 lo split
off since they are outside of A. The remaining
Trapezoids 6, 7 and 8 represent the area inside of
Trapezoids A and B.

Depending on the type of data base operations
being performed, the inside or outside or both lists of
trapezoids will be used . For example, if Trapezoid A is
in the data base and Trapezoid B were to be added, the
outside trapezoids (1, 2, 3, 4, 5) would be the paint
from B actually added .

4 ,

If, however, B were a trapezoid defining a region lo
copied, the inside trapezoids (6, 7, and 8) would be

_ paint copied .

B A

Clipping B against A can result in several trapezoids .

Figure 7. Vertical Clipping

As mentioned · in the previous section about
inlerseclion, Phled45 attempts lo clip shapes whose
bounding rectangles intersect. As the clipping
proceeds, the actual intersection is computed. The
clipping operation will return an empty list of shapes if
the shapes did not actually intersect.

There is a new problem introduced by the clipping
of 45° shapes . The coordinate system of Phled45, like
Caesar's, consists of whole numbers . In the process of
clipping, it is possible to create a shape whose vertices
do not lie in the editor's coordinate system . (See
Figure 8.)

When A Is erased with B, the
1--+---"lr---W~- 1----1 clipping of A could fracture it

into shapes whose vertices
A (see arrows) cannot be

1---_,__...,._""'l-----tl----l represented In Phled45's
coordinate system.

B

1 grid = minimum resolution

Figure 8 . Illegal Trapezoids

This can be further illustrated by looking al an
equation for the intersection of two non-parallel 45°
lines in terms of a point (x 1,y 1) from the first line and a
point (x2 ,y 2) from the other line :

If the numerator is odd, the resulting point will be
fractional and · not in the coordinate system . The
numerator will be even if the sum (or difference) of the
x and y coordinates of the points is forced to be even .
So Phled45 restricts the possible places the box can be
positioned to only those po ints whose sum (or
difference) of x and y coordinates is even . Because

Phled45 maintains more precision in the data base
lhan is allowed lo lhe user, he is not aware of lhis
restriction .

) Men~i~ . Caesar merges lwo rectangles
horizontally if lheir non-horizontal edges touch, i.e . if
the left x coordinate of one is the same as the right x
coordinate of the 1 other. (See Figure 9.) The same is
true in Phled45 except that it is a more difficult to tell
if two 45° edges touch . If the bounding rectangles
touch and the edges are Manhattan, the shapes do
touch. Otherwise, the editor checks the righl edge of
one shape to see if it is tilted in the same direction as
the left edge of the other shape . If so, the next check
determines if the lwo edges are collinear.

.____I I ______.I I S 7
t t

_I ,__________,I 7
Manhattan Non-Manhattan

Figure 9. Horizontal Merging

Caesar vertically merges two shapes that touch if
J both the left and right edges have the same x

coordinates . (See Figure 10.) In Phled45 for non­
Manhattan edges, the editor must calculate the actual
x coordinates using the bounding rectangle of the
shape and its edge types.

Manhattan Non-Manhattan

Figure 1 0. Vertical Merging

File I/0. Trapezoids and rectangles (trapezoids
with two vertical edges) are read in and stored on the
same lists in Phled45. They are separated from each
other when the file is written . An entry in the file
indicates whether it contains 45° shapes; any tools that
use the design can tell if they can take advantage of
the faster operations often possible for Manhattan-only
designs.

Transformations. In Caesar, a subcell has a
transformation matrix that maps its coordinates into
the coordinate system of the root cell. Similarly, there
is an inverse transformation that takes the root cell
coordinates into the coordinate system of the subcell.
This mechanism makes it easy to allow editing in
context.

Transforming a rectangle in Caesar is done by
applying a transformation matrix to the rectangle's
coordinates. This yields a rectangle in the other
coordinate system. In Phled45, the same matrices are
used but this process is more complex because
trapezoids are being transformed . For example, see
Figure 11: if the trapezoid is to be rotated by an odd
multiple of 90° the resulting shape would not be a legal
trapezoid because its top and bottom edges would no
longer be horizontal.

T

►

No combination of mirroring and rotation In 90 degree
Increments can transform a rectangle Into any shape but a
rectangle.

_/ __ ~_-T-►

Some trapezoids can be transformed Into a rectangle and 2
trapezoids.

►

Some trapezoids can be transformed into 3 trapezoids.

Figure 11. Transformations

In Phled45, the trapezoid to be transformed is first
fractured, if necessary, as illustrated in Figure 11. The
bounding rectangle for each resulting shape is then
transformed by the matrix. · Each transformed shape is
turned into the correct shape by looking up its type in
a table that is based on the original shape and the
particular transformation applied. There are eight
possible transformations and four combinations of
non-vertical left and right edges, so this table has 32
entries .

5 1

Trapezoids that are actually rectangles are
handled as a special case and transformed as in
Caesar . They are never fractured .

EVALUATION OF IMPLEMENTATION
I

The next section discusses how well the
implementation of Phled45 met our original design '
goals .

User Interface
From Phled45's point of view, the easiest shape for

entering 45° paint would have been a trapezoid . Since
the data base contains trapezoids, all of the routines
necessary for handling a trapezoid were already
present. Some functions for the user lo change the
size and shape of a trapezoidal box would have been
needed , but they would have been straight-forward lo
do.

The resulting editor would not have been as easy lo
use, however . The user would have had lo think about
his layouts in terms of trapezoids . This would not have
been desirable since an important feature of Caesar is
that the user does not have lo know anything about the
internal representation of the paint.

The editor's users have readily accepted entering
45° shapes by manipulating a rotated box . The rotated
box preserves the simple, easily learned user interface
of Caesar. Users who want lo define constant width
shapes containing 45° angles can do so with a pseudo­
wiring command .

No changes have been made in the Manhattan user
mterface . A Manhattan user of Phled45 notices no
differences in entering layouts .

So the goal of entering 45° shapes in a manner
consistent with Caesar has been met with Phled45 . In
addition, the goal of not changing the operations for a
Manhattan user has been satisfied .

Manhattan/Non-Manhattan Performance
Because Caesar runs on such different hardware, it

would not be meaningful to compare Caesar's
performance to that of Phled and Phled45 . Table 1
shows the comparison between the amount of
execution lime required for some selected operations
in Phled and Phled45 . The times are normalized lo the
operation in Phled. For example, it lakes three
percent longer lo read a rectangle in Phled45 than in
Phled . Reading a trapezoid lakes 26 percent more
execution time than reading a rectangle in Phled .

The "rectangle" column in Table 1 shows the best
case figures (all shapes are rectangles) . The last
column contains the worst case figures (all shapes are
trapezoids) . In practice, a design might contain
between 20 and . 30 percent trapezoids. The
performance penalties for supporting 45° shapes are
incurred only in those areas that actually contain the
shapes. So, the actual performance of Phled45 for a
typical 45° layout would be closer to the Manhattan
performance .

It take slightly longer for all Manhattan operations
t •• • -hled45 . This penalty is never more than about ten

6

Table 1.

PHLED45PERFORMANCE

1.0 1.25
1.13 1.38•
1.11 1.55
1.07 1.15
1.09 1.13

• rotated box

percent. All of the Manhattan operations are the same
in Phled45 as they are in Phled. The extra lime is
required to determine if the shapes are actually
Manhattan .

Next, I wiJI discuss the performance of Phled45 for
non-Manhattan operations as illustrated by the third
column in Table 1.

Box Manipulation. The editor lakes approximately
40 percent longer lo move the rotated box than the
Manhattan box . In general, all of the box manipulation
operations are more difficult for the rotated box . It is
harder to calculate widths and heights for the rotated
box and lo compute how to rotate the box . The rotated
box consists of a bounding rectangle and a set of ·
polygon vertices and both must be updated when a new
box is computed .

Most of the time, the user is manipulating the box
interactively . Modifying the rotated box is still a small
part of the user's time while he is editing layouts . The
extra time lo manipulate the rotated box is not usually
significant.

File I/0 . About 25 percent more time is required
to read and write a trapezoid. This is mainly due to
two factors . First , as a trapezoid is read in, . it is
checked to be sure that it describes a legal shape .
Second, there are two more fields lo read and write
(the slopes of the trapezoid's sides) than for a
rectangle .

Paint Operations . Adding a trapezoid to the data
base takes about 50 percent longer than adding a
rectangle . When the rotated box is used lo enter
"paint", it is fractured into three trapezoids . The time
to add these trapezoids is almost three times as long
as adding one rectangle lo the data base in Phled .

Straightforward cases of erasing or yanking a
trapezoid take about 15 percent longer than the same
operation for rectangles in Phled . It has already been
seen how complicated clipping can become for the
paint operations on trapezoids. Situations like the one
shown in Figure 8 would take longer .

Drawing. The time to display a trapezoid in
Phled45 is about three limes longer . This is partly due
to the fact that it lakes longer for the display
controller to draw a polygon than a rectangle . The
other factor that slows down drawing of trapezoids is
the extra calculations that Phled45 must do for
trapezoids : the trapezoid is converted lo a polygon
and then the polygon's vertices are converted lo
screen coordinates .

Jmpacl on Source Code

Table 2 shows lhe comparison among lhe source
code for Caesar, Phled, and Phled45 . Mosl of lhe

)source code remained unchanged from Phled lo
Phled45. The areas of lhe code mosl affected were the
roulines for box manipulation (rolalion and
placement), file I/ 0 (reading and wriling trapezoids) ,
and painling (clipping and merging for painling and
erasing) .

Table 2. ,

APPROXIMATE NUMBER of LINES in SOURCE CODE
(inr, lnrHnrr - ..

"'' CAESAR PHLED PHLED45 I
Transformations 230 230 670 I Paint manioulation 1300 1590 2230
"Wire" entrv 0 120 480
Read /write files 1610 1960 2140
Box manioulation 530 590 1720
Miscellanous naint 170 170 360
"Include" files 380 420 620
OlhPr 11,-An 1S7AO 1S7AO

Total 15800 20860 24000

SUMMARY

Phled45 successfully implemented the ability to
enter shapes containing 45° angles . The user interface
is exactly the same as Caesar for Manhattan shapes
and is quite similar for 45° shapes .

Less than 650 lines of addilional source code were
required to implement the basic data base operations
for 45° shapes . This was because the trapezoid fit well
into the existing data base routines for rectangles. ·

The performance of Phled45 for a Manhattan-only
design is quite close to that of Phled . The penally for
entering 45° shapes is acceptable and is only incurred
in areas actually containing trapezoids; the short-cuts
for rectangles are used whenever possible.

POSTSCRIPT

A year has passed since the original work of
implementing 45° capability in Phled . I now want to
look al how my work has slood up to the lest of lime . I
will look at which design decisions turned out to be
correct and which decisions could have been improved .
In addition, I will discuss enhancements lo the original
implementation that I have made.

The editor forms the foundation for an entire set
of physical design tools. In addition lo myself, there
are now two other software engineers working directly
with Phled45 . The source code currently totals almost
40,000 lines, and new features are still being added .

Desieo Decisions
Good Decisions. The effort expended in minimizing

the impact lo the source code has been well worth it .
Caesar is in wide-spread use and this means that there
several sources of enhancements to Caesar . It is a
'>imple matter lo incorporate these enhancemenls in
Phled45 . For example, modifying a set of database

access routines lhal were originally designed for
Caesar [8] lo handle trapezoids look less than one
week. (Part of this lime was accounted for by the
differences in -lhe file formals between Caesar and
Phled45.) Also, incorporating a river router into
Phled45 is anticipated lo be completed in only two
weeks.

Questionable Decisions . Although the rotated box
user interface has been accepted by Phled45's users, it
has presented some difficulties in the implementation .

Once I made lhe decision lo use the rotated box, I
then had lo decide how the box would be rotated . One
approach would have been lo rotate the box around a
fixed point. (See Figure 12.) As is evident from the
illustration, it would be hard for a user lo predict
where the rotated box would be placed . In addition,
even though al the start of the rotation the point being
rotated about would be the box's "origin" (the point by
which the box is moved) the origin would move around
the box . So this approach was not desirable from the
users' standpoint. But it would have been simple to
implement.

Rotating the box around a
fixed corner unfortunately
moves the "origin" (marked
with a '+') and makes it hard
to predict the box's new
location.

Figure 1 2. Box Rotation

Because the user interface was the most
important consideration for Phled45, I chose lo rotate
the box about its center . This approach had the
advantage that the origin of the box never changed. It
was also much easier lo predict where the box would
lie as it was rotated . But this decision introduced
complications into Phled45's source code . First, the
center of the box was not necessarily in the editor's
coordinate system . But the most serious complication
was in calculating where the vertices of the rotated box
would lie. Rotation by increments of 45° creates
irrational coordinates which then have lo be rounded
off to lie in the coordinate system . In addition, the
editor must ensure that the resulting shape still has
45° edges . The round-off introduced in these
calculations resulted in the box "walking" and changing
size as it was rotated around . Users complained loudly
and often about this behavior, so I was forced lo modify
the original rotation code lo take care of this problem .

The earlier description on clipping described what
coordinates were legal lo enter in Phled45 . I could not
allow trapezoids to be placed at the mm1mum
resolution because round-off could occur in erasing

7 I

one shape against another. So lhe question was, how
should I align lhe vertices of a trapezoid so lhal illegal
shapes would nol be created yel allow as much of lhe

'.lrdinale syslem as possible lo be available lo lhe
_.,er? The answer as shown before was lo align lhe ·
rolaled box so thal lhe sum of lhe x y coordinates is
even .

Bul lhere was another consideration lo aligning
lhe rolaled box. Many users want lo create designs
thal have a resolution of say, .01 micron in some parts
of their design. But in olher places, they may want lo
create shapes whose dimensions are some multiple of
this minimum resolution . Phled provided a means for
them to "lock" the Manhattan box into the desired
alignment by aligning the corners of the box lo a
multiple of the minimum resolution . (See Figure 13.)

I

These Manhattan boxes are aligned to multiples of two.

Figure 13. Aligning Manhattan Box

How was the rotated box lo be aligned? I wanted
lo allow the user to easily enler the lype of shapes to
which he is accustomed : a shape whose vertices are
aligned to the user-defined alignment. I could have
chosen to . align the rotated box's vertices to the
alignment, but this would made it awkward to enter 45°
edges. (See Figure 14.) So I decided to align the
vertices to half of the user's alignment, with the sum of
the vertices being aligned lo this alignment. This
method was consistent with the decision discussed
above lo align the sum of the vertices lo be even . (In
this case, the alignment is 2.) It also allowed the user
to easily create his familiar shapes .

Unfortunately, this decision has caused great
confusion lo the users. Their altitude is, "If I said I
only want the box lo create shapes every 10 units, why
is the rotated box on some 5 unit increments?" . I
decided lo change Phled45 so the rotated box's
vertices are aligned lo the user's alignment. The
objection to the awkward way of entering some 45°
shapes has been removed because the vertices of the
f · l shape can now be directly specified by a new

,nsion to the user interface: the polygonal "box".

8

1 grid = alignment (user-defined multiple of minimum resolution)

If each vertex of the rotated box Is aligned to the user-defined
alignment, several boxes may be required to enter a 45 degree
edge.

V "' / ~--
-~ /
~ /

1 grid = alignment (user-defined multiple of minimum resolution)

Even though the vertices of the final shape may be aligned to
the user-defined alignment, the vertices of the rotated box
required to create a 45 degree edge may not be so aligned.

I

Here the box Is aligned so that each x or y coordinate Is aligned
to half the alignment value; the sum of each (x,y) coordinate is
aligned to the alignment value.

Figure 1 4. Rotated Box Alignment

New Features

Poly£onal Box.
I attended a talk on an editor similar lo Phled45.

[10] It also had a box (Manhattan only) as its user
interface, but il has been extended to allow a set of
rectangles lo be manipulated as one object. This talk
gave me the idea of the "box" as an arbitrary polygon . ·
(See Figure 15.) The polygonal box is created by
digitizing its vertices . (Vertices can be "back-up",
allowing primitive editing .) Once created, the entire
box can be moved as before by pushing a mouse
button . The polygonal cursor is moved relative lo its
origin : the point with the smallest y coordinate that
has the smallest x coordinate. The area under the
polygonal box can be painted or erased in just the
same manner that the Manhattan or rotated box is

used . The polygonal box can be lefl unfinished so lhal
lhe user can pan and zoom lhe view while crealing lhis
box .

Figure 15. Polygonal "Box"

One objection made by former users of polygon­
based layoul editors has been thal lhere is no way in
Phled45 lo enler a polygon. Also, they would like to
have the ability to manipulate these polygons once
they are entered . Remember, in Phled45, collections
of rectangles and trapezoids are used to create areas
that appear to be polygons . But there are no actual
polygons in the database .

The polygonal box gives Phled45 a user interface
that can be closer to a polygon-based editor. Entering
shapes proceeds just like digilizing a polygon in an
object-based editor . (See Figure 16.) In addilion, the
polygonal box can select particular parts of the design
for editing in one action .

The box data structure was changed to be a
polygon when the 45° capability was put into Phled45 .
This polygon was fractured into a linked list of
trapezoids when shapes were to be added or deleted
from the database. This fracturing was quite simple
because the polygon was always a rotated box.

Modifying Phled45's code to handle lhe polygonal
box was straight-forward . The code for fracturing a
general polygon already existed for the Metheus tools,
and it was a simple matter lo inlegrale this code into
Phled45 . I added a new command to create the
polygonal cursor by digitizing its vertices . There is
also a command to turn the polygonal box back into a
Manhattan box.

ACKNOWLEDGEMENTS

I would like to recognize the contributions of John
Ouslerhout in the design and implementation of the
data base algorithms for trapezoids. Barry Roilblat,
Howard Landman, and other colleagues have provided
technical assistance for the design of Phled45 and this
paper. This work was supported by Metheus
Corporalion . In addition, this project will fulfill part of
the requirements for a MSCS at Oregon Stale
University . Finally, I want to thank Drs . D. Sandberg
and V.M. Powers al OSU for their assistance .

Creating this shape requires 3
separate Manhattan and · rotated
boxes .

Tl;l~ polygonal "box" can create this
shape directly . Phled45 fractures
this polygon Into trapezoids which
can then be added to the data base.

Figure 16. Adding Shapes With Polygenal "Box"

REFERENCES

(1) Ousterhout, J.K., "Caesar : An Interactive Editor for
VLSI Layout", VLSI Design, Fourth Quarter 1981,
pp . 34-38 .

[2] ------, "Editing VLSI Circuits with Caesar" (User
Manual) , EECS, University of California, Berkeley.

[3] ----- . "The User Interface and Implementation of
Caesar", (lo appear) IEEE Transactions on
CAD/ICAS, July, 1984.

[4) Metheus Corporalion, "Physical Design Tools
Manual", 1984.

[5] Robson, G.D., "Selecting an IC Layout CAD System",
VLSI Design, March 1984, pp . 28-33 .

[6] Jackson, J .H., "Dynamic Scan-Converted Images
with a Frame Buffer Display Device ", Computer
Graphics, Vol 14, No 3, July 1980, ACM.

[7] Newell, M.E., and Sequin, C.H., "The Inside Story on
Self-Intersecting Polygons", Lambda (now VLSI
Design), Second Quarter 1980, pp . 20-24.

[8) Mayo, R.N., Ousterhout, J .K., and Scott, W.S., "1983
VLSI Tools: Selected Works by the Original Artists",
Tpack, Computer Science Division, EECS Depart­
ment, University of California at Berkeley, 1983.

[9) Holla, J., "River Router for the Graphics Editor
Caesar", Master's Thesis, OGC TR CS/E 83-006, Ore­
gon Graduate Center, Beaverton Oregon .

[10] Kronmiller , T. and Lee, D., "The Sphinx IC Imple­
mentation Environment", Digest of Technical
Papers from 1984 IEEE International Conference
on Computer Aided-Design, pp . 230-232 .

9

)

10 I

PHI.ED(1) System Software Encyclopedia PHLED(1)

NAME
phled .!. create and modify physical layout files

SYNOPSIS
phled [options] filename

DESCRIPTION
PIiled is a graphics editor for physical layout that edits files in the .phl format . If
filename is specified and it exists, it is read in by phled and can then be edited .
Otherwise , an empty file is created for editing. See also the X 750 VLSI Tools
Manual for complete details on phled.

The following options are available :

-b If this option is specified for a bit pad and puck, the movement of
the puck will be absolute . This is different from the default mouse
movement which is relative .

--c colormap Override the default colormap by reading in the colormap from
colormap.map .

-kpa.thlist Use the specified pathlist for control file (i.e . . tee, .dsl, .mnu,
.map) lookups . The pathlist is made up of directory names
separated by colons (':'). Directories may be specified using the
'~' notation and"::" is equivalent to":. :". The first directory in the
pathlist is searched first . A '+' means the existing path so
"~foo+" means add ~foo to the current path. "+~foo" means add
~foo to the end of the current path. Otherwise the pathlist will

-I

-mmenu

-n
-ppathlist

-r
-s size

override the default path. (The default path is '· :~/lib:~wcs/lib').

"Place the menu on the left side of the display . This is the default
placement.

Override the default menu file by using the menu from menu.mnu.

Do not use any menu .

Use the specified pathlist for data file (i.e .. phl file) lookups. The
pathlist is made up of directory names separated by colons (':').
Directories may be specified using the '~ ' notation and "::" is
equivalent to ":. :". The first directory in the pathlist is searched
first. A'+ ' means the existing path so "~foo+" means add ~foo to
the current path. "+~foo" means add ~foo to the end of the
current path . Otherwise the pathlist will override the def a ult
path. (The def a ult path is '.:~/lib : ~library/ default') .

Place the menu on the right side of the display.

Make the menu area width size pixels. Default size is 150 pixels .
Bounding box in menu file should be less than this size to fit into
the menu area .

-t technology

-u

-wlines

Override the default technology (nmos) with the technology in
technology.tee . Phled cannot run if a technology is not success­
fully loaded .

_ Turn off the checking that ensures that brother cell uses have
unique instance names . This may speed up the reading of certain
files .

Set height of scrolling text window used for output of error

)

PHLED(l) System Software Encyclopedia PHLED(l)

messages and echoing input from keyboard commands . Default is
2 lines .

COMMAND SUMMARY
When phled is invoked, a search is made for a .cadre file. This file can contain
command lines for the various VLSI Design Tools. An example of an entry for the
physical layout editor is:

phled -n -m altmenu

These command line options are evaluated before any other options that are
typed in when the command is invoked. The current directory is first searched
for the .cadre file, then "~/lib", and finally "~wcs/lib" is searched. The search
will stop at the first .cadre file found that contains a line pertaining to the tool.
A line with no arguments can be used to override options in other .cadre files
(i.e . this prevents looking for another .cadre file.)

Phled will also look for a startup file and execute phled commands from that file
before beginning the edit session with the user . The startup file is named
:phledrc. The current directory is first searched, then "~/lib", and finally
"~wcs/lib/phled" is searched . The search is terminated as soon as a file of that
name is found.

Phled accepts commands from both the keyboard and the mouse . Movement in
the mouse in tracked by the crosshair cursor. Some commands in phled use the
box to determine the area of the drawing to be affected, some commands use
the location of the crosshair cursor, and some commands use both.

The buttons of the mouse may have different meanings depending upon which
area of the screen the mouse is in . Prompts for the buttons are displayed in the
upper right of the screen. In the graphics area of the screen, the left mouse
button picks up the entire selector box and moves it to a new location and the
right mouse button is used for setting the top corner of the selector box . The
middle mouse button in the graphics area paints the area under the selector
box in the color(s) which lay under the crosshair cursor when the mouse button
was pushed . If the middle button is pushed in the menu area, a command from
the menu can be selected . The left button in the menu area rotates the selector
box 45 degrees to the left and the right button in the menu area rotates the
selector box 45 degrees to the right.

There are two categories of commands which can be typed in. Shott commands
are single characters with no arguments (with the one exception of '! ') and long
commands are introduced by a colon(':') and may take some arguments. Each
long command can be made up of a series of commands separated from each
other by a';' (semi-colon). For example, ":erase; :pop R;v''.

Following are the short commands, their internal names, and a brief description :

2 %pandown
Pan one pan increment down.

4 %panleft
Pan one pan increment left.

5 %viewall
View entire drawing .

6 %panri.ght
Pan one pan increment right .

11

_)

12

PIIl.ED(1)

8

a

C

e

f

g

h

i

j

k

l

m

n

0

p

r

System Software Encyclopedia PHI.ED(1)

,:;panup
Pan one pan increment up .

.%shell
Interpret the rest of command line as a command to the shell .

%yank2
Yank the information inside of the box from the layers which lie
under the crosshair cursor. If no layers are present there, yank
"•L P". The default (unnamed) yank buffer is used for the short
command . The yank buffer is not preserved once ":editcell" is
invoked again.

%nocellexpahd
Unexpand the current cell.

.%erase2
Erase the information inside of the box from the layers which lie
under the crosshair cursor. If no layers are present there, erase
"•LP" . Erased information will be put into the default (unnamed)
yank buffer.
,,.find2
Find the cell under the crosshair cursor and make it the current
cell . If the cursor has not moved since last time 'f' was entered,
find the parent of the current cell .

%toggle
Toggle the grid display .

.%boxleft
Move the box left one lambda unit .

.%increaseselector
Continue adding vertices to the polygonal box . This can also be
used to backup vertices .

.%boxdown
Move the box down one lambda unit .

.%boxup
Move the box up one lambda unit .

.%boxright
Move the box right one lambda unit.

%middle
Center the view on the cursor.

%resume
Execute next ·command from source file. Same as long command
":resume" .

.%orthogonal
Create a rectangular box using the bounding box of the polygonal
box .

.%polygon
Digitize the vertices forming the polygonal box .

.%redraw
Redraw the graphics portion of the screen .

)

PHLED(1)

s

u

V

w

X

z

C

X

z

System Software Encyclopedia PHLED(l)

%put2
Put (stuff) the layers which lie under the cursor from the default
(unnamed) yank buffer . If no layers are present there, put "•LP
S".

%undo
Undo the effects of the last data modi.fl.cation command . A 'u' can
be undone. It is not possible to undo a modification in a subedit
after that subedit has been exited. It is also not possible to undo a
modification once a new file has been edited.

Xviewbox
View the information inside of the box so that it fills up the graph-
ics area of the screen.

%locatelayers
Report the layers ("what layers") lying under the cursor .

%noareaexpand
Unexpand the cells lying under the box.

Xzoomin
Zoom in about the cursor the zoom factor percentage .

Xcellexpand
Expand the current cell to show its paint .

%areaexpan.d
Expand the cells lying under the box to show their paint.

%zoomout
Zoom out about the cursor the zoom factor percentage .

(dot) none
Repeat the last long command .

Following is a list of the long commands with some common arguments, their
internal names and a brief description . The long commands can be shortened to
any unambiguous abbreviation . Arguments to long commands can also be
abbreviated in this way. The layer names themselves can also be abbreviated.

:array x y %array
Array the current cell x times in the x-direction and y times in the
y-direction. Use the current box size as spacing between the cells.

:box keyword amount
%boxl
Move the box in the specified way the specified number of lambda
units . Keywords are : "up", "down", "left", "right", "xbot", "ybot",
"xtop", "ytop". Amount can be positive or negative. The box is
aligned to the current alignment.

:changelayer source destination
%changelayer
Copy the shapes on the source layer under the box to the destina ­
tion layer; delete source layer shapes .

:cif [-b -x -a -s scale -o file -1. layerlist]
%cif
Convert the fl.le being edited from ".phl" format to CIF format . The
switches are :

13 I

)

14

PHI.ED(1) System Software Encyclopedia PHI.ED(1r

s: The scale is the number of centimicrons per lambda . The
default value is 200 (1 lambda is 2 microns).
b: Output a bounding box and text for each cell use . The def a ult is
to not output this box .
x:: Do not automatically expand the cell uses in the edit cell. Mask
geometries will appear only for those cells which are currently
expanded . The default is to output CIF for all cells, expanded or
not.
a: Do not output arrays as arrays : break each array up into its
individual cell placements. The default is to preserve arrays.
o: Output to file.cif. The default is to write to name.cit where
name is the file being edited.
l: Convert only the specified layers to CIF. The default layers are
"• L P". This option must be the last option specified to the cif
command .

:cloadfile %cload
Load the colormap from file. map .

·:colormap [?] [• I #] layerlist [r g b]
%colormap
Set the indicated layer or layers to the specified (decimal) color.
If '?' is specified, the red, green and blue values are ignored and
instead the color is read out for the layer combination. If '#' is
specified, the layer is not treated as a layer but is considered to
be an index into the colormap . (See map(5) for details about the
colormap.) If ·•· is specified, report or change the color for all
combinations of the specified layers . (This does not make sense to
do for opaque layers nor for colormap indices .)

:connect layer width
%connect
This command simulates digitizing a wire with width by allowing a
series of constant width shapes to be entered simply by indicating
the centerline. After the command is typed in, the user is
prompted to move the crosshair cursor and press the right mouse
button for each vertex of the wire. Pressing the center button will
complete the wire. The left button is used for backing up one ver­
tex . If the width is not given, the last width specified for the layer
(either by ":set connect" or ":connect layer width") will be used.
Similarly, if the layer is not given, the last layer specified along
with its width will be used . Once the wire has been entered, its
shapes are indistinguishable from any entered by painting. There
is an option, set by ":set connect extend", that controls whether or
not the paint is extended past the endpoints of the wire. It is also
possible to set an option that restricts wires to only horizontal and
vertical .

:copycell id %copycell

:csavefile

Copy the current cell so that its lower left corner is coincident
with the lower left corner of the box . An optional id may be
specified, otherwise a unique id is generated from the cell name.

%csave
Save the current colormap intofile.map.

)

)

)

PHLED(1) System Software Encyclopedia PHLED(1)

:deletecell %deletecell
' Delete the current cell from the edit file only. No change is made

to the disk copy of the cell.

:draw [option]
%draw
Draw is a primitive command used by the ":connect" command . It
is not intended to be for general use . The ":draw" command draws
a "wire" using the current lower left corner of the box and the
lower left corner of the box the last time ":draw" was executed
subject to the current connect option values (layer, width, etc) .
Since a corner is defined by two sides, and draw only creates one
side at a time, a corner is always constructed with an octagon. (At
small scales this octagon may degenerate into a rectangle). By
using an octagon at each corner, we are assured that no matter
what direction the next side takes (90 or 45), the corner will be
correct. The done option resets the last point used for a connec­
tion so that the next time ":draw" is executed, a new "wire" will be
started .

:drc [ruleset] %drc
Run a design rule check for the all data under the box, visible or
not, using the ruleset in "~wcs/lib/DRC/ruleset.rt". If no ruleset
is specified, use the ruleset "~wcs/lib/DRC/tee .rt" where tee is
the current technology . To be consistent with the batch design
rule checker (leo), the root cell must be the cell being edited. If it
is not, phled will return to the top-level cell with a warning .

:45drc [ruleset]
%45drc
Run a 45 degree design rule check for the all data under the box,
visible or not, using the ruleset in "~wcs/lib/DRC/ruleset.rt45". If
no ruleset is specified, use the ruleset "~wcs/lib/DRC/tee.rt45"
where tee is the current technology . To be consistent with the
batch design rule checker (leo45), the root cell must be the cell
being edited. If it is not, phled will return to the top-level cell with
a warning .

:echo a:rguments
%echo
Echo the arguments onto the command line . Useful for macros or
source files .

:editcell [name]
%editcell
Leave editing the current file and begin editing file .phi. If no
name ls given, edit a new file. A warning message is issued if the
previous file has not been written and an opportunity is given to
write the file.

:erasepaint [layerlist]
%erasepaint
Erase the paint on the specified layers from under the box . If no
layers are specified, erase "• LP" . Erased information will be put
into the default (unnamed) yank buffer . This is useful for moving
paint and groups of labels, ports and subcells.

15 ,

PHLED(1) System Software Encyclopedia PHI.ED(1)

:fill [direction layerlist]
' %fill

Find paint crossing one edge of the box and extend the paint to
the other edge of the box . If no layers are specified, attempt to fill
"*". Direction can be "up", "down", "left", or "right".

:flatten %flatten
Replace the current cell with the cells making up its array and
add them to the edit cell.

:tlushcell ?..tlushcell
Load in the data for the current cell from the disk.

:getcell file %getcell
Get data for file.phi, position the cell at the lower left of the box
and make this cell the current cell.

:gridspacing %gridspacing
Make the grid spacing the same as the current dimensions of the
box and turn on the grid display. The def a ult grid spacing is set to
1 lambda at the start of the editing session .

:gripe 7.:gripe
Send suggestions and complaints to the system manager.

:halt ,:;halt
Suspend the reading or execution of commands from a source fl.le.
Used as a command in a source fl.le.

:help option .%help
Display help information . The option "release" will give informa­
tion about the phled release. The option "command" will give
information about the specified command from these man pages.

:killmark userma:rk
%k:illmark
Make phled forget the mark defined by ":mark usermark".

:kpath pathlis t
%kpath
Set the kpath used to search for control files to pathlist. Direc­
tories are separated from another in the list by a colon(':'). If the
first character in the list is a plus ('+'), append the path list to the
current path list. If no argument is given, report the current
path.

:label layer text
.%label
Add a label to the specified layer with the specified text. If the
layer is omitted, look at the paint under the center of the box in
order to decide which layer to use.

:lowerleft .%lowerleft
Center the view on the lower left of the box.

:macro name string . . .
%macro
This command allows the user to create a new command com­
posed of existing commands. The command is invoked by name.
If name already exists, it is redefined. String is a list of existing

)

PJil.ED(1} System Software Encyclopedia PHI.ED(1}

commands (as entered from the keyboard) or internal names
separated by semicolons. String may also contain argument sub­
stitution specifications of the form Si where i is replaced by the
relative number (starting at 1) of the argument to be interpolated
at that point. Argument specifications may also be the special
strings s• which indicates that all arguments are to be interpo­
lated at that point; and S- which causes the arguments to not be
appended to the end of command string (all arguments are nor­
mally appended to the end to the command string for compatibil­
ity with earlier versions of the program). Arguments may also
reference any of the variables controlled by the :set command
(e.g. $alignment). An argument specification for an argument
which does not exist will be replaced by an empty string. The '$'
should be escaped by a preceding backslash ('\') when it appears
in macro definitions. If string is unspecified, macro na:ine is
undefined . Name will be a long command if it starts with a colon
(':') otherwise it will be a short command (must be single charac­
ter).

:mark usermark
%mark
Remember the current location of the box in usermark so that it
can be retrieved later by ":pushbox", ":popbox", or ":view". User­
mark must begin with a lowercase letter.

:move cell ?..movecell
Move the current cell so that its lower left corner is at the lower
left corner of the box.

:mloadfile %mload
Replace the current menu with the menu in file.mnu. If the new
menu cannot be displayed, the old menu is restored.

:msave file %msave
Save the current menu in file.mnu. If no fl.le name is given, use
the name of the last menu loaded .

:noeditlayers [layerlist]
%noeditlayers
Make the specified layers uneditable. If no layers are specified, all
layers are made editable . If '?' is specified instead of a layer list,
display a popup window showing the currently uneditable layers.

:paint [layerlist]
7.:paint
Paint the box with the specified layers.

:pan direction [amount [units]]
%panl
Pan the view in the specified direction by the specified amount.
Direction can be "left", "right", "top" or "down". If units is omit­
ted, amount is number of pan percentages to move. If units is
"lambda", the view will be panned amount number of lambda
units.

:path pathlist
%path

17 ,

18

PHI.ED(1) System Software Encyclopedia PHLED(l)

Set the path used to search for data files to pathl:ist . Directories
are separated from another in the list by a colon(' :') . If the first
character in the list is a plus ('+'), append the path list to the
current path list . If no argument is given, report the current
path .

:peek [layerlist]
.%peek
Temporarily expand the specified layers in the cell(s) under the
box to paint . If no layers are specified , expand "• L P". Paint will
disappear next time the view is redrawn .

:popbox [mark]
.%popbox
If no argument is specified, pop the top of the box stack into the
box . If a user mark is specified, copy it into the box. System and
absolute marks can also be specified . A system mark is denoted
by an upper case letter and these system marks are recognized:
'C' is the bounding box of the current cell, 'E' is the bounding box
of the edit cell, 'R' is the bounding box of the root cell, 'V' is the
current view, and 'P' is the previous view. An absolute mark con­
sists of four integers (x y width height) which are separated by
spaces. The absolute mark is aligned to the current alignment .

:port layer text [Junction interchangeability]
%port
Make a port with the specified text on the designated layer . If the
layer is omitted, look at the paint under the center of the box in
order to decide which layer to use. The function and interchangea­
bility arguments can be omitted and will def a ult to "undefined"
and 0, respectively. Function can be one of four recognized text
strings ("undefined, "input", "output", "bidirectional", or a unique
abbreviation of these four strings) or can simply be a number.

:post return-string representation
.%post
Post an item to the menu . Return-string is the command that will
be given to phled to execute when the item is selected. Represen ­
tation is the text that will be displayed . If spaces are to be part of
the return string, invoke this command without any arguments
and this function will prompt for each argument separately . Then
spaces can be part of the return string or the representation.

:pushbox [mark]
%pushbox
If no argument is given, push the current box onto the box stack .
If a user mark is specified, copy it into the box. System and abso­
lute marks can also be specified . See also ":popbox" and ":mark" .

:put [layerlist]
%pull
Put the contents of the named yank buffer on the specified layers
so that the lower left of the information is at the lower left of the
box . If no name is specified, the default (unnamed) yank buffer is
used. If no layers are specified, put "•LP S".

:quit %quit

PHLED(1) System Software Encyclopedia PHI.ED(1)

Quit from phled . A warning message is issued if any modified files
from the current edit session have not been written and an oppor­
tunity is given to write the files.

:reidentify instance-name
%reidentifycell
Change the instance name of the current cell.

:relabel layer text
%relabel
Edit an existing label to have the specified characteristics . If the
layer argument is omitted, retain the current label layer. If only
the text argument is given, only the text for the label is changed.
If both arguments are omitted, prompt the user for the informa­
tion.

:rename file [id]
%rename
Replace the current cell, with the cell file.phi at the lower lert of
the box and make this cell the current cell, with the same orienta­
tion and same rows and columns in array (if any).

:report layer text [function interchn.ngeability]
%report
Edit an existing port to have the specified characteristics . If the
layer is not given, retain the current one. If only the text argu­
ment is given, only the text for the port is changed. If no argu-

) ments are given, the user is prompted for the appropriate
responses.

)

:reset %reset
Reset the graphics terminal and redisplay the entire screen
including text, menu area and graphics . Reload the colormap.

:resume %resume
Resume reading and executing commands from the source file.

:return %return
Return from the current subedit.

:rotate [amount] ["buffername]
%rotate

:saveall

Rotate the current cell by amount degrees. If the amount is posi­
tive or omitted, the direction of rotation is counter-clockwise.
Negative amounts will rotate clockwise. The amount is rounded off
to a multiple of 90 degrees. If a buffername is present, the named
yank buffer will be rotated instead of the current cell. If only a "
is present, the unnamed yank buffer is used .

%saveall
The user is prompted to write or not write each file that has been
edited during the current edit session.

:search regexp
%search
Search the data under the box to find a label, port or subcell name
that matches the regular expression. (See regex(3) for informa­
tion on regular expressions.) The box stack is first cleared. Each
matching label, port or bounding box of a matching subcell is

19

)

)

)

20 ,

PHLED(l) System Software Encyclopedia PHI.ED(1)

pushed onto the box stack.
I

:selector (left / rightj
%selector
Rotate the selector box 45 degrees to the left or right . (This com­
mand is the same as pushing the left or right button in the menu
area .)

:set option %set
Set the specified option to the specified value. If no option is given
to set, a popup menu will display the current settings and allow
them to be changed. Options include :

align size
Set the alignment factor to size . The alignment is set to 1 lambda
at the start of the edit session . The smallest alignment possible is
.5 lambda. The box position is rounded off also to this alignment .
Commands that change the size or location of the selector box will
align the box to this alignment.

height value
Set the height of the selector box. The box is aligned to the
current alignment.

width value
Set the width of the selector box . The box is aligned to the
current alignment.

quiet f on offl
Default value is "off". "on " means that the "more" message will not
be displayed for multiple messages .

pansizevalue
Set the percentage of the screen size used by ":pan".

zoomfactor value
Set the percentage for screen size for zooming.

connect
Set information used by ":draw" and ":connect" . If ":set connect"
is used with no values , a popup menu will display the current con­
nect settings and the user can change the values . Options include:

connect extend l on offl
If extend is set to "off", the extension of the paint past the end­
points of the "wire" will not be made . "on" is the default value.

connect layer layer
Set the current connect layer to Layer .

connect snap l 45 90j
If snap is set to 90, "wires" made by ":connect" and ":draw" will be
snapped to 90 degree edges . 45 is the def a ult value .

)

)

PHLED(1) System Software Encyclopedia PHI.ED(1)

connect width layer value
Set the connect width of layer to value. The minimum width is 1
lambda . The width is not aligned to the current alignment.

:showdef name
%showdef
Show the definition for the macro name . Long commands (includ­
ing long macros) have ':' (colon) for the first character in their
name.

:source file %source
Read a command from file and execute it. Continue this until
there are no more commands or until the command ":halt" is exe­
cuted.

:subedit %subedit
Begin editing the current cell in context. Subedits may be nested,

:technology file
%technology
Load the technology infile.tec. If any files have been edited and
not yet written, the user is prompted to write them first .

:unpost representation
%unpost
Unpost the menu item whose display text is representation . If no
argument is given, the user is prompted to pick a menu item with
a mouse button.

:upperright %upperright
Center the view on the upper right of the box.

:view mark %viewl
Set the current view to mark . The mark may be a user mark, a
system mark or an absolute mark. See also ":mark" and ":pop­
box".

:visiblelayers [layerlist]
%visiblelayers
Display the specified layers . If no layers are specified, display"• L
P" . If '?' is specified instead of a layer list, display a popup window
showing the currently viewed layers.

:writecell [file]
%writecell
Write file .phi to the disk. If the file name is not specified, write to
the current edit file .

:xmirror [" buff ername]
%xmirror
Mirror the current cell about the x axis (upside down) . If a
buflername is present, the named yank buffer will be mirrored
instead of the current cell.

:yank [" buff ername] [layerlis t]
%yankl
Make a copy of the paint on the specified layers under the box and
put into the named yank buffer. If no name is specified the
default (unnamed) yank buffer is used . If no layers are specified,

21

)

)

PHLED(1) System Software Encyclopedia PHI.ED(1)

yank "• LP". The yank buffer's are not preserved once ":editcell"
is invoked again .

:ycell [file] %ycell
If file is not specified, this will make the current cell into paint
using the following steps: the box is set to the bounding box of the
current cell, the cell is expanded, all paint, labels and ports are
yanked, the current cell is deleted, and the yanked information is
put back into the database. If file is specified, the file is read in
and positioned at the box . Then the same steps are followed as
before. This command collapses the cell hierarchy and should be
used advisedly.

:ymirror [" buff ername]
%ymirror
Mirror the current cell about the y axis (sideways). If a
bufl'ername is present, the named yank buffer will be mirrored
instead of the current cell .

:ysave [" buffername] file
Xysave
Save the named yank buffer as a file namedfile.phl.

:zoom [in I out]
%zooml

:zz

LAYER SUMMARY

Zoom in (or out) the zoom factor percentage about the center of
the graphics screen. This command is intended to provide an
alternative to the zooming about the cursor done by the short
commands 'z' and 'Z'. Since zooming is a commonly executed
operation, most users will want short commands to do this. To
substitute the zoom about the center of the screen for the zoom
about the cursor, use the macros: ":macro Z :zoom out" and
":macro z :zoom in" .

%zz
Write the file being edited to the current file name and exit the
editor.

Legal layers and their long and short names are determined from reading the
technology file techfile.tec. Shortnames are 8 characters or less, cannot contain
embedded spaces or tabs, and cannot start with'+', '-', ·•·, '?' or '#'. A list of
these short names can be arguments to many of the commands summarized
above. The layer list consists of the shortnames separated from each other by
spaces. The names may be shortened to any unambiguous abbreviation. In
addition , phled uses several built-in pseudo-layers. These pseudo-layers are
named by upper case letters and these layers can also be arguments to some of
the long commands. For example, 'L' represents all labels. ":visible L" would
make only the labels visible.

The following is a summary of the layers in the default technology nmos along
with the pseudo-layers :

p polysilicon

ddiffusion

mmetal

)

PHLED(1) System Software Encyclopedia PHLED(1)

FlLES

iimpl~t
c cut
o overglass

b buried...£ontact

e errors

s symbolic

a. acknowledge

vdrcerror

• all of the above layers

B background

L labels

Ggrid

P ports
S subcells

X selector box

The several files used by this utility for control and data input, as well as for out­
put, uses the standard Metheus -CV path library conventions for default search
path and extension names . Refer to pathnames(?) and and cadre(?) for more
information.

/wcs /bin/phled
/wcs/lib/nmos.tec technology file
/wcs/lib/nmos.dsl display fl.le
/wcs/lib/nmos .map colormap fl.le
/wcs/lib/nmos.mnu menu fl.le
/wcs/lib/phled/help/release• help files explaining phled releases

SEE ALSO
phlplot(l), phlex(l), leo(l), cif2phl(l), phl(5), dsl(5), tec(5), cadrc(7), path­
names(?), map(5), mnu(5) .

AUTHOR

BUGS

University of California at Berkeley
Metheus-CV (Ann Lanfri)

Label text outside of a cell boundary may not be erased when the cell is . Redraw
the display to see what is actually there.

":fill" does not extend 45 degree shapes properly.

":connect" enters wires by digitizing the centerline and fills out the wire by
adding half the width to both sides of the wire. Since the same amount is added
to both sides, the width of the shape may be wider than the minimum for 45
degree edges.

":help" does not yet support help for individual commands.

Erasing paint on top of unexpanded cells containing ports may cause the
displayed paint in the ports to be erased . Redraw to see the actual display.

23

-·

)

24

PHLED(1) System Software Encyclopedia PHI.ED(1)

The -b command line option does not work.
I

When putting or undoing ports and labels, sometimes they are drawn twice .

The drawing routines are now faster . In some of the processes not all layers are
redrawn. Occasionally the redraw command will need to be used to see the new
screen .

