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Highlights:  

• Sockeye salmon use geomagnetic imprinting as a homing mechanism. 

• The homing route of salmon is predicted by magnetic field drift (secular variation). 
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Summary: 
 

In the final phase of their spawning migration, Pacific salmon use chemical cues to identify their 

home river, but how they navigate from the open ocean to the correct coastal area has remained enigmatic 

[1]. To test the hypothesis that salmon imprint on the magnetic field that exists where they first enter the 

sea and later seek the same field upon return [2-4], we analyzed a 56-year fisheries dataset on Fraser 

River sockeye salmon, which must detour around Vancouver Island to approach the river through either a 

north or south passageway [5,6].  We found that the proportion of salmon using each route was predicted 

by geomagnetic field drift; the more the field at a passage entrance diverged from the field at the river 

mouth, the fewer fish used the passage.  We also found that more fish used the northern passage in years 

with warmer sea surface temperature (presumably because fish were constrained to more northern 

latitudes).  Field drift accounted for 16% of the variation in migratory route used, temperature 22%, and 

the interaction among these variables 28%.  These results provide the first empirical evidence of 

geomagnetic imprinting in any species and imply that forecasting salmon movements is possible using 

geomagnetic models. 

 

Results: 

Natal homing, a pattern of behavior in which animals return to reproduce in the same 

geographic area where they originated, occurs in diverse animals, including some that migrate 

thousands of kilometers between foraging and breeding sites.  The navigational mechanisms that 

underlie natal homing are not well understood for any species [7-10].  Marine animals such as 

sea turtles, seals, and anadromous fishes have been hypothesized to “imprint” on the magnetic 

fields associated with their coastal reproductive areas and to use that information to return 

months or years later [2-4].  Because Earth’s magnetic field varies predictably across the globe, 
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animals might use magnetic parameters as a “map” to determine their geographic location [4, 

10]. Experiments have revealed that oriented swimming responses can be elicited by magnetic 

field information in diverse marine migrants [11-13]. However, no further evidence either 

supporting or refuting the magnetic imprinting hypothesis has been obtained.   

We used a novel approach for testing the magnetic imprinting hypothesis by examining 

fisheries data on sockeye salmon (Oncorhynchus nerka), a commercially important fish [14] that 

is well-known for its homing [1] and capable of orientation to Earth-strength magnetic fields [11, 

15].  Sockeye salmon from the Fraser River typically spend 2 years at sea, distributed widely 

throughout the Gulf of Alaska, prior to the onset of their homeward migration [16, 17]. Their 

return to the Fraser River is blocked by Vancouver Island and the fish must either follow a 

southerly route through the Strait of Juan de Fuca or a northerly route through Queen Charlotte 

Strait to reach the river mouth (Fig. 1a). The geographical constraint imposed by Vancouver 

Island on the sockeye spawning migration to the Fraser River, combined with 56 years of 

fisheries data on the proportion of fish using the northern route (i.e., the “diversion rate”) [5, 6], 

provides a unique opportunity to test the magnetic imprinting hypothesis of natal homing (Fig. 

1a).  If salmon imprint on the magnetic field when they make the transition to seawater [2, 4], 

then whether fish return by the northern or southern route might be influenced by subtle changes 

in the field near Vancouver Island. Specifically, their return route might reflect how closely the 

field at each entryway, at the time when the fish return, resembles the field that fish experienced 

2 years previously as they left the Fraser River.  We reasoned that, all else being equal, a greater 

proportion of fish should use the northern entryway when the difference between the magnetic 

fields at Queen Charlotte Strait and the Fraser River is small; thus, as the difference in fields 

between these two locations increases, the diversion rate should decrease.  By contrast, when the 
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difference between the magnetic field at the Strait of Juan de Fuca and the Fraser River is small, 

a greater proportion of fish should take the southern route, and as the difference in fields between 

these two locations increases, the diversion rate should increase. We also explored the 

correlation between the diversion rate and other environmental factors that have been proposed 

to influence the diversion rate: sea surface temperature (SST) [5, 17], the volume of Fraser River 

discharge [17], and the velocity of ocean currents in the Gulf of Alaska [18] (Supplemental Table 

1). 

Consistent with the predictions of the magnetic imprinting hypothesis, we found that as 

the difference in magnetic intensity (total field strength) between the Fraser River and Queen 

Charlotte Strait decreased, a higher proportion of sockeye salmon migrated through the northern 

route (Spearman r = -0.58, p = 3.2 x 10-6) (Fig. 1b). Likewise, when the difference in magnetic 

intensity between the Fraser River and the Strait of Juan de Fuca decreased, a higher proportion 

of salmon migrated through the southern route (Spearman r = 0.64, p = 1.0 x 10-7) (Fig. 1c). 

Although the difference in magnetic inclination angle (the angle that field lines intersect the 

surface of the earth) at Queen Charlotte Strait and the Fraser River was correlated with the 

diversion rate the difference in inclination angle at the Strait of Juan de Fuca and the Fraser 

River was not (Supplemental Table 1).  Moreover, upon closer examination of the inclination 

angle we determined that its minimal changes in magnitude (Fig. 2) were not consistent with the 

extraordinary fluctuations in the diversion rate (range, 2% - 85%).  

Of the non-magnetic environmental factors we examined, only SST was correlated with 

the diversion rate (Supplemental Table 1). As was shown previously [1, 5, 17], in years with 

warmer SST a higher proportion of salmon migrated through the northern route (Spearman r = 

0.69, p = 5.5 x 10-9) (Fig. 1d). For further analysis, we focused our attention on the change in 
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magnetic intensity at the northern and southern entryways and SST.   Multiple regression 

analyses revealed that 66% of the variation in diversion rate could be accounted for by the 

combination of differences in magnetic intensity and SST (Table 1).  Variance partitioning 

indicated that 16% of the variation in diversion rate could be uniquely ascribed to the differences 

in magnetic intensity at the two entryways relative to the Fraser River, 22% of the variation 

could be attributed to SST, and the remaining 28% is ascribed to the combination of these 

factors.  

 

Discussion 

These results provide the first empirical support for the magnetic imprinting hypothesis 

of natal homing and imply that sockeye salmon use geomagnetic cues to guide the open-sea 

portion of their spawning migration. Although exactly how salmon determine their location at 

sea relative to their natal river is not known, doing so likely enhances the benefits of their 

anadromous life-history. Efficiently navigating from oceanic foraging grounds to the correct 

coastal location maximizes time available for feeding, minimizes loss of energy stores in transit, 

and ensures the fish reach spawning sites at the appropriate time [1, 2]. We speculate that 

sockeye salmon (and presumably other salmon species [1]) might assess location using a “map 

sense” based in part on magnetic intensity and inclination angle [13]. The mouth of the Fraser 

River is unambiguously defined by the combination of magnetic intensity and inclination angle 

(Fig. 2), as are most other locations along the Pacific coast of North America where salmon 

exist.  In the Gulf of Alaska these magnetic parameters could be used to effectively return to the 

vicinity of the coastal imprinting site using any one of several strategies that function with a non-
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orthogonal, bicoordinate grid [2, 10, 19, 20] (Fig. S1); thereafter olfaction is used to complete the 

freshwater phase of the migration [1, 4].  

A complication, however, for many of the proposed open-sea navigational strategies is 

that fish can become “trapped” in coastal areas as a result of slight navigational errors or 

beginning the migration close to coastlines [1, 21]. For much of the past century the magnetic 

intensity gradient ran parallel to the British Colombia coastline (Figs. 2a-2c), thus a simple 

solution would have been for salmon to follow the isoline of magnetic intensity associated with 

the mouth of the Fraser River southwards had they encountered it [4].  Following this isoline 

would have reliably led salmon to the Fraser River via Queen Charlotte Strait (Fig. 2). The 

Fraser River isoline of intensity has gradually drifted westward into the Gulf of Alaska and the 

proportion of sockeye salmon that encounter the isoline has likely increased with time (Fig. 2); 

presumably increasing the percentage of salmon that migrate through the northern route. Such an 

effect would be magnified in warmer years when sockeye salmon have a more northerly 

distribution [5 ,17, 22], further increasing the proportion of the population that encounters the 

isoline of magnetic intensity associated with the home river (Fig. 3). 

This interactive influence of magnetic field drift and SST on diversion rate (Table 1) may 

explain some of the apparent outliers in the relationship between diversion rate and magnetic 

field drift.  For instance, in 2008 total field intensity at Queen Charlotte Strait was only 138 nT 

different from the Fraser River mouth in 2006 (the lowest in the 56 year dataset), though only 

10% of fish used this route. However, 2008 had the third coldest SST for the 56 year dataset, 

which would increase the proportion of salmon beginning their migration from more southerly 

latitudes and likewise the proportion of salmon migrating through the southerly route (Fig. 3). 

On a longer timescale, the gradual change in alignment of the magnetic intensity gradient across 
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the North Pacific may explain why few sockeye salmon used the northern migratory route in the 

early part of the century [5], even though the range of SST was comparable to more recent times 

(1935-1953 SST range = 7.4-10.9°C; 1953-2012 SST range = 7.6-10.5°C). Prior to the 1970s the 

magnetic intensity associated with the Fraser River did not extend into the Gulf of Alaska and 

fish would have been less likely to be led into the Queen Charlotte Strait by this cue (Figs. 2A-

2B). We therefore hypothesize that the alignment of the magnetic intensity gradient is 

responsible for the larger decadal trends observed in the diversion rate whereas SST controls 

year-to-year variability. 

 Regardless of the organization of salmon’s “magnetic map” and its interaction with other 

environmental factors, our analyses suggest that Earth’s magnetic field plays an important role in 

the oceanic movements of sockeye salmon and that variability in their migratory routes is 

influenced by geomagnetic secular variation. These findings call for experiments on the 

navigational abilities of adult salmon as well as further investigation into the magnetic 

imprinting hypothesis of natal homing in other species such as sea turtles, migratory birds, and 

marine mammals.  

 

Procedures 

The proportion of sockeye using the northerly route has been estimated by the 

International Pacific Salmon Fishery Commission [5] and, afterwards, by the Pacific Salmon 

Commission [6]. In sum, these commissions generated continuous annual estimates for the years 

1953-2008. Before the late 1970s nearly all fish traveled via the southerly route, through the 

Strait of Juan de Fuca, to reach the Fraser River (Fig. S2). Thus, the percentage of fish travelling 
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via the northern route was known as the “diversion rate.” Fish following the northerly route 

travel exclusively through Canadian waters (and fisheries) whereas those following the southerly 

route travel through an area shared by Canadian and the United States fisheries [5, 6]. Predicting 

the proportion of fish following each route has received considerable attention from researchers 

due to important economic and management implications [1, 17, 18, 21-27].   

To examine geomagnetic secular variation in the vicinity of the Fraser River we used the 

International Geomagnetic Reference Field model (IGRF-11) [28]. We determined the values of 

both magnetic field strength (total field intensity) and inclination angle (the angle that field lines 

intersect Earth’s surface) at the mouth of the Fraser River (49.1° N, 123.25° W), the seaward 

entry to Queen Charlotte Strait (51.0° N, 128.0° W), and the seaward entry to the Strait of Juan 

de Fuca (48.45° N, 124.6° W). Sensitivity to these magnetic parameters is known in sea turtles 

[13] and appears likely in the rainbow trout (O. mykiss) [29, 30], a species that is congeneric 

with sockeye salmon. We calculated the difference in magnetic values between the mouth of 

Fraser River and each entryway assuming a 2 year time lag between fish leaving the river as 

juveniles (April-May) and returning to spawn at maturity (June-August) [17].  

When examining additional environmental factors, we attempted to make our analyses 

comparable to those performed previously and thus used the same data sources and seasonal 

periods as earlier studies on Fraser River sockeye salmon [5, 17, 18]. April SST data were from 

the Kains Island Lighthouse (50.27° N, 128.02° W), provided by Fisheries and Oceans Canada 

(http://www.pac.dfo-mpo.gc.ca/science/oceans/data-donnees/lighthouses-phares/index-eng.htm). 

Data on Fraser River discharge between April and June were taken at a station near Hope, British 

Columbia, provided by the Water Survey of Canada 

(http://www.wsc.ec.gc.ca/staflo/index_e.cfm?cname=HydromatD.cfm).  Ocean surface currents 
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were modeled with the Ocean Surface Current Simulator (OSCURS) and the northward 

advection of virtual particles was calculated between May 1 and June 30 at 3 locations in the 

Gulf of Alaska: (1) 50° N, 150° W; (2) 50° N 140° W; and (3) 50° N 130° W 

(http://las.pfeg.noaa.gov/oscurs/). Spearman’s Correlation Test (non-parametric) was used to 

examine the relationship between each variable and the diversion rate from 1967-2008. This 

range of dates was chosen because ocean currents modeled by OSCURS were available starting 

in 1967. After determining the variables of interest (magnetic intensity and SST) we performed 

Spearman’s Correlation Test, linear regressions, and variance partitioning analyses with these 

variables for the full dataset on the diversion rate (1953-2008). 
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Figure Legends 

Figure 1.   (A) Map of the study area. Fish attempting to return to the Fraser River must travel 

around Vancouver Island via Queen Charlotte Strait or the Strait of Juan de Fuca. Scale bar 

length is 225 km. (B) Relationship between the diversion rate (the percentage of fish following 

the northern migratory route through Queen Charlotte Strait) and the difference in magnetic 

intensity between the mouth of the Fraser River and Queen Charlotte Strait. (C) Relationship 

between the diversion rate and the difference in magnetic intensity between the mouth of the 

Fraser River and the Strait of Juan de Fuca. (D) Relationship between the diversion rate and 

April SST at Kains Island lighthouse on northwest Vancouver Island. Trend lines are estimated 

by linear regression. 
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Figure 2  Maps of the Northeast Pacific showing the isolines of magnetic intensity (red) and 

inclination angle (blue) that exist at the mouth of the Fraser River (white circle).  Inset figures 

show magnetic parameters in the immediate vicinity of Vancouver Island (scale bar length is 225 

km). Isolines are based on the IGRF-11 [28] and assume that fish resolve intensity at +250 nT 

and inclination angle at + 0.25°. Although the resolution with which salmon detect these 

magnetic parameters is unknown, the values shown here would average out most magnetic noise 

from diurnal variation, ocean currents, and anomalies from the Earth’s crust. Magnetic values are 

plotted assuming a 2 year ocean-stage for sockeye salmon, in which fish do not compensate for 

secular variation (field drift), but rely on the same magnetic values they remember from their 

initial seaward migration. The locations of magnetic values that existed at the Fraser River in (A) 

1900 plotted two years later, in 1902; (B) 1951 plotted in 1953; (C) 1976 plotted in 1978; and 

(D) 2008 plotted in 2010. Relatively few sockeye salmon used the northern route through the 

Queen Charlotte Strait to reach the Fraser River prior to the 1970’s. However, this route has 

become increasingly common as the magnetic intensity isoline has drifted further into the Gulf of 

Alaska.   
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Figure 3. Hypothetical interaction between salmon distribution and sea surface temperature 

(SST) influencing the proportion of the population that encounters the magnetic intensity isoline 

associated with the Fraser River while in the Gulf of Alaska. Purple indicates the hypothetical 

distribution of salmon in the North Pacific (darker shading implies greater density). Red and blue 

lines indicate magnetic intensity and inclination angle, respectively. The magnetic data plotted 

are from 1953 (A, B) and 2010 (C, D). A bicoordinate navigational strategy is likely more 

efficient for migrating from the open sea to the Fraser River than using a single coordinate of the 

magnetic field (e.g., Supplemental Fig 1). However, fish that encounter the magnetic intensity 

isoline associated with the Fraser River could take a relatively direct route homeward by 

swimming along that isoline (and into Queen Charlotte Strait). Thus, we propose that sockeye 

salmon use bicoordinate navigation for homing except when the fish encounter the magnetic 

intensity associated with the Fraser River, which elicits them to swim along the isoline. Such a 

homing strategy would result in major differences in diversion rate among years and be greatly 

influenced by the starting locations of fish and thus SST. In years when SST is cool, sockeye 

salmon are likely to be distributed widely throughout the North Pacific (A, C). Thus in cool 

years, the proportion of fish that encounter the isoline of magnetic intensity associated with the 

Fraser River is relatively low, regardless as to whether the isoline is near the coast or farther 

west. However, when SST is warm, sockeye are likely to be constrained to more northern 

latitudes (B, D), thus increasing the proportion of the population that encounters the isoline of 

magnetic intensity associated with the Fraser River. Based on the interaction between SST and 

magnetic intensity we would expect diversion rate would be low in (A), moderate in (B), 

moderate in (C), and high in (D). 
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Table Legends 

Table 1. Results of regression analyses predicting the annual diversion rate (1953-2008) (see 

Supplemental Figure 2). Diversion rate (d) is predicted as a function of the difference in 

magnetic intensity between the Fraser River and Queen Charlotte Strait (q), the difference in 

magnetic intensity between the Fraser River and Strait of Juan de Fuca (j), and the mean April 

SST at Kains Island Lighthouse on Vancouver Island (t). Other abbreviations follow conventions 

in Table 1.  

Predictors R2 

(p) Equation 

Δ Intensity QCS 0.29 
(<0.0001) d = -0.185q +87 

Δ Intensity JDF 0.43 
(<0.000001) d = 0.34j -181 

SST 0.50 
(<0.000001) d = 25.2t – 190 

Δ Intensity QCS + Δ Intensity JDF + SST 0.66 
(<0.00000001) d = 18.6t - 0.067q +0.148j - 207 

 

 

 

 

 

 

 

 

 



 

Putman et al.       18 
 

Supplemental Material: 
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Supplemental Figures 

Supplemental Figure 1.  Hypothetical navigational strategy based on gradients of magnetic 
intensity and inclination angle. Sockeye salmon swim southeastwards when in magnetic fields 
with steep inclination angles (relative to the imprinted value), increasingly orienting eastward as 
inclination angle decreases.  At inclination angles less steep than a threshold value (~1° less than 
the imprinted value) fish assess location based on intensity. Fish orient northeastward, with an 
increasing northward component as intensity becomes closer to the imprinted value.  In these 
diagrams the gradients of inclination angle (blue) and intensity gradient (red) are plotted over the 
areas in which sockeye salmon would use them to orient their movement homeward. Thicker 
lines of each color are the value associated with the mouth of the Fraser River. Black arrows 
indicate the direction that salmon would adopt based on the magnetic cues encountered at a 
given location. This strategy would allow for efficient transit from the open sea to vicinity of the 
Fraser River for the past century.  
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Supplemental Figure 2.  Time series of diversion rate. 
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Supplemental Table 

Supplemental Table 1. Spearman’s correlation between environmental factors and diversion 

rate (1967-2008).  Factors include: (QCS) the difference in IGRF magnetic intensity and 

inclination angle after 2 years between Queen Charlotte Strait and the mouth of the Fraser River; 

(JDF) the difference in IGRF magnetic intensity and inclination angle after 2 years between the 

Strait of Juan de and the mouth of the Fraser River; (SST) the mean April SST at Kains Island 

Lighthouse; the northward advection of virtual particles released at different locations in the 

OSCURS model between May 1 and June 30; and the mean volume of water discharged from the 

Fraser River for April, May, and June.   

 

Variable Spearman’s r 
(p) 

Δ Intensity QCS -0.41 
(0.007) 

Δ Inclination QCS -0.37 
(0.015) 

Δ Intensity JDF 0.54 
(0.0002) 

Δ Inclination JDF 0.05 
(0.748) 

SST 0.74 
(<0.0001) 

Northward Current Velocity 
50° N, 150° W 

-0.07 
(0.632) 

Northward Current Velocity 
50° N, 140° W 

-0.13 
(0.319) 

Northward Current Velocity 
50° N, 130° W 

0.25 
(0.113) 

Fraser River Discharge -0.15 
(0.355) 

 

 


