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This study centered upon two objectives. First, to demonstrate and

apply a statistical method, the transfer function, and to test its

usefulness in regional economic modeling and regional impact ana1ysis.

and second, to obtain a better understanding of the causal relationships

among total employment, government employment, lumber and wood products

manufacturing employment, and agriculture employment in Grant County.

Oregon. The first objective is because of the deficiencies in using

economic base, input-output, and regional econometric models in

regional impact analysis. The second objective is because of the

need for analyzing the direct and induced dynamic impacts of basic

industry employment changes in Grant County.

Transfer function models are based upon an interative approach

to the identification of a statistical model that specifies a dynamic

relationship between two or more interrelated time series. In this

study, one-input and two-input transfer function models, that specify

dynamic relationships among total employment, government employment

and lumber and wood products manufacturing employment, are developed.
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In order to comparatively evaluate the results from the transfer function

models, univariate ARIMA and econometric models also are specified and

presented for the same employment series.

Six types of goodness-of--fit measures are used to examine the

forecasting performances of the ARIMA, transfer function, and econo-

metric models. The empirical results suggest considerable confidence

in the accuracy of the ARIMA, one-input transfer function, and econo-

metric models.

Various hypothetical changes of basic employment in Grant County

are simulated in order to estimate the employment multiplier effects

for the basic industries. The static and dynamic employment multipliers

of three basic industries from the econometric models are also presented

and interpreted. The agriculture sector is found to have a higher employ-

ment multiplier than the government and lumber and wood products manu-

facturing sectors.

The transfer function models are found to be quite appealing if one

is primarily interested in forecasting. However, if the researcher wants

to analyze the nature of regional impacts or to explain the "complicated"

behavior of an economic system, the input-output model and the regional

econometric models appear to be more attractive tools to employ.
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AN APPLICATION OF TRANSFER FUNCTION AND ECONOMETRIC

PROCEDURES TO EMPLOYMENT IMPACT ANALYSIS:

GRANT COUNTY, OREGON

CHAPTER I

INTRODUCTION

Problem

Long term economic stability and prosperity are elusive goals

for many people living in Oregon, and indeed, throughout the Western

United States. For those now living in the immense rural areas of

the region, employment and income are dependent on basic resource-

using industries (primarily forestry and agriculture). In contrast

to more urbanized areas, levels of income are lower, employment

opportunities more scarce, social services few; and the potential

of the conventional growth strategies of industrialization and

economic diversification are minimal (Harris and Obermiller, 1978).

Grant County, an eastern Oregon county, shares many of the

economic and social problems common to rural areas throughout the

Western United States. This county is typical of many natural re-

source based rural communities in that most household income is

derived from resource-based industries and government agencies

managing natural resource lands. For instance, in 1977 wages paid

by resource-based product groups accounted for 47 percent of the

total county wage bill (forest products: 44 percent, agriculture: 3

percent). Wages paid by government accounted for 32 percent of. the total
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county wage bill. Within the government sector, the Forest Service

accounts for a very high proportion of total wage and salary payments

(Obermiller and Miller, 1979, p. 10).

From these statistics, it can be concluded that private firms

and public agencies related to forestry 2jde most of the income (or

employment) for local residents in Grant County. Therefore, any deci-

sion affecting future growth in these two sectors will have a significant

impact on local residents' income (or employment), and will also result

in direct and induced economic effects on the county's economy as a

whole. The need for research on the extent to which income (or employ-

ment) variations in the forest industry and related government agencies

(particularly the Forest Service) generate variations in total county

income (or employment) is apparent.

In regional economic impact studies, the total impact, or the

direct and induced effects of change in economic activity often is

measured using "multipliers", which express the total effect as a multiple

of the direct effect. Multipliers are very useful tools in impact

analysis. For instance, estimates of regional employment multipliers

provide a rough but useful means of assessing the total employment

impact of gains or losses in a region's export activity. However,

one disadvantage of using a static multiplier is its failure to

identify the time path of induced impacts. The dynamic multiplier

is capable of identifying the impacts in each time period, and in

the absence of a technical change, will accumulate to the value of

the static multiplier. The additivity and separability over periods

are the major advantages of using dynamic multipliers over static
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multipliers (Liew, 1977, p. 95). For all of the above reasons, analy-

sis of dynamic multipliers in the context of local employment variations

is warranted.

Concern for regional economic growth and development has sparked

considerable interest in the ability to explain, and thus predict, the

regional or local economic impacts of various types of activities. Local

policy makers, in order to design better plans for regional development,

need accurate predictions of levels of key economic aggregates such as

employment, income, and output for different development strategies.

Methods such as economic base, input-output, and regional econometric

models frequently have been employed to explain the regional economic

impacts of various types of activities and to forecast the levels of

regional economic indicators. These three approaches have different

theoretical implications and, therefore, different advantages and dis-

advantages. Since the deficiencies in these three approaches are sig-

nificant, the development of other analytic techniques has been a major

concern of regional economic analysts.

The transfer function was introduced to the stat:itical literature

over a decade ago by Box and Jenkins in their article "Some Recent

Advances in Forecasting and Control" (Box and Jenkins, 1966). In recent

years, this technique has been proven to be useful in economic analysis

as it serves to measure the impact from the hypothesized input

variable upon the output variable at different time periods. Bennett

acquainted regional scientists with the transfer function in his

article, "Process Identification for Time Series Modeling in Urban

and Regional Planning" (Bennett, 1974). He suggest that the transfer
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function can form the basis of an inferential methodology for model

building which leads naturally to statistical forecasts and policy.

The present study is an attempt to employ this technique in regional

economic modeling and to test its ability in regional impact analysis.

Monthly employment data for Grant County, Oregon will serve as a case

study.

In prior research, three static input-output studies of the Grant

County economy have been made (Bromley, et. al., 1964; Haroldsen and

Youmans, 1972; Obermiller and Miller, 1977). Johnson (1980) employed

a simulation method to develop a dynamic input-output model of the

Grant County economy which projects aggregate output, income, invest-

ment, etc. In these previous input-output studies, the income multi-

pliers of different economic sectors have been derived and evaluated, but

little atterJon has been paid to the dynamic employment multipliers

of basic sectors. Therefore, the present study attempts to fill this

1

void by applying transfer function and econometric analysis to analyze

the dynamic employment multiplier effects of monthly government employ-

ment, lumber and wood products manufacturing employment, and agriculture

employment in Grant County, Oregon.2 Another reason for applying these

procedures to employment data is because quarterly or monthly income

data are not available at the county level.

In this study, an econometric model is mainly used as a compari-

son to the transfer function model.

2These three sectors are considered to be basic industries in
Grant County and are discussed in more detail in Chapter IV.
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Obj ectives

The major objectives of this study are twofold: first, to

demonstrate and apply a statistical method, the transfer function,

and to test its usefulness in regional economic modeling and regional

impact analysis; and second, to obtain a better understanding of the

causal relationships among total employment, government employment,

lumber and wood products manufacturing employment)and agriculture

employment in Grant County. The intermediate objectives are to:

(1) analyze the induced dynamic impacts of three basic industries

employment changes in Grant County, Oregon;

(2) attempt to determine the accuracy of the ARIMA transfer

function, and econometric models;

(3) determine the suitability of time series (transfer function)

and econometric procedures for estimating dynamic employment

multipliers;

(4) compare the forecasting accuracy of ARIMA, transfer function,

and econometric models; and

(5) provide a reliable short-term forecasting tool for projecting

local employment consequences of changes in basic industries

employment.

3The Box-Jenkins autoregressive-integrated-moving-average (ARIMA)

model is the basic component of the transfer function model.
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The achievement of the above objectives will depend mainly on

the use of the transfer function and more traditional econometric

models which are applied to a variation of the economic-base model.

Secondary time series data obtained from the Department of Human Re-

sources of the State of Oregon are used.

The regional economic models have progressed from ad hoc methods

to more formal models. In Chapter II a review of the characteristics

and problems of three types of regional forecasting models is presented.

These include economic base, input-output, and econometric models,

which are commonly used to estimate regional employment multipliers.

At the end of this chapter, the theoretical (economic) rational for

using transfer function models to examine employment impacts is discussed.

An outline of the multivariate time series analysis appears in

Chapter III. There, the basic differences among ARIMA, transfer fun-

ction, and econometric models are discussed. The conceptual theory

and the modeling procedures of the ARIMA and the transfer function are

also presented. Data sources and their limitations, as well as the

empirical implementation of the theoretical ARIMA, one-input transfer

function, two-input transfer function, and econometric models are

discussed in Chapter IV. The forecasting performances of these four

models also are presented and compared in this chapter.

The transfer function and econometric models presented in the

Chapter IV are employed in Chapter V to estimate the dynamic employment
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response (or employment multiplier effect) of total employment from changes

in government, lumber and wood products manufacturing, and agriculture

employment. Results of multipliers from input-output studies are com-

pared with multipliers from time series and econometric models. Finally,

conclusions and suggested extensions of this analysis are presented

in Chapter VI.



CHAPTER II

OVERVIEW OF REGIONAL EMPLOYMENT MULTIPLIER ANALYSIS

Regional Employment Multiplier, Its Estimation
Methods and Problems

Estimates of regional employment multipliers provide a rough but

useful means of assessing the total employment impact of gains or

losses in a region's export activity. In recent years, considerable

attention has been focused on the application of multiplier analysis

to various regional economic problems.

There have been three fairly general approaches to the study of

regional multipliers: (1) economic base, (2) input-output, and (3)

regional econometric. These three approaches have different theo-

retical implications, causing individual advantages and disadvantages.

For instance, economic base models are rooted in a simple theory of

urban growth: the expansion of a city or region is determined by

the growth of its exports. These models are correspondingly simple

in construction, and, as a result, they are beset with many technical

and theoretical problems and produce inaccurate forecasts. The input-

output approach can introduce a higher degree of sophistication and

comprehensiveness th an the economic base approach. However, the

construction of a complete interindustry model usually entails

high costs and substantial data problems. Regional econometric models

are in some respects a compromise between economic base and input-

output formulations. With respect to data costs, they do not require



as much data collection as do input-output modAls. They are compar-

able in cost to economic base models, but provide relatively more

information about the structure of a region's economy. Unfortunately,

some econometric and statistical problems make regional econometric

models difficult (if not impossible) to build for small regions.

There are controversies in the literature about the accuracy of

multipliers derived from different models. However, Isard and Czamanski

(1965) have demonstrated the empirical equivalence of economic base,

aggregate input-output, and simple econometric models; Garnick (1970)

and Davis (1975) have shown theoretically and empirically that the

aggregate input-output multiplier is equal to the multiplier associated

with the economic base model; Billings (1969) has proven the mathemati-

cal identity of the multipliers derived from the economic base model

and the input-output model; Connaughton and McKillop (1979) provide

a treatment of the equivalence between Keynesian, input-output, and

economic base multipliers.

In the following sections, each of these individual methods of

regional analysis and their problems will be examined. An outline of

the theoretical (economic) rationale for using transfer function models

to examine regional employment impacts appears in the final section.

Economic Base Model

One of the earliest statistical models to be employed in regional

research was the economic base model. It was first formulated by Homer

Hoyt in the l930's and has been employed in numerous regional studies

'For a comprehensive bibliography, see Isard (1960, pp. 227-231);

Bendavid (1974, pp. 179-191); and Clickman (1977, pp. 197-206).
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Economic base theory postulates that economic activity in a region

expands or contracts primarily because of export activity to other

regions. The determinants of supply are not considered; therefore,

economic activity is considered to be primarily demand oriented. The

economic base model has also been described as essentially a Keynesian

type model (Weiss and Gooding, 1968, p. 235). This theory in its simplest

formulation provides for the partitioning of a regional economy into two

segments (i) export (basic) industries, which are generally held to

form the economic base of a region and are the reason for its growth,

and (ii) nonexport (residentiary or non-basic) industries, which supply

the local requirements of the basic industries and which may also supply

their own. Total employment in a region may be broken down according

to this basic/nonbasic dichotomy, and it is then possible to derive re-

gional employment multipliers. As export activities expand, nonbasic

sectors of the region are stimulated to generate additional economic

activity, and total regional employment will grow by some multiple of

the initial increase in export oriented jobs.

Regional employment multipliers of the economic base type may be

calculated by several different methods. The most commonly used method

is the ratio of total employment to basic employment for a given year.

The second method used to calculate a multiplier is represented by the

change in total employment associated with a unit change in basic employ-

ment. These two simple multiplier concepts, which were implicit in the

earliest writings on the economic base model, have been widely criti-

cized. An improvement is possible if data are available for more than

two periods. It is then possible to employ a stochastic linear estimator,
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EN + 1EB +
'

> 0

where: EN is nonbasic sector employment.
EB is basic sector employment.

Solving for total employment (ET) as a function of basic employ-

ment yields:

ET + (1 + 1)EB + i

Where the derivative of ET with respect to EB, 1 +
l'

is regarded

as the total employment multiplier associated with a change in basic

employment.

The regression analysis procedure, of course, is a more sophisti-

cated formulation of the model than the ratio method. For the past

three decades, many individuals have estimated regional employment mul-

tipliers by use of the least squares method. Some representative studies

are Hildebrand and Mace (1950), Thompson (1959), Sasaki (1963), Weiss

and Gooding (1968), Moody and Puffer (1970), Park (1970), and Lewis

(1976).

Other measures of regional economic activity such as regional

income wages, or personal income, can be substituted for the variables

in the above three methods. Given that employment data often are readily

available, this has been a popular variable for regional analysts. The

advantages and disadvantages of using employment rather than income

measures are discussed below.
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Problems with the Economic Base Model

The economic base theory is used widely because it is inexpensive

and easy to implement at any level of regional aggregation. In earlier

years, both short-run and long-run changes were assumed to be explained

by the theory. Currently, however, it is generally held that multipliers

have predictive value only as long as the industrial structure of the

local economy remains unchanged; i.e., the concept that is valid only

in the short run. Additional criticism of the theory center around its

usefulness. For example, Isard (1960) has discussed in some depth the

technical and conceptual difficulties of using two sector economic

base multipliers to forecast impacts. The chief technical problems are

(1) choosing a unit of measure (e.g., employment of income); (2) dis-

tinguishing between basic and residentiary industries; and (3) defining

a geographical unit of analysis.

Generally, employment is used as a proxy for general economic

activity (e.g., income or production). However, it will carry at least

three problems. First, wage differentials among sectors and part-time

employment are not accounted for in employment multipliers. Therefore,

an employee earning $15,000 annually (or a full-time employee) receives

as much weight in the employment multiplier as does the employee earning

$7,000 annually (or a part-time employee). This despite the fact that

the former employee may provide a significantly greater economic stimulus

to the community than the later. This problem becomes more serious

when considering the dynamic variation (e.g., technological development

might cause an increase in income and output but not in employment).

Second, transfer payments are not reflected in the employment data.
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The result, therefore, is an underestimation of the size of the export

base, and an overestimation of the multiplier. Gibson and Worden (1979)

have indicated that two-thirds of the communities studied showed dif-

ferences of ten percent or more between unadjusted and fully adjusted

multipliers. They also found that the greatest declines in magnitude

of the multiplier were for communities with large retirement populations.

Similarly, Connaughton and McKIllop (1979) have suggested that the im-

portance of recognizing transfer payments in small area analysis cannot

be overemphasized.

Third, incommuters, i.e., those employees who live outside the

base area, are included in the employment data. Outcommuters, i.e.,

those individuals living in the base area but drawing earned income from

outside the base area, are not reflected in the employment data. Both

cases result in a bias of the employment multipliers.

Ideally, the researcher would like to have detailed iriterregional

flow data on which to base an estimate of the volume of export ;ictivitv.

Generally, such data are unavailable and the cost of collecting it

through a survey or census of area establishments is prohibitive. Thus,

indirect estimation methods such as the location quotients and mini-

mum requirements techniques have been widely used, although there are

serious questions about their ability to accurately measure export

activity. For instance, Greytak (1969) notes that both the location

quotient and minimum requirements techniques yield export estimates which

differ significantly from those actually observed. The minimum require-

ments technique was found to be more accurate than the location

quotient, but neither technique was considered adequate. In view of

this problem, some other indirect estimation methods have been developed.
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And mo/ire equation has been shown to be the only satisfactory alterna-

tive to the census survey by Gibson and Worden (1979).

Additional problems exist in economic base theory, for instance, the

assumed invariance of the çameters of the system over time. Garnick

(1969, 1970) has argued that it is incorrect to treat nonbasic activity

as a fixed proportion of basic activity, since interregional industry

mixes are becoming more alike. Parameters of the base models are chang-

ing, reflecting these interregional shifts as well as changes in income,

tastes, and technology. In addition, Moody and Puffer (1969) showed

that the estimated constant 89.4 in Sasaki's equation, ET = 89.4 +

1.279 EB, is significantly different than zero. Thus, they conclude

that the basic/service ration is not stable. Moreover, the ratio also

has the defect of ignoring the feedback effects of economic development.

Time lags also present a problem in economic base analysis. In

most studies of regional employment multipliers, the adjustment of local

(service) employment to changes in export employment has been hypothe-

sized to occur in the same period, i.e., an unlagged relationship exists

between the two. Park (1970) concludes that it is important to measure

the lagged relationship in an economic-base model. He demonstrates

that if the lagged model is significant, it can produce different re-

sults from the static model with its imperfect estimating techniques.

Disaggregation bias also presents problems in economic base analy-

sis. Romanoff (1974) concluded that economic-base models contain a

disaggregation bias because they do not measure the interdependent

relationship between industries. In addition, Lewis (1976) has demon-

strated that estimates from the economic-base model will vary



15

according to alternative definitions of the regional unit, procedures

in parameter specification, and the methodology in determination of the

export base. Comments such as Romanoff's and Lewis' are constructive

and serve as a warning for those who use the economic base approach.

Weiss and Gooding (1968), however, suggested that an economic-

base approach can be applicable for small regions. A necessary condi-

tion is that the export-base industries be disaggregated into a few

homogeneous sectors. They argue that employees in each of these sec-

tors should have similar spending habits and impacts all other inter-

dependent industries in a common manner. Therefore, parameter estimates

of the economic-base model may not contain disaggregation bias per

Romarioff's critique. Polzin (1980) also suggested that the economic

base format was appropriate in the small rural economies of the West.

He postulated that most of the past failures of the economic-base

approach were due to problems associated with estimating techniques and

the quality of the data, rather than a faulty theoretical foundation.

Despite the criticisms raised above, economic base analysis is

still widely used. This is because it provides a fast, simple, and

inexpensive means of evaluating the existing structure of a region and,

by use of the multiplier, of estimating probable change in employment

or income resulting from an impact. Moreover, the analyst in a small

regional economy most often does not have the luxury of well-defined

regional accounts that are needed for the more intricate input-output

models. Thus, economic base analysis seems to offer an attractive al-

ternative to input-output methods for analysts or planners in small

regions.
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Input-Output Model

Regional analysts desirous of a more complete view of the inter-

relationships obtained in a local economy have often turned to input-

output models. It is possible by use of a regional input-output model

to derive the interindustry multiplier effects of any change in final

demand for all sectors of the economy. Moreover, the multiplier effects

induced by increased household consumption expenditures can be estimated

by incorporating consumption functions into the model. The major advan-

tage of the input-output approach is that it delineates the interdepen-

dence of all defined sectors of the economy.

The input-output analytical method was developed from the theory

of general equilibrium. Francois Quesnay's Tableau Economique of 1758

dealt with circular flows between industries and general equilibrium

concepts. Walras stressed the interdependence between the production

sectors of an economy with his general equilibrium model in the 1870's.

The entire concept was not utilized until about 1931 when Wassily Leon-

tief started an input-output system of the U.S. economy. The results

were published in 1936. Leontief simplified Walras' generalized model

so that equations associated with it could be estimated empirically.

He used two simplifying assumptions.5 These simplifying assumptions

provide for important contrasts between input-output and many other

economic models.

The Leontief input-output technique is well-known and is summarized

5First, the large number of commodities in the Wairas model was
aggregated into relatively few outputs, one for each industrial
sector. Second, supply equations for labor and demand equations
for final consumption were abandoned. The remaining production
equations were expressed in their simplest, linear form (Palmer,
et. al., 1978).
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briefly here in order to provide a basic notation for the explanation

of the income and employment multiplier. The most crucial, and time

consuming, step in constructing the model is the collection of primary

survey data for specifying the transactions table and which describe in

dollar terms the flow of commodities among processing and final demand

sectors. Once this step was completed, technical production coefficients

were estimated and the Leontief solution was obtained. Equations (1)

through (4) summarize the development of the model.

n

(1) X. = + Y. (i = 1, 2, ..., n)
1

.=
13 1,

where: X. = total output of the ith industry;

x.. = the value of output of industry i purchased
13

by industry j; and

= the exogenous or "final" demand (consumption,
investment, government and exports) for the
output of industry i.

Since the data requirements for this type of study are stringent,

simplifying assumptions have been made:

(a) Each commodity group is produced by a unique producing
industry.

(b) There are no external economies or diseconomies possible.

(c) There is a unique observable production process which does
not allow for the substitution of inputs.

Assumption (c) implies:

(2) x.. = a..X, (i, = 1, 2, ..., n)

where: a.. is the production coefficient specifying the amount
13 of i needed to produce one unit of j, and

X. is the output in industry j.



Substituting equati

n

(3) x. =

j =1

Equation (3) can be

n (2) into (1) yields:

a X + Y
1J J 1

rewritten in matrix notation for all sectors.

X = AX + Y

where X is a vector of (x.), A is a matrix of (a..), and Y is a vector

of (Y,).

The general solution of the model may now be derived as:

(4) x = (I-A)'Y

The (I-A)' is defined as the direct plus indirect coefficients,

or total requirements matrix.

This basic model may be used to generate consistent forecasts

where, for each sector, projected industry output must always equal

intermediate plus final demands. The procedure is simply to project

individual components of final demands and thus calculate a new level

of output (X) using the projected final demands (Y) and the Leontief

inverse, (I-A)1

The employment multiplier which is defined as the total change 1n

employment due to a one-unit change in the employed labor force of a

particular sector can be computed from the input-output model. The

concept of input-output employment multipliers was developed by Moore

and Peterson (1955). The basic assumption in computing employment

multipliers is that there is a linear relationship between employment

and output in a sector.
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In general, there are two frequently used types of multipliers.

First, there is the so-called Type I multiplier which is based upon the

direct and indirect results of an exogenous change in final demand when

the household is part of final demand. Second, there is the so-called

Type II multiplier which is based upon the direct, indirect and induced

results of an exogenous change in final demand when the household is

part of the endogenous system of interdependency and final demand con-

sists of government spending, investment expenditures and foreign pur-

chases. Accordingly, both types of multiplier effects can be measured

in terms of gross output, household income, and/or employment. For

6

example, for the Type I income multiplier,

n

(5) M. = h a.*./h , (j = 1, 2, ..., n)
J i=lollJ oJ

Here M. is the Type I income multiplier, representing the ratio

of the direct plus indirect income effects to the direct income effect;

h ., h . are the household coefficients, i.e., the ratio of the house-
01 0J

hold services purchased by the ith (or jth) industry to the total ith

(or jth) industry inputs; and a. is the elements of (I-A)1

For the Type I employment multiplier,

(6) M,* l.a./l. ,
(j = 1, 2, ..., n)

Here M.* is the Type I employment multiplier; 1. and 1. are the

direct employment coefficients per dollar of output for the ith (or jth)

industry and a.* is the elements of (I-A)

6For the theoretical basis of the discussion see Moore and Peterson (1955,

pp. 374-378); and Bradley and Cauder (1969, p. 311 and p. 313). For

an empirical application see Tweeten and Brinkman (1976, pp. 314-321).
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The difference between the Type I and Type II multipliers is a.. in

equation (5), (6) above. For Type II multipliers, the coefficients

a. are the direct plus indirect plus induced effects on the output of

the ith industry for a dollar change in the final demand for the jth

industry's output. For Type I multipliers, the a.. represent direct

plus indirect, but not induced, effects.

Problems with the Input-Output Model

There has been considerable effort in recent years directed to

the application of the input-output model to regions and urban areas to

trace the flow of goods among local industries and between regions, and

in using it in forecasting and economic impact analysis. For example,

Moore and Peterson (1955) employed an input-output model to analyze

balance of payments in Utah. Bromley, Blanch and Stoevener (1968),

Haroidsen and Youmans (1972) and Obermiller and Miller (1979) employed

input-output models to analyze the impacts of natural and community

resource changes in Grant County, Oregon, on the local economy.

The disadvantage of an input-output model is that it may require

an extensive survey to compile the data for its calculation. As a re-

sult, investigators must often undertake the expensive and time-consuming

task of primary data gathering. In light of these data problems, recent

efforts to reduce the costs of constructing regional input-output models

have been directed toward the development of: (1) non-survey techniques

of model construction; or (2) truncated or aggregated input-output models

with reduced data requirements; and (3) inter-sectoral flows analysis

(IFA) as a hybrid model of the economic base multiplier approach and
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7

the regional input-output model.

The assumption of constant technical and trade coefficients also

presents a problem. In input-output models, no external economies or

diseconomies can exist. But, in fact, external economies associated with

localization and urbanization should be accounted for in regional analy-

sis. Localization economies arise from the location of many plants in

the same industry in close proximity to each other. Urbanization

economies occur when firms in different industries locate at one locality

and a corresponding urban infrastructure is built to service them. In

cases where either localization economies or urbanization economies

exist, the assumption of constant coefficients is inaccurate. When

technological chatige happens, the use of constant coefficients may also

be questioned (Glickman, 1977).

In view of the constant coefficients problem, two methods have been

used to adjust these coefficients to account for technological and

trading pattern changes. The first involves the assumption that regional

coefficients change at a rate equal to national increments; the work of

Almon (1966) is used to make these adjustments. A second method involves

the judgment of the researchers as to future technical change (Click-

man, 1977, p. 35).

In general, the economic base model and input-output model have

several points in common: (1) both have been derived from or are

related to the basic Leontief input-output system, (2) both are demand-

oriented and view final demand for the output of an area economy as

7

For more detail on these developments see Davis (1976, pp. 18-29);

and Barnard and Ballman (1979, pp. 201-215).
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the primary exogenous growth force in an area economy, and (3) both are

concerned with certain multipliers of the local area or regional economy.

Romanoff (1974) illustrated that the economic base model is only a

very special case of the input-output model. Billings (1969) showed

the mathematical identity of aggregated export base multipliers and

aggregated input-output multipliers. He pointed Out that when the two

methods are constructed with corresponding definitions and data then

aggregate multipliers determined by the methods are identical.

Input-output analysis and economic base analysis possess a common

defect; both present and snapshot of the economy at a given point in

time. Although input-output analysis is useful in providing a detailed

description of the economy, there is no guarantee that it does not

embody some perturbation which will not persist into the future. Liew

(1977) indicated that the conventional regional multiplier derived

from a static input-output model fails to provide time path of the

impact over period. Therefore, he empirically employed dynamic multi-

pliers for the Oklahoma economy. Johnson (1979) concluded that the

static input-output model cannot project the time path of local economic

adjustment to changes in external conditions or internal structure and

technology. He also found that the Leontief-type dynamic input-output

model is impractical and incorporates behaviorally inconsistent assump-

tions. Therefore, he developed a modified Leontief dynamic model and

applied it to a rural economy in Grant County, Oregon. Results suggest

that the modified dynamic approach is superior to both the static and

8

the Leontief dynamic formulations.

8

For a detailed literature review of the dynamic input-output
model, see Johnson (1980, pp. 12-25).
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In summary, if one is interested in more detailed information about

a local economy, especially those conducting impact studies, then input-

output models are a good tool to employ. But an extensive survey to

compile the data and stringent assumptions about the nature of produc-

tion relations are necessary if these models are to be correctly employed.

Recional Econometric Model

Econometric models are the third popular method to calculate em-

ployment multipliers. In contrast to economic base and input-output

models, econometric models are not necessarily based upon a specific

theory of urban strucutre and are, therefore, a more flexible re-

search tool. Conceptual econometric models are constrained only by the

broad bounds of economic theory itself (whereas applied models are con-

strained by data availability). With respect to costs, they do not

require primary data collection as do input-output models. They are

comparable in cost to economic base models, but superior since they

yield far more information about the structure of a region's economy.

Thus a multisector econometric approach to multiplier estimation has

been generally adopted by some analysts to bridge the gap between the

aggregate multiplier of the economic base type and the more disaggre-

9

gate multiplier of the input-output type.

In general, there are three classes of regional econometric models

which can be used to estimate employment multipliers: the simple

static model, the simple dynamic model, and the simultaneous equations

9

For instance, Connaughton and McKillop (1979), Glickman (1977),
Hall and Licari (1974), and Conopask (1978) have employed multi-
sector econometric approach to estimate multipliers.
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system model. The simple static model is a regression equation which

describes the relationship between total employment and basic sectors'

employment. The simple dynamic model is a regression equation in which

lagged endogenous and/or exogenous variables are included in the model.

The simultaneous equations system model is a set of regression equations.

Each equation has one or more dependent variables which also occur in

the other equation.

The general form of the simple static econometric model is

(7) f(Xi,. .., X ,p )
nt t

where: Y is the endogenous variable in period t

X is the nth exogenous variable in period t, and

is the error term in period t.

Weiss and Gooding's modified economic base model for estimating

differential employment multipliers is a special case of the simple

static econometric model.

The general form of the simple dynamic econometric model is:

(8) = f(Y i,...,Y ,Xlt,. .'Xi- '

1 n

where: Y' X and are defined as in equation (7),

is the endogenous variable in period t-s,

X is the nth exogenous variable in period t-k
nt-k n

n

In order to explain clearly the simultaneous equations system

model, the structural form of the model is expressed in matrix nota-

tion as



25

(9) F + i+ x 2

lxg gxg lxg gxg lxk kxg lxg

where: is a vector of g current endogenous variables of the model,

is a vector of the same g endogenous variables in the
previous period,

is a vector of k exogenous variables,

is a vector of g stochastic disturbance term.

F, B1, and B2 are unknown parameter matrices of order
gxg, gxg, and kxg, respecitvely.

Assuming F is non-singular, the reduced form can he ritten:

(10) Y Y ll +X11 +p*t t-Ji t2 t

where the coefficient matrices and reduced form stochastic disturbance

terms are given as

111
-lF1, 11 = -2F1, p

From this dynamic simultaneous equation model, impact and total

10
multipliers can be calculated in a generalized manner. For instance,

if form (10) is a linear model, and if we take first differences,

AY AX.fll+XtII2+ Ap*

then the elements of 2 are known as "impact multipliers" (Goldberger,

1959). Coldberger has also shown that the multiplier effects continue

to build as time progresses until we reach

10

For more details about impact and total multipliers see Stewart
and Venieris (1978) and Glickman (1977, p. 71).
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Y = ll1llX
t .

j =0

Theil and Boot (1962) expanded this treatment to develop a "total

multiplier", i.e.,

(11.1) = (I ni) n

j=0

where I is the identity matrix.

If form (10) is a non-linear model, one must use other methods to

calculate multipliers (Glickman, 1977). Glickman (1977) suggests employ-

ing the Gauss-Seidel method which gives the forecasts from the present

to some period S under the assumption

to move along some 'reasonable' path.

where the "C" denotes a control

solution' in which one or more of the

that the exogenous variables are

C C C
Thus, we compute

T' T+l' T+2,...,

Led forecast. Then a 'perturbed

exogenous variables is shocked

by the amount , to obtain '4, 4+' 4+2'" where "P" denotes

'perturbed'. A set of dynamic multipliers can, then be calculated as

(11.2) (Y5

In Chapter V of this thesis, equation (11.1) is employed to estimate

the dynamic employment multipliers for econometric models.

Several regional econometric models have been constructed for

states or combinations of states in the United States and other countries

for forecasting purposes. For example, Los Angeles (Hall and Licari,

1974), Philadelphia (Glickman, 1977), Northern California (Connaughton
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and Mckillop, 1979), Northern Great Plains (Conopask, 1978), and Southern

California (Moody and Puffer, 1969). Most of them belong to simultaneous

equations system models. In this study, the simple static and dynamic

econometric models are applied to a variation of the economic-base model

for calculating the dynamic employment multiplier. In turn, these

dynamic employment multipliers are compared with those obtained from

a transfer function model.

Problems with Regional Econometric Models

Depiste the advantages which regional econometric models may

possess over alternative techniques for quantitative regional analysis,

there are some shortcomings inherent in the construction of regional

econometric models. We can summarize these disadvantages under two

headings. The first is the general problems associated with econometric

models and the second is the problems associated with applying econo-

metric models to regions.

Within the general problems associated with econometric models,

the first problem is misspecification. Often important variables are

omitted from equation specifications when they should be included,

resulting in biased parameter estimates. The use of time series

variables that are individually serially correlated over time may also

result in multicollinearity. When multicollinearity is present, the

independent variables are intercorrelated, and we are unable to deter-

mine the independent effect of these variables on the dependent variable.

The result of omitting a collinear variable is thus a biased regression

coefficient and a specification error due to the omission.

Autocorrelation is also a serious problem which may arise from



omitting a time series variable. Moreover, significant positive auto-

correlation is very likely to arise in time series models. It results

in downward biases in the standard deviations of regression coefficients.

This may lead the model builder to wrongly claim that unimportant variables

have regression coefficients which are significantly different than zero.

Another problem in regression models concerns the possibility of

changing structures. Additional statistical problems also happen in

the econometric models. These include the problem of correctly speci-

fying lagged relationships, heteroscedasticity, and the problems in

classifying variables as exogenous and endogenous. By using the tech-

niques treated in standard econometrics texts, it is relatively easy to

treat one of the above problems at a time. However, it is indeed dif-

ficult to treat more than one problem simultaneously.

Within problems of regional econometric models, the first concerns

data. While lack of data is also a problem on the national level, this

problem is especially acute for regions. Many of the data series which

are available on a national level are non-existent on a regional

level. An even bigger problem results when analysts are trying to use

simultaneous equation estimating techniques. These techniques require

even a greater number of degrees of freedom, since the reduced form

must be estimated. This is a significant problem in regional models

since the number of exogenous variables is relatively large in com-

parison to both the sample size and the number of endogenous variables.

Boundaries delineating regions are also a special problem in

regional models. Often important regions of economic activities cross

state lines, or important regions are only comprised of portions of

states.
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Although there are many theoretical and statistical problems

inherent in the construction of regional econometric models, this

does not mean regional econometric models are useless. After we cor-

rect the weaknesses of regional econometric models, these models are

still useful in providing short-term forecasts, in assessing the probable

effects of policy decisions, and in understanding the dynamic structure

of a regional economy.

Theoretical Basis for Using the Transfer Function Model
to Examine Employment Impacts

The very nature of the employment impacts are characterized by

the persistence of dynamic relationships over long periods of time. A

variety of models can be used to approximate the lagged nature of these

persisntent responses. In attempting to identify a parsimonious model

of a given stochastic process, one particularly useful set of processes

is the family of transfer function models. The transfer function model

has been shown to be useful in economic analysis as it serves to measure

the impact from the hypothesized input variable upon the output variable

at different time periods.1' A detailed description of transfer func-

tion models is presented in the next chapter.

In the modeling of employment impact systems, the problems often

arise in analyzing the interrelationship among different employment

time series. For example, when we try to identify the relationship

between and X, a regression equation such as

''For instance, Cramer and Miller (1976), Stokes, Jones and Neu-
burger (1976), Cook (1979), and Bennett (1974) have shown that the
transfer function model is a useful tool for economic analysis
and short-term forecasting.



30

Yt = F(X, x1, ..., Xt_k)

is usually calculated. This approach is often hampered by severe multi-

collinearity except in the unlikely case where the X variables happen

to be prewhitened at the outset (Stokes and Neuburger, 1979). And the

diagnostic checkings of the equation will yeild very low Durbin-Watson

test statistics, a sign of serial correlation of the residuals and a

high degree of multicollinearity between various lags of the X variables.

The transfer function modeling techniques avoid the difficulties

of multicollinearity that exist with the regression approach and will

result in univariate models of each time series and multivariate models

relating the different employment time series, if they are indeed related.

The final fitted models will provide an accurate description of each

variable and information about the lag structure of the observed rela-

tionships.

Recently,, Bennett (1974) has applied time series modeling (ARIMA

and transfer function) in urban and regional planning. He concluded:

"Methodologically, the importance of the methods described

here is that they provide the possibility of a statistical

approach to urban and regional model building. This ap-

proach is inferential and leads naturally to the statistical

estimation of the parameters of a model which is optimal

in the sense of parsimony. Moreover, it also places the

urban and regional modeling problem within reach of statis-

tical forecasting and optimal control techniques of which

the Box and Jenkins (1970) method is but one example. . . ."

(3, p. 172).

Cook (1979) also applied the transfer function to the economic-

base model to model employment for Benton and Franklin Counties in

Washington. He concluded that the transfer function is a practical

tool in analysis of time series data and is potentially suitable for



31

other applications in regional and urban modeling. Therefore, it is

important for regional scientists to become familiar with this statisti-

cal method and its fitness for measurement of economic impacts and

forecasting (Cook, 1979).

Therefore, the theoretical basis for using transfer function

models to investigate the long-run employment impacts among government

employment, lumber and wood products manufacturing employment, agri-

culture employment, and total employment is apparent.
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CHAPTER III

OVERVIEW OF MtJLTIVARIATE TIME SERIES ANALYSIS

In applied economic analysis, one is frequently concerned with

quantifying the association of one variable with several others. This

situation is often described in terms of a time series system which

relates several input variables to an output variable. A class of

models which hai been commonly employed in describing such variable

relationships is the multiple regression model. This basic model,

however, generally will not be adequate for systems which are dynamic

in the sense that previous andpresent values of the input variables

are associated with the present value of the output variable.

This chapter is primarily concerned with multi-input dynamic models

(transfer function models) which are formulated via an iterative procedure

of identification, estimation, and diagnostic checking. A method of

identifying a multiple time series model has been thoroughly elaborated

by Box and Jenkins (1970) and Haugh (1972). Nevertheless this procedure

has not been widely applied due to the absence of explanations under-

standable to the non-statistician and reasonably priced computer algo-

rithms.

The intent of this chapter is to 1) examine the basic differences

among ARIMA, transfer function, and econometric models, 2) illustrate

the transfer function modeling procedure proposed by Haugh (1972) and

Haugh and Box (1977), and 3) briefly describe other modeling and

estimation approaches.



33

Comparison with Traditional Econometric Analysis

There are currently two distinct approaches available for the analy-

sis of economic data measured through time: the time series approach and

the classifical econometric model building method. The time series

approach can be classified into univariate (ARIMA)
12

and multivariate

(transfer function) time series analysis. Spivey and Wecker (1971)

have classified forecasting models into three groups: intrinsic, ex-

trinsic, and hybrid. According to their classification, the ARIMA

model belongs to the intrinsic models which utilize only the past history

of a variable in the estimation of a forecasting model.13 The classi-

cal econometric model is an extrinsic model which attempts to quantify

relationships that exist between one or more variables and the variable

to be forecast. The transfer function is a kind of hybrid model which

combines the desirable functional properties of both model categories.

Before discussing the details of transfer function models, however,

it will be helpful to examine the basic difference among ARIMA, transfer

function, and classical econometric models and the reasons why one may

select transfer function models as an alternative.

'2Tle Box-Jenkins autoregressive-integrated-moving-average (ARIMA)
model is based on the present and past observations. This model
is discussed in more detail in a later chapter.

13Newbold and Granger (1977) have suggested that the ARIMA methodology
is, on the average, superior to other intrinsic models.
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Comparing ARIMA with Econometric Models

ARIMA models are flexible and usually contain relatively few para-

meters compared with econometric models, thus making them inexpensive

and simpler to construct (Oliveira, et. al., 1977). Econometric

models, of either the single equation or multi-equation variety, rely

heavily on economic theory to specify causal relationships. Moreover,

econometric models require a historical review of both endogenous and

exogenous variables, whereas only a past history of the variable being

forecast is necessary in an ARIMA model.

In contrast to the ARIMA, forecasting with econometric models re-

quires that assumptions be made about the values of the exogenous variables

in the forecast period. For short lead times, this may not be a serious

shortcoming but as lead time increases, the uncertainty introduced into

the forecasting exercise will grow. However, since the ARIMA model is

not based on economic theory, the poor forecasts derived from it may be

difficult or impossible to explain. The relative predictive performance

of ARIMA and econometric models recently has been evaluated by re-

searchers. For instance, Nelson (1973) compared the predictive perfor-

mance of an ARIMA model with a large-scale econometric (FRB-NIT-Pen)

model of the U.S. economy. He found that the simple ARIMA models were

relatively more robust with respect to postsample prediction than the

complex FMP model. Narasimham, Castellino, and Singpurwalla (1974),

and Schmidt (1979) also found the ARIMA model performed better than

the econometric model during the evaluation period used in their analy-

sis. Moreover, Naylor, Seaks, and Wichern (1972) indicated that the

Box-Jenkins methods seem to offer an attractive alternative to conven-

tional econometric methods. There is some risk, however, with Box-Jenkins
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methods. Given that they are void of economic theory, they cannot be

used to test hypothesis and to establish confidence intervals for com-

plex economic phenomena.

Comparing ARIMA, Transfer Function, and Econometric Models

The transfer function model has characteristics of both the ARIMA

and econometric models. For instance, when studying a variable Y and

a leading variable X, we may fit ARIMA models to both variables and corn-

bine the models by a transfer function to yield what Box and Jenkins

call a dynamic model. Therefore, the transfer function model may not

be completely void of econornictheory per Naylor's critique.

The transfer function and econometric models are based on quite dif-

ferent philosophies about what is important and how data should be ap-

proached. Granger and Newbold (1977) identified two basic differences

between these two approaches. First, the transfer function model gives

more attention to the lag structure relationships among variables than

does the econometric model (unless the econometric models incorporate a

distributed lag approach). Second, residual terms are usually treated

by econometricians as being a mere nuisance of little real importance.

The transfer function approach, rather than just looking at the first

or second serial correlation coefficients as the econometric approach

does, employs the whole correlogram of the residuals to identify the

proper model. Although the econometric approach pays less attention to

lags or the modeling of residuals than does the transfer function model,

it emphasizes the simultaneity of the relationships among economic

variables.
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In summary, if economic forecasting models are to be built, it is

necessary and desirable that they should incorporate as much economic

theory as possible. However, it is equally important that due con-

sideration be paid to problems of time series behavior, if one enter-

tains the hope of producing reasonably accurate forecasts. The

transfer function model does not only consider the problems of time

series behavior but also incorporates the basic economic theory.14

Therefore, if one is interested in examining the basic behavior and

interaction of economic variables over time then transfer function

models may be attractive alternatives or complements to econometric

methods.

The Transfer Function Model

The transfer function model, commonly referred to as a rational

distributed lag model, was introduced by Box and Jenkins (1966) into

the statistical literature over a decade ago. Until recently, the

technique has been predominantly used in engineering and the physical

sciences; however, it has been successfully applied to economic analysis

and control problems by Box and Jenkins (1972), Haugh and Box (1977),

Granger and Newbold (1977), and Pierce (1977). Perhaps its success

in economic analysis is because it attempts to measure the impact

from the hypothesized input variable upon the output variable at dif-

ferent time periods.

The general form of the transfer function model is:

'4However, there is little likelihood of extending the transfer
function approach to a large number of series simultaneously due
to the complexity of the method.
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M w.(B)
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t = 1, 2, ..., N
(12) * p +

1
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t &(B) 1it-b B) t ' i = 1, 2, ..., N

*
where: (1) Y and X. are the output series and the ith input

series, espectively, which are assumed to have been
appropriately differenced to obtain stationarity.

(2) p is the output mean and b is the length of pure time
delay.

(3) cS.(B), 0(B), and q(B) are polynomial lag operators
in B the backward shift operator (i.e., B1(X xtk),

r.

= 1 -(
1

p
(B) = 1 -(

j=l

q

0(B) = 1 -( O.B3)

j=l

and the roots of these polynomials lie outside the
unit circle.

S.

(4) w(B)

(5) The at's are independent, normally distributed with

constant variance o2, and independent of the X's.

To fit such a model to a set of data, Box and Jenkins (1976)

recommend the four-stage procedure of (1) prewhitening process, (2)

model identification, (3) paramter estimation, and (4) diagnostic check-.

ing.15 After these four steps have been completed, the model is

15
These steps are discussed in more detail below, but in terms of
the Hangh-Box approach.



assumed to provide an adequate "fit" of the data. At this point, we can

consider the economic information conveyed by the coefficients of this

transfer function model and employ the model for forecasting purposes.

A modified method of identifying a multivariate time series has

been thoroughlyelaborated by Haugh (1972) and Haugh and Box (1977).

They present a procedure for the prewhitening stage that differs from

the Box and Jenkins procedure in that the prewhitened output series

is determined by (B)Y Oy(B) Thus, rather than applying the

ARIMA model developed for X to Y, one would develop a separate pre-

whitening model for Y. The cross-correlation function of the pre-

whitened series is then the basis for identifying the basic interrela-

tionships present.

Haugh's work considers the single input model as a special case in

a class of general multiple time series models, models for two or

more time series which allow mutual input-output relationships between

any pair of time series. A procedure was sought which would be appli-

cable in all cases considered. The difference between Haugh's pro-

cedure and the Box-Jenkins' procedure seems to arise from this difference

in general perspective. One could not speak of getting a prewhitening

model for one of several input series and applying it to all other series

in the analysis. Therefore, in this study, Haugh's model building pro-

cedures were followed in order to obtain the transfer function model.

The Transfer Function Model Building Process

In general, we can classify the Haugh and Box's modeling procedure

into five phases: (1) prewhitening phase: Box and Jenkins' iterative

procedures are employed to model the univariate series and obtain their
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residuals; (2) identification phase: the sample cross-correlation functions

between residual series are studied in an attempt to identify the relation-

ships between the series, and then postulate a general class of bivariate

models; (3) estimation phase: initial and final estimate parameters of

tentative model are obtained via a nonlinear least squares regression al-

gorithm such as described by Box and Jenkins (1976) ; (4) diagnostic check

phase: the fitted bivariate model is then checked for adequacy of fit

and for significance of the parameter estimate. If these checks show

inadequacies in the model, a new model is entertained, estimated, and

checked. Once a final bivariate model is obtained, the relationship

between the estimated residual from this model and the innovation series

for second input will be checked. If these results suggest that the

two series are not independent, then phases (2) through (4) are repeated

to expand the bivariate model; (5) forecasting phase: after the above

steps of the Haugh-Box procedure have been completed, the model is

assumed to provide an adequate "fit" of the data. At this point, we

can employ this model for forecasting purposes.

The steps of the approach are presented in Figure 1. Detailed de-

scriptions of each phase are given below.

Phase I -Prewhitening

There are five stages included in Phase I. The first stage is to

postulate univariate ARINA models for each individual series; i.e., Y,

i = 1, 2, ", H. For instance, the basic form of the Box-Jenkins

univariate model for is:
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(13) 4) (B) (Y -p) = 0 (B)p
p t q yt

p . q

where 4) (B) = 1 ( E 4).B ), 0 (B) = 1 ( O.B ), p is the
q '

mean of and is random disturbance assumed to be independently

distributed as N(o, c2). (See Appendix I for a more detailed discussion

of ARIMA models).

If is a seasonal series, then the univatiate model for is

(14) 4)(B)K(BS)(Yt_p) = oq(B)GL(BS)pyt

where 4)(B) 0q(B) ii, and P.are the same as in equation (13), and

K
s

L
s

K(B )=l-(E .B i ), OL(B ) = 1 ( O.B i )

j=l j=1

Many economic time series actually exhibit nonstationary behavior

and in particular do not vary about a fixed mean. This kind of non-

stationarity may be characterized as being homogeneous in the sense that

although the series moves freely without affinity for a particular lo-

cation, its behavior at different periods in time is essentially the

same. Fortunately, homogeneous nonstationarity is displayed by series

whose successive changes or differences are stationary. Thus, we can

reduce a homogeneous nonstationary series to a stationary series by em-

ploying a sufficient degree of differencing, i.e., (lB)dY, where

d denotes the degree of differencing.

Seasonality is also one of the most pervasive phenomena of eco-

nomic life. Seasonal series are characterized by a display of strong

serial correlation at the seasonal lag, that is, the lag corresponding
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to the number of observations per seasonal period, usually at multiples

of that lag.

If in equation (14) is a seasonal homogeneous nonstationary

series, then in order to achieve stationarity, Y should be replaced by

where = (l_B)d(l_Bs)DYt vdvD, substituting Y into equation

(14), we can obtain the general multiplicative seasonal model

(15) = OqBGLBPyt

The resulting multiplicative process will be said to be of order

(p,d,q) x (K,D,L). There are two other parameters included in the em-

pirical ARIMA models presented below which are not included in the general

form (15). When the degree of differencing d and D are of order zero,

is replaced by where ji is the mean of Y. A deterministic

trend parameter U may also be included to indicate the possibility of

a trend pattern within the data in the presence of nonstationary noise.

Therefore, the major task at the second stage is to choose approp-

riate level of differencing, i.e., the order of d and D. The estimated

autocorrelation of adequate various differences are needed in this stage

to decide the order of difference.

The third stage of the prewhitening phase is to identify the order

of p, q, K, and L and make initial estimates for its parameters. The

choice of he number and type of parameters is based on the estimated auto-

correlation function (ACF) and partial autocorrelation function (PACF),

i.e., these two functions are also used to make a preliminary identifica-

tion of the model (see Appendix II). Characteristic behavior of these



tools for three classes of processes is summarized in Table 1

(Nelson, 1973).
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Having identified one or more tentative models for a time series, we

would like to obtain the best or most efficient estimates of the parameters.

This is the goal of Stage 4.

Maximum-likelihood estimates which are closely approximated by the least

squares estimates are utilized here to estimate final parameters.

After the model has been identified and the parameters estimated,

diagnostic checks are then applied to the fitted model. One useful

method of checking a model is to overfit, that is, to estimate the

parameters in a model somewhat more general than that which we believe

to be true. This method assumes that we can guess the direction in which

the model is likely to be inadequate. These checks employ the autocor-

relation function of the residuals. Suppose that we have th first k

autocorrelations 17 r() (k = 1, 2, . . .K) from one ARI1 (p,d,q)

model, then it is possible to show that, if the fitted model is approp-

nate,

K
(16) Q1 = n h rk

k= 1

is approximately distributed as x2(k-p-q). If the statistic is not sig-

nificant at some level a, the residual series is assumed to be random

and the model accepted. If the residual series is not random, a new

16

Box and Jenkins (1976, pp. 176-177) present a more detailed dc-
script ion.

'71t is assumed here that k is selected to be sufficiently large
so that weightsi in the model, written in the form Y =

J

= p(B)',i will be negligibly small after j=k.
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CHARACTERISTIC BEHAVIOR OF AUTOCORRELATIONS AND PARTIAL AUTO-
CORRELATIONS FOR THREE CLASSES OF PROCESSES

Class of Processes Autocorrelations Partial
auto correlations

Moving Average (MA(q))

Autoregressive (AR(p))

Mixed autoregressive
Moving Average
(ARNA(p,q))

Spikes at lags 1
through q, then cut
off

Tail off according to

p.=p. +
:1

lj-1

+ q)p. 1/
p :1-P

irregular pattern at
lags 1 through q,
then tail off
according to

Pi = lPj_l +

+ l) P.
p :1-P

Tail off

Spikes at lags 1
through p. then
cut off.

Tail off

These are usually called the Yule-Walker equations (Box and
Jenkins, 1976, p. 55).

Source: Nelson, Charles R: tiApplied Time Series Analysis for Mana-
gerial Forecasting," Holden-Day, Inc., San Francisco, 1973,

p. 89.
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identification is made and the process of estimation and checking is

repeated.

The final step in the prewhitening phase is to keep residuals of

fitted model (i.e., ,p ) for example, from equation (15)
x yt

pyt

(B)k(BS)VdVsDYt

Uq(B)O(BS)

for checking the relationship between the individual series.

Phase II Identification

The identification phase is introduced for relating two (or more)

time series through a dynamic regression (distributed lag) model. This

phase contains four steps. The first step is to check the estimated uni-

variate residuals cross correlation function r (k), and then to identify

the relationship between X and Y. Depending on the type of pattern in

r (k), Pierce (1977) and Pierce and Haugh (1977) have shown some
pxpy
possible causality patterns and associated patterns in r (k), which

px1Jy

are reproduced in Table 2 (Pierce, 1977).

After identifying the rnlationsh,p between X and Y, we can then

build the general dynamic regression model between X and Y. For instance,

if relationship 6 exists, then we can build a dynamic regression model

for Y on X and thereby improve the forecasting ability of Y.
IE

Haugh (1972) has suggested two alternative chi-square tests

to check the independence between the innovation series, i.e.,

18
Haugh suggests the use of S when M is large relative to N.
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TABLE 2. CONDITIONS ON CROSS CORRELATIONS OF TIlE PREWHITENED SERIES FOR
CAUSALITY PATTERNS

Relationship Restrictions on r.
p

1. X causes Y

2. Y causes X

3. Instantaneous causality

4. Feedback

5. Y does not cause X

6. Unidirectional causality
from X to Y

7. X and Y are related in-
stantaneously but in no
other way

8. X and Y are independent

(k) 0 for some k>O
uxpy

(k) 0 for some k<0
p pxy

(0)O
p

ii

(k) 0 for some k>O and for
y
some k<O

r (k) = 0 for all k<O
ppxy

r (k) 0 for some k>O and
p iixy

r (k) = 0 for all k<0ppxy

r (k) = 0 for all k 0 and
P

(0)OPpxy

(k) =0 for ailkppxy

Source: Pierce, David A. !!Relationships and the lack thereof -
Between Economic Time Series, with Special Reference to
Money and Interest Rates.!! Journal of the American Statistical
Association. Vol. 72, No. 357 (March, 1977): 15.
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M
(17) S1 NkJ r (k)

xy
and M

*
(18) S = N2 (N-k!)1 r (k)

M k=-M ppxy

where r (k) is the estimated cross-correlation between innovation
ppxy

series p and p at lag k, M is chosen large enough to include expected

nonnegligibly nonzero coefficients, and N is the number of observations

in each residual series. Both S1 and SM have asymptotic distribution

under the hypothesis of the series being independent. If the value

of SM (or SM) exceeds the selected table value, one can reject the hypo-

thesis of independence and suspect that X and Y are related.

At the second stage of identification, assuming the chi-square

test suggests that a relationship exists between X and Y, the pattern

of the cross-correlation function is then used to identify the dynamic

shock model for p and p . That is,
x y

w(B) tY(B)
a B)p + q)(B)a(19) '

= 6(B) 'xt + q(B) t xt tyt

where w(B), 6(B), 3(B), q(B) are all polynomial lag operators.

Initial parameter estimates for the prameters appearing in the identi-

fied forms of \Y(B) may be obtained in Box and Jenkins' procedure

(1976, pp. 346-351).

19
Box and Jenkins use one prewhitening filter, and get dynamic re-
gression model

= x + a = (B) x +



The cross correlation function r
ç

(k) gives a direct indication
x y 0(B)

of v(B); but we may also easily identify the form of iLr(B)
B)

by making use of the fact that p is white noise. Haugh (1972, pp.

108-110) indicated that (B) = Y(B) and that 0(B) is at most of order

or S, where '' and S' are respectively the orders of (B) and w(B).

The final stage of the identification phase is to substitute the

identified univariate models into the identified dynamic shock model

20
giving a preliminary transfer function model, i.e.

*
v (B)(B)0 (B)

* i,V(B)0(B)
(20.a.)

o (B) (B) t +
(B) ax y

y

Phase III - Estimation

Final parameter estimates for model (20) are then obtained via a

nonlinear least squares regression algorithm such as described by Box

and Jenkins (1976, pp. 388-391). This stage is similar to the estimation

procedure for the development of an ARIMA model for a single time series.

Phase IV - Diagnostic Check

The fitted bivariate model is then checked for adequacy of fit and

for significance of the parameter estimates. Box and Jenkins (1976) sug-

gest employing the residual autocorrelations and cross correlations to

check the accuracy of the transfer function model and the noise model.

Suppose after suitable differencing, if necessary, that the model

20Suppose the identi

y(B)Y = Oy(B)Pyt

identified dynamic

Fled univariate models for x and Y are

and (B)x Ox(B)llxt respectively. The

shock model is p 'f (B)p + (B)a
yt xt t
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can be written

* w(B) * 0(B) *
x + a = v(B)x + (B)a(20.b)
t-b (B) t t t

*
(where (B)x 0 (B)p ).

x t x t

Now, suppose that we select an incorrect model leading to residuals

a , where
ot

then

* *
y = (B)x + j) (B)a
t 0 t 0 ot

*
(21) a (B){v(B) - v (B)} x +

ot 0 0 t 0

whence if the transfer function model is correct, but the noise model

is incorrect, (i.e., (B) = '(B) but i(B) B)), then (21) becomes

-1
a = ip (B)p(B)a
ot 0 L

Therefore, the a process would be autocorrelated, and the form

of the autocorrelation function could indicate the appropriate modifica-

tion of the noise structure.

Under this situation, we can apply the autocorrelation check

k
2

(22) Q2 =

where Q2 is approximately distributed as x2 with k-p-q degrees of freedom.21

2

M = N-u-j;, u is the larger of r and S+b. r(K) is the estimated

residual autocorrelations for K = 1, 2, ... k, and k is chosen

21
Note that the degrees of freedom in x2 depends on the number of
parameters in the noise model but not on the number of parameters
in the transfer function model.
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sufficiently large so that the weights i. in (20.6) can be
J

expected to be negligible for j>K. If the value of Q2 exceeds the

selected table value, this suggests that the noise model is made-

quate.

If the transfer function model were incorrect, from (21) it is

apparent that, not only would the a's be cross correlated with the

xe's (and the which generate the x's), but also the ar's would

be autocorrelated. This would be true even if the noise model were

correct. Under this situation, a cross correlation analysis could

indicate the modifications needed in the transfer function model.

Therefore, the cross correlation checks can indicate inadequacy

of the transfer function model, i.e.,

k
(23) Q = r(K)

pa

where Q is approximately distributed as x2 with k + 1

(r+S+l) degrees of freedom, (r+S+l) is

fitted in the transfer function model.

sidual cross correlation for K = 0, 1,

Q exceeds the selected table value, t

transfer function model.

the number of parameters

r(K) is the estimated re-
pa

2, k. If the value of

iis suggests inadequacy of the

If the residual autocorrelation and cross correlation checks

indicate a good data fit, the next step will be to consider whether

it is necessary to expand the one input transfer function to a two

input transfer function model. In order to make this decision, we
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must know whether x2 will be of some additional value in describing

(conditional on x1) by examining the cross correlations between

and the residuals at of equation (20.b). If the cross correlations

suggest that the two series are not independent, then the inclusion

of x in the transfer function of Y and x will be considered.
2t t it

Therefore, Phases II through IV are repeated to expand the transfer

function model into two inputs series. If more than two inputs series

are proposed, the same steps are repeated for each input series.

Phase V. Application of Transfer Function Model Forecastin

Forecasting with transfer function models often involves applying

the final parameter values to periods for which data are not available.

Depending upon the time delay, b, forecasting in such instances is

based on past values of X and Y. It is at this point that the true

benefits of a transfer function model can be realized. If is a good

leading indicator of then Y can be accurately forecasted when

cyclical changes occur and even X values can be forecasted using

the univariate model generating X.

Other Modeling and Estimation Approaches

In addition to the controversy involving the choice of a prewhitening

procedures for '' there are also disagreements about alternative procedures

for testing the relationship between economic variables . Feige and Pearce

(1979) have examined the conceptual relationship between three popular
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22
empirical procedures used for tests of the causal relationships

between money and income. They concluded that an essentially arbi-

trary choice can significantly affect the nature of the economic

conclusions derived from the test procedures. In this study, the

Haugh-Pierce approach was used to check the relationships between

employment variables, and it was also found that the empirical re-

suits were not consistent with what one would expect based upon eco-

nomic theory.

The approach of Priestley is also noted by Haugh. It is

philosophically similar to Haugh's approach, but it employs a less

general form of the transfer function model and involves an alter-

native to the cross-correlation function of the prewhitened series,

which Priestley labels "covariance contraction."

Recently, attention has turned to the problem of modeling

a pair of series related by a two-way causality or feedback mechanism.

If this situation exists, then more complicated methods need to be

used to model the relationship between the innovations and conse-

quently the original series. These methods and some possible uses

for them are described by Granger and Newbold (1977).

22

(1) The Haugh-Pierce approach.
(2) The Direct Granger Approach.
(3) The Sims Approach.
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CHAPTER IV

EMPIRICAL ANALYSIS

Chapter III discussed the conceptual theory and the modeling pro-

cedures of the univariate ARIMA model and the transfer function models.

In this chapter, we apply these modeling procedures to develop the uni-

variate ARIMA and transfer function models for the Grant County employment

data. Simple static and dynamic econometric models are also specified,

and their estimated parameters are presented. Finally the forecasting

accuracies of the ARIMA, transfer function and econometric models are

compared. This chapter is an intermediate step between the theoretical

framework of the models and their application to the employment impact

analysis.

Data Requirements, Sources, and Limitations

In order to conduct the economic base analysis and, consequently,

the transfer function analysis and econometric analysis, the basic in-

dustries in Grant County should be identified. In this study, the loca-

tion quotient technique (LQ) was used to select basic industries, i.e.,

x
t

LQ=
x*
t

Et*

where X employment in industry X in the Grant County in year t,

X = employment in industry K in the United States (or Oregon)

in year t,

Et = total employment in the Grant County in year t,
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E = total employment in the United States (or Oregon) in

year t.

If LQ > 1, then industry X in Grant County is considered a basic

or exporting oriented.

From Table 3 we can see that farm industry, agricultural service,

forestry, fish and other industries, mining industry, manufacturing

industry, and government and government enterprises are identified

as basic industries in Grant County for 1977 (similar results were

obtained for other years). Within these basic industries, agriculture

service, forestry, fish and other industries, and mining industry

include only 46 employees. Therefore, it did not seem worthwhile to

include these industries as basic industries for the quantitative analysis

in this study. From Oregon Employment Division statistics, we find that

most of the manufacturing industry in Grant County produces durable

goods (i.e., lumber and wood products). Therefore, lumber and wood

products manufacturing industry is selected to represent the manufac-

turing industry as a basic industry. There are three categories

included in government and government enterprises, i.e., federal

(civilian), federal (military) and state and local. From the location

quotient for federal (military) employment, we find it is not a

basic industry in Grant County. However, only total government

employment, including military, is identified as a basic industry.

The location quotient for total government employment also justifies

this assumption.



TABLE 3: Employment and Location Quotients of Grant County by Type
and Broad Industrial sources, 1977

Item Grant Co1y U.S. (LQ)-" State

Employment by place of work
Total Employment 3/ 3,418

Number of Proprietors 725

Farm Proprietors 350

Nonfarm Proprietors 375

Total Wage and Salary Employment 2,693
Farm 206 5.0956 2.5512

Nonfarm 2,487 0.9376 0.9521

Private
4/

1,515 0.7110 0.7333

Ag. Serv., For., Fish, and Other- 21 1.7180 1.2105

Mining 25 1.0003 5.1515

Construction 30 0.2551 0.2592

Manufacturing 734 1.2288 1.3139

Non-Durable Goods (D) (0) (0)

Durable Goods (0) (0) (D)

Transportation and Public Utilities 73 0.5115 0.5031

Wholesale Trade 21 0.1461 0.1337

Retail Trade 328 0.7797 0.7223

Finance, Insurance, and Real Estate 48 0.3502 0.3583

Services 235 0.4550 0.4905

Government and Government Enterprises 972 1.8010 1.7794

Federal, cfvilin 271 3.1200 3.7631

Federal, military 37 0.5126 0.9497

State and local 664 1.7444 1.5254

Source: Regional Economic information System. Bureau of Economic Analysis. U.S. Department of

Commerce

1/ The reference area for these location quotients is United States.

2/ The reference area for these location quotients is Oregon State

3/ Consists of wage and salary jobs plus number of proprietors.

4/ Includes number of jobs held by U.S. residents working for international organizations. Primary

source for private non-farm wage and salary employment: Oregon Employment Division.

(D) Not shown to avoid disclosure of confidential Information. Data are included In totals.

U-'

U-'



In summary, government employment, lumber and wood products

manufacturing employment, and agriculture employment are selected as

basic industries in Grant County for the economic base analysis to

follow.
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All of these three basic industries employment and total employ-

ment data were supplied by the Department of Human Resources of the

State of Oregon. A difference exists between the available industries

employment and total employment series. The total employment series

are adjusted for multiple job-holding and commuting while the industries

employment series are not. Comformable total employment and indus-

tries employment data are not available. The significance of this

difference in Grant County is not assessed in this study. However, the

more significant the difference, the lower thc estimate of the multi-

plier.

The sample period for the monthly employment series was from

January, 1970 to December, 1977, resulting in 96 observations. The

test period was from January, 1978 to December, 1979, resulting in

24 observations which were used to check the forecasting reliability

of the fitted model.

Abbreviation

TAELE 4

Identification of Data Seriesa

C or 4 o C

TEG Total employment in Grant County
GEG Government employment in Grant County
LWP Lumber and Wood products manufacturing

employment in Grant County
AGG Agricultural employment in Grant County

aTIe data series were provided by the Dept. of Human Resources, State of
Oregon.
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Four data series were examined and are shown in Table 4. In

terms of the notation employed in the previous section, TEG Y, GEG =

X1, LWP X2 and ?LG X3. They are plotted in Figures 2 and 3.

All of the plots appear to be.nonstationary and each has a very dis-

tinct, but similar, seasonal pattern. The yearly peak in these four

series occurs mainly in either July or August. The yearly trough of

TEG, GEG, and LWP usually occurs in either February or March. How-

ever, the yearly trough of AGG occurs in December.

The estimated autocorrelation and partial autocorrelation

functions for series TEG, GEG, LWP, and AGG are shown in Appendix III.

Plotting of the correlation fucntions greatly assists in their inter-

pretation. For illustration, the autocorrelations and partial auto-

correlations for series GEG are plotted in Figures 4 and 5. From

these two figures, we find the autocorrelations for GEG are large and

fail.to die out at higher lags while simple differencing reduces the

correlations in general, a very heavy periodic component remains.

This is evidenced particularly by very large correlations at lags 12,

24, and 36. Simple differencing with respect to period twelve results

incorrelations which are first persistently positive and then persis-

tently negative. By contrast, the differencing VV12 matkedly reduces

correlations throughout.

We note that since the autocorrelations cut off, our model

will be of moving-average form. Now, in terms of the multiplicative

moving-average model, the maximum power of B in the model will be
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S=12, and values of Q and q are 1. Our tentative model for the GEG

series is then

(1-B) (1-B12) GEGt O + (l-@1B) (l_G1B'2)Pi

The preliminary estimates of the parameters O and 0 can be

obtained by substituting the sample estimates r1 = -0.29 and r12 =

-0.31 in the expressions

P1= _1_ 'P12

l+O

Thus, we obtain rough estimates O 0.325 and 0j 0.345. and we

also can estimate 1.56 directly from Appendix III.

From the estimated autocorrelation and partial autocorrelation

Functions for TEG, LWP and AGG series, their ARIMA models are also

tentatively identified to be

(1-B) (1-B'2) TECt 2.16 +(l -O.48B) (1 - 0.295B12)

(1-O.84B) (1-B'2) LWPt = 15.47 + (1 0.l48B'2)p2

(1-0.65B) (1-B'2) AGGt

Estimation and Dgnostic Check

These tentative models were estimated by employing a nonlinear

least squares regression algorithm and, then, checked for adequacy of

fit as described by Box and Jenkins (1975) and for significance of the

parameter estimates. Modifications were found necessary to be made

to these models, therefore, they were reestimated. The final ARIMA

models for the various employment series are presented in Table 5 along

with the usual information concerning the "Goodness of fit" of ARIMA

models.



Table 5. Estimated Univariate ARIMA Models

Series Model-'1 X2(D. of F.)" RSE-' cs1

TEG (1-0.968B) (1-B12) Y = (1-0.444B) (1-0.368B12)P 21.96 87.68 85.737

(0.042) (0.116) (0.115) (27)

GEG (1-B) (1-B12) X1 = (1-0.409B 0.195B5) (1_0.549B'2)Pi 21.11 32.6 31.68

(0.101) (0.105) (0.105) (27)

LWP (1-0.871B) (1-B12)X2t (1_0.421B'2)P2t 12.83 40.54 39.86

(0.056) (0.110) (28)

AGG (1-0.805B) (1-B'2)X3 3t
23.91 8.005 7.795

(0.065) (29)

The numbers in parenthesis below the estimated coefficients are estimated standard errors

Chi-square statistic with degrees of freedom given in parenthesis.

c/ Residual Standard Error

standard deviation of the estimated residual series.
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Forecasting Accuracy Check

The final models for each employment series were employed as

forecasting equations, and for each forecast value an upper and lower

95 percent confidence limit was estimated. As an illustration, the

forecast values for a 24-month forecasting period along with the

actual values for the GEG series are shown in Figure 6. The selected

forecast origin is December, 1977. For measuring the forecasting ac-

curacy, six types of goodness-of-fit measures were calculated for each

series at forecast periods of lengths 12 and 24 months. Thesesix

tests are correlation coefficient (R), regression coefficient of

actual on prediction (si), mean error (ME), mean absolute error (MAE),

root mean square error (R1'4SE), and Theil's inequality coefficient (U)

(see Appendix IV).

The forecasting ability of the various employment series models

can be compared from these six types of goodness-of-fit measures pre-

sented in Table 6. In general, a disadvantage of the R is that per-

fect correlation only implies an exact linear relationship between pre-

dicted and actual values. For forecasts to be unbiased, and, therefore,

perfect, regression parameters of 1 and = 0 must also exist. For

this situation, we find AGG and GEG models have higher R and approxi-

mates 1 at the same time. The TEG model has higher R, but is 0.67

and 0.66 for 12-month forecast and 24-month forecast, respectively.

ME, MAE, and RNSE will be highly influenced by the average size of the

variable. For instance, the TEG series model has the highest ME, MAE

and RNSE for 12-month forecasts and 24-month forecasts, partly because

this sector has a higher average size of employment.
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Figure 6 CEC Series: Actual 1978, 1979 Values, and 24-month

Forecast Values for Forecast Origin , December 1977.



a!Table 6. The Forecast Accuracy Test for Four Employment Series.

Series Forecasting Period R 131 ME MAE RMSE U ( I II III )

(months)

TEG 12 0.962 0.67 -22.16 99.18 113.3 0.0176 (0.038 0.604 0.358 )

24 0.957 0.66 -68.95 112.6 135.0 0.0209 (0.261 0.462 0.277 )

GEG 12 0.988 0.93 -15.94 17.55 20.46 0.0102 (0.606 0.056 0.337 )

24 0.961 0.97 -30.55 31.36 38.88 0.019 (0.617 0.92x120.381 )

LWP 12 0.852 0.70 -33.80 68.03 73.39 0.0504 (0.212 0.095 0.693 )

24 0.797 0.59 -39.53 77.73 86.03 0.059 (0.211 0.169 0.619 )

AGG 12 0.998 0.99 1.54 2.65 2.92 0.004 (0.278 0.004 0.718 )

24 0.995 0.99 -1.47 3.58 4.46 0.0061 (0.108 0.0021 0.889 )

R = Correlation coefficient

R'gression coefficient of actual on prediction

ME = Mean error

MAE = Mean absolute error

RNSE = Root mean square error

U = TheU inequality coefficient which can decompose into three parts: (I) Fraction of error
due to bias; (II) Fraction of error due to different variation; (III) Fraction of error
due to different co-variation.
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The Theil's inequality coefficient, as proposed by Theil (1966)

can be decomposed into three terms: U(Bias), U(variation), and U

(covariation). As forecasts will not all be perfect, the goal should

be the lowest inequality coefficient possible with a decomposition

showing U(bias) and U(variation) approaching zero and U(covariation)

approaching one. Observing the 12-week forecasts for the employment

series models, the AGG ARIMA model appears to be the most accurate

with a Theil's inequality coefficient of 0.004 for 12-month forecast

and 0.0061 for 24-month forecast. The U(bias) and U(variation) show

approaching zero and U(covariation) approaching one.

The largest Theil's inequality coefficients are those of the LWP

series. One plausible explanation of the relatively better predict-

ability of the AGG series is that for this series the variability of

the employment was relatively less whereas the LWP series has a rela-

tively high variability of the employment. Although the accuracy of

the LWP series model forecasts was not as good as for the other series,

in general, the Theil's inequality coefficients for LWP series model

are very low. Therefore, we can conclude that these four models

appear to have good forecasting ability.

We can also use ' the mean absolute percentage errors for

selected forecasting horizongs to show the good forecasting ability

of these four ARIMA models (see Table 7). The forecasting accuracy

of each model was evaluated by computing the percentage error for

different forecasting horizons. Then the mean absolute percentage

errors for each model and forecast horizon (1, 4, 12 and 24) were

computed by averaging across the various origins. Here, the fore-

casting origins were 96 (December, 1977), 100 (April, 1978), 104



TABLE 7

Mean Absolute Percentage Forecasting Errors

for Selected Forecast Horizonsa

Forecasting Horizon (months)

Series Model 1 4 12 24

TEG 1.345 2.401 2.496 3.658

GEG 2.447 2.299 2.764 3.165

LWP 7.450 9.278 8.928 11.725

AGG 1.547 1.354 1.441 1.147

a
Mean absolute percentage forecasting errors

where

T Y -Y
t

.100%T1

T = the number of forecast periods,

= the predicted level of the variable at time
period t,

the actual level of the variable at time
period t.
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August, 1978), and 108 (December, 1978).

The results presented in Table 7 also indicate that the best

forecasting power within four ARIMA models is the AGG series model,

which had only a 1.147 mean absolute percentage error in the postsainple

24-month forecast period. The forecasting abilities of the TEG and

GEG ARIMA models also were very good. The mean absolute percentage

forecasting errors for TEG and CEO series models ranged from 1.345

to 3.658 and 2.299 to 3.165, respectively. The LWP series model had a

poorer forecasting ability than the other models. For instance, the

LWP 12-month mean absolute percentage error was 8.928, however, the

other three series models ranged from 1.441 to 2.764.

In general, the accuracy of the ARIMA models decreased as one

moved from 1-month to 12-month or longer forecasts. However, this is

not true for AGG series model; the 1-month mean absolute percentage error

for AGG model was 1.547, 12-month was 1.441, and 24-month was only

1.147. It appears that the AGG series model can provide both reliable

short-term and long-term forecasting values. In conclusion, Tables 6

and 7 demonstrate the accurate forecasting ability of the AGG, TEG and

GEG series models.

The One Input Transfer Function Model

Identification

During the first stage of fitting a transfer function model,

the two residual series lilt and obtained from the model in

Table 5, are cross correlated to obtain the estimated cross correla-

tion function r" (K) (sae Table 8). Significant individual lagged
liPy



Table 8. Estimated Univariate Residual Cross Correlation Function r (K)
Iii lJ

Lags (K)

Mean of Prewbitened CEC series = 4.550

ST. DEV. of Prewhjtened GEC series = 31.686

Mean of Prewhjtened TEG series 7.839

ST. DEV. of Prewhitened TEG series = 85.731

(K)
UI ii

y

-20 - -7 -0.043 -0.011 0.184 -0.105 -0.220 -0.133 0.009 -0.114 0.123 0.178 0.037 -0.147 -0.158 0.135

-6 - 7 0.045 -0.251 0.028 -0.097 0.064 -0.055 0.388 -0.005 0.003 -0.063 0.061 -0.117 -0.038 0.057

8 - 20 0.115 0.025 0.126 0.056 -0.187 0.047 0.053 0.093 -0.036 -0.036 -0.020 0.068 -0.059
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correlations (judged against two standard deviation limits of ±2N/2

or 0.204)23 occur at lags 0 and -5. According to Pierce's causality

relationship, one may conclude that TEG causes GEG and that one can

build a dynamic regression model for CEG on TEG and thereby obtain more

accurate forecasts of GEG.

Application of the Chi-square tests given in equations (17) and

(18) (with M12 and N=20) yields S12 42.22, S12* 44.739, S20

56.68, S20= 62.106. The appropriate critical values for 25 and 41

degrees of freedom are 37.65 and 56.8 (a = 0.05). Hence, stochastic

dependence is indicated (chiefly at lag 0, or "contemporaneous't

correlation). Once the hypothesis of series indepencence is rejected,

one may wish to use Table 6 further in identifying possible distributed

lag models.

A pattern of the form in which p (K) 0 for K = 0, -5
P1

leads one to consider the dynamic shock model

(24) p '(B)p + i'(B)a
lt yt t

5
where '(B) = W' w5tB and '(B) = l-05'B5

Initial parameter values for w'(B) and 6'(B) are obtained by

solving a system of moment equations determined by r" (K) and r' (K)2
Pi

so that we find

(Ü0 0.143, w5' -0.09.. 85' 0

23In order to make more exact judgments, Haugli (1976, pp. 379)

suggested using ±2(N-KI) 1/2 where K is the number of lags.

21+

For more detail about the system of moment equations determined
by r" (K) and r (K), see Haugh (1972, pp. 106-117) and Haugh

PiPy

and Box (1974)
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Using these initial values in (24) gives the identified dynamic

shock model

= (0.143 + 0.09 B5) p +
lt yt a

In order to complete identification of the dynamic regression

model, we combine the identified univariate model from Table 5 and

the joint shock model to get

(25) (l-B)(i-B12) X1 = (0.l43-0.l96B+O.395B2-0.l17B5) (l0.549B12)(l_B12)Y

(l-0.44B) (l-0.3689B12) a,

+ (l-U.4U9B-U.195B5) (l-U.49B12) a,

where X1 = GEG, TEG, and a is a white noise series.

Estimation-Diagnostic Checking-Reidentification

Final parameter estimates for model (25) are then obtained via a

nonlinear least squares regression algorithm. The resulting model

is

12
(0.046) (0.051) (0.029) (0.021) (0.373)

(26) (1-B)(l-B )X1 = (0.l28_0.089B_0.057B2+0.0l59BS)(l+1.48B'2)(1_B'2)Y

(l+0.544B) (l+l.07B12)

(0.214) (0.113)

+ (l_0.48B_0.236B5)(l_O.5l3B'Z)a

(0.122) (0.129) (0.144)

where the numbers in parentheses associated with each estimated coef-

ficient are the respective estimated standard errors of the coefficients.
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The estimated standard deviation of the residuals from model (26) is

26.79, which is a 15.43 percent reduction from that of the univariate

model for X1, i.e., CEG. The usual residual auto- and cross-correla-

tion checks indicate a "good" data fit.

Pierce's causality relationship was used to develop model (26).

However, Feige and Pearce (1979) pointed out that an essentially

arbitrary choice can significantly affect the nature of the economic

conclusions derived from the test procedures. Therefore, we tenta-

tively reidentified the dynamic shock model to be

yt
= v"(B) + lj)" (B)a

t t

where v" (B) = 2.706 + 0.316B5 and B) = 1. We then combined the

identified univariate model from Table 5 and joint shock model to get

the following alternative dynamic regression model:

(27) (l_B'2)Y=(2.706_l.2O1B+0.316BS)(l_0.369B'2)(1_B)(1_B'2)Xt

(l-l.377B+0.395B2) (1-O.549B'2)

+ (l-0.444B)(l-0.3689B12) a
t

(1-0.968B)

Final parameters estimated for model (27) are then again obtained

via a nonlinear least squares regression algorithm.

Our final alternative model is then
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(0.318) (0.607) (0.186) (0.396)

(28) (l_B'2)Y (0.876_0.35413_0.394B5)(1_0.388B12)(l_B)(l_B12)xt

(l-l.227B + 0.17B2) (1 - 0.187B12)

(0.525) (0.57) (0.404)

(0.156) (0.155)

+ (0-0.256B) (l-0.456B'2) a

(1-0. 925B)

(0.0609)

The estimated standard deviation of the residuals from model

(28) is 68.89, which results in a 19.54 percent reduction in the stan-

dard deviation of the residuals from the univariate ARIMA model of

TEG. The usual residual auto-and cross correlation checks also

indicate a good data fit.

Comparing the results from model (26) and (28), we find the latter

has a higher percent reduction in the standard deviation of the resi-

duals. It seems that we should build a dynamic regression model for

TEG on GEG instead of building a dynamic regression model for CEO on

TEG. However, Pierce's causality relationship is not consistent with

the empirical result in this study.

As the parameters w212 = 0.388 and
2,l2

= 0.187 and as the model

(28) is too complex, we may consider deleting w212 and
2,l2

from

our model. This new model fits as follows:
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(0 . 2558) (0. 2494) (0 . 2449)
(29) (l_B'2)Y = (0.985-0.285B-0.165B5) (1-B) (1-B'2) X

(l-l.27B 0.27B2)

(0.045) (0.095)

(0.13) (0.122)

+ (l-0.277B) (l-0.601B12)a

(1-0 .957B)

(0.051)

The estimated standard deviation of the residual from model (29) is

65.08, which results in a 24.09 percent reduction from that of the uni-

variate model for TEG. Therefore, model (29) is better than model (28),

and we are more confident that one should build a dynamic regression

model for TEG on GEG and thereby improve the forecasting ability of TEG.

Before accepting model (29) as an adequate representation of these

employment data, autocorrelation and cross correlation checks should be

applied, as described in Chapter III. The first 30 lags of the residual

autocorrelations are tabulated in Table 9, together with their standard

errors. There seems to be no evidence of model inadequacy from the

behavior of individual autocorrelations. This is confirmed by calculat-

ing the Q2 criterion which is

30
2

= 77 E r(K) = 14.63
K=l aa

Comparison of Q2 with the x2 table value for k--q = 30-1-2 = 27 decrees of

freedom provides no grounds for questioning model adequacy.

The estimated cross correlations between a and the prewhitened input

1are given in Table 10.

yields

2
Q = 77 r

K0

The criterion (equation (23) in Chapter III)

(K) = 14.982
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-20*
or (Q3 77 E r2(K) = 16.421)

pa
K=0

Comparison of Q3 or Q3* with the x2 table for K + 1 -(r+S+l) =

21-5 = 16 degrees of freedom again provides no evidence that the model

is inadequate.

TABLE 9

Estimated Autocorrelation Function r,,(K) of
aa

Residuals from Model (29)

Lags K r(K)

1-10 -0.01 -0.04 0.09 0.09 0.00 0.20 -0.02 -0.06 -0.02 0.00

St. E. 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12

11-20 0.02 0.05 0.10 -0.12 0.00 -0.02 -0.04 -0.07 0.00 -0.22

St. E. 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

21-30 -0.02 -0.03 0.00 -0.05 -0.16 -0.05 0.09 0.05 -0.05 -0.01

St. E. 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

Although w11 = 0.285 and w15 = 0.165 in model (29) do not appear to

be greatly different from zero, if these two parameters are deleted.



Table 10. Estimated Cross Correlation Function r (K) Between the Prewhitened Input and Output
Residuals. Ui

ags K r

U1
(K)

-20 - -10 -0.150 -0.111 0.112 -0.165 -0.191 0.022 -0.001 -0.098 0.135 0.127 0.071

-9 - 0 -0.009 0.040 0.041 0.001 -0.146 0.120 0.008 -0.034 -0.111 0.009

1 - 10 0.040 0.048 -0.006 0.066 0.008 -0.034 0.118 0.118 0.106 -0.026

11-20 -0.027 -0.200 0.101 0.122 0.203 -0.027 -0.106 -0.108 0.112 -0.045
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from the model, the resulting residual auto-and cross correlation checks

do not indicate a good data fit. Therefore, and w15 are still con-

sidered in model (29).

In order to check whether X2, i.e., LWP, will be of some additional

value in describing ? (conditional on X1), estimated cross correlations

between a and
2t

from Table 5 are presented in Table 11. It appears

from Table 11 that the two series are not independent, significant lagged

correlations occur at lags 0. Thus the inclusion of X2 in the re-

gression function of Y will now be considered.

Two-Input Transfer Function Model

Identification

At the first stage of fitting two-input transfer function model,

we must extend our analysis of the various univariate shock series to

a set of three series. r (K) has already been presented in Table 8.
U1

il

The estimated cross correlations between
p and and 2 and p, i.e.,

r (K) and r (K), are presented in Table 12. Table 13 presents

the results of chi-squared tests applied to test the independence of

these pairs of residual series. From these tests, we find
lt

and
2t

are independent but
2t

and
.i

are dependent. For this case, Haugh

proved that the appropriate dynamic shock model for is:

+ 0(B)
aUt = w31 (B) + (B)

2t (B) t

w31(B) and w32(B) can be identified directly from the patterns appear-

ing respectively in r (K) and r' ' (K). e(B) and B) also can

be identified through Haugh's suggested process.



Table 11. Estimated Residual Cross Correlation Function r. (K) (where A is the Residual Series of Model (29))'
p2

Lags K r.. (K)

-20 - -10 -0.188 -0.112 -0.048 0.181 -0.013 0.141 0.124 0.088 -0.046 0.114 0.083

-9-0 0.072 0.010 0.005 0.162 -0.018 0.130 0.109 0.067 -0.048 0.494

1 - 10 0.036 -0.086 -0.058 -0.045 0.070 0.067 -0.080 -0.087 0.039 -0.028

11 - 20 -0.044 0.008 0.235 -0.155 -0.000 -0.021 -0.139 -0.037 0.034 -0.169

Application of the chi-square tests given in equation (l and (18) with I = 12 and ii = 20 yields S 36.022,

S2 36.883, = 60.619, S 66.534. The apororiate critical value for 25 and 41 de"rees of freedom

is 37.65 and 56.8 (a = 0.05).



Table 12. Estimated Residual Cross Correlation Function r.pp12
(K) and r. . (K).uP

Lags K r, (K)

-20 - -10 -0.057 -0.023 0.024 -0.155 -0.070 0.041 -0.081 -0.129 0.107 0.082 -0.004

-9 - -0 -0.140 0.050 0.124 -0.067 -0.100 0.074 -0.020 -0.135 -0.039 0.019

1 - 10 -0.018 0.062 0.114 0.055 -0.015 0.190 -0.048 -0.036 0.025 0.053

11 - 20 -0.085 -0.175 0.119 0.104 0.172 -0.018 0.048 0.029 -0.017 -0.182

Lags K r. . (K)

-20 - -10 -0.255 -0.095 -0.083 0.159 -0.045 0.105 0.135 0.153 -0.016 0.041 0.123

-9 - 0 0.063 0.096 0.030 0.212 -0.051 0.052 0.163 0.035 -0.059 0.457

1 - 10 0.032 -0.171 -0.070 0.065 0.074 -0.019 -0.015 -0.100 -0.092 -0.096

11 - 20 -0.013 0.007 0.057 -0.154 0.021 -0.058 -0.199 0.015 0.024 -0.174
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Table 13. Chi-squared Test Statistics for Lagged Cross-Correlations
of Residual Series' 'P_/

M=12 M=20
Residual Pair

18.963 33.325
(20.550) (37.830)

37.907 63.093

(39.032) (69.672)

Values are for SM = N K-M r (K) with 2M + 1 degrees of freedom

* 2
M -12

Values in parenthesis are SM = N (N-lKl) r (K)

K=-M
xy

with 2M + 1 degrees of freedom

where X=p1, p2 p
y

The appropriate critical value for 25 and 41 degrees of freedom

is 37.65 and 56.8 (c = 0.05)



Following Haughs procedure, the dynamic shock model identified

for p is as fcilows:

(30) p = (1.05 + 0.013 B) pit+ (O.982-0.0688B + 0.367B2-0.323)p2 + a

Substituting the fitted univariate models for each time series

into the equation (30), the following dynamic regression model is

tentatively obtained:

(31) (i-B12)
(i.05-0.453B) (i-B) (i-B12) X

t
it

(i-i.377B + 0.395B)

(0.982-l.359B + 0.397B2) (i-B12) X2

(l-0.968B)

(i-0.444B) (i_0.3689Bl2)

(l-0.968B)
a

where = TEG, X1 = GEG, X2 = LWP, and a is a white noise

series.

Estimation - Diagnostic Checking

Substituting the initial parameter estimates given in (31) into

a nonlinear iterative estimation algorithm results in the following model:

(0.246) (0.248)

(32) (1-B12) Y = (1.127 0.537B) (1-B) (i-B12) X1

(l-1.389B + 0.366B2)

(0.0054) (0.069)



(0.211)(0.339) (0.221)

+ (0.888-i.095B + 0.095B)(l-B12) X2

(1-1. 023B)

(0.0707)

(0.177) (0.122)

+ (i-O.393B) (i-0.451B12) a
(1-0.823B)

t

(0.120)

We note that
22

= -0.095 does not appear to be greatly different

from zero. 1and O are highly correlated. The estimated standard

deviation of the residuals from this model is disappointing (64.76).

Therefore, the model was altered and reestimated to obtain:

(0.202)
(33)

(1-B12) Y = 0.873 (1-B) (1-B12) x
t it

(l-0.903B + 0.l24B2)

(0.195) (0.217)

(0.153) (0.153)
(0.762 - 0.944B) (i-B'2) X2

+

(i-1.044B)

(0.003)

(0.093)

+ (1-0.804B12) (1-B) a

(1+0.543B + 0.246B2)

(0.087) (0.085)

with 2 = 56.96
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Although
12

-0.124 in do not appear to be greatly different

from zero, we find a11 and a12 in are highly correlated. Therefore,

a12 is still considered in model (33).

Table 14 gives the estimated residual autocorrelation and cross

correlation functions for model (33). From this table, Q2 and are

obtained,

30

80 r (K) 17.28
K=1

20

Q3(p1,a) = 80 r2 (K) = 12.526
K=0

-20
(orQ (11,a) = 80

-)

K=0

20

Q3(Li2,a) = 80

K=0

-20*
(orQ3 (p2,a) = 80

K=O

r (K) = 14.711 )
L11á

r (K) = 9.264

(K) 20.171)

Comparison of (p1,a) (orQ (p1,a)), and Q3(p2,a) (orQ

with the Individual table values for 25, 18 and 18 degrees of.

freedom orovides no evidence that the model is inadeauate.

After these residual checks, it appears that model (33) is an

adequate representation of the dynamic relationship between the three

employment series. The estimated standard deviation of the residual

series for TEG has again been reduced, from o = 85.737 (from Table 5)



Table 14. Estimated Residual Atitocorrelatfon and Cross Correlation Function for Model (33)

lags K r (K)

1 - 10 0.12 -0.02 -0.13 -0.08 -0.06 0.03 0.03 -0.04 -0.12 -0.05

St. E. 0.11 0.11 0.11 0.12 0.12 0.12 0.12 0.12 0.12 0.12

11 - 20 -0.04 0.13 0.03 -0.07 -0.02 -0.06 -0.07 -0.11 0.10 -0.04

St. E. 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12

21 - 30 0.09 0.11 0.06 -0.09 -0.12 0.09 0.19 0.04 -0,01 -0.07

St. E. 0.12 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13

lags K r. (K)
LI1

-20 - -10 -0.059 -0.052 0.144 -0.078 -0.192 -0.064 -0.009 -0.029 0.090 0.066 0.024

-9 - 0 0.017 0.088 0.037 0.094 -0.230 -0.037 -0.068 0.086 -0.098 0.043

1 - 10 -0.042 0.056 -0.038 0.071 -0.043 -0.082 -0.020 0.132 0.089 0.119

11-20 0.017 -0.050 0.002 0.036 0.095 0.011 -0.110 -0.199 0.103 0.139

tags K r. (K)

-20 - -10 -0.181 -0.219 -0.209 0.180 -0.032 0.083 0.094 0.150 0.085 0.015 0.075

-9 - 0 0.036 -0.059 -0.133 0.049 -0.077 0.041 0.064 0.078 0.014 0.013

1 - 10 -0.016 0.037 0.011 0.035 0.071 0.117 -0.022 -0.133 0.036 0.049

11 - 20 0.014 -0.009 0.160 -0.046 0.003 0.042 -0.083 0.065 0.040 -0.172
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to o = 65.08 (from model 29) and now to o = 56.96 (from model 33).
a a

This result, along with the 33.56 percent reduction in the standard devia-

tion of the residual seri from that of the univariate model for TFI,

suggests that GEG and LWP are very helpful in explaining the time series

behavior of TEG.

The estimated cross correlation function between a from model (33)

and
3t

from Table 5 are shown in Table 15, for checking whether

ie., AGO, will be of some additional value in describing Y (conditional

on and X2). The results suggest that the two series are independent.

(A three-input transfer function model was estimated on an experimental

basis. The coefficient associated with was not significant and the

standard deviation of the residual series was not reduced.) Thus, it is

reasonable to conclude that AGG has little to add in explaining the time

series behavior of TEG. Therefore, model (33) is the best representation

of the Raugh-Box type dynamic relationship between these particular

employment series in this study.

Econometric Analysis

In Chaptet II, we have discussed three classes of regional econometric

models which can be used to estimate employment multipliers: the simple

static model, the simple dynamic model, and simultaneous equations model.

In this study, only the simple static and dynamic model are employed.

The Simple Static Econometric Model

For this study Weiss and Gooding's modified economic base model for

estimating differential employment multiplier is considered as the sim-



Table 15. EstImated Residual Cross Correlation Function r. (K) (where is the residual series of
model (33).) !/ 3

Lags K (K)

-20 -10 -0.100 0.003 -0.050 0.103 -0.073 0.177 0.015 -0.012 0.143 0.025 -0.055

-9 0 0.045 -0.101 -0.048 0.027 0.272 -0.129 -0.024 0.192 -0.045 0.030

1 - 10 -0.207 0.110 -0.054 -0.015 0.082 -0.017 0.037 0.063 0.011 0.071

11 20 0.008 0.079 -0.087 0.106 0.078 0.002 0.014 0.040 -0.080 0.043

Application of the Chi-square tests given in equation (17) and (18) (with M = 12 and M 20) yields S12 = 24.216,

S12 25.512, S20 = 33.364, S0 = 36477. The appropriate critical value for 25 and 41 degrees of freedom

is 37.65 and 56.8 (a = 0.05)



pie static econometric model.

Y =b +b X +b X +b X
t o 1 it 2 2t 3 3t

where TEG, X1 GEG, X2 = LWP, and = AGG were

regarded as distinct export sectors in Grant County.

Two principal assumptions underlie this model. These assumptions

are (1) that the export sectors are independent of one another, and

(2) that workers and firms within the same economic base sector have

similar consumption patterns (although consumption may be different

across export sectors). The first assumption seems highly plausible

for the basic sectors considered in this study; however, the second

assumption can only be tested with more detailed survey data.

Based on the same data as employed in fitting the transfer func-

tion model, the final equation for the static econometric model is:

(34)
569.9 + 1.29 X1 + 1.129 X2 + 1.336 X3

(107.807) (0.146) (0.100) (0.182)

= 0.9584, D-W = 2.129, F(3,9l) = 698.675,

Standard error of regression (SE) = 56.98,

where the numbers in parenthesis below the estimated coefficients are

estimated standard errors. From these, we find all the coefficients

2
are significantly different from zero. Looking at the R , we see the

equation has excellent explanatory power. Furthermore, the Durbin-

Watson statistic suggests that serial correlation is not a problem

in this case.



The Simple Dynamic Econometric Model

The dynamic econometric models to be employed empirically in the

subsequent analysis may be written as:

r
* m

ET b 4 b. ET -- b'. EB
t 0 . 1 t-i 1 t-i

1=1 j=l i=0

where ET. is the endogenous variable (total employment) at time t-i,and

EB. is the jth exogenous variable (basic employment in sector j)

at time t-i.

For this dynamic employmentmOdel, if no lagged endogenous

variables are included, the equation is estimated by the Almon

distributed lag technique with a fourth-degree polynomial and no end-

25
point restrictions. If the model includes lagged endogenous variables,

26
then the Koyck procedure is used to fit the model. If the model in-

eludes both lagged exogenous variables and lagged endogenous variables,

the Almon lag technique is used, however, in this case the estimate of the

parameters will be biased and inconsistent.

Following four basic criteria,27 three of ten dynamic models were

25
For a detailed explanation about Almon distributed lag technique,
see Koutsoyiannis (1972, pp. 299-304) and Johnston (1972, pp. 292-300.)

27

For a detailed explanation about Koyck geometric lag scheme, see
Kcutsoyiannis (1972, pp. 304-310) and Johnston (1972, pp. 300-303).

Four basic criteria for selecting the final model are l) low
standard error of the estimates, (2) higher adjusted R and better
F test, (3) significance of most coefficients at the 95 percent
confidence level, and (4) better forecasting ability.
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chosen for final consideration, the first being:

(35) Y = 591.528-0.0148 Y + 1.308 X + 1.144 x + 1.33 X
t t-1 it 2t 3t

(131.219) (0.050) (0.154) (0.116) (0.185)

R2 = 0.958, D-W = 2.126, F(4,90) = 518.74, SE = 60.91.

For model (35) most of coefficients are significant at 0.01 level,

except that for which does not appear to be greatly different from

zero. Other diagnostic checks show that the equation has excellent

explanatory power. An alternative model which omits and includes

more lags on the exogenous variable is:

(36) Y 512.61 + 1.286 X + 0.144 X 0.054 x
t it it-i lt-2

(142.288) (0.176) (0.178) (0.191)

+ 1.089 x 0.015 X + 1.226 X + 0.117 X + 0.042 X
2t 2t-1 3t 3t-1 3t-2

(0.120) (0.113) (0.224) (0.241) (0.211)

= 0.964, D-W = 1.9516, F(8,83) = 277.826, SE = 56.98

For this mOdel the coefficients for lagged variables are not all

significantly different from zero; however, other diagnostic checks

suggest that the model is very good in terms of fit.

The next model is a combination of models (35) and (36) with the

following results:
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(37) Y = 147.2 + 0.785 Y + 1.335 x 0.834 x 0.212 X
t ti it it-i lt-2

(109.67)(0.068) (0.190) (0.283) (0.214)

+ 1.047 X2 0.83 0.06 + i.i6 0.99 X31

(0.126) (0.191) (0.135) (0.301) (0.374)

+ 0.178 x3
-2

(0.235)

= 0.966, D-W = 1.798, F(lO,8l) = 232.25, SE = 56.03

For this model, most of coefficients are significant at 0.05 level,

except those for X12, X22, and X32.

Forecasting Accuracy Check

Six tests which were used in testing ARIMA forecasting ability are

used again asabass for the evaluation of the forecasting power of these

four econometric models.

The results of the measuringof forecasting accuracy for these four

models from January 1978 to December 1979 are presented in Table 16.

Generally, the forecasting ability for model 36 (i.e., oriy using

current and lagged explanatory variables) is best. The Theil's inequality

coefficient was 0.0102, the root mean square error was 64.62, and R

and approximated 1 at the same time. However, all the lagged co-

efficients are not significantly different from zero for this model.

If we delete all the lagged variables from this model, we get model 34.

The forecasting ability for model 34 is also very good, i.e., the Theil's

inequality coefficient was 0.0103 and the root mean square error was



Table 16. Comparison of Forecasting Accuracy Among Four Econometric Models-'

Forecast
Model

R
1

ME MAE RMSE U ( I II III )

34 0.9908 0.9522 58.87 59.27 65.64 0.0103 (0.8044 0.0154 0.1801)

35 0.9876 0.9525 56.14 58.95 65.17 0.0103 (0.7422 0.013 0.2448)

36 0.9892 0.9101 54.00 56.68 64.62 0.0102 (0.6982 0.0732 0.2286)

37 0.8925 0.7213 7.605 50.11 114.5 0.0179 (0.0044 0.1742 0.8214)

a!
- See Table 6.
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65.64. If we compare the forecasting ability and diagnostic checks of

the models between model 34 and 36, it then seems that model 34 is

better. Model 35 also had the similar situation as model 36. And

model 37 was attempted and yielded very good R2 values, standard error

of regression, and F statistics; however, the forecasting ability was

not as good as for the other three models.

The Forecasting Accuracy Comparison of ARIMA, Transfer Function, and
Econometric Models

In order to evaluate overall relative forecasting ability, one-

month to twenty-four month forecasts were compared for the above four

models, i.e., the final TEG ARIMA model (from Table 5), the one-input

transfer function model (equation 29), the two-input transfer function

model (equation 33), and the static econometric model (equation 34).

The forecast percentage errors using forecast origin December, 1977,

are presented in Table 17. Note that the econometric model had the

actual data for the independent variable over the forecast period,

giving it an advantage over the ARIMA and transfer function model.28

Looking at the one- and two-month ahead forecasts, the econometric

model performed appreciably better than any other. However, it had

the worst forecasting performance for the three- and four-month ahead

forecasts, though the model used the actual data for the independent

variable. For the thirteen-, fourteen-, and fifteen-month ahead fore-

casts, the one-input transfer function and ARIMA model had more accurate

forecasts than the other two models.

28Due to the limitation of the computer package, the forecasted values
of the independent variables were used to forecast the output series
for the transfer function model.
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a!Table 17. Forecast Percentage Errors Among Four Models-

Periods . One-input Two-input
Ahead

Econometric ARINA
transfer function transfer function

1 0.56 3.76 3.29 3.76

2 1.66 6.27 5.82 6.37

3 3.37 0.63 0.21 0.63

4 4.03 2.10 1.61 1.97

5 3.64 2.42 1.96 2.82

6 1.65 -3.27 -2.99 -3.30

7 1.39 -6.55 -5.44 -5.08

8 2.08 -2.41 -2.57 -3.34

9 2.18 -2.18 -2.45 -3.70

10 2.39 -2.18 -2.13 -3.55

11 1.92 -2.40 -2.57 -4.90

12 2.75 -2.70 -2.62 -4.73

13 0.77 0.25 -0.20 -3.14

14 1.15 0.27 -0.38 -3.97

15 1.65 1.54 0.67 -3.50

16 1.66 -1.39 -2.65 -7.65

17 2.86 -1.41 -2.59 -7.37

18 1.15 -5.88 -6.33 -12.36

19 0.69 -7.77 -7.42 -13.06

20 -0.14 -6.98 -7.95 -15.51

21 L29 -4.82 -5.93 -14.44

22 2.26 -4.85 -5.71 -15.27

23 1.64 -5.45 -6.63 -18.10

24 1.75 -544 -6.44 -18.59

a!
Forcast Percentage Error = Y Y

t t
100%.

Y
t
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For the most part, the forecasting errors for the econometric

model were for an overestimation situation, except the twenty-month

ahead forecast. The forecasting errors for the ARIMA and transfer

function model were underestimations, except in the short-term fore-

casts. For short lead times, the one-input transfer function per-

formed better than the ARIMA and two-input transfer function model.

This is probably because the one-input transfer function model has

explanatory capabilities and the forecasting performance of the input

series (GEG) is very good. This is not true, however, for the two-

input transfer function model because the forecasting performance of

the LWP series is not very good. Thus, additional variation was intro-

duced into the model due to errors in the forecasts of the second input

(LWP). Forecasts from the two-input transfer function model are worse

than for any other model. As lead time increases, the drop in accuracy

of the forecasts for the GEG series reduced the forecasting ability of

one-input transfer function. Therefore, the ARIMA model performed better

than the one-input transfer function and appreciately better than the

two-input transfer function model for "long-term" forecasts.

In summary, there is no guarantee that the forecasts the econo-

metric model generates will be superior to forecasts given by an ARIMA

model which is based only upon the past history of the variable, since

additional variation will be introduced into the econometric model due

to errors in the forecasts of the independent variables, especially in

the future. Our tests were conducted under artificial laboroatory condi-

tions favoring the econometric model because the independent variables were



all "perfectlyt' forecasted on the future. Of course this is not

possible in real life applications.

In making short-term or even longer-term forecasts the transfer

function model should have the edge over the econometric model because

X values (independent variable) can be forecasted using the univariate

model generating X. However, we cannot guarantee that the transfer

function model will generate better forecasts than the ARINA model.

This is because the ARIMA model for X may not produce accurate forecasts

for the X, although X may be a good leading indicator of Y.

Therefore, in order to minimize the forecast errors, predictions

from both the transfer function and ARIMA models (or econometric

model) should be combined to obtain composite forecasts. For example,

by regressing the actual use levels on the two forms of predictions, we

obtain estimates of composite weights in terms of the regression coeffi-

cients. The estimated composite weights are then employed to obtain

29
linear composite predictions.

29
For more detail on composite forecasts, see Nelson (1973, pp. 212-
214), Newbold and Granger (1977, pp. 268-277), Rausser and Oliveira
(1976, pp. 282-284), and Oliveira (1978, pp. 524-527).
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CHAPTER V

EMPLOYMENT IMPACTS

The transfer function and econometric models presented in the last

chapter are used in examining the interrelationships among total, govern-

ment, lumber and wood products manufacturing, and agriculture em-

ployment in this chapter. These two approaches are based on quite

different modeling philosophies as has been discussed in Chapter III;

thus, the different results coming from these two models are not

surprising.

Economists have long been interested in predicting the influence

of economic phenomena which may appear in the future. The intent of

this chapter is to measure the total employment effect of hypothetical

changes in basic employment. Changes in total employment will be

measured in terms of dynamic employment response and employment multi-

pliers. Finally, the empirical results are discussed, and various

reasons for different employment multipliers are proposed.

Model Behavior - Dynamic Employment Response
and Employment Multiplier

The purpose of this section is to utilize

and econometric models to estimate the impacts

ferent export employment categories on changes

First, the final transfer function, i.e.,

IV, is employed to estimate the dynamic respon

over time, of total employment from changes in

the transfer function

from changes in the dif-

in total employment.

equation (33) in Chapter

es, i.e., the responses

government or lumber



and wood products manufacturing employment. Examples of the estimated

effects on estimated total employment of hypothetical changes in other

employment are shown in Tables 18 and 19. These are the consequences

of:

1) an increase of 10 percent in government employment
from January 1976 to December 1977,

2) an increase of 74 government employees during the
same period,

3) an increase of 10 percent in lumber and wood pro-
ducts manufacturing employment during the same
period, and

4) an increase of 60 lumber and wood products manu-
facturing employees during the same period.

The estimated total employment gains or losses due to these changes

were disappointing. The initial increase of 74 persons in government

employment generated only 67 persons in the total employment (see Table

18. This result seems quite different from general impact analysis.

The results from the second month are even more frustrating; the in-

crease of 74 or 75 persons in government employment generated only 31

or 32 persons in the total employment. That means the induced employ-

ment effects from the first month are negative. All of these results

are quite the opposite of what one would expect, given the hypothesized

relationship. Similar results also were obtained from changes in lumber

and wood products manufacturing employment (see Table 19). In the first

month, the increase of 60 persons in lumber and wood products manu-

facturing employment generated only 44 persons in the total employment.



TABLE 18. Impacts of Changes in the Government Employment on the
Estimated Total Employment in Grant County from January,
1976 to December, 1977

Month Y AY

1 2615 2682 67 74 2682 67 74

2 2554 2585 31 73 2586 32 74

3 2549 2549 0 79 2548 -1 74

4 2550 2531 -19 83 2528 -22 74

5 2682 2665 -17 86 2662 -20 74

6 3153 3141 -12 95 3136 -17 74

7 3285 3277 -8 101 3272 -13 74

8 3240 3233 -7 97 3234 -6 74

9 3270 3262 -8 102 3264 -6 74

10 3138 3132 -6 95 3139 1 74

11 3003 3002 -1 86 3009 6 74

12 2902 2906 4 82 2911 9 74

13 2797 2788 -9 80 2790 -7 74

14 2747 2747 0 79 2746 -1 74

15 2654 2660 6 80 2657 3 74

16 2692 2698 6 86 2692 0 74

17 2866 2870 4 92 2864 -2 74

18 3341 3343 2 102 3337 -4 74

19 3454 3459 5 100 3456 2 74

20 3507 3505 -2 102 3504 -3 74

21 3477 3475 -2 107 3474 -3 74

22 3327 3320 -7 103 3323 -4 74

23 3225 3221 -4 99 3224 -1 74

24 3090 3091 1 94 3093 3 74

Estimate total employment based upon the actual government and lumber

and wood products manufacturing employment.

bI Estimate total employment based upon the hypothetical level of
government employment and actual lumber and wood products manufac-

turing employment.

l
l
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TABLE 19: Impacts of Changes in the Lumber and Wood Products Manufactur-
ing Employment on the Estimated Total Employment in Grant
County from January, 1976 to December, 1977.

Month
2

x2

1 2615 2659 44 60 2659 44 60

2 2554 2571 17 57 2577 23 60

3 2549 2549 0 50 2549 0 60

4 2550 2543 -7 41 2546 -4 60

5 2682 2680 -2 48 2675 -7 60

6 3153 3162 9 76 3142 -11 60

7 3285 3290 5 77 3281 -4 60

8 3240 3233 -7 77 3232 -8 60

9 3270 3257 -13 77 3262 -8 60

10 3138 3127 -11 78 3128 -10 60

11 3003 2990 -13 78 2988 -15 60

12 2902 2890 -12 78 2888 -14 60

13 2797 2782 -15 73 2780 -17 60

14 2747 2738 -9 67 2737 -10 60

15 2654 2639 -15 53 2648 -6 60

16 2692 2680 -12 44 2689 -3 60

17 2866 2860 -6 50 2861 -5 60

18 3341 3345 4 75 3334 -7 60

19 3454 3455 1 85 3444 -10 60

20 3507 3499 -8 86 3499 -8 60

21 3477 3469 -8 86 3470 -7 60

22 3327 3318 -9 85 3321 -6 60

23 3225 3215 -10 84 3220 -5 60

24 3090 3078 -12 83 3083 -7 60

Estimate total employment based upon the actual government and lumber
and c.00d products manufacturing employment.

Estimate total employment based upon the actual government employment
and the hypothetical level of lumber and wood products manufacturing
employment.

2
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In the second month, the increase of 57 or 60 persons in lumber and

wood products manufacturing employment generated on 17 or 23 persons in

the total employment.

Cook (1979) obtained similar results in his study. He concluded

"This result indicated that an increase in geographic
oriented employment can partially be attributed to a transfer
of workers from the other employment sector to the geographic
oriented employment sector. To draw this conclusion, it must
be postulated that job opportunities in the geographic oriented
industries meet the qualifications of some workers in the

other industries. In addition, there must be incentives for a
worker to transfer from one sector to the other sector.. .This
tends to support the postulate that there may be incentives
for workers to transfer to geographic oriented industries be-
cause of positive wage and salary differences." (15, p. 90).

In order to explain the incentives for workers to transfer jobs,

the average payroll per employee for different sectors was examined

(see Table 20). Lumber and wood products manufacturing was found to

have the highest average payroll per employee; transportation, communi-

cations, electric, gas and sanitary services was second, government

was third. Thus, the average payroll data tends to support Cook's postu-

late. The negative induced employment effect, however, still cannot

be explained. What is even more frustrating about the results in

Tables 18 and 19 is that it appears as if increases in export oriented

employment do not increase the total employment opportunities in Grant

County. This seems to imply a negative multiplier effect.

In order to estimate employment causality relationships from econo-

metric models, two approaches were employed. The first was checking

the estimated total employment gains or losses due to hypothetical

changes in other employment. Several examples illustrating the effects

on Grant County's total employment of hypothetical changes in other

employment are shown in Table 21. These hypothetical changes are (1)
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TABLE 20. Grant County Covered Employment, Payrolls, and Average
Payroll per Employee by Industry, First Quarter, 1977.

Covered Average Payroll
Industry Description Employment Payrolls per Employee

Contract Construction 69 42,921 622.04

Lumber and Wood Products 1,859 2,237,771 1,203.75
Manufacturing

Transportation, Communications, 207 .209,685 1,012.97
Electric, Gas, and Sanitary
Services

Wholesale Trade 59 44,190 748.98

Retail Trade 864 476,745 551.78

Finance, Insurance, and 141 87,036 617.27
Real Estate

Services 385 117,539 305.29

Government 2,200 1,777,516 807.96

Source: Oregon Employment Division, Research and Statistics Section.
Oregon Covered Employment and Payrolls by Industry and County
First Quarter 1977, Salem, pp. 47-48.
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an increase of 89 (i.e., 10 percent) government employees in January,

1978, (2) an increase of 80 (i.e., 10 percent) lumber and wood pro-

ducts manufacturing employees in January, 1978 and (3) an increase of

32 (i.e., 10 percent) agriculture employees at January, 1978.

Because the effects of an initial employment change tend to

multiply throughout an economy, the total employment impact on county

employment may be shown as a multiplier for a particular sector.

According to different econometric models, different sets of multipliers

were calculated and are also shown in Table 21.

The pattern of employment impacts varies with the type of econo-

metric model. For example, for the simple static econometric model,

model 34, the initial increase of 89 government employees generated 115

additional total employees at the same period, but no lag effect hap-

pened. Thus, the government employment multiplier was 1.29. The

increase of 80 lumber and wood products manufacturing employees and

32 agriculture employees resulted in 90 or 42 additional total employees,

respectively. The results indicate that a change in basic employment

will immediately and positively impact non-basic employment. A

similar result occurred for model 35. However, the impacts on Grant

County's total employment from hypothetical changes in basic employ-

ment were greater in model 35 than for model 34. Although model 35 is

a dynamic model, no lag effect happened, since the coefficient of the

lag variable in model 35 was not significant.

For model 36, the initial increase of 89 government employees

generated 115 total employees in the first month (zero month lag),

generated 13 total employees in the second month (one month lag),
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TABLE 2]. Impacts and Multipliers of Selected Changes on the Grant County's
Total Employment by Econometric Model.

a/
Alternative and Impact -

Government Lumber and Wood Agriculture

Number Total Number Total Number Total
Model Month of Changes Changes of Changes Changes of Changes Changes

34 1 115 115 90 90 42 42

2 0 115 0 90 0 42

Mg!= 115/89 = 1.29 Mm_ = 90/80 1.125 Ma!' 42/32 = 1.312

35 1 117 117 92 92 43 43

2 0 117 0 92 0 43

Mg = 117,89 = 1.314 = 92,80 = 1.15 M
/32

1.34

36 1 115 115 87 87 40 40

2 13 128 -1 86 4 44

3 -5 123 0 86 1 45

4 0 123 0 86 0 45

Mg = 123/89 = 1.382 Mm = 86,go = 1.075 Ma /32
= 1.406

37 1 118 118 83 83 37 37

2 -74 44 -64 19 -32 5

3 -19 25 -4 15 5 10

4 0 25 0 15 0 10

Mg = 25/89 = 0.28028 Mm 15/80 = 0.1875 Ma 10/32 = 0.3125

The initial or direct changes under each alternative are (1) an increase of 89
government employees, (2) an increase of 80 lumber and wood products manufacturing
employees, and (3) an increase of 32 agriculture employees.

Mg is the multiplier for government employment.

Mm is the multiplier for lumber and wood products manufacturing employment.

Ma is the multiplier for agriculture employment.
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decreased 5 total employees in the third month (two months lag). There-

fore, the net effect in total employment was 123 employees generated.

This can be measured by summing the number of changes in total employ-

ment at zero, one, and two month lags. The government employment mul-

tiplier from this model was thus 1.382. The negative effect occurring

in the third month is quite opposite of what one would expect, given

the hypothesized relationship. It is hypothesized that because of the

seasonal variation within the employment data, the decrease of five

employees in the third month were due to the seasonal variation, not

negative induced employment effect.

The results from model 37 were disappointing. The initial increase

of 89 government employees generated 118 total employees in the first

month. However, the unexpected negative impacts occurred in the

second and third months. Therefore, the net effect in total employ-

ment was only 25 employees generated. For this result, the seasonal

variation within the employment data, and biased and inconsistent es-

timates for model 37 are the reasons why the negative impact occurs.

The multipliers for each sector also vary with the types of

econometric model. In general, most of the multipliers that come from

model 36 are higher than others, except the multiplier for lumber and

wood products manufacturing employment.

The second method to estimate the employment multipliers from

econometric model is to employ Theil and Loot's dynamic impact
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multiplier approach (this was previously discussed in Chapter II).

Suppose the econometric model is

r m n
ET =b + 1JET .+ E j jt o . 1 t-i . . b.EBi1 j1 1=0 1 t-i

where:

ET. is the total employment at time t-i

EB. is the jth basic employment at time t-i.

The dynamic differential employment multipliers for this model are

defined whicth is the sum of elements in the first row of

(I-A) * B,2'

where:

K. is the dynamic employment multiplier for jth basic sector,

I is the identity matrix,

b*
1

b*
2

b* b* b*
3 r-1 r

1 0 0 --- 0 0

0 1 0 --- 0 0

A= , and
0 0 1 0 0

0 0 0 --- 0 1

_2/ For a mathematic proof and more detailed discussion, see Stewart
and Venieris (1978, pp. 459-462) and Theil and Boot (1962, pp. 136-
152)
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b3 b3
1

b3
2

- b3
o n

0 0 0 - 0

0 0 0 - 0

0 0 0 - 0
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The estimated Theil-Boot employment mu1tiplie for the three

basic sectors of four models are shown in Table 22. The range of dif-

ferential multipliers derived via this method seems quite consistent

with estimates obtained from the first method, except for the multi-

pliers of model 37. As we discussed above, the results from model 37 are

unreliable due to their biased and inconsistant coefficient estimates.

Interpretation of Empirical Results

The transfer function for Grant County economic-base employment

model has specified a dynamic relationship as hypothesized. However,

it has been found that the dynamic responses of total employment from

changes in government or lumber and wood products manufacturing em-

ployment were disappointing. Therefore, in this section, only the

results from the econometric models are interpreted.

We have employed two approaches to estimate the employment multi-

pliers for three basic sectors of four econometric models. The re-

suits from different approaches were very similar, except for the

multipliers of model 37. It has also been found that the employment
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TABLE 22. Estimated Employment Multipliers for Basic Sectors
of Four Econometric Models

Employment Multiplier

Lumber and Wood
Model Government Products Manufacturing Agriculture

34 1.29 1.129

35 1.2889 1.127

36 1.3757 1.0739

37 1.3418 0.7089

1 . 336

1 . 3106

1.3858

1.5911
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multipliers have the same descending order for 1a' Mg and that

is, M > M > M . These results are different than income multipliers
a g in

that come from other studies. For example, Miller and Obermiller found

that the city/county government had the highest income multiplier

of 2.79. They also found the income multipliers for local state!

federal agencieswere 1.94, lumber and wood products processing were

2.55, dependent ranching (agriculture) was 2.39, other ranching

(agriculture) was 2.36, and general agriculture was 1.85. Therefore,

the income multiplier of agriculture is smaller than the income

multiplier of government and lumber and wood products manufacturing.

The main reason is bEcause of the different average annual wages mnong

different sectors.

We do not have good methods to calculate the income multiplier di-

rectly from the employrrcnt multiplier. Flowever, the employment mul-

tiplier analysis could provide some basis for making estimates of

changes in income levels which are likely to follow changes in basic

employment. Consider, for example, Grant County with an average

monthly income per employed person of $800 experiencing an increase

in government employment of 100 persons. Then a government employ-

ment multiplier of 1.3 would suggest that the initial increase in

government employment would raise total monthly income by $104,000

[(1.3) (100) ($800) $104,000].
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Since the city/county government employees and agriculture employees

are mostly civilians, it is reasonable to expect that they would have a

greater local impact than other sectors. Moreover, given that state!

federal employees receive higher average annual wages than other

workers in the county,31 they might have higher propensities to import

and to spend money outside the area or higher propensities to save. Due

to these reasons, the government employment multiplier is smaller than

the agriculture employment multiplier. Lumber and wood products manu-

facturing's material inputs and machines are acquired from suppliers

outside the county, which causes a smaller multiplier.

Summary

In this chapter, we have explored various employment impacts of

different sectors from transfer function and econometric models. The

results from the transfer function model were frustrating, although in

Chapter IV we found the forecasting ability of this model was good.

The results from the econometric models were presented and explained.

In general, the employment multipliers of the dynamic econometric models

were higher than those of the static econometric model. Finally, we

discussed and interpreted the employment impacts of government, lumber

and wood products manufacturing, and agriculture sectors.

In the next chapter, the study is summarized and conclusions are

drawn. The models are evaluated and the needs for future research outlined.

31Federal/State government employees have an average monthly income
per employed person of $1,060 at first quarter, 1977 (Oregon
Employment Division, Research and Statistics Section. Oregon
Covered Employment and Payrolls by Industry and County First
Quarter, 1977, Salem, p. 48).
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CHAPTER VI

SUMtjARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary and Conclusions

The major goals of this study have focused around (a) demonstrat-

ing and applying the transfer function and testing its ability in re-

gional economic modeling and regional impact analysis, and (b) obtaining

a better understanding of the causal relationships among total

employment, government employment, lumber and wood products manufac-

turing employment, and agriculture employment in Grant County.

The research study started with the investigation of the charac-

teristics and problems of three types of regional forecasting models.

These three approaches have different theoretical implications,

causing individual advantages and disadvantages. For instance, the

input-output approach can introduce a higher degree of sophistication

and comprehensiveness than the economic base approach. However, the

construction of a complete interIndustry model usually entails pro-

hibitive costs and more cumbersome data problems. Regional eco-

nometric models are in some respects a compromise between economic

base and input-output formulations. With respect to data costs, they

do not require as much data collection as for input-output models.

They are comparable in cost to ecOnomic base models, but provide

relatively more information about the structure of a region's economy.

Unfortunately, theoretical and data problems make regional econometric

models difficult to build for small regions. The significant deficiencies
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in these three approaches and the implicit theoretical causal rela-

tionships between basic and total employment, provided the rationale

for employing transfer function models in regional economic analysis.

The conceptual theory and the modeling procedures of the auto-

regressive-integrated-moving-average (ARIMA) and the transfer func-

tion have been proposed in Chapter III. The procedures for the develop-

ment of a "transfer function model", a model which expresses the

interrelationships among time series, involve the iterative re-

petition of identification, estimation, and diagnostic checking stages.

These steps are comparable to the iterative procedures for the

developnent of an ARIMA model for a single time series. A method of

identifying a transfer function model has been thoroughly elaborated

by Box and Jenkins (1970, 1976) and Haugh (1972). The first step is

to model the univariate series and obtain their residuals (prewhitened

series). Then the sample cross-correlation functions between the

various pairs of residual series are studied in an attempt to identify

the relationships among the series (in this study, Pierce's causality

approach was then used to test the relationships among employment

variables). The second step is to employ the auto- and cross-cor-

relation patterns to identify a dynamic shock model for the prewhitened

series. The final step of the identification phase is to substitute

the identified univariate ARIMA models into the identified dynamic

shock model giving a preliminary transfer function model.

The parameters of the tentatively identified model are estimated

and various residual checks are performed. If these checks show
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inadequacies in the model, a new model is entertained, estimated,

and checked. When the residual checks are satisfied, the modeling

procedures stop.

Dynamic modeling via a transfer function model has been proven to

be a useful tool for economic analysis and short-term forecasting.

However, the transfer function modeling procedures are still at a

relatively early point in development. Obviously, further efforts

in this area are needed.

In Chapter IV the ARIMA and transfer function models were

empirically implemented. In order to compare the results from these

models, one static and three dynamic econometric models also were

specified and their parameters were estimated by using ordinary least

squares, Almon's distributed lag, and Koyck's distributed lag estima-

tion procedures. After all the models were used as forecasting equa-

tions, the forecasting performances of each model were evaluated using

six types of goodness-of-fit measures, i.e., correlation coefficient,

root mean square error, mean absolute error, mean error, regression

coefficient of actual on prediction, and Theil's inequality coefficient.

The findings sugested that the one-input transfer function demonstrated

superiority over the ARIMA and two-input transfer function models and

similarly for the econometric models. The econometric model forecasts,

however, employed the actual data for the independent variable over

the forecast period, giving them an "advantage" over the ARIMA and

transfer function models.

In summary, there is no guarantee that the forecasts generated

by the transfer function model will be superior to forecasts given
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by an ARIMA model. Additional variation will be introduced into the

transfer function model due to errors in the forecasts of independent

variables, especially in the future. However, in making short-term

or even longer-term forecasts, transfer function models should have

the edge over econometric models because X values (independent vari-

ables) can be forecasted using the univariate model generating each

X. Of course, this does not mean that econometric models are to be

replaced substantially or completely. Transfer function and ARIMA models

have some inherent shortcomings compared to structural types of models

such as econometric models in analyzing economic time series. For

instance, transfer function models do not emphasize the simultaneity

of the relationships between economic variables as can econometric

models. ARIMA models are generally void of explanatory power, and

they are not based on economic theory. If these models yield poor

forecasts, one would be at a complete loss to explain the reason

(Naylor, Seaks, and Wichern, 1972). Therefore, in order to minimize

the forecast error, predictions from both the transfer function and

ARIMA models (or econometric model) should be combined to form composite

forecasts.

The two-input transfer function and econometric models were sub-

sequently used to measure the employment multipliers for government,

lumber and wood products manufacturing and agriculture sectors in

Chapter V. The results obtained from the transfer function model were

frustrating. The employment multipliers, in terms of the dynamic

employment response, were less than one (or negative) for government

and lumber and wood products manufacturing sectors. The reasons for

these findings are not clear; however, it is suspected that the use
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of Pierce's causality approach to test the relationship between employ-

ment variables, the possibility of feedback between the employment

series, and the use of the inconsistent data set may be at the root

of the problems.

Feige and Pearce (1979) have indicated that an arbitrary choice

of three different test procedures, i.e., the Haugh-Pierce, direct

Granger, and Sims approaches, can significantly affect the nature of

the economic conclusions. Therefore, it is possible that an implemen-

tation of other test approaches could lead to different interrela-

tionship among employment series and, thus, lead to different conclu-

sions.

The employment impact analysis from the transfer function model

may not have been successful because of the possibility of feedback

between the total employment series and the basic employment series.

In Chapter IV, it was noted that dynamic regression models for GEG

on TEG and TEC on CEG could be fitted at the same time, and thereby

improve the forecast ability of GEG and TEG, individually. However,

Pierce's causality test and the Clii-square test do not support this

hypothesis.

Using the inconsistent data set is also another possible explana-

tion for these disappointing results. As we have discussed in Chapter IV,

the total employment series is adjusted for multiple job-holding and

commuting while the industries employment series are not. Thus, it

is possible that these differences lead to lower estimates of the

employment multipliers.

An employment impact analysis using econometric analysis was also

presented and discussed in Chapter V. It was found that the time lag
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between the initial changes in the causal variable and induced changes

in the dependent variable had little effect in the employment multi-

plier analysis. That is to say, in a given month when a change in the

level of employment in the basic sector is observed, a change in the

total number employed in all sectors occurred within the same month.

The rapidity in adjustment may in part be explained by the small size

of the Grant County economy.

The descending order for agriculture and lumber and wood products

manufacturing employment multipliers suggests that in a small region

such as Grant County a loss of agriculture jobs will have a more

severe impact than a loss of an equal number of jobs in government

and lumber and wood products manufacturing sectors. Of course, this

conclusion is different than the results from income multipliers.

In summary, transfer function models are quite appealing if one

is primarily interested in forecasting. They are less desirable if the

goal is to analyze regional impacts or to explain the "complicated"

behavior of an economic system. If the researcher wants to analyze

or predict the total regional impacts, both direct and indirect, of

some significant action, such as a new industrial plant or government

installation, more accurate and consistent results would be obtained

by using regional econometric or input-output models.

Recommendations for Further Research

There are several suggestions for further research. First, the

transfer function modeling procedures need to be tested further in

practical modeling applications. This is true particularly for systems

of three or more variables. Second, it would be interesting to compare
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results from the Haugh-Pierce, direct Granger, and Sims approaches to

test the relationships between employment variables (Feige and Pearce,

1979). It is expected that different conclusions will come from different

approaches.

Third, another interesting extension of the present study would

be to fit a feedback system among three employment series. That is,

a simultaneous structural model consisting of total employment,

government employment, and lumber and wood products manufacturing

employment should be considered; Granger and Newbold (1976 and 1977)

have discussed the modeling procedures for such a feedback system and

some possible uses for them.
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APPENDIX I

ARNA MODEL STRUCTURE

The basic components of the ARNA model are the autoregressive

and moving-average processes. In the autoregressive model, the

current value of the process is expressed as a finite, linear aggre-

gate of previous values of the process and a shock Let us denote

the values of a process at equally spaced times t, t-1, t-2, by Z,

Z , Z . Also let Z Z , B . be deviations from(p = E(Z ))
t-1 t-2' t' t-1 t-2 t

for example, Z Z P. Then

lzt_l + + +
pt-J)

+

is called an autoregressive (AR) process of order p. The reason for

this name is that an AR model is essentially a regressive equation in

which is related to its own past values where the number of nonzero

term is finite.

If we define an autoregressive operator of order p by

(B) = 1- B B2 B
p 1 2 p

Then the autoregressive model may be written economically as

Pt

The model contains p + 2 unknown parameters p,
' 2'

o2,

which in practice have to be estimated from the data.
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The moving-average (MA) model expresses as a linear function

of the current value and q past values of a random shock series, i.e.,

Ut 't-l' t-q'
and may be written as:

0lt-1 02t-2" °qt-q

If we define a moving average operator of order q by

Oq(B) = 1 01B - 02B2 -

then the moving average model may be written economically as

= 0 (B)p
t q t

It contains q + 2 unknown parameters p, 0l 02
2 which

q p

in practice have to be estimated from the data.

In an attempt to achieve greater flexibility, one may employ

both autoregressive and moving average components within the same

model. This leads to the mixed autoregressive-moving average (ARMA)

model

or

Z Z +"+Z +p -Op -"-Op
t 1 t-1 p t-p t 1 t-1 q t-q

) (B) = 0 (B)p
p t q t

It contains p + q + 2 unknown parameters ii;
l'

;

cr2, which are estimated from the data.
p
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APPENDIX II

ESTIMATED AUTOCORRELATION FUNCTION AND
PARTIAL AUTOCORRELATION FUNCTiON

The covariance between Z and its value Zt+K separated by K

intervals of time, is called the autocovariance of lag K and is de-

fined by

COV(Zt, zt+K) = E[(z

Similarly the autocorrelation at lag K is

=
E{(Zt -

E[(Z E p) ]

E[(Z p)(Z -
t t+K

Given that the stationary process, for variance y0 is the

same at time t+K as at time t, the autocorrelation at lag K is

=

The partial autocorrelation at lag K is
KK'

and the
KK

satisfy the

set of equations
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(A.1) Klj-1
+ +

K(K-l)j-k+1
+

KKj-K' j = 1, 2, K

A number of estimates of the autocorrelation function have been sug-

gested by statisticians. It is concluded that the most satisfactory

estimate of the Kth lag autocorrelation is (Box and Jenkins, 1976)

where

CK
rK

0

N-K

CK (z Z)(Zt+K Z) K 0, 1, 2, k

is the estimate of the autocovariance
1K'

and Z is the mean of the time

series. The estimated partial autocorrelations then can be obtained

by substituting estimates r for the theoretical autocorrelations in

(A.l), to yield

r. Klr.l + K2r_2 + + K(K 1)r. K+l + KKr.K

j=l,2,"K,

and solving the resultant equations for K 1, 2, , we can then get

K=l

K-1

r
K

j=l

K-i

1 -

j=l

K = 2, 3, L

LK



where

K-1,j KK K-1,K-j j = 1, 2, K-i

129
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APPENDIX III

CO4PUTER PRINTOUT FOR THE ESTIMATED AUTOCORRELATION
AND PARTIAL AUTOCORRELATION FUNCTIONS FOR SERIES

TEG, GEG, LWP, AND AGG



IIOCOEE(LAIIOM FSHCIIOIA

DATA - 1(6

DIFFEO.EACI#G - ORIGINEL SERIES IS TOUR 0416.

DIFFEREIICES 0(3.06 ARE OF ORDER I

OSIOIMOU SERIES

4(66 OF THE SERIES .4452E04
51. 0EV. SF SERIES .2USHSL.OT

RUM036 OF OIS6004IIOAS 46

I- I? 04 .04 .14 -.14 -.37 -.44 -.40 -.23 .05 .35 .59 .69

STE. .10 .16 .38 .34 IA IS .20 .21 .21 .21 .22 .23

3- 24 .34 .32 .01 -.30 -.50 -.30 -.52 -.37 -II .13 .36 .45

USE. .25 .27 .2? .27 .27 .24 .30 .30 .31 .33 .31 .37

25- 36 .30 .34 -.07 -.32 -.44 -.55 -.50 -.36 -.15 .09 .29 .30

STE. .32 .33 .33 .33 .33 .34 .35 .35 .36 .36 .36 .34

MEAN DIVIDED 51 ST. ERROR .93434'02

TO TEST 614016(4 THIS SERIES IS UNITE ROtOR SHE VALOR .61409E.03

SHOULD SE COMFSEED VITA A (HI-SQUARE 0403601 AIIM 30 00000(0 OF FREEDOM

SIFFEREACE I

4(434 OF THE SERIES .60154E'SI
-.

51. 0(0. OF SERIES . .16084(403
404800 SF ORSEEVAIIORS - 05

4- 32 .43 .39 -.09 -.33 -.44 -.44 -.35 -.30 -.11 .23 .42 .47

SIR. .30 .37 .37 .12 .33 .35 .36 .17 .37 .17 .14 .19

3- 24 .48 .45 -.53 -.34 -.38 -.41 -.37 -.32 -.04 .37 .36 .51

STE. .23 .22 .22 .22 .23 .73 .74 .25 .23 .23 .25 .26

25- 26 .41 .14 -.03 -.24 -.75 -.35 -.26 -.23 -.11 .14 .27 .44

SIR. .27 .27 .27 .27 .20 .70 .20 .29 .2? .7S .29 .29

MESA DIVI000 59 ST. ERROR .38269E'OU

SO TESS VHEIHER SASS SERIES IS UNITE MOOSE, THE VALUE .34H43E403
SHOUlD 06 COMPARED 6116 A (NI-SQUARE VARIAOLE 6116 30 DEGREES OF FREEDOM

DIEFFREHCE 7 -

4(66 00 THE SERIES .639T5E.OU
ST. DEE. SF SERIES . - 17147(.O3

#04400 00 O)SERO6IIOAS 44

I- ID -.31 .06 -.04 -.11 -.09 -.58 .03 .13 .11 .09 -.01 .34

51. .10 .11 .11 .11 tI .12 .32 .13 .32 .17 .32 .32

33- 24 .17 -.13 .32 -.23 .03 -.16 .33 -.1? .07 .01 .04 .22

STE. .13 .33 .13 .14 .14 .14 .14 .14 .15 .35 .33 .15

25- 36 .14 -.09 .05 -.34 .03 -.36 .04 -.06 -.11 .10 -.04 .23

SIR. .15 .35 .15 .16 .36 .36 .36 .34 .36 .16 .36 .16

4(46 DIVIDES 03 SI. ERROR .334700-SI

ID JEST UHEIHES THIS IERIES N UNITE #0050. TUE VALUE .77720(407

3H0113 ft SF 11EF8VET 6316 A rII-AflIAAF 36014010 61111 tO IlFr,REES (F IRESIrIM

LII1I1tU4LU(r1717



PARTIAL AUTOCORRELATIONS

DATA - TEG

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA.

DIFFERENCES BELO1 ARE OF ORDER 1

ORIGINAL SERIES
MEAN OF THE SERIES .28452E+04

ST. 0EV. OF SERIES .29088E+03

NUMBER OF OBSERVATIONS 96

1- 12 .84 -.53 -.32 -.05 -.02 .03 .12 .12 .28 .27 .06 -.00

13- 24 -.35 -.16 .0? -.16 .0? -.06 -.05 -.12 .10 -.1? .03 .01

25- 36 -.09 .06 .07 -.06 .02 -.12 .04 -.05 -.10 .09 .09 -.05

DIFFERENCE 1

MEAN OF THE SERIES .63158E+OI

ST. 0EV. OF SERIES .16086E+03

NUMBER OF OBSERVATIONS 95

1- 12 .41 .02 -.20 -.29 -.24 -.21

13- 24 .11 -.1? .07 -.05 .08 -.03

25- 36 -.tO -.11 .01 -.01 .09 -.05

96 OBSERVATIONS

-.21 -.37 -.34 -.11 -.01 .34

.09 -.19 .13 -.05 -.06 -.03

.00 .04 -.03 -.10 -.01 .03

DIFFERENCE 2

MEAN OF THE SERIES .63830E+OO

ST. 0EV. OF SERIES .1744?Es03

NUMBER OF OBSERVATIONS 94

1- 12 -.31 -.04 -.03 -.15 -.19 -.20 -.09 -.23 -.40 -.33 -.46 -.0?

13- 24 .21 -.0? .08 -.05 .04 -.08 .16 -.18 .04 .03 -.02 .05

25- 36 .03 -.09 -.03 -.10 .08 .02 -.03 .0? .10 -.04 -.05 -.08

NJ



AUTOCORRELATION FUNCTION

DATA lEG

DIFFERENCING ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

1) 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER 1

ORIGINAL SERIES
MEAN OF THE SERIES .50000E+02

ST. 0EV. OF SERIES .15853E+03

NUMBER OF OBSERVATIONS 84

1- 12 .79 .75 .69 .67 .57 .53 .47 .39 .26

ST.E. .11 .16 .20 .23 .25 .26 .28 .29 .29

13- 24 -.06 -.14 -.19 -.29 -.30 -.33 -.36 -.41 -.34

ST.E. .30 .30 .30 .30 .30 .31 .31 .32 .32

25-36 -.36 -.34 -.28 -.25 -.24 -.25 -.1? -.16 -.17

ST.E. .34 .35 .35 .35 .35 .36 .36 .36 .36

MEAN DIVIDED BY ST. ERROR .28907E+Ol

TO TEST WHETHER THIS SERIES IS WHITE NOISE, THE VALUE .48459E+03

SHOULD BE COMPARED WITH A CHI-SQUARE VARIABLE WITH 30 DEGREES OF FREEDOM

DIFFERENCE 1

MEAN OF THE SERIES .21687E+O1

ST. DEV. OF SERIES = . 10090E+03

NUMBER OF OBSERVATIONS 83

1- 12 -.39 .01 -.08 .19 -.18 .09 .05 .12 -.17

ST.E. .11 .13 .13 .13 .13 .13 .13 .13 .13

13- 24 .14 -.05 .10 -.22 .03 -.02 .09 -.31 .25

ST.E. .14 .15 .15 .15 .15 .15 .15 .15 .16

25- 36 .01 -.12 .12 .01 .06 -.10 .03 .13 -.12

ST.E. .16 .16 .17 .17 .17 .17 .17 .17 .1?

MEAN DIVIDED BY ST. ERROR .19581E+OO

TO TEST WHETHER THIS SERIES IS WHITE NOISE, THE VALUE .66854E+02

SHOULD BE COMPARED JOIN A CHI-SIOUARE VARIABLE WITH 30 DEGREES OF FREEDOM

.19 .10 -.04

.29 .30 .30

-.36 -.37 -.37

.33 .33 .34

.14 -.09 -.04

.36 .36 .36

.07 .10 -.27

.14 .14 .14

-.o5 -.01 -.07

.16 .16 .16

.01 -.03 .09

.1? .17 .17

96 OBSERVATIONS

L)



PARTIAL AUTOCORRELATIONS

DATA - TEG

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

1) 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER 1

ORIGINAL SERIES
MEAN OF THE SERIES .50OOOEO2
ST. DEV. OF SERIES .15853E+03

NUMBER OF OBSERVATIONS 84

1- 12 .79 .31 .10 .12 -.15 .01 -.03 -.15 -.25 -.0? -.12 -.27

13- 24 .1? -.07 .03 -.06 .06 .10 .02 -.09 .19 -.01 -.14 -.09

25- 36 -.13 -.03 .18 -.16 -.10 -.03 .03 .02 -.02 -.07 .08 .16

DIFFERENCE I

MEAN OF THE SERIES .21687E+O1

ST. DEV. OF SERIES .1009OE+03

NUMBER OF OBSERVATIONS 83

1- 12 -.39 -.17 -.16 .12 -.07 .01 .11 .20 .01 .01 .14 -.27

13- 24 -.03 -.13 -.02 -.15 -.22 -.13 .01 -.22 -.03 .09 .09 .10

25- 36 -.00 -.20 .08 .03 -.04 -.06 -.03 .05 .03 -.08 -.17 -.10

96 OBSERVATIONS



*UIOCORRELAIION 0014C11044

0.670 - 50.5

001650140 - 20401041 01R315 0 oouo 0o7&.

DIFFERER500 8(106 ORE OF OROER I

ORIGINAl. 518(10
44064 09 7(40 5014415 .700'OF*OS
SI. DES. SF SERIES .56201601
NGTAEA SF 08O(RVIIIOMS . 56

I- 2 .00 .74 .55 .35 .21 .14 .46 .24 .37

STE. .10 .46 .20 .21 .32 .22 .22 .22 .22

3. 34 .54 .47 .34 .04 .03 -.02 -.04 .04 .47

ST.R. .27 .20 .29 .30 .30 .30 .30 .30 .30

25- 36 .34 .24 .07 -.05 -.44 -.49 -.45 -.09 .04

TIE. .74 .34 .32 .32 .32 .32 .32 .32 .32

MEAN DIVIDED RI SI. ERROR .729351602

343 lEST 04404414 14445 5(14311 IS 66411 4301. SITE VALOR .4742(4(603

STIllED 80 004410410 9416 A 004-SQUARE 04R14811 639)4 35 DEEREES SF FORFEIT

DIFIEREACE I

44(66 SE 14)0 SERIES .326320.04
ST. DES. OF SERIES .43077(601
TURRET OF OPSEAVAIIOMS 53

I- 2 .25 .2! -.04 -.24 -.44 -.30 -.36 -.33 -.04

01.0. .40 .9! .11 .11 .42 .I3 .45 .46 .16

3- 04 .29 .22 -.04 -.27 -.35 -.3! -.25 -.0! .07

S1.E. .49 .20 .20 .20 .20 .04 .24 .20 .22

35- 36 .30 .14 -.08 -.48 -.22 -.33 -.44 -.44 .03

STE. .20 .23 .03 .73 .24 .74 .24 .24 .24

8484 0430310 9! ST. ROOST .73635(600

10 3(51 00(1616 14400 5(141(0 00 60490 #3030, 1410 44150 .263521.03

044001.0 RE 059164(0 60444 C14I-SOUARE VARITIIE VITA 30 5150115 OF FE0151R

DIFFERENCE 2

0(46 01 34)1 500(60 -.551010'OS
SI. DEl. OF SERIES .526021.02
60444(4 OF UTE(RUAII080 94

4- 0 -.49 .17 .02 -.02 -.443 -.94 .00 -.06 -.03

43.0. .10 .13 .13 .10 .13 .13 .43 .43 .93

Ii- 24 -.42 .13 -.00 -II -.50 .DI .00 -.16 .90

54.0. .34 .91 .1, II .14 .18 .04 .14 .14

75- 36 .12 .02 -.06 -.04 .05 -.1? .08 -.00 .05

5T.F. .44 .14 .44 .14 .14 .14 .45 .95 .15

$4646 DTVI3SD II SI. ERROR .976631-01

0 115? 9I4EIEFR 1615 SERIES 5 44Il5 NOISE, 441 03151 .5)071102
II)) FSI-SII)RRE 06916614 91141 55 01041(0 OF RA1000IT

.5) .60 .65
.23 .24 .76

.27 .34 .36

.30 .30 .31

.00 .46 .1?
.3? .3? .33

.74 .34 .57
.40 .17 .11

.7! .23 .22

.22 .27 .22

.11 .36 .05

.25 .25 .25

.90 -.00 .2'

.13 .13 .43

.07 -.06 .04

.14 .14 .14

.07 -.10 .04

.15 .15 .13

(1'3'Li10'ThIfl1I5

L1



PARTIAL AUIOCORRELATIONS

DATA - LEG

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA.

DIFFERENCES BELOW ARE OF ORDER I

ORIGINAL SERIES

MEAN OF THE SERIES .?90?3E+03

ST. 0EV. OF SERIES .10620E+03

NUMBER OF OBSERVATIONS = 96

1- 12 .90 -.30 -.2? -.06

13- 24 -.26 -.02 -.09 -.02

25- 36 -.05 -.10 -.04 .06

DIFFERENCE 1

MEAN OF THE SERIES .32632E+O1

ST. 0EV. OF SERIES = .4307?E+02
NUMBER OF OBSERVATIONS 95

.15 .28 .21 .16 .12 .10 .01 -.01

.14 -.06 -.01 -.06 .08 -.14 .02 .04

.01 -.04 .12 -.11 -.02 -.00 .05 .12

1- 12 .25 .15 -.10 -.2? -.3? -.38 -.24 -.22 -.19 -.09 -.12 .12

13- 24 -.07 -.01 -.09 -.18 -.11 .08 .10 -.08 -.00 -.01 -.10 -.06

25- 36 .14 .09 .00 .01 .09 -.06 .05 -.00 -.03 -.03 -.12 .10

DIFFERENCE 2

MEAN OF THE SERIES -.5319IE+O0

ST. 0EV. OF SERIES .52802E+02

NUMBER IF OBSERVATIONS 94

I- 12 -.48 -.14 .03 .02 -.14 -.31 -.27 -.25 -.2? -.16 -.2? .04

13- 24 -.01 .05 .11 -.03 -.16 -.08 .11 -.00 .02 .0? -.02 -.16

25- 36 -.02 .10 .0? -.01 .10 -.0? -.02 .00 -.00 .0? -.13 .04

96 OBSERVATIONS



AUTOCORREIATION FUNCTION

DATA - CEO

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

1) 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER I

ORIGINAL SERIES
MEAN OF THE SERIES = .35476E+02

ST. DEV. OF SERIES .41098EF02

NUMBER OF OBSERVATIONS 84

1- 12 .52 .29 .19 .08 -.09 -.04 .06 .04 -.00

ST.E. .11 .14 .14 .15 .15 .15 .15 .15 .15

13- 24 -.11 .01 .06 .10 .21 .27 .12 .06 .07

ST.E. .15 .15 .15 .15 .15 .16 .16 .16 .16

25- 36 -.03 -.12 -.14 -.07 -.04 -.12 -.04 -.07 -.10
ST.E. .17 .17 .17 .17 .17 .17 .17 .17 .17

MEAN DIVIDED BY ST. ERROR .79114E+01

TO TEST UHETHER THIS SERIES IS WHITE NOISE, THE VALUE .70096E02
SHOULD BE COMPARED WITH A CHI-SQUARE VARIABLE WITH 30 DEGREES OF FREEDOM

DIFFERENCE I

MEAN OF THE SERIES .15663E+01

ST. 0EV. OF SERIES .39162E402

NUMBER OF OBSERVATIONS 83

1- 12 -.29 -.10 .03 .06 -.21 -.09 .14 .08 -.17

ST.E. .11 .12 .12 .12 .12 .12 .13 .13 .13

13- 24 -.04 .04 -.01 -.08 -.00 .23 -.05 -.10 .14

ST.E. .14 .14 .14 .14 .15 .15 .15 .15 .15

25- 36 .24 -.09 -.08 .05 .13 -.13 .05 .01 .04

ST.E. .16 .16 .16 .16 .16 .16 .16 .16 .16

MEAN DIVIDED BY ST. ERROR .36436E+O0

TO TEST WHETHER THIS SERIES IS WHITE NOISE, THE VALUE .62927E+02

SHOULD BE COMPARED WITH A CHI-SOUARE VARIABLE WITH 30 DEGREES OF FREEI'OM

.09 .05 -.21

.15 .15 .15

-.03 -.11 -.14

.16 .16 .16

-.15 -.04 .05
.17 .17 .17

.13 22 -.31

.13 .13 .14

.00 -.05 -.21

.15 .15 .15

-.16 -.01 .09
.16 .17 .17

96 OBSERVATIONS



PARTIAL AUTOCORRELATIONS

DATA - GEG

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

I) 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER 1

ORIGINAL SERIES

MEAN OF THE SERIES .35476E+02

ST. 0EV. OF SERIES = .41098E+02

NUMBER OF OBSERVATIONS = 84

1- 12 .52 .03 .03 -.06 -.16

13- 24 .17 .11 .09 .05 .03

25- 36 .16 -.12 -.04 .04 .01

DIFFERENCE 1

MEAN OF THE SERIES .15663E#O1

ST. 0EV. OF SERIES .39162E+02

NUMBER OF OBSERVATIONS 83

.0? .12 -.02 -.06 .11 -.06 -.30

.13 -.08 -.03 .01 .00 -.04 -.26

.04 -.04 -.15 -.03 -.05 .06 -.02

1- 12 -.29 -.20 -.08 .03 -.21 -.26 -.06 .07 -.12 .01 .22 -.17

13- 24 -.13 -.12 -.11 -.04 -.13 .02 .02 -.03 .02 .04 .18 -.21

25- 36 .09 -.07 -.10 -.03 -.08 -.03 .10 -.00 .04 -.04 -.01 -.17

96 OBSERVATIONS

co



8T0O6kt10lI0H FIJIltrIOR

DATA - LAP

DIFFERE#CIN6 - ORIGINAL SERIES IS (004 36(4.

PIFF(REHCES 9(106 ARE 01 ORDER

0(1011041 SERTES

4(60 OF SHE SEEI(S .64229('03

ST. 0EV. 01 SESIS .020301.03

HUNTER OF 005EPV6TIOHS 96

T- 2 .00 .45 .11 -.T3 -.28 -.35 .34 -.22 -.02 .21 .50 .64

ST.(. .10 .15 .11 .37 .57 .T7 .19 .10 .10 .1? II .20

2-24 .20 .24 -.05 -.27 -.42 -.48 -.50 -.40 -.73 .03 .21 .40

01.6. .23 .24 .24 .24 .54 .25 .76 .21 .28 .28 .74 .29

25. 30 .33 .10 -.13 -.31 -.42 43 -.46 -36 3( .04 .26 .40

51.6. .29 .2? .29 .20 .30 .30 .31 .32 .32 .32 .32 .32

HEA# 050(0(8 PT ST. (490 .523031.02

TO VEST 011(10(0 THIS SCAlES IS 64006 NOISE, SHE VALUE .476536'S!
SHOULD RE (OIIPAREO 60TH A CHT-50000E VARIAPIE 50TH 30 lESSEES OF FREROUM

DIFR0011I( I

4(64 03 (41 lEVIES .IOS9OE'Ol

ST. DIV. OF SECIES .7324O(02
404815 OF 085RU4TIO#S . 55

I- I? .43 -.04 -.25 -.25 -.23 -.60 -.20 -.10 -.21 -.04 .33 .67
59.1. II .02 .52 .33 .33 .34 .14 .14 .34 .55 .05 .03

53- 24 .45 .00 -.3? -.TM -.23 -.08 -IS -.22 -.18 -.00 .26 .55
03.6. .IR .0? .09 .20 .20 .20 .20 .20 .21 .21 .23 .23

25- 30 .41 .53 -.18 -.17 -.36 -.10 -.39 -.17 -.18 -.00 .18 .44

02.6. .23 .23 .23 .23 .24 .24 .24 .24 .24 .21 .24 .24

4(44 91010(9 80 ST. 9009 .23834E'OO

TO 0(01 UHEIHER THIS SERIES 55 UHITE NOISE. THE VALUE .254S2E'03
SHOULD SO (041*6(0 65TH 4 (40-5006(0 086(8016 AITH 30 0105(65 OF FRR020Il

DIFFSRE4C( 2 -

4(64 01 TAO SERTSS . .931061.00

50. lEO. OF SERIES .770525.0?
NOSIER 01 ORSERVITIONT 44

I- T2 -.00 - .23 -.67 -.02 -.03 .06 -.03 .02 -.15 -.21 .03 .53

ST_I. .30 .10 .11 .11 .33 .00 .11 .11 .35 .53 .6? .0?

3- 24 .57 -.19 -.36 .00 -.06 .05 .00 -.07 -.53 -.00 -.00 .14

ST.!. .14 .34 .54 .15 .15 .53 .35 .95 .10 .15 .15 .35

25- 36 .20 -.94 -.65 -.03 .01 .01 -.03 .02 -.17 -.03 -.00 .31

STE. .66 .54 .16 .20 .16 .34 .60 .T0 .10 .37 .17 .07

8(96 31105(0 51 ST. ERROR .10591(00

10 1(01 UHEIHES THIS SERIES IS 6011IE NOISE. (41 01126 .9570(0.02
SHOULD 5 (O9FAEO OlIH A CHI-501JAFE VIHIATLE OlIN 30 REGREtS OF 19(1074

Ill 111 W1SIJL].i



PARTIAL AUTOCORRELATIONS

DATA - LWP

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA.

DIFFERENCES BELOW ARE OF ORDER I

ORIGINAL SERIES
MEAN OF THE SERIES .64229E+O3
ST. DEV. OF SERIES .12030E+03
NUMBER OF OBSERVATIONS = 96

1- 12 .80 -.56 .01 -.10 -.11 -.06 -.02 .18 .09

13- 24 -.37 -.10 .02 -.12 -.11 -.01 -.14 -.01 -.04

25- 36 -.16 -.05 .03 -.03 -.03 -.00 .07 -.10 -.05

DIFFERENCE 1

MEAN OF THE SERIES .17895E+O1
ST. DEV. OF SERIES .73240E+02
NUMBER OF OBSERVATIONS 95

.33 .25 -.02

.01 -.04 .01

.12 -.02 .07

1- 12 .43 -.30 -.12 -.11 -.17 -.13 -.25 -.23 -.39 -.27 .06

13- 24 .04 -.08 .07 .09 -.03 .03 -.03 -.11 -.02 .05 -.05

25- 36 -.01 -.07 -.05 .00 .00 -.05 -.03 .06 -.11 .03 -.12

DIFFERENCE 2

MEAN OF THE SERIES .85106E+OO
ST. DEV. OF SERIES .77852E+02
NUMBER OF OBSERVATIONS 94

1- 12 -.08 -.24 -.23 -.14 -.17 -.07 -.13 -.07 -.26 -.43 -.45

13- 24 .12 -.02 -.02 .10 -.01 .06 .07 -.07 -.10 .01 -.08

25- 36 .09 .04 -.02 .01 .07 .01 -.07 .10 -.05 .08 -.12

.36

.09

.06

.04

.01

.04

96 OBSERVATIONS



AUTOCORRELATION FUNCTION

DATA - LUP

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

I) 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER 1

ORIGINAL SERIES
MEAN OF THE SERIES . 15476E+02

ST. DEV. OF SERIES .81422E+02

NUMBER OF OBSERVATIONS = 84

1- 12 .84 .74 .67 .57 .49 .40 .31 .24 .15 .06

ST.E. .11 .1? .20 .23 .25 .26 .26 .27 .27 .27

13- 24 -.14 -.18 -.25 -.31 -.35 -.36 -.37 -.41 -.41 -.42

ST.E. .2? .27 .28 .28 .28 .2? .29 .30 .30 .31

25- 36 -.42 -.42 -.37 -.32 -.30 -.32 -.30 -.24 -.17 -.10

ST.E. .33 .34 .34 .35 .35 .36 .36 .36 .36 .36

MEAN DIVIDED BY ST. ERROR .17421E+O1

TO TEST WHETHER THIS SERIES IS WHITE NOISE, THE VALUE .50284E03

SHOULD BE COMPARED WITH A CHI-SQUARE VARIABLE WITH 30 DEGREES OF FREEDOM

DIFFERENCE 1

MEAN OF THE SERIES .84337E+00

ST. 0EV. OF SERIES .45581E+02

NUMBER OF OBSERVATIONS = 83

1- 12 -.1? -.08 .04 -.04 .02 .01 -.05 .07 -.01

ST.E. .11 .11 .11 .11 .11 .11 .11 .11 .11

13- 24 .15 .08 .03 -.08 -.11 .01 .10 -.08 -.01

ST.E. .13 .14 .14 .14 .14 .14 .14 .14 .14

25- 36 -.01 -.13 -.00 .09 .15 -.15 -.13 .00 -.05
ST.E. .14 .14 .14 .14 .14 .14 .15 .15 .15

MEAN DIVIDED BY ST. ERROR .16857E+O0

TO TEST UHETHER THIS SERIES IS WHITE NOISE, THE VALUE .41265E02
SHOULD BE COMPARED WITH A CHI-SQUARE VARIABLE WITH 30 DEGREES OF FREEDOM

-.02 -.14

.2? .2?

-.44 -.42

.32 .33

-.03 .03
.36 .36

-.06 .15 -.41

.11 .12 .12

.02 -.11 .06

.14 .14 .14

.01 .05 .10

.15 .15 .15

96 OBSERVATIONS



PARTIAL AUTOCORRELATIONS

DATA - LUP

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

1). 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER I

ORIGINAL SERIES

MEAN OF THE SERIES .15476E+02

ST. 0EV. OF SERIES .81422E+02

NUMBER OF OBSERVATIONS = 84

1- 12 .84 .11 .06 -.08 -.02 -.07 -.06 -.01 -.l1 -.08 -.05 -.25

13- 24 .31 -.13 -.08 -.20 .03 .07 -.05 -.10 -.07 -.08 -.03 -.05

25- 36 .07 -.16 .11 -.09 -.03 -.23 .09 .02 .10 .05 .03 -.05

DIFFERENCE I

MEAN OF THE SERIES .84337E+OO

ST. 0EV. OF SERIES = .45581E+02

NUMBER OF OBSERVATIONS 83

1- 12 -.17 -.12 .00 -.05 .01 .00 -.05 .05 .00 -.05 .13 -.39

13- 24 .07 .02 .11 -.10 -.15 -.02 .05 -.03 -.02 -.09 -.03 -.18

25- 36 .09 -.17 .02 -.03 .15 -.18 -.05 -.18 -.11 -.10 .04 .04

96 OBSERVATIONS

I-



*UI000ENELHIION EU4CIISI1

9418 - RUG

DIRFESENcINS - ORISIlIVI SERIES IS IOU? DCIA.

SIEFERENCES JELOU ARE Or 001RR I

581018161 SERIES

HECK OF IRE SERIES .30R75(O3
SI. SE!. OF SERIES .HOi9H0.02

804814 SF ONSERVATIOWS 96

I- 7 .R0 .45 .04 -.24 -.45 -.53 -.42 -.24 .06 .41 .70 .96

SI.E. *0 .15 .17 .17 .57 .14 .20 .11 .21 .7* .22 .24

3- 21 .6? .37 -.00 -.2? -.44 -.50 -.40 -.20 .01 .31 .06 .6?

ST.!. .27 .29 .2? .7? .30 .30 .3* .37 .32 .37 .32 .33

22- 36 .04 .27 -.06 -.33 -.83 -.44 -.38 -.25 -.03 .2* .42 .0*

SI.!. .35 .36 .36 .36 .36 .37 .37 .38 .34 .18 .1? .14

8(08 DIVIDED 8* SI. EERIE .4456HE,02

13 lEST CHOICES ONES StAlES IS Veil! NOISE, ICE VALUE .71317E'03

SHOULD It CSHF#E(D 11116 N ClIl-S05600 08818810 CISC 30 0060EES OF EREETO?

DIFFERENCE I

CECIl OF III! SERIES -.SS750E.5O

SI. SE!. OF SERIES .37249E.02

469818 SF OISERUKIISNS 95

I- II .40 .17 -.89 -.37 -.22 -.51 -.2* -.35 -.17 .54 .36 .89

SI.!. .10 .10 .12 .12 .14 *4 IN .16 .1? .87 .87 .18

3- 24 .39 .16 -.17 -.33 -.20 -.45 -.1? -.30 -.13 .11 .32 .74

01.!. .27 .23 .23 .23 .23 .28 .24 .25 .25 .22 .75 .26

25- 36 .33 .14 -IC - .27 -.18 -.37 -.6 -.25 -.10 .09 .27 .6*

51.!. .28 .28 .28 .28 .2? .7? .1? .28 .30 .30 .30 .30

MEAN DIVIDE) II SI. ERRS? .18593E.O0

ST TEST CHOICER THIS SERIES IS CVII! NOISE. ICE VALUE .413501'03

SHOULD RE COMPARER CISC N CND.SOUAAE VARIAIIE 16114 30 016I1EES SI REEEDOM

)IFFERENCE 2

4(44 SF ICE SERiES .- .273400.00

SI. REV. SF SERIES .4041/0.02

809808 SE OISESVAIIONS 94

I- 12 -.30 .10 -.15 -.24 .78 -.50 .17 -.24 -.11 .07 -.25 .45

El.!. .10 .11 .1* .12 .12 .13 .15 .14 .17 .17 .17 .17

Ii- 24 -.23 .08 -.14 -.24 .00 -.42 .3* -.23 -.01 .0? -.1? .70

S1.E. .2* .2* .21 .72 .72 .22 .03 .24 .24 .24 .28 .74

25- 36 -.58 .04 -.15 -.15 .716 -.34 .25 -.20 -.01 .07 -.15 .57

SI.E. .26 .24 .26 .26 .76 .27 .27 .77 .78 .24 .29 .28

4EHN 91011(8 8* 51. ERRS? .521R7E-Ol

IS TEST 4051945 THIS SERIES IS VOIlE NOISE. THE VOIlE .3A2270'13

S00!I S CF CUAFARIS UTIA A CHI-SOIJARE VAHIARUE 111TH 39 DESREES OF EREEDOR

L1,It1IVf'I4JLS



PARTIAL AUTOCORRELATIONS

DATA - AGO

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA.

DIFFERENCES BELOU ARE OF ORDER 1

ORIGINAL SERIES
MEAN OF THE SERIES .39670E+03

ST. 0EV. OF SERIES .60386E+02

NUMBER OF OBSERVATIONS = 96

1- 12 .80 -.52 -.34 -.01 -.01 -.30 .31 -.12 .39 .43 .31 .18

13- 24 -.44 .17 .20 -.09 .00 -.16 -.07 -.04 -.04 -.09 -.03 -.10

25- 36 -.08 .01 .07 -.05 -.03 .00 -.00 .05 -.04 -.07 -.12 -.01

DIFFERENCE I

MEAN OF THE SERIES =-.55789E+O0

ST. 0EV. OF SERIES .3?288E+02

NUMBER OF OBSERVATIONS 95

1- 12 .40 .01 -.32 -.25 .10 -.58 .04 -.53 -.41 -.25 .09 .54

13- 24 -.26 -.23 .15 .05 -.06 .11 -.02 .02 .15 -.09 .06 -.01

25- 36 -.06 .05 .04 -.03 .05 .03 -.02 .07 .02 .07 -.12 -.05

DIFFERENCE 2

MEAN OF THE SERIES =-.22340E+00
ST. 0EV. OF SERIES = .40877E+02

NUMBER OF OBSERVATIONS 94

I- 12 -.30 .01 -.13 -.40 .24 -.47 .09 -.28 -.41 -.52 -.64 .20

13- 24 .11 -.23 -.11 .02 -.14 .00 -.04 -.13 .10 -.06 .01 .05

25- 36 -.05 -.05 .03 -.04 -.04 .03 -.05 -.01 -.04 .14 .01 -.05

96 OBSERVATIONS



AUTOCORRELATION FUNCTION

DATA - AGO

DIFFERENCINO - ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

I) 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER 1

ORIGINAL SERIES
MEAN OF THE SERIES =-.84167E+O1
ST. DEV. OF SERIES .10265E-f02

NUMBER OF OBSERVATIONS 84

I- 12 .65 .4? .35 .34 .40 .36 .40 .40 .41

ST.E. .11 .15 .17 .17 .18 .19 .20 .21 .22

13- 24 .24 .24 .23 .16 .09 .05 .08 .12 .14

ST.E. .24 .24 .25 .25 .25 .25 .25 .25 .25

25- 36 .01 -.03 -.12 -.04 .01 -.04 -.07 -.13 -.14

ST.E. .25 .25 .25 .25 .25 .25 .25 .26 .26

MEAN DIVIDED BY ST. ERROR .75151E+0

TO TEST WHETHER THIS SERIES IS WHITE NOISE. THE VALUE .20923E+03

SHOULD BE COMPARED WITH A CHI-SQUARE VARIABLE WITH 30 DEGREES OF FREEDOM

DIFFERENCE I

MEAN OF THE SERIES .84337E-01

ST. DEV. OF SERIES .83712Es01

NUMBER OF OBSERVATIONS = 83

1- 12 -.22 -.14 -.13 -.04 .15 -.10 -.04 .02 .05

ST.E. .11 .11 .12 .12 .12 .12 .12 .12 .12

13- 24 .05 .01 .10 .03 -.06 -.12 -.02 .06 .08

ST.E. .13 .13 .13 .13 .13 .13 .13 .13 .13

25- 36 .02 .07 -.26 .04 .19 -.06 .01 -.07 -.01

ST.E. .13 .13 .13 .14 .14 .14 .14 .14 .14

MEAN DIVIDED BY ST. ERROR .91?85E-01

TO TEST WHETHER THIS SERIES IS WHITE NOISE, THE VALUE .37389E+02

SHOULD BE COMFARED WITH A CHI-SQUARE VARIABLE WITH 30 DEGREES OF FREEDOM

.38 .29 .21

.23 .23 .24

.09 .12 .06

.25 .25 .25

-.15 -.18 -.15

.26 .26 .26

.12 -.03 -.16

.12 .12 .12

-.14 .10 .05

.13 .13 .13

.11 -.10 -.01

.14 14 .15

96 OBSERVATIONS

U,



PARTIAL AUTOCORRELATIONS

DATA - AG6

DIFFERENCING - ORIGINAL SERIES IS YOUR DATA DIFFERENCED BY

1) 1 OF ORDER 12

DIFFERENCES BELOW ARE OF ORDER 1

ORIGINAL SERIES
MEAN OF THE SERIES =-.84167EOl
ST. 0EV. OF SERIES .10265E+02

NUMBER OF OBSERVATIONS 84

1-12 .65 .08 .04 .14 .20 -.01 .18 .09 .08 .03 -.09 -.10

13- 24 .10 -.05 -.04 -.09 -.12 -.10 .07 .04 .07 -.05 .11 -.08

25- 36 -.01 -.03 -.14 .08 .05 -.20 -.00 -.02 -.10 -.03 -.03 -.00

DIFFERENCE I

MEAN OF THE SERIES .84337E-01

ST. 0EV. OF SERIES .83712E+O1

NUMBER OF OBSERVATIONS 83

1- 12 -.22 -.20 -.23 -.19 .02 -.14 -.12 -.06 -.01 .10 .08 -.10

13- 24 .03 -.00 .07 .12 .08 -.11 -.09 -.05 .03 -.12 .05 .03

25- 36 .02 .13 -.10 -.02 .22 -.04 .01 .07 -.05 .04 -.00 -.11

96 OBSERVATIONS

C..
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APPENDIX IV

SIX TYPES OF GOODNESS-OF-FIT MEASURES

The definitions ofttsiX types of goodness-of-fit measures employed are:

T

E (Y -

1) Correlation coefficient (R)
T -

I z (Y (y - 4

)
2

Lt=i
t1 t

2) = regression coefficient of actual on predicd value

Yt +
l t

+ E

if Oand 1, then is equal to Yt for all t.

T

3) Mean Error (ME) 4
- y

t=l

The mean error can be misleading. Large positive and

negative errors offset each other and bias the mean

error downward.

T

4) Mean Absolute Error (MAE) = 4 Y
t=1

The mean absolute error is not subject to the bias asso-

ciated with the mean error.

5) Root-Mean-Square Error (ENSE) 2
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This measure is more frequently used in the literature.

It weights large errors more than the mean absolute

error.

6) Theil's Inequality Coefficient (U)

Yi
iT
;j y)2

t=1

0 <U<°

For perfect forecasting, i.e., when for all periods,

U= 0.

The Theil inequality coefficient can be decomposed into three

parts, each reflecting a different type of error.

( Y)2
U(Bias) =

t1t - Y)2

U(Variation) =

U(Covariation) =

(S - S)2

T

t=1

2(1 - r)S.S

T

s = (Y - Y)
Y

T -
S =E (Y -Y)2

t=1



And
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U(Bias) + U(Variation) + U(Covariation) = 1

where

T = the number of forecast periods,.

= the predicted level of the variable at time period t,

= the actual level of the variable at time period t.

The first part is zero only when the means of actual and pre-

dicted variables are equal. Errors that lead to a positive value

for this part can be interpreted as a bias or central tendency error.

The second part is zero only when standard deviations of actual and

predicted variables are equal. A positive value for this part can

be interpreted as error due to different variation. The third part

is zero only when the correlation coefficient between predicted and

actual values is one. Therefore, a positive value for this part

can be interpreted as an error due to different covariation.




