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Cometabolic biodegradation processes are potentially useful for the 

bioremediation of hazardous waste sites. In this study the potential application of phenol-

oxidizing and nitrifying bacteria as "priming biocatalysts" was examined in the 

degradation of polycyclic aromatic hydrocarbons (PAHs), aryl ethers, and aromatic 

ethers. We observed that a phenol-oxidizing Pseudomonas strain cometabolically 

degrades a range of 2- and 3-ringed PAHs. A sequencing batch reactor (SBR) was used to 

overcome the competitive effects between two substrates and the SBR was evaluated as a 

alternative technology to treat mixed contaminants including phenol and PAHs. We also 

have demonstrated that the nitrifying bacterium Nitrosomonas europaea can 

cometabolically degrade a wide range polycyclic aromatic hydrocarbons (PAHs), aryl 

ethers and aromatic ethers including naphthalene, acenaphthene, diphenyl ether, 

dibenzofuran, dibenzo-p-dioxin, and anisole. Our results indicated that all the compounds 

are transformed by N. europaea and that several unusual reactions are involved in these 

reactions. In the case of naphthalene oxidation, N. europaea generated predominantly 2­

naphthol whereas other monooxygenases generate 1-naphthol as the major product. In the 

case of dibenzofuran oxidation, 3-hydroxydibenzofuran initially accumulated in the 

reaction medium and was then further transformed to 3-hydroxy nitrodibenzofuran in a 
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pH- and nitrite-dependent abiotic reaction. A similar abiotic transformation reaction also 

was observed with other hydroxylated aryl ethers and PAHs. We also characterized the 

role of AMO in the degradation of aromatic ethers. Our results indicated that aromatic 

ethers including anisole were transformed by both 0-dealkylation or hydroxylation 

reactions. This research has led to the development of a rapid colorimetric assay to detect 

AMO activity. 
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Cometabolic Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) and
 
Aromatic Ethers by Phenol- and Ammonia-Oxidizing Bacteria
 

Chapter 1 

Introduction 

This dissertation contains four manuscripts dealing with the cometabolic 

degradation of aromatic and polycyclic aromatic hydrocarbons (PAHs) by phenol 

utilizing bacteria Pseudomonas strain and nitrifying bacterium Nitrosomonas europaea. 

Initially, We were concerned with developing treatment technology to reduce the 

concentration of PAHs found in the waste water from a coking plant operated by Pohang 

Iron and Steel Company (POSCO) in South Korea. In general PAHs are relatively stable 

and recalcitrant in soils and groundwater and less degradable than many other organic 

compounds in contaminant environments. The characterization of using phenol-oxidizing 

bacteria to degrade PAHs was conducted and potential application of Sequencing Batch 

Reactor (SBR) as an alternative technology was evaluated. However, we also noticed the 

presence of NH3 in the POSCO wastewater steam. As a next step, the nitrifying bacteria, 

Nitrosomonas europaea which is a widely distributed in soil, water, and sewage, are 

examined for the potential application as "priming catalysts" in the bioremediation of 

chemical pollution. Nitrifying bacterium can cometabolize a large number of non-growth 

supporting substrates using the catalytic activity of their respective monooxygenases. If 

these organisms could be used in bioremediation schemes, it is important to understand 

the contamination ranges a meanable to biodegradation and the limitation of the 
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technology. The things must be considered that aryl ethers including dibenzofuran 

(DBF), dibenzodioxin (DD), and other lignin compounds are often present in complex 

mixtures with PAHs. The problems of the PAHs and other related compounds are 

expanded by the wide spread use and accidental release of coal and petrochemicals for 

industrial processes. The second manuscript examines the PAHs degradation by nitrifying 

bacterium N. europaea. The kinetics of cometabolic degradation, substrate ranges ofN. 

europaea, and potential toxic effects of cosubstrate are determined. As described in 

previously, the results of second manuscripts addressed the examination of related 

compounds with PAHs. Many of polyaromatic ether-bonded compounds are toxic and 

known to resist to biological degradation. The third manuscript examine the degradation 

of aryl ethers including dibenzofuran (DBF) and dibenzo-p-dioxin (DD) by N. europaea. 

In this study, biological transformations of aryl ethers are characterized and also abiotic 

reaction following the biological transformation is discussed. The fourth manuscript 

describes the transformation of aromatic ethers including anisole by N. europaea, 

presenting AMO activity for substrates through 0-dealkylation and hydroxylation 

reactions. Colorimetric assay to detect ammonia monooxygenase activity (AMO) was 

examined for the potential applications. 
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ABSTRACT 

A phenol-oxidizing Pseudomonas strain was isolated from an activated-sludge­

treated coking-plant wastewater. Batch experiments demonstrated that the phenol-

oxidizing organism was capable of cometabolically degrading 2- and 3-ringed polycyclic 

aromatic hydrocarbons including naphthalene, 2-methyl naphthalene and anthracene 

similar to other fungal and bacterial systems. The Pseudomonas sp. generated 1-naphthol 

as the major product of naphthalene oxidation (> 90 % conversion). In batch cultures the 

removal efficiencies of naphthalene were over 90 % and 69.7 % with and without acetate 

additions, respectively. Based on batch experiments, a sequencing batch reactor (SBR) 

was proposed as a alternative system to minimize competitive inhibition between phenol 

and PAHs. A SBR achieved a removal efficiency of 98 % and a transformation yield of 0. 

056 mg naphthalene transformed/mg phenol utilized, as compared to 57 % and 0.022 mg 

naphthalene/mg phenol utilized, respectively, for a continuously stirred tank reactor 

(CSTR). Naphthalene, 2-methyl naphthalene and anthracene are degraded simultaneously, 

although anthracene slightly inhibits degradation of naphthalene and 2-methyl 

naphthalene in the SBR. 
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INTRODUCTION 

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental 

pollutants. The main anthropogenic sources of PAHs are processes such as petroleum 

processing and coal coking which involve the pyrolysis of organic compounds (37). 

Remediation of previous PAH contamination and prevention of further releases of PAHs 

into the environment is important because of their varied toxic, carcinogenic, and 

mutagenic properties (14). Currently 16 PAHs are listed as Priority Pollutants by the 

United States Environmental Protection Agency (27). Recent studies have shown that 

microbiological degradation of PAHs is the major removal process from contaminated 

environments, although other mechanisms such as volatilization, leaching, and 

photodegradation may be important (6). 

Studies of the microbial degradation of PAHs have demonstrated that many 

species of bacteria (7, 34, 38, 39, 41) and fungi (15) are capable of oxidizing PAHs. In 

some instances PAHs are fully metabolized and used as carbon and energy sources for 

growth (5, 34). In other instances PAHs are transformed by microorganisms growing on 

other carbon and energy sources and in these cases the products ofthe PAH oxidation 

reactions are not further assimilated by the microorganism. This latter process is most 

commonly known as co-metabolism. The initial reactions in both the aerobic metabolism 

and co-metabolism of PAHs are catalyzed by a variety of oxygenase-type enzymes which 

generate mono- and di-hydroxylated products, respectively (8, 39). The microbial 

detoxification of PAHs through mineralization is often limited by the low solubility and 

bioavailability of these compounds. To overcome this limitation it has been suggested 

that the partial degradation of PAHs through simple oxygenase-catalyzed hydroxylation 
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reactions could increase the availability of PAHs which would then be expected to lead to 

substantially increased rates of PAH mineralization (7, 38, 39). 

In the present study we have been concerned with developing methods which 

allow for the reduction in concentrations of PAHs found in the waste water stream from a 

coking plant operated by Pohang Iron and Steel Company (Pohang, South Korea) 

(POSCO). This coking plant is used to generate coke for steel manufacturing and the 

waste stream from the coking process contains high concentrations of phenol (400 mg/L), 

ammonia (25 mg/L), and a variety of PAHs. This study describes the PAH co­

metabolizing activity of a phenol-oxidizing pseudomonad isolated from activated sludge 

at the coking plant wastewater treatment facility. Our results demonstrate that this 

organism is capable of rapidly co-metabolizing a variety of PAHs and this process has 

been characterized in a variety of reactor configurations. Our results suggest that the 

activities of this phenol-oxidizing bacterium could be utilized to decrease the current 

levels of PAHs found in the waste water from the coking process. 
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MATERIALS AND METHODS 

Materials 

PAHs were purchased from Aldrich Chemical Co. (Milwaukee, WI). Solvents and 

other reagents were commercial products of the highest purity available. Stock solution of 

naphthalene, 2-methyl naphthalene, acenaphthalene, and fluorene were prepared at 10 

mg/ml in methanol; anthracene, phenanthrene, fluoranthene, and pyrene were prepared at 

1 mg/ml in methanol. 

Organisms and Growth Conditions 

The phenol-utilizing bacterium utilized in this study, Pseudomonas TM, was 

isolated from an aerobic enrichment culture established using activated sludge from 

Pohang Iron and Steel Co. (POSCO). The initial enrichment was conducted in a 

chemostat (2 L) fed continuously (2 L/d) with a Basal Salts Medium (BSM) containing 

phenol (200 mg/1) as the sole source of carbon and energy. The BSM contained (per liter) 

1.1 mg FeSO4 7H,0, 2.02 mg ZnSO4 7H20, 4.5 mg CaC12 H2O, 7.18 mg NH4C1, 32.4 

MgCl2 61-120, 23.4 mg KC1, 0.36 mg MnC12 4H20, 0.1 mg CoC12 6H20, 0.1 mg 

H3B04, 0.05 mg Na2MoO4 2H20, and 37.8 mg ZnC12. The pH of the medium was 

adjusted to 7.0 by the addition of phosphates (2.4 g Na2HPO4 and 2.2 g KH2PO4) added 

from sterile aqueous solution. After 14 days an aliquot (1 ml) of the effluent was used to 

inoculate mineral malts medium (100 ml) in a serum bottle (125 ml) sealed with a butyl 

rubber stopper. Further additions of either 02 or phenol (0.21 mmole) were added to the 

incubations as needed. After growth for 14 days an aliquot (1 ml) of this enriched culture 

was transferred to agar plates (mineral salts medium, phenol (100 mg/L) and agar (1.5%). 

mg MgC12
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Individual colonies detected after 7 days growth were subsequently picked and transferred 

to fresh plates. The purity of organisms isolated by this procedure was determined by 

microscopic analysis after growth in phenol-containing liquid media. After isolation, the 

bacterium was maintained by growth at 30 °C in continuous culture in a fermenter (1 L) 

fed with BSM containing phenol (200 mg/1). 

Batch Culture Experiments 

The potential for co-metabolic PAH degradation by phenol-grown Pseudomonas 

TJ-1 was initially determined in batch culture incubations. All reactions were conducted 

in glass serum bottles (160 ml). The PAHs were added to the serum bottles from stock 

solutions in methanol. The methanol then was evaporated under a stream of N2 gas. 

Growth medium (BSM with phenol and phosphates; 100 ml) then was added and the 

remaining gas phase was briefly flushed (20 s) with 02 gas. The flushed bottles then were 

sealed with Teflon-lined butyl rubber stoppers and aluminum crimp seals and the sealed 

bottles were then autoclaved. After cooling the sterilized media was inoculated with 

phenol-grown cells (1 ml) obtained from the continuous culture described above. The 

inoculated serum bottles were incubated on a rotary shaker (150 rpm) in a constant 

temperature room (30 °C). 

Sequencing Batch Reactor Experiments 

Based on the results of batch culture experiments, a Sequencing Batch Reactor 

(SBR) system was tested to study the removal of PAHs without potential competitive 

effects arising from the presence of the growth substrate, phenol. An SBR system is a 
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periodically operated, fill-and-draw reactor. 

Fluid Volume Specification 

Pulsed Oxygen Supply 

Feeding Solution 

Figure 2-1. Schematics of Sequencing Batch Reactor (SBR) 

Phenol Cycle 

(3.1 hr) (7.2 hr) (2 hr) (1 hr) 

Fill React Settle Decant 

FillReactDecant Settle (3.1 hr) 
(2 hr) (7.2 hr)(1 hr) 

Naphthalene Cycle 

Figure 2-2. Schematics of reaction cycle of Sequencing Batch Reactor 
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The modified system used in this study had a reaction volume of 1 liter and was operated 

with four discrete periods in each cycle: fill, react, settle, and draw. The schematic 

description and reaction cycle of SBR was illustrated in Fig. 2-1 and Fig. 2-2. The SBR 

was operated for 14 days until steady-state conditions were reached. Subsequently the 

reactor was operated continuously with a 13.3 h reaction cycle. After reaching steady-

state conditions of cell density, the reactor contents were settled for 2 hours and 70 % of 

the reaction medium (700 ml) was decanted within 1 h. The SBR then was refilled to a 

final volume of 1 L with sterile medium containing phenol (200 mg/1) added at a flow 

rate of 1.62 ml/min for 3.1 hours. After filling, individual PAHs were added to the reactor 

and treatment occurred for the next 7.2 hours. Oxygen was supplied to the headspace with 

pulsed injection for 2 min for every 2 hr period during the filling and reaction periods. A 

Continuous Stirred-Tank Reactor (CSTR) was also operated as a control to compare with 

the results of SBR. The CSTR was operated with same retention time as the SBR (13.3 

hr). The CSTR was operated in a 1 L glass reactor that was baffled, stirred, and 

continuously fed with sterile medium containing phenol. Oxygen was supplied by adding 

air every 2 hr interval for 1 min. 

Analytical Methods 

High-performance liquid chromatographic (HPLC) analysis of phenol and 

individual PAH was performed by using the Altex Model 110A pump fitted with a 

reversed-phase Ultremex C18 column (150 mm x 4.60 mm; Phenomenex) and a UV 

detector. The solvent system consisted of methanol/water (70%:30% v/v) for the analysis 

of phenol and acetonitrile/water (50%:50% v/v) for all PAHs. The flow rate was 1.5 
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ml/min. The elution of phenol and PAHs were monitored at 274 and 254 nm respectively. 

Cell density was determined spectrophotometrically by measuring absorbance at 600 nm. 

The co-metabolic oxidation products of naphthalene were identified by GC-MS. 

Samples (10 ml) of the reaction medium were concentrated 10-50-fold by evaporation 

under vacuum. These samples were then evaporated to dryness under a gentle stream of 

N2 and the residue was finally redissolved in hexane (200 u1). A 1 ill sample of this 

material was analyzed. The GC-MS analysis was performed by using a Hewlett Packard 

5988 mass spectrometer connected to a 5890 gas chromatograph (GC) fitted with an XTI­

5 fused silica capillary column. The GC was operated with injection temperature of 250° 

C. The column temperature was set at 50° C for 1 min and then increased linearly at 10° 

C/min until a final temperature of 300° C was reached. Injector and detector temperature 

were set at 290° C and 315° C, respectively. Helium was used as the carrier gas at flow 

rate of 20 ml/min. Chemical structures of metabolites were suggested on the basis of their 

mass spectra, an instrument library search, and literature data. Where authentic samples 

were available, metabolites were identified by comparing mass spectra and GC retention 

time (Rt) with those observed for authentic compounds. 
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RESULTS 

Co-metabolism in the biological transformation of a compound which cannot be 

utilized as a source of energy or carbon by an organism grown on another substrate. Our 

hypothesis in this study was that the structural similarities between phenol and PAHs 

might allow phenol-oxidizing organisms to co-metabolically degrade PAHs. To test this 

hypothesis we attempted to isolate phenol-oxidizing organisms from activated sludge and 

then examine these organisms for their ability to degrade PAHs after growth on phenol. 

Using the approaches described in the Methods section we isolated several bacterial 

strains capable of growth on phenol as a sole source of carbon and energy. The studies 

reported here were conducted with a single isolate designated Pseudomonas TJ-1. This 

isolate was a gram-negative rod which was identified by the Biolog procedure as a 

Pseudomonas cepacia. 

Batch Experiments 

The PAH-degrading activity of Pseudmonas TJ-1 was examined for a range of 

PAHs under standard conditions (Table 2-1). For each PAH four incubations were 

conducted: Incubation #1 served to follow growth of Pseudomonas TJ-1 on phenol. 

Incubation #2 served to follow the extent of PAH consumption when each PAH was 

provided as a sole source of carbon and energy for Pseudomonas TJ-1. Incubation #3 

served to follow PAH consumption by Pseudomonas TJ-1 grown the presence of phenol. 

Finally, incubation #4 served to follow the abiotic depletion of both phenol and the tested 

PAH over the time course of the experiment. Of the 10 PAH compounds tested by this 

approach, only three compounds (naphthalene, 2-methyl naphthalene and anthracene) 

were found to be degraded in the presence of phenol (Fig. 2-3). 
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The results obtained for naphthalene are typical of the results obtained for all 

degradable PAHs. For example, in the absence of naphthalene (Fig. 2-3A) the phenol 

growth substrate was completely consumed within 4 days and this was associated with 

prolific microbial growth. When phenol and naphthalene were added simultaneously, the 

time course of phenol consumption was delayed and complete consumption was only 

observed after 7 days (Fig. 2-3A). Naphthalene degradation was only observed once the 

concentration of phenol had been substantially reduced and complete consumption of the 

added naphthalene occurred only after 9 days (Fig. 2-3B). In contrast, low rates of 

naphthalene degradation were observed in inoculated incubations containing naphthalene 

alone and these rates were equivalent to the rate of loss observed in the uninoculated, 

abiotic controls (Fig. 2-3B). Further studies of the effects of naphthalene and phenol were 

also conducted to investigate the causes of the lag phases in phenol consumption and the 

unusual kinetics of naphthalene degradation observed in the experiment described in Fig. 

2-3. We observed that progressive increases in the initial naphthalene concentration 

present in the phenol-containing growth medium led to commensurate increases in the lag 

phase of phenol consumption, as compared to cultures grown on phenol in the absence of 

naphthalene (Fig. 2-7A). As in our previous experiment (Fig. 2-3), we consistently 

observed that naphthalene consumption only occurred once the concentration of phenol 

had been substantially reduced in each incubation (Fig. 2-7B). Finally, we also observed 

that naphthalene-dependent lag phases in phenol consumption were associated with very 

similar lag phases in the development of microbial biomass (Fig. 2-7C) although in all 

incubations the final level of biomass production was very similar. 



14 

A 
400
 

350
 

300
 

250
 

200
 

150
 

100
 

50
 

0
 

2 3 4 5 6 7 8 9
 

0 2 3 4 5 6 7 8 9
 

Time(day) 

Figure 2-3. Time course for naphthalene degradation in phenol-grown batch 
culture. Initially naphthalene and phenol were fed simultaneously, and detail descriptions 
for preparation are described in Materials and Methods. (A) Time course of phenol 
consumption incubated with cells and (I) phenol alone, (A) phenol and naphthalene, and 
(*) phenol control without cells. (B) Time course of naphthalene degradation in the 
medium incubated with (0) naphthalene alone, (A) naphthalene and phenol, and (0) 
naphthalene control without cells. 
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Figure 2-4.Time course for 2-methyl naphthalene degradation in phenol-grown 
batch culture. Initially 2-methyl naphthalene and phenol were fed simultaneously, and 
detail descriptions for preparation are described in Materials and Methods. (A) Time 
course of phenol consumption incubated with (U) phenol alone, (A) phenol and 2-methyl 
naphthalene, and (1) phenol control. (B) Time course of 2-methyl naphthalene 
degradation incubated with cells and (0) 2-methyl naphthalene alone, (A) 2-methyl 
naphthalene and phenol, and (0) 2-methyl naphthalene control. 
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Figure 2-5.Time course for anthracene degradation in phenol-grown batch culture. 
Initially anthracene and phenol were fed simultaneously, and detail description for 
preparation are described in Materials and Methods. (A) Time course of phenol 

consumption incubated with cells and () phenol alone, (A) phenol and anthracene, and 
() phenol control. (B) Time course of anthracene degradation incubated with cells and 
(c) anthracene alone, (A) anthracene and phenol, and (0) anthracene control. 
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Our results to this point suggest that naphthalene was co-metabolically oxidized 

by phenol-grown Pseudmonas TJ-1 and that this activity involved the same enzyme 

required for initiating phenol oxidation. If correct, this conclusion would imply that the 

products of naphthalene co-metabolism should be compatible with a reaction catalyzed by 

a phenol-oxidizing monooxygenase, assuming no further transformation of these co­

metabolites occurs. Our results (Fig. 2-6) confirm this hypothesis and demonstrate that 

naphthalene oxidation by phenol-grown Pseudomonas TJ-1 resulted in the extracellular 

accumulation of a mixture of mono-hydroxylated products, of which 1- naphthol was the 

predominant product (Fig.2-6). Further studies demonstrated that total naphthol 

production accounted for > 90% of total naphthalene consumption in batch experiments 

(data not shown). In addition, we also examined the effect of exogenous reductant sources 

on naphthalene co-metabolism by phenol-grown Pseudomonas TJ-1. The quantity of 

naphthalene which was degraded by phenol grown cells was significantly increased by the 

addition of acetate as a potential electron donor. For example, greater than 90% of the 

total added naphthalene (13 mg/1) was degraded when acetate (3.2 mM) was added with 

naphthalene (Fig. 2-8). In contrast, only 60% of the added naphthalene was consumed 

when phenol-grown cells were incubated with naphthalene in the absence of acetate (Fig. 

2-8) whereas no naphthalene degradation was observed for cells grown on acetate alone. 

The removal efficiencies and transformation yields for the experiment described in Fig. 2­

8 are summarized in Table 2-2. The stimulating effect of acetate suggests that 

naphthalene degradation is limited by the availability of reductant. This conclusion is 

compatible with the apparent inability of Pseudomonas TJ-1 to obtain reductant either by 

utilizing naphthalene as a sole carbon and energy source or by further oxidizing the 

products of naphthalene oxidation (e.g. 1-naphthol). These results also demonstrate that 
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Figure 2-6. HPLC Chromatogram showing the oxidation of naphthalene to 1- and 2­
naphthol by phenol-utilizing bacteria. Sample was taken after 1 hr incubation as 
described in Materials and Methods. Peak (a) 2-naphthol, (b) 1-naphthol and (c) 
naphthalene. 
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Figure 2-7. Time course for lag period due to naphthalene concentration. Figure (a), 
(b), and (c) represent phenol, naphthalene degradation and cell growth with 0 (), 1.7(A), 
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Figure 2-8. Time course for naphthalene degradation with/without pulsed acetate 
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naphthalene controls without cells at bottle #3 (A), bottle #4 (x) also were conducted. 
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acetate-grown cells do not express the enzymes required for naphthalene degradation and 

this observation again supports our hypothesis that the co-metabolism of naphthalene and 

other PAHs requires the enzymes normally expressed for phenol oxidation. 

Table 2-1. Removal efficiencies and transformation yields of naphthalene 
with /without acetate in batch culture experiment 

Phenol Naphth Final Acetate Removal Trans. Yields 
added added naphth added efficiency mg naphth 
(mg/1) (mg/1) (mg/L) (mg/1) (%) mg phenol 

281 13.2 0.9 180 93.2 0.044 

284 13.1 4.1 0 68.7 0.031 

Reactor Experiments 

Our results with batch cultures presented above (Figs 2-3 2-6) suggest that the 

simultaneous presence of both phenol and PAHs results in an inhibition of phenol 

oxidation and a delay in the onset of PAH degradation. We considered it likely that this 

effect could be attributed largely to a competitive interaction between phenol and PAHs 

for oxidation by the same monooxygenase type enzyme. To overcome this potential 

competitive effect a Sequencing Batch Reactor (SBR) system was developed and 

operated as described in the Methods section. Our results demonstrate that a very 

reproducible rate of phenol consumption could be demonstrated in the reactor once steady 

state conditions had been established (Fig. 2-9). After 5 days of operation the reactor 

contents were partially drained (700 ml removed) and an equivalent volume of a solution 

of naphthalene (4.5 mg/1 influent concentration) was added to give a theoretical initial 

diluted concentration of 3.2 mg/l. However, during this "fill" phase some 73 % (2.2 mg,/1) 
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of the naphthalene was rapidly oxidized by the remaining phenol-utilizing cells in the 

reactor. During the subsequent "reaction" phase the remainder of the naphthalene was 

consumed although the rate of naphthalene degradation had declined, as compared to the 

rate observed during the earlier "fill" phase. At Day 7 the reactor was recycled with a 

further addition of phenol and the reactor was subsequently challenged with a further 

exposure to naphthalene with added acetate as a source of reductant. No substantial 

differences in the rates of naphthalene degradation were observed between the 

unamended and acetate-containing reactor cycles. Similar experiments were also 

conducted with the SBR using concentrations of naphthalene as high as 7.5 mg/1 (Data 

not shown). 

As a control for the SBR, simultaneous experiments were also conducted with a 

CSTR (Continuous Stirred-Tank Reactor) which was operated as described in the 

Methods section (Fig. 2-10). In the CSTR the influent phenol concentration was 

maintained constant at approximately 180 mg/l. At Day 15 naphthalene was added at a 

constant concentration of 3.7 mg/l. A constant rate of naphthalene degradation was 

established in which 56.8 % of the influent naphthalene was removed with a 

transformation yield of 0.011 mg naphthalene/ mg phenol. At Day 17 the influent 

concentration of naphthalene was increased to 7.2 mg,/1. After this the removal efficiency 

was decreased to 50 % of the influent naphthalene with a transformation yield of 0.022 

mg naphthalene /mg phenol. The summarized results of removal efficiencies and 

transformation yields for both the SBR and CSTR are shown in Table 2-2. These results 

demonstrate that much higher removal efficiencies and transformation yields were 

achieved in the SBR as compared to the CSTR. Having established the SBR as the more 
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efficient reactor configuration for PAH degradation, we were also interested to determine 

whether the SBR could be used effectively for the concurrent removal of mixtures of 

PAHs. The simultaneous degradation of naphthalene, 2-methyl naphthalene, and 

anthracene by phenol-grown cells was achieved using the SBR system (Fig. 2-11). 

Table 2-2. Removal efficiencies and transformation yields of Sequencing Batch 
Reactor (SBR) and Continuous Stirred-Tank Reactor (CSTR) 

Influent Effluent Influent Effluent Removal Trans. Yields 
Phenol Phenol Naphthalene Naphthalene efficiency mg naphth 
(mg/1) (mg/L) (mg11) (mg/L) (%) mg phenol 

SBR 122 0 3.2 0.17 94.6 0.025 

136 0 2.8* 0.06 97.8 0.02 

127 0 6.2 0.52 91.6 0.045 

126 0 7.5* 0.43 94.3 0.056 

CSTR 182 0 3.7 1.6 56.8 0.011 

181 19 7.2 3.6 50.0 0.022 

* with 78 mg/1 acetate added. 
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DISCUSSION
 

The results indicated that microorganisms grown on phenol can degrade PAHs 

cometabolically. The ability of microorganisms to effectively co-metabolize compounds 

under aerobic conditions is dependent on many factors. One important physiological and 

regulatory factor is which growth substrates allow for the expression of the enzyme 

systems responsible for the cometabolic activity. Another important kinetic factor, 

especially for monooxygenase-catalyzed co-metabolic reactions, is how the growth 

substrate and the co-substrate utilization patterns influence the supply of reductant to the 

non-specific monooxygenase responsible for substrate oxidation reactions. 

Our results (Figs 2-3 2-5) demonstrated that PAHs are only degraded by 

Pseudomonas TJ-1 when cells are grown in the presence of phenol. These results strongly 

support the hypothesis that naphthalene degradation requires catabolic enzymes 

associated with phenol utilization. Moreover, our results indicated that the presence of 

naphthalene initially inhibits phenol consumption although naphthalene consumption is 

only initiated when the ambient phenol concentration has been significantly depleted. In 

addition, naphthalene was a stronger inhibitor than 2-methyl naphthalene and anthracene. 

These results illustrate that the higher inhibitory effect observed for naphthalene 

than for other compounds is probably due to a higher affinity of naphthalene for phenol 

monooxygenase. This result is similar to the results of other researches who have shown 

phenol utilizing organisms degrade TCE effectively (25), but with significant competitive 

inhibition. Inhibition of cell growth and phenol degradation due to variations in the 

concentration of naphthalene added is clearly shown in Figure 2-6. The other compounds, 

2-methyl naphthalene and anthracene, possibly cause less degrees of inhibition of phenol 
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oxidation than naphthalene because of their lower affinity for the phenol-oxidizing 

enzymes as shown in Figure 2-8. 

Our results demonstrated that the addition of acetate supported the phenol and 

naphthalene-oxidizing activities in batch systems although similar results were not 

observed in the SBR studies. The effect of acetate in batch experiments probably reflects 

the used for reductant to maintain enzyme activity and to improve removal rate 

effectively. Formate was used very effectively as a reductant to support the methane 

monooxygenase (MMO) activity of methanotrophs (30). 

Phenol-utilizing bacteria generally do not have broad nongrowth substrate ranges 

like methane- and ammonia-utilizing bacteria, but, they can catalyze the oxidation of 

phenolic compounds (31, 42) and chlorinated solvents including TCE and DCE (25). The 

results of this work indicated that phenol monooxygenase can also catalyze the oxidation 

of 2- and 3-ring PAHs to hydroxylated PAHs. Menke et al. (31) observed the degradation 

of mixtures of monochlorophenols by phenol-utilizing bacteria cometabolically, with a 

different degree of transformations. A variety of di- and tri-chlorophenols were degraded 

in the presence of phenol (42) which suggested that a different degradation rate might be 

due to both the number of chlorines and their position on the phenolic ring. Phenol-

oxidizing bacteria also cometabolically degrade several chlorinated solvents including c-

DCE, TCE and t-DCE (25). Brusseau et al. (1990) demonstrated naphthalene oxidation 

by Methylosinus trichosporium OB3b which oxidized naphthalene to 1- and 2-naphthol. 

Cometabolic degradation of PAHs using lower molecular weight PAH as a carbon 

and energy source has been observed by several researchers (7, 34, 38, 39). A 

Rhodococcus species has been shown to use pyrene as a sole carbon and energy source 

and pyrene grown cells cometabolically degraded naphthalene, dibenzofuran, fluorene 
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and dibenzothiophene (38). Similarly, Weissenfels et al. (39) observed that Alcaligenes 

denitrificans WW1 utilized naphthalene, 1-and 2-methyl naphthalene, phenanthrene and 

anthracene as sole carbon sources and cometabolized fluorene, and pyrene. Bouchez et 

al.(7) also showed that Pseudorrzonas strains were capable of degrading PAHs 

cometabolically. 

The products of naphthalene oxidation by phenol-utilizing bacterium were 

determined by HPLC (Fig. 2-7) and GC-MS. We observed both 1- and 2-naphthol 

production from naphthalene oxidation, although 1-naphthol accounted more than 90 % 

of the total products. A similar predominant production of 1-naphthol occur with other 

monooxygenases including fungal cytochrome P-450 enzymes (12, 13, 21) and methane 

monooxygenases (8, 18). Substrate interactions during the biodegradation are important 

for the understanding of the environmental behavior of PAHs. In our study (Fig. 2-11), 

we observed that anthracene inhibited naphthalene and 2-methyl naphthalene degradation. 

Further degradation of naphthalene and 2-methyl naphthalene were accelerated after 

anthracene was completely transformed. Similar inhibitory effects on acclimation of 

benzene were observed when both toluene and p-xylene were present (1). 

The effects of competitive interaction between phenol and PAHs in our batch 

experiments led us to examine the sequencing batch reactor (SBR) as an alternative 

system to minimize inhibition effects between the substrates. Previously, a number of 

reactor studies were investigated to evaluate the possibility of PAH degradation in 

contaminated soil or industrial waste water. A slurry-phase bioreactor was operated 

successfully to remove a creosote-contaminated soil containing semivolatile compounds 

including PAHs and volatile compounds including toluene, xylene, and benzene (28). A 

bench scale rotating-drum bioreactor demonstrated PAH degradation using mixed 
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cultures (3). Cardinal et al. (10) showed enhanced removals of naphthalene and 

phenanthrene under aerobic condition. Our results demonstrated that significantly higher 

removal efficiencies and transformation capacities were observed in the SBR operation 

compared to in CSTR. These results have implications for the future treatment of 

hazardous waste at POSCO and other plants treating complex PAHs mixtures. 

Cometabolism is an attractive procedure for bioremediation when toxic 

compounds are present at low concentrations. In our study, the transformation of PAHs 

by phenol-utilizing bacteria generated hydroxylated products which might be more 

soluble than parent compounds. This increased solubility will result in increased 

bioavailability for other microorganisms in the waste stream. 



31 

REFERENCES 

1.	 Alvarez-Cohen L. and McCarty, P. L. (1991) A cometabolic biotransformation 
model for halogenated aliphatic compounds exhibiting product toxicity. Environ. Sci. 
Tech. 25(8), 1381-1385. 

2.	 Alvarez P. J. and Vogel T. M. (1991) Substrate interactions of benzene, toluene, 
and para-xylene during microbial degradation by pure cultures and mixed culture 
aquifer slurries. Appl. Environ. Microbiol. 57(10), 2981-2985. 

3.	 Banerjee D. K., Fedorak P. M., Hasimoto A., Masliyah J. H., Pickard M. A. and 
Gray M. R. (1995) Monitoring the biological treatment of anthracene-contaminated 
soil in a rotating-drum reactor. Appl. Microbiol. Biotechnol. 43, 521-528. 

4.	 Bauer J. E. and Capone D. G. (1988) Effects of co-occuring aromatic hydrocarbons 
on degradation of individual polycyclic aromatic hydrocarbons in marine sediment 
slurries. Appl. Environ. Microbiol. 54(7), 1649-1655. 

5.	 Boldrin B., Tiehm A. and Fritzsche C. (1993) Degradation of phenanthrene, 
fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 
59, 1927-1939. 

6.	 Bossert, I. and Bartha. R. (1984) The fate of petroleum in soil ecosystems, In: 
Petroleum Microbiology (edited by Atlas R. M. et al), pp. 435-489. Macmillan 
Publishing Co., New York. 

7.	 Bouchez M., Blanchet D. and Vandecasteele J. P. (1995) Degradation of 
polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: 
Inhibition phenomena and cometabolism. Appl. Microbiol. Biotechnol 43, 156-164. 

8.	 Brusseau G. A., Tsien Hsien-Chyang, Hanson.R. S. and Wackett L. P.(1990) 
Optimization of trichloroethylene oxidation by methanotrophs and the use of a 
colorimetric assay to detect soluble methane monooxygenase activity. 
Biodegradation. 1, 19-29. 

9.	 Bumpus J. A. (1989) Biodegradation of polycyclic hydrocarbons by Phanerochaete 
chrysosporium. Appl. Environ. Microbiol. 55(1), 154-158. 

10. Cardinal L. J. and Stenstrom M. K.(1991) Enhanced biodegradation of 
polyaromatic hydrocarbons in the activated sludge process. Res. J. Water Pollut. 
Control Fed. 63, 950-957. 

11. Carniglia C. E. (1992) Biodegradation of polycyclic aromatic hydrocarbons. 
Biodegradation. 3, 351-368. 



32 

12. Cerniglia C. E., Freeman J. P. and Evans F. E. (1984) Evidence for an arene 
oxide-NIB shift pathway in the transformation of naphthalene to 1-naphtol by 
Bacillus cereus. Arch. Microbiol. 138, 283-286. 

13. Cerniglia, C. E., Gibson D. T., and Baalen C. V. (1980) Oxidation of naphthalene 
by cyanobacteria and microalgae. J. Gen. Microbiol. 116, 495-500. 

14. Cerniglia C. E. and Heitkamp M. A. (1989) Microbial degradation of polycyclic 
aromatic hydrocarbons in the aquatic environment. In: Metabolism of polycyclic 
aromatic hydrocarbons in the aquatic environment (edited by Varanasi U. et al.), pp. 
41-68, CRC Press, Boca Raton, FL, 

15. Cerniglia C. E., Campbell W. L. Freeman J. P. and Evans F. E. (1989) 
Metabolism of phenanthrene by the fungus Cunninghamella elegans: Identification 
of a novel metabolite. Appl. Environ. Microbiol. 55, 2275-2279. 

16. Cerniglia C. E. (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. 
Adv. Appl. Microbiol. 30, 31-71. 

17. Chang M. K., Voice T. C., and Criddle C. S. (1993) Kinetics of competitive 
inhibition and cometabolism in the biodegradation of benzene, toluene and p-xylene 
by two Pseudomonas isolates. Biotechnol. Bioeng. 41, 1057-1065. 

18. Dalton, H., Golding B. T., Waters B. W., Higgins R. and Taylor J. A. (1981) 
Oxidation of cyclopropane, methylcyclopropane, and arenes with the mono­
oxygenase system from Methylococcus capsulatus..I. Chem. Soc. Comm. 482-483. 

19. Erickson D. C., Loehr R. C. and Neuhauser E. F. (1993) PAH loss during 
bioremediation of manufactured gas plant site soils. Wat. Res. 27(5), 911-919. 

20. Field J. A., Jong ED DE, Costa G. F. and DE Bont Jan A. M. (1992) Biodegradation 
of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl. 
Environ. Microbiol. 58(7), 2219-2226. 

21. Heitkamp M. A. and Cerniglia C. A. (1989) Polycyclic aromatic hydrocarbon 
degradation by a Mycobacterium sp. in Microcosoms containing sediment and water 
from a pristine ecosystem. Appl. Environ. Microbiol. 55(8), 1968-1973. 

22. Heitkamp M. A., Freeman J. P. and Cerniglia C. A. (1987) Naphthalene 
biodegradation in environmental microcosoms: Estimates of degradation rates and 
characterization of metabolites. Appl. Environ. Microbiol. 53(1), 129-136. 

23. Henrysson T. and McCarty P. L. (1993): Influence of the endogeneous storage 
lipid poly-I3-hydroxybutyrate on the reducing power availability during 
cometabolism of trichloroethylene and naphthalene by resting methanotrophic mixed 
cultures. Appl. Environ. Microbiol. 50(5), 1602-1606. 



33 

24. Herzbrun P. A., Irvine R. L. and Malinowski K. C. (1985) Biological treatment of 
hazardous waste in sequencing batch reactors. J. WPCF. 57(12), 1163-1167. 

25. Hopkins G. D., Semprini L. and McCarty P. L. (1993) Microcosm and in situ field 
studies of enhanced biotransformation of trichloroethylene by phenol-utilizing 
microorganisms. Appl. Environ. Microbiol. 59(7), 2277-2285. 

26. Irvine R. L., Ketchum L. H. and Barth E. F. (1983) Municipal application of 
sequencing batch treatment. J WPCF. 55(5), 484-488. 

27. Keith L. H. and Telliard W. A. (1979) Priority pollutants I. A perspective view. 
Environ. Sci. Technol. 139, 416-423. 

28. Lewis R. F. (1993) Site demonstration of slurry -phase biodegradation of PAH 
contaminated soil. Air and Waste 43, 503-508. 

29. MAcGillivray A. R. and Shiaris M. P. (1993) Biotransformation of polycyclic 
aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl. Environ. 
Microbiol. 59(5), 1613-1618. 

30. McFarland M. J., Vogel C. M. and Spain J. C. (1992) Methanotrophic 
cometabolism of trichloroethylene (TCE) in a two stage bioreactor system. Wat. Res. 
26(2), 259-265. 

31. Menke B. and Rehm H. (1992) Degradation of mixtures of monochlorophenols and 
phenol as substrates for free and immobilized cells of Alcaligenes sp. A7-2. Appl. 
Microbiol. Biotechnol. 37, 655-661. 

32. Mihelcic J. R. and Luthy R. G. (1988) Degradation of polycyclic aromatic 
hydrocarbon compounds under various redox conditions in soil-water systems. Appl. 
Environ. Microbiol. 54, 1182-1187. 

33. Mihelcic J. R. and Luthy R. G. (1988) Microbial degradation of acenaphthalene 
and naphthalene under denitrification conditions in soil-water system. Appl. Environ. 
Microbiol. 54, 1188-1198. 

34. Muller J. G., Chapman P. J., Blattmann B. 0. and Pritchard P. H. (1990) 
Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas 
paucimobilis. Appl. Environ. Microbiol. 56, 1079-1086. 

35. National Academy of Sciences (1983) Polycyclic aromatic hydrocarbons: evaluation 
of sources and effects. National Academy Press, Washington D. C. 



34 

36. Pothuluri J. V. and Cerniglia C. E. (1995) Microbial metabolism of polycyclic 
aromatic hydrocarbons. In Degradation and Bioremediation of Toxic Chemicals 
(edited by Chaudhry et al.), pp 92-124, Dioscoridides Press, Oregon. 

37. Sutherland J. B., Rafii F., Khan A. A. and Cerniglia C. E. (1995) Mechanisms of 
polycyclic aromatic hydrocarbon degradation. In Microbial transformation and 
degradation of toxic organic chemicals (edited by Young L.Y and Cerniglia C. E.). 
wiley & sons, Inc. 

38. Walter U., Beyer M., Klein J. and Rehm H. J. (1991) Degradation of pyrene by 
Rhodococcus sp.UW1. Appl. Microbiol. Biotechnol. 34, 671-676. 

39. Weissenfels W. D., Klein M., Beyer J. and Rehm H. J. (1991) Microbial 
metabolism of fluoranthene: Isolation and identification of ring fission products. 
Appl. Microbiol. Biotechnol. 34, 528-535. 

40. Wilson S. C. and Jones K. C. (1993) Bioremediation of soil contaminated with 
Polycyclic Aromatic Hydrocarbon (PAHs): A Review. Environ. Poll. 81, 229-249. 

41. Wunder T., Kremer S., Sterner 0. and Anke H. (1994) Metabolism of the 
polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317, Appl. 
Microbiol. Biotechnol. 42, 636-641. 

42. Wang G. Cometabolic degradation of chlorophenloic compounds, Ph.D dissertation, 
Oregon State University,1995. 



35 

Chapter 3 

Cometabolic Degradation of Naphthalene and Other Polycyclic
 

Aromatic Hydrocarbons (PAHs) by Nitrosomonas europaea
 

Soon W. Chang, Michael R. Hyman and Kenneth J. Williamson 

To Be Submitted To
 
Biodegradation
 

Kluwer Academic Publishers, The Netherlands
 



36 

ABSTRACT
 

The soil nitrifying bacterium Nitrosomonas europaea has shown the ability to 

cometabolically transform a range of 2- and 3- ringed polycyclic aromatic hydrocarbons 

(PAHs). A strong inhibitory effect of naphthalene on ammonia oxidation by N. europaea 

was observed. Naphthalene was readily oxidized by N. europaea and 2-naphthol was 

detected as the major oxidation product (> 85 %) of naphthalene oxidation. The rates of 

naphthol and nitrite production were dependent on the both concentrations of ammonia 

and naphthalene. The maximal rate of naphthol production was 1.65 nmole/mg protein­

min in the presence of 240 [IM naphthalene and 10 mM NH4+. With fixed NH4+ and 

varied naphthalene concentrations, naphthalene was oxidized greater than 2200-folder 

slower than ammonia at lowest concentration of naphthalene tested (15 liM) whereas at 

the highest concentration (240gM) naphthalene was only oxidized 100-fold slower than 

ammonia. NH4+ - and 1\1412 -dependent 02 uptake measurement demonstrate irreversible 

inhibitory effects of the naphthalene and subsequent oxidation products on AMO and 

HAO activity. 
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INTRODUCTION
 

Polycyclic aromatic hydrocarbons (PAH) are ubIquitous compounds that originate 

from natural and anthropogenic pyrolysis of organic matter such as forest fires, 

automobile exhaust, coal-refining process, and the oil industry (3). Since many PAHs and 

substituted PAHs have been implicated as probable human carcinogens (19), there is 

considerable interest in processes which can either remove existing PAHs from 

contaminated environments or minimize further environmental contamination by these 

compounds. 

Biological processes have considerable potential for the degradation of PAHs. 

Under aerobic conditions a wide variety of organisms can utilize PAHs as carbon and 

energy sources for growth (28). In contrast to the complete metabolism of PAHs, PAHs 

are known to be cometabolically transformed by microorganisms growing on other 

carbon and energy sources, such as phenol (6), methane (4), and even PAHs ( 3, 32, 33). 

In the present study, we have examined the PAH-oxdizing activity of the soil nitrifying 

bacterium Nitrosomonas europaea as an example ofa cometabolically active organism 

grown on a substrate structurally unrelated to PAHs. As an obligate lithoautotrophic soil 

nitrifying bacterium N. europaea obtains all of its energy for growth from the oxidation 

of ammonia to nitrite. Ammonia is initially oxidized to hydroxylmine by the enzyme 

ammonia monooxygenase (AMO) (34) as follows: NH3 + 02 + 2[H] > NH2OH + H2O. 

The further four-electron oxidation of hydroxylamine to nitrite is catalyzed by the 

hydroxylamine oxidoreductase (HAO) as follows: NH2OH + 02 -f NO2- + H2O + . 

This second reaction is the only source of the two electrons required to maintain steady-

state AMO activity. The remaining two electrons are utilized for ATP synthesis through a 
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conventional electron transport chain (34). AMO transforms many chemicals that are 

known to contaminate wastewater, soil and groundwater. Previous studies have shown 

that whole cells ofN.europaea can oxidize a wide variety of alternative hydrocarbon 

substrates, such as alkanes, alkenes, and aromatic compounds, through the action of 

AMO (12, 14, 15, 17, 21). More recently , it was shown that N. euopaea can also oxidize 

a wide variety of chlorinated aliphatic compounds, including TCE (25, 26, 27), alkyl 

ethers (18) and thioethers (20). In this study, we have examined the PAH oxidizing 

activity of N. euroapea, and we have studied in detail the interactions between ammonia 

and naphthalene as cosubstrates. 

MATERIALS AND METHODS 

Materials 

Naphthalene, 1-naphthol, 2-naphthol, 2-methyl naphthalene, 2-methyl 

naphthalenol, 2-methyl naphthaledehyde, acenaphthalene, acenaphthene, fluorene, 

anthracene, phenanthrene and acenaphthenone were obtained from Aldrich (Milwaukee, 

WI). Allythiourea was obtained from Eastman Kodak Co. (Rochester, N.Y.). All other 

chemicals were of reagent grade. 

Growth of Nitrosomonas europaea 

Cells of N. europaea (ATCC 19178) were grown in batch cultures (1.5 liters) and 

harvested by centrifugation and finally resuspended in phosphate buffer (50 mM sodium 
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buffer[pH 7.8], 2 mM MgSO4), as described previously (12). In all cases, cell suspensions 

(0.2 g[wet weight] per ml) were stored on ice and used within 24 h of harvesting. 

PAH degradation experiments 

Experiments examining the degradation of PAHs by N. europaea were conducted 

in serum vials (37 ml) sealed with Teflon-lined silicone septa (Sun BrokersTM 

Wilmington, NC). The incubation medium (10 ml) consisted ofphosphate buffer (50 mM 

potassium phosphate, pH 7.8, 2 mM MgSO4) and 5 mM (NH4)2SO4. In experiments with 

naphthalene required concentrations of naphthalene were added from stock solution 

(0.164 M) prepared in dimethyl sulfoxide (DMSO). The vials were placed in a sonicator 

for 10 min to allow complete dissolution of naphthalene. With all other PAHs examined 

saturated concentrations of each compounds were added. In all cases the reaction was 

initiated by addition of cells (100 pl; approximately 1 mg of protein). The vials was then 

returned to the shaker. To determine the consumption of PAHs and accumulation of 

oxidation products, 0.5 ml sample in liquid phase was removed and filtered with a syringe 

filter to remove cells before the analysis by high performance liquid chromatography 

(HPLC). To establish the role ofAMO in PAH transformations control incubations were 

conducted as above contained cells suspensions treated with acetylene (1 %), a specific 

and irreversible inactivator of AMO (16). 

02 uptake measurement 

The effects of PAHs and their oxidation products on the activities of the two 

enzymes involved in ammonia oxidizing activity were determined by measuring rates of 
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NH4+ and N2H4 - dependent 02 uptake, as described previously (13). 02 uptake 

measurements were made using a Clark style 02 electrode (Yellow Springs, Ohio) 

mounted in a glass water-jacked reaction vessel (1.8 ml). Cells exposed to PAHs, or their 

oxidation products, were sedimented by centrifugation in a microfuge (10,000 rpm for 1 

min) and resuspended in fresh buffer (1.5 ml). Samples of these washed cells (50 ill) were 

added to buffer in the 02 electrode reaction chamber and the rate of 02 uptake activity 

was measured after the addition of 5 mM (NH4)2SO4. Once a steady rate of ammonia-

dependent 02 uptake had been established, allythiourea (100 [tM) was then added inhibit 

further NH4+-dependent 02 uptake. Hydrazine was then added to a final concentration of 

600 IIM and the steady state rate of the residual hydrazine-dependent 02 uptake was used 

as an estimate of residual HAO activity. All substrates and inhibitors were added from 

aqueous stock solutions by means of gas-tight microsyringes. The solubility of 02 in air-

saturated buffer was taken 230 pM (30). 

Analytical Methods 

The consumption of PAHs and the accumulation of PAH oxidation products was 

determined using high performance liquid chromatography (HPLC). The HPLC apparatus 

consisted of Altex Model 110A pump, a UV detector, reversed-phase ultramex C18 

column (150 mm * 4.60 mm; Phenomex). Samples (200 ill) of the reaction mixtures were 

transferred into 1.5 ml Eppendorf tubes, and cells were removed by centrifugation. 

Samples (100 i.t1) of supemant were then injected into the HPLC. The PAH substrates and 

their oxidation products were eluted under isocratic conditions using acetonitrile:water 

mobile phase (50:50) at a flow rate of 1.5 ml/min. The eluted compounds were detected 
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by UV absorption at 254 nm and were identified by coelution with authentic compounds 

and by GC-MS analysis of eluted compounds. 

GC-MS analysis was conducted using the fractions (20 ml) that were eluted from 

the HPLC column. The samples were evaporated to drynesss under a gentle stream of N2, 

and the residue subsequently redissolved in hexane (5 ml). The hexane mixture was dried 

over anhydrous Na2SO4, and then evaporated to a final volume of 100 µl under a stream 

of N2. Samples (2 1.11) of the hexane solution were then injected into a Hewlett Packard 

model 5988 connected to a 5890 gas chromatograph (GC). The GC column was an XTI-5 

fused silica capillary column. Helium, at flow rate of 20 ml/min, was used as the carrier 

gas. The GC was operated with an initial column temperature of 50 °C for 1 min and then 

increased linearly at 10 °C/min to a final temperature of 300 °C. The injector and detector 

temperatures were set at 290 and 315° C, respectively. The oxidation products were 

identified by comparison mass spectra and GC retention time with those observed for 

authentic compounds. 

Nitrite concentrations were determined colorimetrically as described previously 

(10). Protein concentrations were determined by the biuret assay (9) after solubilization of 

cell protein in aqueous 3N NaOH for 30 min at 60° C, and sedimentation of insoluble 

material by centrifugation (14,000 x g, 5 min). 
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RESULTS 

Inhibitory effects on nitrite production 

Several previous studies with N. euroapea have indicated that alternative 

substrates for AMO can be detected through their inhibitory effects on ammonia 

oxidation. Theses inhibitory effects occur because of competitive interactions between 

ammonia and alternative substrate for simultaneous oxidation by AMO. To examine the 

effects of PAHs on ammonia oxidation we compared the effects of different 

concentrations of naphthalene on nitrite production during 2 hr incubations (Fig. 1). In the 

absence of naphthalene, cells consumed all of the added ammonia and produced nearly 10 

mM nitrite within 1 hr. However, in the presence of 80 !AM naphthalene, only 4.2 mM 

total nitrite accumulated after 2 hr. Increasing the naphthalene concentration to 240 uM 

resulted in less than 2 mM nitrite being generated over the same time period. No nitrite 

production was observed for the same incubation conditions with acetylene-treated cells 

which have no residual AMO activity (16). 

Transformation of naphthalene 

A subsequent HPLC analysis of the samples generated during the experiment 

described in Fig. 3-1 confirmed that naphthalene was oxidized by N. europaea and that 

the inhibitory effects on nitrite production were inversely related to the quantity of 

naphthalene oxidized (Fig. 3-2.). For example, for cells incubated with 80 uM 

naphthalene (Fig. 3-2B). we observed both 1- and 2-naphthol as products of naphthalene 

oxidation; 2-naphthol accounted for more than 85 % of the total products. In contrast, no 
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oxidation products were detected in the incubation with cells which were pretreated with 

acetylene. This result indicates that AMO is required for naphthalene oxidation. 

The rate of naphthol productions 

We were interested to determine the conditions that would support the maximal 

rate of naphthalene oxidation. To establish the actual rates of naphthalene degradation it 
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Fig. 3-1. Time course of nitrite production by N. europaea in the presence of varying 
naphthalene concentrations. Cells were incubated in serum bottles with 10 mM NH4+ 
and a range of naphthalene concentrations of 0 p.M (), 80 (), 240 (), and 240 (). In the 
case of symbol acetylene (1 %[vol /vol]) was also added. Aliquots (0.3 ml) of the 
reaction bottles were removed at the indicated time points, and the reaction was 
terminated with ATU (up to 100 LIVI) as described in Materials and Methods. 
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was necessary to determine the period of time over which the rate of naphthol production 

was constant. A time course experiment of naphthol production was initially conducted in 

the presence of 10 mM NI-14+ and a range of naphthalene concentrations up to 240 11M, 

the limit of aqueous solubility for the compound. Our results (Fig. 3-3) demonstrate that 

the rate of naphthol production increased with increasing initial naphthalene 

concentration over the range of naphthalene concentrations examined. However, naphthol 

production rate was only constant during the initial portion (0 - 10 min) of the reaction 

and tended to decrease as the reaction progressed. 

h 
11..pyr....111, jr1-44 -aryl , 

; 

A B C 

Fig 3-2. HPLC chromatograms showing oxidation of naphthalene by N. europaea. 
The samples were analyzed after 2 hr incubation from previous experiment as described 
in Materials and Methods. The each chromatograms were represented the samples 
incubated in the presence of cells with (A) 240 I.LM naphthalene and C2H2 (1 % v/v) (B) 
80 .tM naphthalene (C) 240 uM naphthalene. (a) 2-naphthol, (b) 1-naphhtol, (c) 
naphthalene 
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Fig. 3-3. Time course of naphthalene oxidation to naphthols by N europaea. Assays 
were conducted as described in Materials and Methods in the presence of 80(A), 1200, 
and 240() uM naphthalene with 10 mM NH4+ and cells. 
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Effects of naphthalene concentrations of naphthol and nitrite productions 

Based on the previous experiment (Fig. 3-3), we examined the effect of 

naphthalene concentrations on both the rate of nitrite and naphthol production using the 

initial rates of naphthol production over the initial stages (0 10 min) of incubations. The 

experiment was conducted using varied naphthalene concentrations from 0 to 240 1AM 

and a fixed concentration of NI14+ (10 mM). In the absence of naphthalene, the maximal 

rate of nitrite production (38 nmole/mg protein-mM) was observed. Increasing 

concentrations of naphthalene led to a concomitant decrease in the amount of nitrite 

produced from ammonia oxidation and an increase in the rate of naphthol production 

from naphthalene oxidation. A plot of the relative rates of ammonia and naphthalene 

oxidation (Fig. 3-4B) demonstrate that the naphthalene was oxidized 2200-fold slower 

than ammonia at the lowest concentration of naphthalene examined (15 04) whereas 

naphthalene was oxidized only 100-fold slower than ammonia oxidation at the highest 

concentration of naphthalene tested (240 04). 

Effects of NH4+ concentrations on naphthol productions 

We also determined the effect of ammonia concentration on the rate of naphthol 

production. To prevent the complete oxidation of low concentrations of ammonia we 

examined naphthol production using a fixed concentration of napthalene (150 04) in 10 

min incubations using ammonia concentrations between 0 to 50 mM. This result (Fig. 3­

5) demonstrates that the rate of naphthalene oxidation progressively increased with 

increases in ammonia concentration up to 10 mM NH4+ and then the rate of naphthol 
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Fig. 3-4. Effects of naphthalene concentrations on the rate of naphthol and nitrite
 
productions. Cells were exposed to a range of naphthalene concentrations from 0 to 240
 

and 10 mM NH4+. Naphthole and nitrite() productions generated in the same
 
incubations were measured as described in Materials and Methods.
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Fig. 3-5. Effects of NH4+ concentrations on the rate of naphthol production. Cells 
were exposed to fixed naphthalene concentration (150 uM) and a range of N1-14+ 
concentrations from 0 to 50 mM. Naphthol() and nitrite(A) generated in the same 
incubations were measured, as described in Materials and Methods. 
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production to a lower but almost constant rate as the ammonia concentration was 

increased up to 50 mM NI-14+ . 

Toxic effects of naphthalene and oxidation products 

Potential toxic effects associated with naphthalene oxidation were examined by 

incubating cells with a range of concentrations of naphthalene and an equivalent range of 

concentrations of the two naphthalene oxidation products, 1-and 2-naphthol. Toxic 

effects were investigated by monitoring AMO and HAO-dependent 02 uptake activites 

after preexposure of cells to these compounds. 02 consumption in the presence of 

ammonium reflects AMO activity in addition to terminal oxidase activity. Both of these 

02-consuming reactions utilize electrons derived from the oxidation of hydroxylamine, 

which itself is generated from ammonia oxidation. When ammonia oxidation is inhibited 

by the addition of the AMO-specific inhibitor allythiourea, the capacity of hydroxylamine 

oxidation can be monitored separately by adding hydrazine, a competitive, alternative 

substrate for hydroxylamine oxidoreductase (11). Our results (Fig. 3-6) demonstrate that 

naphthalene and both naphthols produced an irreversible inhibitory effect on both AMO 

and HAO activities (Fig.3-6). The maximal inhibitory effects were observed in the 

incubations conducted with 200 1.1M naphthalene or naphthols. Both naphthalene and the 

naphthols cause larger effect on HAO activity than on AMO activity (Fig. 3-6B). 
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Fig. 3-6. Inhibition of NR4+ - and N2H2 -dependent 02 uptake in whole cells of N. 
europaea. To determine the effects of naphthalene and its oxidation products, 1-and 2­
naphthols, on the activities of two enzymes involved in ammonia oxidizing activity, cells 
were exposed to varying concentrations of naphthalene and 1-and 2-naphthols for 2 hr. 
After incubation, cells was washed and resuspended in buffered solution (50 mM sodium 
buffer[pH 7.8], 2 mM MgSO4). Samples of the washed cells (50 ul) were examined to 
analyze NH4+ and N2H2 - dependent 02 uptake, as described in Materials and Methods. 
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Oxidation products of PAHs by N. europaea 

Having examined the oxidation of naphthalene, we were interested to further 

characterize the PAH substrate range by N. europaea. Our investigation was conducted 

by incubating individual PAHs with N. europaea for 24 hr. The incubation of cells with 

2-methyl naphthalene yielded 2 metabolites. One of them (35 % of the total ion 

chromatogram) possessed an Rt (19.5 min), mass spectrum (M+ at m/z 158), and 

fragmentation ions (130 [M+ -CO]) identical to those observed for authentic 2-methyl 

naphthalenol. The other metabolite detected was identified as 2 methyl naphthaldehyde 

on the basis of molecular weight (M+ at m/z 156), mass spectrum (128 [M+ - CO], 101 

[M+ COOH]) and Itt (17.4 min). Incubations with both acenaphthalene and 

acenaphthene yielded one major metabolite in netural extraction. The metabolite 

possessed an Rt (19.9 min), mass spectrum (M+ at m/z 168), and fragmentation ions (at 

m/z 140 [M+ CO], 113, and 98) identical to those observed for authentic 

acenaphthenone. None of the oxidation products described here were observed in the 

presence of acetylene (Data not shown). We obtained no evidence to suggest fluorene, 

anthracene and phenanthrene were oxidized by AMO. 
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Table 3-1. Oxidation products of other PAHs by N. europaea. 

Substrate Amount Product detected Transf- % of 0, uptake activity remaining 
ormation after incubation with individual(IAM) 

added PAH and ammonia for 2 hr 
NH3- dependent N2H4-dependent 

Naphthalene 27.3 1-Naphthol (14 %) Yes 81.1 88.9 
2-Naphthol (86 %) 

2-Methyl 24.3 2-Methyl naphthalenol Yes 85.8 79.0 
naphthalene (84 %) 

2-Methyl aphthaldehyde 
(16 %) 

Acenaphthalene 23* Acenaphthenone Yes 82.8 79.3 

Acenaphthene 23* Acenaphthenone Yes 73.6 74.7 

Fluorene 9 ND No 95.0 87.0 

Anthracene 0.45* ND No 86.3 86.9 

Phenanthrene 8.4* ND No 89.4 98.6 

*Saturated amount were added 
ND: Not detected 

DISCUSSION 

The ability of whole cells of N. europaea to oxidize polycyclic aromatic 

hydrocarbons (PAHs) was investigated. The results of this study extended the known 

substrate range of AMO to PAHs including naphthalene and other PAHs. 

Inhibitory effects of PAHs on nitrite production 

Our results demonstrated that naphthalene exerts a strong inhibitory effect on 

ammonia oxidation by N. europaea. These effects are similar to the inhibitory effects that 

have been shown to occur with other classes of alternative AMO substrates. Although 

there are several mechanisms to account for the inhibitory effects of alternative substrates 

on ammonia oxidation these effects usually reflect the combined effects of the mutually 
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exclusive binding of ammonia and alternative substrates and the effects of this 

interaction on the supply of reductant required to maintain AMO activity. Our results 

(Fig. 3-4) demonstrate naphthol production increased with increases in naphthalene 

concentration. In contrast, the effects of NH4+ concentration on the naphthalene oxidation 

involved an initial increase in the rate followed by a decline (Fig. 3-5). The initial 

increase in the rate of naphthalene oxidation is likely due to the effect of increased 

reductant supply from ammonia oxidation. In the higher NH4+ concentration (25 50 

mM), small decline of oxidation rate of naphthalene observed compared to previous study 

(Fig. 3-4) suggests that the binding of NH3 and naphthalene are not be entirely mutually 

exclusive. 

Transformations of PAHs by N. europaea 

Previous studies with N. europaea have demonstrated some unusual reactions 

catalyzed by AMO. For example, the relative proportions of 1- and 2-ols generated by N. 

europaea during the oxidation of n-alkanes is the opposite to that encountered with 

sMMO-catalyzed reactions (17). We also observed an unusual reaction in the case of 

naphthalene oxidation where 2-naphthol was the major hydroxylated product. This result 

contrasts with methanotrophic- (4), phenol-oxidizing bacteria (6) and many fungi 

containing cytochrome P-450 enzymes that generate 1-naphthol as the dominant product 

of naphthalene oxidation. In the case of methanotrophs it is also important to note that 

naphthalene-oxidizing activity is restricted to organisms expressing the soluble methane 

monooxygenase system, not the particulate form of this enzyme which is structurally 

similar to AMO in N. europaea (2). 
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Potential applications 

It is important to address the potential application of organisms for the 

remediation of PAHs. In general it was known that unsubstituted PAH compounds are 

largely resistant to biodegradation under anaerobic conditions despite the fact that 

anaerobic processes could be advantageous for economic reasons. This resistance to 

degradation is thought to reflect the stability conferred to the unsubstituted rings by the 

symmetrical electron distributions. A potentially effective route to promote anaerobic 

PAH degradation would be to biologically introduce ring substituents such as hydroxyl 

groups into PAHs. In this study we have demonstrated ammonia-oxidizing bacteria are 

incapable of mineralizing PAHs under aerobic conditions but are readily capable of 

transforming certain PAHs to hydroxylated products. Such oxygen incorporation into 

hydrophobic compounds could increase partitioning of contaminants from soil surfaces 

into the aqueous phase, making them more available to other microorganisms (21). If 

their reactions were to be catalyzed by ammonia-oxidizing bacteria it us is conceivable 

that the oxidized nitrogen species generated by this process could be subsequently used as 

electron acceptors for denitrifying organisms capable of utilizing hydroxylated PAHs as 

electron donors. In combination, these aerobic and anaerobic processes could fully 

mineralize NH4+ and PAHs to N2 and CO2 
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ABSTRACT
 

In this study evidence for the transformation of six aryl ethers by the soil nitrifying 

bacterium N. europaea is presented and the subsequent abiotic transformations suggest 

these transformations involved two separate reactions. First, our results indicate that N. 

europaea has the ability to cometabolically oxidize dibenzofuran (DBF), dibenzo-p­

dioxin (DD), and other aryl ethers. Control experiments using acetylene indicated that 

AMO is the enzyme involved in oxidation of these compounds although none of these 

substances show an inhibitory effect on ammonia oxidation. DBF oxidation by AMO 

yielded 3-hydroxydibenzofuran (3 -OH DBF) as an initial oxidation product. This 

transformation product was verified using co-elution with authentic 3 -OH DBF on HPLC 

and GC/MS analysis. The time course of DBF degradation using different ammonia 

concentrations indicated competitive interactions between ammonia and DBF. The 

production of 3 -OH DBF was almost doubled with increase in ammonia concentrations 

from 10 to 20 mM. Second, our results also indicated that hydroxylated products of all the 

aryl ethers by AMO action are further transformed abiotically, generating nitro-hydroxy 

compounds. Experiments using 3 -OH DBF indicate that the nitration reactions are 

strongly affected by pH with smaller effects due to nitrite concentration. 
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INTRODUCTION 

Because of the extreme toxicity of halogenated dibenzo-p-dioxins (DD) and 

dibenzofuran (DBF), areas contaminated with these compounds are potentially hazardous 

and require remediation. These halogenated heterocycles are formed during the 

manufacture of pesticides, bleaching of pulp paper (22, 24, 3), incineration of halogen-

containing chemicals and industrial and domestic waste. Biological processes have 

considerable potential for the degradation of polyaromatic hydrocarbons. However, 

compounds such as DD and DBF are generally resistant to microbial attack because of the 

stable central oxygen link between the two aromatic nuclei (25). A number of 

microorganisms have been isolated which can oxidize DBF (25, 26, 28, 29), DD (7, 8, 25, 

26, 30, 31), diphenyl ether (DPE) (32), and other aryl ether compounds (10) using 

dioxygenase enzymes. However, very little is known about the microbial degradation of 

aryl ethers by monooxygenase enzymes. In this study we have examined the oxidation of 

DBF and other aryl ether compounds by the nonspecific monooxygenase AMO, found in 

the soil nitrifying bacterium N. europaea. N. europaea is a lithoautotroph which obtains 

all of its energy for growth from the oxidation of ammonia to nitrite, via hydroxylamine 

as an intermediate. The energy derived from ammonia oxidation is used to support both 

ATP generation and CO2-fixation (33). The initial oxidation of ammonia is catalyzed by a 

membrane-bound enzyme known as ammonia monooxygenase (AMO). The reductant 

required to support AMO activity is provided through the oxidation of the product of 

ammonia oxidation (hydroxylamine) using the enzyme hydroxylamine oxidoreductase 

(HAO) (21). AMO in N. europaea is capable of oxidizing a range of hydrocarbons (11, 

17), halogenated hydrocarbons (18), aromatics (14), PAHs (15) and alkyl ethers (13). 
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AMO catalyzed the substrates by several mechanisms such as hydroxylation (11), 

epoxidation (11) and 0-dealkylation (13). In this present study we have examined the 

oxidation of a range of aryl ether compounds and have demonstrated those compounds 

undergo both aerobic biotic and abiotic transformation reactions ultimately leading to the 

formation of nitro hydroxy derivatives. 

MATERIALS AND METHODS 

Materials 

Diphenyl ether, 4-chloro- and 4-bromo diphenyl ether, dibenzofuran, 2-hydroxy 

dibenzofuran, and xanthene were purchased from Aldrich Chemical C., Inc., Milwaukee. 

Dibenzo-p-dioxin was purchased from EST Inc. (Florida). All chemicals were more than 

97.5 % pure by manufactures analysis. All other chemicals were of reagent grade. The S­

and 4-hydroxy dibenzofurans were the gift from Dr. Franke at Hamburg University in 

Germany. 

Growth and preparation of the cells 

N.europaea (ATCC 19178) was cultured as described previously (12). Cell 

suspensions were harvested by centrifugation (10,000 x g, 10 min) after 3 days of growth. 

Cells were washed and resuspended in 1.5 ml of the assay buffer (50 mM NaH2PO4, 2 

mM MgC12 [pH 7.8]). Cell suspensions were stored on ice and used within 24 hr of 

harvesting. 
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Assays for inhibition of NH3 oxidation to NO 

All stock solutions of the aryl ether compounds were prepared in dimethyl 

sulfoxide (DMSO). The incubations were conducted in 37 ml glass serum vials 

containing 10 ml assay buffer and ammonium sulfate (5 mM). Aryl ether compounds 

were then added to the assay vials. The vials were then sealed with Teflon-lined silicone 

septa (Sun BrooksTM, Wilmington, NC). The aryl ether was allowed to dissolve by 

placing the sealed vials in a sonic water bath for 10 min. The reactions were initiated by 

adding 100 p.1 of the cell suspension (ca. 1 mg of protein) to the assay vial. The reactions 

were conducted at 30 °C in a shaking water bath (300 rpm). To compare the inhibitory 

effects on nitrite production by several aryl ethers, equal amounts of four aryl ether 

compounds, which corresponded to 5 mg/1, were added although they have different 

solubility. Liquid samples (5 41) of the reaction mixtures were removed to determine the 

nitrite content using the colorimetric analysis as described previously (20). 

Transformations of aryl ethers 

To examine the transformations of the aryl ether compounds, the reaction 

mixtures were prepared as described above, and the reaction mixtures were incubated for 

24 hr. To follow the time course of changes in substrate and oxidation product 

concentrations samples (300 41) were removed from the incubation vials at various time. 

The samples were transferred to 1.5-m1 Eppendorf tubes, and cells were removed by 

microcentrifugation. The supernant (100 1.11) was then injected into the HPLC. 
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Abiotic transformation of hydroxylated aryl ethers 

Two experiments were conducted to establish the abiotic transformation of 

hydroxy DBF. First, To compare the abiotic disappearance rate of 3 -OH DBF that was 

accumulated following biological transformation of DBF by N. europaea, DBF was 

incubated in the presence of cells for 5 hr with DBF to examine 3 -OH DBF production. 

Five mg/1 DBF was initially incubated in the presence of 10 and 20 mM for 5 hr, 

the time after which maximum 3 -OH DBF production was observed. The liquid medium 

was subdivided into 3 separate incubation vials. In one incubation the reaction mixture 

was left unchanged, to another incubation C2H2 (1 % v/v) was added. In the third 

incubation the cells were removed by centrifugation. In all cases the concentration of 

residual 3-OH DBF was monitored by HPLC. In the second experiment we examined 

whether the same products were generated in the presence and absence of cells. In these 

experiments 2- and 3 -OH DBF (5 mg/1) were incubated in phosphate buffer (50 mM 

sodium buffer, 2 mM MgSO4) over a range of pH values from 4.9 to 7.8 and two different 

NO2- concentrations for 12 hr. 

Analytical procedures 

The oxidation of aryl ethers and the accumulation of oxidation products were 

determined using high-performance liquid chromatograph (HPLC). The HPLC system 

equipped with a reversed-phased ultramex C18 column (150 mm x 4.60 mm; 

phenomenex).The eluent was composed of acetonitrile (HPLC grade; Mallinckrodt) 

(varied as necessary from 40 to 60% by volume) and deionized water, and the flowrate 

was set at 1 ml/min. Eluted compounds were detected by UV detector at 254 nm using a 
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Hewlett Packard integrator. Further characterization of the oxidation products of the aryl 

ether compounds was conducted using a Finnigan 4023 GC/MS with a Varian 3400 GLC, 

coupled to a Galaxy 2000 data system. The mass spectrometer was operated in electron 

impact mode (70 eV) with a source temperature of 140°C. A 10 m SE54 silica capillary 

column (0.25 mm ID) was used with a temperature program set for 50 to 280°C at a rate 

of 20°C/min and a detector temperature of 280°C. To run samples in the GC/MS, samples 

(10 ml) of each compound were extracted twice with a half volume of hexane (neutral 

fraction). After the supernatant was dried over anhydrous Na2SO4, the solvent was then 

evaporated to approximately 1000 under a stream of N2. Samples (2 ill) of the hexane 

solution were then injected into GC/MS. Chemical structures of the metabolites were 

assigned on the basis of their mass spectra , instrument library searches, and literature 

data if authentic materials were not available. 

Protein concentrations of the cell suspensions were determined by using a Biuret 

assay (19) after solubilizing the cells in 3 M NaOH (30 mM, 60°C). 

RESULTS 

Inhibitory effects of aryl ethers on nitrite production 

Several previous studies with N. europaea have reported that alternative 

substrates on AMO show inhibitory effects on ammonia oxidation.(14, 15, 16). This 

inhibitory effect occurs because of competitive interactions between ammonia and 

alternative substrates for oxidation by AMO. The inhibitory effects of four aryl ethers on 

nitrite production were determined for cells incubated with ammonia (10 mM) with each 
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ether compound present as a saturated aqueous solution (< 3 mg/1). In the absence of aryl 

ethers the added ammonia was rapidly oxidized to nitrite within 1.5 hr (Fig. 4-1). The 

presence of the aryl ethers had very little effect on the time course of nitrite production. 

Based on our previous experience with alternative substrates this limited effect on nitrite 

production suggested that these compounds were unlikely to be substrates for AMO. 

Transformation of aryl ethers by N. europaea 

Despite the limited effect of the compounds on nitrite production an analysis of 

the reaction media of incubations with aryl ethers suggested that these compounds 

undergo transformations in the presence of N. europaea. Our results with DBF are 

presented here and are representative of our results with all of the ether-bonded 

compounds examined in this study. Our results (Fig. 4-2) demonstrate that the incubation 

of cells with NH4+ (10 mM) and DBF led to the production of a single product as 

determined by HPLC analysis (Fig. 4-2B). This product was not generated by cells 

incubated with C2H2 and DBF (Fig. 4-2D). C2H2 is a specific inhibitor of AMO activity 

and this result suggests that AMO activity is required for the generation of this product. 

This product was subsequently identified as 3 -OH DBF by coelution with authentic 3 -OH 

DBF during HPLC analysis of the authentic compounds. Although our analysis suggests 

DBF underwent hydroxylation by AMO, our results also demonstrated that this 

hydroxylated product became substantially depleted from our reactions when reaction 

medium was analyzed after 24 hr (Fig. 4-2C). This result suggests that DBF and other 

aryl ethers are susceptible to two reactions in the presence of N. europaea. The 

characterization of these two putative reactions is detailed in the remainder of this study. 
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Figure 4-1. Time course of nitrite production by N. europaea in the presence of aryl 
ethers. Cells were incubated in glass serum bottles with 10 mM1\11-14+, cells (100 ul; ca 
1.5 mg of protein), and 5 mg/leach aryl ether compounds; diphenyl ether, dibenzofuran, 
xanthene, and dibenzo-p-dioxin. 
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Figure 4-2. !PLC and GC/MS analysis of transformation products obtained from 

DBF by N. europaea. The incubation conditions are as described in the Materials and 

Methods and each incubation contained DBF (5 mg/I), 10 mM NH4+ and cells (100 pl; ca 

1.2 mg of protein) except (D) addition of C2H2 (1 % v/v). Samples were taken at different 

time; (A) 0 hr (B) 10 hr (C) 24 hr (D) 10 hr. The GC/MS chromatogram (E) represent the 

peak I produced from oxidation of peak II (DBF).The sample for GC/MS analysis was 

prepared as described in Materials and Methods. 
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Figure 4-3. Time course of 3 -OH DBF and nitrite productions as a function of NH4+ 
concentration. The following symbols represent; nitrite production from cells (500 !Al; ca 

5.5 mg of protein) incubated with (0) 10 and () 20 mM NH4+, 3 -OH DBF production 

from cells incubated with (0) 10 and () 20 mM NH4+ . Detailed experimental conditions 
are described in Materials and Methods. 
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A time course study following DBF oxidation by AMO was conducted to examine 

the interaction between ammonia and DBF, Our result (Fig. 4-3) suggests a competitive 

interaction between ammonia and DBF for oxidation by AMO. For example, the rate of 

DBF oxidation was initially low in the presence of the high ammonia concentrations 

present in the early stages of the reaction (< 1 hr). The rate of 3 -OH DBF production then 

progressively increased as the ammonia concentration was further decreased and then the 

rate of production tended to zero as the ammonia was exhausted. This latter decrease in 

the rate of production probably reflects the effects of a decreased rate of supply of 

reductant to AMO. In addition, we also observed that the initial rate of 3 -OH DBF 

production was lower in the incubation with 20 mM NH4+ compared to the incubation 

with 10 mM NH4'. However, the incubation conducted with 20 mM NH4+ eventually 

produced 2-fold higher concentrations of 3 -OH DBF. This effect is probably due to the 

greater amount of reductant available to AMO throughout the reaction time course. 

Abiotic transformation 

As our preliminary experiments (Fig. 4-2) indicated that 3 -OH DBF from DBF 

oxidation progressively disappeared during the reaction time course we were interested to 

determine the conditions that led to the further transformation of 3 -OH DBF. Our first 

experiment was conducted with incubations that had occurred over a 5 hr period (Fig. 4­

3). The reaction medium was subdivided into 3 separate reaction vials and the rates of 

disappearance of 3 -OH DBF were analyzed over the following 12 hr as described in 

Materials and Methods. These experiments were conducted with reaction media obtained 

from transformation reactions containing 10 and 20 mM NH4+. The final pH of these 



70 

reactions were 6.8 and 6.2, respectively. The results (Fig. 4-4) demonstrate that the 

concentration of 3 -OH DBF decreased in all reactions at a constant rate. This result 

indicates that the 3 -OH DBF reaction could be accounted for by an abiotic reaction 

because the compound was depleted equally rapidly in reactions conducted with and 

without cells. As shown in Fig. 4-4 the rate of 3 -OH DBF removal was approximately 2­

fold higher in the reaction medium obtained from the initial incubation conducted with 20 

mM NH4+ as opposed to 10 mM NH4+. This suggests that the rate of 3 -OH DBF 

consumption could potentially be influenced by the pH of the reaction medium and the 

concentration of nitrite. 

As our previous experiment (Fig. 4- 4) suggested 3 -OH DBF was abiotically 

further transformed at different rates depending on the pH and nitrite concentrations, we 

examined the effects of these two factors, on the abiotic disapperance of 3 -OH DBF. In 

this experiment 27.2 uM 3 -OH DBF was incubated with 10 and 20 mM NO2 at a 

various pH values (4.9 to 7.8) in a phosphate-buffered solution. The residual 3 -OH DBF 

was then measured by HPLC after 12 hr. Our results demonstrate that the abiotic removal 

of 3 -OH DBF was strongly influenced by pH whereas there was only a little effect of 

nitrite concentration. Similar results were observed in the incubations with 2 -OH DBF 

(Data not shown), which suggests the abiotic transformation is not restricted to 3 -OH 

DBF. 

Determination of nitro derivatives 

As our previous experiments indicated further abiotic transformations of 3 -OH 

DBF we were interested to determine the abiotic products. The capillary GC separation 
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Figure 4-4. Time course for abiotic transformation of 3 -OH DBF. These experiments 
were conducted after a 5 hr incubation of cells with 10 & 20 mM N1-14+ and 5 mg/1 DBF 
as described in Materials and Methods. The liquid medium of the previous experiment 
(Fig. 4-3) was subdivided into 3 separate incubation vials under the following conditions: 
Panel (A) Reaction medium from initial incubation with 20 mM N1-14+.() unchanged 
condition with previous experiment, (A) addition of C2H2 (1 % v/v), () removal of cells. 
Panel (B) Reaction medium from initial incubation with 10 mM NH4+. (0) unchanged 
condition with previous experiment, (A) addition of C2H2 (1 % vlv), (0) removal of cells. 
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Figure 4-5. Transformation of 3 -OH DBF as a function of pH and NO2". The figure 
shows the mass of 3 -OH DBF removed by abiotic reaction after 12 hr incubation at the 

identical pH values in the presence of (0) 10 mM NO,- and () 20 mM NO,-. Detailed 
procedures were described in Materials and Methods. 



Figure 4- 6. GC separation and identification of abiotic transformation products of 3 -OH DBF. Panel (A) shows the GC
chromatogram of the sample obtained from a reaction in which cells were incubated in the presence of DBF (5 mg/I) and 10 
mM NH4+ for 6 hr, and Panel (B) represents the GC chromatogram of the sample obtained from an authentic sample of
incubated in 3 -OH DBF(5 mg/I) phosphate buffer (50 mM sodium buffer [pH 6.8], 2 mM MgSO4) with 10 mM NO2- for 6 hr.
Panel (C) and (D) represent the mass spectral analyses of the peaks (III, IV) detected in panel A and B. 
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of the reaction medium obtained from 6 hr incubation of cells with DBF (5 mg/1) and 10 

mM NFL is shown in Fig. 4-6(A) along with the GC separation of the sample incubated 

with authentic 3 -OH DBF incubated in phosphate buffer solution (pH 6.8) with nitrite (10 

mM) in the absence of cells (Fig. 4-6(B)). This analysis indicates the products formed 

from DBF transformation with cells presented in Fig. 4-6(A) are the same products as 

those formed when 3 -OH DBF was incubated at low pH with nitrite in the absence of 

cells. The GC peaks IlI and IV had a retention time 8.22 and 8.31, respectively, and were 

identified as two isomers of nitro 3 -OH DBF (molecular weight, 229) through 

interpretation of their mass spectral fragmentation pattern. The mass spectra of the 2 

isomers of nitro 3 -OH DBF corresponding to the GC peaks III and IV, are shown Fig 4­

6(C) and 4-6(D), respectively. The mass spectra of peaks III and IV show a molecular 

ion of m/z 229, which suggests the presence of the nitro compound 3 -OH DBF. The 

fragment at m/z 212 corresponds to the loss of OH. The fragments at m/z 199 and 183 

correspond to the loss of NO and NO2, respectively, based on the presence of a DBF ion 

(m/z = 168). 

Other substrates of AMO 

Our experiments using DBF as a model compound demonstrated that DBF is a 

substrate for AMO and that the oxidation product of DBF is subsequently transformed in 

a pH- and nitrite- dependent abiotic reaction. In view ofthese reactions we were 

interested to examine whether other aryl ethers underwent similar reactions following the 

oxidation of each aryl ethers. Time course experiments indicated that all the compounds 

examined in this study are oxidized by AMO and that these products undergo similar 
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abiotic transformations to those described above. The determination of oxidation products 

of aryl ethers by AMO and subsequent abiotic transformations are summarized in Table 

1. 

AMO 

40 0 OH 

NO2 

Nitro 3-hydroxydibenzofuran (I) 

OH 

Dibenzofuran 3-Hydroxydibenzofuran NO2 

OH 

Nitro 3-hydroxydibenzofuran (II) 

Figure 4-7. Overall pathway of dibenzofuran transformation by N. europaea. 



Table 4-1. GC retention time (Re) and electron impact mass spectra of major compounds formed from oxidation of aryl ethers
by N. europaea 

Sbustrate R, (min) miz of fragment ions Identification 

Dibenzofuran 

Xanthene 

Dibenzo-p-dioxin 

7.36 

8.22 

8.31 

7.29 

7.49 

(% relative intensity) 
184(M+, 100), 156(M+-CO, 2), 155(M+-CHO, 11), 128 
(M+-CO-CO, 20), 127(1X-CHO-CO, 13) 
229(M+, 100), 212(M+-0H, 6), 199(M+-NO, 9), 183 
(M+-NO2, 9), 168 (9), 155(21), 126(37) 
229(M+, 100), 212(M+-0H,12), 199(M+-NO, 6), 183 
(M+ -NO2, 11), 168 (3), 155(13), 126(41) 
243(M+, 100), 213(M+-NO, 8), 197(M+-NO2, 7), 
168(10), 155(1), 139(20) 
200(M+, 100), 171(M+-CHO, 16), 144(M+-CO-CO,
11), 115(22) 

3-hydroxy dibenzofurana 

Nitro-3hydroxy dibenzofuranb 

Nitro-3hydroxy dibenzofuranb 

Nitro hydroxy xantheneb 

Hydroxy dibenzo-p-dioxinb 

Diphenyl ether 

4-chloro dipheyl ether 

8.42 

6.50 

7.34 

7.55 

245(M+, 100), 215(M+-NO, 6), 199(M+-NO2, 8), 
187(M+-NO-CO, 11), 171(M+-NO2-CO, 38 ) 
186(M+, 100), 158(M+ -CO, 6), 157(M+-CHO, 12), 
141(M+-CO-OH, 2), 129(11e-CO-CH0,10 ), 109(17) 
231(M+, 100), 201(M+-NO, 1), 185(M+-NO2, 4 ), 
173(1V1+-NO-CO, 1), 128(17) 
220(M± , 100), 192(M+-CO, 2) 185(M+-C1, 4), 157(19),
128(11), 109(22) 

Nitro hydroxy diebnzo-p-dioxinb 

Hydroxy diphenyl etherb 

Nitro hydroxy diphenyl etherb 

Hydroxy 4-chloro diphenyl etherb 

4-bromo diphenyl ether 

8.38 

8.24 
9.07 

265(M+, 100), 235(M+ -NO, 1), 230(M+-C1, 2), 219(M+-
CO-Cl, 3), 207(M+-NO-CO, 4), 184(6) 
266(M+, "Br, 96), 264(M+, 79Br, 100), 238(M+-CO, 6) 
311(M+, "Br, 96), 309(M+, 79Br, 100), 283(M+-00,4), 
281(M+-NO, 8) 

Nitro hydroxy 4-chloro diphenyl etherb 

Hydroxy 4-bromo diphenyl etherb 
Nitro hydroxy 4-bromo diphenyl etherb 

extracted with hexane at neutral pH 
'identified by comparison (of RI and mass spectra ) with authentic material.bsuggested structure 
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DISCUSSION 

Several aryl ethers ware recognized by the USEPA as significant environmental 

contaminants or Priority Pollutants (e.g. 4-chloro diphenyl ether) (27). The report 

demonstrates that several aryl ethers are degraded to hydroxy derivatives by the soil 

nitrifying bacterium N. europaea. This results of this study also demonstrate that the 

hydroxylated products undergo further abiotic transformation to yield nitro hydroxy 

derivatives. The broader implications of our observations are discussed below. 

Inhibitory effects of aryl ethers 

The result in this study demonstrated that several aryl ethers did not have 

significant inhibitory effect on ammonia oxidation by N. europaea whereas most of the 

substrates, including aromatic (14, 16) and polyaromatic (15) compounds, of the AMO 

show inhibitory effects. This result suggests that inhibitory effects on nitrite production is 

a poor selection criteria for AMO substrates with low aqueous solubilites. 

Transformation of aryl ethers 

We have previously demonstrated that the oxidation of naphthalene by N. 

europaea results in the generation of 2-naphthol as an unusual dominant oxidation 

product. While the production of 3 -OH DBF from DBF described in the present study is 

clearly compatible with a monooxygenase-catalyzed reaction, very little is known about 

the predominant products expected from monooxygenase-catalyzed DBF oxidation 

because the majority of microbial studies with this compound have concentrated on 

dioxygenase-catalyzed transformations. For example, the transformation of DBF by the 
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filamentous fungus C. elegans results in the production of 2 -OH and 3 -OH DBF as 8 % 

and 6 % of the total transformation products, respectively. This reaction is likely 

catalyzed by a cytochrome P-450 monooxygenase that has been implicated in the 

numerous polyaromatic hydrocarbon transformations catalyzed by this organism. In 

contrast, the well-characterized dioxygenase activity involved in aryl ether oxidations by 

several Sphingomonas species resulted in the production of 3 -OH DBF as the dominant 

initial product of DBF oxidation. Although our study has revealed that all of the 

compounds examined are oxidized to monohydroxylated products (Table 4-1) we have 

not resolved the positions of the hydroxy substituents and are therefore unable to 

comment on the significance of these products. However, it is known that 2 -OH DBF is 

the major product generated from DD oxidation by Pseudomonas sp. but initial oxidation 

product was cis-benzo[1,4]dioxane dihydrol which could subsequently undergo 

dehydration to yield both 1 - and 2 -OH DD. (8). Beijerinckai produced 2 -OH DD (7) 

although the DBF-degrading bacterium Pseudomonas sp. strain HH69 and Staphyloccus 

auriculans DBF63 generated 1 -OH DD (27, 30). Pseudomonas sp. strain HH69 was also 

able to generate hydroxyxanthene from xanthene (26). It is interesting to note that our 

previous studies with PAH oxidation by N. europaea have demonstrated that 

unsubstituted PAHs with more than two aromatic rings such as fluorene and anthracene 

are not substrates for AMO. In contrast, our present study indicates that structurally 

similar compounds such as DD are readily oxidized by this enzyme system. The 

differential reactivity of the aryl ethers and unsubstituted PAHs could reflect the greater 

reactivity of heterocyclic compounds to electrophiles. 
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Abiotic transformation of hydroxylated aryl ethers 

An unexpected observation in this study was that all of the hydroxylated aryl 

ethers generated by AMO underwent further transformation to yield nitro hydroxylated 

compounds. In this study we have concentrated on characterizing this transformation of 

hydroxylated DBF (Fig. 4-4) but our evidence suggests that the production of these 

compounds is a common feature of all of the compounds examined in this study (Table 4­

1). Our evidence indicates that the production of nitrated derivatives is an abiotic reaction 

because the consumption of 3 -OH DBF occurred at essentially equivalent rates in the 

presence and absence of cells (Fig. 4-4). Furthermore, our evidence indicates that the 

same nitrohydroxy DBF isomers generated during prolonged incubations in the presence 

of cells were also generated in artificial reactions conducted in the complete absence of 

cells. Nitration reactions between nitrite and phenolic compounds are well known and are 

thought to require nitrous acid (HNO2) rather than nitrite (NO2-) as the active nitration 

agent. The pKa for nitrous acid is 3.4 (30 °C) and this suggests that the rate of nitration 

will increase with decreasing pH. This effect was certainly confirmed in our abiotic 

reactions (Fig. 4-5) and in our biological experiments (Fig. 4-4) we observed that the rate 

of 3 -OH DBF was faster in incubations containing 20 rather than 10 mM NH4±. This 

latter effect is probably less a result of the higher concentrations of nitrite generated from 

ammonia oxidation and more a result of the higher degree of acidification of the medium 

caused by the greater level of ammonia oxidation. In support of this we observed that the 

oxidation of 10 and 20 mM NI-14+ reduced the pH of the reaction medium from 7.8 to 6.8 

and 6.2, respectively. 
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The nitration of phenolic compounds has received considerable attention in the 

past. Nelson and Bremner (35, 36) reported that the rate of nitration of phenolic 

compounds at pH 5.0 is dependent on the degree of hydroxylation of the target 

compound. Azhar et al. (39) also observed that nitro and nitroso derivatives of 1-naphthol 

are generated in soils in the presence of nitrite and we have subsequently demonstrated 

that the oxidation of naphthalene to 1 and 2-naphthol by N. europaea generates 

nitrohydroxy derivatives of naphthalene under the same conditions described in this study 

(Data riot shown). 

Significance of potential application 

Our observation that a soil nitrifying bacterium can readily transform several aryl 

ethers suggests that these organisms may be useful to promote the degradation of these 

compounds. In general bioremediation of dioxin-contaminated soils is a difficult process 

because the dioxin is usually present at very low concentrations and is highly insoluble 

because of their hydrophobic characteristics. Although a number of dioxin-degrading 

bacteria have been isolated (27, 32), the low concentration of these compounds probably 

limits the growth of these organisms. Biosurfactants have been used to increase the 

solubility of these hydrophobic substances (6, 39). Our present study suggests that 

ammonia-oxidizing bacteria could be used as priming catalysts to generate hydroxylated 

compounds which have greater water solubility and are therefore more available to 

support the growth of heterotrophic organisms. Future research with N. europaea could 

address the potential transformation of the more toxic chlorinated forms of DD. 
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ABSTRACT 

Our results represent that the oxidation of a variety of aromatic ethers, including 

anisole, was catalyzed by AMO in whole cells of nitrifying bacterium Nitrosomonas 

europaea through either 0-dealkylation or hydroxylation reactions. The highest rate of 

ether oxidation was observed with anisole and the maximum ratio of 0-dealkylation to 

hydroxylation reactions was 2.5:1. However, the rate of ether oxidation and the ratio of 

O- dealkylation to hydroxylation reactions decreased with increases in carbon number on 

ether bond and with increases in the number of methoxy substituents. The accumulation 

of phenol from the oxidation of aromatic ethers by AMO had a strong inhibitory effect on 

ammonia oxidation. The 0-dealkylating activity of AMO has allowed us to develop a 

rapid spectrophotometric assay that allows us to follow AMO activity in real time. This 

assay follows the 0-dealkylation of p-nitroanisole to 4-nitrophenol. 
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INTRODUCTION 

Aromatic ethers with a variety of substituents are wide spread in nature and are 

most abundant as polymeric components of lignin (29). Most studies of the microbial 

metabolism of aromatic ethers have focused on the more toxic compounds, but there is 

considerable interest in the biodegradation of simple aromatic ethers because these 

present in the environment in such large quantities. Recently, we reported that are 

nitrifying bacteria can oxidize simple alkyl ethers through 0-dealkylation reaction 

catalyzed by the enzyme ammonia monooxygenase (AMO) (15). For example, dimethyl 

ether was oxidized to methanol and formaldehyde by AMO (15). Other prokaryotic 

organisms have been shown to O- dealkylate aromatic ethers. Methane-oxidizing bacteria 

are known to oxidize and 0-deallcylate several alkyl and aromatic ethers (7, 17, 18). For 

example, Methylosinus trichosporium OB3b transforms anisole and other substituted 

anisoles, although O- dealkylation is a minor reaction compared to hydroxylation (17, 18). 

Resnick et al. (28) examined the ability of a variety of hydrocarbon-utilizing bacteria to 

transform anisole and phenetole. They have shown that dioxygenase from different 

Pseudomonas strains oxidized anisole and phenetole to different hydroxylated products 

by both 0-dealkylation and hydroxylation whereas monooxygenase enzymes oxidized 

aromatic ethers by only hydroxylation. The 0-demethylation of phenolic ethers was 

examined for several aerobic bacteria (3). 4-Methoxybenzoate monooxygenase of 

Pseudomonas putida catalyzed the 0-demethylation of methoxybenzoic acids (2). 0­

Dealkylation of aromatic ethers also has been demonstrated by eukaryotic organisms 

including several fungal species (3, 9, 20, 30, 31, 33). Smith et al. (31) examined a 

number of organisms but Aspergillus niger was the only species which oxidized aromatic 
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ethers using an 0-dealkylation reaction. An 0-demethylation of guaiacol has been 

reported in the case of liver microsome P-450 (30). P-450's have been reported to 

catalyze the 0-dealkylation ofpara-substituted benzoates (3, 20), veratrole (33), guaiacol 

(30) and ortho-substituted alkyphenols (9). Anaerobic 0-demethylation was reported by 

several researchers and they observed that methoxylated lignin monomers are degraded 

under methanogenic conditions although the biochemical mechanism of these was 

unclear (2, 6). 

In the present study we have examined the 0-deallcylating activity of the soil 

nitrifying bacterium Nitrosomonas europaea with respect to aromatic ethers. 

Nitrosomonas europaea is an obligate chemolithotrophic nitrifying bacterium which 

derives its energy for growth exclusively from the oxidation of ammonia to nitrite. 

Nitrification in N. europaea is initiated by the reductant-dependent oxidation of ammonia 

to hydroxylamine (NH2OH) through the action of ammonia monooxygenase (AMO). 

Reductant for AMO-catalyzed reactions is provided by the further oxidation of 

hydroxylamine to nitrite by hydroxylamine oxidoreductase (HAO) (37). AMO has been 

demonstrated as a potent biocatalyst capable of transforming a wide range of non-growth 

supporting hydrocarbons. For example, n-alkanes (16), n-alkenes (16), and aromatic and 

polycyclic aromatic hydrocarbons (4, 21), halogenated hydrocarbons (27), and alkyl- (15), 

thio- (19) and aryl-ethers (5) are all oxidized by N. europaea. These studies have 

extended the substrate range of AMO to aromatic ethers. 

In this present study we have examined the pathway of anisole degradation by N. 

europaea and have investigated the structural features of aromatic ethers that influence 
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the oxidation of these compounds. We have also demonstrated how these activities can be 

applied. 

MATERIALS AND METHODS 

Materials 

Anisole, phenetole, butyl phenyl ether, dimethoxybenzene, 1,3,5-trimethoxy 

benzene, 2, 3, 4-methoxyphenol hydroquinone, catechol, formaldehyde, and acetaldehyde 

were purchased from Aldrich Chemical Co., Inc. (Milwaukee, Wis.). All of these reagents 

were more than 97% pure by manufactures analysis. Phenol and ethanol were purchased 

from local sources and were of 97 % + purity. 

Growth and preparation of the cells 

N. europaea (ATCC 19178) was grown in batch cultures (1.5 liters) in 

Erlenmeyer flasks (2 liters) at constant temperature (30 °C) on rotary shakers, as 

described previously (13). The cells were harvested by centrifugation (10,000 x 10 min) 

after 3 day growth, fmally resuspended in assay buffer (1.5 ml, 50 mM sodium phosphate 

buffer [pH 7.8] containing 2 mM MgC12), and stored on ice for use within 12 h of 

harvesting. 

Anisole and other aromatic ether degradation studies 

Experiments for anisole and aromatic ethers degradation by N. europaea were 

conducted in serum vials (37 ml) sealed with Teflon-lined silicone septa (Sun BrokersTM 
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Wilmington, NC). The incubation medium (5 - 10 ml) consisted of phosphate buffer (50 

mM potassium phosphate [pH 7.8], 2 mg MgSO4). The required concentrations of anisole 

and other aromatic ethers were added from a stock solution in dimethyl sulfoxide 

(DMSO). The vials were placed in a sonicator for 5 min to allow dissolution of the 

compounds in the buffer. The reactions were initiated by the addition of 5 mM 

(NH4)2SO4 and cells (0.25 - 0.5 ml; approximately ca 2.5 - 5 mg of protein) to the 

reaction vials. The vials were then returned to a heated shaking water bath (30 °C). To 

determine the consumption of each compound and accumulation of oxidation products, a 

sample of the liquid phase (200 0) was removed and cells were removed by 

microcentrifugation; supernants (100 41) were analyzed by HPLC (See Analytical 

Procedures). 

Colorimetric assay of 4-nitroaniosle 

The ability of N. europaea to transform 4-nitroanisole was tested by incubating 

cells with 4-nitroaniosle into 2 ml glass cuvettes. Initially, 1.9 ml phosphate buffer (50 

rnM potassium phosphate [pH 7.8], 2 mg MgSO4) was added into the cuvette and then 

500 trIVI 4-nitroanisole in dimethyl sulfoxide (DMSO) and 10mM NH4+ were added. The 

reaction was initiated by the addition of 100 Ill cells (1.1 mg protein). The 4-nitrophenol 

production was measured by following the increase in the absorbance at A400. To verify 

the production of 4-nitrophenol between colorimetric assay and HPLC, liquid samples 

(0.5 ml) were taken after 5 min and treated with 100 [tM allylthiourea (ATU) to prevent 

any further AMO activity. The samples were centrifuged by microcentrifuge to remove 

cells, and then 100 Ill supemant was injected into HPLC. 
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Analytical procedures 

Aromatic ethers and oxidation products were analyzed by HPLC equipped with a 

reversed-phase ultramex C18 column (150 mm * 4.60 mm; phenomex). The HPLC elution 

program consisted of isocratic elution for individual aromatic ethers with 30 - 50 % (v/v) 

acetonitrile mixture in deionized water at the flow rate of 0.8 - 1.0 ml/min. All 

compounds other than 4-nitrophenol were detected by UV absorbance at 254. 

Acetaldehyde production was measured by gas chromatograph. Liquid sample (2 111) were 

analyzed by using a gas chromatograph (HP 5890 Series II) equipped with a HP­

INNOWAX column (30 min x 0.25 mm) and a flame ionization detector. The GC was 

interfaced to an integrator (HP 3365 Chemstation). The column temperature was initially 

set at 80°C and, after 4 min, raised to 200°C at a rate 10°C/min. Formaldehyde was 

measured by a coupled assay with formaldehyde dehydrogenase from Pseudomonas 

putida (Sigma Chemical Co., St. Louis, Mo.), using the modified methods of Ogushi et 

al. (23). After termination of the AMO reaction with ATU, cells were removed by 

centrifugation (10,000 x 2 min), and 400 Ill of supernant was combined with 1.8 ml of 60 

mM sodium carbonate (pH 8.9) and 200 41 of 12 mM NAD+. Formaldehyde 

dehydrogenase (0.04 U in 10 1.t1 of 10 mM sodium phosphate buffer [pH 6.8]) was added 

to the mixture, and the change in A340 nm due to the formaldehyde dehydrogenase­

catalyzed production of NADH (E = 6.22 mM-I cm-1) in the presence of formaldehyde 

was measured and a standard curve was prepared as described previously (26). 

The nitrite level was determined colorimetrically as described previously (12). 

Protein concentrations were determined by the biuret assay (11) after solubilization of cell 
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protein in aqueous 3N NaOH (30 min at 60°C) and sedimentation of insoluble material by 

centrifugation (14,000 x g, 5 min) . 

RESULTS 

Time course of anisole degradation 

Previous studies with N europaea have demonstrated that simple alkyl ethers are 

frequently oxidized by 0-dealkylation reaction (15). In this study we were interested to 

determine whether aromatic ethers are substrates for AMO and whether these compounds 

undergo 0-dealkylation reactions. Our initial investigations focused on anisole 

(methoxybenzene) as a model compound for aromatic ethers. The time course experiment 

described in Fig. 5-1 demonstrates that anisole was rapidly degraded by N. europaea and 

that phenol, 4-methoxyphenol, catechol and hydroquinone were generated as aromatic 

oxidation products. These products suggest both 0-dealkylation and hydroxylation 

reactions were involved in anisole degradation. The initial observed ratio of 0­

dealkylation and hydroxylation reactions after 30 min was 2.3:1, indicated that 0­

dealkylation was the relatively dominant reaction by AMO at the beginning of the 

reaction. In the presence of acetylene (1 % v/v) no oxidation products were observed in 

an identical experiment to that described in Fig. 5-2 (data not shown). This result 

indicates the AMO is responsible for initiating the oxidation of anisole. In this 

experiment we also observed that accumulated phenol was depleted after 1 hr although 4­

methoxyphenol was still produced up to 2.5 hr into the reaction time course. Concurrent 
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accumulation of hydroquinone and catechol explain the phenol consumption. And this 

was confirmed in separate experiments incubating cells with phenol. Hydroquinone and 
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Figure 5-1. Time course for anisole degradation and subsequent accumulation of 
aromatic products by N. europaea. The experiment was conducted as described in 

Materials and Methods. 
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Figure 5-2. HPLC chromatograms showing the oxidation of anisole by N. europaea. 
These chromatograms were analyzed after 2.5 hr incubation from the sample as described 
in Fig. 5-1 (A) with acetylene (B) without acetylene; (a) catechol, (b) hydroquinone, (c) 
4-methoxyphenol, (d) phenol, (e) anisole 
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Figure 5-3. Overall pathway of anisole degradation by AMO 
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catechol were generated as phenol was oxidized, and no oxidation products were 

observed in the incubation with acetylene, which suggests that AMO is also involved in 

these further reaction transformations (data not shown). Cells incubating 4­

methoxyphenol alone also produced hydroquinone and again no oxidation was observed 

in the presence of acetylene. Anisole oxidation by 0-dealkylation would be expected to 

produce equimolar concentrations of phenol and formaldehyde. However, our results 

show considerable deviation from a 1:1 stoichiometry of both oxidation products. The 

low levels of formaldehyde may be due to further biotic and abiotic reactions which have 

been described previously (15). The total amount of aromatic products detected accounted 

for approximately 89 % of anisole depletion over 3 hr of the incubation. The overall 

pathway of anisole degradation by AMO was summarized in Fig. 5-3. 

The effect of carbon number on ether bond oxidation 

As our preliminary experiment indicated that anisole was readily degraded by N. 

europaea we were interest to examine to the effect of the size of the alkyl group on the 

ratio of 0-dealkylation to hydroxylation reaction. To examine this, cells were incubated 

in the presence of equivalent concentrations of anisole, phenetole and butyl phenyl ether 

in the presence of 10 mM NH4+ for 1 hr. The products detected after this reaction indicate 

that 0-dealkylation was the dominant oxidation reaction for both anisole and phenetole. 

Although no oxidation products were detected in the incubation with butyl phenyl ether 

formaldehyde was detected as a product of anisole oxidation and both ethanol and 

acetaldehyde were observed as products of phenetole oxidation. Anisole also produced a 

greater inhibitory effect on nitrite production as compared to phenetole which indicates it 
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is a more effective inhibitor of ammonia oxidation. However, this inhibitory effect could 

be due to both the substrate and the oxidation products. To investigate this we compared 

the inhibitory effects of both anisole and phenol at concentrations between 10 and 50 .tM 

for the cells incubated with 10 mM NH4+ . Phenol (50 1.1M) inhibited nitrite production by 

90 % in a 1 hr incubation whereas an equivalent concentration of anisole only inhibited 

nitrite production by 50 % (data not shown). 

Table 5-1. Effect of alkyl substituents on the oxidation of aromatic ethers by N. 
europaea 

Substrate (amount)a Product(s) % of nitrite production 
(nmole formed in 60 min)b compared to controls 

10 mM NH4+ 

Anisole (0.17 nmol) Phenol (87 ± 21) 
4-methoy phenol (53 ± 2) 
Formaldehyde (28 ± 4) 74.5 

Hydroquinone ( 35 ± 5) 
Catechol (9 ± 3) 

Phenetole (0.15 nmol)d Phenol (34 ± 7) 
Acetaldehyde (21 ± 4) 
Ethanol (18 ± 3) 79.6 

Hydroquinone (19 ± 5) 
Catechol (6 ± 2) 

Butyl phenyl ether (0.13 nmol) ND 87.3 

'Equivalent concentrations of substrate were added initially. 
bData represent the average of duplicate determinations ± standard deviation where indicated.
 
cData represent the average of duplicate determinations.
 
dAn additional product was detected by HPLC in substantial quantity but was not identified.
 

ND: not detected
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The effects of the number and position of methoxy substituents 

We were also interested to determine the effect of the position and number of 

methoxy substituents on the products of aromatic ether oxidation. Our results (Table 5-2) 

demonstrated that lower levels of oxidation product were obtained in 1 hr incubation as 

the number of methoxy groups was increased. Anisole oxidation generated the largest 

quantity of products by N. europaea whereas no oxidation products were observed in the 

incubation with 1,3,5-trimethoxy benzene. All three dimethoxy benzene were oxidized 

only through 0-delkylation reactions whereas anisole was oxidized by both 0­

dealkylation and hydroxylation reactions. In the case of dimethoxy compounds, 1,4­

dimethoxy benzene was approximately 4-fold more reactive than other dimethoxy 

benzene, 1,2- and 1,3-dimethoxy benzene, which suggests the higher activity of AMO on 

1,4 configuration. The oxidation products, 2- and 4-methoxyphenol, were further 0­

dealkylated to diols by AMO whereas 3-methoxyphenol was not further oxidized. No 

oxidation products were detected from any of the compounds in incubations containing 

acetylene (1 % v/v). This again indicates that all of the transformations described in Table 

5-2 can be attributed to AMO activity. 

Colorimetric assay of 4-nitroanisole degradation 

Our results to this point indicate that anisole is rapidly degraded by N. europaea 

and that the 1,4 configuration of substituents had a strong directing effect on the activity 

of AMO. These factors suggested a potential application of this activity in which the 0­

dealkylating activity of AMO could be used to provide a continuous spectrophotometric 

assay based on the O- dealkylation of 4-nitroanisole. 
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Table 5-2. Effect of number and position of methoxy group on the oxidation of 
methoxybenzene by N. europaea 

Substrate (amount)a Product(s) 
(nmole formed in 60 rnin)b 

% of nitrite production 
compared to control' 

10 mM NH4+ 

Phenol (202 ± 8) 
Anisole 4-methoxyphenol (131 ± 16) 

(0.42 [(mop Formaldehyde (31 ± 3) 67 

Hydroquinone (67 ± 4) 
Catechol (8 ± 1) 

1,2 Dimethoxy benzene 2-methoxy phenol (16 ± 1) 95.7 

(0.32 umol) catechol (6 ± 2) 
1,3 Dimethoxy benzene 3- methoxy phenol (40 ± 4) 96.8 

(0.32 tmol) 
1,4 Dimethoxy benzene 4-methoxy phenol (168 ± 13) 94.6 

(0.32 rimol) Hydroquinone ( 82 ± 14) 
1,3,5 Trimethoxy benzene ND 81.8 

(0.26 mmol) 
aAll substrates were added to an equivalent concentrations equal to the aqueous solubility of 1,3,5 

trimethoxybenzene.
 
bData represent the average of duplicate determinations ± standard deviation where indicated.
 
`Data represent the average of duplicate determinations.
 
ND: Not detected 

Our initial experiment (Fig. 5-4) indicated, showed that 4-nitroanisole was oxidized to 4­

nitrophenol as the sole aromatic oxidation product. Subsequently we examined this 

reaction by following the generation of the colored 4-nitrophenol spectrophotometrically, 

as described in Materials ad Methods. Our results show that after an initial downward 

deflection there was a constant rate of increase in absorbance (400 nm) when cells were 

incubated with NH4+ (10 mM) and 4-nitroanisole (500 .tM). In contrast there was no 

increase in absorbance when cells were incubated with NH4+, 4-nitroanisole and 

allylthiourea (ATU), a specific inhibitor of AMO activity. Similarly the addition of ATU 
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Figure 5-4. HPLC chromatograms of 4-nitroanisole degradation by N. europaea. 
Chromatograms (A) and (B) are analyses of the reaction medium from incubations of 
cells incubated with 10 mM NH4+ and 4-nitroanisole (500 1.1.M). (A) without acetylene 
and (B) with acetylene (1 % v/v). The peak (a) represent 4-nitrophenol and (b) represent 
4-nitroanisole.. (C) represent the pathway of 4-nitroanisole oxidation by AMO. 
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Figure 5-5. Colorimetric assay of 4-nitroanisole degradation by N. europaea. The 
reaction was conducted as described in the Materials and Methods section. 
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during the reaction time course led to an immediate halt in the increase in absorbance. In 

control reactions we observed no change in absorbance when cells were incubated with 

ATU alone. In the case of active cells incubated with NH4+ alone we observed no increase 

in absorbance over the first 3 min of the reaction. However, a subsequent decrease in 

absorbance after 3 min that plateaued at a lower but stable level was observed. The 

overall decrease in the absorbance in this instance was very close to the initial drop in 

absorbance in reactions conducted with 4-nitroanisole. We suspect that both decreases are 

associated with special changes associated with the use of cell suspensions in these 

spectrophotometric assay and can be attributed to changes in the oxidation state of the 

numerous cytochromes present in N. europaea. 

DISCUSSION 

We have examined the ability of soil nitrifying bacterium N.europaea to oxidize a 

series of methoxylated aromatic ethers. These compounds provided an opportunity to 

determine not only the effect of carbon number but also the position and number of 

methoxy substituents on the rate of ether oxidation and the products obtained from these 

reactions. Our results in this study indicate that all of the compounds tested were initially 

oxidized by AMO through one of two mechanisms; 0-dealkylation and hydroxylation. A 

range of reaction types has been described for AMO including hydroxylation (16, 21), 

epoxidation (16), dehalogenation (25), and 0-dealkylation (15). The 0-dealkylation 

reactions catalyzed by AMO was initially described in the case of dimethyl ethers (15). 

An unusual aspect of the AMO catalyzed reactions described in this study is that 

anisole degradation involves an 0-dealkylation as the major reaction whereas 
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hydroxylations are the dominant reaction in other bacterial system. For example, either l­

and 4-methoxyphenols were observed as the major product from anisole degradation in 

other bacterial system (31). Anisole oxidation by methane-oxidizing bacteria, 

Methylosinus trichosporium OB 3b generates 4-methoxyphenol production which 

accounts for 90 % of the total products of aromatic oxidations. Smith et al. (31) reported 

that most organisms which hydroxylated anisole also 0-demethylayed this compound but 

only as a minor reaction. The oxidation of anisole by Aspergillus ochraceous (ATCC 

1008) produced 2-methoxyphenol, phenol and 4-methoxyphenol in the ratio of 1:3:20 and 

similar results reported by Ferris et al. (10), also indicated that 0-dealkylation was the 

minor reaction. The formations of 2- and 4-methoxyphenol and phenol has been observed 

for P-450 catalyzed reactions in mammalian systems (31) although methoxyphenol is 

usually the dominant product (8). However, 0-demethylation reaction was observed as 

the major metabolism in rat microsomes similarly to our results (35). Aspergillus niger 

(ATCC 9142) was the only species they tested in which the 0-demethylation reaction was 

dominant and generated phenol as a only product. Our results demonstrated that initial 

oxidation products were further transformed and the detection of both hydroquinone and 

catechol as phenol oxidation has been previously observed by Hyman et al. (13) although 

further oxidation of phenol by other organisms was not been reported. Resnick et al. (28) 

examined ability of a variety of aromatic hydrocarbon-oxidizing bacteria to transform 

anisole. They have shown that oxygenases from different Pseudomonas strains oxidize 

anisole to different hydroxylated products. However, their results implicated that mono-

and di-oxygenase reactions were not predictable in the case of anisole and phenetole 

degradation, and in certain situations, the distinction between dioxygenase and 
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monooxygenase activity can be dictated by the substrate rather than the enzyme. 

However, hydroxylations were the only reaction catalyzed by monooxygenase to oxidize 

anisole and phenetole whereas dioxygenases transformed these compounds by both 

hydroxylation and 0-dealkylation (28). 

Effects of carbon number on ether degradation 

Our preliminary results (Fig. 5-1 and Fig. 5-2) showed that both 0-dealkylation 

and hydroxylation were observed during anisole oxidation by AMO. This result addressed 

to determine the effect of carbon number on the oxidation rate and ratio of both reactions 

by AMO. Anisole was the most reactive substrate for AMO of the substrates tested (C1 to 

C4), which indicates the methoxy group is more readily oxidized than larger alkyl 

substituents. The observed ratio of 0-dealkylation and hydroxylation reactions was 1.6:1 

during 1 hr incubation with anisole. Hydroxylation products were detected by HPLC in 

substantial quantity but not quantified in the incubation with phenetole. However, 0­

dealkylation rate were dramatically decreased with increases in carbon number. Rasche et 

al. (25) reported similar results that formation rate of aldehyde indicating 0-dealkylation 

reaction was decreased with increasing n-chlorinated C1 to C4 alkanes and Hyman et al. 

(16) observed that increases in carbon number for n-alkenes resulted in a decrease in the 

proportion of epoxidation reactions to hydroxylations. Similar inhibitory effect on 

ammonia oxidation by the presence of phenol have observed previously and 60 ttM 

phenol inhibited 70 % of ammonia oxidation (32). Less benzene oxidation was observed 

related to inhibition of AMO activity by accumulated phenol ( 80 [tM) (21). 
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Effects of the position and number of methoxy substituents 

As we have observed that different carbon number effected the rate of ether 

oxidation and the ratio of 0-dealkylation and hydroxylation reactions, our results (Table 

5-2) demonstrated that number of methoxy substituents effected the rate of ether 

oxidation and the ratio of 0-dealkylation to hydroxylation reactions. The position of 

methoxy substituents also affected the oxidation rate. Similar to our results is the 

observation by Sutherland et a/.(33) that 1,2-dimethoxy benzene is further transformed to 

catechol via 0-dealkylation by P-450 enzymes. 

Potential application of colorimetric assay 

We have demonstrated the possibility of using the colorimetric assay to detect 

ammonia monooxygenase (AMO) activity. AMO is a non-specific enzyme like methane­

monooxygenases (MMO) and can cometabolically transform a wide range of nongrowth 

substrates. Therefore, the oxidation of the substrate of AMO is dependent on AMO 

activity. Our results suggest that the rapid colorimetric assay is potentially applicable to 

detect AMO activity in whole cell and potentially cell free assays. The 0-dealkylation of 

4-nitroanisole could also potentially be used as a sample assay for detecting AMO activity 

in environmental samples. 



105 

REFERENCES 

1.	 Berman, M. H., and A. N. Frazer. 1992. Importance of tetrahydrofolate and ATP in 
the anaerobic 0-demethylation reaction for phenylmethylethers. Appl. Environ. 
Microbiol. 58:925-931. 

2.	 Bernhardt, F. H., E. Bill, A. X. Trautwein, and H. Twilfer. 1988. 4­
methoxybenzoate monooxygenase from Pseudomonas putida:Isolation, biochemical 
properties, substrate specificity, and reaction mechanisms of the enzyme 
components. Meth. Enzymol. 281-294. 

3.	 Cartwright, N. J., K. S. Holdom, and D. A. Broadbent. 1971. Bacterial attack on 
phenolic ethers: dealkylation of higher ethers and further observations on 0­
demethyases. Mikrobios. 3:113-130. 

4.	 Chang, S. W., M. R. Hyman, and K. J. Williamson. Cometabolic degradation of 
naphthalene and other polycyclic aromatic hydrocarbons (PAHs) by N. europaea. In 
preparation. 

5.	 Chang, S. W., M. R. Hyman, and K. J. Williamson. Cometabolic degradation of 
dibenzofuran and other aryl ethers by N. europaea. In preparation. 

6.	 Colberg, P. J., and L. Y. Young. 1985. Aromatic and volatile acid intermediates 
observed during anaerobic metabolism of lignin-derived oligomers. Appl. Environ. 
Microbiol. 49:350-358. 

7.	 Colby, J., D. I. Strirling, and H. Dalton. 1977. The soluble methane 
monooxygenase from Methylococcus capsulatus (Bath). Its ability to oxygenate n-
alkanes, n-alkenes, ethers, and alicylic aromatic and heterocyclic compounds. 
Biochem. J. 165:395-402. 

8.	 Daly, J. 1970. Metabolism of acetanilides and anisole with rat liver microsomes. 
Bichem. Pharm. 19:2979-2993. 

9.	 Dardas, A., D. Gal, M. Barrelle, G. Sauret-Ignazi, R. Sterijiades, and J. 
Pelmont. 1985. The semethylation of guaiacol by a new bacterial cytochrome, P-450. 
Arch. Biochem. Biophys. 236:585-592. 

10. Ferris, J. P., M. J. Fasco, F. L. Stylianopoulou, J. W. Daly, and A. M. Jeffrey. 
1973. Arch. Biochem. Biophys. 156:97. 

11. Gornall, A., C. J. Bardawill, and M. M. David. 1949. Determination of serum 
proteins by means of the biruet reaction. J. Biol. Chem. 177:751-766. 



106 

12. Hageman, R.H. and D.P. Hucklesby. 1971. Nitrate reductase from higher plants. 
Methods Enzymol. 23:491-503. 

13. Hyman, M. H., A. W. Sansome-Smith, J. H. Shears, and P. M. Wood. 1985. A 
kinetic study of benzene oxidation to phenol by whole cells of Nitrosomonas 
europaea and evidence for the further oxidation of phenol to hydroquinone. Arch. 
Microbiol. 143: 302-306. 

14. Hyman, M. R. and P. M. Wood. 1984. Ethylene oxidation by Nirosomonas 
europaea. Arch. Microbiol. 137: 155-158. 

15. Hyman, M. R., C. L. Page, and D. J. Arp. 1994. Oxidation of methyl fluoride and 
dimethyl ether by ammonia monooxygenase in Nitrosomonas europaea. Appl. 
Environ. Microbiol. 60(8):3033-3035. 

16. Hyman, M. R., I. B. Murton, and D. J. Arp. 1988. Interaction of ammonia 
monooxygenase from Nitrosomas europaea with alkanes, alkenes, and alkynes. 
Appl. Environ. Microbiol. 54(12): 3187-3190. 

17. Jezequel, S. G. and I. J. Higgins. 1983. Mechanistic aspects of biotransformation 
by the monooxygenase system of Methyllosinus trichosprium OB3b. J. Chem. Tech. 
Biotechnol. 33B:139-144. 

18. Jezequel, S. G., B. Kaye, and I. J. Higgins. 1984. 0-deallcylation: a newly 
discorved class of reactions catalyzed by the soluble mono-oxygenase of the 
methanotroph Methylosinus trichosporium OB3b. Biotechnol. Lett. 6:567-570. 

19. Juliette, L. Y., M. R. Hyman, and D. J. Arp. 1993. Inhibition of ammonia 
oxidation in Nitrosomonas europaea by sulfure compounds:Thioethers are oxidized 
to sulfoxides by ammonia oxygenase. Appl. Environ. Microbiol. 59(11):3718-3727. 

20. Karison, U., D. F. Dwyer, S. W. Hooper, E. R. B. Moore, K. N. Timmis, and L. 
D. Eltis. 1993. Two independently regulated cytochromes P-450 in a Rhodococcus 
rhodochrous strain that degrades 2-ethoxyphenol and 4-methoxybenzoates. J. of 
Bacteriol. 175:1467-1474. 

21. Keener, W. K. and D.J. Arp. 1994. Transformations of aromatic compounds by 
Nitrosomonas europaea. Appl. Environ. Microbiol. 60(6):1914-1920. 

22. La Noue, K. F. 1972. Abstr. Commun. Meet. Fed. Eur. Biochem. Soc. 8 
(Amsterdam), Abstract 170. 

23. Ogushi, S., M. Ando, and D. Tsuru. 1986. Formaldehyde dehydrogenase from 
Pseudomonas putida:the role of a cysteinyl residue in the enzyme activity. Agric. 
Biol. Chem. 50:2503-2507. 



107 

24. Patel, R. N., C. T. Hou, A. I. Laskin, and A. Felix. 1982. Microbial oxidation of 
hydrocarbons:properties of a soluble methane monooxygenase from a facultative 
methane-utilizing organism, Methylobacterium sp. strain CRL-26. Appl. Environ. 
Microbiol. 44:1130-1137. 

25. Rasche, M. E., R. E. Hicks, M. R. Hyman, and D. J. Arp. 1990. Oxidation of 
monohalogenated ethanes and n-chlorinated alkanes by whole cells of Nitrosomonas 
europaea. J. Bacteriol. 172:5368-5373. 

26. Rasche, M.E., M. R. Hyman, and D. J Arp.. 1990. Biodegradation of halogenated 
hydrocarbon fumigants by nitrifying bacteria. Appl. Environ. Microbiol. 56:2568­
2571. 

27. Rasche, M. E., M. R. Hyman, and D. J. Arp. 1991. Factors limiting aliphatic 
chlorocarbon degradation by Nitrosomonas europaea: Cometabolic inactivation of 
ammonia monooxygenase and substrate specificity. Appl. and Environ. Microbiol 
57(10):2986-2994. 

28. Resnick, S. M. and D. T. Gibson. 1993. Biotransformation of anisole and phenetole 
by aerobic hydrocarbon-oxidizing bacteria. Biodegradation. 4:195-203. 

29. Ribbons, D. W. and J. E. Harrison. 1972. Metabolism of methoxy- and 
methylenedioxyphenyl compounds by bacteria. In: Degradation of synthetic organic 
molecules in the biosphere: natural, pesticidal, and various other man-made 
compounds. National academy of sciences, Washington, DC. Pp:99-115. 

30. Saeki, Y., M. Nozaki, J. Werringlor, and R. W. Estabrook. 1982. In Oxygenases 
and oxygen metabolism. Academic press. New York. 385-390. 

31. Smith, R. V. and J. P. Rosazza. 1974. Microbial models of mammalian 
metabolism. Aromatic hydroxylation. Arch. Biochem. Biophy. 161:551-558. 

32. Stafford, D. A. 1974. The effects of phenols and heterocyclic bases on nitrification 
in activated sludges. J. Appl. Bacteriol. 29:266-291. 

33. Sutherland, J. B. 1986. Demethylation of veratrole by cytochrome P-450 in 
streptomyces setnii. Appl. Environ. Microbiol. 52(1):98-100 

34. Voysey, P. A.,and P. M. Wood. 1987. Methanol and formaldehyde oxidation by an 
autotrophic nitrifying bacterium. J. Gen. Microbiol. 133:283-290. 

35. Warburg, 0. 1930. Metabolism of tumors. Constable, London 



108 

36. White, G. F., N. J. Russell, and E. C. Tidswell. 1996. Bacterial scission of ether 

bonds. Microbiol. Rev. 60:216-232. 

37. Wood, P. M. 1986. Nitrification as a bacterial energy source, p.39-62. In J. I. Prosser 

(ed.), Nitrification. Society for General Microbiology, IRL Press, Oxford. 



109 

Chapter 6
 

Conclusion and Engineering Significance
 

This chapter summarizes the main findings of this research, briefly discusses their 

implications, and presents suggestions for further research. 

COMETABOLIC DEGRADATION OF POLYCYCLIC AROMATIC 
HYDROCARBONS (PAH) BY A PHENOL-OXIDIZING PSEUDOMONAS 
STRAIN IN BATCH, CONTINUOUSLY STIRRED TANK- AND SEQUENCING 
BATCH REACTORS 

Conclusions: Batch experiments demonstrated that a phenol-oxidizing bacterium 

identified as a Pseudomonas sp. was capable of degrading 2- and 3- ringed polycyclic 

aromatic hydrocarbons (PAHs) including naphthalene, 2-methyl naphthalene and 

anthracene cometabolically. Incubating active cells with naphthalene produced 1-naphthol 

as a major oxidation product, accounting for more than 90 % of the total products similar 

to the results observed from other bacterial and fungal system. Acetate was the potential 

reductant of phenol-utilizing organisms to sustain the cell activity. Sequencing batch 

reactor (SBR) was demonstrated to be a potential alternative technology to treat mixed 

contaminants containing phenol and lower molecular weight PAHs. Our results indicated 

that SBR was efficient system to treat PAHs without substrate inhibition. The operation 

of SBR had advantages compared to CSTR in this study. 

Engineering Significance: SBR technology has been widely used to treat conventional 

activated sludge at the wastewater plant. This technology could easily applied to treat 
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conventional activated sludge as well as for cometabolic treatment of halogenated 

compounds (Irvine et al. 1983, Shih et al. 1997). In this study we have shown the 

possibility of potential application using SBR to treat the waste stream containing low 

molecular weigh PAHs. To operate SBR for the pilot scale appropriately several factors 

should be considered. Determining growth substrate is an important factor in the design 

and efficient operation of SBRs. Phenol was a excellent growth substrate which is 

nonvolatile and induces oxygenase activity toward halogenated alkenes as well as the 

several PAHs observed in this study. Phenol-utilizing organisms offer practical 

advantages in reactor systems. High growth rates enable more rapid start-up, smaller 

reactor volumes, and more rapid recovery from possible product toxicity and enzyme 

inactivation during nongrowth substrate transformation. The results of batch experiments 

demonstrated competitive interaction between growth substrate and nongrowth substrate. 

SBR technology has a great advantage to treat contaminants without the inhibitory effects 

observed in our study with other reactor configuration. Although the toxicity of 

naphthalene to phenol-oxidizers were not conducted, there way be certain toxic effects 

depending on the concentrations and exposure time of napthalene. To apply SBR 

techniques for PAH cometabolism, a recharge stage is needed to regenerate the PAH 

transformation activity of organism lost during PAH degradation. Such a step enables 

stable operation and continuous long term biodegradation of PAH. 
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COMETABOLIC DEGRADATION OF NAPHTHALENE AND OTHER 
POLYCYCLIC AROMATIC HYDROCARBON BY NITROSOMONAS 
EUROPAEA 

Conclusion: Several 2- and 3- ringed PAHs were cometabolically degraded by N. 

europaea. An unusual observation in this study was that 2-naphthol was the major 

product of naphthalene oxidation by N. europaea whereas other procaryotic and 

eucaryotic organisms generate 1-naphthol. In the case of 2-methyl naphthalene, 2-methyl 

naphthalenol was produced by AMO and further transformed to 2-methyl naphthaldehyde 

not by AMO. The maximal rate of naphthol production was 1.65 nmole/mg protein-min 

incubated with 240 p.M naphthalene and 10 mM N'H4±. The rate of naphthol and nitrite 

productions was dependent on the concentrations of ammonia naphthalene, indicating the 

competitive interactions between the substrate and co-substrates. As inhibitory effect of 

naphthalene on ammonia oxidation, toxicity test was demonstrated. NH4+- and N2H2­

dependent 02 uptake measurement indicated that naphthalene and oxidation products l­

and 2-naphthols irreversibly inactivate AMO and HAO activity. This effect could limit 

the application of ammonia-oxidizing bacteria as "priming" catalysts for PAH 

degradation. 

COMETABOLIC DEGRADATION OF DIBENZOFURAN AND OTHER ARYL 
ETHERS BY THE SOIL NITRIFYING BACTERIUM NITROSOMONAS 
EUROPAEA 

Conclusion: The substrate ranges of AMO were extended to aryl ethers including DBF, 

DD and chloro- and bromo-diphenyl ethers which are USEPA Priority Pollutant. DBF 

was the most reactive substrate of this class of compounds and generated 3 -OH DBF as 



112 

the sole biological oxidation product. An important finding was that the hydroxylated 

products of aryl ether were subsequently transformed in an abiotic nitration nitration 

reactions. The nitration reactions that occurred following the biological transformation by 

AMO were highly dependent on pH but less nitrite concentrations. Nitropolyaromatic 

hydrocarbons are recognized as potent toxins in mammalian systems and their production 

by N. europaea could limit any potential application of ammonia oxidizers to 

bioremediation of these types of compounds. However, this nitration reaction could be 

used to decrease the costs involved in conventional aerobic/anerobic processes designed 

to remove ammonia and from waste waters. Future research should be directed to 

examining cheap and readily available phenolic compounds that could be used to as 

nitration substrates. 

COMETABOLIC DEGRADATION OF ANISOLE AND OTHER AROMATIC 
ETHERS BY NITROSOMONAS EUROPAEA 

Conclusion: In this study, the substrate ranges of AMO was further extended to aromatic 

ethers. Several aromatic ethers which have methoxy substituent were readily degraded by 

AMO through two reactions, 0-dealkylation and hydroxylation. The maximal rate of 

ether oxidation was observed in the incubation with anisole, and initial oxidation product 

was phenol, indicated that 0-dealkylation reactions dominated. However, The rate of the 

oxidation decreased with increases in the size of the alkyl group and the number of 

methoxy substituents on the benzene ring. Of the dimethoxybenzenes tested, 1,4­

dimethoxybenzenz was most rapidly degraded by AMO. The inhibitory effect on 

ammonia oxidation also decreased with increases in carbon number and number of 
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methoxy substituents. This results could be explained by the decrease rate of phenol 

production as less phenol was produced with increases increases in carbon number on 

ether bond and the number of methoxy substituents. A colorimetric assay was proposed in 

this study to detect AMO activity. Our findings suggested that rapid colorimetric assay 

based on the O- dealkylation of 4-nitroanisole could be used to monitor AMO activity in 

pure culture studies and in environmental samples. 

ENGINEERING SIGNIFICANCE AND PROPOSED RESEARCH 

The study of microbial transformations of PAHs and related compounds is 

important for the development of applications for the bioremediation of hazardous waste 

contamination. In general PAHs and other related compounds are often present in 

complex mixtures in soil, waste water, and other environments. For the bioremediation 

processes it is important that these hydrophobic compounds are available to degradative 

bacteria. Our major observation in this study is that soil nitrifying organisms can readily 

oxidize several PAHs, aryl ethers, and other aromatic ethers including naphthalene, 

acenaphthalene, dibenzofuran, dibenzo-p-dioxin, bromo-and chloro diphenyl ether, 

anisole and others. We suggest that nitrifying bacteria could therefore be used as a 

"priming" catalysts to initiate the degradation of polyaromatic contaminants, generating 

the products which are more soluble and more readily available to organisms that can 

fully degrade these compounds. 

Another long term aim is that this nitrification process could be potentially 

coupled to denitrification process. Nitrifying bacteria would act as "priming" catalysts in 
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this system and ammonia and the target hydrophobic compounds are cometabolically 

transformed under aerobic conditions to yield nitrite (nitrate) and more soluble and 

biodegradable compounds, respectively. The products of these reactions could then 

potentiallly serves the respective electron donor and electron acceptor for further 

anaerobic transformations catalyzed by denitrifying organism. In general unsubstituted 

PAH and related compounds are known to be largely resistant to degradation under 

anaerobic conditions because of the biological stability of these compounds. While 

ammonia-oxdizing bacteria are not capable of mineralizing PAHs and other related 

compounds under aerobic conditions they may be able to contribute to the overall 

degradation of PAHs and other related compounds by catalyzing hydroxylation reaction. 

Several previous studies supported our hypothesis using coupled aerobic and anaerobic 

processes. Ruthy et al. (1988) observed that naphthalene was largely resistant to 

degradation under denitrifying conditions whereas 1-naphthol was rapidly consumed by 

Ruthy et al. (1988) and Grabic-Galic et al. (1989) observed increased susceptibility of 

substituted polyaromatics and even heterocyclic polyaromatics relative to unsubstituted 

compounds. To examine the potential anaerobic degradation of hydroxylated PAHs and 

other related compounds under denitrifying condition, laboratory experiments are 

required to isolate denitrifying organisms and determine the substrate range with respect 

to hydroxylated polyaromatics. These preliminary experiments will influence the design 

of any possible treatment system. However, bioreactors have proved as most effective 

system to remediate the soil and potentially wastewater contamination, since conditions 

for enhanced degradation could be achieved most readily. The feasibility of coupled 

aerobic/anaerobic processes using bench scale bioreactors could be potentially examined. 
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A) Dibenzo-p-dioxin + NE-144 (t hr) 

B) Dibenzo-p-dioxin + NH4' =4 lir) 

C) Dibenzo-p-dioxin + NH,,` (t = I() hr) 

D) Dibenzo-p-dioxin + NH4' (t =24 hr) 

E) Dibenzo-p-dioxin + C21-17 + N1-14` (( =24 hr , 

F) Dibenzo-p-dioxin rdone (1=24 lir) 

Figure Al. HPLC chromatograms of dibenzo-p-dioxin oxidation by N. europaea. 
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Figure A2. GC/MS chromatograms of biotic and abiotic products of dibenzo-p-dioxin. 
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A) Xintlictic 4- N114' (t =0 hr) 

B) Xatitlictic NH4' (t =4 hr) 

C) Xatithene + NH4 (t =10 hr) 

D) Xatithene + NE-11' (t =24 hr) 

E) Muth= + C2F12 N1-1' (t =24 lir) 

Figure A3. HPLC chromatograms of xanthene oxidation by N. europaea. 
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A) Diphenyl ether + (1 =0 hr) D) Diphenyl ether + (I =24 hr) 

B) Diphenyl ether +111-141 (1 =4 hr) 
E) Diphcnyl ether + C2112 + NH.,' (1 =24 hr) 

C) Diphenyl ether + NH4' (t =10 hr) 
I 1 

i!:1
 

F) Diphenyl ether alone (t =24 hr)
 

Figure A5. HPLC chromatograms of diphenyl ether oxidation by N. europaea. 
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Figure A6. GC/MS chromatograms of biotic and abiotic products of diphenyl ether. 
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Figure A7. GC/MS chromatograms of biotic and abiotic products of 4-chloro diphenyl 

ether. 
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Figure A9. Abiotic transformation of 2-hydroxy dibenzofuran in dependent on pH and 
nitrite concentrations. 
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Figure All. Effects of anisole and phenol on nitrite production during 1 hr incubation 




