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also assumes constant associated costs for all lots and that the

posterior distribution of the Process quality of a given lot becomes

the prior distribution of the process quality of the next lot. This

allows the information from one lot to he used in the decision mak-

ing for subsequent lots. The model is formulated by using a mixed

binomial distribution with beta weights as the prior distribution

of the lot quality.

An improved algorithm for the solution of the single lot case,

bounds for the optimal sample size, a lower bound for the expected

cost of sampling for the single lot case and a lower bound for the



expected cost for the sequence of lots are presented. Optimality

conditions for the non-sampling alternatives, the 100% sampling case,

and the convergence of the optimal acceptance plan when the number

of lots in the sequence tends to infinity are investigated. The

model is formulated as a dynamic programming problem with sampling,

reject without sampling and accept without sampling as the possible

actions; and the lots as the stages. Relationships between the op-

timal actions at different lots which are independent of the form

of the expected cost of sampling function are presented. Exact and

approximate solution algorithms are developed and tested.

Experimental results indicate that the use of the bounds for the

optimal sample size, the lower bound for the expected cost of sam-

pling and the results on optimality of the non-sampling alternatives

lead to the pruning of a large part of the decision tree.

Approximate methods developed can be classified as forward-back-

ward procedures. The forward pass reduces the state space by fixing
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fied set of rules. The backward pass uses the dynamic programming

formulation for finding the optimal policy for the reduced state

space. The effectiveness of the approximate methods were evaluated

in terms of the quality of the solutions and the computational ef-

fort to obtain the solutions. Results indicate that efficiency of

two of the approximate methods is very high while computational

requirements are drastically reduced.
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A BAYESIAN ANALYSIS FOR ECONOMIC DESIGN OF
SINGLE SAMPLING PLANS FOR A SEQUENCE OF LOTS

CHAPTER 1.

INTRODUCTION

1.1 Background

Since the work of Dodge and Romig (1929), acceptance sampling

has gained wide application in industry, and it is one of the major

fields of statistical quality control. Since their introduction,

acceptance sampling plans have been designed with respect to statis-

tical criteria. However, in recent years the emphasis in acceptance

sampling has moved steadily from classical to Bayesian methods.

The Dodge-Romig models are based on the assumption that the

process quality level, p, is known with certainty, and therefore the

only reason that motivates inspection is the possibility of out-

liers. In practice, p fluctuates and therefore, it is more realis-

tic to consider p as a random variable with an associated distribu-

tion function.

The lot quality level, pl, has two elements of randomness, the

process quality, p, and the random fluctuation of pl about p.

Bayesian methods assign a probability distribution, called a prior,

to the process quality level p, and therefore the models are
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specified by the joint distribution of the observed number x of

defectives in the sample and the random variable p. The probability

distribution of the process quality is called the prior, because it

represents our belief or information about the random variable p

prior to the experiment.

The importance of the prior distribution was pointed out by

Mood (16), who concluded that the number of defectives, x, found in

a sample of size n, provides no information about the number of

defectives left in the lot, y, when p is a known constant.

Bayesian methods have been applied to single sampling, double

sampling, multiple sampling, and sequential sampling. However, as

Hald (13) p. 34 pointed out;

The present theory is formulated as if the
problems were static, the only exception being
the rules for switching between normal and
tightened inspection. In practice the prior
distribution may shift, the frequency of out-
liers may increase and there exists an
interaction between the system of sampling in-
spection used and the prior distribution. What
we need is a dynamic theory with a feedback
mechanism taking these factors and the informa-
tion from previous inspection results. into
account.

Standard military sampling procedures for inspection by attributes

use three types of inspection; normal, tightened and reduced. The

switching procedures between types of inspection are a function of

the inspection results of the preceding lots, i.e. the decision of

accepting or rejecting the current lot is affected by the results of

previous inspections. The Militar Standard 105D has as it's main

purpose the preservation of the acceptance quality level or AQL,
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which the producer and consumer have agreed upon. No economic

criteria nor Bayesian methods are considered.

1.2 Purpose and Scope of the Research

The theory of sampling inspection was originally developed to

control the quality of lots or batches of mass-produced articles in

industry. The most important aspect being to determine a course of

action regarding disposition of the lot. It is usually assumed that

we have to choose between three courses of action: (1) Acceptance

without sampling inspection; (2) Rejection without sampling inspec-

tion; and (3) Sampling inspection followed by either acceptance or

rejection.

It is important to note that 100% inspection is considered a

special case of the sampling alternative when the sample size is

equal to the lot size. The decisions to accept or reject are called

terminal decisions. Traditional sampling plans are designed to meet

a predetermined producer's and consumer's risk. The producer is

interested in having good quality lots accepted and therefore he

desires a high probability for acceptance for good lots. On the

other hand, the consumer is interested in rejecting bad quality

lots, and therefore he desires a low probability of acceptance for

bad lots. Clearly, the definition of good and bad lots depends on

the particular circumstances. This probability of acceptance con-

sidered as a function of the quality of the lot is called the

operating characteristic function (OC Curve) of the sampling plan.
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Bayesian models for sampling inspection plans commonly assess

the costs and losses involved in operating a given plan and try to

minimize total costs. If the size of the sample is increased, the

losses from wrong decisions are reduced, but clearly the cost of

sampling is increased. Hence there is an economic optimum which can

be determined.

The main objective of this research is to expand the present

Bayesian theory of sampling inspection by attributes from a static

to a dynamic approach, by developing a dynamic model with a

feedback mechanism to use the information from previous inspection

results in the decision making for the current lot.

To include the information from previous inspection results, a

sequence of lots coming from a process which operates in a random

manner is considered. The costs and losses involved in operating a

policy for the sequence of lots are estimated and the total expected

cost of the whole sequence is minimized. Now, if the size of the

sample of say, the first lot is increased, the losses from. wrong

decisions in that lot are reduced and, in addition, the information

for subsequent lots is increased and therefore, losses from wrong

decisions for those lots are also reduced.

The model formulated should allow us to recognize the learning

process incurred by sampling a lot and passing that information to

the next. In addition, it should have sufficient flexibility to

adequately represent a real situation.
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The objective we will use is the minimization of the total

expected cost, which is, of course, a very limited objective. It

is important to notice that in practice, a sampling plan is often

required to serve other purposes as well. For example, by using an

acceptance plan, quality of production is usually improved through

its encouragement of good quality by a high rate of acceptance and

its discouragement of poor quality by a high rate of rejection.

However, in most cases all indirect effects of sampling inspection

are very difficult to quantify.

Proposed solutions known by the author for the single lot case

are computationally inefficient for the proposed sequence of lots.

Therefore, an improved algorithm to the best known is presented. A

lower bound for the expected cost of sampling and necessary and

sufficient conditions for optimality are proposed. Some general

results which do not depend on the form of the expected cost of

sampling are developed.

A major concern of the research is the capability of the model

to solve problems of practical dimensions, that is, to be able to

solve industrial type problems in a reasonable amount of computer

time. Therefore,.an approximate solution to the problem is proposed.

Measures of performance used are quality of solution and computa-

tional effort.
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1.3 General Definitions and Terminology

In sampling inspection by attributes the product is divided into

inspection lots. The individually inspected part of an inspection

lot will be called an item. The size of an inspection lot is the

number of items in the lot.

A defect is any non-conformance to some specified requirements.

An item which contains one or more defects will be considered a de-

fective item.

The quality of a lot is defined as the number of defectives

divided by the number of items in the lot, i.e., fraction defective

and the quality of a lot will be used interchangeably.

It is assumed that the inspection procedure is 100% effective,

so that inspected items are always classified correctly. This as-

sumption is not always true in practice.

A sample is a group of items selected individually at random

from the inspection lot without replacement.

The term rejection is used collectively for all the possible ac-

tions taken on lots which are not accepted. A rejected lot may need

to be returned to the supplier or, in what is cal led "rectifying

inspection", to totally inspect the lot and defective items corrected

or replaced by good ones. Other possibilities exist, for example,

scrapping, reworking, downgrading, etc.
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BAYESIAN SAMPLING PLANS

2.1 State of the Art

7

Bayesian methods have been applied to acceptance sampling by

attributes in most of its forms: single sampling, double sampling,

sequential sampling and multiple sampling.

Single sampling plans have received the most analysis; for

example, see (6), (7), (8), (9), (10), (13), (15), (18), and (20).

Recall that an attribute single sample is characterized by three

integers; the lot size, N, the sample size, n, and the acceptance

number, c. After inspecting the sample, the lot may be either ac-

cepted if the number of defectives found in the sample is c or

smaller, or rejected otherwise.

A very significant contribution to the topic was presented by

Hald (7). Hald's paper is divided into two main parts. One part is

essentially probability theory dealing with the sampling distribu-

tion, gn(x), i.e. the distribution of the number of defects, x, found

in a sample of size n before the experiment is performed. This

distribution is called by some authors the preposterior distribution.

Since gn(x) is obtained by averaging the hypergeometric distribution

for given x over all possible values of the process quality level,

Hald calls it the mixed or compound hypergeometric distribution.
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Properties of this distribution for several prior distributions are

investigated. In the other main part of the paper, a model based on

prior distributions and costs is formulated and a general solution is

given to the problem of determining the optimum sampling plan, i.e.

the plan minimizing the cost function for any prior distribution.

Another important contribution to the theory of acceptance

sampling by attributes was made by Raiffa and Schlaifer (20). They

developed a Bayesian single sampling plan within the framework of

decision theory, looking at the problem in terms of the expected

value of information. Although they do not suggest any efficient way

of solving for the optimal sample size in the binomial case, they

proposed a normal approximation to it.

Most of the models for single sampling have the following cost

elements:

a) Cost of sampling,

b) Cost per accepted lot,

c) Cost per rejected lot.

The cost of sampling is usually a linear function of the sample

size n, with or without a fixed term, i.e. k1 + k2n where k2 can

be interpreted as the per unit cost of sampling and k1 a fixed cost

incurred when sampling.

The cost per accepted lot is only incurred when x is less than

or equal to c. This cost is usually formed by adding to the cost of

sampling, the cost of accepting defective items and in some cases,

the cost of rejecting the x defectives found in the sample.
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Most authors assume that the items sampled are not replaced,

but for example, Raiffa and Schlaifer (20) assume the sample,

including the x defectives found, is replaced into the lot.

The cost per rejected lot is incurred when x is greater than c.

This cost is usually formed by adding to the cost of sampling, the

cost of rejecting the non-inspected part of the lot, and in some

cases the cost of rejecting the x defectives found in the sample.

Here again, most authors assume that items sampled are not replaced.

Methods to obtain the optimal single sampling plans are compu-

tationally inefficient and therefore various researchers have

proposed approximation methods, see (10), (13), (20), and (22). The

most efficient algorithm for finding optimal plans was proposed by

Moskowitz and Berry (18). In this paper an upper bound for the

sample size is proposed by noting that in order for samlino to Lea

feasible alternative the cost of sampling has to be less than or

equal to the expected value of perfect information (EVPI). The

algorithm proposed is based on results given by Raiffa and Schlaifer

(20), namely that the expected value of sample information (EVSI) is

an increasing function of n, and moreover that the slope of the EVSI

between any two contiguous switchover points decreases in n.

Switchover points are defined as the values of n where the value

of the c which minimizes the expected total cost, c*, changes.

Using these results and the additional property that the slope

of the EVSI in the neighborhood and to the right of each switchover

point is also decreasing in n (this property was only checked
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experimentally), the following algorithm is outlined: the switch-

over points are used to determine the region of the global optimum

by searching for three contiguous switchover points that have the

following property: The Expected Total Cost (ETC) of the smallest

(n,c*) is greater than the ETC of the next smallest (n,c*) which is

less than the ETC of the largest (n,c*), i.e.,

ETC (n,c*)i > ETC(n, c*)j4CETC(n,c*)k, where ni <ni <nk and

ci < cI < ct

The algorithm is divided into two phases: Phase I finds all

switchover points and calculates its ETC and Phase II calculates the

ETC for all (n,c*) in the region with the property above and selects

the plan (n*,c*) which minimizes the ETC.

This procedure has the deficiency of computing the ETC of every

switchover point and the ETC of all sampling plans (n,c*) within the

region of the global minimum. A more efficient way of approaching

the problem is to take advantage of the conjectural ditonicityl of

the ETC(n) evaluated at the switchover points and the conjectural

ditonicity of the ETC(n) within two contiguous switchover points,

i.e., when c* does not change. Therefore, an efficient search

technique for ditonic functions can be used first to find the

switchover points with the property above, and second to find the

minimum ETC's in between these switchover points.

Hald (10), (13) obtains an asymptotic solution for continuous

prior distributions. He first develops an asymptotic expansion of

1) ditonic function is defined as a discrete function g(j) such that
g(j) is decreasing for 1 < j < j* and increasing for j > j*.
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the regret function by means of Taylor Series in terms of h = c/n and

n; and then determines the optimum values of h and n by setting the

two derivatives equal to zero.

The regret function is defined as the expected cost of sampling,

minus the expected cost of the reject and accent without

sampling alternatives . As the second term is not a function of

n nor c, minimizing the regret function has the same effect as mini-

mizing the expected cost of sampling.

Raiffa and Schlaifer (20) propose an approximation method to the

optimal sample size: they found a quick way of obtaining the optimal

sample size for the case where the sample observations are normally

distributed with known precision and the prior distribution of the

process mean is normal. Then they used the results for this special

case as an approximation to the optimal sample size in other cases.

Standard search techniques have been applied for finding optimal

single sampling plans (see (2) and (23)).

Wetherill and Chiu (26) presented a comprehensive review of the

literature on acceptance sampling with emphasis on the economic

aspect. They concluded that most researchers assumed the lot quality

has a mixed binominal distribution with different weight functions.

However, because of mathematical convenience and greater flexibility,

the beta weight function is usually preferred.

The theory of Bayesian single sampling has been generalized to

double sampling (see (12), (13), (19), and (24)). Recall that a

double sampling plan specifies two sample sizes, n1 and n2, two
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acceptance numbers, cl and c2, and two rejection numbers, r1 and r2 =

c2 + 1. A sample of size nl is taken and if cl items or less are

defective, the lot is immediately accepted. If ri or more items are

defective, it is rejected. Otherwise, a sample of n2 items is taken.

Then, if the total number of defective items is c2 or less, the lot

is accepted, otherwise the lot is rejected. Stewart, Montgomery and

Heikes (24) presented an approximate model for the optimum economic

design of double sampling plans using the beta distribution as prior.

They expressed the expected total cost function as a sum of integrals

and evaluated the function numerically, then a pattern search techni-

que was used to optimize it. Sequential sampling plans treated in the

literature have been of the item-by-item type. That is, following

each item inspected there is a decision to either accept the lot,

reject the lot, or inspect another item. The decision is usually

made according to a set of rules derived from Wald's Sequential

Probability Ratio Plan.

Numerous papers have been written about sequential sampling

plans, for example, see (3), (14), and (27). Lindley and Barnett

(14) used the beta-binomial model and derived relationships for find-

ing the sequential sampling accept-reject boundaries in terms of the

parameters of the beta distribution. Wortham and Wilson (27) pre-

sented a computer oriented approach which provides flexibility in the

choice of the model and the prior distribution. It is important to

note that in all cases optimal solutions were found through dynamic

programming type procedures.
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Recently, interest has been directed to the economic analysis of

multiple sampling procedures (also known as multistage procedures).

See (1), (11), (17), and (21).

Multiple sampling is an extension of the double sampling scheme

just described, and they can have fixed or variable sample sizes. In

the variable sample sizes case, at each stage of the procedure, the

size of the next sample is a function of the outcome of all the

samples up to that point, and similarly when the size of the next

sample is zero or when we are at the final stage, the decision of

whether the lot is accepted or rejected is prescribed in terms of the

sampling outcome thus far obtained. If all sample sizes are fixed in

advance, then it is only necessary to determine at every stage

whether the procedure is going to be continued; and if not, what

terminal decision (accept or reject) is to be made.

Schuler (21) obtains a general result for both cases which,

however, are of more theoretical than practical interest. Hald and

Keiding (11) worked with a simpler model and developed asymptotic

solutions for both problems. Their model assumes a differentiable

prior distribution, a linear loss function, an asymptotically normal

sampling distribution and sampling costs proportional to the sample

size. The resuls generalize previous known results for single samp-

ling and double sampling.

Moreno (17) presents a multiple sampling approach with fixed

sample sizes, which he reports has been tested successfully since

1971 in an industrial environment. He uses the expected outgoing
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quality and the expected quality assurance cost as measures of

performance. The model is structured as a Markov Decision Problem

with transition probabilities between sampling stages given by

Bayesian estimates. The optimal solutions are obtained through

dynamic programming with constraints to represent contractual

restrictions, and with directed steps to evaluate given sampling

plans.

A different problem which, however, gives us interesting results

for our project was presented by Dietrich and Sanders (4). They de-

veloped a systematic method of determining the sampling policy

throughout a multistage production process by using economic

criteria. That is, to find at every stage of the process whether you

should sample, inspect or reject the batch, and in the case that

sampling is optimal to find the optimal single sampling plan. The

model uses the mixed binomial with beta weights as prior distribution

and the sampling outcome is used to update the parameters of the

prior distributions.

2.2 The Model for a Single Lot

2.2.1 Notation. Let the lot size be denoted by N where

. The number of defectives in the lot by X; X=0,1,..., N.

and the fraction defective by pl = X/N.

The sample size will be denoted by n: n=1,2,...,N. Occasion-

ally we will use n=0, meaning that sample was not taken. The number

of defectives in the sample will be denoted by x: x=0,1,...,n.
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As mentioned previously, a single sampling plan is defined by

means of three numbers (N,n,c), where c denotes the acceptance

number; c=-1,0,1,.,n. The inclusion of c=-1 is for notational con-

venience. Since 0 < x < n, the cases c=-1 and c=n leads us to two

singular cases. c=-1 means reject the lot regardless of the outcome

of the sample; and c=n means accept the lot regardless of the outcome

of the sample.

2.2.2. Cost Structure. The model will contain the following

cost elements: cost of sampling, cost per accepted lot and the cost

per rejected lot.

Costs of sampling include sampling and testing costs. Defining

kI as the fixed cost of sampling inspection per lot and kv as the

variable cost of sampling and testing one item for presence of all

attributes; then the cost of sampling a lot is given by ki+kvn. Note

that kI represents all direct and indirect costs that result from

sampling and testing and are independent of the sample size; and kv

represents all direct costs associated with the inspection of an

item. We define kr as the unit cost of the action taken on rejected

items, where, as we mentioned before, the action taken on rejected

items may mean they are returned to supplier, rectifying inspection

or reworking, etc. Then, for example, the cost of rejecting a lot

without inspection is given by krN.

The quantity most difficult to determine is normally the cost of

accepting a defective item, which will be denoted by ka. If the

items considered are to be further processed, then the cost of
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accepting a defective item may, for example, consist of the cost of

handling and identifying the defective item, damage done to other

items, cost of rework or cost of replacing it and costs of renewed

testing and inspection. If the items are finished goods, the cost of

passing a defective item may involve service and replacement costs

plus loss of goodwill, which is difficult to measure.

2.2.3 Alternatives to Sampling. We consider two alternatives

to maintaining a sampling plan: accepting and rejecting without

inspection. The cost of accepting a lot without inspection is CAWI =

kaX and the cost of rejecting a lot without inspection is CRWI=krN.

If CAWI is greater or smaller than CRWI for any possible frac-

tion defective (p1), then the problem becomes trivial, as we know the

optimal action to take, regardless of the true fraction defective of

the lot. Therefore, we shall assume that CAWI and CRWI intersect at

p 1
= pc (critical fraction defective or breakeven quality) where 0<

pc<1. As by solving the above equations pc = kr/ka, we shall in

consequence assume that GO> ka> kr, which in most cases is true. pc

is usually called the critical quality level or break-even quality

level since when the true pl is less than pc, it is cheaper to accept

than to reject, and when the true pl is greater than pc, the opposite

is true. Clearly, at pl = pc both alternatives have the same cost.

If we assume kvikr to avoid the possibility of 100% sampling

being the optimal policy and if we assume the true pl is known, then

we are able to choose the correct alternative. The minimum cost per

item for lots of known quality, k*, is given by
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(2.1)

k* gives the cost per item when we make the right decision without

sampling. However, we do not know pl, and in order to get informa-

tion about it, we may use sampling inspection.

2.2.4 Expected Cost of Sampling. In sampling inspection; the

costs associated with lots of quality pl = X/N will be composed of

two terms.

a) The cost per accepted lot.

The cost per accepted lot is formed by the cost of sampling

plus the cost of accepting X-x defectives which are left in the lot,

plus the cost of rejecting the x defectives found in the sample. De-

fining y = X-x we have:

kI + kvn + kay + krx 0 <x <c (2.2)

b) The cost per rejected lot.

This cost is formed by adding the cost of rejecting the non-

sampled items and the x items found defectives, to the cost of

sampling, i.e.,

kt + kvn + kr (N-n) + k x c+14x 4n (2.3)
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Using (2.2) and (2.3) we get the expected cost of sampling as a func-

tion of n, c and X, K (n,c,X), by averaging over all possible x given

a specified quality of the lot.

K (n,c,X). ±(1q+kvn+kay+krx)P(x/X) + i(ki+kvn+kr(N-n+x))P(x/X)
X.C1.1

K(n,c,X)= kI + kvn + krE(x/x) + ka ig(x/X) k (N-n) :113(x/X) (2.4)
r

where P(x/X) is the probability that a sample of size n contains x

defectives given that the lot contains X defectives.

Let fN(X);(X). X = 0,1,...,N be the prior distribution

of the lot quality, i.e., fN (X) denotes the probability that a lot

of N items contains X defective items.

To get the expected cost of sampling as a function of n and c,

we average K(n,c,X) over all possible values of X according to the

prior distribution, i.e.,

N

K (n,c)= 1K (n,c,X) fN (X)
x.o

C

K (n,c) = kI + kvn + krE (x) + kaIDP ,X)
*0 *.o

N n

+ kr (N -n)Z IP ,X)
X. r=

where P(x,X) = P(x/X) fN(X).

N c N c

But "ZyP(x,X)= I:Eyf(X/x)gn(x)= tgn(X)E(y/X)_
)0.0 x.0 70o r.0 Ks°

(2.5)
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where gn(x) ; x = 0,1,.,n is the sampling distribution; the dis-

tribution of the number of defects, x, found in a sample of size n

before the experiment is performed. E(y/x) is the expected

number of defectives left in the lot given that we found x defectives

in the sample.

In addition,
N n

(x,X) = (x)
x,e, X sC 41 Xs C41

Inserting these results in (2.5) we get

K (n ,c) =kr + kvn + krE (x) kaign (x) E (y/x) + kr (N-n) ±gn (x)
(2.6)

X*0 X. C*

Note that y/(N-n) gives the fraction defective in the non-inspected

part of the lot. If we define p* = y/(N-n) then E(p*/x) is the

expected fraction defective in the non-inspected part of the lot,

given that x defectives were found in the sample. Using this defini-

tion in equation (2.6) we get

K (n ,c) = 1(1 + kyn + krE (x) ka (N-n) ign (x) E (p*/x)

+ kr (N-n) (1 - ±gn (X))

By defining
F(n,c)= ka DE(p*/x) POgn(x)

and rearranging terms we find

(2.7)

K (n ,c) = kI + kyn + kr (E (x) + N - + (N-n) F (n,c) ;n=1, ..N (2.8)
c=-1,0,1,..,n



The expected cost of sampling, K(n,c) is composed of two elements:

(1) The cost of sampling, CS(n), where

CS (n) = ki + kvn
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(2.9)

(2) And the expected cost of sampling given a sample of size

n=1,..,N has been taken

kr (E (x) +N -n) + (N-n) F (n ,c) = K (n,c) - CS (n) (2.10)

When c=n, we accept the lot regardless of the outcome of the sample.

From equation (2.2)

N A
K (n,c=n)= Z(k1 + kvn + ka (X-x) + krx) P (X ,x)

Nm

K (n,c=n) = ki + kvn + ka (E (X) -E (x)) + krE (x) (2.11)

We arrive at the same result from equation (2.8) by noting that

F(n,c=n)= ka(E(X)-E(x))/(N-n) - kr = kaE (p) - kr

When c=-1, we reject the lot regardless of the outcome of the sample.

From equation (2.3)

N n

K (n,c=-1) = I Z(ki + kvn + kr (N-n) + krx) P (X ,x)
xm

K (n,c=-1) = k1 + kvn + kr (N-n) + krE (x) (2.12)

which is the same as equation (2.8) with F(n, c=-1)=0.
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Mood (16), concluded that when the correlation between the num-

ber of defective items in the sample, x, and the number of defective

items in the remainder of the lot, y, is positive, then the accep-

tance criterion for the inspection plan is:

Accept when x c; reject otherwise.

However, when the correlation between x and y is zero, sampling pro-

vides no information about the non-inspected part of the lot. When

this correlation is negative, a large number of defectives in the

sample indicates the opposite about the remainder of the lot. There-

fore, the acceptance criterion for the inspection plan has to be re-

versed, i.e.,

Accept when x>c; reject otherwise.

If the correlation between x and y is positive, then the E(y/x) in-

creases with x, and therefore E(p*/x) increases with x.

In the following we will assume E(p*/x) is non decreasing in x.

From equation (2.8) and by noting that N-n;0, the problem of find-

ing the value of c which minimizes K(n,c), considering n fixed,sim-

plifies to:

Min F(n,c)= Min{i(k_d E(p*/x)-
c c 16'0

g (x)} (2.13)

As ka> 0, ka E(p*/x) is increasing in x. In addition, gn(x) > 0

for all x as it is a probability function. Therefore, tct solve

(2.13) we need to select all negative terms of the summation. There-

fore, the optimal value of c when n is fixed, cn, is given by
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-1
; if E(p*/0)>pc

cn=-( (2.14)
Max(x) such that x 4n and E(p*/x),;pc ; otherwise

An alternative expression for (2.14) are the following set of in-

equalities:

E(P*/cn) pc <E(p*/cn+1) ; 0 cn n-1

If E(p*/0)>pc then cn=-1

If E(p*/n) <pc then cn=n

(2.15)

Therefore, to find the optimal acceptance number for n fixed, we

only need to solve E(p*/cn) = pc for cn; if we find 0 < cn < n, we

use the integer part of cn; if we find cn<0 we set cn=-1; and if we

find c
n
>n, then we set cn=n.



CHAPTER 3

DYNAMIC MODEL

3.1 Introduction
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Consider a sequence of 1 lots for inspection coming from a pro-

cess operating in a random manner. We will assume that all lots in

the sequence have equal known lot size N, and that the associated

costs are constant for all lots. A lot in the sequence has, from

Equation (2.8) an expected cost of sampling given by:

K(ni, ci) = kI + kv ni + kr (E(xi) + N-ni)

+ (N-ni) F(ni, CO; i = 1,...,1

ni = 1,...,N

ci = - 1,0,1,...,ni

(3.1)

The expected cost of accepting the ith lot without inspection is

found by averaging kaXi over all possible values of Xi, according to

the prior distribution.

ECAWI = I ka Xi fN(Xi) = ka E(Xi); i=1,...,1 (3.2)

The cost of rejecting the ith lot without inspection is a constant

given by

CRWI = krN (3.3)
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When considering a single lot we desire to find the minimum cost

alternative, i.e. Min fK(n,c), ECAWI, CRWII. However, if we use the

information of previous sampling results in order to modify the para-

meters of the current f N(Xi) and we aim to the expected total cost

minimization of the 1 lots, the current policy may affect the

expected cost at later stages of the process.

3.2 Distributions

The probabi 1 i ty that a sample of size n contains x defectives

given that the lot contains X defectives is given by the probability

density function P(x/X). When sampling from a lot of finite size,

P ( x/X ) is hypergeometric, i.e.,

inl +N -n) (XI t))(()

( X tx/ NkX-x/ l)(/

(X) Cril)

Max(0,n-M+X)sx<Min(n,X)

(3.4)

To select the prior distribution of the lot quality, fN(Xi), it

is necessary to consider some desirable properties.

(i) The prior distribution should allow us to have the

E(Pi*/xi) non-decreasing in xi.

(ii) As we are considering a sequence of lots coming from

the same process. It is desirable to use the informa-

tion of past lots in the prior distribution of lot i,

i.e. it is desirable to include

(n1,x1), (n2,x2),..., (ni_i,xi.1) in fN(Xi).

(iii) The prior distribution should belong to a family F with
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sufficient flexibility to adecuately represent the

process characteristics. That is, F should be rich so

that there will exist a member of F capable of

expressing the decision maker's prior information and

beliefs.

(iv) That the prior distribution preserve its form under

sampling and under Bayes' rule. And therefore, the

sampling and the posterior distributions be members of

the same family F. That is, a closed family (20), page

44.

To find a prior distribution which takes into account the two

elements of randomness of the lot quality level, X/N, we start by

noting that

fN(X) = 1P(X,p) dP = fhN (X/P) W(p)dp (3.5)
0 0

Where hN(X/p) represents the fluctuation of X/N about the process

quality p, and W(p) represents the pure randomness of the process

quality p. W(p) is usually called the prior distribution of the

process.

As we are assuming that the process is operating in a random

manner, hN (X/P) follows a binomial distribution and therefore

hN(X/p) W(p)dp is called the mixed binomial distribution with

weight W(p).

To choose W(p), we need a class of distributions which

concentrate on the interval (0,1) with sufficient flexibility to

adequately represent the process characteristics (property (iii)),



26

one such class is the two parameter beta famly, (r,t). In addition,

as the beta is the natural conjugate of the binomial it will satisfy

property (iv).

Under this assumption, Equation (3.5) becomes:

)rt xfr,i(x)= (x N q n(P)up ; X= 0,1,.. ,N ; 0 <13 <1
; q =1 -p

where: W(p)=
pr-lcit-r-1/B(r,t)

; 0<p <1 ; t> r> 0

B(r,t)= r(r)1"(t-r)/1-1(t) ; r(z)=11-b bz -1db , b> 0

with E(X) = Nr/t and V(X) = Nr(t-r)(1+N/t)/(t(t+1))

(3.6)

The mixed binomial distribution with beta weights, Equation

(3.6) is cal led the beta-binomial distribution. Hald (13) pp. 131-

133 discusses how to find out whether the beta-binomial distribution

is applicable to a specific problem by the analysis of past inspec-

tion data.

In order to satisfy property (ii) we will assume that the

posterior distribution of the process quality, p, of lot i-1, becomes

the prior distribution of p for lot i , where

W1CP/x1)= W2(P)' Wi-1(P/xi-1)= Wi(P);...

That is,

; W1-1(P/x1-1)= 141(P) ;
0 <p<1 (3.7)

THEOREM 3.1
rt-1 tcrv-1 0<p <1

Wi+1(13)= Wi(P/x0= PB(rLci,
; t*,.> n.> 0 (3.8)

; for i=1,..,1-1
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Where: ri = ro + xj and ti = to + nj, and ro and to are
4.1

the initial parameters of the beta distribution. That is,

Wi (p/xi) 0 (ri,ti); beta with parameters ri and ti , and the

sampling distribution, gni.(xj), is mixed binomial with weight func-

tion Wi(p) for 1=1,...,1

q
-

pgnt(xL)=( ) tx nf x'W.(p)dp ; xi=0,1,..,n,
xt ° ; 0 <p <1

; for i=1,..,1

Proof:

By induction for i=1

r-1 t-r0-1
W (p)= p ° q ° /B(r, ,t,

1
; 0 <p <1
; to > ro> 0

P ; XL= 0 , 1 , n, ; 0 <p <1
x,

Il) 1 -r-'
P(xi,P)=h(xi/p)Wi(p)=

'
q61.
t, -r, -1 ,to );t1>r,>0

gni(4= P(xp)dp= (xtiB(r, ,ti )/13(ro ,to )

By using Bayes theorem

W
1
(p/4=

(3.9)

(3.10)

; that is, Wi(p/xi)--.P(roti)

From (3.10)

rr 1 tr 1

111)4 x,nr x,

g nikl) B ro to ) d r (xi t i" 441(P)dp; ,n,

Assume i=h holds. For i=h+1



from (3.7) Wh+i(P)=Wh(P/xi, =
r-1

q t-r-1
bt /B(rs ,th )

; tb,> rh>

h(44/ p ) (nhl
xiva

X he 0 s 1 g

th.cyz.1-1/B0.1.. ,t4) ;P(xl,d,P)=kx..1)P

n,,t
gn (x%.1)= P(x,,,,p)dp=(v )B(r,,,,t-ot)/B(rh ,th)I 1%41 0 ny,4,4

By using Bayes Theorem

1 th.t

Wh+1(13/xw) -13 q

(3.10a)

, That is, wh
+1

( p x..t)-. (3( r,.

From (3.10a)

g xhfi) = W (o)do x -0 1 n.,_11.1.1 ,_4., 0

Recalling (3.6), the lot quality prior distribution of lot i,

can be written as

N

f
N

(X.)=( )fp X- q
N-X. W-(p)dp ; ; 0<p<1

to

where w (P)= w
1

(P/xt )--(3014,ti-L)-1 -I
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foi)

(3.11)

Note that the information of all past lots is included in the para-

meters of the beta distribution and therefore satisfy property

(ii).

Theorem 3.2

The posterior distribution of lot i is beta-binomial.
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w.(p/xdp

q df ( yci )4)7:-
Y 0

where

Proof:

W.(p/x.)--ip(ri ,ti)

By (3.4) and (3.11)

0<p <1

pit N-nt AN-Xi W.(p)dP
;P( xi, Xi) = fN P (k- xi)4(1n

P(x''
nA w(p)dp ;.4)=

i.

q

Using (3.9)

yi
( fp 1 p n. x. )dn/fnXnnr.Xi (p )dp

r '10

But note that
pxicinrxE w. (p) k(Xi/p)W (P P(xi,P)
reLerxi/wi(p)dp

(N u-r1/4-34 Wi(p/xi)dp ; (3.13)

0 < p < 1

29

(3.12)

From Theorems 1 and 2 we can see that by choosing fN(Xi) mixed

binomial, property (iv) is satisfied. That is, the sampling and

posterior distributions are members of the same family. From theorem

1 and by noting that ri = + xi and ti = + ni we get
nt

gni( xj= (x) B ( ; x =O,1,..,ni

944=( r(ri) T'(tcr, ) r(ti,)/(r(ti) r(r,-1) r(t,_,711-1))
(3.14)
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From the relationship r(p+k)= (ptk-thr(p)/(p-1)! we obtain

r(t1)=(tr1)!r(ti-J/(41-1)! ; )=(1-1)!r(r,..,)/(re.,-1)!

and

T1( trri. )=(trri-1)!TIti_rn.,)/(ti_cr_,-1)!

Inserting this in (3.14) we obtain

(re-1)!
(t1

r -1)! irt-1\ Itrit-1\
txd (rw-1)! \ knrxi J

00= 3.15gni ( )

-1) ! (t1ni:)
(4,- 1)!

The computation of gni(xi) is greatly simplified by the use of
recursive relationships. By means of (3.14) and (3.15) we obtain the

following relations.

gn(x).(ti_t+xt-1)(nrx.,+1)gnt(xc-1)/(x,(nii-ti.s-)71.-xi ; x1=1,2, ,ni (3.16)

grip0=ntti..,-rz_i+nrxt-1)gnci (x1)/((nt-xd(t4-nt-1 )) ; n,s xi (3.17)
;

In addition, from (3.14) we obtain

gnt(0)= (ti.)/(r (t.) r (ti.cn.1))

And by using the fact that r (p+1)= pr(p)

gni(0)-
(ti..ii.nr1)(t4-nc2)

(tL4-r4)

(ta)
(3.18)

When computing the mixed binomial we use Equation (3.18) to find

an initial value and then Equations (3.16) and (3.17).



Theorem 3.3

E(p/x-)= r./t-= hy12:x.4/(toi-Ini) ; ti>ri> 0
.1
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(3.19)

And therefore is non-decreasing in xi, Property (i), and non-

increasing in ni

Proof:

E(pI/xi). E(yi/xi)/(N-ni) ; by Theorem 2, f(yi/xi) is a mixed

binomial with weight function Wi(p/xi)-P(ri,ti) ; therefore,

E(yi/x0= (N-ni)ri/ti ; and E(pI/xi)= ri/ti .

11

From theorem 3 we can find the optimal acceptance number for a

fixed sample size. From inequalities (2.15) and equation (3.19).

kr/ka .

Solving for ci we find ci= pc(ti_i + ni) - ri_1 (3.20)

Let define en... = [ci] ; where [pa means the greatest integer < A.

The optimal ci, for fixed ni, cno is given by

If 0 4entnt ; cni= ent

If dni<0 cni.= -1 (3.20a)

If ere ni cni= nL

Having defined the optimal value of ci as a function of ni, we can

state the expected cost of sampling, Equation (3.1) as a function of

ni only. By Theorem 1 E(xi). niri_l/ti_l .

K(ni)= kI + kvni + kr(niri_i/ti_i+N-ni) + (N-ni)F(ni) ; (3.21)

i=1,..,1 ; ni=1,..,N
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Where F(ni) is given by

F(n4)= - kr)gn(xi) (3.22)

The expected per unit cost of sampling is given by

K'(ni) = K(ni)/N (3.23)

The expected per unit cost of acceptance without inspection (EUCAWI)

is given by

EUCAWI = ka ri_i/ti_i (3.24)

and the per unit cost of rejecting without inspection (UCRWI) is

given by

UCRWI = kr (3.25)

To illustrate this function, the expected per unit cost of

sampling, evaluated at the optimal sample size, Ks(n*) is shown in

Figure 1, together with the cost functions of the 2 alternatives to

sampling. Equations (3.24) and (3.25) for an example with the follow-

ing data: N=10, kI = 0, kv = 0.9, kr = 1, ka = 10.5, t = 11. K' (n*)

is evaluated for the following values of r.

Table 1

r E(p) n
*

cn* K' (n *)

0.5 0.04545 1 0 0.5113
0.6 0.0545 1 0 0.5913
0.8 0.0727 1 0 0.7469
1.0 0.0909 3 0 0.8627
1.2 0.1091 5 0 0.9395
1.6 0.1454 1 -1 1.0045
1.8 0.1636 1 -1 1.0064
2.0 0.1818 1 -1 1.0082

Optimal sampling plans for Figure 1.
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Figure 2 shows the behavior of K(n), equation (3.21) for an

example with the fol lowing data: N = 50, k/ = 0, kv = 0.9, kr = 1,

ka = 11, r = 2 and t = 22. Note that two local minimum points exist.

The global minimum is found at n* = 15 with co* = 1.

3.3 Analysis of the Single Lot Case

3.3.1 Analysis of K(n)

Let's assume the special case 1=1. By writing ro, to, n1 and x1

as r,t,n and x, respectively (in order to simplify notation);

equations (3.21) and (3.22) become

K(n)= lc/ + kvn + kr(ni +N-n) + (N-n)F(n)

where

F(n)=
u
ilka(r+x)/(t+n) - kr)go(x)

(3.26)

(3.27)

One way of finding the sample size which minimizes the expected

cost of sampling, n*, is to determine the values of n for which

CoK(n) shifts from negative to positive. Where AoK(n) is defined

as K(n+1)-K(n). From equation (3.26).

LSoK(n)= kv + kr(r/t - 1) + (N-n-1)F(n+1) - (N-n)F(n)

AnK(n)= kv + kr(r/t - 1) + (N-ONF(n) - F(n+1) (3.28)

From (3.20) 4Loco can only be 0 or 1. For the case 0 < cn < n.

If Anco = 0; then cln = co+1, and
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Cn

AnF(n)= IAn(kaEn(Ple/X) kr)gn(X)
3.1.0

LinF(n)=I(kaAnEn(p*/x)g (x) - krAngn(x)) (3.29)

Hald (7) showed that

xn(P * /x)9n(x)= -gn(c)En(p*/c)En4.1(P*/c+1) (3.30)

Angn(x)= -gn(c)En(p*/c) (3.31)

and En(p*/c)= (c+1)gni.1(0.1)/((n 1-1)9n(c)) (3.32)

Therefore, Equation (3.29) can be written as

anF(n)= gn(cn)En(p*/cn)(kr - kaEn4.1(p*/cn+1))

&nF(n)= gn(cn)(r+cn)/(t+n) (kr - ka(r+cn+1)/(t+n+1))

If on cn = 1; then cni.1 = cn + 1

AnitEn(P*/x)9n(x)= E114.1(P*/x)9n+1(x) -,,tEn(P * ix)gn(x)

Gw

=t1SnEn(P*/x)gn(x) +Enii(p*/cn+1

Using (3.30) and (3.32)

gn+1(cel)

AntEn(p*/x)gn(x)= -9n(cn)En(p*/cn)En.1.1(p*/cn+1)(1 - (n+1)/(ce1))

And
Antgo n(x)=*ngn(x) gn+1(cel)
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By using (3.31) and (3.32)

l'nIgn(x)= -gn(cn)En(p*/cn)(1 - (n+1)/(cn+1))

Therefore

AnF(n). gn(cn)En(p*/cn)(kr - kaEn4.1(p*/cn+1))(1 - (n+1)/(cn+1))

These results can be summarized as follows:

4,f(n1=

A 0

B)1i(o) (k, rAt.n - kr.)

el %a") kA ""*1)
- EtS201 -D) t* n41 (.0 on

IF Cn=-1,Cns1=-1

; IF Cn , Cn+i = 0

iF OL.C.,101 ar,C,0:0

IF o4c.,4r1 , ancnzi

(3.33)
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Defining An(2) F(n) = An F(n+1) - An F(n) for case C) in Equation

(3.33) we find

441) (").:' (9:"1n)f)rjc"2krikt ("i)("+11 + E.b7c,,«1)((n+t)(rrz) - 0.1)6,11

In order to have An(2) F(n) > 0 and therefore convex in the

range of n where 0 < cn < n and An(2) c
n

= 0, the following

condition has to be satisfied in the same range

-

En+2(p*/cn+1)
PC

tCn - (n+1)(r+1)

This condition is usual ly satisfied but not always, and therefore

F(n) is not necessarly convex when cn is constant.

Theorem 3.4

F(n) is non increasing in n; 1 < n < N.
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Proof:

Lets= {n:n=1,...,N}. We prove that An F(n) < 0 for neg in all

cases of Equation (3.33).

Case a) An F(n) = 0.

Case b) An F(n) < 0 for n6j4' if and only if kr ).:ka trilol for nafit

This follows as cn+i 0 implies by (3.20) that

kr /ka (t+n+1) - r >0 for nef(

Case c) An F(n) < 0 for neff if and only if kr < ka r+cn+1
t+n +1

for n6,14..

By (3.20) + 1>kr/ka(t+n+1)-r. Ancn = 0 implies cn = cn.1.1;

therefore condition is satisfied.

Case d) An F(n) < 0 for nsikr if and only if kr > ka r+c +1 for ngN.
t+n+

By (3.20) cn+i < kr/ka (t+n+1)-r. But as cn+i = cn + 1

condition is satisfied.

Theorem 3.5

A necessary and sufficient condition for 100% sampling being the

cheapest sampling policy is F(N-1) > kv - kr (1-r/t).

Proof:

From Equation (3.26) K(N) = k1 + kvN + kr N r/t

K(N) is the minimum expected cost if and only if

N(kv+krr/t) < kvn + kr(nr/t + N-n) + (N-n)F(n) for n=1,..,N-1

or F(n) > kv - kr(1 - r/t) for n=1,..N-1

By Theorem 3.4 F(n) is non-increasing in n, therefore we only

need to check for the smallest value of F(n); F(N-1).
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3.3.2 A Lower Bound for K(n*)

As we discussed before we have three alternatives to choose

from: Sample, accept without sampling and reject without sampling.

To find the best policy, we have to find the optimal sampling plan.

However, if we can construct a lower bound for the optimal expected

cost of sampling, LBS, which is easier to compute compared to the

effort in finding K(n*), we may then discard the sampling alternative

when LBS > Min ECAWI, CRWII.

Let 0(n) be the difference between the expected cost of sampling

K(n), n=1,.,N-1, and the expected cost of 100% sampling, K(N).

From Equation (3.26).

D(n)= kvn + krnr/t + kr(N-n) + (N-n)F(n) - kvN - krNr/t

or D(n)= (N-n)(F(n) - kv + kr(1-r/t)) for n=1,..,N-1

If D(n) < 0 for some n, n=1,.,N-1. 100% sampling is not

optimal. By using Theorem 3.4, we conclude that the most negative

value that 0(n) can take has to be greater than

(N-1) (F(N-1) - kv + kr (1 - r/t))

Therefore a lower bound for K(n*) in this case is K(N) plus the

quantity above.

If 0(n) > 0 for all n; n=1,.,N-1 100% sampling is optimal.

Note that this is true only if F(n) >kv - kr (1 - r/t) for all n;

n=1,.,N-1, or F(N-1) >kv - kr (1 - r/t) which is the same result

given in Theorem 3.5.
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Therefore, a lower bound for K(n*), LBS, is given by

K(N)+(N-1)(F(N-1)-ykr(1-r/t) ; if F(N-1) 4:kv-kr(1-r/t)
LBS=

K(N) ; otherwise
(3.34)

3.3.3 Optimal Policies

In this section we will find the optimal sampling plan for the

sampling cases c=n and c= -1 and develop some conditions for which

reject and accept without sampling are the optimal policies.

Theorem 3.6

The optimal plan for the sampling case c=n is given by

n*=1 , c*=1

100% Sampling

; if k
v
>E(p)(k

a
-k

r
)

; otherwise

The optimal plan for the sampling case c=-1 is given by

n*=1 , c*=-1

100% Sampling

Proof:

; if kv>kr(1-E(p))

; otherwise

From Equation (2.11) AnK(n,c=n) = kv + E(p) (kr-ka).

Therefore An K(n,c =n) > 0 (K(n,c=n) increasing in n) if and only if

kv > E(p) (ka-kr). K(n,c=n) is non-increasing otherwise. From

equation (2.12) An K(n,c= -1) = kv + kr (E(p) -1).

Therefore An K(n,c = -1) >0 (K(n,c=n) increasing in n) if and only

if kv > kr (1-E(p)). K(n,c = -1) is non-increasing otherwise.



41

Theorem 3.7

Reject without sampling is the optimal policy if

E(p)> MaxtPc(1+N/t) , 1-kv/kri
Proof:

Lets take the case cn = -1 for all n E (1,N). This case implies

pc(t+n) - r <0; 1 <:n <N. This condition is satisfied if and only

if
pc(t+N) - r <0 or E(p)=r/t > pc(l+N/t)

Which implies ka r/t > kr. That is, the per unit cost of accepting

without sampling is greater than the per unit cost of rejecting

without sampling.

From Theorem 3.6, the optimal plan for the sampling case c= -1

is given by n* = 1, c* = -1 if E(P) > 1 -kv/kr,therefore for this

case the minimum per unit expected cost of sampling is given by

(Equation (2.12)).

KTn*=1,c*m-1)= (k1 + ky + kr(N-1) + krE(p))/N

> (k1 + kr(1-E(p)) + kr(N-1) + krE(p))/N

= (k/ + kr, kr(N-1) )/N > kr

i.e., the minimum per unit expected cost of sampling is greater than

the per unit cost of rejecting without sampling.

Theorem 3.8

Accept without sampling is the optimal policy if

E(p)<IMin cpc(l+N/t) - N/t , kv/(ka-kr))
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Proof:

Let's take the case cn = n for all n e (1,N). This case implies

pc(t+n) - r ) n; 1 < n < N. This condition is satisfied if and only

if
pc(t+N) - r or E(p)= r/t4;Pc(14.N/t) - N/t

or kr (1 + N/t) > ka (r/t + N/t). This last expression implies

kr > ka r/t as ka > kr.

From Theorem 3.6. the optimal plan for the sampling case c = n
kv

is given by n* = 1, c* = 1 If E(p)<----- , therefore for this case
ka-kr

the minimum per unit expected cost of sampling is given by (Equation

(2.11)).

K1(n*=1,c*=1)= (kI + kv + kaE(p)(N-1) + krE(p))/N

> (kI + E(p)(ka-kr) + kaE(p)(N-1) + krE(P)) /N

= (k
I

+ k
a
E(P)N)/N k

a
E(P)

11

3.3.4 The Value of Information

The increase in utility which results or would result from

taking a sample and learning about the number of defectives in the

sample will be called the value of information.

The expected value of sample information (EVSI), is defined as

the expected cost of the best decision before sampling minus the ex-

pected cost of the best decision given the results of size n. From

Equation (3.21).

k,Nr/t - (kr(nr/t + N-n) + (N-n)F(n)) ; if r/t 4p_
LEVSI(n)= (3.35)

krN - (kr(nr/t + N-n) + (N-n)F(n)) ; if r/t >pc
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From 0.35) we get the first diffei-ence with respect to n

NEVSI(n). kr(1-r/t) - (N-n-1) AnF(n) + F(n) ; n=1,..,N-1 (3.36)

By Theorem (3.4) F(n) is non-increasing in n; therefore, An F(n) < 0

for all n, and the first and second terms of Equation (3.36) are

greater than zero. However, due to the definition of cn; F(n) < 0.

The most negative value that F(n) can take is F(N-1).

Therefore, to prove that An EVSI (n) > 0 for n=1,...,N-1. It is

sufficient to prove that

LN_lEVSI(N-1). kr(1 -r/t) + F(N-1)) 0

or F(N-1) > kr(r/t - 1)

This last condition was always satisfied over a wide range of

experimental values; corresponding to the fact that we would never

refuse to accept free information.

The expected value of perfect information (EVPI) is defined as

the expected cost of the best decision before sampling minus the

expected cost of the best decision given perfect information about

the quality of the lot.

As we assume inspection is 100% effective; perfect information

about the quality of the lot is given by 100% inspection of the lot.

Therefore, EVPI = EVSI(N). By Equation (3.35)

Nr/t(ka-kr)
EVPI=

krN(1-r/t)

; if r/tpc

; if r/t > pc
(3.37)
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As the EVSI(n) is non-increasing in n the EVPI > EVSI(n) for

n=1,.,N-1 and can be interpreted as the maximum potential reduc-

tion in total cost of the sampling alternative.

The Expected Net Value of Sample Information (ENVSI) is given by

the EVSI minus the cost of sampling.

ENVSI(n)= EVSI(n) - CS(n)= Min (kaNr/t , krN) - K(n) (3.38)

From the last equality it is clear that if ENVSI(n) > 0, then

sampling with a plan (n,cn) has a smaller expected cost than the'non-

sampling alternatives, and if ENVSI(n) < 0 for all n, the converse is

true.

From Equation (3.38) it may be seen that in order for sampling to

be a feasible alternative we require EVPI - CS(n) > 0. Therefore, an

upper limit on the sample size that should be considered when search-

ing for the optimal acceptance plan is given by

kI + ky n* 4; EVPI or n* < (EVPI - ki)/kv (3.39)

Furthermore, lets assume we found ENVSI(n1) > 0 and therefore, taking

a sample of n1 items has a smaller expected cost than the non-

sampling alternatives. We may wonder whether increasing the sample

size to n2 (n2 > ni) would give us a better ENVSI or not. In order

to increase the ENVSI, or at least maintain it at the same level we

have to find that
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EVSI(n2) - EVSI(n1) > CS(n2) - CS(n1)= kv(n2-nl)

or EVSI(n2)- EVSI(n1) EVPI-EVSI(ni)
n2 4 nl +

k
v

ni +
kvv

Therefore a second upper bound for the optimal sample size is

given by

n* n +

'3.4 The Model

3.4.1 Approach

EVPI - EVSI(n)

kv
(3.40)

According to our objective, the minimization of the expected

total cost of the 1 lots; the optimal solution to our problem is the

policy (ni*,cnt), (n2*,cnt),..., (n1*, cd, where 0 <ni* < N and -1

< ce< n i for Note that we have included the case n; = 0

to include the non-sampling alternatives. The policy (n* = 0, cnI.

-1) means rejection without inspection is optimal for lot i and the

policy (ni* = 0, cn.!= 0) means accepting without inspection is opti-

mal for lot i.

It is important to note here that the policy depends on the

actual sampling results. For example, if (nl* = 50, cril= 10) then

(n.*,cn*) depend on the outcome of the first sample,

xl.

The problem can be divided into stages, the lots. At each stage

there is a policy decision that we have to make: sample, accept

without sampling or reject without sampling.
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Each lot (stage) has a possible number of states associated with

it. The states at stage i are completely defined by the parameters

of the beta distribution (ri_1, ti_i) According to the policy

decision that we make at any stage, we transform the current state

into a state associated with the next stage.

Our process possesses the Markovian property or principle of

optimality, that is, given the current state (ri_1, ti -1), the opti-

mal policy for the remaining lots is independent of the policy

adopted in previous lots.

Given the properties above, our problem can be formulated and

solved as a dynamic programming problem.

In order to understand how the number of states increases with

the number of stages and the lot size, let's assume a sequence of

three lots of N=2; lees assume further that the first lot is at state

(1,10). Then the possible states of lot 2 are: (1,10) if ni = 0,

(1,11) or (2,11) if nl = 1, and (1,12), (2,12) or (3,12) if ni = 2.

And the possible states of lot 3 are the same as lot 2, plus (1,13),

(2,13), (3,13), (4,13), (1,14), (2,14), (3,14), (4,14) and (5,14).

That is, we have six possible states at stage 2 and 15 possible

states at stage 3.

In general, if we define:

NSi = Number of possible states in stage i; i=1,2,...,1

Then

L. = (i-1)N

NSi= CLi+1)(Li+2)/2 i=1,2,..,1

; i=1,2,...,1

(3.41)
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Therefore, if we have a sequence of five lots of 1000 items

each; then L5 = 4000 and NS5 = 8,006,001.

3.4.2 Formulation

Let the lots i=1,. ..,1 be the stages of our procedure. The

tuple (ri_1, ti_1) denotes the possible states of lot i. The actions

at any stage i are: sample (Si), reject without sampling (Ri) and

accept without sampling (Ai).

Define Vi(r,t) as the minimum expected cost of lot i and

remaining lots given that we are currently at state (r,t).

Therefore Vi(ri_l,ti_i) can be described as the minimum expected cost

of lot i and remaining lots given that we have sampled
L-1Tn

J

items and found 7._defectives in lots 1,...,i-1.
1.1

xj

The following recursive relationship describes the solution of

our problem

Si: K(ril" )+I.V (r. +x. + t
i i+1 1-1 vti-1 nOgn4xi)

Vitri_l,ti_1). Min Ri: krN + , ti -1)

Ai: + Vi+1(ri_i , ti_i)

where n16 (1,N) i=1,2,.1 and

with boundary conditions V1+1(.,.)= 0 .

(3.42)

Where K(n4.1' ) is given by Equation (3.21), and n't is the sample size

which
li z es 1(01 0

xoc,
+1 ( ti -1 "10 gn.( );

1 <:ni<:N. Here it is important to note the difference between ni

and ni+. ni* is the sample size that minimizes K(ni); 1 < ni < N;

and n.4. is as defined above.
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Equation (3.42) minimizes the total expected cost of the whole

sequence. As al 1 lots have the same size, it is equivalent to

minimize the

xi; gyll(xi) = gnL(ri).

equivalent to (3.42)

rt.fl-tt

Si . le(rit)+
roc., 1+1

(r. , ti_1+61)%t(ri)
1

sum of the per unit costs. In addition, as ri = ri_l +

Therefore, the following relation is

V.(r1 t1. )= Min
' -1

Ri: kr + ,
ti -1)

A4: kari.liti-1 ti_1)

(3.43)

where 61.14:(1,N) and i=1,2,..,1 and

with boundary conditions V1.1.1(.,.) = 0 .

3.4.3 Lower Bounds

By using the lower bound for K(n*) developed in Section 3.3.2

and by using the additional property that IVii_1(ri, ti_i+ni)gn(ri)
q=n.t

is non-increasing in ni for This property was only

checked experimentally over a wide range of values of the parameters.

The following lower bound is proposed for Si, LBSi.

r_4 +N

LBS.= LBS + I V1 (r. t. +N)f (r.)
+1 1

, 1-1 N 1
"1.4.1

Where LBS is given by

LBS= Min(K(N) , K(N) + (N-1)(F(N-1)-kv+kr(1-ri_i/ti_1))1

(3.44)
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Clearly, by using Theorems 3.7 and 3.8; LBS is substituted by

K(n=1,c = -1) when ri_1 iti_1>Max(pc(1+N/ti_i) , 1-kv/kr}

and by K(n=1,c=1) when

+ pc , kv/(ka-kr))

The property that the second term of Si is non-increasing in ni

provides a lower bound for ni+0=1,,1-1. Notice that Si evaluated

at n. can only be improved if we increase the sample size. That is

< n14 for i=1,...,1-1.

When considering a sequence of lots, an increase of the size of

the sample of a lot reduce the losses from wrong decisions in that

lot. In addition, as we use this sampling information in our

subsequent lots italso reduces the losses from wrong decisions in

subsequent lots. Therefore, the optimal sample size of lot i in a

given state, say (r,t), is greater or equal to the optimal sample

size of a single lot at (r,t).

3.4.4 General Results

In this section we develop some results which will

simplify the fundamental recursion relation (3.43).

Theorem 3.9.

r n; r. gir

IVi(ri_i,t+nti)gnt( i 1)( Dill.(ri,t4i)gnt(ri) + Minikr , kar/t1sr-_-
r rvat* -

for i=1,2.,1 .
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Proof:

By backward induction

for i =1
r+n+, nt

11-1.

Vi (1.1 _1, t+nti )gn+ (r1_1)=
x o

(r+xi_i, t+n1 )gn4. (x1_1)
r

Min(kr, r/(t+n+ q + (0) + Min tkr. k a (r+1)/(t+rili q + (1)' a 1 nt nt

+ Minikr, ka(r+hii )/(t+nti )gi (n+i )

Min(kr , kar/t)

Last inequality follows as
hx

ka/(t+hti ) (r+xl _i)grir (xi
)

= kar/t

Assume true for i. For i -1 we have

kr+Vi (r,t+41_1)
Vi_i(r,t+n+i_1)4 Min

/(t+nii_i) +Vi(r,t+61_1) "i(r't+nt1-1)kar
Min(kr,kar/(t+n+i_i))

r+1)/ (t+ni _1)1

kr+Vi(r+1,t+ril_i)
Vi_1 (r+1,t+nti_i )< Min

ka(r+1)/(t+n+i_i) + Vi (r+1

Vi (r+1,t+n+.i_i ) + Min(kr , ka(

k +V . (r+n1. t+n1. )r -1' -1
, ) <Min

ka (r+ril _1 ) /( t+n4i _1 ) + V . ( r+n1. t+nt )-1' 1-1

Vi (r+ni _i,t+ni_i) + Min ict. , ka (r+ni_i ) /(t+ni_i))
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therefore,

r4
V i ri _2 , t+ri _2 ) < (ri _1 , t+ni _1 )gni-.1(ri _1)

+ XI Mintkr ka(r+Xj...1)/(t+nliA
1.0 gntfriXj-1)

r+

( V ( r t+rit )g (r ) + Mintk , riti
1-1' 1-1 1-1 r 'arieor t-t
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Theorem 3.10

If sampling is optimal at state (r,t) of stage i, then sampling

is optimal at state (r,t) of stage i-1; i=2,...,1.

Proof:

For i=2,...,1

r.fr nt

V.(r,t)= KM) + t+tiOglit(ri

Vi_1(r,t)m Min

rtz r
n-e+.1 (1 N)

Si_1: +
r 7-4n.

Ri_1: kr + , t+rii)grifi(ri)

Ai _1: kar/t + Ort ) + Y! V . (r. , t+rii )qtilt (ri)n., 1+1

where ni E (i ,N) and (1m)

To prove that Si_1 < min (R1_1, Ai -11 we only need Si_1 evaluated at

ni+ to be less than or equal to min (Ri_1,
Ai -1i i.e.,

r r4

Vi (ri_i, t+ni )grit (ri _1) < iVi+i(ri , t+n+.1)gnii (ri ) + Min ( kr , kar/t)
c_er rk.r

for i=2,...,1
Which follows by Theorem 3.9.

Corollary 3.1

If sampling is optimal at state (r,t) of stage h, 2 < h < 1;

then sampling is optimal at state (r,t) of stages 1,2,..., h-1.
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Proof:

Sampling optimal at state (r,t) of stage h implies by Theorem

3.10, that sampling is optimal at state (r,t) of stage h-1. By

repetition of the same argument result follows.

Corollary 3.2

If a non-sampling action is optimal at state (r,t) of stage h, 1

< h < 1; then the same action is optimal at stages h+1,...,1.

Proof:

Assume reject is optimal at state (r,t) of stage h, then,

Vh(r,t)= kr + Vh +l(r,t) < kar/t + Vh4.1(r,t)

therefore
kr<kar/t

By Corollary 3.1, sampling is not an optimal policy at state

(r,t) of stages h+1,...,1. Therefore

kr + Vi1.1(r,t)
V.(r,t)= Min 4 = kr + Vi+1(r,t) for j=h+1,...,1

kar/t + Vj4.1(r,t)

i.e., reject is optimal for stages h+1,...,1.

Using the same argument we can prove that if accept is optimal

at state (r,t) of stage h, 1 < h < 1, then accept is optimal at

stages h+1,...,1.

It is important to notice that the proof of Theorem 3.9 does not

depend on the form of K(n); and therefore results given in Theorem

3.10 and Corollaries 3.1 and 3.2 are independent of the model used to
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describe the expected cost of sampling and, clearly, of the type of

prior distributions assumed.

Corollary 3.2 tells us that if a non-sampling action is optimal

at stage i then the same action is optimal for the rest of the lots.

For example, if Vi(r,t) = kr + Vi4.1 (r,t), then V1 4.1(r,t) = kr

Vi +2(r,t), Vi.1.2(r,t) = kr + Vi+3(r,t),.,V1(r,t) = kr.

Therefore, the recursive relation (3.43) is equivalent to

owl,* ri;

Si: On.) + (r.,t. +n+)g (rir
roor,.2 1+1 1 1 -1 i

V.1 (r.
1-1' 1

t.
-1 1

)=Min R.: (1-i+1)k
r

A.: (1-i+1)k r. /t.
1 a 1-1 1-1

where ni+ a(1,N) for i=1,2,..,1 and

with boundary conditions V1.1.1(.,.) = 0.

In (3.45) the reject and accept alternatives are no longer a

function of Vi4.1(ri_i,ti_1)

The number of states that we have to consider to find the exact

solution is slightly decreased. Let's assume the same example used

in Section 3.4.1, that is,a seouence of 3 lots of size 2 each,with the

first lot at state (1,10). Therefore, at stage 1 we only consider

state (1,10); at stage 2 we need to consider states (1,11) and (2,11)

if n1=1, and states (1,12), (2,12) and (3,12) if n1=2; at stage 3,

states (1,12), (2,12) and (3,12) if n1=1 and n2=1, states (1,13),

(2,13), (3,13) and (4,13) if n1=1 and n2=2 or if n1=2 and n2=1, and

states (1,14), (2,14), (3,14), (4,14) and (5,14) if n1=2 and n2=2.

(3.45)
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Therefore, we need to consider one state at stage 1, five states

at stage 2, and twelve states at stage 3, compared to 1, 6 and 15

possible states at stages 1, 2 and 3, respectively.

In general, if we define:

NSI.= Number of states to consider in stage i ; i=1,2,..,1

then NS'i= (L +1)(L
i
+2)/2 - i(i-1)/2 ; i=1,2,..1 (3.46)

where: Li = (i-1) N ;

Now if we have a sequence of five lots of 1000 items each, then

L5 = 4000 and NS'5 = 8,005,991.

3.4.5 Convergence of Optimal Policy for Lot 1

If the process quality, p, is known, the prior distribution of

the lot quality, fN(X), given by Equation (3.5) becomes binomial with

parametes N and p, b(X,N,p). By the reproducibility of the binomial

prior distribution, Hald (7), gn(x) -- b(x,n,p) and P(y/x) -- b(y,N-

n,p). Therefore, E(x) = np and E(p*/x) = E(y/x)/(N-n) = p, which

agrees with Mood (16).

The expected cost of sampling, Equation (2.8) becomes

K(n,c)= kI + kvn + kr(np+N-n) + (N-n)(kap-kr)ign(x) (3.47)

It is clear that the optimal value of c for fixed n, cn, is given by

if P <Pc
c
n

=

-1 ; otherwise

Therefore K(n); n=1,...,N is given by
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kI + kvn + krnp + (N-n)kap ; if p <pc ; cn=n

K(n)=
(3.48)

kI + kvn + kr (np+N-n) ; otherwise ; c
n
=-1

Note that Equation (3.48) can be obtained by Equations (2.11) and

(2.12) with E(x) = np and E(X) = Np.

Theorem 3.11

For a process with quality p, the optimal policy for lot 1 when

1-**, is:

Accept without sampling ; if ki/N +kv> E1(p)
If E1(p) <pc then

(ka-kr)

100% Sampling ; otherwise

Reject without sampling ; if ki/N kr(1-
If El(n)Pc then

100% Sampling ; otherwise E
1
(p))

Proof:

Assume we know the process quality, p. Then Al = kap and S1 is

given by Equation (3.48).

a) If p <pc , then Al < R1.

Al < S1 = (ki+kvn+krnp+(N-n)kap)/N for n=1,...,N

If and only if, kv> p (ka-kr) - kyn For n=1,...,N.

It is clear that this last condition is true if and only if,

ki/N + kv > p(ka-kr)

If Al S1 Then by Theorem 3.6 100% sampling is optimal.

b) If p > pc , then R1 < Al .

R1 < S1 = (kL±kvn+kr (np + N-n))/N for n=1,...,N

If and only if, kv > kr (1-p) - ki/n for n=1,...,N.
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This last condition is true if and only if ki/N +kv > kr (1-p).

If R1 >S1 then by Theorem 3.6 100% sampling is optimal.
Ar4

Recall E
1
(p)= (r

0
+ .,3 0

+..1I n.) ;

3. 3

By letting A-1
n' = n;

1.-.1

,
Then E

1
(0

r
=

0
+

4IxiJ =
t + W
0

Note that as 1-, 09 n*-0.0 and

L-1
r + ix ./n1
0 .1.i

t
0
/n1 + 1

Zx
3,4

Therefore E
1
(p)-op as l-oco.

Theorem 3.11 tells us that fort-00,the optimal policy for the

last lot tends to be either a non-sampling alternative or 100%

sampling. This is, of course, a result of the assumption that the

process is operating in a random manner with quality p. No shifts in

the process quality are allowed. In practice, it is widely known

that any process will tend to go out of control and therefore shifts

in the process quality are expected.
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CHAPTER 4

SOLUTIONS

4.1 An Algorithm for the Optimal Sampling Plan of a Single Lot

The algorithm proposed is based on the one presented by

Moskowitz and Berry (18) with the use of a more efficient search

thechnique.

Moskowitz and Berry define switchover points as the values of n

where the value of cn changes. In Figure 2, the switchover points

are the dotted points in the graph.

They presented two main results which were, however, only

checked experimentally. Firstly, they stated that there exists only

one point such that K(na) > K(nb) < K(nc)

where na < nb <:nc and cne.<cnh<cn,

and that the optimal sample size lies somewhere between the

switchover points na and nc.

As discussed in Section 3.3.1, the maximum increase of cn when n

is increased by one is one. Therefore, we may use cn, = cn, 1 and

cn = cnc+1.
ti

Define a ditonic function as a discrete function g(j) such that

g(j) is decreasing for 1 < j < j* and increasing for j >j*. That

is, Aj g(j) < 0 for 1 < j < j* and 6.j g(j) > 0 for j

By using Moskowitz and Berry's results we may conclude that K(.)

evaluated at the switchover points is a ditonic function.. They also
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proposed that K(n), evaluated between contiguous switchover points,

that is for cn constant, is also a ditonic function. Both results

have been supported by a wide variety of experimental values in our

research.

The minimum of a ditonic function g(j) j=1,.,NP can effi-

ciently be found by using the following search procedure.

The sequence of Fibonacci numbers is 1,1,2,3,5,8,13,21,

That is, each number is the sum of the previous two numbers. Let

Fi = the i+1 number of the Fibonacci sequence. The procedure can be

described in the following steps.

a) Find the smallest Fibonacci number bigger than NP, Fi. If

i=3 then calculate g(1) and g(2) to find the minimum and stop. If

i >3 calculate g(Fi_i) and go to next step.

b) Calculate g(Fi_2) ; if g(Fi_i) < g(Fi_2) set KP=min(2Fi_2,NP)

and calculate g(KP), if g(KP) < g(Fi_i) evaluate function in interval

Fi_1+1 to min (FoNP), evaluate function in interval Fi_2+1 to KP

otherwise; procedure terminates.

If g(Fi_i) > g(Fi_2) set i=i-1, if i=2 stop, repeat step b)

otherwise.

If we let n(1), n(2),.. be the switchover points, the

algorithm for finding the optimal sampling plan of a single lot can

be divided in the following three steps.

1) Find all switchover points n(1), n(2),... in the interval (1,N).

By using the proposed search find the switchover point that minimizes

the expected cost of sampling, which will be denoted by n(s).
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2) Define L =(n:n(s-1) < n <n(s)1 and U =(n:n(s) < n <n (s+1)] .

By using the proposed search find the nE L that minimizes K(n),no

and the n e U that minimizes K(n), nu.

3) The optimal expected cost and consequently the optimal acceptance

plan (n*,cn ) is such that K(n*) = Min K(n(s)), K(nu)1.

4.2 Exact Solution

The exact solution to our problem is given by the recursive

relation (3.45). To find Vi(.,.) for a given state we have first to

find the ni which minimizes Si, ni+; and then compute Min (Si, Ri,

Ail .

However, to find the optimal policy to our problem we need to

evaluate relation (3.45) for every state of every stage. As

discussed in Section 3.4.4, the number of states to consider at a

given stage increases rapidly with the lot size and the number of the

stage. Therefore, a complete enumeration becomes cumbersome and

inefficient. The proposed method uses all of the features described

in the previous chapters.

First we discuss the single lot case, which is a special case of

our more general model with 1=1. Note that for this case relation

(3.45) becomes

V1(rn,t0) = MintKIn*), kr , karo /toS

To find V1(rn,t0) we first use Theorem 3.5 to find out whether

100% sampling is optimal or not. If 100% sampling is optimal then
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V1(ro,t0) = Mink ki/N + kv + kr ro/to, kr, ka ro/t0). Otherwise, we

calculate the LBS by using Equation (3.34) and then test whether the

Min LBS, kr,ka ro/tol<LBS or not. If true then V1 (ro, to) = Min

{kr, ka ro/tol , if false then we use the algorithm discussed in

Section 4.1 to find K' (n *) and compute Vi(ro,to) = Min fKl(n*), kr,

ka ro/tOl

For 1 > 1, the lower bound for ni+ discussed in Section 3.4.3 can

reduce further the number of states to be considered at stages

2,3,...,1. If ni* > 1 and as n1+ > nl*, then the number of states

that we have to consider in stages 2,...1 is smaller than given in

Equation (3.46). For example, assume we have a sequence of two lots

of five items each (1=2 and N=5) with lot 1 at state (1,10).

Further, let's assume nl* = 3. Then the states to consider at stage

2 are (1,13), (2,13), (3,13), and (4,13); (1,14), (2,14),...,(5,14);

and (1,15), (2,15),...,(6,15). That is 15 states, compared to NS2

20 given by Equation (3.46). Clearly, the reduction of states will

depend on nl*, the bigger n1* the more reduction.

No further reduction of states is considered by using the lower

bound nil' > ni*. This is because we would need to find the optimal

sample size for single lots at every state in stage 2 and so on. In

our example, stage 2 would require finding the optimal sample size of

a single lot at the 15 states to consider, this is clearly computa-

tionally inefficient compared to the possible savings.

The procedure for finding the optimal policy can be summarized

in the following steps.
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1) Find n1*. To do this we use Theorem 3.5 to find out whether 100%

sampling is optimal or not. If 100% sampling is optimal then

ni = N. Otherwise, we find n1* by the search procedure. At this

point the states to consider at stages 2,...,1 are defined.

2) Solve stage 1. Here we first use Theorems 3.7 and 3.8 to find

all states which can be solved immediately. States which do not

satisfy conditions are then tested by Theorem 3.5 to find out whether

100% sampling is optimal or not, and construct the lower bound of

sampling, LBS. The LBS is stored for subsequent use. If 100%

sampling is optimal, V1(.,.) is calculated immediately. Otherwise,

we test whether the Min {Ri, Al, LBS} < LBS or not. If true, then

Vi(.,.) = Min {Ri, Al} . If false then we use the search procedure

of Section 4.1 to find K(n*) which is Si, and compute V1 (.,.) = Min

(Si, R1, A11.

3) Solve stages i=1,.,1-1. Starting with stage 1-1 we do the

following for every stage.

For every stage considered, we first calculate the lower

bound for Si, LBS-
,
described by Equation (3.44). Recall that the

1

first term of LBSi, LBS, is replaced by K(n*) when the conditions of

Theorems 3.7 or 3.8 are satisfied. In addition, by using the

property discussed in Section 3.4.3; for all states that at stage 1

100% sampling is the optimal acceptance plan, we have LBSi = Si and

therefore Vi(.,.) can be calculated immediately by Vi(.,.) = Min

tLBSi, RoAil. For the rest of the states we test whether the Min

{LBSi, Ri, Ai} < LBSi or not. If true, then Vi(.,.) = Min (Ri, Ail .
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If false then we use complete ennumeration to find Si and then

compute Vi = Min {Si, Ri, Ail .

4.3 Approximate Solutions

As we have discussed earlier, industrial size problems will

usually be too big for the exact method, therefore in this section we

shall discuss approximate solutions.

The reason for the magnitude of the problem is the number of

states that a lot can assume. The principal reason for having such

an explosion of states is that the sample size of any lot can vary

from one to the lot size. Therefore, in order to simplify the

problem, we may only allow one sample size for lots 1,.,1-1. This

measure reduces drastically the number of states to consider at all

stages. For example, if we consider a sequence of five lots of 1000

items each, and we fix nl = n2 = = n5 = 50; then the states to

consider at stage 5 are (ro, to + 200), (r0+1, to+200),., (r0+200,

to+200). That is 201 instead of NS'5 = 8,005,991. Here we are not

taking into account the possible reduction in states when we use the

lower bound n1+ > nl* discussed in Section 4.2.

This drastic reduction is a result of Corollary 3.2. For

example, we do not need to consider state (r0, to+100) at stage 5

because the only way that an optimal policy is going to take us to

that state in stage 5 is by sampling lot 1 (n1 = 50), sampling lot 2

(n2 = 50) and then using a non-sampling action for lots 3 and 4.

Therefore, we can evaluate this policy in stage 3 instead.
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In general, the number of states to consider in this case at

stage i, NSAi, is:

LA

NSA- = In- + 1 i=1,2,..,1
.311

(4.1)

In order to have a yardstick for comparison we propose two

different methods for fixing the sample sizes of each lot.

As we discussed in Section 3.4.3,n1* is a lower bound for n1+,

therefore we would like to fix nl such that nl > n1*. Furthermore,

whenever the optimal policy for a sequence of 1 lots is reject or

accept all lots without sampling or sample lot 1 followed by

rejection or accepting the rest of the lots without sampling for

every possible outcome of the sample performed in lot 1; the solution

for a sequence of 1 lots is identical to the solution of a single lot

with lot size 1N. As an example, assume 1=3 and N=10 with (ro, to) =

(1,10). Further assume the optimal policy is: sample lot 1 with

ni+=2; if x1=0, then accept without sampling lots 2 and 3; and if

x1=1 or x1=2, then reject without sampling lots 2 and 3. Then the

same solution can be found by solving the single lot case 1=1 and

N=30 with (ro, to) = (1,10).

This phenomenon is due to the fact that Si is the expected cost

of sampling for the sequence, and if only non-sampling alternatives

are involved in Vi4.1(.,.) for i=1,...,1-1; S1/1 in relation (3.45) is

equal to the expected cost of sampling for a lot of size 1N. In

addition, from relation (3.45) Al/1 and R1/1 then become kr and kr,

ro /to, respectively.
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This property is the basis for Method 1. Both methods can be

classified as a forward-backward dynamic programming procedures,

where the forward pass finds the sample sizes allowed for each lot

nl, n2,...,n1.4 >0; and the backward pass uses relation (3.45) to

find the optimal policy for the reduced state space. An upper limit

for the sample sizes is used in those cases where large sample sizes

are not desired, and to avoid the possibility of sample sizes greater

than the lot size.

Method 1.

Forward Pass. If we let

n*(N,r,t) = optimal sample size of a single lot at state (r,t) with

lot size N, and

UL = upper limit; 1 < UL < N

We then set n1 =

n*(1N,ro,t0) ; if n*(1N,r0,t0) < UL

tUL ; otherwise

From relation (3.45) the only possible states for lot 2 given

that we sampled lot 1 are (ro, to+n1), (r0+1, to+ni),..., (ro+ni,

to+ni).. Therefore, the a priori best guess of the state of lot 2

given that we sampled lot 1 is (r0+E(x1), teni), where E(x1)= nl

ro/to we then set

n*((1-1)N,ro+E(x1),teni);ifn*((1-1)N,ro+E(x1),teni)
n2= < UL

UL ; otherwise
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The only possible states of lot 3 given that we sampled lots 1

and 2 are (ro, to+ni+n2), (r0+1, to+ni+n2),....,(ro+ni+n2, to+ni+n2).

Recall that non-sampling for lot 1 and then sampling lot 2 cannot be

an optimal policy by Corollary 3.2. Therefore, the a priori best

guess on the state of lot 3 given that we sampled lots 1 and 2 is (r0

+ E (x1 + x2), to + ni + n2), where E (x1 + x2) = (n1 + n2) ro/to. We

set n3 similarly to nl and n2. In general we define

n (( 1-1+1)N,r0+E(xi+...+xi_i),t0+ni+...+ni_i); if n*(.,.,.)< UL
n. =

UL ; otherwise

-61

For i=1,..., 1-1, where E( Xxi) = ro ni/to
hi hi

The forward pass terminates when n1_1 is calculated.

Backward Pass.

It is important to recall first that in this case we have t
61.

fixed at every stage and r varying from ro to ro + Zni in stages
hi -

i=2,-,1. The backward pass is the solution to relation (3.45) with

ni fixed for i= 1,...,1 -1. It can be divided into the following

parts. Part 1) Solve stage 1. First we use Theorems 3.7 and 3.8 to

find all the states that can be solved immediately. States which do

not satisfy the conditions are then tested by Theorem 3.5 to find out

whether 100% sampling is optimal or not and computing LBS. If 100%

sampling is optimal, V1 (., to +2:n4) is calculated immediately.
sl

Otherwise, we test whether or not the Min cit.!, Al, LBS3 < LBS or not.
ii

If true then V1 (., to + Znj) = Min (R1, All , if false then we use

the search procedure to find S1 and compute
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epi
V

1
( t

o+ Zni) = Min cS1,111,4110.

Part 2) Solve stages i=1,...,1-1.

By Theorem 3.7 it is optimal to reject without sampling a single

lot at state (r,t) if:

r/t = E(p) > Max {pc(l+N/t), 1-kvikri (4.2)

It is easy to see that if (4.2) is satisfied, then a single lot at

state (r+x,t), where x > 0, has as the optimal policy reject without

sampling. Further, if (4.2) holds, then rejecting without sampling

is optimal for a single lot at state (r,t-n), where n > 0. This last

statement can be proved as follows

r/t > pc(l+N/t) impli'es r > pc(t +N) > pc(t-n+N)

therefore r > Pc(t-n+N) LI Pc(t-n)(1 + N/(t-n))

and r /(t -n) > pc(1 + N/(t-n))

which implies r /(t -n) > Max cpc(1 + N/(t-n)), 1-kvikr1

As soon as condition (4.2) is satisfied at stage 1, then we know

that V1 (r+x,t) = kr for x=1,2,. . And as we have fixed the

sample size to take at stage 1-1, ni_l, then

[

W(ni_i) + kr

111_1(r,t-ni_1)= Min 2kr

2kargt-ni_1)

In addition, by the proof above, it is optimal to reject a

single lot at (r,t-n1_1). Therefore,



68

Min 1<s (ni_i) , kr , kar/(t-ni_l)l= kr ; and V1_1(r,t-n1_1)= 2kr

Using the same argument, we can prove that if (4.2) holds at stage 1

and only one sample size is allowed for each lot, then

Vi_i(r+x, (i+l)kr for x) 0 and i=1,2,..,1-1

That is, once we find the r1_1 at stage 1 such that condition (4.2)

is satisfied, then all states (ri_i, ti_1) for stages

with ri_i > r1_1 have as the optimal policy reject without sampling.

By using this result, the proposed procedure to solve for the

optimal sampling policy at staaPs i=1,..,1-1 is as follows:

Starting with stage 1-1 and moving backwards do the following

for every stage i.

a) Set ri_i = ro

b) Test whether ri_i 2.ri_i or not. If true then set

Vi (r,to +27_ni) = +1) kr for r =
ri_i,...,

ro0
Jsi

Set i=i-1 and go to step a).

If false then compute

S.= Kqn.) + (r. +x. , t + In.)g (x.)
1 1 , 1+1 1-1 1 o hi j ni

t-i

and Vi (ri_l, to +Ini) = Min Si, Ri, Ail
lst
11

Then if ri_l < ro +2Lni, set ri_i = ri_i + 1 and repeat step b).

Otherwise set i=i-1 and go to step a).

Method 2.

This method is a simplified version of Method 1. Again we fix

the sample size of each lot in order to reduce the possible number of
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states. Two different versions of this method were tested. We will

call them Method 2A and Method 2B. In the forward pass of Method 2A

we set

n1=n2= =n1_1= Min {n*(1N,ro,t0) , UL 3

And in Method 2B we use

n
1
=n2= =ni_i= Min (n*(N,ro,to) , UL }

The backward pass for both methods is the same as in Method 1.

4.4 Programs Organization

The exact method and approximate methods described in Sections

4.2 and 4.3 have various common procedures, therefore three

subroutines were developed for the use of the four methods. The main

programs and subroutines were written in Fortran IV. Program

listings and flowcharts are included in the Appendix.

SUBROUTINE FUNC (SS,F,C,TC).

The parameters in terms of our notation are: SS=n, F=F(n),

C=cn and TC=K(n).

This subroutine calculates first cn by using Equations (3.20)

and (3.20a). It then calculates F(n) by Equation (3.22) if 04;Cn<n;

by F(n) = ka E(P) - kr if cn=n; and sets F(n)=0 if cn = -1 (Equation

(2.12)). Finally calculates K(n) by using Equation (3.21).

SUBROUTINE SEARCH.

This subroutine is the algorithm for searching for the optimal

sampling plan described in Section 4.1. Before starting the
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algorithm and in order to try to reduce the possible values that the

sample size can take; subroutine search calculates first the upper

bound for n, given by Equation (3.39), and then finds the largest n

with cn=n, or cn = -1, if any.

SUBROUTINE FIBON (PP, NP, IS, SST, CST, TCST).

The parameters are defined as:

PP = Vector which elements are the sample sizes to
search from

NP = Number of elements in PP (NP > 2)

IS = The element number of the sample size which attains
the minimum expected cost

SST = The minimum cost sample size, where the sample size
is an element of PP

CST = The minimum cost acceptance number

TCST = The minimum expected cost of sampling

This subroutine uses the search procedure for ditonic functions

described in section 4.1. The vector PP contains the set of sample

sizes to search from. For example, if the switchover points are the

sample sizes 1,9,18,27,36 and 45 then K(PP(3)) = K(18) , K(PP(5)) =

K(36) and so on.

A detailed flow chart of the subroutine is given in the

appendix.



CHAPTER 5.

RESULTS AND CONCLUSIONS

5.1 Test Results
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To test the effectiveness of the lowerbounds discussed in

Sections 3.3.2 and 3.4.3 and the results of Theorems 3.5, 3.7 and

3.8; three examples with the following data were solved by using the

exact method.

Table 2.

Example 1 k k k k r to N E(p) Pc
I v r a o

1 0 0.6 0.7 14 1 21 30 0.0476 0.053

2 3 0 1.1 1.0 15 1 12 30 0.0833 0.0667

3 3 0 1.1 1.0 15 1 21 30 0.0476 0.0667

Data for examples 1-3

Note that the parameters were chosen so that E(p) is close to pc

in Example 1. E(p) is greater than pc in Example 2 and E(p) is less

than pc in Example 3.

The following table shows the number of states where the

algorithm had to search for the optimal sample size versus the number

of possible states at each stage (NSi) for all three examples.
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Stage i

Number of possible states= NS.

Number of states where n.
+ '

had to be searched
Ex. 1

Ex. 2

Ex. 3

1 2 3

1

1

1

1

(100%)

(100%)

(100%)

496

86 (17.3%)

71 (14.3%)

94 (18.6%)

1891

82 (4.3%)

144 (7.6%)

166 (8.8%)

Number of possible states and number of states where
the algorithm had to search for the optimal sample size

In Example 2, the optimal sample size was searched in 144 states

out-of 1891 possible states at stage 3 (7.6%). 1747 states were

pruned by either the lower bound LBS or by one of the theorems 3.5,

3.7 or 3.8.

The optimal policy for Example 1 is described in Figure 3.

We start with lot 1 at state (ro,t0) = (1,21). The optimal plan

for lot 1 is (n1+, c4-) = (20,1).Let's assume we take a sample of 20

items and we find one defect, i.e. xl = 1. Therefore, we accept Lot

1 and the prior distribution of Lot 2 updates to (r1, t1) = (2,41).

The optimal plan for Lot 2 given that xl = 1 is then (n2+, =

(23,1).Let's assume we take the sample of 23 items from Lot 2 and we

find two defects, i.e. x2 =2. Therefore, we reject Lot 2 and the

prior distribution of Lot 3 updates its parameters to (r2, t2) =

(4,64). The optimal policy for Lot 3 given the results for Lots 1

and 2 is to 100% sample the lot, that is, total inspection.

The approximate methods effectiveness is evaluated in terms of

the quality of the solutions and the computational effort to obtain



X1=0

Accept lots 2&3

(1,41)

Sample lot 2
1.02=23,cnt=1

x2= 1

Accept lot 3

(2,64)

'Sample lot 3
re'3=11, cnt=0

=2 -7 (3,64)

100% Sampling lot 31
x =8-23
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(4-9,64)

Re'ect lot 3

100% Samplin
lot 2

(3,41)

x1=2

Sample lot 1 x1=3

'11=20, cnc1

(1,21)

100% Sam. in. lot 3

100% Sampling
lot 2

x2=0-6

(4,41) x2=7-30

"lReject lot 3
(11-34,71)

Re'ect lot 3
-33,71

100% Samplin
lot 2

(5,41)

1
=5

Sample lot 2
6'2=26, crei=-1

x1 =6 -20 (6,41)

Reject lots 2&31 N1Reject lot 3 I

(10-32,67)

(7-21,41)

Note: Numbers in parenthesis represent the states (ril,t0

2=0-5

x2=6-30,
iReject lot 3
(11-35,71)

x2=0.1
--1100% Sampling lot 31

(6-9,67)

x2=4-26

Ootimal Policy for Example 1.
Figure 3.
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the solutions. The quality of the solution is only measured by the

expected cost of the solution.

In order to test the effectiveness of the approximate methods,

two sets of examples were used. The first set is composed of

examples 1-3, and compares the approximate methods versus the exact

method. Results are shown in Table 4.

To measure the efficiency of the approximate methods we use the

following relation

Efficiency
[Min(k

r
, karo /t

o
)-Expected cost per unit]

method i
Method i (%)= 100

[Min(k
r

, karo /t
o
)-Expected cost per unit]

exact
method .11

Recall that the Min (kr, ka ro/to) is the per unit expected cost of

the best decision before sampling, the best we can do with our model

is given by the denominator of equation (5.1).

Table 1 shows that efficiencies of Methods 1 and 2A are very

high so that not much room for improvement remains. Method 2B shows

in all three examples a significantly poorer solution.

The policies for Lot 1 generaged by Methods 1 and 2A are fairly

close to the optimal policy. Method 2B tends to generage policies

with smaller sample sizes.

Execution time is drastically reduced by the approximate methods.

Differences among approximate methods are not very significant.

However, Method 2B tends to have smaller execution times.



Table 4.

EXAMPLE EXACT
METHOD

METHOD 1 METHOD 2A METHOD 28

V (r t )
0' 0

1

2

1.561
2.593

1.573
2.596

1.573
2.596

1.615
2.634

3 2.052 2.064 2.063 2.095

Expected cost 1 0.5203 0.5243 0.5243 0.5383
per unit 2 0.8643 0.8653 0.8653 0.878

3 0.684 0.688 0.6877 0.6983

*Efficiency 1 97.27 97.27 87.7
% 2 99.26 99.26 89.9

3 86.79 87.88 52.78

Policy for 1 (20,1) (26,1) (26,1) (9,0)
lot 1. 2 (14,0) (12,0) (12,0) (8,0)
(ni,cn) 3 (5,0) (4,0) (4,0) (1,0)

Execution time 1 9.733 0.235 0.24 0.159
(cp sec.) 2 8.44 0.19 0.185 0.169

3 10.171 0.178 0.18 0.16

* Equation (5.1)

Results for Examples 1-3.

75
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Ex. 1 k kv kr

Table 5.

ka r0 t0 N E(p) pc

4 5 0 0.9 1 11 2 22 50 0.091 0.091

5 5 0 1.1 1 20 1 15 100 0.067 0.05

6 5 0 1.5 1 18 1 20 100 0.05 0.055

7 5 0 1.5 1 10 1 20 100 0.05 0.1

Data for examples 4-7.

Table 6.

Stage i Number of possible states (NSi)

Example 4 Examples 5-7

1 1 1

2 1326 5151

3 5151 20301

4 11476 45451

5 20301 80601

Number of possible states for examples 4-7.
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The second set, Examples 4-7, compares differences among

approximate methods. Table 5 shows the data for this set and the

number of possible states for each stage i (NSi). Again the

parameters were chosen so that E(p) is above, close and below andand

in example 4, kv < kr and in Examples 5-7 kv> kr. From the second

part of Table 6 we can appreciate the magnitude of the examples. In

Examples 5-7 there is 80,601 possible states at stage 5.

Table 7 presents the results for this set. Again Methods 1 and

2A produce similar expected costs. However, Method 2A shows a slight

tendency to obtain smaller expected costs. In all four examples

Method 2B produces the worst expected cost. In three out of four

examples, Method 2A requires the greatest execution time. And in all

examples Method 2B executed in a significantly smaller time.

5.2. Discussion of Results

The main objective of the project was to expand the present

Bayesian Theory of sampling inspection by attributes from a static to

a dynamic approach, by developing a model with a feedback mechanism

that use the information from previous inspection results in the

decision making for the current lot.

The model was formulated by assuming a sequence of lots and that

the posterior distribtuion of the current lot becomes the prior

distribution of the next lot.

We further assumed that the process operates in a random manner

with quality p and probability function W(p). However, as we are
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Table 7.

EXAMPLE METHOD 1 METHOD 2A METHOD 2B

4 4.063 4.061 4.089
V (r0 ,t0) 5 4.015 4.012 4.064

6 3.637 3.641 3.721
7 2.495 2.481 2.499

4 0.8126 0.8122 0.8178
Expected cost 5 0.8030 0.8024 0.8128
per unit 6 0.7274 0.7282 0.7442

7 0.4990 0.4962 0.4998

4 (39,3) (39,3) (15,1)
Policy for lot 1 5 (54,2) (54,2) (16,0)
(ni,cni) 6 (2,1) (2,1) (7,0)

7 (5,61) (5,61) (1,1)

4 0.935 0.851 0.378
Execution time 5 0.613 0.921 0.350
cp sec. 6 0.426 0.605 0.296

7 0.328 0.525 0.210

Results for examples 4-7.
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collecting the sampling information to update the parameters of W(p)

at each stage of the sequence, we also update the estimate of the

quality of process, Ei(p), at every stage i. Therefore, a shift of p

to say pc) at some finite stage of the sequence would mean that Ei(p)

= (ro + xj )/(t
o
+ nj) tends to pc) as i tends to infinite. That

ivr

is, shifts in the process quality are eventually corrected.

After formulating the model most of the research effort was

spent in finding a way to solve the model in the most efficient

manner. In order to do this we first needed to find an efficient

algorithm to solve the single lot case.

A significant contribution was made in this area. If we use the

exact method to solve the two following single lot examples.

Table 8

Example 1 kI kv kr ka r t N
pc

E(p)

8 1 0 0.28 0.3 3 1 10 1000 0.1 0.1

9 1 0 0.28 0.3 3 2 10 1000 0.1 0.2

Data for examples 8-9

We obtain (n*,cn*) = (56,5), KI(n *) = 0.209 with an execution time of

0.229 cp. sec. for Example 8, and (n*, cn*) = (75,6), KI(n *) = 0.284

with 0.201 cp. sec. for Example 9. These examples as all the computer

work of this project was carried out on the University CDC Cyber 170

Model 720.
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Moskowitz and Berry (18) report 29.364 sec. and 113.162 sec. on a

CDC 6500 for similar examples. These results are not directly

comparable as Moskowitz and Berry use a different model in their

research, but they certainly give an idea about the efficiency of our

algorithm.

After looking at the single lot case we developed the lower

bounds of Sections 3.3.2 and 3.4.3, and Theorems 3.5, 3.7 and 3.8

which made it possible to prune our decision tree and made it feasible

to solve to optimality sequences of small lots. The effectiveness of

these results were discussed in Section 5.1.

The need for approximate methods was clear since the beginning of

the project. Three methods were proposed. Method 1 and Method 2A

produced better solutions than Method 2B. Differences between Methods

1 and 2A are small, but it appears that Method 2A produces slightly

better solutions. In addition, Method 2A fixes the samples sizes of

all lots at one level. Therefore, its policies are simpler looking

and easier to use in an industrial environment. Method 2B requires

the least computation effort, but the loss in the quality of the

solutions does not compensate for the computation savings.

The dynamic approach used in this research updates the estimates

of the parameters of the prior distribution every time that a sample

is taken and inspected. Therefore, our model is a better

representation of the inspection process. This, of course, is

reflected in a reduction of the per unit expected cost of inspection.
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Ex.

Table 9.

Best expected K(n*) for Policy for
cost per unit single lot lot 1 in
for sequence (1=1) sequence
(method) (n1,cn)

Optimal
policy for
single lot
(n,cn)

Expected
savings
per unit

1 0.5203 (E) 0.567 (20,1) (9,0) 0.0467

2 0.8643 (E) 0.943 (14,0) (8,0) 0.0787

3 0.684 (E) 0.712 (5,0) (1,0) 0.028

4 0.8122 (2A) 0.880 (39,3) (15,1) 0.0678

5 0.8024 (2A) 0.888 (54,2) (16,0) 0.0856

6 0.7274 (1) 0.812 (26,1) (7,0) 0.0846

7 0.4962 (2A) 0.5 (5,1) (0,0) 0.0038

Note: E = Exact Method
2A= Method 2A
1 = Method 1

Comparison Between a Sequence of Lots and a Single Lot.
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Table 9 shows the cost per unit for examples 1-7 for the single

lot case (1=1) and compares it versus our previous best result for the

given sequence. From Table 9 we can observe that the main factor that

influences the expected savings is the amount of sampling required by

the optimal policy of the sequence. The more sampling the more

savings. This follows as sampling increases our accuracy in

estimating p and therefore reduces our risk of wrong decisions. The

amount of sampling required is of coursea function of the parameters

of the model. If, for example, the initial E(p) = rc/t0 is well above

or well below it it is likely that not much sampling is going to be

required unless a large sequence of large lots is considered: The

same would happen if sampling is costly, that is, if kI or kv or both

are large compared to kr or ka.

5.3 Possible Areas for Future Research

Most of the limitations of this study provide potential areas for

further research. In addition, a wide range of extensions to this

research are possible.

The cost parameters are assumed to be known constants. In some

cases they could be considered as functions instead. For example, the

cost of sampling is assumed to be a linear function of n with kI and

kv as known constants. The variable sampling cost, kv, may be thought

as a function of n perhaps kv decreasing as n increases in order to

differentiate between the per unit variable cost of sampling when n

N and the per unit variable cost of 100% inspection.
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The term rejection was used collectively for all the possible

actions taken on items or lots which are not accepted. Therefore,new

models can be developed for different specific situations.

The objective used was the minimization of the total expected

cost. For the sampling case, when deriving this quantity a number of

indirect effects of sampling inspection were not taken into account.

Efforts to include these effects can be of interest.

Inspection is considered 100% effective. This is not true in

practice. A more complete model should include the possibility of

inspection errors, so that a better representation of the real

situation is solved.

The possibility of solving big problems to optimality in a

reasonable amount of computer time lies mainly in the development of

tight and simple to solve for bounds for the optimal sample size and

for the expected cost of sampling. Not much room is left for the

improvement of the algorithm for solving the single lot case, but

proofs for the results that only have been proven experimentally are

desirable.

As our research used single sampling plans, a big field of

research is open for models with double, multiple and sequential

sampling plans. Restricted Bayesian sampling models could also be

used.
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This Appendix is divided in two main parts. Firstly, flow

charts of the four methods and subroutines are given. And the

second part contains the programs listings.

All computer work was done in Fortran IV. Throughout the

Appendix the following notation will be used:

CI=k
I

CV=k
v

CR=k
r

CA=k
a

RI=r TI=t
1-1 i-1

EP=E(p) TL=N

SS=n. SSTAR=nt

F=F(ni) C=cn

CSTAR=q

TC=K(ni)

DKN=
n
K(n.)

GO=gn(0)

TES=k
v
+ k

r il(t_,-ri_1)/ti_,

NL=1

OHI=K(N)

AWI=k
a
E(p)

BS(I,J)=LBS(r1_1,ti_1)

BSS =LBS1



SUBROUTINE FUNC (SS ,F,C,TC)

/I nput SS ,CI ,CV,CR,CA

RI ,TI ,EP,TL

Calculate GO

Yes

CP=CR/CA* (TI +SS) -RI

CP=AI NT (CP)

C=CP

Calculate F
Eq. (3.22)

Calculate TC
Eq. (3.21)

Calculate TC
set F=0

C=0

C=-1
F=0

C=SS
F=CA*EP-CR

STOP

88



SUBROUTINE SEARCH

Input CI , CV ,CR ,CA ,RI ,
TI ,EP,TL

ITSTAR=1x1030 I

Calculate upper bound (U B)
for SS , Eq (3.39)
set UU=MI N (TL,UB)

CALL FUNC (1.0 , F ,CSTAR ,
TSTAR) ; SS TAR=1.0

89

Find largest SS with C=SS (BL),
and largest SS with C=-1 (BLR)

set BB=MAX (0, BL, BLR)

Yes

No

DKN=CV+EP (CR -CA)

TSTARiK ' (n=UU,c=UU)
SSTAR=UU
CSTAR=UU

DK N=CV+CR (EP-1

TSTAR*K ' (n=1 ,c=1

SSTAR=1
CSTAR=1

Yes



TSTAW(n=UU,c=-1)
SSTAR=UU
CSTAR=-1

90

TSTAR=K'(n=1,c=-1)
SSTAR*1
CSTAR=-1

Find spacfng between switchover points
(SPA) and number of switchover points(NSO)

set SM =MAX (SPA,NSO)

Find sequence of Fibonacci numbers such
that last number >> SM
store them in vector KF

Store sample sizes of switchover
points in vector P

1

I CALL FIBON(P,NSO,IS,SST1,CST1,TCST1)1

TSTAR=TCST1
SSTAR=SST1
CSTAR=CST1



Yes

Store sample sizes between P (IS-1)
and P (IS) in vector P2. Let NP= # of
elements in P23 2

CALL FI EON (P2,NP,ISN,SST2,CST2,TCST2)

TSTAR=TCST2
SSTAR=SST2
CS TAR =CS T2

Store sample sizes between P(IS) and
P (IS+1) in vector P3. Let NP= # of
elements in P33 2

(CALL FI EON (P3 ,NP,ISN,SST3,CST3,TCST3

STOP

No

T STAR =TCS T3

SSTAR=SST3
CSTAR=CST3

91



SUBROUTINE FI BON (PP ,NP S ,SST ,CST ,TCST)

Input PP MP ,K F ,CI ,CR,CA,
RI ,TI ,EP,TL

I =I +1

No

CALL FUNC (PP (KF (I -1)) ,F,C1,TC1)

Yes

CALL FUNC (PP F -2) ) ,F,C2,TC2)

Alrt 431
Yes

TC1=TC2
C1=C2

No

I KP=2K F (I -2)

Yes

KP=NP

92

CALL FUNC (PP (KP) ,F,C3,TC3)1



CALL FUNC (PP (1) ,F,C2,TC2)

CALL FUNC (PP (2) ,F,C1,TC1)

Yes

TCST=TC1, CST=C1
SST=PP (2) , I S=2

TCST=TC2
CST=C2
SST=PP (1)

I S=1

LI M=MI N (KF (I) -1 ,NP) , TCST=TC3
CST=C3, SST=PP (KP) , ISO<P, J=0

I--51 J=J+1 10--
1

IKS=KF (I -1 ) +J

CALL FUNC (PP (KS) ,F,C4,TC4) I

No

)
TCS T =TC4

CST=C4
SST=PP (KS)

IS=KS
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TCST=TC1
CST=C1
SST=PP (KF (I -1) )
IS=KF(I-1)

J=01

LI M*P-1

1
J=J+1

IKS=KF (I -2) +

Yes

'CALL FUNC (PP (KS) ,F,C3,TC3)

Yes

STOP

No
TCST=TC3
CST=C3
SST=PP (KS)
IS =KS

94



EXACT METHOD

/I nput
NL ,CI ,CV,CR,CA,R,T,TL

Initial ize and
CALL FUNC (11-1 .0, FF,C ,TC)

Yes

No

Solve the single
lot case

Yes SSTAR1=TL

CALL SEARCH

SSTAR1=SSTAR

DO 99 K=1 ,NL
NK=NL-K+1
NI =LS (NK -1 +1

NKK =I FIX (SSTAR1) +NK -2
DO 89 I =2 ,NI
TI =T+FLOAT (I) -1.0

95



1

RI = R+FLOAT (J) -1.0

Use theorems 3.7 and 3.8 to
discard states with known
optimal policy

Yes Yes

96

V (L ,J) =AMI N1 ( CR,AWI ,OHI )
Write policy

IV (I_ ,J)=AMI N1 (CR , BS (I ,J)

Yes

CALL SEARCH
V (I_ ,J) =AMI N1 (CR,AWI ,TSTAR)
Write policy

J=J+1

/Write policy

89 CONTINUE )



INKK =NK+I FI X (SSTAR1) -1

DO 29 I =NKK ,NI

TI =T+FLOAT (1)-1.0

DO 28 J=1 ,I
RI =R+FLOAT (J) -1.0

Find minimum of non - sampling
al ternatives (PRU)

Calculate lower bound (BSS)
Equation (3.44)

V (L ,J)=PRU
Write policy

Find optimal plan by evaluating
K (n) for all possible sample sizes

/Write pol icy/

28 CONTINUE

29 CONTINUE

99 CONTI NUE )

STOP

97
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METHOD 1

I Input NL ,CI ,CV,CR,CA
R,T,TL ,UL

I
EXDEF=0 .0 , I =0
S UMS AM=0 .0

=I +

RI =RI +EXDEF , TI =T+SUMSAM
EP=RI /TI , NK=NL-I +1
TL=FLOAT (NK)*TL , SS=TL-1 .0

CALL FUNC (SS ,FF,C,TC)
TES=CV-CR* (TI -RI) /TI

No

CALL SEARCH 1

Yes

ISSTAR=TL

ISAMSI Z (I )=SSTAR

SUMSAM=SUMSAM+SAMSI Z (I )
EXDEF=SUMSAM*R/T
TL=TL/FLOAT (NK)



NI*IFIX(SUMSAM)+1I

DO 99 K=1,NL
NK=NL-K+1

RI =R+FLOAT (J) -1.0

Use theorems 3.7 and 3.8 to discard
states with known optimal policy

99

V (L ,J)=AMI N1 (CR ,AW1,0Hi )

Write policy

V (L. ,J)=AMI N1 (CR , ES) I

Write policy

CALL SEARCH
V (L ,J)=AMI N1 (CR ,AWE ,TSTAR)

Write policy

J=J+1

RRI =RI



NI =NI -KSAMSI Z
TI =TI -SAMSI Z (NK)

J=1 I

RI =R+FLOAT (J) -1.0

100

Reject is optimal for
rest of po icies

Calculate relation (3.45)
with n =SAMSI Z (NK)

Yes

/ Write policy

J=J+1

99 CONTI NUE

STOP
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PROGRAM BATESZ(INPUTOUTPUTIJAPE6=INPUfeTAPE6 =OUTPUTI
C

extleTmelt4eeC
COMMON IDATAi/ Cl/CV4RtgA,RIIIIIEP,TL,G0
COMMON /0ATA4/ TSTAP4CSTAR,S5TAM
OIMENSION V(2,101,101),BS(101,1011
REAO (5,1) NLICI,CV,CR,CART,TI----

I FORMAT (I5,7F7.2)
WRITE (6,Z)
FORMATlel,/
WR/TE(6,41

4 FORMAT(4X,"L KI KV KR KA RO TO N")
WRITE (6,1) 4L,CI,CV,CR,CAsq,T,TL
WRITE (6,2)
CS=QI/TL+CV
RI =.
TI =T
EPTRE/TI
OHI=CS+CR*EP
CALL FUNCI1L-1.01FFIC,T;)
TCS=CVCR*(TI-RI)/TI
IF(NL.E0.1) GO TO 71
IF(FF.GE.TES) GO TO 48
8S(1,1)=OH/4.(1.0-1.0/TL)*(FF-TES)
CALL SEARCH

---SSI*RteSS-TAR
GO TO 49

48
49 LS=IFIX(TL)

CRA=CR/CA
ULP2=1 -CV/CR
SLP2=CV/(CA-CR)
L=1
00 99 K=1,41.
NK=NL-K,1
WRITE (6,2)
WRITE (6,31 NK

- 3 FORMAT (2WSTAGE NUMBERt",I4)
WRITE (6,21
NI=LS*(NK...1)+1

L=2
M=1
GO 10 6

5 L=1
4=2

6 IFIK.GT.1) GO TO 91
WRITE (604)

t4FOR4kfiel*T"----RI T I RIE7tEt
i"SAMCO/LB SAMSIZ ACCNUM V( 1")
WRITE(6,2)
SS=-1.
NKKT=ILFIXI0 SSTAR1)+NK-2
00-89 I =2 NI
TI=T+FLOAT(I1-1.0
ULP/=CRA*(/+TL/TI)
-501=TLITI*ICRA-q-)-4-eRA
AMAXEP=AHAX1(ULPt,ULP2)
AMINtP=AMIN1(SLP1,SLP2)
J=

27 RI=1 R+FLOAT(J)-1.0
P=RI/TI
IF(EP.LT.AMINEP) GO TO 21'
IWI=F(E.CA+P.GEP-T.AMAXEP) GO TO 24
A
OHI=CS#CR*EP
CALL FUNC(SSIFFCOCI
TES=CV-CR*(TI-RI)/TI
IF(FF.GE.TES) GO TC 8
85(I,J)=OHIa(1.0-1.0/TL)*(FF-TESI
IF(I.LTAK.OR.I.LE.NKK) GO TO 88
V(L,I,J)=AmIN1(CR,AwI,95(I,J))
IFtVft4I,J):LTTAS(1-0), GO TO tO
CALL SEAPCH
V(L,I,J)=AMIN1(CR,AWI,TSTAR)



WRITE (6,17) RITI,CP,AMItTSTAR,SSTARACSTAROM,I,J/
17 FORMAT (EY...OPTIMAL SAMPLE CALCULATED ,8F8.4)

GO'TO 88
10 WRITE (6,191 FI,TI,CRIAKIIBS(I,J),V(L.I,J1
19 FORMAT (27X,5F4.3,16X,F8.3)

GO TO 88
8 9S(/,J1=+2.0
IF(I.LT.NK.OR.I.LE.NKK) GO TO 88
V(L.I,J)=AMIN1(CR,AMI,01I)
WRITE(6120! RIITI.CRIANI,OMI.V(LII,JI

20 FORMATC2X: MOT SAMPLING"i12X-OFS:3:16X;F8i31---------
GO TO 88

21 JA=IFIX(TI'AMINEPk+1.01
J=MINU(JA,D
'00 22 KL=10.1
RII=R+FLOATIKL/+.1.0
V(LII,K0=CA*RII/TI

22 95(10(0=0.0
MRITE(60.3) RI:RII:TI

23 FORMAP2X,"ACREPT WITHOUT SAMPLING IS OPTIMAL FROM RI2",
3F8.3, 88

TO RI= ,F8.3, FOR T/= ,F8.31
O

24 00 25 KL=Joi
V(LI.KL)=CR

25 3S(IirKL1 =+.1.0
J=I
RII=R+FLOAT(/) .+1.0
NRIT06,26/ RI,RII,TI

26 FoRmAttzx.-RLAEcr wILHeur SAMPLING IS OPTIMAL FROM RI=",
4F8.3, TO F1 = ',F8.3," FOR T/= ,F8.3/

88 J=J41
IF(J.Lt.I) GO TO 27

89 CONTINUE
GO TO 99

91-WRITE-(61140
WRITE(6t2)
NKK=NK4IFIX(SSTAPAI-1
IFtNK.EQ.1) NKK=1
DO 29 I=NKK,NI
TI=T+FLOAT(I).+1.0
00 28
ii=i+FrOli(I J)-1.0

--EP=P1/TI
AMII=FLOAI(K)*CA*LP
RMII=FLOATM'CR
3RU=AMIN1tAMII,RMI1)
/F(1S(I,J).E0.0.0/ RS(I0/=(CI+CV+CALP*(TL+1.61 +CR4EP) /TL
IF(9S(I,J).E1..+1.01 8S(I.J12(CI+CV+CR4lTL.+1.0+EP11 /TL
CALL FUNCITL,F,C,TC)
SUM=V(41I+LS,J)*G0
X=1.40
0=G0

37 KX=IFIY(K1
G=(RI+X.+1.01*ITL.+X+1.01 /(X*(TL+TI.+PI.0) 1.G
SUM=SUI40/(M.I+LS.J+KKriG
X=X+.1.0
IF(X.I.E.TO GO TO 37
TCSTAR=TC+SUM
START%
CTAR=C
TY(9S(I,J).E9.+2.0) GO TO 38
9SS=1S(I,J)4SUm
IF(ASS.LT.ORUI GO TO 30
V(L,I,J)=PRU
WRIT+ (6,191 RIITI.RMII,ANTIOSS,PFU
GC TO 28

36 TCSTAfr=1.30
SS=0.0
IFINK.E0.1/ SS=SSTAR1.1.0

31 SS=SS+1.0
KSS=IFIX(S3)
CALL FuNg(ss,F.c.rc)
SOM=V(M,14K35.J1G17
X=1.J
G=G0

32 KX=IFIX(X)
G=tRIOCI*(55-X4.1.0)/(X'ISS+Ti-k1 -X))*0
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SUM=SUH+V(H.I+KSS.J4KX)'G
X+1.0
F(XiLE:SSF GO 10 32
TCOPTCSUM
IF(TCOS.GE.TCSTARI GO TO 33
TCSIAR=TCOS
STAR=SS
CTAR=C

33 IF(S3.1.T.TL) r.0 TO 31
IFtTCSTAR.LE.PRU1 GO TO 34

-V(LsitJ)=PRU
GO T3 35

34 VfL.I,J)=TCSTAR
35 WRITE (6,171 RIJI.ROILAWIIIJCSTAR,STAR,CTAR,V(L.I.J)

GO TO 28
38 V(II,J)=AMINVPRUITOTARI

WPITEf6,20)
E8 CONTINUE
E9'CONTIMUE
99 CONTINUE

GO TO 100
71 AWI=CAEP

WRITE (6.I41
IF(FF.GE.TES1 GO TO 72
4S(1.1)=OHI+(1.01.0/TW(FFTES)
GO TO 73

72 9S(1,1)=OHI
73 V(24,1)=ANINIACR,AWI,E1S(1211)IF(/(4,291).LT.9S(1.11.3R.F=4C.TES) GO TO 74

CAL SEARCH
V( 11,1)=AMINIACR,AWIOSTAPI
WR TE(6,17) RI.TI CR.AWI.TSTAR,SSTAR,CSTAR.V(2#1,1)
GO TO toa

74 $0./TE(6,191 RI.TI,GR.Awt,es(i,i),v(2.1,1)
-/E0-CONTINUE

STOP
ENO
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C
C

SUgROUT/NE FUNC(SSiFiCiT:1
COMMON /DATA', CI,CV,CP.CA.RI.TI.EP,TL.G0
A=1.0
ASI=TI*SS-1.0
GO:IASI-RD/11Si
Gli=460
IF(ASI.LE.TI1 GO TO Z
ASI=ASI-11.0
A=tASI-RI1/A5I
GO TO 1

Z IF(SS.EQ.71.1 GO TO 6
CP=CR/C4ITI+SS1-RI
IF(CP.I.T.C.01 GO TO 8
OP=AINT(CP1
IF(CP.GE.SS/ GO TO 4
C=CP
F=(CAR/1(T1+551CRIGO
IF(C.E(1.0.01 GO TO 5
K=1.0
G= G0

3 G=CRIO(-1.01*(SS-X+1.01/(X(SS*TI-FI-X11G
F=P4.(CA(RI+X1 /(TI+SS/-:RG
X=X+1.0
IF(X.LE.C1 GO TO 3
GO TO 5

4 C=SS
F=CALP-CR
GO TO 5

8 :=-/.0
F=0.0

5 TC=CCI4SS'C1I+CP(SSEP4L-S514(TL-SS1F1/TL
GO TO 7

6 TC=Cl/TE+CY+OPEP-
F=0.0
C=0.0

7 CONTINUE
RETURN
END
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C
SURReUHlNE-1EARCH
COMMON /0ATA1/ CIICV.CRTCA.RITTI.E.P.TL,G0
COMMON /DATA'/ TS AR,CSTAR,SSTAR
DOMION /0A145/ KF 201
DIMENSION P150).P2(501,23(50)
TSTAR=1.230
EX=EPTI.
EVPI=AMIN1(CA`EATUOTL).-CR*EX
-08=AiNTI1E1P/weitieV*¢700.11-
UU=AMIWTLIU81
IF(UU.GT.1.0) GO TO .1
CALL FUNC(1.0,P.CSTAR,TiTAR)
SSTAR=1.0
GO TO 16

1 9=0R/CA
A=BTI-Ri

---------0L=AIRTIA/(tTO-ek+e-r001
ILR=AINT(-A/0)
88=AMAX1(0.0.81.98LR)
IF(88.E0.0.01 GO TO 5
F(83.E0.13LR) GO TO 32

01(N=CV+EP(CR-CA)
IF(OKN.LT.0.0) GO TO 2
TSTAR=ICI+CV+EP(CP+CA(7L-.1.0))1/Tt

----05TAR++t-TA-
SSTAR=/.0
IF(80.GE.UU1 GO TO 16

2 IF(98.GE.UU) GO TO 4
GO TO 5

4 TSTAR=ICI*CIPUUTIP(CRAWU+CA(TL-.UU)))/TL
CSTAR=UU
SSTAR=UU
-60-T0-1(-----

32 OKMC1(+CR*(EP-1.0)
IF(OKN.LT.0.0) GO TO 33
TSTAR=(CI+CV+CR*(TL-4.0)+CREPI/TL
SSTAR=1.0
CSTAR=-1.0
IF(09.GE.UU) GO TO 16

33 IF(SO.GE.UU) GO TO 34
GO-T0-5

34 ISTAR=(CI+CIPUU+CR*(TL-UU)+CR*UU'EP)/TL
SSTAR=UU
CSTAR=.+1.0
GO TO 16

5 SPA=AINT(CA/CR+0.001)+1.0
SON=AINT((UU-09)/SPA40.001)..2.0
SP=AMAXIASPAtSONI

1F-(50t4TLT .2-T04-0014u
IF(SON.GT.TL) SON=TL
4S=IFIX(SM)

KF(1)=1
KOLD=1

6 I=I+1
KF(I)=KF(I-1)+KOLO
IFIKFtIlrGTr+(S)--G-e-T-0-7
KOLO=KF(I-i)
GO TO 6

7 P(1)=RA+1'.0
NSO=IFIX(SONI
P(NS0)=UU
IF(MSO.E0.2) GO TO 21
NS1=NS0-1

-ao 9-I=2TN5t
PK=P(I-1)+SPA+1.0

8 PW=PK-1.0
IC=NT(A+E(*PK+9.061)
ICI:=INT(A+1*(PK.+1.0)+0.001)
IF(IC-IC1.E1.1) GO TO 9
GO TO

9 P(I)=PK
21 CALL-FIDON(P01501IStS5T1fCSTitTCST1)

IF(TCSTL.GE.TSTAR) GO TO JA
TSTAR=TCST/
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SSTAR=SST1
CSTAR=CST1

10 IFIIS:E1.1Y GO T0-2*---
81=P(IS-i1+1.0
82=P(IS)-1.0
PN=82-91+1.0
NP=IFIX(PN)
/=1
P2(1)=91

11 PE(I+1)=P2(I)+1.0
IF(P21/311-iGt.-821--G-0-T-0-
1=1+1
GO TO 11

12 CALL FIBON(P2INP,ISN,SST2ICST24CSt2)
IF(TCST2.GE.TSTAR) GO TO 13
TSTAR=TCST2
SSTAR=SST2
CSTAR=CST2

-IF(IS-.EQ7N501---00 TO
44 83=P(I5)+1.0

34=P(IS+11-1.0
PN=84-63+1.0
NP=IFIX(PN)
/=1
P3(1)=83

14 P3(I+1)=P3(I)+1.0
utP14141-olete --5e TO V5
I=I+1
GO TO 14

15 CALL FIBON(P3OP.I5N.S$T3ICST3,TeST3)
IF(TCST3.GE.TSTAR) GO TO 16
TSTAR=TCST3
SSTAR=SST3
CSTAR=CST3

-----I6-80HTINDE
RETURN
ENO
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C
-SUBROUTIN- FISIONtPPTNP;ISOSTICStrT-CST
COMMON /DATA// CI CV CP.CA,4I,TI.EPTLG0
COMMON /DATA5/ KF(20)
DIMENSION PP(100)
I=0

/ I=I+/
IF(KF(I).GT.NP) GO TO 2
GO TO i
IFIlitEsiF 00TO tl
CALL FUNO(0P(KF(I1)),F,C1ITC1)

3 CALL FUNC(PP(KF(I211 ,F,C2.TC2)
IF(TC2.GE.TC1) GO TO .

I=I1
IF(I.LE.2) GO TO 12
TC1=TC2
C1=C2
GO-TO 3

4 /F(I.E0.3) GO TO 13
KP=2*KFII-2)
IF(KPOIT.NPI KP=NP
CALL FUNC(PD(KPI9F.C3,TC3)
IF(TC3.LL.TC11 GO TO 7
TCST=TC1
CST= c1
ssTuRP-(1(F11-1-1)
IS=KF(I-19
J=0
LIM=KP1

5 J=.1.1
KS=KF(I2)+4
IF(KS.EO.KF(I-1)) GO TO 5
IF(KS.Erl.KP) GO TO 99

-----tAtt-FUNCIPP(XItTfTCITTC31-
/F(TC3.GE.TCST) GO TO 6
TCST=TC3
DST=C2
SST=PP(S)
IS=KS

6 IF(KS.LT.LII) GO TO 5
GO TO 99

----7ti4=4/NelKf-f-tt-wl-rNPt
TCST=TC3
CST=C3
SST=PPIKPI
IS=KP
J=0

9 J =J +1
K5=KF(I-1)+J
IFV(GrtOrKP 60-T-0
IF(KS.GS.LIMI GO TO 99
CALL FUNC(PP(KSI.F44.TC4)
IF(TC4.GE.TCST) GO TO 9
TCST=TC4
CST=C4
SST=PP(KS)
IS=KS
Ga TO 9

11 CALL FUNC(PP(1),F.C2,TC2)
CALL FUNC(PP(2),F.C1.TCW
/F(TC2.LE.TC1) GO TO 12

13 TCST=TC1
CST=C1
SST=PP(2)
IS=2

--GO-TO- 99
12 CSTC$T=TC2T=C2

SST=PP(1)
IS=1

99 CONTINUE
RETURN
ENO
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C
C
C

PROGRAM 9AYES3(INPUTIOUTPUT,TAPE5=INPUTITAPE6=CUTPUT)

METNO0-1.

COMMON /7ATAi/ CIICV.CRICA.RI,TIsEP,TL.G0
COMMON /DATA4/ TSTAR,CSTARISSTAR
DIMENSION V(215000),SAMSIZ(20)
READ (5,1) NLICI,CV,CRICA.R.T,TLIUL

1 FORMAT (15,8F7.2)
WRITE (6,2)

---2FCrRMAT-(2Xt)
WRITE(6,44)

44 FORMAT(46,"L KI KV KR KA RC TO
11" )

'WRITE (6,1) NL.CI,CV,CR,CA,R,T,TL,UL
WRITE (6,2)
EXDEF=0.0
SUMSAM=0.0
1=0

3 I=I+/
R/=R+EXOEF
TA=T+SUMSAM
EP=RI/TI
NK=NL-I+1
TL=FLOAT(NKI*TL
SS=TL1.0
IFFIr66-TNL) -00
CALL FUNC(SS.FFC,TC)
TES=CV-CR*(TIRI)/TI
IF(FF.GE.TES) GO TO 4
CALL SEARCH
GO TO 5

4 SSTAR=TL
5 SAMSIZ(I)=SSTAR

IPISSTA-RietrUt-F-5-erMStflti-lit
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SUMSAM=SUMSAM+SAMSIZ(I)
EXDEF=SUMSAM*R/T
TL=TL/FLOAT(NIC)
GO TO 3

6 NI=IFIX(SUMSAM)1
CS=Cl/T4+CV
LS=IFIX(TL)

----CRANCPICA
ULP2=1-CV/CR
SLP2=CV/(CA-CR)
L=1
00 99 K=101.
NK=NL-K+1.
WRITE (6.2)
WRITE (6 8) NK

------8=ORSA-T--42-X-r"-S1466Nt1148t4+-"7-1-4-
WRITE (6,2)
IFIL.E0.2) GO TO 9
L=2
4=1
GO. TO 10

9 L=1
M=2

--------1- 0/FAKArGT-.14 6O TO-91
WRITE (6,141

14 FORMAT(27X,- RI TI REJECT ACCEPT ",
irSRAMCO/L,

2)
S4MSIZ Accnum Vt )")

WITE(6,
ULP1=CRA*(1+TL/TI)
SLP1=TL/TI*(CRA-11+CRA
AMAXEP=A4AX1(ULP1,ULP2)

------AMINEP=AMIN1(5LPIFSLP2)
J=1

98 RI=R+FLOAT(J)-1.0
EP=RI/TI
IF(EP.LT.AMINEP) GO TO 21
IF(EP.GT.APAKEP) GO TO 24
AWI=CC'EP
OHI=C5+CR'E°

-CALE FUNC(SSIFF-,C,TC)-
TES=CV-CR*(TI-RI)/TI
IF(FF.C.E.TES) GO TO 11



BS=OHI*(1.0./.0/T1)*IFFTESI
V(L2J)=AmIN1(CR2AWI2gS)
/Flifft-vdtyt-ts.151bu--10
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CALL SEARCH
V(LIJ)AMIN1(CR2AWIITST4R)
WRITE (6.17) kIITI,CRIAWI/TSTAR2SSTARACSTAP211(12j)

17 FORMAT (2)(2"OPT/MAL SAMPLE CALCULATED 28F8.3)
GO TO 88

18 WRITE (61191 RI2TI2CR2AWII8S2V(L2J)
AT19 FORM (27)(25F8.3.16X2F8.31

11 V(LIJI=AMIN1(CRIAWI2OH/)
WRITE(6220) R12TI,CR2AWIAOHI2V1L2J)

20 FORMAT (2)(1"1007. SAMPLING 212X26F8.3216A2F0.3)
GO TO 88

21 JA=IFIX(TAMINEPR.1.01
J=MINO(JA2NI)
00 22 KL =1 J

22 V(LIKL)=CARII/TI
WRITE(6,23)

23 FORMAT(2)(2"Aq -2EPT WITHOUT SAMPLING IS OPTIMAL FROM RI"
3F8.3," TO R/= 2,8.32 FOR TI= 2F8.3)
GO TO 88

24 DO 25 KL=JOI
25 11(LI1 KL)=CR

J=N
RII=F0FLOAT(NI)...1.0
wurem ato RI/RIItti

26 FORMAT(2As"RE4EGT WITHOUT SAMPLING IS OPTIMAL FROM RI=",
4F8.32 TO R/= 2F8.32" FOR II= 2F8.3)

88 J=Jal
IF(J.LE.NI) GO TO 98
Rk/=RI
00TO

91 WRITE (6,14)

nITIEaliVixtsamstzw»
NI=NI.00SANSI2
T/=TI"SAMSIZ(NK)
J=1

71 RI=R+FLOAT(4).4.0
-I

EP=RI/TI
AW//=FLOATIK)CAEP
RW/I=FLOAT(WCR
CALL FUNCISAMSIZ(NW)2F.C.TC)
.SUM=V(M,J1*GO
A=/.4)
G=00

32K1(m-if/A-IX
G=(RI+X.4.0)1(SAMSIZ(N101(+1.0)/(1(*(SAMSIZ(NKI.TIRI...)(1)4G
SUN=SUM+V(M2J+KX).0
X=X+1.0
IF(X.LE.SAMS/2(NK)) GO TO 32
TCOS=TC+SUM
V(L1J)=AMINI(AWII2RWI/IT005)
WRITE (62.16) RI,TIIRW/124WII,TCOS2SAMSIZ(NK)2C21/(1.2J)

16-FORMATAE/XT8F8T1)
J=J+1
IF(J.LE.NI) GO TO 71
GO TO 99

72 RWI/=FLOAT(K)CR
00 75 WL=JINI

75
RI =R+FLOAT(NI)-1.0

--------WR TE-(6226)--kirRIITTI
99 CONTINUE

STOP
ENO



PROGRAM PAYE54(INPUT.OUTPUT,TAPE5=INPUT.TAPE6=CUTPUT)
C
-c -mErmota 2A.
C

COMMON

/DATA1/ CIICV.CRICA.RIITI.EP.TLG0
COMMON /DATA4/ TSFAR,CSTAR.SSTAR
DIMENSION V(2,50001
READ (511) NLICIICVICRTCA,R,T,TL.UL

1 FORMAT t/5,8Fr.2
WRITE (612)

2- FORMAT (OW,
WRITE(6,441

44 FORMATt45,"L KI KV KR KA RO TO

ir UL'
WRITE (6,1) NL.CI.CV.CR.CA,R.T,TLIpUl
WRITE (6.2)
RI=R
TI=T
-EP=RI/TI
TL=FLOATCNLI*TL
SSTL -1.0
CALL FONC(SS.FFIC.TC)
TES=CV-CR(TI-RD/TI
IF(FF.GE.TFS) GO TO 4
CALL SEARCH
GO TO 5

5 SAMSIZ=SSTAR
IF(SSTAR.Gt.UL1 SAMSIZ=UL
TL=TL/FLOAT(NL)

5 NI=IFIX(SAMSIZ)*(N1-1)41
TI=TI.SAMSIZ*(FLOAT(NO140)

Ei=ii1WEY
---CRA=CR/CA

ULP2=1-CV/cR
SLP2=CV/(CA-CR)
L=1
00 99 K=1,NL
NK=NL-K,1
WRITE (5.2)
WRITE (518) NK

0FORMAT---12W5TAGEHUMBERt"-rt
WRITE (6121
IF(L.EQ.Z) GO TO 9
L=2
M=1
GO TO 10

9 L=1
M=2

i0IF(KsGTv1) GO TO 9t
WRITE (61_141

14 FORMAT(2/X. RI TI REJECT ACCEPT ",
/"SAMCO/L9 SAMSIZ ACCNU4 V( I

";EJECT

ULP1=CRA(1.TL/TI)
SLP1=TL/TI(CRA-1)).CRA
AMAXEP=AMAX1(ULP1,ULP2)

---------AMINEP=AMINtiStPt-TSLPE4
J=/

98 RI=R+FLOAT(J)-1.0
IF(EP.LT.AMINEPI GO TO 21
IF(EP.GT.AMAXEP) GO TO 24
AMI=CAEP
OHI=CS+CREP
CALL FUNC(5SrFF,6,TC1
TES=CV-CR(TI-PII/TI
IF(FF.GE.TES) GO TO
BS=OHIT.(1.01.0/TL)*(FF-TES)
V(L,J)=AMIN1(CROWIOS)
IF(V(L.J).LT.EISi GO TO 18
ALL SEARCH
V(LIJ)=AMINIACR.AWIITSTAII
WRITt (5,17) RI,TIvcRIANItTSTARISSTARtCSTARsIt(L,J)

GO
17 FORMAT

88
(2WOPTImAl SAMPLE CALCULATL) ,8F80)

TO

110



18 WRITE (61/91 RItT/e0RtAWI OSOI(LtJ1
19 FORMAT

60-T1-86-
(27X95F8.3,16X9FS.11

11 VILIJI=AMINitcRIAWIIOHII
WR/TE(61201 RITICRIAWILOHItVA01

20 FORMAT(2/. 100% SAMPLING t12Xt5F-0.3,16/(tr8.3i
GO TO 88

21 JAmiFIX(TDAMINEPR+1.0)
J=MINOTJA,NI/
D 2Z KL=11
RII=R+Ft0ATt.1 K

22

23 FO Mgt Kg*AC%EPT WITHOUT SAMPLING IS OPTIMAL FROM RI =",WR RItRII,11

3F6.3. 0 RI= ,F$.3," FOR TI = ",F8.3)
GO TO 88

24 DO 25 KL=JOI
25 V(LII KL)=CR

WRITE(6126) RI1R ItTI
26 FORMAI(2X,"RE4ED WITHOUT SAMPLING IS OPTIMAL FROM RI = ",

4F8.3," TO RI = ',F8.3," FOR TI= 9F8.3)
88 J=J./

IF(J.LE.NI) GO TO 98
RRI*RI
GO-

91 WRIT
99TO
T6t4)

WRITEE (12)
1

KSAM$I7=IFIXISAMSIZ,
NI=NI-KSAMSIZ
TI=TISAMSIZ
J=1

71 RI=R+FLOATIJ)1.0
IFTRITOE:Rkli-00-T0-72
EP*RI/TI
AWII=FLOATM*CA*EP
RWII=FLOATOO*Ca
CALL FUNC(SAMSI29F,C9TC)
SUM=y(m,j),G0
X=1.0
G=G0

3t-KX*IFIX(10-
G=tRI+X./.01*(SAMS/2X+1.0) /(X*(SAMSIZT.T/RI.4))*G
SUM=SUM4VINJTAXI*G
X=X+1.4
IF(X.Lt.SAMSIZ) GO TO 32
TCOS*TC.SUM
Si(L1J)=AMINIAANIIRWIITCOSI
WRITE (6116) RIITI,RWIItAWIItTCOS.SAMSIZ.C,VtL

/6-FORMATtefXr8Festt
J=J+1
IFIJ.LE.NII GO TO 71
O O

72 G RWIIT=FL9O9ATIKI*CR
DO 75 KL=JINI

75 V(LtKL)=RWII
RIT=R+FLOAT(NI)-.1.0

99 CONTINUE

ENO
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PROGRAM PATES5(INPUT9OUTPUT,TAPE5=INPUTJAPE6=CUTPUT)
C

-METHOD' 299
C
C
C
C

COMMON /3ATA1/ CI,CV,CR9CA,RIITI,EPIFTLIGO
COMMON /0ATA4/ TSTAR,CSTAR9SSTAR
DIMENSION V(295000)

-READ- (591) Nt-TCITCVTCR9CA9R9T,Tti-Ut---
FOITERMAT

(6
(1598F792)WR92)

2 FORMAT (2)(9/)
WRITE(6944)

44 FORMAT(4WL KI KV KR KA RO TO N",
11" UL")
WRITE (6,1) NL,CI9CV,CR9CAIR9T9TlipUL
MR/TE--(69t)
R=
IT

R
T=
EP=RI/TI
SS=TL190
CALL FUNC(SSFF9C9TC)
TES=CV-CR*(TI-RII/TI
IF(FF.GE.TESI GO TO 4
CAtL-SEARCH
GO TO 5

4 SSTAR=TL
5 SAMSIZ=SSTAR
IF(SSTAR9GL9UL) SAMSIZ=JL

6 NI=IFIX(SAMSIZ)*(NL.4)+11.
TI=TI.SAMSIZ*(FLOAT(NL)190)
CS=Cl/TLJCV
LS*IF- IX(Tti
CRA=CP/CA
ULP2=1CV/CR
SLP2=CV/(CACR)
L=1
00 99 K=191.4l.
NK:NLK+1
WRITE (692)
WRiff-(6r8) M*------

8 FORMAT (2X "STAGE NUMSERI",I19)
WRITE (69Z)
IF(L.ED.2) GO TO 9
L=2
M=1
GO TO 10

9 L=/M2
10 IF(K9GT91) GO TO 91

WRITE (69_14)
14 FORMAT(27X, RI TI REJECT ACCEPT "9

1"SAMCO/L8 SAMSIZ ACCNUM V( ) ")

WRITE(692)
ULP1=CRA*(144L/TI)
SLP/=TL/TI,(CRA-1) +CRA
AMAXEP=AMAX/qUkftlrUtP2,
AM/NEP=AM/N1(SLP19SLP21
J=1

98 PI=R+FLOAT(J)-190
EP=RI/TI
IF(EP9LT9AM/NEP) GO TO 21
IF(EP9GT9AMAXEP) GO TO 24
AWI=CAEP

----014I=CS+CR*EP
CALL FUNC(3.39FFC9TC)
TES=CVCR*(TI-RI) /TI
IF(FF.GE.TES) GO TO 11
1S=OHI+(190190/TL)(FF..TES)
V(L911=AMIN1(CR,AWIOS)
IF(V(19.19LT98S) GO TO 18
CALL SEARCH
V(LFJ)=AmIN1ICRIAWIIT5T4R1
WRITE (6,17) RI9TI,CR9AWI9TSTAR,SSTAR9CSTARO(L9J)

17 FORMAT (2WOPTIMAL SAMPLE CALCULATED"98F8931
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GO TO 88
18 WRITE 16,191 RI.TI.CR,AWII8S,V(L.J1
t9-FORMAT 12714-5f4raT1-6)(Tf8s1)

GO TO 88
11 V(LJ)=AMINlIcktAWIIOHI)

WR/72(6.20) RI.TI,CR,AWI&OHI.V(LtJ)
20 FORMAT(2X."1007 SAMPLING .121.5F8.3.16X.F8.31

GO TO 88.
211 JA=IFIX(TI*AMINEPR+1.01

J=MIN004041
00-8-2-Kt=1-0
RII=RFLOAT(151.1.4.0

22 V(LICL)=WRiI/T/
WRITE(61c3)

23 FORMALI2X."ACCEPT WITHOUT SAMPLING IS OPTIMAL FROM RI="I
3F8.3. TO RI= .F8.3." FOR TI= .F8.3)
GO TO 88

24 DO 25 KL=JOI
E5-1/(t1WL)-CR

J=NI
RII=R+FLOAT(NI)..1.20
WRIT2(6.26)

26 FORMAL(2X."REJECT WITHOUT SAMPLING IS.OPTIMAL FROM RI=",
4F8.3. TO RI= .F4.3." FOR TI= .F8.3)

88 J=+
IF(JJ.1 LE.NI1 GO TO 98
RRI*RI
GO /0 99

91 WRITE
WRITE(! 1
KSAMSI7- FIX(SAMSIZ1
NI=NI(SAMSIZ
TI=TISAM5/2
J=/

71-RI=R*ft.0*TUFwtT0
IF(RRI.GE.RRI1 GO TO 72
cP=/TI
ZWII=FLOAT(K) *CA*EP
RWII=FLOAT(K)*CR
CALL FUNC(SAMSIZ.F.C.T01
SUM=V(M.J1*GO
X=1.0

------0=00
32 KA=PIX(X)

G=(RI+X11.0)*(SAMSIT 4.11..01/(X*(SAMSIZ+TIRIX1)*G
SUM=SUMOI(M.J4KX)sG
X=X41.0
rF(X.LE.SAMSI71 GO TO 32
TCOS=TC4SUM
V(12.11=AMINI(AWIIIRWIIIT,C05)
WRIT-E-IT--RITTIrRWII kNIFTT0°IrSIMIStileTift

16 FORMAT(27X0F8.3)
J=J+1
IF(J.LE.NI) GO TO 7i
GO TO 99

72 RWI/=FLOAT(K)*CR
00 75 KL=JOI

75 V(1,1(l)=RWII
------RiVeR+Ft0AT(NI1ts0

WRITE(6t26) RI.RII.TI
99 CONTINUE

STOP
ENO
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