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bounds for the optimal sample size, a lower bound for the expected

cost of sampling for the single lot case and a lower bound for the



expected cost for the sequence of lots are presented. Optimality
conditions for the non-sampling alternatives, the 100% sampling case,
and the convergence of the optimal acceptance plan when the number
of lots in the sequence tends to infinity are investigated. The
model is formulated as a dynamic programming problem with sampling,
reject without sampling and accept without sampling as the possible
actions; and the lots as the stages. Relationships between the op-
timal actions at different lots which are independent of the form
of the expected cost of sampling function are presented. Exact and
approximate solution algorithms are developed and tested.

Experimental results indicate that the use of the bounds for the
optimal sample size, the Tower bound for the expected cost of sam-
pling and the-resu1ts on optimality of the non-sampling alternatives
lead to the pruning of a large part of the decision tree.
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fort to obtain the solutions. Results indicate that efficiency of
two of the approximate methods is very high while computational

requirements are drastically reduced.
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A BAYESIAN.ANALYSIS FOR ECONOMIC DESIGN OF
SINGLE SAMPLING PLANS FOR A SEQUENCE OF LOTS

CHAPTER 1.
INTRODUCTION
1.1 Background

Since the work of Dodge and Romig (1929), acceptance sampling
has gained wide application in industry, and it is one of the major
fields of statistical quality control. Since their introduction,
acceptance sampling plans have been designed with respect to statis-
tical criteria. However, in recent years the emphasis in acceptance
sampling has moved steadily from classical to Bayesian methods.

The Dodge-Romig models are based on the assumption that the
process quality level, p, is known with certainty, and therefore the
only reason that motivates inspection is the possibility of out-
liers. In practice, p fluctuates and therefore, it is more realis-
tic to consider p as a random variable with an associated distribu-
tion function.

The lot quality level, pl, has two elements of randomness, the
process quality, p, énd the random fluctuation of p1 about p.
Bayesian methods assign a probability distribution, called a prior,

to the process quality level p, and therefore the models are



specified by the joint distribution of the observed number x of
defectives in the sample and the random variable p. The probability
distribution of the process quality is called the prior, because it
represents our belief or information about the random variable p
prior to the experiment.

The importance of the prior distribution was pointed out by
Mood (16), who concluded that the number of defectives, x, found in
a sample of size n, provides no information about the number of
defectives left in the lot, y, when p is a known constant.

Bayesian methods have been applied to single sampling, double
sampling, multiple sampling, and sequential sampling. However, as
Hald (13) p. 34 pointed out;

The present theory is formulated as if the

problems were static, the only exception being

the rules for switching between normal and

tightened inspection. In practice the prior

distribution may shift, the frequency of out-

liers may increase and there exists an

interaction between the system of sampling in-

spection used and the prior distribution. What

we need is a dynamic theory with a feedback

mechanism taking these factors and the informa-

tion from previous inspection results. into

account.
Standard military sampling procedures for inspection by attribute§
use three types of inspection; normal, tightened and reduced. The _
switching procedures between types of inspection are a function of
the inspection results of the preceding lots, i.e. the decision of
accepting or rejecting the current lot is affected by the results of
previous inspections. The Militar Standard 105D has as it's main

purpose the preservation of the acceptance quality level or AQL,



which the producer and consumer have agreed upon. No economic

criteria nor Bayesian methods are considered.

1.2 Purpose and Scope of the Research

The theory of sampling inspection was originally developed to
control the quality of lots or batches of mass-produced articles in
industry. The most important aspect being to determine a course of
action regarding disposition of the lot. It is usually assumed that
we have to choose between three courses of action: (1) Acceptance
without sampling inspection; (2) Rejection without sampling inspec-
tion; and (3) Sampling inspection fol1lowed by either acceptance or
rejection.

It is important to note that 100% inspection is considered a
special case of the sampling alternative when the sample size is
equal to the lot size. The decisions to accept or reject are called
terminal decisions. Traditional sampling plans are designed to meet
a predetermined producer's and consumer;s risk. The producer is
interested in having good dua]ity lots accepted and therefore he
desires a high probability for acceptance forgood lots. On the
other hand, the consumer is interested in rejecting bad quality
lots, and therefore he desires a low probability of acceptance for
bad lots. Clearly, the definition of good and bad lots depends on
the particular circumstances. This probability of acceptance con-
sidered as a function of the quality of the lot is called the

operating characteristic function (0C Curve) of the sampling plan.



Bayesian models for sampling inspection plans commonly assess
the costs and losses involved in operating a given plan and try to
minimize total costs. If the size of the sample is increased, the
losses from wrong decisions are reduced, but clearly the cost of
sampling is increased. Hence there is an economic optimum which can
be determined.

The main objective of this research is to expand the present
Bayesian theory of sampling inspection by attributes from a ‘static
to a dynamic approach, by developing a dynamic model with a
feedback mechanism -to use the 1nformétion from previous inspection
resu]fs in the decision making for the current lot.

To include the information from previous inspection results, a
sequence of lots coming from a process which operates in a random
manner is considered. The costs and losses involved in operating a
policy for the sequence of lots are estimated and the total expected
cost of the whole sequence is minimized. Now, if the size of the
sample of say, the first lot is increased, the losses from~wrong
decisions in that lot are reduced and, in addition, the information
for subsequent lots is increased and therefore, losses from wrong
decisions for those lots are also reduced.

The model formulated should allow us to recognize the learning
process incurred by sampling a lot and passing that information to
the next. In addition, it should have sufficient flexibility to

adequately represent a real situation.



The objective we will use is the minimization of the total
expected cost, which is, of course, a very limited objective. It
is important to noticevthat in practice, a sampling plan is often
required to serve other purposes as well. For example, by using an
acceptance plan, quality of production is usually improved through
its encouragement of good quality by a high rate of acceptance and
its discouragement of poor quality by a high rate of rejection.
However, in most cases all indirect effects of sampling inspection
are very difficult to quantify.

Proposed solutions known by the author for the single lot case
are computationally inefficient for the proposed sequence of 1lots.
Therefore, an improved algorithm to the best known is presented. A
Tower bound for the expected cost of sampling and necessary and
sufficient conditions for optimality are proposed. Some general
results which do not depend on the form of the expected cost of
sampling are developed.

A major concern of the research is the capability of the model
to solve problems of practical dimensions, that is, to be able to
solve industrial type problems in a reasonable amount of computer
time. Therefore, an approximate solution to the problem is proposed.
Measures of performance used are quality of solution and computa-

tional effort.



1.3 General Definitions and Terminology

In sampling inspection by attributes the product is divided into
inspection lots. The individually inspected part of an inspection
Tot will be called an item. The size of an inspection lot is the
number of items in the lot.

A defect is any non-conformance to some specified requirements.
An item which contains one or more defects will be considered a de-
fective item.

The quality of a lot is defined as the number of defectives
divided by the number of items in the lot, i.e., fraction defective
and the quality of a 1ot will be uséd interchangeably.

It is assumed that the inspection procedure is 100% effective,
so that inspected items are always classified correctly. This as-
sumption is not always true in practice.

A sample is a group of items selected individually at random
from the inspection lot without replacement.

The term rejection is used collectively for all the possible ac-
tions taken on lots which are not accepted. A rejected lot may need
to be returned to the supplier or, in what is called "rectifying
inspection®, to totally inspect the 1ot and defective items corrected

or replaced by good ones. Other possibilities exist, for example,

scrapping, reworking, downgrading, etc.



CHAPTER 2

BAYESIAN SAMPLING PLANS

2.1 State of the Art

Bayesian methods have been applied to acceptance sampling by
attributes in most of its forms: single sampling, double sampling,
seduentia] sampling and multiple sampling.

Single sampling plans have received the most analysis; for
example, see (6), (7), (8), (9), (10), (13), (15), (18), and (20).
Recall that an attribute single sample is characterized by three
integers; the lot size, N, the sample size, n, and the acceptance
number, c. After inspecting the sample, the lot may be either ac-
cepted if the number of defectives found in the sample is ¢ or
smaller, or rejected otherwise.

A very significant contribution to the topic was presented by
Hald (7). Hald's paper is divided into two main parts. One part is
essentially probability theory dealing with the sampling distribu-
tion, gn(x), i.e. the distribution of the number of defects, x, found
in a sample of size n before the experiment is performed. This
distribution is called by some authors fhe preposterior distribution.
Since gn(x) is obtained by averaging the hypergeometric distribution
for given x over all possible values of the process quality level,

Hald calls it the mixed or compound hypergeometric distribution.



Properties of this distribution for several prior distributions are
investigated. In the other main part of the paper, a mo&e] based on
prior distributions and costs is formulated and a general solution is
given to the problem of determining the optimum sampling plan, i.e.
the plan minimizing the cost function for any prior distribution.

Another important contribution to the theory of acceptance
sampling by'attributes was made by Raiffa and Schlaifer (20). They
developed a Bayesian single sampling plan within the framework of
decision theory, looking at the problem in terms of the expected
value of information. Although they do not suggest any efficient way
of solving for the optimal sample size in the binomial case, they
proposed a normal approximation to it.

Most of the models for single sampling have the following cost
elements:

a) Cost of sampling,

b) Cost per accepted lot,

c) Cost per rejected lot.

The cost of sampling is usually a linear function of the sample
size n, with or without a fixed term, i.e. k; + kon where k, can
be interpreted as the per unit cost of sampling and ki a fixed cost
incurred when sampling.

The cost per accepted lot is only incurred whenvx is less than
or equal to c. This cost is usually formed by adding to the cost of
sampling, the cost of accepting defective items and in some cases,

the cost of rejecting the x defectives found in the sample.



Most authors assume that the items sampled are not replaced,
but for example, Raiffa and Schlaifer (20) assume the sample,
including the x defectives found, is replaced into the lot.

The cost per rejected lot is incurred when x is greater than c.
This cost is usually formed by adding to the cost of sampling, the
cost of rejecting the non-inspected part of the lot, and in some
cases the cost of rejecting the x defectives found in the sample.
Here again, most authors assume that items sampled are not replaced.

Methods to obtain the optimal single sampling plans are compu-
tationally inefficient and therefore various researchers have
proposed approximation methods, see (10), (13), (20), and (22). The
most efficient algorithm for finding optimal plans was proposed by
Moskowitz and Berry (18). In this paper an upper bound for the
sample size is proposed by noting that in order for samdling to bea
feasible alternative the cost of sampling has to be less than or
equal to the expected value of perfect information (EVPI). The
algorithm propo;ed is based on results given by Raiffa and Schlaifer
(20), namely that the expected value of sample information (EVSI) is
an increasing function of n, and moreover that the slope of the EVSI
between any two contiguous switchover points decreases in n.

Switchover points are defined as the -values of n where the value
of the ¢ which minimizes the expected total cost, c*, changes.

Using these results and the additional property that the slope
of the EVSI in the neighborhood and to the right of each switchover

point is also decreasing in n (this property was only checked
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experimentally), the following algorithm is outlined: the switch-
over points are used to determine the region of the global optimum
by searching for three contiguous switchover points that have the
following property: The Expected Total Cost (ETC) of the smallest
(n,c*) is greater than the ETC of the next smallest (n,c*) which is
less than the ETC of the largest (n,c*), i.e.,

ETC (n,c™)y >ETC(n, ¢*); <ETC(n,c*)y, where n; <nj <ny and

¢} <c}¥ <k

The algorithm is divided into two phases: Phase I finds all
switchover points and calculates its ETC and Phase II calculates the
ETC for all (n,c*) in the region with the property above and selects
the plan (n*,c*) which minimizes the ETC.

This procedure has the deficiency of computing the ETC of every
switchover point and the ETC of all sampling plans (n,c*) within the
region of the global minimum. A more efficiept way of approaching
the problem is to take advantage of the conjectural ditonicity1 of
the ETC(n) evaluated at the switchover points and the conjectural
ditonicity of the ETC(n) within two contiguous switchover points,
i.e., when c* does not change. Therefore, an efficient search
technique for ditonic functions can be used first to find the
switchover points with the property above, and second to find the
minimum ETC's in between these switchover points.

Hald (10), (13) obtains an asymptotic solution for continuous
prior distributions. He first develops an asymptotic expansion of

1) ditonic function is defined as a discrete function g(j) such that
g(j) is decreasing for 1< j < j* and increasing for j > j*.
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the regret function by means of Taylor Series in terms of h = ¢/n and
n; and then determines the optimum values of h and n by setting the
two derivatives equal to zero.

The regret function is defined as the expected cost of sampling,
minus the expected cost of the reject and acceot without
sampling alternatives . As the second term is not a function of
n nor ¢, minimizing the regret function has the same effect as mini-
mizing the expected cost of sampling.

Raiffa and Schlaifer (20) propose an approximation method to the
optimal sample size: they found a quick way of obtaining the optimal
sample size for the case where the sample observations are normally
distributed with known precision and the prior distribution of the
process mean is normal. Then they used the results for this special
case as an approximation to the optimal sample size in other cases;

Standard search techniques have been applied for finding optimal
single sampling plans (see (2) and (23)).

wetheri]] and Chiu (26) presented a comprehensive review of the
lTiterature on acceptance sampling with emphasis on the economic
aspect. They concluded that most researchers assumed the lot quality
has a mixed binominal distribution with different weight functions.
However, because of mathematical convenience and greater flexibility,
the beta weight function is usually preferred.

The theory of Bayesian single sampling has been generalized to
double sampling (see (12), (13), (19), and (24)). Recall that a

double sampling plan specifies two sample sizes, n and Ny, two
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acceptance numbers, €y and ¢y, and two rejection numbers, rq, and ro =
c2 + 1. Asample of size nj is taken and if c] items or less are
defective, the lot is immediately accepted. If rip or more items are
defective, it is rejected. Otherwise, a sample of ny items is taken.
Then, if the total number of defective items is Cp or less, the lot
is accepted, otherwise the lot is rejected. Stewart, Montgomery and
Heikes (24) presented an approximate model for the optimum economic
design of double sampling plans using the beta distribution as prior.
They expressed the expected total cost function as a sum of integrals
and evaluated the function numerically, then a pattern search techni-
que was used to optimize it. Sequential sampling plans treated in the
1jterature have been of the item-by-item type. That is, following
each item inspected there is a decision to either accept the lot,
reject the lot, or inspect another item. The decision is usually
made according to a set of rules derived from Wald's Sequential
Probability Ratio Plan.

Numerous papers have been written about sequential sampling
plans, for example, see (3), (14), and (27). Lindley and Barnett
(14) used the beta-binomial model and derived relationships for find-
ing the sequential sampling accept-reject boundaries in terms of the
parameters of the beta distribution. Wortham and Wilson (27) pre-
.sented a computer oriented approach which provides flexibility in the
choice of the model and the prior distribution. It is important to
note that in all cases optimal solutions were found through dynamic

programming type procedures.
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Recently, interest has been directed to the economic analysis of
multiple sampling procedures (also known as multistage procedures).
See (1), (11), (17), and (21).

Multiple sampling is an extension of the double sampling scheme
Jjust described, and they can have fixed or variable sample sizes. In
the variable sample sizes case, at each stage of the procedufe, the
size of the next sample is a function of the outcome of all the
samples up to that point, and similarly when the size of the next
sample is zero or when we are at the final stage, the decision of
whether the lot is accepted or rejected is prescribed in terms of the
sampling outcome thus far obtained. If all sample sizes are fixed in
advance, then it is only necessary to determine at every stage
whether the procedure is going to be continued; and if not, what
terminal decision (accépt or reject) is to be made.

Schuler (21) obtains a general result for both cases which,
however, are of more theoretical than préct{cal interest. Hald and
Keiding (11) worked with a simpler model and developed asymptotic
solutions for both problems. Their model assumes a differentiable
prior distribution, a linear loss function, an asymptotically normal
sampling distribution and sampling costs proportional to the sample
size. The resuls generalize previous known results for single samp-
ling and double sampling.

Moreno (17) presents a multiple sampling approach with fixed
sample sizes, which he reports has been tested successfully since

1971 in an industrial environment. He uses the expected outgoing
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quality and the expected quality assurance cost as measures of
performance. The model 1is structured as a Markov Decision Problem
with transition probabilities between sampling stages given by
Bayesian estimates. The optimal solutions are obtained through
dynamic programming with constraints to represent contractual
restrictions, and with directed steps to evaluate given sampling
plans.

A different problem which, however, gives us interesting results
for our project was presented by Dietrich and Sanders (4). They de-
veloped a systematic method of determining the sampling policy
throughout a multistage production process by using economic
criteria. That is, to find at every stage of the process whether you
should sample, inspect or reject the batch, and in the case that
sampling is optimal to find the optimal single sampling plan. The
mode1 uses the mixed binomial with beta weights as prior distribution
and the sampling outcome is used to update the parameters of the

prior distributions.

2.2 The Model for a Single Lot

2.2.1 Notation. Let the lot size be denoted by N where
N=1,2,... . The number of defectives in the 1ot by X; X=0,1,..., N.
“and the fraction defective by pl = X/N.

The sample size will be denoted by n: n=1,2,...,N. Occasion-
ally we will use n=0, meaning that sample was not taken. The number

of defectives in the sample will be denoted by x: x=0,1,...,n.
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As mentioned previously, a single sampling plan is defined by
‘means of three numbers (N,n,c), where c denotes the acceptance
number; c=-1,0,1,...,n. The inclusion of c=-1 is for notational con-
venience. Since 0 < x < n, the cases c=-1 and c=n leads us to two
singular cases. c=-1 means reject the lot regardless of the outcome
of the sample; and c=n means accept the lot regardless of the outcome

of the sample.

2.2.2. Cost Structure. The model will contain the following

cost elements: cost of sampling, cost per accepted lot and the cost
per rejected lot.

Costs of sampling include sampling and testing costs. Defining
ky as the fixed cost of sampling inspection per lot and k, as the
variable cost of sampling and testing one item for presence of all
attributes; then the cost of sampling a lot is given by kp+kyn. Note
that k| represents all direct and indirect costs that result from
sampling and testing and are independent of the sample size; and Ky
represents all direct costs associated with the inspection of an
item. We define kr as the unit cost of the action taken on rejected
items, where, as we mentioned before, the action taken on rejected
items may mean they are returned to supplier, rectifying inspection
or reworking, etc. Then, for example, the cost of rejecting a lot
without inspection is given by k,N.

The quantity most difficult to determine is normally the cost of
accepting a defective item, which will be denoted by k,. If the

items considered are to be further processed, then the cost of
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accepting a defective item may, for example, consist of the cost of
hand1ing and identifying the defective item, damage doné to other
items, cost of rework or cost of replacing it and costs of renewed
testing and inspection. If the items are finished goods, the cost of
passing a defective item may involve service and replacement costs

plus loss of goodwill, which is difficult to measure.

2.2.3 Alternatives to Sampling. We consider two alternatives

to maintaining a sampling plan: accepting and rejecting without
inspection. The cost of accepting a lot without inspection is CAWI =
kaX and the cost of rejecting a lot without inspection is CRWI=k,.N.
If CAWI is greater or smaller than CRWI for any possible frac-
tion defective (pl), then the problem becomes trivial, as we know the
optimal action to take, regardless of the true fraction defective of
the lot. Therefore, we shall assume that CAWI and CRWI intersect at
pl = Pc (critical fraction defective or breakeven quality) where 0<
pc<l. As by solving the above equations Pc = kp/kzs we shall in
consequence assume that « > ka> ke, which in most cases is true. Pc
is usually called the critical quality level or break-even quality
level since when the true p1 is less than Pcs it is cheaper to accept
than to reject, and when the true pl is greater than Pc» the opposite
is true. Clearly, at pl = Pc both alternatives have the same cost.
If we assume k3 k. to avoid the possibility of 100% sampling
being the 6ptima1 policy and if we assume the true p1 is known, then
we are able to choose the correct alternative. The minimum cost per

item for lots of known quality, k*, is given by
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a1
kap > P <DC
k* = . (2.1)
k ; otherwise
k* gives the cost per item when we make the right decision without
sampling. However, we do not know pl, and in order to get informa-

tion about it, we may use sampling inspection.

2.2f4 Expected Cost of Sampling. In sampling inspection; the

costs associated with lots of qua]ity:ﬂ = X/N will be composed of
two terms.
a) The cost per accepted lot.
The cost per accepted lot is formed by the cost of sampling
plus the cost of accepting X-x defectives which are ]eft in the lot,
plus the cost of rejecting the x defectives found in the sample. De-

fining y = X-x we have:

. 2.2
kp + kon+ koy + k x ; 0<xgcC (2.2)

b) The cost per rejected lot.
This cost is formed by adding the cost of rejecting the non-
sampled items and the x items found defectives, to the cost of

sampling, i.e.,

_ : (2.3
ky + ko + K (N-n) + Kk x ; ctlgxgn )
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Using (2.2) and (2.3) we get the expected cost of sampling as a func-
tion of n, ¢ and X, K (n,c,X), by averaging over all possible x given
a specified quality of the lot.

K(n,c,X)=:§0q4kvn+kay+er)P(x/X) + ﬁi(k1+kvn+kr(N-n+x))P(x/X)

R=Cey

K(n,c,X)= k1 + kyn + keE (x/X) + kg ;in(x/X) + kr(N'n) g:p(x/x) (2.4)

x=Col
where P(x/X) is the probability that a sample of size n contains x

defectives given that the lot contains X defectives.

Let fN(X); X =0,1,...,N be the prior distribution
of the 1ot quality, i.e., fN (X) denotes the probability that a lot
of N items contains X defective items.

To get the expected cost of sampling as a function of n and c,
we average K(n,c,X) over all possible.values of X according to the

prior distribution, i.e.,

K(n,C)=x%K (n,c,X) fy (X)

K(n,c)= kp + kyn + kpE(x) + kafifin(x,X)

X=0 x=0

b ke ()3 3P (x,X) (2.5)

Ked ¥=Cay

where P(x,X) = P(x/X) fN(X).

But iin (x,X)= iiyf (X/X)g;, (x) = ggn (x)E (y/x)

Xz x=o X0 ¥s0
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where gn(x) ; x = 0,1,...,n is the sampling distribution; the dis-
tribution of the number of defects, x, found in a sample of size n
before the experiment is performed. E(y/x) is the expected
number of defectives left in the lot given that we found x defectives

in the sample.

In addition, S3PtoN= Sonx)

%26 xzc+y XzCH

Inserting these resultsin (2.5) we get

K(n,c)=kI + kyn + kpE(x) + kaSgn (VE(y/x) + ke (N-n) Fgn (x)  (2+6)

X=0 Xy

Note that y/(N-n) gives the fraction defective in the non-inspected
part of the lot. If we define p* = y/(N-n) then E(p*/x) is the
expected fraction defective in the non-inspected part of the 1lot,
given that x dechtives were found in the sample. Using this defini-

tion in equation (2.6) we get

K(n,c)= k; + kyn + kpE(x) + kg (N-n) éign(X)E(p*/X)
+ kp (N-n) (1 - ﬁign(X))

¥X=0

Ky
o : ] .
By defining F(n,c)= kg 2(E(p*/x) - pc)an(x) (2.7)
and rearranging terms we find
K(n,C)= kI + kyn + kr(E (X) + N - n) + (N-n)F(n,c) ;n:]_’..N (2.8)

c=-1,0,1,..,n
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The expected cost of sampling, K(n,c) is composed of two elements:

(1) The cost of sampling, CS(n), where

CS(n)= k; + kyn (2.9)

(2) And the expected cost of sampling given a sample of size

n=1,Q,N has been taken

kp (E (x) #N-n) + (N-n)F(n,c)=K (n,c) - CS (n) (2.10)

When c=n, we accept the lot regardless of the outcome of the sample.
From equation (2.2)

N n
K(n,c=n)= ZZ(kI + kyn + kg (X-x) + kpx) P (X,x)

X30 Xxeo

K{n,c=n)= k; + kyn + ky (E (X)-E (x)) + kpE (x) (2.11)

We arrive at the same result from equation (2.8) by noting that
Fn,c=n)= ka (E(X)-E(x))/ (N-n) - kp = kaE(p) - ky

When c=-1, we reject the lot regardless of the outcome of the sample.
From equation (2.3)

K(n,c=-1)= g:ft(kl + kyn + kp (N-n) + kpx)P(X,x)

Xs0 x«o

Kn,c=-1)= k1 + kyn + kp(N-n) + kpE (x) (2.12)

which is the same as equation (2.8) with F(n, c=-1)=0.
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Mood (16), concluded that when the correlation between the num-
ber of defective items in the sample, x, and‘the numbef.of defective
items in the remainder of the lot, y, is positive, then the accep-
tance criterion for the inspection plan is:

Accept when x < c; reject otherwise.
However, when the correlation between x and y is zero, sampling pro-
vides no information about the non-inspected part of the lot. When
this correlation is negative, a large number of defectives in the
sample indicates the opposite about the remainder of the lot. There-
fore, the acceptance criterion for the inspection plan has to be re-
versed, i.e.,

Accept when x>c; reject otherwise.

If the correlation between x and y is positive, then the E(y/x) in-
creases with x, and therefore E(p*/x) increases with x.

In the following we will assume E(p*/x) is non decreasing in x.
From equation (2.8) and by noting that N-n>0, the problemof find-
ing the value of ¢ which minimizes K(n,c), considering n fixed sim-

plifies to:

c ,

Min F(n,c)= Min{}i(kaE(p*/x)- kr)gn(X)} (2.13)
o ¢ \Xo

As k3> 0, k, E(p*/x) is increasing in x. In addition, g,(x) >0

for all x as it is a probability function. Therefore, taq solve

(2.13) we need to select all negative terms of the summation. There-

fore, the optimal value of ¢ when n is fixed, Cn» is given by
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' -1 ; if E(p*/0)>p
cn={ ¢ (2.14)

Max(x) such that x €n and E(p*/x) ¢p. ; otherwise

An alternative expression for (2.14) are the following set of in-

equalities:
E(p*/cp) € pc <E(p*/cp+l) ; 0<cpgn-1
If E(p*/0) > p. then cp=-1 (2.15)

If E(p*/n) <p, then cp=n

Therefore, to find the optimal acceptance number for n fixed, we
only need to solve E(p*/cn) = P, for Cps if we find 0 < C, <N, we
use the integer part of Cps if we find cn<0 we set cn=-1; and if we

find cn> n, then we set Cp=n.
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CHAPTER 3
DYNAMIC MODEL
3.1 Introduction

Consider a sequence of 1 lots for inspection coming from a pro-
cess operating in a random manner. We will assume that all lots in
the sequence have equal known lot size N, and that the associated
costs are constant for all lots. A lot in the sequence has, from

Equation (2.8) an expected cost of sampling given by:

K(ni, Ci) = kI + kV nj + kr (E(Xi) + N-ni)

+ (N-ni) F(ni, Ci); i=1,...,1 (3.1)
ni = 1,. sN
cy = -1,0,1,...,n1

"~ The expected cost of accepting the ith lot without inspection is
found by averaging kaXj over all possible values of X5, according to

the prior distribution.
N
ECAWL = 3 ka Xj fy(Xi) = kg E(X3); i=1,...,1 (3.2)
X0

The cost of rejecting the ith 1ot without inspection is a constant
given by
CRWI = kN (3.3)
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When considering a single 1ot we desire to find the minimum cost
alternative, i.e. Min {K(n,c), ECAWI, CRWI}. However, if we use the
information of previous sampling results in order to modify the para-

meters of the current fy(xi) and we aim to the expected total cost

minimization of the 1 1lots, the current policy may affect the

expected cost at later stages of the process.

3.2 Distributions

The probability that a sample of size n contains x defectives
given that the 1ot contains X defectiyes is given by the probability
density function P(X/X). When sampling from a 1ot of finite size,
P(x/X) is hypergeometric, i.e.,

W Gox) . 6 )

P(x/X)= (" ; N 3 Max(0,n-N+X) < x <Min(n,X)
X ()

" (3.4)
To select the prior distribution of the lot quality, fN(Xi), it

is necessary to consider some desirable properties.
(1) The prior distribution should allow us to have the
E(p;*/x;) non-decreasing in xj.
(11) As we are considering a sequence of lots coming from
the same process. It is desirable to use the informa-
tion of past lots in the prior distribution of 1ot i,
i.e. it is desirable fo include

(n1sx7)s (N93%5)5eeey (Nj_1ox5.7)  dn Fiy(X;).
(ii1) The prior distribution should belong to a family F with
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sufficient flexibility toadecuately represent the
process characteristics. That is, F should be rich so
that there will exist a member of F capable of
expressing the decision maker's prior information and
beliefs.

(iv) That the prior distribution preserve its form under
sampling and under Bayes' rule. And therefore, the
sampling and the posterior distributions b; members of
the same family F. That is,a closed family (20), page
44.

To find a prior distribution which takes into account the two

elements of randomness of the 1ot quality level, X/N, we start by

noting that:

()= (P(G) dp = [bn (1/p) W(p)cp (3.5)

Where hy(X/p) represents the fluctuation of X/N about the process
quality p, and W(p) represents the pure randomness of the process
quality p. W(p) is usually called the prior distribution of the
process.

As we are assuming that the process is operating in a random

manner, hy (X/p) follows a binomial distribution and therefore
1
[hN(X/p) W(p)dp is called the mixed binomial distribution with

weight W(p).
To choose W(p), we need a class of distributions which

concentrate on the interval (0,1) with sufficient flexibility to

adequately represent the process characteristics (property (iii)),
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one such class is the two parameter beta famly, (r,t). In addition,
as the beta is the natural conjugate of the binomial it will satisfy
property (iv).

Under this assumption, Equation (3.5) becomes:

Ny s
X_N-
fiy(X)= (x)sz P 5 x=0,1,..,N 3 g=§?p<1 (3.6)

-1 t-pr-
rqu

where: W(p)= p /B(r,t) ; 0<p<l; t>r>0

B(r,t)= T (r) T(t-r)/T(t) 5 T(2)=[e® 6%l , b>o0
with E(X) =Nr/t and V(X) =Nr(t-r)(1+N/t)/(t(t+1))

The mixed binomial distribution with beta weights, Equation
(3.6) is called the beta-binomial distribution. Hald (13) pp. 131-
133 discusses how to find out whether the beta-binomial distribution
is applicable to a specific problem by the analysis of past inspec-
tion data.

In order to satisfy property (ii) we will assume that the
posterior distribution of the process quality, p, of lot i-1, becomes

the prior distribution of p for lot i, where i=2,...,1. That is,

Wilp/x )= Wy(p)s wmveeeeees W, _1(p/%; )= W
......... s Wy_q(p/xy_p)=We(p) 5 0<p<l

i(p);"'
(3.7)

THEOREM 3.1
(0) ( -1 _ter-1 ; 0<p<1 ( )
W, pl)= W-P/XJ=jLT—H——T— ; ton>0 3.8
1+l U Bl b ! for i=1,..,1-1
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{
Where: rj=rqg+ :Z xj and tj =to+ 3 nj, and rg and tg are
J=i et

the initial parameters of the beta distribution. That is,
Wi (p/xi) ~ B (rj,ti); beta with parameters ri and ti , and the
sampling distribution, gn;(xi)’ is mixed binomial with weight func-
tion Wi(p) for i=1,...,1
gn(n ( ){px‘ = X‘w (p)dp 5 x=0,1,..,m (3.9)
3 0<p<l1
; for i=1,..,1
Proof:
By induction for i=1

WI(P)= Pn l ton- /B( t, ) ; 0<p<l
3 todr,> 0

n
h(X,/p)=<t>px’qn"x‘ s x20,1,..n, ; 0<p<l
X

n .
P(xP)=h(x/p) Wy (p)=(xt)p“'lqt"“'l/8(ro 2t )3t210  (310)

)= [P (xep dp= (3B r t1)/B(ry 5 t0)

By us1ng Bayes theorem

r;.-l tfn.-l
Wl(P/Xx)=PgX" =P q

; that is, ~ R
ngxl B(rl stl) 1 wl(p/xq_) ﬁ(r‘ t;)

From (3.10)
n-1_t-n- 1

4 MY A % - -
( ) B(r ,te) 0P (xl)[p‘q THL(P)dps x20,1,.um,

Assume i=h holds. For i=h+l
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from (3.7) W, (p)=W, (p/xy)= p™ 1q® ™1 p(n 1)

stwon>0
Moy -
h(xm/p)= (Xh'ijrmqnm Xneg 3 Xm0l s Neey
Ma) po-1 to-ra-1 |
P(xhd,p)= X'Mpm qo =l B oty ) 3 tw>n.>0 (3.10a)
1 Ny
gnm‘(xml)= [P(th,p)dp= (x‘“)B(rmlrtmt)/B(rh :th )
By using Bayes Theorem
nnt-]- tﬁd-r\v&l-l .
wh+1(p/x“")=LB(r;j,tM) ’ That 15’ wh+1(p/xhvx)“’(3(r\.1:th~1)

From (3.10a)

n'nl "x n..~
= L P X\ot . =
I X0t (xh.)(p G T e (PYdR 5 xf0uLe e M

Recalling (3.6), the 1ot quality prior distribution of lot i, fnX4)

can be written as

N\ 1
Xi N-Xi
fN(X‘)=(Xg)£p ‘q Wi;(p)dp 5 Xg0,1,..,N 5 O0<pc<l (3.11)

where W, (p)= W;_1(p/x)~ B(rstia)

Note that the information of all past lots is included in the para-

meters of the beta distribution and therefore satisfy property

(ii).
Theorem 3.2

The posterior distribution of 1ot i is beta-binomial.
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N-ny 2 v
f(yi/x;)=( y )(py‘ gN =N ¥ W.(p/x)dp ; O<p<l (3.12)
3 ¥=0,1,..,N-n;
h
where w'i (p/xi)""@(ra st )
Proof:

By (3.4) and (3.11)

n\ /N-n,
P(X‘,X‘)=fN(X()P(X4/X¢)=(X‘)<X~_&)[BX'QN-X( W.I(p)dp ’ ;‘fg’.}.

ny (N-ndy a o,
= % o N=-Yi- X ' =
P(Xa,)ﬁ)-(xi)(yi)(pyx‘q TN W (p)dp 3 %=0,1,..,N-n
Using (3.9)

N-n
f(yi/'xi)'_'( Y,

s+ Ng
s+.sN

N YigN=n-y o x ne-x © X N Xg
)(pyq MRS W (p)dp/ [P 0¥ W (p) dp

But note that
X, Ni= X¢
P™q W.(p) = k(x/p)w.(p) < P(x,p) _

T X e X T = W.(p/x)
(P @™  uip)dp  (k(x/p)W;(p)dp g (x) ‘
N n‘ i ! N'n' .
f(y;/x¢)=( v )/p*q R i (p/x)dp 5 %=0,1,..,N-n (3.13)
L/ 0O<px<l -

From Theorems 1 and 2 we can see that by chbosing fn(X3) mixed
binomial, property (iv) is satisfied. That is, the sampling and

posterior distributions are members of the same family. From theorem

1 and by noting that fy = ri-1 + xi and ti = tj-1 + ni we get

n; X
gn,‘(xi)=(xi> B(ri,ti)/B(nti) 5 20,1010

gngx;)=<"")r(n) Tlter, ) Tt/ (M) T(ra) Pltona) (3.14)
X

(S
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From the relationship I'(ptk)= (p+k-1)1T(p)/(p-1)1 We obtain

T (t)=(t1)IT(td /(L 1) 5 T )=(r=1)1M(n )/ (1,-1)!
and

T(ter )=(ten-1) T (teen,) / (tirn,-1)!
Inserting this in (3.14) we obtain

ér;-l%' %1_:,4;-1)' -,-1)
| t-n,-1)! NE=X;

gn(x (3.15)

-1)! (t 1)
st-ﬂ-l';‘! n,

The computation of gni(xj) is greatly simplified by the use of

recursive relationships. By means of (3;14) and (3.15) we obtain the

following relations.

gn(x1) &-l+x¢-1 ) (nl-xi+1)gn‘(xl-l)/(x((n?ti-;-r{'q-xi )) > X1=1 ,2, oo ol (3.16)

gn(xd=n t;- r‘_t+n~x~1)9n.,(xt)/((n-x()(t..:rnl-l)) X0.L, -t s moa x; (3.17)
nsl,2,

In addition, from (3.14) we obtain

gnt(0)= T(tnn) T (ta-;)/(r'(ta )T (ti-rr‘..i))
And by using the fact that I (p+l)= pT'(p)

(t\-l' .- 1)(1:‘_‘ fone =2) ceeen.n (t.rn r.)
gnio)' (3.18)
‘ (tk\n 1)(t HN=2) ceeeeenen (tiy)

When computing the mixed binomial we use Equation (3.18) to find

an initial value and then Equations (3.16) and (3.17).
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Theorem 3.3
1 H .
E(p3/x1)= ri/ty= for2xy/ (tgr2ng) 5 ty>ry>0 (3.19)

And therefore is non-decreasing in xj, Property (i), and non-

increasing in n;

Proof:

E(p¥/x1)= E(yi/xi)/(N-n§) ; by Theorem 2, flys/x;) is a mixed
binomial with weight function W;(p/x;j)~@A(rj,t;) ; therefore,

E(yi/x;)= (N-nj)ri/ts ;5 and E(p¥/x;)= ry/ty o 7 =

From theorem 3 we can find the optimal acceptance number for a
fixed sample size. From inequalities (2.15) and equation (3.19).
E(pY/c)= (ri-1¥eiy/ (t5_14n5)= k/k,

- Solving for c; we find  c4= pe(ti_y + ny) - ri_; (3.20)

Let define ¢, = [c4] ; where [A] means the greatest integer < A.

The optimal Cij, for fixed nj, Cn, » is given by

If 0<ch<n 5 Cp = Cp,
If  cZ<0 3 Cp= -1 (3.20a)
If C'ni> n; N cni = N

Having defined the optimal value of ¢; as a function of nj, we can
state the expected cost of sampling, Equation (3.1) as a function of

nj only. By Theorem 1  E(x;)= njrj_j/ti-)

K(nj)= ky + kyng + kp(njry_1/t;_1+N-nj) +'(N-ni)F(ni) ; (3.21)

i=1,..,1 ; nj=1,..,N
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Where F(n;) is given by

ta;
F("i)=£§;(ka(ri-1+xi)/(ti-1+"i) - kr)gn(xi) (3.22)

The expected per unit cost of sampling is given by

K*'(n;) = K(n;)/N (3.23)

The expected per unit cost of acceptance without inspection (EUCAWI)
is given by

EUCAWI = ka ri_l/ti_l (3-24)

and the per unit cost of rejecting without inspection (UCRWI) is
given by
UCRWI = kr (3.25)

To illustrate this function, the expected per unit cost of
sampling, evaluated at the optimal sample size, K'(n*) is shown in
Figure 1, together with the cost functions of the 2 alternatives to
sampling. Equations (3.24) and (3.25) for an example with the follow-
ing data: N=10, ky = 0, kv = 0.9, k. = 1, k, = 10.5, t = 11. K'(n*)

is evaluated for the following values of r.

Table 1

r E(p) n* Ch* K' (n*)
0.5 0.04545 1 0 0.5113
0.6 0.0545 1 0 0.5913
0.8 0.0727 1 0 0.7469
1.0 0.0909 3 0 0.8627
1.2 0.1091 5 0 0.9395
1.6 0.1454 1 -1 1.0045
1.8 0.1636 1 -1 1.0064
2.0 0.1818 1 -1 1.0082

Optimal sampling plans for Figure 1.
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Figure 2 shows the behavior of K(n), equation (3.21) for an
example with the following data: N = 50, k; =0, k, =0.9, kp = 1,
ka =11, r =2 and t = 22. Note that two local minimum points exist.

The global minimum is found at n* = 15 with ce = L.

3.3 Analysis of the Single Lot Case

3.3.1 Analysis of K(n)

Let’s assume the special case 1=1. By writing ros» tgs N1 and xy
as r,t,n and x, respectively (in order to simplify notation);

equations (3.21) and (3.22) become

K(n)= kg + kyn + k.(nE +N-n) + (N-n)F(n) (3.26)
where
F(n)= é(ka(ﬁx)/(ﬁn) - k) gp(x) (3.27)

One way of finding the sample size which minimizes the expected
cost of sampling, n*, is to determine the values of n for which
A K(n) shifts from negative to positive. Where A K(n) is defined
as K(n+1)-K(n). From equation (3.26).

ApK(n)= ky + kp(r/t - 1) + (N-n-1)F(n+1) - (N-n)F(n)
A K(n)= k, + kp(r/t = 1) + (N-n)&F(n) - F(n+1) (3.28)

From (3.20) Apcp can only be 0 or 1. For the case 0 < ¢,< n.

If Ancn = 0; then S = Cp+1s and
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F(n)=3 An(kaEn(p*/x) - kp)gn(x)

F(n)= xZ (ky AnEp(P*/x)gpn(x) - kpA,gn(x)) (3.29)

Hald (7) showed that

| ,‘};A.;E};ip*/X)gn(XF =g (c)En(p*/c)Epsq (p*/ctl) (3.30)
58 g (x)= =gy (C)En(pH/c) (3.31)
and  Ep(p*/c)= (c+l)gp,p(c+1)/((n+l)gp(c)) (3.32)

Therefore, Equation (3.29) can be written as

ApF(n)= gnlcn)En(p*/cp)(ky = kaEpy(p*/cp*1))
BnF(n)= gnlcp) (rrey)/(tn) (kp = kq(r+cy+l)/(t+n+l))
If &, G =1; then ¢4y = ¢, +1

Cn

AniEn(P*/X)gn(XF:z.:Eml (p*/x)gp41 (%) - gEn(p*/X)gn(X)

=,Z;An5n(P*/X)gn(x) + En+1(p*/°n+1)9n+1(cn+1)
Using (3.30) and (3.32)
AngEn(p*/x)gn(x)= -gn(cn)En(p*/cn)En+1(p*/cn+1)(1 - (n+1)/(c 1))

And nE (x)= ZAngn Xx) * gnyp(cptl)

X=0

36
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By using (3.31) and (3.32)

An390(x)= =gy (cp)En(p¥/cy) (1 = (n41)/(cy+1))

Therefore

AnF(n)= gn(cn)En(p*/cn)(kr = kaEn+l(p*/cn+1))(1 = (n+1)/(cn+1))
These results can be summarized as follows:

(4 © JIE Cn==1, Cy -1

8) 90, 0) (ka ¥/ (t*n 1) - ki)
Q) 9n(cn) %’:c_:(k, ~ko F2Car 1)

IF Caz-1, Cher =0
AnFn)=z 4

© 18 0£Cnen , BnCn=0 (3.33)

tened
reln - r”Cn*i)( _nad ) . z
| b) en(cn) ton (kp k‘ m 1 ——Cn"’. )y IF 02 Cnén , An Cn i

Defining 4,(2) F(n)

(3.33) we find
@,y Inlem)(recan) (e (e . . (b

“““Lmqqnmaammgdh"““‘db“imﬁﬁvﬂwﬁhé‘*mq}

In order to have AAn(Z) F(n) > 0 and therefore convex.in the
range of n where 0 < ¢, < n and An(z) c

A, F(n+l) - A, F(n) for case C) in Equation

n = 0, the following
condition has to be satisfigd in the same range

. <(t+1)cn - (n+1)(r+2)> <
*/c +
En2(p*/cytl) ter — () (re1) Pe

This condition is usually satisfied but not always, and therefore

F(n) is not necessarly convex when ¢, is constant.

Theorem 3.4

F(n) is non increasing in n; 1< n <N.
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Proof:
Let § = {n:n=1,...,N}. We prove that A&, F(n) < 0 for ne X'in all

cases of Equation (3.33).
Case a) z&n F(n) = 0.
Case b) Ap F(n) < 0 for ne'if and only if kp > k;—L— for ne)

t+n+l
This follows as cp41 = 0 implies by (3.20) that
kp/ky (t+n+1) - r>0 for ne).
Case ¢) A, F(n) < 0 for ne N if and only if k. < k, r+°n+1 for ne .
t+n +

By (3.20) 41 + Lokp/ka(t+n+l)-r. A, c, = 0 implies ¢y = Cp41s

therefore condition is satisfied.

t+n+
By (3.20) cp41 € kp/ky (t+n+l)-r. But as cp4) =cp + 1

Case d) A, F(n) < 0 for ne X' if and only if k. > ky T¥en*l  for neN.
n

condition is satisfied.
n
Theorem 3.5

A necessary and sufficient condition for 100% sampling being the

cheapest sampling policy is F(N-1) >k, - k, (1-r/t).
Proof:

From Equation (3.26) K(N) = k; + kyN + k. N r/t
K(N) is the minimum expected cost if and only if
N(kytkpr/t) € kyn + kp(nr/t + N-n) + (N-n)F(n) for n=1,..,N-1
or F(n)> ky - ke(l = r/t) for n=1,..N-1
By Theorem 3.4 F(n) is non-increasing in n, therefore we only

need to check for the smallest value of F(n); F(N-1). W
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3.3.2 A Lower Bound for K(n*)

As we discussed before we have three alternatives to choose
from: Sample, accept without sampling and reject without samp 1ing.
To find the best policy, we have to find the optimal sampling plan.
However, if we can construct a lower bound for the optimal expected
cost of sampling, LBS, which is easier to compute compared to the
effort in finding K(n*), we may then discard the sampling alternative
when LBS > Min { ECAWI, CRWI].

Let D(n) be the difference between the expected cost of samp1ling
K(n), n=1,...,N-1, and the expected cost of 100% sampling, K(N).
From Equation (3.26).

D(n)= k,n + kar/t + kr(N-n) + (N-n)F(n) - kN - kdir/t
or D(n)= (N-n)(F(n) - k, + kr(l-r/t)) for n=1,..,N-1

If D(n) <O for some n, n=l,..,N-1. 100% sampling is not
optimal. By using Theorem 3.4, we conclude that the most negative
value that D(n) can take has to be greater than

(N-1) (F(N-1) - ky + kp (1 - r/t))
Therefore a lower bound for K(n*) in this case is K(N) plus the
quantity above.

If D(n) >0 for all n; n=1,...,N-1 100% sampling is optimal.
Note that this is true only if F(n) >k, - k. (1 - r/t) for all n;
n=1,...,N-1, or F(N-1) 2k, = kp (1 - r/t) which is the same result

given in Theorem 3.5.
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Therefore, a lower bound for K(n*), LBS, is given by

KONV (N-1) (F(N-1)-k #k (1-r/t) 5 1F F(N-1) <K -k (1-r/t)
"BS{ (3.34)

K(N) ; otherwise

- 3.3.3 Optimal Policies

In this section we will find the optimal sampling plan for the
samp ling cases c=n and c= -1 and develop some conditions for which

reject and accept without sampling are the optimal policies.
Theorem 3.6

The optimal plan for the sampling case c=n is given by
n*=1 , c*=1 ; if kv>E(p)(ka'kr)
100% Sampling ; otherwise
The optimal plan for the sampling case c=-1 is given by
n*=1 , c*=-1 o5 if k> Kk (1-E(p))

100% Sampling ; ntherwise

Proof:

From Equation (2.11) A K(n,c=n) = ky + E(p) (kp-ky).
Therefore A, K(n,c=n) > 0 (K(n,c=n) increasing inn) if and only if
k, > E(p)(ka-kr). 'K(n,c=n) is non-increasing otherwise. From
equation (2.12) &, K(n,c= -1) = k, + k. (E(p)-1).
Therefore &, K(n,c = -1) >0  (K(n,c=n) increasing in n) if and only

if ky > ky (1-E(p)). K(n,c = -1) is non-increasing otherwise. W
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- Theorem 3.7

Reject without sampling is the optimal policy if

E(p)> Max{pc(19N/t) , 1-ky/kp}
Proof:

Lets take the case ¢, = -1 for all ne (1,N). This case implies
pc(t+n) - r <0; 1 <n<N. This condition is satisfied if and only

if
1 pe(t+N) - r <0 or E(p)=r/t > pc(1+N/t)

Which implies kg r/t > k.. That is, the per unit cost of accepting
without sampling is greater than the per unit cost of rejecting
without sampling.

From Theorem 3.6, the optimal plan for the sampling case ¢c= -1
is given by n* = 1, ¢* = -1 if E(p)> 1 -kv/kr,therefore for this
case the minimum per unit expected cost of sampling is given by
(Equation (2.12)).

Kln*=1,c*=-1)= (k; + ky + kp(N-1) + k.E(p))/N
y > (kp + kp(1-E(p)) + kp(N-1) + kyE(p)I/N
= (k1 + kp + kp(N-1))/N >k,
i.e., the minimum per unit expected coét of sampling is greater than

the per unit cost of rejecting without sampling.
]

Theorem 3.8

Accept without samp]ing'is the optimal policy if
E(p) <Min {pc(14N/t) = N/t , ky/ (Kg-kp)}
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Proof:

Let's take the case Ch =n for all n € (1,N). This case implies
Pe(t+n) - r > n; 1 < n< N This condition is satisfied if and only

Top(tH) - P3N or  E(p)= r/tgp (14N/t) - N/t

or k. (1 + N/t) 2 kg (r/t + N/t). This last expression imp]iés
kp > ka r/t as kz > kp.

From Theorem 3.6. the optimal plan for the sampling casec =n
is givenbyn*=1,c*=1 If E(p)<EE¥E; , therefore for this case
the minimum per unit expected cost o; sampling is given by (Equation
(2.11)).

K'(n*=l,c*=1)= (k; + k, + k E(p)(N-1) + k _E(p))/N
> (kI + E(p)(ka-kr) + kaE(p)(N-l) + krE(p))/N

(ky + k E(RIN)/N K _E(p)

3.3.4 The Value of Information

The increase in utility which results or would result from
taking a sample and learning about the number of defectives in the
sample will be called the value of information.

The expected value of sample information (EVSI), is defined as
the expécted cost of the best decision before sampling minus the ex-
pected cost of the best decision given the results of sizen. From
Equation (3.21).

kaNr/t - (kr(nr/t + N-n) + (N=n)F(n)) ; if r/t <pC

EVSI(")={ng - (kr(nr/t + N-n) + (N-n)F(n)) s if r/t:»pC (3.35)
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From (3.35) we get the first difference with respect to n

BpEVSI(n)= k.(1-r/t) - (N-n-1) &,F(n) + F(n) ; n=1,..,N-1  (3.36)

By Theorem (3.4) F(n) is non-increasing in n; therefore, A, F(n)<O
for all n, and the first and second terms of Equation (3.36) are
greater than zero. However, due to the definition of Chs F(n) < 0.

The most negative value that F(n) can take is F(N-1).
Therefore, to prove that A, EVSI (n) > 0 for n=1,...,N-1. It is
sufficient to prove that

By -1EVSI(N-1)= kp(1-r/t) + F(N-1) >0
or F(N-1) > kp.(r/t - 1)

This last condition was always satisfied over a wide range of
experimental values; corresponding to the fact that we would never
refuse to accept free information. .

The expected value of perfect information (EVPI) is defined as
the expected cost of the best decision before sampling minus the
expected cost of the best decision given perfect information about
the quality of the lot.

As we assume inspection is 100% effective; perfect information
about the quality of the lot is given by 100% inspection of the 1lot.
Therefore, EVPI = EVSI(N). By Equation (3.395)

Nr/t(k.-k.,) ; ifr/tgp
EVPI={ a’r ¢ (3.37)

kpNQ-r/t) 3 1f r/t>p,
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As the EVSI(n) is non-increasing in n the EVPI > EVSI(n) for
n=1,...,N-1 and can be interpreted as the maximum potential reduc-
tion in total cost of the sampling alternative.

The Expected Net Value of Sample Information (ENVSI) is given by

the EVSI minus the cost of sampling.

ENVSI(n)= EVSI(n) - CS(n)= Min (kaNr/t , krN) - K(n) (3.38)

From the last equality it is clear that if ENVSI(n) > 0, then
sampling with a plan (n,cn) has a smaller expected cost than the non-
sampling alternatives, and if ENVSI(n) < O for all n, the converse is
true.

From Equation (3.38) it may be seen that in order for sampling to
be a feasible alternative we reduire EVPI - CS(n) 2 0. Therefore, an
upper_]imit on the sample size that should be considered when search-

ing for the optimal acceptance plan is given by

ky + kvn* < EVPI or n* < (EVPI - kI)/kv (3.39)

I
Furthermore, lets assume we found ENVSI(n1) > O and therefore, taking
a sample of ny items has a smaller expected cost than the non-
sampling alternatives. We may wonder whether incéeasing the sample
size to ny (n2:>n1) would give us a better ENVSI or not. In order

to increase the ENVSI, or at least maintain it at the same level we

have to find that
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EVSI(n2) - EVSI(nl) >.CS(n2) - CS(n1)= kv(nz-nl)

or EVSI(nz)-EVSI(nl) EVPI-EVSI(nl)

n n, + £ n, +
2 <M K, £M k,

Therefore a second upper bound for the optimal sample size is

given by

EVPI - EVSI(n)
ngn+ kv

(3.40)

"3.4 The Model
3.4.1 Approach

According to our objective, the minimization of the expected
total cost of the 1 lots; the optimal solution to our prbb]em is the
policy ("1*’°n9’ (n2*,cn:),“., (n1*, cﬁg, where 0 S'“i* < Nand -1
< Cn‘:S "*1' for i=1,...,1. Note that we have included the case n; =0
to include the non-sampling alternatives. The policy ("i* = 0, Cp;, =
-1) means rejection without inspection is optimal for lot i and the
policy ("1* = 0, Cnﬁ= O) means accepting without inspection is opti-
mal for lot i.

It is important to note here that the policy depends on the
actual sampling results. For example, if (nl* = 50, Cp} = 10) then
("2*’Cnf)v-w (n]*,cn:) depend on the outcome of the first sample,
X1

The problem can be divided into stages, the lots. At each stage
there is a policy decision that we have to make: sample, accept

without sampling or reject without sampling.
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Each 1ot (stage) has a possible number of states associated with
it. The states at stage i are completely defined by the parameters
of the beta distribution (rj_;, tj_7). According to the policy
decision that we make at any stage, we transform the current state
into a state associated with the next stage.

Our process possesses the Markovian property or principie of
optimality, that is, given the current state (ri-l’ ti-l)’ the opti-
mal policy for the remaining lots is independent of the policy
adopted in previous lots. V

Given the properties above, our problem can be formulated and
solved as a dynamic programming problem.

In order to understand how the number of states increases with
the number of stages and the lot size, let's assume a sequence of

three lots of N=2; lets assume further that the first lot is at state

0,
2.

(1,10). Then the possible states of lot 2 are: (1,10) if m
(1,11) or (2,11) if n; =1, and (1,12), (2,12) or (3,12) if m

And the possible states of 1ot 3 are the same as lot 2, plus (1,13),
(2,13), (3,13), (4,13), (1,14), (2,14), (3,14), (4,14) and (5,14).
That is, we have six possible states at stage 2 and 15 possible
states at stage 3.

In general, if we define:

NS;

Number of possible states in stage i; i=1,2,...,1

(i-1)N ; 1=1,2,...,1

Ly

Then
NS.i= (_L.i+1)(L-i+2)/2 ; 1."—'1,2’-.-,’] (3°41)
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Therefore, if we have a sequence of five lots of 1000 items

each; then Lg = 4000 and NS5 = 8,006,001.
3.4.2 Formulation

Let the lots i=l,...,1 be the stages of our procedure. The
tuple (rj_1, tj.1) denotes the possible states of lot i. The actions
at any stage i are: sample (S;), reject without sampling (Ry) and
accept without sampling (A;).

Define V;(r,t) as the minimum expected cost of lot i and
remaining lots i+l,...,1, given that we are currently at state (r,t).
Therefore Vi(rj_1,tj_1) can be described as the minimum expected cost
of 1ot i and remaining lots i+l,...,1, given that we have samp led
‘éénj items and found Eixj defectives in lots 1,...,i-1.

The following recursive relationship describes the solution of

our problem

Si: K(d?)tg;vi+1(ri_l+xi,t1_1+n§)gn§x1)
Vi(ri-l’ti-l)= MiniR;: kPN + Vi+1(r1_1 ’ ti-l) (3.42)
Ai: kaNri_l/ti_l + vi+l(ri-l , ti-l)
where nle (1,N) i=1,2,..,1  and

with boundary conditions V1+1(-,-)= 0.

Where K(n? ) is given by Equation (3.21), and n? is the sample size
n;

which minimizes K(nj) + = 2 Vi41 (rj.1 + x4, tij.1 + nj) 9p, (x4)3
Xi=z0

1 <n; <N. Here it is important to note the difference between "1'*

and n1-+. "1'* is the sample size that minimizes K(ni); 1< n; < N;

+

and n; is as defined above.
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Equation (3.42) minimizes the total expected cost of the whole
sequence. As all lots have the same size, it is equivalent to

minimize the sum of the per unit costs. In addition, as ri=rj.1t

Xi3 %h(xi) = gnJ”i)- Therefore, the following relation is
equivalent to (3.42) |
"\l*“\ 3
"’%f’ﬂ 1,'c11n)qn+( )
Vilriopsty_q)= Min Ri’ kp + Vipp(ricy 5 ty7) (3.43)
Ait kalia1/tian * Vi (rian > top)

where nt & (1,N) and i=1,2,..,1 and
with boundary conditions Vy4;(.,.) = 0.
3.4.3 Lower Bounds

By using the lower bound for K(n*) developed in Section 3.3.2
and by using the additional property thatt§§;§i+l(ri, ti-l*"i)gnéri)
is non-increasing in n; for i=1,...,1-1. -f;is property was only
checked experimentally over a wide range of values of the parameters.
The following lower bound is'proposed for Si’ LBS;.

Ny vN

LBS;= LBS-+r§;X1+1 i byt (ry) (3.44)

Where LBS is given by
LBS= Min{K(N) , K(N) + (N-1)(F(N-l)-kv+kr(1-ri_1/ti_1))}
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Clearly, by using Theorems 3.7 and 3.8; LBS is substituted by
K(O=1,c = -1) when ri_y/t;_ >Max{pe(1/tsy) , 1-k,/k.}
and by K(n=1,c=1) when

ri-1/ i <MIn{N/tg 1 (pe-1) + b, ky/ (Kaoky))

The property that the second term of Si is non-increasing in n;
provides a Tower bound for n;*;i=l,..,1-1. Notice that S; evaluated
at “i* can only be improved if we increase the sample size. That is
ni* < ng* for i=l,...,1-1.

When considering a sequence of lots, an increase of the size of
the sample of a 1ot reduce the losses from wrong decisions in that
lot. In addition, as we use this sampling information in our
subsequent lots italso reduces the losses from wrong decisions in
subsequent lots. Therefore, the optimal sample size of 1ot i in a
given state, say (r,t), is greater or equal to the optimal sample

size of a single lot at (r,t).
3.4.4 General Results

In this section we develop some results which will

simp1ify the fundamental recursion relation (3.43).

Theorem 3.9.

ﬁn: r.nr

+ .
ﬂ§y1<ri-1’t+"?)9nt('”1-1)< ,§V1+1(”i’t+“i)9n{“(”i) + M1n{kr , kar/t}
for i=1,2,,.,1 .
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Proof:

By backward induction

for i=1
rent, o
+
§§5y1(r1-1’ t+n])9n:(r]_1)= LEEY](r+x]_1, t+nﬁ)gn:(x]_1)
1-1=

< Min{kr, kar/v(t+n*i)}gn1-(0) + Min{kr, ka(r+l)/(t+n"i )}gn*;(l)
b + Min{kr, ka(r+n"1)/(t+n"])}gn:(n‘ﬁ)

< Min{kr , kar/t}

Last inequality follows as

+

Ny
ky/ (t+r) ;§;5r+x]_l)gd:(x]_l) = kyr/t

Assume true for i. For i-1 we have

- +
=Vi(r,tens ;) +

Min{ky..kyr/ (t+n5_q)}
kr+V1- (Y'+1 ,t+n"1- _1) ] .
)

Vi_p(r+l,t4n%y_{) < Min . .
kg (r+1)/(t+n5 1) + Vi (r+l,t4n 4

kptVs (r,t4n%s 1)
Vi_l(r‘,t+n:-_1)S Min ro + i-1
kar/(t+n3_1) +Vi(r,t+n} ;)

Vilred,tefy_p) + Minfk, , ky(re1)/ (e 1))

: k. +V:(r+n% o, t+n% .)
Vip(reni_q t+n"1f_1)<M1'n r 1-1 i-1 =

ka(r#nf_p)/ (e g) + Vg (rnly_p ey )

Vi(r+ﬁ2_1,t+ﬁ2_1) + Min{kr s ka(r+ﬁ?-1)/(t+ﬁ;-l)}
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therefore,
"“"i-t + r"“’iﬂ
+
=4 . +
+ xgoMm{kr s ka(”Xi-l)/(t"“i-])} gn*{.x(xi-l)

venlyg

+ .
< ﬂzg;vi(ri-l’ t+n1_1)gﬂ;§ri_1) + M1n{kr . kar/t}
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Theorem 3.10

If sampling is optimal at state (r,t) of stage i, then sampling
is optimal at state (r,t) of stage i-1; i=2,...,1.

Proof:

For i=2,...,1
ren! ]
Vi(rat)= KUnh) + 3 Vo (ry 5 tiifda (ry) e (1N)
Si-1: Kl p) + §:V j(ryqs ty 19 {ri-1)
1 l(r t)= M1n Ri.1: kp * KKn ) + :i V1+1(r1 . t+n )q-+(r )
Aj_1: kgr/t + K(n ) + E: Vi lry s t )94 (r5)

fisr

where n%e (1,N) and nj_1€ (1,N)

To prove that S5.1 < min {Ri-l’ Ai-l} we only need S;.1 evaluated at
* to be less than or equal to min {Ri_1, Ai-l} i.e.,

e '\ s f\‘

2V, i(rs_1 t+n )g+(|r'1 1)<ZV1+1(r1, t+nt: 795+ (r ) + Min(k..k,r/t)

gz
for i=2,...,1
Which follows by Theorem 3.9.

Corollary 3.1

If sampling is optimal at state (r,t) of stage h, 2< h <1
then sampling is optimal at state (r,t) of stages 1,2,..., h-1.
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Proof:

Sampling optimal at state (r,t) of stage h implies by Theorem
3.10, that sampling is optimal at state (r,t) of stage h-1. By

repetition of the same argument result follows. n

Corollary 3.2 .

If a non-sampling action is optimal at state (r,t) of stage h, 1

< h < 1; then the same action is optimal at stages h+l,...,1.
Proof:
Assume reject is optimal at state (r,t) of stage h, then,

Vh(r,t)= kr + Vh+1(r,t) < kar/t + Vh+1(r,t)

therefore
kr<kar/t

By Corollary 3.1, sampling is not an optimal policy at state
(r,t) of stages h+l,...,1. Therefore

ke + Vip1(r,t)
r J+1 }= kr + Vj+1(r,t) for j=h+1,---,]
kar/t + Vjuq(r,t)

Vy(rt)= Min [
i.e., reject is optimal for stages h+l,...,1.

Using the same argument we can prove that if accept is optimal
at state (r,t) of stage h, 1 < h <1, then accept is optimal at
stages h+l,...,1. ]

It is important to notice that the proof of Theorem 3.9 does not

depend on the form of K(n); and therefore results given in Theorem

3.10 and Corollaries 3.1 and 3.2 are independent of the model used to
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describe the expected cost of samb]ing and, clearly, of the type of
prior distributions assumed.

Corollary 3.2 tells us that if a non-sampling action is optimal
at stage i then the same action is optimal for the rest of the lots.
For example, if Vi(r,t) = kp + V41 (r,t), then Viiq(r,t) = Kp +
Visolr,t), Visolr,t) = kp + Vi+3(r,t),“.,v1(r,t) = ke

Therefofe, the recursive relation (3.43) is equivalent to

*
L 21X

v + +
Si: Klng) + 2V (rpsty iy (ry)
=Mj . - .4
Vi(ri_l,ti_l) MiniR:: (1-1+1)k (3.45)

Ayt (1-i+L)kgr, 1/t
where n:.'e.(l,N) for i=1,2,..,1 and
with boundary conditions Vi41(.,.) = 0.

In (3.45) the reject and accept alternatives are no longer a
function of Vi,(rj_1,t5.1)-

The number of states that we have to consider to find the exact
solution is slightly decreased. Let's assume the same example used
in Section 3.4.1, that is,a seauence of 3 lots of size 2 each,with the
first 1ot at state (1,10). Therefore, at stage 1 we only consider
state (1,10); at stage 2 we need to consider states (1,11) and (2,11)
if ny=1, and states (1,12), (2,12) and (3,12) if ny=2; at stage 3,
states (1,12), (2,12) and (3,12) if ni=1 and ny=1, states (1,13),
(2,13), (3,13) and (4,13) if n1=1 and ny=2 or if ny=2 and-n,=1, and
states (1,14), (2,14), (3,14), (4,14) and (5,14) if n1=2 and ny=2.
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Therefore, we need to consider one state at stage 1, five states
at stage 2, and twelve states at stage 3, compared to 1, 6 and 15
possible states at stages 1, 2 and 3, respectively.
In general, if we define:
NS}= Number of states to consider in stage i ; i=1,2,..,]

then NSy= (Ly*+1)(L,;+2)/2 - i(i-1)/2 ; i=1,2,..1 (3.46)

where: L; = (i-1) N ; i=1,...,1
Now if we have a sequence of five lots of 1000 items each, then

Lg = 4000 and NSg = 8,005,991,
3.4.5 Convergence of Optimal Policy for Lot 1

If the process quality, p, is known, the prior distribution of
the Tot quality, fy(X), given by Equation (3.5) becomes binomial with
parametes N and p, b(X,N,p). By the reproducibility of the binomial
prior distribution, Hald (7), 9,(x) ~ b(x,n,p) and P(y/x) ~ b(y,N-
n,p). Therefore, E(x) = np and E(p*/x) = E(y/x)/(N-n) = p, which
agrees with Mood (16).

The expected cost of sampling, Equation (2.8) becomes
) [
K(n,c)= ky + k,n + k. (np+N-n) + ("‘“)(kap'kr)EESn(x) (3.47)

It is clear that the optimal value of ¢ for fixed n, Cps is given by
. . n s 1f p<p,
-1 ; otherwise

Therefore K(n); n=1,...,N is given by
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kI + kvn + k.np + (N-n)kap ; if P<P. 5 € =N

K(n)= (3.48)
kI + kvn + kr(np+N-n) ; otherwise ; cn=-1

Note that Equation (3.48) can be obtained by Equations (2.11) and
(2.12) with.E(x) = np and E(X) = Np.

Theorem 3.11

For a process with quality p, the optimal policy for lot 1 when
190 is;

Accept without sampling ; if kI/N +kv> E](p)
If £,(p)<p,  then (k,-k,.)

100% Sampling ; otherwise

Reject without sampling ; if kI/N +kv2 kr(l-

If E,(p)>p then
! e 100% Sampling ; otherwise E](p))

Proof:

Assume we know the process quality, p. Then Ay = kap and Sy is
given by Equation (3.48).
a) If p <p. , then Ay < Ry.
A <5 - (kI+kvn+krnp+(N-n)kap)/N for n=1,...,N
If and only if, ky> p (ka-kp) - ky/n For n=1,...,N.
It is clear that this last condition is true if and only if,
kI/N + ky > pka-k,)
If Ay > Sy Then by Theorem 3.6 100% sampling is optimal.
b) If p>p. , then Ry <Ay .
Ry £ Sy = (kp+kyn+k,. (np + N-n))/N for n=1,...,N

If and only if, ky 2 kp (1-p) - kg/n for n=1,...,N.
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This last condition is true if and only if kI/N +ky 2 kp (1-p).
If Ry > S, then by Theorem 3.6 100% sampling is optimal.

-1 -4
= . + n. H
Recall  E,(p)= (r, +3_leJ)/(t0 2ny)
By letting 1-1
n= > n,
3:1 J
$ e Six
r~+ > X, r./n+ > x./n
Then E,(p)= e -
tO +n to/n' +1

2-1
Note that as 1+ @, N»woand 1ij/n'-.p
[3Y

Therefore E](p)»p as lowo . -

Theorem 3.11 tells us that forl-e,the optimal policy for the
Tast lot tends to be either a non-sampling alternative or 100%
sampling. This is, of course, a result of the assumption that the
process is operating in a random manner with quality p. No shifts in
the process quality are allowed. In practice, it is widely known
that any process will tend to go out of control and therefore shifts

in the process quality are expected.



58

CHAPTER 4

SOLUTIONS

4.1 An Algorithm for the Optimal Sampling Plan of a Single Lot

" The algorithm proposed is based on the one presented by
Moskowitz and Berry (18) with the use of a more efficient search
thechnique. |

Moskowitz and Berry define switchover points as the values of n
where the value of c, changes. In Figure 2, the switchover points
are the dotted points in the graph.

They presented two main results which were, however, only
checked experimentally. Firstly, they stated that there exists only
one point such that K(na) > K(ng) < K(ne)

where ny < np <n. and Cn, < Cn, < Cn,
and that the optimal sample size lies somewhere between the
switchover points n, and nc.

As discussed in Section 3.3.1, the maximum increase of C, when n
is increased by one is one. Therefore, we may use Cp, “Cn * 1 and
Cp, = Cp *.

Define a ditonic function as a discrete function g(j) such that
9(j) is decreasing for 1< j < i* and increasing for j >3i* That
is, AJ- g(j) <0 for 1< j < j* and AJ- g(j) > 0 for j >j*.

By using Moskowitz and Berry's results we ﬁay conclude that K(.)

evaluated at the switchover points is a ditonic function.- They also
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proposed that K(n), evaluated between contiguous switchover points,
that is for c, constant, is also a ditonic function. Both results
have been supported by a wide variety of experimental values in our
research.

The minimum of a ditonic function g(j) j=1,...,NP can effi-
ciently be found by using the following search procedure.

The sequence of Fibonacci numbers is 1,1,2,3,5,8,13,21,..... .
That is, each number is the sum of the previous two numbers. Let
F; = the i+l number of the Fibonacci sequence. The procedure can be
described in the following éteps.

a) Find the smallest Fibonacci number bigger than NP, Fj. If
i=3 then calculate g(1) and g(2) to find the minimum and stop. If
i>3 calculate g(F;_1) and go to next step.

b) Calculate g(F{_z) 5 if g(Fj_1) < 9(Fj_p) set KP=min{2F;_»,NP}
and calculate g(KP), if g(KP) < g(F;.1) evaluate function in interval
Fj-1+1 to min (F;,NP), evaluate function in interval Fij.2+l to KP
otherwise; procedure terminates.

If 9(Fj_1) > a(F;_») set i=i-1, if i=2 stop, repeat step b)
otherwise.

If we let n(l), n(2),.... be the switchover points, the
algorithm for finding the optimal sampling plan of a single lot can
be divided in the following three steps.

1) Find all switchover points n(1), n(2),... in the interval (1,N).
By using the proposed search find the switchover point that minimizes

the expected cost of sampling, which will be denoted by n(s).
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2) Define L =(n:n(s-l) <n <n(s)] and U ={n:n(s) <n <n (s+1)] .
By using the proposed search find the ne L that minimizes K(n),nL;
and the n € U that minimizes K(n), n,,.

3) The optimal expected cost and consequently the optimal acceptance

Plan (n¥,c, ) is such that K(n®) = Min{K(n(s)), K(n ), K(n,)}.
4.2 Exact Solution

The exact solution to our problem is given by the recursive
relation (3.45). To find V;(.,.) for a given state we have first to
find the n; which minimizes S;, n;*; and then compute Min{s;, R;,
Al

However, to find the optimal policy to our problem we need to
evaluate relation (3.45) for every state of every stage. As
discussed in Section 3.4.4, the number of states to consider at a
given stage increases rapidly with the 1ot size and the number of the
stage. Therefore, a complete enumeration becomes cumbersome and
inefficient. The proposed method uses all of the features described
in the previous chapters.

First we discuss the single lot case, which is a special case of
our more general model with 1=1. Note that for this case relation

(3.45) becomes
Vi(rosto) = Minfl(n®), kp , karo/to}

To find Vq(rq,ty) we first use Theorem 3.5 to find out whether

100% sampling is optimal or not. If 100% sampling is optimal then
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Vilrg,tgy) = Mih{ K/N + ky + Ky rg/tg, Kp, kg ro/to}. Otherwise, we
calculate the LBS by using Equation (3.34) and then test whether the
Min { LBS, kp,k, ro/to}<LBS or not. If true then Vi (rg, ty) = Min
{kr’ ka ro/to} , if false then we use the algorithm discussed in
Section 4.1 to find K'(n*) and compute Vilrgsty) = Mirl{K'(n*), Kps
kg ro/to}-

For 1 > 1, the lower bound for "i+ discussed in Section 3.4.3 can
reduce further the number of states to be considered at stages
2,300, 1. If "1* > 1 and as n1+ > nl*, then the number of states
that we have to consider in stages 2,...1 is smaller than given in
Equation (3.46). For example, assume we have a sequence of two lots
of five items each (1=2 and N=5) with lot 1 at state (1,10).
Further, let's assume "1* = 3. Then the states to consider at stage
2 are (1,13), (2,13), (3,13), and (4,13); (1,14), (2,14),...,(5,14);
and (1,15), (2,15),...,(6,15). That is 15 states, compared to NS, =
20 given by Equation (3.46). Clearly, the reduction of states will
depend on nl*, the bigger "1* the more reduction.

No further reduction of states is considered by using the lower
bound "i+'2'1i*' This is because we would need to find the optimal
sample size for single lots at every state in stage 2 and so on. In
our example, stage 2 would require finding the optimal sample size of
a single lot at ihe 15 states to consider, this is clearly computa-
tionally inefficient compared to the possible savings.

The procedure for finding the optimal policy can be summarized

in the following steps.
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1) Find ny™ To do this we use Theorem 3.5 to find out whether 100%
sampling is optimal or not. If 100% sampling is optimal then
"1* = N. Otherwise, we find "1* by the search procedure. At this
point the states to consider at stages 2,...,1 are defined.

2) Solve stage 1. Here we first use Theorems 3.7 and 3.8 to find
all states which can be solved immediately. States which do not
satisfy conditions are then tested by Theorem 3.5 to find out whether
100% sampling is optimal or not, and construct the lower bound of
sampling, LBS. The LBS is stored for subseqﬁent use. If 100%
sampling is optimal, Vq(.,.) is calculated immediately. Otherwise,
we test whether the Min {Rqy, Aj, LBS) < LBS or not. If true, then
Vi(.5.) = Min {R1, A1} . If false then we use the search procedure
of Section 4.1 to find K(n™) which is 51, and compute Vq (.,.) = Min
{s7, R15 A4}

3) Solve stages i=l,...,1-1. Starting with stage 1-1 we do the
following for every stage.

For every stage considered, we first calculate the Tower
bound for S;, LBS;, described by équation (3.44). Recall that the
first term of LBS;, LBS, is replaced by K(n*j when the conditions of
Theorems 3.7 or 3.8 are satisfied. In addition, by using the
property discqssed in Section 3.4.3; for all states that at stage 1
100% sampling is the optimal acceptance plan, we have LBS; = S5 and
therefore V;(.,.) can be calculated immediately by V;(.,.) = Min
{LBSi, Ri»A;}. For the rest of the states we test whether the Min

{LBS;, Ry, A;] < LBS; or not. If true, then Vi(.,.) = Min {Ry, A;} .
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If false then we use complete ennumeration to find Si and then

compute V; (.,.) = Min { Sy, Ry, Aj} -

4.3 Approximate Solutions

As we have discussed earlier, industrial size problems will
usually be too big for the exact method, therefore in this section we
shall discuss approximate solutions.

The reason for the magnitude of the problem is the number of
states that a lot can assume. The principal reason for having such
an explosion of states is that the sample size of any 1ot can vary
from one to the lot size. Therefore, in order to simplify the
problem, we may only allow one sample size for lots l,..,1-1. This
measure reduces drastically the number of states to consider at all
stages. For example, if we consider a sequence of five lots of 1000
items each, and we fix n; =np = ... = ng = 50; then the states to
consider at stage 5 are (r,, t, + 200), (ro+1, t5+200),..., (rqy+200,
to,+200). That is 201 instead of NS = 8,005,991, Here we are not
taking into account the possible reduction in states when we use the
lower bound n;* > n;* discussed in Section 4.2.

This drastic reduction is a result of Corollary 3.2. For
example, we do not need to consider state (r,, to+100) at stage 5
because the only way that an optimal policy is going to take us to
that state in stage 5 is by sampling 1ot 1 (ny = 50), sampling Tot 2
(np = 50) and then using a non-sampling action for lots 3 and 4.

Therefore, we can evaluate this policy in stage 3 instead.
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In general, the number of states to consider in this case at
stage i, NSA;, is:
i1

NSA; = 25 +1 i=1,2,..,] (4.1)

3

In order to have a yardstick for comparison we propose two
different methods for fixing the sample sizes of each lot.

As we discussed in Section 3.4.3,n1™ is a lower bound for ni*,
therefore we would like to fix ny such that nj 2."1*' Furthermore,
whenever the optimal policy for a sequence of 1 lots is reject or
accept all Tlots without sampling or sample lot 1 followed by
rejection or accepting the rest of the lots without sampling for
every possible outcome of the sample performed in lot 1; the solution
for a sequence of 1 lots is identical to the solution of a single lot
with lot size IN. As an example, assume 1=3 and N=10 with (ry, t;) =
(1,10). Further assume the optimal-policy is: sample lot 1 with
ni*=2; if x{=0, then accept without sampling lots 2 and 3; and if
x1=1 or x;=2, then reject without sampling lots 2 and 3. Then the
same solution can be found by solving the single lot case 1=1 and
N=30 with (rqy, tg) = (1,10).

This phenomenon is due to the fact that S; is the expected cost
of sampling for the sequence, and if only non-sampling alternatives
are involved in Vj4(.,.) for i=l,..,1-1; S;/1 in relation (3.45) is
equal to the expected cost of sampling for a lot of size IN. In
addition, from relation (3.45) A1/1 and R1/1 then become k, and k,

ro/tos respectively.
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This property is the basis for Method 1. Both methods can be
classified as a forward-backward dynamic.programming procedures,
where the forward pass finds the sample sizes allowed for each lot
N1s N2seeesny.] >0; and the backward pass uses relation (3.45) to
find the optimal policy for the reduced state space. An upper limit
for the sample sizes is used in those cases where large sample sizes
are not desired, and to avoid the possibility of sample sizes greater

than the lot size.

Method 1.
Forward Pass. If we let
n*(N,r,t) = optimal sample size of a single lot at state (r,t) with
lot size N, and
UL = upper limit; 1 < UL < N
n*(IN,rg,t,) s iF n*(IN,rg,t,) < UL

We then set n =
uL ; otherwise

From relation (3.45) the only possible states for lot 2 given
that we sampled lot 1 are (r,, ty+np), (ro+l, tg#ny),eees, (ro+ng,
to+ny). Therefore, the a priori best guess of the state of lot 2
given that we sampled lot 1 is (ro+E(x1), totny), where E(x1)=

ro/to we then set

n*((]-l)N,ro+E(x1),to+n1);ifn*((l-l)N,ro+E(x1),to+n1)
np = < UL

uL ; otherwise
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The only possible states of lot 3 given that we sampled lots 1
and 2 are (ry, ty+ny+ny), (ro+l, tot1+n2)seees,(rotny+ny, totni+n,).
Recall that non-sampling for lot 1 and then sampling lot 2 cannot be
an optimal policy by Corollary 3.2. Therefore, the a priori best
guess on the state of lot 3 given that we sampled lots 1 and 2 is (ro
+E (x] +xp), tg +np +ny), where E (x] + x2) = (ny +n3) ry/t,y. We

set n3 similarly to ni and ny. In general we define

n; =

{n*((l-1'+1)N,ro+E(x1+...+x,-_1),to+n1+...+n,-_1); if n*(.,..)< UL
! UL ; otherwise

. i -
For i=1,..., 1-1, where E( .ij) = rozlnj/to
izt

138

The forward pass terminates when Ni.1 is calculated.
Backward Pass.
It is important to recall first that in this case we have t

-1
fixed at every stage and r varying from ry to r, + }[nj in stages

i=2,...,1. The backward pass is the solution to re]aQ;Ln (3.45) with
nj fixed for i=l,...,1-1. It can be divided into the following
parts. Part 1) Solve stage 1. First we use Theorems 3.7 and 3.8 to
find all the states that can be solved immediately. States which do
not satisfy the conditions are then tested by Theorem 3.5 to find out
whether 100% sampling is optimal or not and computing LBS. If 100%
sampling is optimal, Vi (. to-+§§nj)is calculated immediately.
Otherwise, we test whether or not the Min {R;, A, LBS] < LBS or not.
If true then Vy (., t, +-§§nj) = Min {R], A]} , if false then we use

the search procedure to find Sy and compute
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-1
Vi(es to* 3n5) = Min (S9,R1,A]

=l
Part 2) Solve stages i=l,...,1-1.
By Theorem 3.7 it is optimal to reject without sampling a single

lot at state (r,t) if:
r/t = E(p) > Max {pc(14N/t), 1-k,/k.} (4.2)

It is éasy to see that if (4.2) is satisfied, then a single lot at
state (r+x,t), where x > 0, has as the optimal policy reject without
sampling. Further, if (4.2) holds, then rejecting without sampling
is optimal for a single lot at state (r,t-n), where n > 0. This last
statement can be proved as follows

r/t > pc(1+N/t) implies r > p.(t+N) > pc(t-n+N)
therefore r > pel(t-n+N) = p.(t-n)(1 + N/(t-n))
and r/(t-n) > p.(1 + N/(t-n))
which implies r/(t-n)> Max {pc(l + N/(t-n)), 1-k,/k.]

As soon as condition (4.2) is satisfied at stage 1, then we know
that V; (r+x,t) = k. for x=1,2,... . And as we have fixed the
sample size to take at stage 1-1, ni.1> then

Kl(nl-l) * Ky
Viq(rst=ny_;)= Min |2k
Zkar/(t-n]_l)
In addition, by the proof above, it is optimal to reject a

single lot at (r,t-nj_j). Therefore,
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Min{K'(n]_l) , kr . kar/(t-n]_l)}= kr ; and V]_l(r,t-n]_1)= Zkr

Using the same argument, we can prove that if (4.2) holds at stage 1

and only one sample size is allowed for each lot, then

V]_i(r+x, t'"]-l""""]-i)= (i+1)k. for x>0 and i=1,2,..,1-1
That is, once we find the ry_; at stage 1 such that condition (4.2)
is satisfied, then all states (rj_1, fi-l) for stages i=1,...,1-1
with r;_q > ry.1 have as the optimal policy reject without sampling.

By using this result, the proposed procedure to solve for the
optimal sampling policy at staaes i=1,..,1-1 is as follows:

Starting with stage 1-1 and moving backwards do the following
for every stage i.

a) Setrj1=r,

b) Test whether r;_; > ri-1 or not. If true then set

(%23 i-1
Vi (rytg ¥2.n35) = (1+]l) kn fOr v = Ps_1,0eey g +2.N3,
i (ratg hz: J) ( ) kp i-1 0 ,Zt J
Set i=i-1 and go to step a).
If false then compute

n, i
S;= K'(ni) +Zvi+1(ri_1+xi sty * Zn.)gni(xi)

L8 isy J

i1
and Vy (ri_1, to +2ny) = Min 8¢ Ris A}
Then if rj_1 <rg +§inj, setrj_1 =rj_1+1 and repeat step b).
ded
Otherwise set i=i-1 and go to step a).
Method 2.

This method is a simplified version of Method 1. Again we fix

the sample size of each lot in order to reduce the possible number of
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states. Two different versions of this method were tested. We will
call them Method 2A and Method 2B. In the forward pass of Method 2A
we set

np=ny=-<c=ny_;= Min {n*(ii,r ot ), UL

And in Method 2B we use

ny=n,=+--=ny ;= Min {n*(i,r .t ) , UL }

The backward pass for both methods is the same as in Method 1.

4.4 Programs Organization

The exact method and approximate methods described in Sections
4.2 and 4.3 have various common procedures, therefore three
subroutines were developed for the use of the four methods. The main
programs and subroutines were written in Fortran IV. Program
listings and flowcharts are included in the Appendix.

SUBROUTINE FUNC (SS,F,C,TC).

The parameters in terms of our notat}on are: SS=n, F=F(n),
C=c, and TC=K(n).

This subroutine calculates first c, by using Equations (3.20)
and (3.20a). It then calculates F(n) by Equation (3.22) if 0<c,<n;
by F(n) =k, E(P) - k. if cy=n; and sets F(n)=0 if cp = -1 (Equation
(2.12)). Finally calculates K(n) by using Equation (3.21).

SUBROUTINE SEARCH.
‘This subroutine is the algorithm for searching for the optimal

sampling plan described in Section 4.1. Before starting the
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algorithm and in order to try to reduce the possible values that the
sample size can take; subroutine search calculates first the upper
bound for n, given by Equation (3.39), and then finds the largest n

with c,=n, or ¢, = -1, if any.

SUBROUTINE FIBON (PP, NP, IS, SST, CST, TCST).

The parameters are defined as:

PP = Vector which elements are the sample sizes to
search from
NP = Number of elements in PP (NP > 2)
IS = The element number of the sample size which attains
the minimum expected cost
SST = The minimum cost sample size, where the sample size
is an element of PP
CST = The minimum cost acceptance number
TCST = The minimum expected cost of sampling

This subroutine uses the search procedure for ditonic functions
described in section 4.1. The vector PP contains the set of sample
.sizes to search from. For example, if the switchover points are the
sample sizes 1,9,18,27,36 and 45 then K(PP(3)) = K(18) , K(PP(5)) =
K(36) and so on.

A detailed flow chart of the subroutine is given in the

appendix.
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CHAPTER 5.
RESULTS AND CONCLUSIONS

5.1 Test Results

To test the effectiveness of the lowerbounds discussed in
Sections 3.3.2 and 3.4.3 and the results of Theorems 3.5, 3.7 and
3.8; three examples with the following data were solved by using the

exact method.

Table 2.
powle LMk b kT T
1 3 0 .6 .7 14 1 21 30 0.0476 0.05
2 3 0 1.1 1.0 15 1 12 30 0.0833 0.0667
3 3 0 1.1 1.0 15 1 21 30 0.0476 0.0667

Data for examples 1-3

Note that the parameters were chosen so that E(p) is close to Pc
in Example 1. E(p) is greater than Pc in Example 2 and E(p) is less
than p. in Example 3.

The following table shows the number of states where the
algorithm had to search for the optimal sample size versus the number

of possible states at each stage (NS;) for all three examples.
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Table 3
Stage i
1 2 3
Number of possible states= NSi 1 496 1891
Number of states where n Ex. 1 1(100%) 86 (17.3%) 82 (4.3%)
had to be searched Ex. 2 1 (100%) 71 (14.3%) 144 (7.6%)

Ex. 3 1 (100%) 94 (18.6%) 166 (8.8%)

Number of possible states and number of states where
the algorithm had to search for the optimal sample size

In Example 2, the optimal sample size was searched in 144 states
out of 1891 possible states at stage 3 (7.6%). 1747 states were
pruned by either the lower bound LBS or by one of the theorems 3.5,
3.7 or 3.8.

The optimal policy for Example 1 is described in Figure 3.

We start with lot 1 at state (ry,t,) = (1,21). The optimal plan
for 1ot 1 is (n1+, Cnf) = (20,1).Let's assume we take a sample of 20
items and we find one defect, i.e. xi = 1. Therefore, we accept Lot
1 and the prior distribution of Lot 2 updates to (ry, tq) = (2,41).
The optimal plan for Lot 2 given that x; =1 is then (n,*, Cn}) =
(23,1).Let's assume we take the sample of 23 items from Lot 2 and we
find two defects, i.e. x, =2. Therefore, we reject Lot 2 and the
prior distribution of Lot 3 updates its parameters to (rp, tp) =
(4,64). The optimal policy for Lot 3 given the results for Lots 1
and 2 is to iOO% sample the iot, that is, total inspection.

The approximate methods effectiveness is evaluated in terms of

the quality of the solutions and the computational effort to obtain



73

Accept ot 3 |

Accept lots 2&3

(2,64)

(1,41)

Sample lot 3
xp=14rty=11, c 4 =0
Sample lot 2 A

n’z=23,cn;=1 X2=2-7 (3,64)
2,81) . \\\ 100% Sampling lot 3]

100% Sampling [~ x,=0

Tot 2 N 2 Sample lot 3
x2=1-7 |n%=3, cpy =0
(3,41)
3,71)

x2=8-311100% Sampling lot 3

x1=2

x1=3 4-10,71

Sample lot 1 T00% ]
n%=20, c =1 00% Sampling [~ x,=0-6
1 ni :——_-_-_-—-1]ot 2 2 [Reject 1ot 3

(1,21) \\\\ 11-33,71

(4,41) xp=7-30
x1=4 Reject lot 3
11-34,71
100% Sampling lot 3] .
100% Sampling L-x5=0-5 (5—10,71;
lot 2
x2=6-30

(5,41) 5ﬂReject lot 3 |
1:5 11—35,71

\Samp]e Tot 2 [~x2=0-3
n=26, cpf,=-1 ~1100% Sampling lot 3]
(6-9,67)
x,=6-20 (6,41) x2=4-26

Reject lots 2&3 Reject 1ot 3

(7-21,41)
Note: Numbers in parenthesis represent the states (n,,t;)

Optimal Policy for Example 1.
Figure 3.
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the solutions. The quality of the solution is only measured by the
expected cost of the solution.

In order to test the effectiveness of the approximate methods,
two sets of examples were used. The first set is composed of
examples 1-3, and compares the approximate methods versus the exact
method. Results are shown in Table 4.

To measure the efficiency of the approximate methods we use the

following relation

Efficiency [M1n(kr , karo/to)-Expected cost per um’t]method 5

Method i (%)= - 100
[Min(kr , karolto)-Expected cost per unit]

exact
method (5.1)

Recall that the Min (ky., k3 ro/t,) is the per unit expeéted cost of
the best decision before sampling, the best we can do with our model
is given by the denominator of equation (5.1).

Table 1 shows that efficiencies of Methods 1 and 2A are very
high so that not much room for improvement remains. Method 2B shows
in all three examples a significantly poorer solution.

The policies for Lot 1 generaged by Methods 1 and 2A are fairly
close to the optimal policy. Method 2B tends to generage policies
with smaller éample sizes.

Execution time is drastically reduced by the approximate methods.
Differences among approximate methods are not very significant.

However, Method 2B tends to have smaller execution times.



V(ro,to)

Expected cost
per unit

*Efficiency
%

Policy for
lot 1.

(ng ’Cn2

Execution time
(cp sec.)

* Equation (5.1)
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" Table 4.
EXAMPLE EXACT METHOD 1  METHOD 2A METHOD 2B
METHOD

1 1.561 1.573 1.573 1.615
2 2.593 2.596 2.596 2.634
3 2.052 2.064 2.063 2.095
1 0.5203 0.5243 0.5243 0.5383
2 0.8643 0.8653 0.8653 0.878
3 0.684 0.688 0.6877 0.6983
1 - 97.27 97.27 87.7

2 - 99,26 99,26 89.9

3 - 86.79 87.88 52.78
1 (20,1) (26,1) (26,1) (9,0)
2 (14,0) (12,0) (12,0) (8,0)
3 (5,0) (4,0) (4,0) (1,0)

1 9,733 0.235 0.24 0.159
2 8.44 0.19 0.185 0.169
3 10.171 0.178 0.18 0.16

Results for Exarnles 1-3.



Data for examples 4-7.

Table 6.

Stage i Number of possible states (NS;)

Example 4 Examples 5-7
1 1 1
2 1326 5151
3 5151 20301 .
4 11476 45451
5 20301 80601

Number of possible states for examnles 4-7.

N
50

100

100

100

E(p)
0.001
0.067
0.05

0.05

76

P
0.091

0.05
0.055

0.1
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The second set, Examples 4-7, compares differences among
approximate methods. Table 5 shows the data for this set and the
number of possible states for each stage i (NS;). Again the
parameters were chosen so that E(p) is above, close and below Pcs and
in example 4, k, < k. and in Examples 5-7 k,> k.. From the second
part of Table 6 we can appreciate the magnitude of the examples. In
Examples 5-7 there is 80,601 possible states at stage 5.

Table 7 presents the results for this set. Again Methods 1 and
2A produce similar expected costs. However, Method 2A shows a slight
tendency to obtain smaller expected costs. In all four examples
Method 2B produces the worst expected cost. In three out of four
examples, Method 2A requires the greatest execution time. And in all

examples Method 2B executed in a significantly smaller time.

5.2. Discussion of Results

The main dbjective of the project was to expand the present
Bayesian Theory of sampling inspection by attributes from a static to
a dynamic approach, by developing a model with a feedback mechanism
that use the information from previous inspection results in the
decision making for the current lot.

The mode]l was formulated by assuming a sequence of lots and that
the posterior distribtuion of the current 1ot becomes the prior
distribution of the next lot.

We further assumed that the process operates in a random manner

with quality p and probability function W(p). However, as we are



V(rg,to)

Expected cost
per unit :

Policy for Tot 1
(ny ,cp,)

Execution time
Ccp sec.

Table 7.

EXAMPLE METHOD 1 METHOD 2A METHOD 2B
4 4.063 4.061 4,089
5 4.015 4.012 4,064
6 3.637 3.641 3.721
7 2.495 2.481 2.499
4 0.8126 0.8122 0.8178
5 0.8030 0.8024 0.8128
6 0.7274 0.7282 0.7442
7 0.4990 0.4962 0.4998
4 (39,3) (39,3) (15,1)
5 (54,2) (54,2) (16,0)
6 (26,1) (26,1) (7,0)
7 (5,1) (5,1) (1,1)
4 0.935 0.851 0.378
5 0.613 0.921 0.350
6 0.426 0.605 0.296
7 0.328 0.525 0.210

Results for examnles 4-7.

78
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collecting the sampling information to update the parameters of'w(p)
at each stage of the sequence, we also update the estimate of the
quality of process, Ei(p), at every stage i. Therefore, a shift of p
to say p? at some finite stage of the sequence would mean that E;(p)
=(ry + ;i:xj )/ (ty+ E nj) tends to p° as i tends to infinite. That
is, shifts in the process quality are eventually corrected.

After formulating the model most of the research effort was
spent in finding a way to solve the model in the most efficient
manner. In order to do this we first needed to find an efficient
algorithm to solve the single lot case.

A significant contribution was made in this area. If we use the

exact method to solve the two following single 1ot examples.

Table 8
Example _1_ ﬁ kv kr ka _r; _1:- N Pe E(p)
8 1 0 0.28 0.3 3 1 10 1000 0.1 0.1
0 0.28 0.3 3 2 10 1000 0.1 0.2

9 1

Data for examples 8-9

We obtain (n*, ¢ *) = (56,5), K'(n”) = 0.209 with an execution time of
0.229 cp. sec. for Example 8, and (n*, c.*) = (75,6), K'(n*) = 0.284
with 0.201 cp. sec. for Example 9. These examples as all the computer
work of this project was carried out on the University CDC Cyber 170

Mode1 720.



80

Moskowitz and Berry (18) report 29.364 sec. and 113.162 sec. on a
CDC 6500 for similar examples. These results are not directly
comparable as Moskowitz and Berry use a different model in their
research, but they certainly give an idea about the efficiency of our
algorithm,

After looking at the single lot case we developed the lower
bounds of Sections 3.3.2 and 3.4.3, and Theorems 3.5, 3.7 and 3.8
which made it possible to prune our decision tree and made it feasible
to solve to optimality sequences of small lots. The effectiveness of
these results were discussed in Section 5.1.

The need for approximate methods was clear since the beginning of
the project. Three methods were proposed. Method 1 and Method 2A
produced better solutions than Method 2B. Differences between Methods
1 and 2A are small, but it appears that Method 2A produces slightly
better solutions. In addition, Method 2A fixes the samples sizes of
all lots at one level. Therefore, its policies are simpler looking
and easier to use in an industrial environment. Method 2B requires
the least computation effort, but the loss in the quality of the
solutions does not compensate for the computation savings.

The dynamic approach used in this research updates the estimates
of the parameters of the prior distribution every time that a sample
is taken and inspected. Therefore, our model is a better
representation of the inspection process. This, of course, is

reflected in a reduction of the per unit expected cost of inspection.



Table 9.

Ex. Best expected K (n*) for Policy for Optimal Expected
cost per unit single lot 1ot 1 in policy for savings
for sequence (1=1) sequence single lTot per unit
(mEthOd) (nl’cnz (n ,Cn)

1 0.5203 (E) 0.567 (20,1) (9,0) 0.0467

2 0.8643 (E) 0.943 (14,0) (8,0) 0.0787

3 0.684 (E) 0.712 (5,0) (1,0) 0.028

4 0.8122 (2A) 0.880 (39,3) (15,1) 0.0678

5 0.8024 (2A) 0.888 (54,2) (16,0) 0.0856

6 0.7274 (1) 0.812 (26,1) (7,0) 0.0846

7 0.4962 (2A) 0.5 (5,1) (0,0) 0.0038

Note: E = Exact Method

: 2A= Method 2A
1 = Method 1

Comparison Between a Sequence of Lots and a Single Lot.
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Table 9 shows the cost per unit for examples 1-7 for the single
Tot case (1=1) and compares it versus our previous best result for the
given sequence. From Table 9 we can observe that the main factor that
influences the expectedrsavings is the amounf of sampling required by
the optimal policy of the sequence. The more sampling the more
savings. This follows as sampling increases our accuracy in
estimating p and therefore reduces our risk of wrong decisions. The
amount of sampling required is of course -a function of the parameters
of the model. If, for example, the initial E(p) = ro/t, is well above
or well below p., it is 1ikely that not much sampling is going to be
required unless a large sequence of large lots is considered. The
same would happen if sampling is costly, that is, if kI or k, or both

are large compared to k, or k,.
5.3 Possible Areas for Future Research

Most of the limitations of this study provide potential areas for
further research. In addition, a wide range of extensions to this
research are possible.

The cost parameters are assumed to be known constants. In some
cases they could be considered as functions instead. For example, the
cost of sampling is assumed to be a 1inear function of n with k1 and
ky as known constants. The variable sampling cost, ky,, may be thought
as a function of n perhaps k, decreasing as n increases in order to
differentiate between the per unit variable cost of sampling when n

N and the per unit variable cost of 100% inspection.



83

The term rejection was useq collectively for all the possible
actions taken on items or lots which are not accepted. Therefore, new
models can be developed for different specific situations.

The objective used was the minimization of the total expected
cost. For the sampling case, when deriving this quantity a number of
indirect effects of sampling inspection were not taken into account.
Efforts to include these effects can be of interest.

Inspection is considered 100% effective. This is not true in
practice. A more complete model should include the possibility of
inspection errors, so that a better representation of the real
situation is solved.

The possibility of solving big problems to optimality in a
reasonable amount of computer time lies mainly in the development of
tight and simple to solve for bounds for the optimal sample size and
for the expected cost of sampling. Not much room is left for the
improvement of the algorithm for solving the single lot case, but
proofs for the results that only have been proven experimentally are
desirable.

As our research used single sampling plans, a big field of
research is open for models with double, multiple and sequential
sampling plans. Restricted Bayesian sampling models could also be

used.
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APPENDIX



This Appendix is divided in two main parts. Firstly, flow
charts of the four methods and subroutines are given. And the
second part contains the programs listings.

A11 computer work was done in Fortran IV. Throuchout the
Appendix the following notation will be used:

Cl=k;  CV=k,

CR=k,  CA=k,

RI=r, , Tl=t, ,
EP=E(p) TL=N

SS=ni SSTAR=n$
F=F(n;) C=c
CSTAR=C*

TC=K(ni)

DKN= nK(ni)

G0=g_(0)

TES=k, + Kty yri )/t
NL=1

OHI=K(N)

AMI=k E(p)
BS(1,0)=LBS(r; _;.t;_¢)
BSS=LBS,
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SUBROUTINE FUNC (SS,F,C,TC)

Input SS,CI,CV,CR,CA
RI,TI ,EP,TL

4

Calculate GO

Yes Calculate TC
set F=0
C=0

No

CP=CR/CA* (TI +SS) ~RI

CP=AINT (CP)

Yes C=SS
F=CA*EP-CR »

No

C=CP

Calculate F
Eq. (3.22)

Calculate TC
Eq. (3.21)

G
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SUBROUTI NE SEARCH

Input CI, CV,CR,CA,RI,
TI,EP,TL

TSTAR=1x1030

!

Calculate upper bound (UB)
for SS, Eq(3.39)
set UU=MIN (TL,UB)

No | CALL FUNC(1.0,F,CSTAR, @
TSTAR) ; SSTAR=1.0

Find largest SS with C=SS (R.),
and largest SS with C=-1 (BLR)
set BB=MAX (0, BL,BLR)

DKN=CV+CR (EP-1)

No |TSTAR=K ' (n=1,c=1)
SSTAR=1 )
CSTAR=1
No Mo
<> > ~

Yes Yes

TSTAREK ' (n=UU,c=UU) ‘
SSTAR=UU 16 <::>*—
CSTAR=UU




90

TSTAR=K' (n=1,c=-1)
SSTAR=1
CSTAR=-1

TSTAR=K ' (n=UU,c=-1)
‘SSTAR=UU
CSTAR=-1

Find spacing between switchover points
(SPA) and number of switchover points (NSO)
set SM=MAX (SPA,NSO)

L

Find sequence of Fibonacci numbers such
that last number > SM
store them in vector KF

— .
Store sample sizes of switchover
points in vector P

CALL FIBON(P,NS0,IS,SST1,CST1,TCSTL)|

TSTAR=TCST1
SSTAR=SST1
CSTAR=CST1

I




Yes IS=1

No

Store sample sizes between P(IS-1)
and P(IS) in vector P2. Let NP= # of
elements in P23 2

I

[cALL FI PON (P2,NP,ISN,SST2,C5T2,TCST2)|

TSTAR=TCST2
SSTAR=SST2
CSTAR=CST2

_J

P(IS+l) in vector P3. Let NP= # of
elements in P32 2

|Store sample sizes between P(IS) and

[CALL FI PON (P3,NP,ISN,SST3,CST3,TCST3)|

| TSTAR=TCST3
SSTAR=SST3
CSTAR=CST3

|
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SUEBROUTI NE FI BON (PP,NP,IS,SST,CST,TCST)

Input PP,NPKF,CI,CR,CA,
RI ,TI,EP,TL

| cALL Func (PP (KF (1-1)),F,C1,TC1)|

—| CALL FUNC (PP (KF (E-2)) ,F,C2,TC2)

TC1=TC2 | CALL FUNC (PP KP) ,F,C3,TC3)

C1=C2




CALL FUNC (PP (1),F,C2,TC2)
CALL FUNC(pPP(2),F,C1,TC1)

P

15=1

Yes  [TecsT=TC2
@ CST=C2
SST=PP (1)

TCST=TC1, CST=C1
SST=PP (2), I1S=2

S

LIM=MIN (KF(I)-1,NP), TCST=TC3
CST=C3, SST= PP(KP), ISP, J=0

[ks=KF (1-1)+J

4

CALL FUNC ( PP (KS) ,F,ca4,TCa)

TCST=TC4
CST=C4
SST=PP (K S)
1SS
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TCST=TC1

CsT=Cl

SST=PP (KF (I-1))
IS=KF(I-1)

J=0
LIM=KP-1

4;L]=J+1 1.—

[KS=KF (1 -2) +J l

[CALL FUNC (PP KS),F,C3,TC3)

TCST=TC3
No |CST=C3
SST=PP (KS)
IS=KS
Yes . ]

Yes
KS<LIM

No
OF

STOP
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EXACT METHOD

Input
NL,CI ,CV,CR,CA,R,T,TL

Initialize and
CALL FUNC (TL-1.0,FF,C,TC)

CALL SEARCH
SSTAR1=SSTAR

lot case

Solve the single

SSTARI=TL

DO 99 K=1,NL
NK=NL-K+1
NI =LS (NK-1)+1

<>

No

NKK =I FI X (SSTAR1) +NK -2
DC 89 I=2,NI

TI =T+FLOAT(I)-1.0

®

100
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——{ RI= R+FLOAT (J)-1.0
L

Use theorems 3.7 and 3.8 to
discard states with known
optimal policy

96

Write policy

V(L,I,J)=AMINL (CR,AWI ,omq,

Yes

V(L,I,J)=AMINI (CR,AW ,BS(I,J)

Yes
= Write poHcyH

No

CALL SEARCH
V(L,I,J)=AMIN] (CR,AW ,TSTAR)
Write policy

J=J+1

—s|

Yes

No

(89 CONTINUE )




28 corjllr'l NUE e

4100

NKK =NK+I FI X (SSTAR1) -1

Yes
@ NKK =1

No

DO 29 I=NKK,NI
TI =T+FLOAT([)-1.0

|

DO 28 J=1,I
RI =R+FLOAT (J)-1.0

i

Find minimum of non-sampling
alternatives (PRU)

Calculate lower bound (BSS)
Equation (3.44)

No
’BSRPRU v(L,I,J)=PRU
Write policy

Yes

Find optimal plan by evaluating
K(n) for all possible sample sizes

Write policy

( 29 CONTINUE )
.
(' 99 CONTINUE )

!
( stop )
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METHOD 1

Input NL,CI,CV,CR,CA
R,T TL uL

L

EXDEF=0.0 , I=0
SUMSAM=0. 0

ﬁ I=+1 l

RI =RI +EXDEF , TI=T+SUMSAM
EP=RI /TI » NK=NL-I+1
TL=FLOAT (NK)*TL , SS=TL-1.0

¢

CALL FUNC (SS,FF,C,TC)
TES=CV-CR* (TI -RI ) /TI

CALL SEARCH

4

SSTAR= TL

SAMSIZ(I)-SSTAR

SAMSI Z (I)=UL

}

é’

SUMSAM=SUMSAM+SAMSI Z (T )
EXDEF=SUMSAM*R/T
TL=TL/FLOAT (NK)
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99

¢

[NI =T FI X (.) UMSAM) +1

DO 99 K= 1 NL
NK=NL-K+1

————{ RI=R+FLOAT (J)-1.0 |

Use theorems 3.7 and 3.8 to discard
states with known optimal policy

Yes |V(L,J)=AMIN1 (CR,AW ,0HI)
Write policy

{vi(L,J) AMIN1 (CR,AW ,BS) |

Yes
: Write po]icy/L—J
No

CALL SEARCH
V(L,J)=AMINI (CR,AW ,TSTAR)
Write policy




100

.

NI =NI -KSAMSI Z
TI=TI -SAMSI Z (NK)

WEw

—— RI =R+FLOAT (J)-1.0 |

@ | Reject is optimal for
rest of policies

Calculate re]at1on(3 45)
with n =SAMSI Z (NK)

/ Write poh‘cy]

X
J=J+1

_<>

Ne—
( 99 CONTINUE Ok

(: STop :)
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SEOGRAM AAYESG ( INPUT OUTPUT s TAPES=INPUT (TAPE6=CUTPUT)
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PROGRAM BAYESS (INPUT ,0UT PUT »TAPES= INPUT ,TAPE6=CUTPUT)
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