

AN ABSTRACT OF THE THESIS OF

Jose Cedeno for the degree of Master of Science in Computer Science presented on
September 9 2010.

Title: Motivating Programmers Through Karma Systems

Abstract approved:

Carlos Jensen

Keeping FOSS developers motivated is a challenging problem, and their motivation
levels can affect the team’s productivity and satisfaction, leading to higher or lower
productivity. Using reputation systems as a motivator has become the de-facto
standard for many online communities, rewarding user’s activity through badges of
honor or achievement levels. Few open source software communities have
successfully used a well-rounded reputation system to motivate developers, instead
rewarding only one or a small set of activities. Very little research has been done in
the area of using reputation systems to motivate people to increase their
participation in open source software projects. This thesis studies Beaversource; a
mix of code-hosting and social networking available to students, staff and faculty at
Oregon State University, and our experiment with reputation systems as a means of
motivating programmers. A survey was sent to 1,100+ Beaversource users at
Oregon State University to gather demographics, and data on the use of
Beaversource. One hundred users responded. Based on survey feedback, a
reputation system was put in place. After the karma system was available to users,
five students were interviewed to gather more information regarding their
satisfaction with Beaversource and the karma system. Users reported that the
reputation system worked to motivate them. Interviewees would like to see the
karma system expanded with better icons and increased participation in the social
networking side. Students also requested more flexibility in the karma system such
as ability to affect each other’s karma and give special badges to members of their

project.

©Copyright by Jose Cedeno
September 9, 2010
All Rights Reserved

Motivating Programmers Through Karma Systems

by
Jose Cedeno

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented September 9, 2010
Commencement June 2011

Master of Science thesis of Jose Cedeno presented on September 9, 2010.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

[understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Jose Cedeno, Author

ACKNOWLEDGEMENTS

[would like to take this opportunity to thank my Major Professor, Carlos Jensen for
all his guidance and support during this project. I am thankful to the rest of my
committee: Paul Paulson, Timothy Budd and Kipp Shearman for providing insightful

feedback and comments regarding my project.

It is thanks to the support of my wife, Marilyn, that I was able to get through tough
days at school. She was the one that kept me going and pointed me in the right

direction instead of letting me take the easy route.

[appreciate all the help from my friends: Victor, Helen, Claire, Jen, Vignesh and
everybody else in the HCI research group at OSU. Thank you guys for all the help

and feedback you provided me during my thesis project.

A special thanks goes to my parents and siblings who always pushed me to keep

going forward. [wouldn’t be here if it wasn’t thanks to my family support and love.

DEDICATION

[dedicate this thesis to the love of my life, my wife Marilyn, who never failed to be
by my side during the tough times of this thesis project. | wouldn’t have been able to

finish this project without your strong love and support at home.

TABLE OF CONTENTS

Page

59U oo Y 16 Uot o) o 000 OO 1
1.1, DEfiNITIONS ottt sss bbb bbb 3
LIterature REVIEW ... ssessnns 6
2.1, FOSS iN EAUCAtION cocueteereeeeseesetsseseesesssssesssssssss s sssans 6
2.2, FOSS COMIMUNITIES ocveerecercereceessessesssssssessessssssessess s ssss s sssssessesssssssesssssssessesssssssessesses 9
2.3. FOSS Development ENVIFONMENT........ceeeeesererseessesssssssesssssssesssssssessssssssssssessens 12
2.3.1. FOSS vs. Proprietary Worldeessesssssessssssssssesssessssssssssessees 14
2.4. Communication Within PrOJECES ... sesssssssessessens 15
2 0 S 1 (PPN 15
2.4.2. MailiNg LISES cooieurrrieriesseesseessessesssessesssessssssssssesssssssssssssssssss s ssssssssssssssesssessssssasssssens 16
G T =1 (o o PPN 17
1 < TP 18
ST 511 = 1 ¢ Ul) o PPN 19
2.4.6. SOCIAl NETWOTKS .o riurerirreeireieersiseessssssesssss s s sssssss s sssssssssssssssassssssans 21
2.5. Karma/Reputation SYSTEMSceernermeesessesssessssssesssssssesssssssesssesssessssssssesssessens 22
2.5.1. COMPELItiVE SPECLIUM ... vvuiruierreeseesserrerssesssesseessssssssssess s sssssssssesssessssssssssssessees 24
2.5.2. NAMEA LEVEIS ...oreererrrereeretssesrisessssisssss s sssssssssss st sssssssssssassssssans 26
2.5.3. NUMDEred LeVelS..... e sssssssesssesssesssssssessees 27
2.5.4. Points Reputation Patterneeessssssesssesssessssssssesssesssssssssssessees 28
2.5.5. Collectable AChIEVEMENTS.......c.veueerererreesseesseessssssesess s sessssssssssssessens 29
2.5.6. Ranking Reputation Patternnsesssssssessesssessssssssssessees 29
2.5.7. Karma systems and FOSS.......oissssessssssssssesssesssssssssssssees 33
2.6. Karma Systems and FOSS NEWDIEScourmemerneernnienemsssssessssessessesssessssessesssessens 36
2.7. Karma systems as a means of contribution moderationccereneerreerseereenn. 36
2.7.1. Problems with Karma Systems as a means of moderationcocoueen. 39
2.8. Reputation Systems outside Of FOSS......onessesessesssesssessssssessens 40

2.9. Disadvantages of Reputation SYSTEMScoueernernmremeessnssessssessessesssesssssssssssessens 41

TABLE OF CONTENTS (Continued)

Page

S FR O A L 013 O PSPPSR 45
3.1. Collaboration between Departmentseeeeeeesssessessesssesssesssssssssssssessans 45
3.2. Code/Projects in BEAVEISOUICEcocuermeesneeseeesesssesssesssssssesssesssssssssssssssssssssssssans 46
3.3, S0CIal IN BEAVETSOUICEevrernermeeseeseersssssssssesssessssssssssesssessssssssssssesssessssssssssssssssssssssans 48
4. MethodOlOZY OVETVIEW ...ceieieeeeressesssesssessssessesssessssssssssssssssssssssssessssssssssssesssesssssssesssssssens 51
4.1. ReSEArCh QUESTIONS ...curiereerreerrereesseesesseessesss st s bbb ss s saes 51
4.1.1. RQ1: Can a karma system boost activity in the site?.........omrreereenneens 51
4.1.2. RQ2:Is it possible to reward social activity through karma badges?....51
4.1.3. RQ3: Can a karma system reward multiple types of activity fairly? 52

N) o) PPN 52
5. Karma Implementation ... sssssssssssesssessssssssssssessssssssssssssssssssssssssans 60
ST R D 1= =5 o PSPPSR 61

ST 00 N 2 - 1 = 4 s VPSP 66

ST D 1o =) (0] 0] 0 (=) o Lo PSSR 68
5.2.1. FirSt ItEratioN .mcescescesecsseessessesseesssssessssssssssssssssssssssssssssssessssssssssssssssssssssssssssssassssnses 68
5.2.2. SECONA ItEratioN cuuucueeeeeeereeseeseeseessesseesessssssesssssssssessssssessessssssssssssssssssssssssssssssassssnsas 69
5.2.3. Third [EeTation ...ceeereeseeseesscesessesssssssssesssesssses 70

TS TR < ot 0o F-1 1 PSPPSR 71
5.4, PIOCEAUIES ...oreueereretsessetseessessesse et ssssss s ssss bbb st 71

6. RESUILS ottt 73
6.1, SUIVEY i 73
6.1.1. DeMOZraphiCs ..o sesssssssssssssssssssssans 73

O T/ 010 404 010 (1<)l U] 76
6.2.1. Beaversource EXPEriencCe ... 80

(TG TR § 0 1<) 00T 1= £ TP 87
6.3.1. RESPONSES .ttt 88

7 D) ES 01 0 £ (0) o L 91

TABLE OF CONTENTS (Continued)

Page

7.1. RQ1: Can a karma system boost activity in the Site? ... 91
7.2. RQ2:Is it possible to reward social activity through karma badges? 92
7.3. RQ3: Can a karma system reward multiple types of activities fairly?............. 93
7.3.1. SeXISt DAAZES ..cveurerrersrerseesessessesssessssssessssssssss s ss s s s ssssssssssaas 94
7.3.2. Cheating the Karma SYStemMccuremremeneesssssessesssessssessesssessessssssssssssssssans 95
7.3.3. Should karma degrade over time?eeenesessesesssssssssssssessans 95
7.4. FOSS and Karma SYSLEIMScueerereesessseessessssssesssesssesssssssssssessssssssssssssssssssssssssans 96
7.5. Beaversource's Karma Implementation........eesesseeesssessssssssessnns 98
7.5.1. Badge NAMEScovrriereereerersessessessssssssssssssssssessssssssssssess s sssssssesssssssssssssssssssssssans 98
7.5.2. NO OPE QUL cooreererirriesseesseessessesssesssessssssssssssssssss s ssssssesssess s sasssssessssssssssssssssssssssssns 98
7.5.3. No good place to Showcase badges.......ccenemrenreneneensesnsensssnsessessesssssesseens 99
7.5.4. Rewarding Quantity instead of QUAlity.......cconmrmereenrernmeesessesrseersessesseeenee 99

LS T 0003 Uol 1D ES) (o) s PP PPN 101

LT 2 o) V(0= 1= o) o | 0P PPORON 103

LIST OF FIGURES

Figure Page
Figure 2.1 FOSS Community Layers (Crowston & Howison, 2005)ccccouenernmernneenens 10
Figure 2.2 YDN's reputation and competitiveness matching (YDN Reputation

L L) o ST 0 PPN 24
Figure 2.3 Named Levels (YDN Reputation Patterns, 2010).......ccouenernmermeeseesseersmerseenens 26
Figure 3.1 New Project Request FOIm ... 48
Figure 5.1 Ohloh's karma displayed in users' profile (Ohloh, 2010)....cccccseereernrerrreennens 61
Figure 5.2 Launchpad's Karma page for a user (Launchpad Karma, 2010)cccoceuu... 63
Figure 5.3 Launchpad's identifying lable on user profile (Launchpad Karma, 2010)

... 63
Figure 5.4 Elgg's Vazco Karma Settings Page.......ccueenmieneeneesnesssssssesssesssessssssssesssessens 66
Figure 6.1 Major/Department breakdOWoeenerneenieseseeesssssssesssesssessssssssesssessens 75
Figure 6.2 Social Networking sites used by respondents (multiple choice question)

... 79
Figure 6.3 What code hosting sites respondents use (multiple choice).........cccouurreunnee 79
Figure 6.4 Why do survey respondents use Beaversource.........s 83
Figure 6.5 Average usefulness and importance of Beaversource Features.........c.c...... 84

Figure 6.6 What features need improvement?.........oeeemeseesssssssessesssesssesssssssesssessens 86

LIST OF TABLES

Table Page
Table 3.1 TTaC fEALUTES ... sses s bbb ssss bbb 47
Table 3.2 EIgE FEAtUIES......oceeeeeeiecisessesssesssessssessssssssssssssesssssssssssssssssssssssssssssssssessssssssssassssnens 49
Table 4.1 List Of SUIVEY QUESLIONS ...ccuueereerersreeseesseessesssesssesssessssssssssssssssssssssssssssssssesssssssssssssssens 53
Table 5.1 Actions rewarded by Karma system and the motivation behind them.......63
Table 5.2 Number of users with badges in live Site........eneeeessesseeens 67
Table 5.3 Categorized set of badges in second iteration. ... 70
Table 5.4 Additional karma badges implemented in third iterationccuenreenens 71
Table 6.1 Demographics SUMMATYoceeeeeseesessesssessesssssssssssssssessssssssssesssessssssssssssesssens 73
Table 6.2 Hours the user spends on a cOMpUter eVery day.......eeeseesssessessnens 76
Table 6.3 How many friends people have in BEaVerSoUICe.......oeneomeenesnseseessesseennes 76
Table 6.4 How often people interact with friends and groups in Beaversource.......... 77
Table 6.5 How often respondents use code hosting and social networking sites......78
Table 6.6 Beaversource membership SUMMATYceeemeeesssssessssssesssesssessessens 80
Table 6.7 How often people USe BEAVEISOUICEcccreeeeereeseeseessesssssssesssesssessssesssssssessens 81
Table 6.8 Group and project MemMbErShipP......eeeeseses s 82
Table 6.9 How many projects people Delong t0......oeeenreneneessessessesssessseesssessessens 82
Table 6.10 How many groups people Belong t0......oeemiemeneessesssessessessseesssessesens 83

Table 6.11 Are the social and code hosting parts well integrated?.........ccoveennerrneenens 85

Motivating Programmers Through Karma Systems

1. Introduction

“Free open source is a development method for software that harnesses
the power of distributed peer review and transparency of process. The
promise of free open source software is better quality, higher reliability,
more flexibility, lower cost, and an end to predatory vendor lock-in”

(0SI, 2010)

As defined by the Open Source Initiative (http://opensource.org/) quote above, free
open source software can be thought of as a philosophy for writing programs or
working in groups. The term free open source software (FOSS) was first applied to
software in 1998 in a Usenet forum (FOSS, 2010). In 1998, Eric Raymond, a free
open source advocate, helped Netscape plan their release of the Netscape browser
as free open source software, that at the time caused quite a commotion as no other
company had yet given code away (Revolution OS, 2001). This event and others to
follow, as well as free open source advocates asking people to adopt the term,
increased the use of free open source software (Teaching Open Source, 2010). FOSS
gained even more momentum when the government of Peru used the term to pass a

bill that would promote the use of FOSS across all its bodies (Pogue & Day, 2004).

More than 12 years later, since it’s first use, free open source software, often
referred to as FOSS, can be found in desktop software, including office productivity
suites; web browsers; financial software; operating systems; web servers; and even

in consumer electronics like smart phones, televisions and mp3 players.

FOSS communities can create work that rivals any proprietary solution. Wikipedia
provides a great example of how a huge online community can come together to

rival printed encyclopedias. Firefox, a web browser, and Apache, a web server, are

2

two FOSS projects whose online contributors have come together to rival Microsoft

products (Luther & Bruckman, 2008).

If FOSS projects are to compete with proprietary programs, they need a new influx
of members and contributions. One method to accomplish this is to motivate
programmers through reputation systems. Karma systems, also known, as
reputation systems are a set of achievements, labels or points used to motivate
users while showcasing their progress or contributions in a community. The
purpose of this thesis project is to investigate how karma systems can be used to
motivate community members. This study looked at how a karma system impacted

a code community (Beaversource) at Oregon State University (OSU).

Before Beaversource (a mix of code-hosting and social networking) was set up at
0SU, there was no place for students to practice and learn how to use FOSS tools like
SVN, bug tracker, wiki or reading large code bases. A year and a half after it’s launch,
this community has grown to 1,250 users, 304 code projects and 83 groups. Thanks
to Beaversource, students have better learning opportunities, but the site was
lacking more user interaction with peers outside of their projects or close knit

groups.

There were several factors behind the motivation of adding a karma system to
Beaversource, one of them being to help users and projects identify good people to
work with and collaborate in projects. Promoting good behavior in the system by
rewarding users each time was a key factor during the karma system
implementation. Another goal behind the karma system is to strike a balance across
a variety of activities by rewarding all activities fairly. Last, I wanted to nudge users
to explore the community site a bit more and use features that they may not have
used otherwise. To achieve these goals, a set of research questions was formulated,

as presented below.

RQ1: Can a karma system boost activity in the site?
RQ2: Is it possible to reward social activity through karma badges?

RQ3: Can a karma system reward multiple types of activities fairly?

To answer these questions, my research project consists of conducting a survey to
gather information on the community and putting in place a karma system to
address some of the problems identified by the survey results. To verify survey
results and query student’s satisfaction with the karma system, interviews were

conducted.

It is my hope that this thesis can help employers identify students with FOSS skills
and experience; aid universities so they don’t have to reinvent the wheel; and help
FOSS projects learn how to design reputation systems that reward multiple types of

activities.

The rest of this thesis is organized as follows. Chapter 2 provides a literature
overview of FOSS in education, FOSS communities and karma systems. Chapter 3
describes FOSS at Oregon State University and how Beaversource is used. Chapter 4
provides a methodology overview. Chapter 5 describes the karma implementation.
Chapter 6 analyzes the survey results and interview responses. Chapter 7 discusses

the findings of the study. Chapter 8 concludes this thesis.

1.1. Definitions

Below is a list of commonly used terms throughout this thesis.

Bug Tracker
Bug trackers are pieces of software used by almost all FOSS projects to keep track of

bugs in their software.

Code-Hosting Site
Sites such as Google Code and SourceForge that can host a website, bug tracker,

code repository, wiki and mailing list for coding projects.

Commit Access
Before developers can share their code to members using a central repository, they

need to be granted permission or commit access.

CVS/SVN
A centralized source control management that developers can use to keep track of

changes made to a project.

IRC

Internet Relay Chat or IRC is the main method of communication that many FOSS
projects use. It is used as a broadcast group messaging service organized by
channels. People connect to an IRC server using a client in their desktop machine

that allows them to read messages posted to the chat room as well as post messages.

IRC Bot
As defined by Wikipedia, “An IRC bot is a set of scripts or an independent program
that connects to an Internet Relay Chat as a client, and so appears to other IRC users

as another user.”

Karma Reputation or Reputation Systems
A set of achievements, labels or points used to motivate end users while showcasing

their progress or contributions in a community.

Lurking
Idling, instead of participating in a discussion. Users may not be knowledgeable, feel

confident or have time to engage in the discussion.

Proprietary Software
Programs usually developed by companies who are closed source and not open to

the public for examination. People

Revision System
A tool that allows developers to keep track of the history and changes made to a
project. People can provide messages each time they commit a new set of changes,

as well as merge changes made between two people.

Sybil Attacks
This is where a user with multiple accounts in the system coordinates actions to

increase his/her karma points.

2. Literature Review

This chapter will provide a review of the literature available on FOSS in education,
FOSS communities and karma systems. First the use of FOSS in education will be
described, followed by FOSS communities, their structure and the motivation behind
them. Next will be a description and comparison between the FOSS and proprietary
development environments. Next you’ll find the issue of communication within
projects and how it’s currently addressed. The chapter will end with a description of

reputation systems, and why they are important for FOSS projects.

2.1. FOSS in Education

Moodle (http://moodle.org/) and Mahara (http://mahara.org/about) are two

examples of how FOSS can be used to support educational institutions (K-12 as well
as higher education) without students and faculty realizing they are using FOSS.
Moodle allows educational institutions to host their online courses and websites
and it’s actively developed by people across the globe. Mahara was initially funded
by New Zealand’s Tertiary Education Comission’s E-learning Collaborative
Development Fund to provide an ePortfolio system that was learner centered.
Moodle and Mahara can also work together to empower teachers to provide online
courses and information to students, as well as showcase students’ projects and

progress throughout the years.

Besides providing backend support, FOSS is also used in academia to enhance
student’s learning by providing them with real world experience and exposing them

to new challenges, allowing them to grow. One example of this is the Sahana project.

Sahana (http://sahanafoundation.org/), a FOSS disaster management system,

solved common coordination problems like finding missing people, managing

volunteers and tracking camps. It was developed in 2004 by Sri Lankan volunteers

7

to aid the volunteers during the 2004 Tsunami. Ellis and Morelli (2006) from Trinity
College reported on their experiences using Sahana as an experiment to better the
undergraduate Computer Science curriculum (Ye & Kishida, 2003). They explored
the use of Sahana to teach free open source software development while motivating
students to make a social contribution to the community, by donating their

expertise, time and efforts in making the software better.

The use of Humanitarian Free Open Source Software (HFOSS), such as Sahana, to

strengthen the CS curriculum of Trinity College was successful,

“Like most CS students, we had never been contributors to FOSS, and
working on Sahana was something of a revelation. Typical
programming assignments begin with a blank screen. But in this
context, there was a huge repository of pre-existing code, so writing a
new page almost inevitably involved modification of an old one. At first

surprising and later gratifying ...”

Students were able to learn more about documentation and why it was important;
how to write better self-documenting code; stress and complexity of real-world
development environments, and built professional contacts, by having to travel and
work with developers from companies such as Google and Microsoft. Due to the
success of the program, Trinity College along with Wesleyan University, Connecticut
College and Oregon State University, formed the Humanitarian FOSS Project
(http://hfoss.org/) to create a community of academic computing departments, IT
corporations, local and global humanitarian volunteers, and community
organizations dedicated to help the spread the use and development of FOSS to

better humanity.

The Association for Computing Machinery (ACM) computer curricula
recommendations, based on surveys and feedback received from industry found
that students who had just graduated with a Baccalaureate degree needed more
experience in: testing, debugging and bug tracking, code reviews, release
management, source control principles, team work and, experience working with
large poorly documented pieces of code (ACM, 2008). The IT industry began to take
special note of students who had FOSS experience and had done internships with
companies in the industry, as well as students who had done a project for their class

work or research.

The IT industry recommendations to the ACM and their impact are seen throughout
university curricula where students are exposed to FOSS methodology and tools.
For example, OSU’s Open Source Lab does a great job of giving students real world
experience with system administration of servers that provide support to FOSS
projects (About OSU OSL, 2010). At the same time, students also get to write code
for FOSS projects, if funding allows. The University College Dublin, in Ireland, has a
similar FOSS lab, where they provide students, staff, faculty and enthusiasts with a
place to collaborate and develop FOSS by providing them with backup and code-
hosting services (OSL University College Dublin, 2010). Oregon State University has
the Open Source Education Lab (OSEL), a group with the sole purpose of helping
students at OSU get involved with FOSS (OSU OSEL, 2010). Stanford’s Open Source
Lab focuses on making sure that the knowledge people produce and consume at
Stanford is available to the public through mechanisms such as: open workshops,
open access publishing and software development (Stanford Open Source, 2010).
Harvard Forge provides students, faculty and staff at Harvard with code-hosting
services, such as wiki, bug tracker and code repository. Clarkson University has an
Open Source Institute that provides students with equipment and support for them
to work on FOSS projects, as well as provide a place for them to experiment and

learn.

FOSS tools and their use are also making it to the classroom’s curricula. For

example, at OSU students are exposed to tools such as wikis and revision control

(https://secure.engr.oregonstate.edu/classes/eecs/spring2010/cs419-

003/index.php/Main/HomePage) in their 300 and 400 level CS classes

(https://secure.engr.oregonstate.edu/wiki/CS-411/index.php/Main/HomePage).

These tools are fundamental and basic when it comes to collaborating in projects
and doing code development. Students in engineering and IT related fields should be
exposed to them as early as possible and be extremely fluent and comfortable with

them by the time they graduate.

In 2007, Su and Jodis did an experiment where they provided students with an
integrated team software development environment that was composed of Eclipse,
an Integrated Development Environment (a program to edit code with), project
build tools, SVN, bug tracker, continuous integration tools (monitors changes and
compiles code) and a mailing list (Su et al., 2007). Students were required to install
the software in their computers and instructors configured the software in servers.
This made for an easier introduction to FOSS for the students. Instructors found that
students were better prepared and could mimic standard industrial development
environments using FOSS. One challenge identified by Su and Jodis was the need to
develop better documentation and guidelines to lower the learning curve for

students.

2.2. FOSS Communities

Free open source software (FOSS) projects depend greatly on the people using the
software. This group of users form a community that contributes to each FOSS
project by helping with testing, reporting bugs, providing support, helping with
documentation, promoting projects by talking about them and making donations.
Most FOSS projects begin with one or a handful of developers working on an idea to

“scratch an itch,” as explained by Eric Raymond (Raymond, 1992). “Scratching an

10

itch” refers to the practice of addressing issues or problems experienced by the
programmers themselves, thus “scratching an itch”. Even though end users do not

help with code, they play a key role in FOSS development.

Ye and Kishida, (2003), explain that FOSS projects form a community around them
with a hierarchy that resembles that of an onion (Figure 2.1) (Crowston & Howison,
2005; Ye & Kishida, 2003). At the center of the community are the project leaders
that in small projects could be just one person. In larger projects, the center could be
comprised of a release manager, project leaders or a committee. This layer is often
smaller than the outside layers. The project leaders are in charge of determining the
direction of the project, releasing new versions, freezing code to fix bugs, and doing

community outreach.

Project Leader
Core developers

Co-developers

Active
Users

Passive users

Figure 2.1 FOSS Community Layers (Crowston & Howison, 2005)

Outside of the project leader layer is the core developer group. It consisted of people
with commit access to the project. They are a set of experienced developers who
close bugs, review patches submitted by other community members and co-
developers. Core developers have a very detailed understanding of the code and are
able to work on core-features. This group also provides feedback to the project

leaders on where the project should be going.

11

Co-developers are a set of community members who don’t have commit access to
the project. They actively work on small features or bugs that affect their daily usage
of the program and submit their code in the form of patches to core-developers.
They have a good understanding of select areas of the code, but may not be familiar
with the full code base. For example, the bulk of contributions to the Linux Kernel
are made by non-core developers who submit a one-time patch

(http://lwn.net/Articles /222773 /). Co-developers also help with documentation

and end user support, to take the load off core-developers.

The active users layer is made up of users who are tech-savvy. They actively
participate in the online discussions in forums, mailing lists and IRC channels. They
begin by asking simple questions, but as time passes and they gain more knowledge
and pay it forward by taking care of easier support tasks, thus taking the load off co-
developers. Users in this category help test beta and alpha releases of software and
help test out new features by submitting bugs. Due to the size of this group, they are
able to use the software in conjunction with a great variety of hardware
combinations that developers typically don’t have access to, or they help with

software configurations that developers wouldn’t have imagined.

The last layer, passive users, is made of users who just download the software and
don’t participate much in the community. This group also contains the ‘lurkers,’” or
people who join mailing lists and online forums, but stay in the back listening, but
never participating. There is no way to estimate the size of this layer because

passive users are able to download the software from many websites.

This analogy of layers is still commonly accepted by the FOSS community and has
been observed by many other researchers, such as Crowston and Howison

(Crowston & Howison, 2005), who found that the structure of a FOSS project can be

12

strictly centralized as in Figure 2.1 or de-centralized in which there are multiple
sections that operate separately as separate instances of Figure 2.1. Each layer of
the onion was larger than the layer inside it. FOSS communities increase the number
of people in each layer by having users from the outer layers move into inner layers.
For example, a person may begin as a passive user, but then transition into the
active users groups by increasing his/her participation. This user then starts
submitting patches and becomes a co-developer, and after contributing to the
project for some time, and proving his or her worth, this co-developer receives the

role core developer

A healthy influx of new users can help ensure that a project lives on even as core
developers leave a project. End users can become more knowledgeable about the
project and a few of them start joining the group of co-developers. This is why
understanding the motivation behind FOSS developers, and how end users can be
enticed to increase their contributions and move into the inner layers, is critical for

the survival of FOSS projects.

2.3. FOSS Development Environment

Before we can understand what motivates FOSS developers, we need to establish
what it is that they do on a daily basis, what tools they use, and how their

environment differs from a regular proprietary development.

FOSS development has changed over the last three decades, and there’s no one-size-
fits-all description for FOSS projects or their environments (Revolution 0S, 2001;
Raymond, 1992). There are big companies, such as IBM, working on free open

source software for their products

(http://www.ibm.com/developerworks/opensource/), and they support kernel
developers to make sure Linux runs well on their hardware. Then there are big to

mid-size hobby projects, such as cyanogenmod (http://www.cyanogenmod.com/),

where the core developers work on the project during nights and weekends. There

13

are also thousands of small projects, on sites such as Google Code
(http://code.google.com/), SourceForge (http://sourceforge.net/) and GitHub
(http://github.com/), made up of one or two developers working on their ideas.

The development of a FOSS project can be centralized; people working on FOSS in
the same building, or it can be distributed; people on different continents working
on the same project. Even though some core developers may work in a central
location, the tools used for development and communication are de-centralized by
nature to make it easier for co-developers to work remotely. It is this requirement
that promotes the use of tools such as: IRC channels, wikis and mailing lists. This
distributed model provides some flexibility not usually found in commercial
software development. Developers can work in the comfort of their home, while on

a plane, or in the middle of the night. (Ellis et al., 2007)

Most projects have a web portal where users and developers can check on the latest
activity of the project. For example, SourceForge (Sourceforge 2010; Halloran T. J.,
2002), provides a dashboard page that gives developers a general overview of what
changes have been made since the last time they visited the site. FOSS programmers
have to keep track of many things at once, such as patches from co-developers,
updates from other projects, and active users’ feedback. Having a dashboard-like
system makes it easy to view the activity of a project in the last week, 24-hours or
month, which makes it easy for them to get an overview of what’s going on project-

wide.

Developers use source code control systems, such as CVS, SVN or Git, to generate
patches and commits, and to share their code contributions with the rest of the
team. Along with a source code control system comes a code viewer such as:
ViewCVS, Cgit, CVSWeb, and WebSVN, that provide a Graphical User Interface (GUI)

to show changes in the code.

14

2.3.1. FOSS vs. Proprietary world

Motivation is an obvious difference between the FOSS and proprietary development
world. At work, your boss tells you what project or features you have to work on
and the motivation is most likely monetary. On the other hand, FOSS developers
typically volunteer their time, and are more likely to spend their evenings on
something that they enjoy doing. Some people are proprietary developers during
the day and FOSS developers on nights or weekends (Crowston & Howison, 2005;
Ye & Kishida, 2003).

Proprietary developers applied for a job and proved their qualifications through
their resumes and the interview process. FOSS developers proved their worth by
submitting patches and participating in the community, catching the attention of
others. In FOSS communities, your educational background and experience don’t
matter as much. You can be a teenager in high school, a college student or somebody
who has been working in industry for decades and receive the same treatment

(Raymond, 1992; Revolution 0S, 2001).

The set of tools that FOSS developers and proprietary developers use to write code
are similar. One main difference is due to the different communication needs.
Proprietary developers often work in cubes and have white-boards at meetings and
face-to-face technical discussions. Instead of having to use IM people can just walk
over and ask a question. In proprietary development, roles are typically formally
defined; the development team, the Ul design team, the testing team, etc., and these
need to collaborate This means that proprietary developers depend heavily on
calendar and email applications to manage meetings (Crowston & Howison, 2005).
In contrast, FOSS developers usually adopt multiple roles in their projects, and
developers often have ad-hock meetings in IRC or have to schedule meetings at

random times of the day so that everybody can be present.

15

2.4. Communication within projects

FOSS projects are found all over the globe, as are developers and project members,
so effective communication is a basic requirement. Communication tools and their
use by FOSS projects can shed light on the project structure and hierarchy, as well as

affect design and development decisions.

2.4.1. IRC

Internet Relay Chat, or IRC, is the main method of communication for many FOSS
projects. FOSS projects often create a communication channel and designate people
to help moderate it. Big FOSS projects such as Mozilla and Gnome have their own
servers, while others use shared servers such as Freenode to communicate. There
are also FOSS projects that have an IRC channels for developers and for users, as
well as channels for languages other than English (Teaching 0SS, 2010; Open Source
as Programming Experience for College Students, 2002; Halloran T.]., 2002).

IRC channels provide a great avenue for asynchronous communication. It is not
unusual for people to keep their IRC client open all day. This can lead to the
response time seeming extremely slow. On the other hand, during heavy traffic
hours it can be almost impossible to keep track of all the communication as four or

more simultaneous conversations can be going on at the same time.

As pointed out by the Kernel Newbies community, IRC is a great way to get started
with FOSS development, learn about a new project, start discussions, and
brainstorm (Kernel Newbies, 2010). Lurking or idling in a IRC channel helps new
members get to know the developers, the active members in the community, and to
learn more about the current project, by reading the various questions and
discussions in the channel. Eventually some of the lurking members may become
active members by joining discussions or helping newer members, who have come

asking for help.

16

Some FOSS projects log and publish IRC conversations on the web for both future
reference and to allow members to catch up on conversations they may have
missed. IRC bots are common in many IRC channels and provide automated
functions such as: answers to simple questions, bookmarks to FAQs and
documentation, logging functionality, and more advanced tasks, such as granting
users extra privileges when they first enter the channel. These extra functions allow
the user to moderate discussions, update the topic of the channel, ban people and
many more administrative type tasks. Not all channels welcome bots since the
scripts that make up a bot can also be used for spamming users. These malicious
bots can create unwanted increased traffic on some networks (Teaching Open

Source, 2010; IRC, 2010).

Using IRC comes with an unexpected learning curve for new users. “Can I ask a

»n »n «

question,” “Is anybody here,” “Can someone help me” are common questions asked
by new users not realizing they are breaking a common IRC channel etiquette. This
etiquette and other rules are explained in the channel topic, but the topic scrolls by
very fast when the users first join the channel. Depending on the tolerance level of
the IRC channel, users may be taught the rules, or get kicked out of the channel for
breaking the rules. This can put off new users who may find these interactions rude

and unfriendly (Teaching Open Source, 2010).

2.4.2. Mailing Lists

Often used in addition to IRC, or as a replacement. Code hosting sites such as
SourceForge, Launchpad and GoogleCode offer mailing lists for the projects they
host (SourceForge, 2010; Google Project Hosting, 2010). Mailing lists are a great tool

for asynchronous communication in FOSS projects.

When it comes to mailing list software, there are various options: Mailman, Google

Groups, Majordomo, and Ezmlm. Some FOSS projects have one mailing list for

17

developers and a separate one for end-user support/help requests. Bigger projects
can have language-specific support mailing lists. Mailing lists are great places for
discussions and some projects, such as the Linux Kernel heavily encourage new
developers to send patches (bug fixes to a program) to the mailing list to receive
feedback and review (Halloran T.]., 2002). Some discussions can be very heated and
generate a lot of comment from developers and end-users. Passionate users can
have heated discussions, often referred to as “flame wars” that can span hundreds of
messages. A FOSS developer can easily get hundreds to thousands of emails per day,
thus the sheer volume of emails may lead FOSS developers to opt for a separate
email for mailing lists or filter to parse through the mailing list traffic (Teaching

Open Source, 2010).

As noted above, it is not uncommon for users to lurk in mailing lists. Some of them
join mailing lists to receive notifications and choose to respond only if the topic
“scratches an itch,” or they are able to help with the project in some way (Raymond,
1992). Some FOSS mailing lists and their logs are open to the public in order to
encourage participation, discussions and collaboration with the community
regarding new features, bugs and implementation. Some mailing lists are private
and open only to a select group of core developers. For example, the Apache project
discusses security issues on a private mailing list instead of a public one (Halloran T.

J., 2002; Teaching Open Source, 2010).

Some mailing list software such as Google Groups can be hybrid and act as both a
forum and mailing list. This provides greater flexibility to those who may want to

participate in a discussion, but don’t want to sign up for mailing lists.

2.4.3. Blogs
Blogs are commonly used by FOSS projects to reach the community and provide
them with news and updates for the project. Depending on the size of the project,

the blog may be managed by either a developer or a community manager.

18

Besides a project blog, many FOSS developers have a separate personal blog that
acts as a gateway for social interaction with community members and peer
developers. Aside from personal updates, FOSS developers may mention upcoming
project developments and FOSS bugs/tasks that they are working on. The blog
entries made by FOSS developers are usually professional, in-depth and with
enough detail to get feedback and foster discussion with community members
(Teaching Open Source, 2010). Commonly, developers will post screenshots of
updates in order to get feedback during the early stages of the design process.
Eventually these screenshots and postings are turned into documentation in the

form of wiki pages.

Big FOSS projects, such as PHP, Phython, and Ubuntu, aggregate the blog posts of
their developers using a software program called Planet. Planet was first developed
for Gnome and Debian and creates a unified blog page sorting the posts from most

recent to least (Planet, 2005).

2.4.4. Wiki

No other piece of software embodies community work and collaborative web
development like wikis do. Wiki is probably most well known for Wikipedia, a set of
online encyclopedias which viewers can contribute content/edits/references. As
described by TrackWiki, “the main goal of the wiki is to make editing text easier and
encourage people to contribute and annotate text content for a project” (Trac Wiki,
2010). Besides enabling fast edit/revise cycles, wikis provide an easy to use revision
system. Viewers can use this revision system to compare changes made to an article,
revert changes, and track page edits to the user who made the changes. Wikis are

flexible and don’t impose any structure on content creators.

MediaWiki is the most popular wiki software because it’s easy to setup, scalable, and
powers the most visible and successful wiki, Wikipedia. There are other wiki

engines as well, including Redmine, TracWiki, and PmWiki. Wiki engines vary on the

19

language that they are written in such as PHP, Python, Ruby and others; as well as
how data is stored, either by database or file system. None of these differences affect
the end user as much as the wiki markup language used. In order to write
paragraphs, unordered/ordered lists, tables, and links, the end user must memorize

the markup language or rules used by the wiki (How does Mediawiki work?, 2010).

FOSS projects use wikis extensively for documentation, status reports,
brainstorming, meeting minutes, and conversation logs. They allow FOSS projects to
harness the power of its community. In small FOSS projects, developers are usually
the ones to write wiki pages. As the project becomes more popular, developers
switch to writing more of the barebones-type wiki page, describing an upgrade or
installation process, then advanced end-users write more of the documentation and
article details. Many big FOSS projects have dedicated documentation teams that
write wiki articles; update existing documentation pages and review contributions
made by other community members after checking for accuracy and correctness

(Teaching Open Source, 2010) .

As a method of communication, wikis affect FOSS projects because their content is
usually more permanent, with fewer changes as in mailing lists, IRC or blogs. Even
though wikis make content more accessible to users, the quality of its content
depends greatly on how involved the FOSS community is with contributing and
checking the accuracy of the information (Riehle, 2006). A wiki, through its revision
history, can easily show the people most involved in documentation, as well as how
active or stale the wiki content is. Participating in documentation is one of the
easiest ways for new members to get involved with an FOSS project (Luther &

Bruckman, 2008).

2.4.5. Bug Tracker

A bug tracker is usually a website, accessible to all users in the community, where

any community member can post a bug, request a new feature or a task that needs

20

to be completed. Bug trackers are an important channel of communication because
each bug acts as a mini mailing list, were members post comments and hold
discussions. Some bugs are easily resolved, while other bugs can take dozens or
hundreds of comments before they are closed. Code-hosting sites like SourceForge
and GoogleCode offer bug tracking as one of the essential tools for developers. There
are a great variety of bug trackers available; some examples are: Mantis, Trac,

Redmine, and GNATS (Halloran T. J., 2002; Teaching Open Source, 2010).

Most bugs have the following fields: title or summary, description, priority, status,
owner, reporter and attachments. The only required fields when submitting a bug
are the summary and description of the bug itself. Most bug tracking systems will
automatically set a default status and priority to the bug and set the name of the
user who reported the bug. The status of a bug can be: new, assigned, resolved or
closed. The attachments section of a bug allows a user to submit logs, screenshots or
other relevant information regarding the bug. Power users can take advantage of
the attachment field and submit a patch or propose a fix to a bug. This allows non-
core developers, without commit access to a project, to submit patches and code to a
community. Core developers post comments in the bug providing feedback to the
patch. They eventually close the bug and include the fix, if it is appropriate (Halloran
T.]., 2002).

Bug trackers become a to-do list for developers, but unfortunately the bug list can
often be disorganized. Part of the reason for the disorganization is that many new
users post ‘me too’ responses to bugs, making useful information hard to find (Ko &
Chilana, 2010). It is often the case that there are more bugs than time to fix these,
and thus getting the attention of a developer who can fix a bug is important for the
person who reports the bug. FOSS developers have pointed out that there’s a big gap
in the knowledge of bug reporters. Some bug reporters are rude or sarcastic in

comments or don’t provide enough information with their report. These hinder

21

their chance of having their bug fixed. On the other hand, more experienced users,
or community members who have good reputations, will draw attention to a bug
because their names are associated with the bug. Sometimes bugs will be used to
argue the case for a feature, or to debate on the importance of a use case or scenario

(Ko & Chilana, 2010).

In successful FOSS projects, the group of people fixing bugs is larger than the group
of core developers, and the group of people reporting bugs is larger still (Crowston
& Howison, 2005). This shows that bug tracking is a crucial piece of communication
in the FOSS ecosphere. The people fixing the bugs must understand what the people
reporting the bugs are trying to communicate. A good bug report usually contains
the answer to three questions: what are the steps to reproduce the problem, what
did you expect to see, and what did you see instead? After a bug has been reported,
it is usually assigned to a developer in the project. The bug then becomes like a hot-
potato. The developer assigned to the bug must fix the bug, provide comments, or
reassign the bug to someone else. The person who closes the bug should be the
same person who reported it. This helps ensure that the bug fix is tested within the

same conditions as it was reported (Spolsky, 2010).

2.4.6. Social Networks

Social networking sites such as Twitter and Facebook, known as great tools for
keeping in touch with family and friends, are starting to creep into FOSS projects as
well. Many times community managers and developers will use their facebook
and/or twitter accounts to send updates, as well as links to news/blog posts, to their
followers. This becomes an instant and non-obtrusive way for FOSS core members
to reach the community. FOSS Developers use social networking sites to rant, ask for
immediate feedback and share thoughts from other community members, in

addition to keeping tabs on developers’ projects (Ohira et al., 2005).

22

2.5. Karma/Reputation Systems

Reputation systems, also known as karma systems, use metadata regarding a user’s
online activity, including: number of posts/photos/friends/files/and other online
data; helpfulness of the posts; length of membership; and many other metrics. These
metrics are then used to give points or labels to the user. The user can then be
ranked or compared against other online members to assess activity (Harper et al,,

2007).

Ebay’s successes during the early parts of 2000, was due to their reputation system,
known as the Feedback Forum. After each transaction, the buyer and seller could
rate each other and leave a comment. Due to the success of reputation systems in

sites such as Ebay, karma systems started to pop up in other areas of the Internet.

Before reporting why reputation systems help motivate and build trust among
strangers, it is important to look at how people build trust outside of the Internet.
Axelrod studied and wrote on the evolution of cooperation, provided insight into
human interaction over long periods of time (Axelrod & Hamilton, 1981). In his
1984 paper, he observed that people who interact over a long period of time take
advantage of previous interactions, to learn each others abilities and dispositions.
The expectation of reciprocity, or retaliation, in future interactions worked as a
motivator for good behavior. Axelrod coined the term, “shadow of the future”, to
describe the expectation that people will take into account previous experiences in

the present.

When two strangers interact online they can be tempted to not hold their end of the
bargain (Resnick et al., 2000; Axelrod & Hamilton, 1981). Reputation systems
provide feedback that helps build the trust historically generated over long-term
relationships. Buyers and sellers can leverage their online reputations to get higher

prices or better services in a community (Resnick et al., 2000).

23

Karma systems have become a popular method to motivate participation in online
communities. The Yahoo Developers’ Network (YDN) patterns library, focuses on
reusable user interface patterns. One set of the YDN patterns provides an excellent
insight on reputation systems. These the reputation patterns have advantages,
disadvantages and their own biases which help decide when it’s appropriate to use

them (YDN Reputation Patterns, 2010).

24

Caring Collaborative Cordial Competitive Combative
\, % ’I.W a .Q\‘t
("\ y T
Goals
Members are Member goals are Members have their Members share the Members share
motivated by largely shared own intrinsic same goals, but must opposing goals: in
helping other ones. Members motivations, but these compete against each order for one
members - giving work together to goals need not other to achieve them. member to achieve
advice, solace or achieve those conflict with other these goals, others
comfort. goals. members' goals. must necessarily be
denied their own.
Use Reputation to...
Identify senior Identify community Show a member's Show a member's Show a member's
community members with a history of level of history of
members of good proven track-record participation, that accomplishment, that accomplishments,
standing, so that of being trustworthy others may geta others may including other
others can find partners. general sense for acknowledge (and members' victories
them for advice and their interests, identity admire) their level of and defeats against
guidance. and values. performance. them. Reputation is

used to establish
bragging rights.

Represent Reputation with...
Accept volunteers Use Named Levels Consider Statistical Allow easy Let a member track
(of good standing) to communicate Evidence to highlight comparisons between her own progress by
from the community members' history a members' members with assigning Point
to wear an and standing: contributions: just Numbered Levels. Values to different
Identifying Label: members with show the facts and let Provide actions. Rank
'Helpful' or 'Forum higher ranks should the community decide mini-motivations by members against
Leader'. New be trusted more their worth. awarding Collectible each other,
members can trust easily than Optionally, Top X Achievements. displaying winners
these folks to help newbies. designations can and losers.
initiate them into highlight members
the community. with numerous valued
contributions.
Example Communities
e Y! Health * Wikipedia « Yahoo! Answers « Y! Fantasy Sports « Xbox Live
Expert Blogs « Yelp « Slashdot
e Ebay

Figure 2.2 YDN's reputation and competitiveness matching (YDN Reputation Patterns, 2010)

2.5.1. Competitive Spectrum

As pointed out by YDN, the first element to identify before putting a karma system
in place is the competitive spectrum (see Figure 2.2),
“The degree of competitiveness of a community depends on the

individual goals of community members, the actions they engage in, and

25

to what degree inter-person comparisons or contests are desired.
Articulating the community's competitiveness can help the designer of a
reputation system determine which specific reputation patterns to
employ.”
If a karma system is introduced into a community without thought it may cause
more harm than good. The chart in Figure 2.2, provided by YDN, establishes various
levels of competitiveness and what reputation pattern best aligns with the

competitive needs of that community (YDN Reputation Patterns, 2010).

As pointed out by a blog post in XOXCO entitled “I love my chicken wire mommy”,
people who design online communities must invent methods to continually reward
and motivate the behavior they want to see in their community (I love my chicken
wire mommy, 2009). In his post, Ben Brown describes how Consumating.com’s
reputation system caused havoc in its online community and failed to motivate the
behavior that organizers wanted to see. Some community members, who were very
competitive, obsessed over acquiring points instead of providing value to the
community. Consumating.com allowed people to take points away and thus new
members could have higher karma than older members. Consumating.com
displayed charts and information regarding a person’s karma, but they were not

very useful.

In a blog post from the HorsePigCow, a blog dedicated to social networks and their
inner workings, Miss Rogue, the owner of the blog, stated, “The health of a
community is the gauge of where various qualitative and quantitative metrics lie in
relation to the goals you set.” This blog emphasizes the importance of identifying the
various qualities and behaviors that are to be encouraged in a community. The next
step is to define a list of metrics to measure these goals (Metrics for Healthy

Communities, 2007).

26

2.5.2. Named Levels

The next reputation pattern
as described by YDN, is
“named levels” (see Figure

2.3), where there is “a family

of reputation levels on a

progressive continuum. Each

level is higher than the one Figure 2.3 Named Levels (YDN Reputation Patterns, 2010).
before it” (Metrics for
Healthy Communities, 2007). The labels are designed to make the reputation system
more attractive to community members. This type of reputation system is best
suited to help users identify who has more experience in a community, as well as
higher quality contributions. Named levels are meant for communities who are
slightly competitive, but not highly competitive. The progressive continuum of
named levels makes it easy for users to keep track of their progression to the next
level that they can achieve. Some recommendations for this reputation pattern are:

* Use easy to understand names. Clarity is more important than fun and

cryptic names that new members may not understand;
* Use fun names, for the levels related to themes of your community; and
* Add alevel at the high end to motivate users with high karma scores to

achieve a level they have not yet reached.

The next reputation pattern is “numbered labels”. Some people may find labels to be
offensive. New community members may misunderstand the meaning of the named
levels and can be thrown off by them. Some examples of named levels are: Yahoo's
EU Sports forums and World of Warcraft. Yahoo’s EU Sports uses gold, silver and
bronze in their forums to indentify the quality of the member’s contribution to the
game. World of Warcraft uses named levels (revered, honored, friendly and neutral)

to specify reputation between clans.

27

2.5.3. Numbered Levels

The numbered levels reputation pattern is similar to the named levels pattern. The
main difference is that instead of having names in a progressive scale, a set of
numbers is used. Each level is referred to by its number, making comparisons
between levels easier (Metrics for Healthy Communities, 2007). This pattern is
suited for communities who are interested in:

* Users tracking their own growth in the community;

* Having a large scale such as World of Warcraft that has 70 levels;

* Making comparisons between levels easy; and

* Trying to encourage competition between community members.

YDN recommends keeping the scale to no larger than 10 numbers to start, with
higher levels to be added later on if needed. During user testing YDN found that
some users reacted very strongly towards numbered levels, and stated that they felt
as if graded, and they found the system to be cold and impersonal. This indicates
that numbered labels must be applied to a community with care. An example of a
successful community using numbered levels is World of Warcraft, where a user
keeps track of his or her progress through the levels, and as a reward for achieving

higher levels, the user has access to more exclusive content within the game.

Identifying labels or badges is the next pattern mentioned by YDN, is a set of
reputation labels that, unlike named/numbered levels, are not sequential. The labels
in this pattern are meant to help identify and reward community members for
specific behaviors or qualities desired by the community, such as
"perhaps they've excelled at one particular skill that the community
values; perhaps they are official representatives for the community or
an affiliated organization; perhaps they have volunteered to be a helpful
resource for others in the community" (Metrics for Healthy

Communities, 2007).

28

It is also common for this type of reputation system to reward points to a user based
on actions that other community members perform towards the user. For example,
if a user clicks a thumbs up to rate a comment, the author of the comment should get
points for that action. This reputation pattern is best suited for identifying desirable
behaviors; allowing members to volunteer for roles and take on responsibilities
within the community, reflecting that the user has been validated by the community
as a trusted 3rd party; and any community without regards on how competitive
they are. This pattern is used by FOSS forum software such as Mybb
(http://www.mybb.com/) and PHPBB (http://www.phpbb.com/), and thus by

many of the FOSS projects using this software. When a community is using this
pattern, YDN recommends to :
* Allow people to have more than one label, for example: developer and
documentation team; and
* Allow users to apply for the identifying labels and to make the labels more

exclusive.

Yelp, an online community where people rate restaurants and other venues, has an
'Elite Squad' label to help identify the most active and influential users. Yahoo
Answers, an online community where people can post questions and get answers,
provides a top-contributor badge to visually highlight members who actively

contribute in discussions.

2.5.4. Points Reputation Pattern

The points reputation pattern's goal is to keep track of the cumulative number of
points a community member has earned. The points are earned by performing
specific actions within the community. This pattern is best suited for communities
that are highly competitive, and where members want to easily compare their
progress against peers. YDN recommends using points as a supplemental reputation

pattern, where the points are not the main indicator of a user's reputation. For

29

example, using: Yellow Belt 3 instead of Level 3 for a user's reputation in a martial
arts community. As pointed out by YDN, the focus of points is to reward
performance rather than activities (in a game site, a user would earn a point for
winning a game rather than playing a game). The one exception to this
recommendation is when a user performs an activity for the first time and he/she
gets a reward. Some examples of communities using point-based reputation systems
are: Yahoo Answers, Xbox Live Gamerscore, eBay Feedback Score, and Amazon

Seller Feedback.

2.5.5. Collectable Achievements

As YDN mentions, “Collectable Achievements may seem silly or trivial, but they can
have an addictive quality that may compel your users to explore parts of your
offering that otherwise might not appeal to them” (YDN Reputation Patterns, 2010).
It is recommended that when setting up this type of reputation system, you design
attractive and exclusive badges and trophies, and making it easy for users to save
and display them. Another YDN recommendation is to lock some of the badges so
that they are only available after you have earned the more basic collectible
achievements. Just as with the points system, it is helpful to assign collectible
achievements for first time achievements. The key to collectible achievements is to
make them exclusive. Basically a small secondary set of badges should be easy to
achieve for new members, but not too many. An example of successful collectible
badges is XBox Live, which awards gamers with exclusive badges for completing

tasks within games.

2.5.6. Ranking Reputation Pattern

The ranking reputation pattern as described by YDN as split into two smaller
patterns: leaderboard and top x. The leaderboard is meant to display a fixed ranking
of top competitive community members, such as a top10 (YDN Reputation Patterns,
2010). The ranking karma pattern is designed to make player-to-player

comparisons relatively easy within highly competitive communities. Ranking

30

reputations are not meant for use with community-based activities that are not
competitive in nature. It is useful to provide multiple leaderboards such as: top
competitors of today, this week, this month, year and of all time. Leaderboards are
not for everyone though. The following comment was posted by ShadeHunter in an
online gaming forum,
"I 'mentioned this in another thread, but it bears repeating.
Leaderboards don't work. Even if you get past the Timmies and the
cheaters, the people at the top of the boards are just the ones who have
the most time on the game. If you didn't get GoW on launch day and you
aren't willing to spend 40 hours a week online, you won't ever be at the
top of the board. I wish they'd get over the whole ranked/unranked
thing and just let us play the game" (Problems and Cheaters Curb
Stomp Emergence Day, 2009).

A similar dissatisfaction was present with Amazon's classic leaderboard, as pointed
out by Joshua Porter in a blog post where he talks about Amazon's #1 book
reviewer, "Klausner is apparently trying to game the system so she keeps her
position. In a world where building social tools like this is becoming more common
every day, Klausner is diluting the value of her reviews just for personal gain. While
nobody is going to get too upset over less-than-helpful reviews, the larger, longer
effect is that if she's merely writing them to keep her spot, she's not writing them for
the right reason. Amazon's social design should incentivize her to write valuable

reviews, not allow her to write them without value" (Porter, 2010).

The second ranking reputation pattern, top X, “groups contributors numerically by
performance, and acknowledge top performers for their superior achievements. Top
10, 50 and 100 are some commonly used groupings" (YDN Reputation Patterns,
2010). This pattern is recommended when communities want to distinguish top

contributors and help them serve as examples for people in the lower ends of the

31

top x scale. By using top X, you are trying to motivate people, who are good
contributors, to model the behavior of heavier contributor members. YDN suggests
that this pattern is made specific by providing separate top x buckets/placeholders
for different categories of a community. For example, top 5 documentation
contributor and top 5 patch reviewer means there are 5 placeholders or positions
(1-5) in two categories: patch reviewer and documentation. Good examples of top x
reputation systems are Amazon’s Top Reviewers program and FBI's 10 Most

Wanted list.

Yahoo Answers, for example, is an online website where users can post questions on
a wide range of subjects, and community members provide the answers. The person
who started the thread, and other community members, can vote on the various
answers provided for each question. Users can then achieve higher rankings based
on how many useful answers they have provided. Also the more karma points a user
has, the more trust worthy his or her answers may appear. (Harper et al., 2007;

StackOverflow Badges, 2010; StackOverflow FAQ, 2010).

StackOverfow is a question and answer site where a person can ask a technical
question and get an answer from a huge community of technical experts. Each
person in the community can vote on an answer. The answer that gets the most
votes gets selected as the preferred answer. Users earn reputation points and karma
badges based on how many votes their answers get. The karma badges and
reputation points of a user are displayed in his/her profile page, along with his/her
profile picture. A graph of the user’s activity and reputation is also provided. In this
technical site, reputation and badges are a big draw and motivator. By making their
profile information public, the users make a name for themselves as well as prove

their expertise over other users in the community.

32

Motivation is important for FOSS projects, as pointed out by Raymond in the
Cathedral and the Bazaar. A FOSS project is never finished, only abandoned when
developers lose interest. The “release early and often” mantra proposed by
Raymond helps engage the community during the software-testing phase. End-users
help to find bugs, test early and provide feedback on the project, thus helping
developers and motivating them. FOSS projects that have motivated developers and
community members can sometimes see new bug fix updates/releases within the

same day or week (Luther & Bruckman, 2008).

A study conducted by Burke and Kraut at Carnegie Mellon University in 2008, found
that politeness could triple the reply count on technical messages. It was also noted
that perceived politeness varied from community to community. Thus language
greatly affected the motivation that developers and community members had when
looking at bugs and requests within the various communication channels. A good set
of communication rules, and polite language, greatly enhanced community

contributions and communication (Burke & Kraut, 2008).

One of the most basic problems that every online community must solve is getting
users to participate. Without participation, communities do not exist for very long.
Sending invitations to users to encourage them to participate in discussions
pertinent to their preferences was found to increase user participation (Harper et
al,, 2007). Many participants of online communities first started by lurking, and later
became more involved. Motivating new participants to become more involved was
important for the life of the online community. Many online websites and

communities have displayed in user profiles the user’s activity as points or karma.

Many websites and online communities provide users with a profile that usually
contains a name, email, city, country, user interests, likes, dislikes, hobbies, and

answers to other personal questions. A user profile plays a key role in making online

33

connections and friendships. When someone looks at a user profile for the first time,
especially if they know very little about that person, the information in the user’s
profile helps them to decide whether or not this new person might provide an
interesting connection. As researchers Dugan and Geyer found out in an experiment
conducted by IBM, people who had more interesting and diverse profiles were more

likely to have more friends (Dugan et al., 2008).

2.5.7. Karma systems and FOSS

Many times in FOSS communities, the reputation of a member depends on what this
user is able to give to the community in the form of code, documentation or support
(Raymond, 1992). The greater the contribution and time investment that a member
puts in, the greater recognition and reputation gained. As pointed out by Dawn
Foster in April 29t 2010, the community manager of Meego, a FOSS mobile
platform, there are no good metrics with which to quantify or compare
contributions of one type to another (Foster, 2010). Some communities may attach
more value to coding than documentation; other communities may value forum
postings and mailing lists traffic instead of IRC and lurking. The main problem with
karma systems is that they are not inclusive of everybody in the community and

creating a fair reputation system algorithm has many complexities (Foster, 2010).

The various roles of community members in a FOSS project include: end user,
committer, developer, and core developer. These roles resemble karma and
reputation systems, but the difference is that there is no visual distinction to
highlight the contribution of these members. Only people who are actively
monitoring the various channels of communication and code changes can see how a
project member moves up through the ranks, based on his/her contributions. The
project member then slowly starts to be taken more seriously during discussions

and brainstorming meetings (Foster, 2010; Raymond, 1992).

34

The Apache Software Foundation (ASF) uses a shared leadership model instead of
having a strong project leader. In ASF, there are six levels of increasing status and
reputation: developer, committer, project manager, committee member, ASF
member, and ASF board member (Apache Incubator, 2010). The level that a user
has in ASF demonstrates the user’s level of commitment to ASF. The higher the rank
in ASF the more power a user has. For example, when a user is a committer, he/she
doesn’t have to go through channels to have code reviewed before it’s accepted.
Instead, a user with committer status can submit code directly to the repository. In
higher ranks, such as ASF Board director, a member must be nominated and then a
vote has to take place before the person is given this reputation level. Not
surprisingly, this rank carries a high level of prestige and recognition within the ASF

community.

As mentioned by Marc Delisie, an active developer of PHPMyAdmin, a PHP frontend
to the popular FOSS mysql database server:

“Sometimes, coding and maintaining FLOSS is an ungrateful job’; I must

say that seeing my project's name (and my own name) on Ohloh gives

me an energy boost to continue the journey” (Ohloh, 2010).

Ohloh (http://www.ohloh.net/) is a community, a directory, and a wiki-like site that

documents statistics on both FOSS projects and users’ activity. A user can create an
account in Ohloh, create a new project and point that Ohloh project to the FOSS SVN
repository. Ohloh’s backend will data-mine and store information about the various
activities of the code repository. Ohloh displays this information in users’ and
projects’ profiles and calculates karma points for each user based on how active
he/she is in projects. Users can compare both themselves and projects, and see how

they stand in ranking.

In contrast to Ohloh, Launchpad (https://launchpad.net/) is a collaboration tool

that provides bug tracking, code-hosting, code reviews, ubuntu package hosting and

35

building, translations, mailing lists, answer tracking, and FAQs and Specification
Tracking. One of the features that make Launchpad unique is that it brings FOSS
projects together, regardless of the tools they use. Launchpad can hook into a FOSS
project’s repository and bug tracker, allowing developers and end users to work
together on inter-related bugs, thus helping the community track bugs that affect
various projects. Launchpad also calculates karma points and awards badges to
users by taking into account user actions, such as code commits, bug tracker activity,
translation, and providing support. Launchpad hooks into the tools of a FOSS project
and can thus provide a more accurate karma calculation. One of the interesting
approaches that Launchpad has brought to reputation systems is that karma points
decay over time. If you are not active in the community, you start losing points, thus
allowing new members to catch up with long-time members. This spin on karma
provides a more accurate representation of a user’s current activity level in the

FOSS community (Launchpad Karma, 2010; Launchpad Mailing Lists, 2010).

In IRC, people can get higher privileges, or a special cloak (a flag on their username),
to show they are not just any regular user. This allows them to manage a channel,
set a topic for a channel, ban users, and prevent users from talking to or kicking
users from an IRC channel. These special roles are displayed next to the username in
the channel, and is a visual symbol recognized throughout many channels (Teaching

Open Source, 2010).

[t is common to see FOSS communities keep track of karma or reputation points, but
focus on only one aspect of participation, such as forum activity, rating comments or
code commits. For example, many FOSS forums, such as Ubuntu and Gentoo, keep
track of the number of posts and their quality. This is usually provided by the forum
software used (MyBB Feature Tour, 2010). Other forum software allows end users
to give each other karma if the user has provided helpful comments or great insight.

Launchpad is the only FOSS site that integrates multiple types of contribution when

36

calculating karma points. Launchpad takes into account forum comments, bug

tracker activity, code commits and more (Launchpad Karma, 2010).

2.6. Karma Systems and FOSS Newbies

The health and long-term survival of FOSS projects depends on their ability to
motivate and attract new developers (Raymond, 1992). People who are interested
in self-development are motivated by the learning opportunity and challenges
presented by FOSS projects and this helps keep them engaged and wanting to
contribute more (Hutson, 2008). Unfortunately not everyone is motivated by self-

development.

One strategy for attracting new users and motivating existing ones is to identify
easy-to-fix bugs or to document problems to attract new developers. Many FOSS
projects do this, which helps direct new developers’ attention to introductory tasks
and thus build recognition in the community by performing several easy tasks
(Google Summer of Code, 2010). FOSS projects such as Linux Kernel Newbies
focuses on helping programmers, who are interested in kernel development, learn
the ropes. The Linux Kernel Janitors project focuses on going through the kernel
source and doing clean ups, code reviews, fixing unmaintained code and various
other tasks. Beginning programmers, who start by doing these low level tasks, can
receive recognition in the kernel mailing lists and get noticed by the amount of work

and contributions they provide (Kernel Janitors, 2010; Kernel Newbies, 2010).

2.7. Karma systems as a means of contribution moderation

Big online communities and FOSS projects get a lot of traffic and contributions in the
form of comments to postings, new bugs, and wiki page submissions. These often
have a problem with scaling content moderation. The task of filtering and flagging
invalid or inappropriate content becomes too much to handle for core members
(Lampe & Resnick, 2004). Communities have tried fixing this problem by using

automatic methods that look at post frequency, length of post, number of links and

37

keywords in the post. These methods are helpful, but have shortcomings in that they
aren’t able to catch all trolls, a person who posts inflammatory or extraneous
information to disrupt conversations, or off-topic discussions. Online communities
often have moderators who monitor content to ensure users abide by community

standards.

A study done by Lampe and Resnick, in 2004 at the University of Michigan found
that in big online forums, such as Slashdot, some posts got little or no attention from
moderators, and moderation mistakes would take a long time to be reversed, or not
be reversed at all. In order to mitigate some of these problems, Slashdot created a
moderation system based on karma points. Each post on Slashdot can have a rating
from -1 to +5 and the default score of a post is set to +1. Posts from anonymous
users have a rating of 0. Slashdot users earn karma by participating in the
community through moderating comments, reading comments, and posting
comments that get a high or low score. Posts from users with high karma start with
arating of +2. Users with low karma have posts starting at 0 or -1. Moderators can
then browse the list of posts and either increase or decrease the rating of a post.
Slashdot users can achieve the title of moderator by having a high karma score. Even
with a karma-based moderation system, Slashdot still relies on a paid staff to act as

meta-moderators to ensure that moderators are giving fair ratings to users’ posts.

Lampe and Resnick observed certain problems with Slashdot’s karma-based
moderation system. Moderators were influenced by previous ratings by other
moderators, and they were more likely to stay silent if they disagreed with the
review. Posts made by users who had no karma because they were anonymous were
more likely to end up with low scores. Postings made towards the end of a
discussion were more likely to get less attention and it took longer to find hidden

gems in the comments. Even though the karma based moderation system had its

38

flaws, it was necessary due to the scale of the site. Meta-moderators agreed with

moderators 92% of the time (Lampe & Resnick, 2004).

In Wikipedia and other sites that depend on community contributions, users can
have different roles, such as readers, editors, administrators, recent changes
patrollers, policy makers, subject area experts, content maintainers, software
developers, system operators and more. Most people begin with the role of editor or
uploader and after they have mastered that role, they can apply to other roles. The
path to achieving administrator status depends on the wiki, but in the English
Wikipedia it goes up for a vote. Anybody can vote and if the approval is 80% or
more the person gets accepted, between 75%-80% it is up to the bureaucrat. If the
acceptance level is less than 75% the person is rejected. People’s expectations of
users in an administrative role is high, such as having a minimum of 3,000 edits,
being with the community longer than three months, and not having received any

disputes regarding their contributions (Riehle, 2006).

The roles in Wikipedia come with responsibility and tasks that need to be taken care
of. Sometimes the roles are not enough motivation and, as in the case of German
Wikipedia, some authors try to become featured authors by getting their work
posted on the homepage, thus receiving more recognition from the community. The
German Wikipedia struggles with quality assurance, and to address these problems,
users try to delete new articles that are not relevant or that don’t meet quality
standards. To motivate existing editors and content submissions, the German
Wikipedia recognizes people who make good contributions with an ‘excellent
articles’ label. They also attempt to motivate other editors by highlighting their
work in a section called ‘collaboration of the week.”’ The German Wikipedia has
talked about implementing reputation systems to help control the quality of articles
and edits, but nothing has been implemented, even though people have shown an

interest in this.

39

With the increasing amount of user-generated content on sites such as YouTube and
Wikipedia, the problem of preventing vandalism, spam and providing incentives for
quality content increases (Chatterjee et al., 2008). A separate approach to
moderating large amounts of user-contributed content in Wikipedia was explored
by Adler and Alfaro, who suggested a content-driven reputation system. The basic
concept of their system was that users who had contributions that survived a long
time, gained reputation. On the other hand, users with short-lived contributions lost
reputation (Adler & Alfaro, 2007). Chatterjee and Alfaro further studied some of the
issues with content-driven reputation systems. One of the vulnerabilities of these
systems was to sybil attacks, where a user with multiple accounts on the system
coordinated actions to increase his/her karma points (Chatterjee et al., 2008). The
authors argued that content edits that required no effort such as additions or
deletions of arbitrary text, were not useful. Also splitting contributions into multiple
complex edits should not increase a person’s karma any more than if the article had

been edited just once.

2.7.1. Problems with Karma Systems as a means of moderation

Another online community that has a huge flux of content are peer-to-peer (P2P) file
sharing sites. Studies have shown that many of the files and content shared in P2P
networks is mislabeled or corrupted, thus wasting bandwidth (Walsh & Sirer, 2005).
Some P2P networks use karma-based systems to mitigate this problem and help
users decide whether or not to trust the content they are about to download.
Unfortunately, karma alone can not help distinguish between good or bad content.
One approach used to solve this problem, as described by Walsh and Sirer, was to
use votes, in addition to karma-based systems. Karma systems occasionally get
abused by users originally posting good content, but who later post mislabeled or

corrupted content.

40

Kerschbaum published a paper that explored issues with users trying to suppress
their low ratings. The author focused on protecting how a user was rated versus
who rated the user by using a private feedback system where the ratee and the
reputation system did not know the rating. This helped foster more honest and
coercion-free ratings. To prevent users from attacking or misusing the system
(leaving bad feedback on purpose to harm a person), people could only leave
feedback after a transaction and verifying their identity. The approach suggested by
Kerschbaum was to not relate a user rating to any one person. In other karma
systems a person receiving a bad rating could threaten the rater with negative
ratings in return. In the system proposed by Kerschbaum, ratings were public, and
only updated after a new batch of ratings were provided. This prevented the rated
from checking their ratings before and after a transaction to learn how a transaction

affected their rating (Kerschbaum, 2009).

2.8. Reputation Systems outside of FOSS

Even though, there hasn’t been much published research on reputation/karma
systems in FOSS, these systems have been used for decades outside of FOSS and
have become popular in online communities. As discussed before, websites such as
Yahoo Answers and StackOverflow allow people to post questions, and community
members post answers. People earn badges by answering question correctly or by
having their answers marked as useful. These sites keep a leaderboard and display
the badges that users earn (StackOverflow FAQ, 2010; StackOverflow Badges, 2010).
The Boy Scouts of America started the merit badge program in 1910. In this
program scouts learn about crafts, trades, sports, science and future careers and
earn related badges along the way. There are more than 100 merit badges to be
earned, and each badge has a set list of requirements that need to be fulfilled before
the young scout can earn the badge (Boy Scouts of America - Introduction to Merit

Badges, 2010).

41

Foursquare and HomeRun are two companies harnessing the power of mobile
devices’ GPS, social networking and badges to motivate people to explore their
neighborhoods and local businesses. Each time a person visits a participating
business, the user checks in using an application in his/her mobile phone to earn
points towards badges that can translate into rewards. On Foursquare, the person
with the most points earns the badge of “mayor” for that business and gets
discounts by showing his/her badge to the store clerks. Once a user has earned
enough points or has checked-in frequently, they are eligible for higher discounts
and savings. On HomeRun, people share daily tips and savings applicable to
participating businesses. These systems, combined with social networking, motivate
people to collect and compete for badges with their friends while getting extra

savings and discounts (McCarthy, 2010; FourSquare, 2010; HomeRun, 2010).

The Huffington Post has a badge system to motivate and encourage members to
share their online activities with friends by connecting their Huffington post account
to other social networks. The networker badge is given to users after they connect
their Huffington Post accounts to either Facebook or Twitter. The superuser badge
is given to readers after they have commented on stories and shared the stories or
commented on others via social networks. The moderator badge is achieved once

readers flag at least 20 comments online.

2.9. Disadvantages of Reputation Systems

Hoffman studied the various attack and defense techniques against online
reputation systems (Hoffman et al., 2009). He observed five different classes of
attacks: self-promoting, white-washing, slandering, orchestrated, and denial of

service.

Self-promoting involve attackers who change their karma by falsely increasing it.
This technique exploits reputation systems that take into account positive feedback

(Hoffman et al., 2009). The target of the attacker is the karma formula, but they also

42

exploit other weaknesses in the system related to the calculation of karma points.
Similarly, sybil attacks, where a user with multiple accounts tries to coordinate
actions to increase his or her karma points (Chatterjee et al., 2008). This increase in
karma points can later be used to perform activities that benefit the user at the
expense of others in the community. Members of online communities also carry out
self-promoting attacks by teaming up and providing dishonest reports for each
other to increase their karma (Resnick et al., 2000). Self-promoting attacks can be
stopped by only allowing feedback after successful transactions. Such a reputation
system prevents people from rating each other too often if they only interact with a

limited set of the community (Chatterjee et al., 2008).

The second type of attack is white-washing, where a user exploits a weakness in the
system to repair his/her reputation. Once the attacker’s reputation is repaired,
he/she returns to doing malicious behaviors. Friedman and Resnick, used game-
theory analysis to find the limitations of reputation systems when people were
allowed to start their reputation over through the use of a new identity. People with
no feedback or little history online are typically not trusted as much by peers. One
solution to this problem is not allowing people to change their identities, use real
names or use once in a lifetime online pseudonyms (Friedman et al., 2000). Karma
systems that focus only on negative feedback are vulnerable to this type of attack
because people who are relatively new to the community have similar reputations

to people with positive long-term behavior.

With slander type attacks, one or more community members falsely provide
negative feedback about other members of a community. Reputation systems that
don’t verify the origin of the feedback are particularly vulnerable to this type of
attack. Fear of retaliation through negative feedback prevents users from leaving
negative feedback. People with unsatisfactory interactions online have a strong

desire to keep things simple and try to prevent future negative and confrontational

43

interactions, thus keeping negative online experiences quiet. As discussed before,
this issue is mitigated by updating reputation points in bulk after five to ten new
pieces of feedback have been received (Chatterjee et al., 2008), (Hoffman et al.,
2009). Depending on the type of community and the monetary value of a good
reputation, slandering attacks can be very harmful toward a company’s ability to sell
its product and earn a customer’s trust (Pavlou et al., 2005). A defense against
slandering attacks is to verify that feedback is tied to a certified customer
transaction and this prevents users from assuming multiple online pseudonyms

(Friedman et al., 2000).

Orchestrated, is a type of attack where attackers orchestrate their efforts to combine
several of the previous attack strategies (Hoffman et al., 2009). Different members
in an online community take turns performing a type of attack and when their
karma gets too low, they attempt to repair it. Once the attacker’s karma is repaired,
they switch roles and perform a different attack strategy. The orchestrated types of
attack are harder to mitigate because community members could be providing
negative karma towards a party they are not related to at all. To defend against
orchestrated attacks, strong reputation systems need to be in place to prevent
groups from repairing their karma. Also, the analysis of karma feedback needs to be
more thorough, to reveal relationship between parties that could be working

together.

The last type of attack identified by Hoffman, is denial of service. In denial of service
attacks, people focus their efforts on preventing the karma system from
disseminating or updating karma points. Reputation systems who rely on a
centralized server to distribute karma points, or information regarding users are the
most vulnerable to this type of attack. The best way to mitigate this issue was by

providing redundant methods to deliver karma information, or by having a

44

distributed delivery network where trusted users can deliver karma information to

the online community (Hoffman et al., 2009).

A different type of issue with reputation systems is lack of motivation. When people
left feedback online after a transaction, there is very little incentive to spend the
time and leave feedback regarding a seller. People who have a negative interaction
with a seller or buyer online are more motivated to fill out the feedback form and
leave information behind, regarding a transaction. Thus feedback online can often
be biased toward negativity (Resnick et al.,, 2000). Along with this drawback of
karma systems, in online websites such as Amazon and eBay, it is common for
buyers and sellers to negotiate and mediate bad experiences before leaving bad
feedback. As a consequence, it is mostly the really bad interactions and transactions

that get reported through feedback forms (Resnick et al., 2000).

Lack of portability of karma points between online communities is also a drawback
of most reputation systems. When Amazon.com first started their karma system,
they allowed users to import their eBay reputation history, to let users take
advantage of the work and effort they had put into building their eBay karma.
Shortly after providing this functionality, Amazon.com stopped letting users import
their eBay ratings, due to complaints from eBay that claimed their reputation

system was proprietary information.

Finally, displaying and visualizing the karma information to help users make
informed decisions is a task that is still hard to mitigate to this day. Most karma
systems online only let people provide a rating with preset values, such as 1-5, poor-
excellent. Yet these ratings fail to provide information about the person providing
the feedback, such as what their karma score is, how long they have been part of the
community, or whether or not the feedback came from a bad or relative simple

transaction.

45

3. FOSS at OSU

Oregon State University is one of the schools that provide the best FOSS related
curriculum. Students are exposed to FOSS tools in classes, or can gain experience
with FOSS at the Open Source Lab (OSL) or help spread the adoption of FOSS by
working with the Open Source Education Lab (OSEL). This chapter focuses on the

current state of FOSS and history of Beaversource at OSU.

3.1. Collaboration between Departments

With cuts in budget throughout Oregon State University, trying to do more with less
is the norm. In 2008, the College of EECS (Electrical Engineering and Computer
Science), UHDS (University Housing and Dining Services), Network Engineering
Team (NET), and CWS (Central Web Services) at O0SU were working on projects,
which could benefit from having a central place to share code and collaborate. The
people writing code needed a way to easily share their ideas and contributions with
each other. EECS was interested in having an area where students could work on
class, research and recreational projects, while gaining experience on how to use
project management tools, such as bug trackers, code repositories, wikis, and

forums.

There have always been many exciting groups and projects going on at OSU, but
students don't always know what's available or where to start to look for interesting
projects or groups to join. Information was usually spread by word of mouth, or
through groups that recruited from freshman classes. The closest thing to a catalog
was the list of student groups registered with Student Leadership and Involvement
(http://oregonstate.edu/sli/student-organizations/find-organization-you).
Research groups didn’t have to register through an entity at OSU, and students

discovered them through word of mouth, news stories or student group fairs. Except

46

for the various OSU communities in Facebook and other social networks, people

couldn’t find peers with similar interests at OSU outside of classes.

Many projects required expertise or help from different disciplines and
departments, but it was hard for staff and faculty to connect with students looking
for job/research opportunities. The closest thing was to search for 'jobs'

(http://search.oregonstate.edu/index.php?q=jobs&site=All), but there were

multiple sites at OSU posting jobs and there was no central hub.

3.2. Code/Projects in Beaversource

Our goal was to create an online tool where staff, faculty and students, within OSU,
could collaborate on projects together by sharing code, ideas and resources, while
using real-world tools like SVN, wiki, bug trackers, and project history. Many staff,
faculty and students within OSU had separate instances of these tools spread around
that weren't always up to date with security patches and, being isolated, they
couldn't share their work. Departments within OSU would develop programs, such

as Single Sign On (SSO, http://oregonstate.edu/cws/single-sign-sso-library), that

allowed people to authenticate using their ONID account, but if staff didn’t share
their modifications of these programs, other staff would end up reinventing the
wheel. When a new version of a program or library was updated, there was no way
for developers to notify other programmers on campus using the program to

download the new version.

In the spring of 2007, a couple of graduate students from EECS started to work on
sketches and prototypes of this centralized project repository and Beaversource
was born. The name Beaversource was chosen because it didn’t use a specific
technology in the name and the component ‘beaver’ branded it as an OSU project.

The ‘source’ component had to do with the code-hosting aspect.

47

We chose to use Trac (http://trac.edgewall.org/) as the foundation of Beaversource

because it integrated all the code-hosting tools needed in one package (see Table
2.1). Trac's functionality could be extended by downloading plugins from the web

(http://trac-hacks.org/) or by writing new ones from scratch. The various features

listed in Table 2.1 could easily be referenced from each other using shortcuts, and
wiki-style editing was part of the bug tracker. This was a superior solution to

running separate programs that wouldn't have integrated well with each other.

Table 3.1 Trac features

Needs Trac Provides
Wiki TracWiki
Bug Tracker Ticket System
Code Repository Can hook into svn or git to display
repository
Project Statistics Several plugins display statistics
Others Project Roadmap
Search
Reporting

There was a small problem to using Trac. It only supported one project per
installation. This wouldn't scale since it was possible that hundreds of projects
would be added to Beaversource and this would eventually create a maintenance
problem. Fortunately, there is a hack/work around to this problem
(http://trac.edgewall.org/wiki/TracMultipleProjects/MultipleEnvironmentsSingleD

atabase). Using PostgreSQL (http://www.postgresqgl.org/) as the backend database

and sql views, Trac could be tricked into thinking that there were multiple

installations, when in reality there was only one.

Various people from CWS, UHDS, NET, ONID and EECS worked together to get Trac
installed. In a matter of a few weeks, an early alpha version was ready for testing. A
simple page, listing the projects' names, descriptions, urls, and members was

created as well as an online management tool to process and accept project

48

requests. People had to enter their ONID usernames and passwords to gain access to
the request form (http://beaversource.oregonstate.edu/request/). Figure 3.1 is a
screenshot of the request form where users could enter a project name, short name,
description, owner, project members, purpose and license.

Project Request

Project Name

Short Name

A single word or acronym for your project. Using this,
the URL for your project will be:
http://beaversource.oregonstate.edu/projects/<short
name>

Project Description
A sentence or two descripting the purpose of this
project.

Owner cedenoj
ONID of the primary point of contact for
administrative information.

Owner Email cedenoj@onid.orst.edu
Email address for the primary contact person.

Purpose | Recreational ?}
If this project is for research, department, or a class

project, select one of the other options, else just

leave as recreational.

Project Visibility Publicly Visible Project

If your project is being produced with University Campus/VPN Access Only
resources in the course of your regular work, please | Project Members Only
confirm with the OSU Research Office that it is okay

for you to share it with the public.

Intended License Suggested Licenses
It is the responsibility of the project owner to Apache License 2.0

understand the license they select f.:i::.pzlifged BSD License (3 clause)

Microsoft Public License
Eclipse MPL BSD LGPL GPL Apache Lesser GPL

2.0 Eclipse Public License
Other Licenses

Figure 3.1 New Project Request Form

3.3. Social in Beaversource

We then decided to add social networking features to make it easier to find projects,
groups and people. By using social networking we wanted to make it easier for
people to keep track of groups and the projects they were working on. The social

side was meant to augment the code-hosting tools. While many sites like Google and

49

Sourceforge provided code-hosting, Beaversource is unique with its mix of social

networking and code-hosting.

Social networking got right to the heart of Beaversource's goal of helping users find
peers with the same interests. It also helped people keep track of the progress
friends were making on their projects. As students work on different projects
throughout their education, their profile pages became like a portfolio, showing the
projects and groups they have worked on. Future employers can look at students’

projects to see the code students have developed and to assess the students’ skills.

The social side also allows teachers to use Beaversource for some of their classes.
Teaching Assistants (TAs) use Beaversource to hold help sessions, answer questions
and communicate with students. Classes discuss homework, tests or other class
materials using forums. Teachers use the File upload functionality to add their

PowerPoint presentations online and they could also create regular webpages.

The social networking side was implemented using Elgg (http://elgg.org/). At the
time this was the only viable solution. Elgg is a social networking framework written
in PHP that provided the basic features needed (see Table 2.2) and could be
extended through the use of plugins. Alpha versions of Beaversource were based on

elgg 0.8.x

Table 3.2 Elgg Features

Elgg Features Helps toward goals

Blogs allow users to post in their blogs to make announcements
for their projects and share information with peers

User profiles allow users to have an identity in the site with name,
contact information, description and pictures

User Listings facilitates the browsing of peers and people to collaborate
in projects.

Groups helps users with similar interests create a place to gather.

Group Listings makes it easier to browse through projects

50

Forums

Teachers and students could have online discussions.

Friends

aids users keep track of peers with similar interests or
friends from classes.

51

4. Methodology Overview

To learn more about the needs of Beaversource users, a survey was developed. This
was the first time the Beaversource community had been sent a survey. This survey
was used to gather demographic information as well as learn more about the
motivation behind the use of the community site and its tools. This chapter will start
with a description and discussion of the research questions. Next an overview of the

survey will be presented

4.1. Research Questions

To tend to the goals this research project, as defined in the introduction chapter,
making it easier to identify good peers to work with; promoting exemplary
behaviors; balancing the motivating efforts across a variety of activities; and

nudging users to explore the site, three research questions were formulated.

4.1.1. RQ1: Can a karma system boost activity in the site?

With more than 1,200 users, Beaversource is capable of providing services to a lot of
students in the OSU community. Yet, site statistics show that many users don’t use
the site very frequently. I want to find out whether or not using game mechanics in
the form of a karma system can increase the user activity within the site. Is it
possible to get people excited about their karma badges and get them to want to

work hard so they can earn the next karma level?

4.1.2. RQ2: Is it possible to reward social activity through karma badges?

Beaversource has two components: code hosting and social networking. The code
hosting consists of code commits, bugs and wiki entries, which means it’s
quantitative by nature and easier to measure and reward. The social networking
side deals more with friendship connections and interacting with other people in

the site, which makes it qualitative and harder to measure. In the literature review,

52

it was shown that a couple of companies (Xbox and Foursquare) are successfully
using badge systems to motivate users. I want to know if a similar approach can
work in Beaversource. Motivating people to use the social networking could be hard,

but the benefits can enhance the user experience.

4.1.3. RQ3: Can a karma system reward multiple types of activity fairly?

The literature review shed light on a weak area of most karma implementations in
FOSS communities. Most reputation systems focus on just one type of activities and
try to reward these activities while ignoring other categories. Beaversource is a
diverse community where some people write code, interact with friends, work on
documentation or use it as a means of communication. [think achieving a balance
that motivates different categories of behaviors is crucial to not make users feel
excluded. Communities and projects value different types of contributions very

differently, which will make rewarding multiple types of activity fairly a challenge.

4.2. Survey

The first step to help us answer the research questions was to develop a survey. The
overarching goal of the survey was to establish a baseline understanding of
community member’s needs and to gauge interest in some of the features of the site,
such as social networking and code-hosting. The intent here was to see what areas
of Beaversource could or should be improved while using our limited resources
efficiently. With this being the first survey of the community, the questionnaire was
kept broad in order to gather as much information as possible. To motivate student
participation, users provided their email at the end of the survey to enter into a
raffle for a chance to win one of three $20 OSU Bookstore gift certificates. The online
survey was divided into three sections six demographics questions; five computer
experience and background questions and 15 questions regarding Beaversource

use. See Table 3.1, below for the full list of questions.

Table 4.1 List of survey questions

53

Demographics

Question

Answers

What is your gender?

Select one of the following
Male
Female

What is your age?

Select one of the following
18-24

25-34

35-44

45-54

55+

What is your status at OSU?

Select one of the following
Undergraduate student
Graduate student

Post Doc

Faculty/Staff

Alumni

Other

If you're an undergraduate student, what
year are you in?

Select one of the following
Freshman

Sophomore

Junior

Senior

If you're a student, please select your
major. If you're a staff or faculty, please
select your department.

Select one of the following
Long list of majors and departments

How many computer science classes
have you taken in college?

Select one of the following
0

1-3

4-6

7-9

10+

Computer Use

Question

Answers

Approximately how many hours a day do
you spend on a computer?

Select one of the following
Less than 1 hour

1-2 hours

3-4 hours

5-6 hours

7-8 hours

More than 8 hours

54

Do you use any of the following social
networking sites?

Please choose all that apply
MySpace

Facebook

Ning

Windows Live Spaces
LinkedIn

Twitter

Flickr

Last.fm

Beaversource

Orkut

[use no social networking sites
Other

How often do you use social networking
sites (excluding Beaversource)?

Select one of the following
Never

Rarely

Occasionally

Several times a week
Several times a day

Beaversourc

e Experience

Do you use any of the following source
code-hosting websites?

Please choose all that apply
Google Code

SourceForge

CodePlex

GitHub

Freshmeat

Apache Incubator

Beaversource

[use no source code-hosting sites
Other

How often do you use source code-
hosting sites (excluding Beaversource)?

Select one of the following
Never

Rarely

Occasionally

Several times a week
Several times a day

How long have you been a member of
Beaversource?

Select one of the following
I’'m not a member

Less than 1 term

1-2 terms

3 terms - 1 year

More than 1 year

55

How did you learn about Beaversource?

Select one of the following

Class

Email announcement

Word of Mouth

Barcamp

From a search engine or another website
Other

How often do you use Beaversource?

Select one of the following
Never

Rarely

Occasionally

Several times a week
Several times a day

Other

Are you member of groups or projects in
Beaversource?

Select one of the following

Member of a group

Member of a project

Member of both a group and a project
Neither member of a project or group

How many projects do you currently
belong to on Beaversource?

Select one of the following
0

1-3

4-6

7-9

10+

How many groups do you currently
belong to on Beaversource?

Select one of the following
0

1-3

4-6

7-9

10+

How many friends do you currently have
on Beaversource?

Select one of the following
0

1-5

6-10

11-15

16-20

21+

How often do you interact (contact
friends, post on their wall, or participate
in forums) with your friends or groups
on Beaversource?

Select one of the following
Never

Rarely

Occasionally

Several times a week

56

Several times a day

What are your current reasons for using
Beaversource?

Please number each box in order of

preference from 1 to 5

Class
Project

Social networking

Wiki/file hosting
Other

Rate the following features on Beaversource?
Please choose the appropriate response for each item:

Wiki Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
SVN web viewer for projects Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
Bug tracker in projects Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
Project statistics Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
History (wiki edits, commits, tickets) of | Usefulness: Importance:
projects Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
Project discussions Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

57

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
Group discussions Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
User’s profiles Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
User blog Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
File Uploads Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree
Commit code to a project Usefulness: Importance:

Strongly agree Strongly agree

Agree Agree

Neutral Neutral

Disagree Disagree

Strongly disagree Strongly disagree

Do you feel that the code-hosting tools
and social networking features are well
integrated?

Select one of the following

Yes
No

If you selected ‘No’ in the question
above, explain why?

What would you change in
Beaversource?

What features would you add to
Beaversource?

58

Which features most urgently need Please number each box in order of
improvement in Beaversource? preference from 1 to 11
Wiki

SVN web viewer for projects
Bug Tracker in projects
Project statistics

History (wiki edits, commits, tickets) of
projects

Project discussions

Group discussions

User’s profiles

User blog

File Uploads

Commit code to a project

If you would like to enter our raffle for a
chance to win a $20 OSU bookstore gift
card, please enter your email.

Before the survey was sent, it went through several revisions as suggested by the
research team. Questions were rephrased; links to more information were provided
and dependent questions were clustered to simplify the process for survey
respondents (only ask question B if question A's answer is true, etc.). A waiver for
signed inform consent was sent to the IRB office at OSU because it was not feasible
to collect user's signatures during an online survey. The inform consent was
displayed to users before they began the survey, and people had to click the 'l agree’
button before they could continue. The college of EECS had an installation of
LimeSurvey (http://www.limesurvey.org/), a popular FOSS survey software, which
was used to create the survey and code the answers to make analysis easier at the

end.

A mailing list was compiled using all the Beaversource community members' email
addresses from the Beaversource database. A script was developed to clear out and
remove users who were no longer part of the OSU community, most commonly
because they had graduated or moved on to other jobs. An email was sent out to the

Beaversource community, as well as the school of EECS, to invite users to fill out the

59

survey and to come and celebrate 1,000 users on Beaversource on Jan 14th, 2010
with cake and refreshments, where the survey was also promoted. A link to the
survey was additionally posted on the Beaversource homepage. By the end of

January 2010, we had collected around 140 survey submissions.

The collected data was cleaned and purged of incomplete data. There were a total of
151 submissions, but 51 of them were incomplete, meaning people didn’t go
through all the questions and hit submit at the end. The survey software,
LimeSurvey, showed blank rows for these incomplete submissions. The survey was
designed so respondents did not have to authenticate (enter a username or
password) and could not to start the survey, save it and come back later to finish it.
This could possibly have lead to the incomplete surveys. In order to assure the
user’s privacy and anonymity, metadata was not collected regarding respondents
who submitted incomplete answers such as their IP address or web browser. A total
of 100 valid submissions remained after the data cleaning process was completed.

The next step was to analyze the completed survey results.

60

5. Karma Implementation

In this section, we’ll describe the implementation of the reputation system for the
Beaversource Community at Oregon State University. We'll start by reviewing the
motivation behind it, then we’ll analyze the design decisions, next we’ll cover the
balance criteria for badges, followed by development aspects, and end with

procedures.

The motivation behind the reputation system is to reward and promote active
community members for their valuable contributions. There are many active
community users who use the site to host their school projects or research projects,
yet their model behavior goes unrecognized by peers. Helping projects by writing
documentation in wiki or submitting tickets doesn’t sound as important as
providing a bug fix or the addition of new features, but is a key task that needs to be

rewarded in all projects.

At the same time, another motivation behind Beaversource’s karma system is to
help projects identify how desirable a prospective member is. As discussed
previously, member’s contributions from project to project don’t usually follow
them. Each time a user goes into a new project they have to build reputation and
trust in the community. Gaining the trust and confidence from peers in a project
takes time, and our karma system attempts to make this process easier and less time

consuming.

The final goal of the karma system is to recognize and motivate people who are
active in various areas of the community such as: coding, forums, documentation
and social aspects. The majority of users’ activity happens in the code-hosting site of
Beaversource. By rewarding a variety of behaviors throughout the site, the

reputation system wants to encourage users to explore new areas of the site and try

Kudos
“;,)
Y J(‘ v

A I

HE S

61

out other functionality
that they might not have

used otherwise. By

RANKED 22 OF 369171.

encouraging social

activity in the

Kudos Received Kudos Given

community, the karma

system wants to make

the community site more

(1) edosss
Figure 5.1 Ohloh's karma displayed in users' profile (Ohloh, 2010)

approachable to non-

technical users. Most
people think of
Beaversource as a place to share code. The high emphasis and activity on technical

projects is not welcoming to non EECS students.

5.1. Design

During the planning and design phase, the karma points formula was kept simple.
The badge system was similar to the one provided by Ohloh

(http://www.ohloh.net/, see Figure 5.1). Ohloh’s reputation system allows users

to give kudos to peers in the community, and keeps track of the user rankings in
code contributions. Ohloh’s karma badge system works in the background and
collects data from the source control management system (SVN, CVS or git). In the
user profile pages, it’s easy to browse and very prominent the various karma badges
that an FOSS developer has earned. This approach of performing the data mining
and karma calculations in the backend was how the Beaversource karma system’s

backend scripts were modeled.

Launchpad karma's system (https://launchpad.net/ see Figures 5.2 and 5.3) is

proprietary and information about how it works was not available. From visual
inspection, we observe that it keeps track of points a user has earned in various

categories within the community. It also has badge icons to specify the types of

62

contributions the user made to the communities (see Figure 5.3). Launchpad had
the most comprehensive karma system because it looked at a wide variety of
behaviors and metrics to award points. We kept this idea under consideration while

we designed Beaversource’s karma system.

FOSS forum software (e.g. http://www.phpbb.com/ and http://www.mybb.com/)

use two factors to calculate karma, the number of posts being the main factor, with
labels/badges awarded at key thresholds. The second factor used by FOSS forums is
public voting, letting people give/take karma away from other members via a
thumbs up/down voting system. Many online communities and projects use FOSS
forum software to keep track of discussions. Thus end users have gotten used to the

concept of # of posts and labels in forums.

The last example was Elgg's karma system (see Figure 5.4), vazo_karma system

(http://elggdev.com/vazco karma), which uses the same framework as
Beaversource. We paid close attention at the design and Ul used by vazco_karma.
Figure 5.4 is the configuration page for Elgg's vazco_karma plugin, which was the
only karma plugin available for Elgg at the time. This plugin was evaluated to see
what features it offered and how it handled displaying the karma points and making
the list of available karma badges configurable. The first section of Figure 5.4,
defines a list of karma badges available. Each line represents a separate badge. The
format used to define the badges is: "badge name|required points|icon". The next
two settings control whether or not karma badges are displayed in the user profile
page and user listing pages. The last section of Figure 5.4 displays the various
behaviors in Elgg and has boxes to specify how many points a user earns each time

they perform the behavior.

63

Martin Pitt

m Code Bugs Blueprints Translations Answers
Launchpad Karma for Martin Pitt

Martin Pitt » Karma

This is a summary of the Launchpad karma earned by Martin Pitt, organized by activity
type.

Answer Tracker 30
Bazaar Branches 11840
Bug Management 20982
Soyuz 890629
Specification Tracking 19800
Translations in Rosetta 380

Total karma: 943661

Figure 5.2 Launchpad's Karma page for a user (Launchpad Karma, 2010)

Most active in

® Ubuntu OB3PERE
A Apport &I

r Hedley (Proprietary)® &

[Jockey &30

© Debian &3

Figure 5.3 Launchpad's identifying lable on user profile (Launchpad Karma, 2010)

After researching how FOSS communities use karma and reputation systems,
behaviors were identified for rewards in Beaversource. A behavior can be classified
in two areas: the social side (Elgg) and the code repository side (Trac). See Table 4.1
for the list of actions and how they tie back into the motivations behind the karma

system and rewarding the desired behaviors in the community.

Table 5.1 Actions rewarded by Karma system and the motivation behind them

Action Elgg | Trac | Motivation

* Integrate Beaversource with other
social networks.

Posting on the wire X * Promote communication between
(twitter clone) users
* Increase the sense of liveliness of the
site

Uploading files X * Increase use of Beaversource and

64

enhance user profiles with activity
Make the community less intimidating
to non-tech savvy users

Creating a blog post

Increase the number of postings and
user activity displayed in the
homepage

Increase communication between
users

Increase the sense of liveliness of the
site

Posting comments on
blogs

Enhance interaction between users in
the community

Increase the sense of liveliness of the
site

Participating in forums

Boost activity in groups and projects
between members

Aid off-topic and casual conversations
Increase the sense of liveliness of the
site

Sending messages to
users

Raise the frequency of user activity
with friends

Improve the friendliness of the site for
non-tech savvy users

Receiving messages from
users

Raise the frequency of user activity
with friends

Improve the friendliness of the site for
non-tech savvy users

Someone adding you as a
friend

Promote communication with peers
from class or projects

Increase the sense of freshness in the
site activity

Adding someone as your
friend

Promote communication with peers
from class or projects

Increase the sense of freshness in the
site activity

Creating a group

Multiply the variety of available group
forums

Boost available communities for new
users to explore

Improve leadership and management
skills of users

Joining a group

Expand a person’s network of peers
Increase the discussions a user can

65

participate on

Creating a project

Provide students with experience on
managing projects
Increase students familiarity with
code-hosting tools

Joining a project

Promote a wide range of projects to
increase students’ experience
Increase students familiarity with
code-hosting tools

Committing code

Boost activity within projects
Promote smaller atomic commits

Editing a wiki page

Improve user’s familiarity with wiki
engines
Rewarding a variety of contributions

Creating a ticket

Rewarding a variety of contributions
Provide people with experience on
how to write better tickets

Updating a ticket

Rewarding a variety of contributions
Boost activity within projects from
non-committers

66

Figure 5.4 Elgg's Vazco Karma Settings Page

5.1.1. Balancing
Determining the points required for each badge is a subjective decision. The goal of

the reputation system is to allow the majority of the members (70%) to have easy

67

access to at least one, but no more than three badges, and the required points for the
1st level badge in each category is low. At the high end of the reputation scale, the
levels are harder to achieve and only a small percentage of users (25%) can easily
reach those levels. The karma points required significant tweaking as well as trial
and error. The required points for each badge were changed frequently and the
scripts were run multiple times to figure out the number of people with each karma
badge. This continued until the desired number of users for the karma badges was
reached. The karma badge system went through three iterations during this thesis
project. Throughout the three reputation system iterations, the karma formula was
debugged and tested. Some of the bugs caused points not to be calculated correctly
for users. These bugs were corrected throughout the iterations and people’s karma

was adjusted accordingly.

Table 4.2 reports the number of users with karma badges in the system. The total
number of karma badges is 1,315. Some users have multiple badges. We can see that
the people who have badges, 488 have easy access to the ‘Shy’ badge and 274 have
access to the ‘code cowboy’. The ‘coding wizard’, ‘social butterfly’ and ‘chatter box’

badges are a bit hard to achieve.

Table 5.2 Number of users with badges in live site

Category Badge Name Number of users
Shy 488
: : Charming 154
Friendship Friendly 9
Total: | 701
Amateur blogger 22
. New and upcoming blogger | 4
Blogging Mad blogger 2
Total: | 28
Code cowboy 274
Programming Code ninja 38
Coding wizard 11
Total: | 323
Tester Software tester 92

68

Total: | 92
Articulate 145
_ Chatter Box 18
Active Member Social Butterfly 8
Total: | 171

5.2. Development

The code-hosting tools do not have an administrator Ul to manage settings, and the
settings are on a per project basis. The social site managed by Elgg, provides an
administrator Ul where users can manage settings for the community as a whole.
Elgg’s plugin interface allowed us to extend the user listing page and user profile
page to display users’ karma. Elgg’s plugin interface made it easy to store the user’s
karma as metadata to be retrieved in other parts of the site. For these reasons, the
karma management functionality was added to the Elgg framework. Administrators
and global settings for Beaversource are managed through either backend scripts or
through Elgg settings. Making the karma badge system an Elgg plugin provided a
GUI to easily manipulate the social side, which means that it can easily be managed

and updated without the aid of a developer.

5.2.1. First Iteration

The Beaversource karma plugin was modeled after the vazco_karma plugin
mentioned above (Figure 5.4). First, points were assigned to various user actions.
The points could be negative (to discourage a behavior), zero or positive (to
encourage a behavior). Each time the user performed that behavior those points
would be added to their karma. A total number of points would be calculated for a
given user, and based on the number of points; a different badge would be given to
the user. Only the highest-level badge would be displayed in a user's profile. There
were only three karma badges available in this version: Newbie, Amateur and

Expert.

69

This first iteration of the karma system did not allow us to specify what actions
contributed towards a given badge. Administrators could specify the required
points for a karma badge, and the image to display for the badge (Admin interface
was modeled after vazco_karma, see Figure 5.4). Another setting allowed the karma
badges to be displayed in user profiles and user listings of the community site. One
decision made during the development process was to not make the karma badge
list user-customizable. This would ensure that the list of karma badges would be
visible for all users in the system in a consistent location and style. The list of karma
badges was only displayed on the social side of the website. Trac did not support
displaying user icons or extra detail for users, only their username. One problem
during the development of the karma badges was the lack of good FOSS icons to
choose for the badges. The set of famfam icons was chosen, a popular FOSS icon set
used throughout many websites. This first iteration of the karma badge system did

not go live, but was available in the development site on Feb 3rd, 2010.

5.2.2. Second Iteration

In the next iteration, the main change was that karma badges could now specify
which activities contributed points towards each badge. This change provided
greater flexibility for karma badges. Karma badges then only reflected a user's
activity in coding, social activity, testing, or group/project activity. Another feature
allowed administrators to reward users with a set of points the first time they
performed an action. This could be used to create badges, such as 'first commit' and
'first blog post'. Icons used for the karma badges were also revisited, but the icons
were still not very good since only the famfam icon set was available. The set of
karma badges was also revisited and four categories for badges were identified:
blogging, friendship, programming and tester. For more details on the updated list
of karma badges see Table 5.3 below. This updated version of the reputation system

went live on March 23rd, 2010.

70

Table 5.3 Categorized set of badges in second iteration

Categories Badges Actions

Amateur blogger (points req: 1)
New and upcoming blogger (points
req: 10)

Mad blogger (points req: 25)

Blogging Posting in blogs (+1)

Adding someone as your
friend (+1)

Someone adding you as his or
her friend (+3)

Posting in someone else's
message board (+1)

Someone posting in your
message board (+1)

Friendly Beaver (points req: 5)
Friendship Beaver Buddy (points req: 15)
Cozy Beaver (points req: 30)

Code Cowboy (points req: 25) Code commits (+1)
Programming | Code Ninja (points req: 150) Project owner (+5)
Coding Wizard (points req: 300) Project member (+5)

Creating a ticket (+5)
Tester Software Tester (points req: 50) Updating a ticket (+5)
Wiki edits (+2)

5.2.3. Third Iteration

In the last version of the reputation system, a new category was introduced, Active
Member (see Table 5.4 for details), to differentiate between a user being active in
the site and having friends. The friendship category was also updated so that users
only gained points for having friendship connections. The badges and actions in the
Table 5.4 are in addition to the karma categories and badges in iteration two. A page
was added to describe the various karma badge categories, and the actions a user
needed to take in order to earn the various badges

(http://beaversource.oregonstate.edu/social/mod/bsc karma/pages/karm

a.php). This version of the karma badge system went live on May 15, 2010. Two
weeks later, a script was put in place to keep track of the number of users each

badge had.

71

Table 5.4 Additional karma badges implemented in third iteration

Categories Badges Actions
Wire posts
Articulate (req. points = 3) Posting comments in
. Chatter Box (req. points = 15) blogs
Active Member Social Butterfly (req. points = 30) Forums and
sending/receiving
messages
Adding someone as your
Friendly Beaver (points req: 5) friend (+1)
Friendship Beaver Buddy (points req: 15) Someone adding you as
Cozy Beaver (points req: 30) his or her friend (+3)

5.3. Participants

All users in the system were included in the karma badge system roll out. Users had
no choice of whether they wanted to have karma badges displayed on their profile
page or not. Adding new features to the community, such as karma badges, is part of
the end user agreement. That's why users were not notified or asked about whether
they wanted to opt out of the karma badge system. Once the karma system was
rolled out, a blog post, a wire post and a message in the homepage was displayed to

tell users about the karma system

5.4. Procedures

A script was run every hour to calculate and update the karma for 150 users at a
time. Karma calculations were attempted for more users at a time, but time
execution limits were encountered when using the Elgg framework. The script that
calculated karma took advantage of other backend scripts to gather metadata about
social and project activity and calculates the number of times various actions had
been performed by a user. The scripts used by the reputation system were written
in PHP to query the Trac and Elgg databases as well as to perform the calculations.
The karma of a user was stored in the ElggUser object as metadata. This allowed the

karma information to be easily displayed in the frontend.

72

The error handling logic of the backend scripts sent an email to the admin list if the
script ran into a problem. After the script finished updating the karma for 150 users,
it gathered information on how many users had each karma badge and stored it in a
CSV file that was imported into Excel. This allowed researchers to look back and
assess how the number of karma badges changed over time, in addition to detecting
trends. The karma backend scripts, also exposed an API that allowed project activity
information to be gathered for a given project or user. This API, will enable future
development of visualizations to aid in the display of statistics such as: active
project members today/this week/this month/all time; activity of a project/user
over this week or month. One plug-in was developed that allowed for the display of

the last 5 commits from all projects.

73

6. Results

6.1. Survey

As discussed previously, the survey was sent out to Beaversource users to find out
how to improve the community site. Out of 1100+ users in the community, 100
completed the survey. This constitutes 10% of the total user population, which

means we can provide significant results.

6.1.1. Demographics

All the questions under this section were optional. Table 6.1 provides a summary of

the responses.

Table 6.1 Demographics summary

Demographic Answer Breakdown
Male - 74%
Gender
Female - 24%
18-24 - 69%
25-34 - 24%
Age
35-44 - 1%
45+ - 6%

Undergraduate - 70%
Graduate - 24%
Status at OSU Faculty/Staff - 4%
Alumni - 0%

Other - 2%

Freshman - 17%
Undergraduates Sophomore - 20%

Junior - 23%

74

Senior - 40%

0-3%
1-3-40%
Number of CS classes taken in college 4-6 -19%
7-9-7%
10+ -31%

Gender
Males make up the majority of the Beaversource community. These results were
surprising due to the high percentage of female respondents, which was more than

twice the rate of 10% in the EECS female population (http://eecs.oregonstate.edu/).

The percentage of female participation in the survey is much higher than the 1.5%
in FOSS development. This indicates that the Beaversource community welcomes

women’s participation.

Age

The age breakdown, in Table 6.1, was not surprising since it matched the student
population in EECS. The average age of students is much younger (18-24) than the
average age (30) of a FOSS programmer (Gourley, 2009). The assumption was made
that the majority of users were familiar with computers, social networking sites and

browsing the web.

Status at OSU
The data, in Table 6.1, shows the make-up of survey respondents. Undergraduate

and graduate students made up 94% of the survey respondents, staff and faculty
accounted for 4%. Alumni do not have access to Beaversource because an OSU
account is required for access. ‘Others’ are non-OSU members who collaborate with

OSU faculty, staff or students on projects.

75

Undergraduate Student Status
The majority of our undergraduate students are Seniors or Juniors, which means
they are not new to OSU and already have an established network of friends and

resources.

Major/Department Breakdown

CS

ECE

No answer
SMED
Business
Psychology
Physics
Engr

Chemical Engr

N =97 0 10 20 30 40 50 60

Figure 6.1 Major/Department breakdown

CS and ECE students made up over 80% (78) of the survey respondents. The main
draw for them is classes that are using Beaversource. The code-hosting and project
features have a lower barrier of entry for students of ECE and CS. We can also
assume that people from these disciplines are more interested in the tools provided

by Beaversource.

6.2. Computer Use

76

All the questions in this section were required in the questionnaire.

How many hours a day you spend on a computer daily?

Table 6.2 Hours the user spends on a computer every day

Hours spent on a computer each day

<1-0%
1-2-6%
3-4-18%
5-6 - 25%
7-8 -20%
8+-31%

With more than fifty percent of the survey respondents spending seven or more

hours on a computer per day, and twenty five percent spending five-six hours per

day. It was assumed that the user base was familiar to using computers. It was clear

that computer usage was an integral part of their lives.

How many friends do you have in Beaversource?

Table 6.3 How many friends people have in Beaversource

How many friends do Survey respondents Beaversource site
people have? (N=100) (N=1250)

0 32% 70%

1-5 49% 25%

6-10 13% 3%

11-15 4% 1%

16-20 1% 1%

77

21+

1%

0%

Even though 32% of the respondents have no friends in Beaversource, 49% of them

have at least 1-5 friends, and 13% have 6-10 friends. This shows that people clearly

have enough friends to be interacting with and making connections.

How often do you interact with friends or groups in Beaversource?

Although the previous question showed that people had friends in Beaversource,

Table 6.4 shows that people are rarely using Beaversource to interact with those

friends. The last two columns in Table 6.4 show that people who have many friends

are more likely to interact with them than people who have projects.

Table 6.4 How often people interact with friends and groups in Beaversource

How often people
Survey Users with Users with many
interact with
respondents projects friends
friends or groups?
Never 73% 62% 47%
Rarely 20% 10% 16%
Occasionally 7% 28% 37%
Several times a week | 0% 0% 0%
Several times a day 0% 0% 0%

How often do you use social networking and code hosting sites (excluding

Beaversource)?

With 65% of the survey respondents using social networking sites several times a

week or more frequently, we can assume that the survey respondents are

comfortable using social networking features to interact with friends.

78

In Table 6.5, we see that 13% of survey respondents used code-hosting sites several
times a week. This demonstrates the majority of these survey respondents are not
taking advantage of wikis, revision control systems, bug trackers, data backup and

other features offered by code-hosting sites.

Table 6.5 How often respondents use code hosting and social networking sites

How often do you use?
Social networking sites | Code-hosting sites
(excluding Beaversource)
Never 6% 40%
Rareley 10% 50%
Occasionaly 19% 37%
Several times a week 26% 13%
Several times a day 39% 0%

Do you use any of the following networking sites?

People were allowed to pick multiple choices in this question, and that’s why the
total number of responses was greater than 100. In Figure 6.2, user responses
indicated that Facebook was the main competition to Beaversource. The data in
Table 6.3, 6.4 and 6.5 backups and explains why not many people are interacting
with their friends in Beaversource. Beaversource came to market where there’s a
strong and well established social networking site and competing against Facebook

should be present during the development and design process of new features.

Facebook
Beaversource
Twitter
LinkedIn
Last.fm
MySpace
Flickr

None
Windows Live Spaces
Orkut

Other

Ning

Social Networking Sites

40 60

Number of responses

100

Figure 6.2 Social Networking sites used by respondents (multiple choice question)

Do you use any of the following code-hosting sites?

Beaversource
None
Sourceforge
Google Code
Github

Codeplex

Code hosting sites

Other
Freshmeat

Apache Incubator

10

20 30

Number of responses

40

50

Figure 6.3 What code hosting sites respondents use (multiple choice)

79

80

Figure 6.3 shows that 35 survey respondents had not used code-hosting sites to
work on projects. Comparing the data Figure 6.3 with Table 6.3 - 6.5, we can see
that Beaversource is filling a need. Many students are not using or are exposed to
code hosting sites, and over 40% of survey respondents used Beaversource for code

hosting purposes.

6.2.1. Beaversource Experience

Beaversource Membership

Table 6.6 Beaversource membership summary

Not a member - 9%
<1term-20%

How long have you been a member of
1-2 terms - 47%

Beaversource?
3terms - 1year-17%

>1year-7%

Class - 73%

Email - 7%

Word of mouth - 9%
How did you learn about Beaversource?
Search engine - 1%
Barcamp - 1%

Other - 9%

Forty seven percent of survey respondents were new to Beaversource with
membership for 1-2 terms. The responses also showed that about 24% have been
with Beaversource for 3 terms or longer. With Beaversource being a little over a
year old, 7% of the users who responded to the survey were part of the beta

program where only a few people had access while we were working out bugs.

81

Most of the survey respondents heard about Beaversource from classes. The lower
level entry computer science classes, the CS senior project classes and a few more
classes required students to use Beaversource. Although some people use
Beaversource for classes, alternative methods had proven to be successful and we

should probably focus more efforts on word of mouth and email advertising.

How often do people use Beaversource?

Table 6.7 How often people use Beaversource

How often do you use | Survey People with People with
Beaversource? Respondents friends projects
Never 16% 5% 6%

Rarely 36% 21% 30%
Occasionally 23% 32% 27%

Several times a week 20% 32% 27%

Several times a day 5% 10% 10%

For survey respondents, the never and rarely options, which make up over 50%
shows that people are not using Beaversource as often as we’d like. Only 25% of
survey respondents use the site several times a week or more. Table 6.7 compares
the people who have projects (1-3) and many friends (more than 6) in
Beaversource. This will help us answer questions such as: Do people who have
many friends use the site often? How often do people who have many projects use
the site? Table 6.7 shows that there’s little difference in the usage frequency of
Beaversource between people with many projects and people with many friends,

though the group with many friends was more likely to be on more often.

82

Are you a member of groups or projects in Beaversource?

Table 6.8 Group and project membership

Are you a member of groups or projects | No answer - 0%

in Beaversource? Member of neither - 23%
Member of a group - 24%
Member of a project - 19%
Member of both - 34%

Table 6.8 demonstrates that only 24% of respondents do not belong to either a

project or group and 34% of respondents being a member of both.

How many projects do you belong to in Beaversource?

Table 6.9 How many projects people belong to

How many projects Survey respondents Beaversource site
people belong to (N =53) (N=463)

1-3 96% 85%

4-6 0% 11%

7-9 4% 2%

10+ 0% 2%

Over 45% of survey respondents chose not to answer this question, and of the
remaining users, over 95% belong to at least 1-3 projects. The survey data is
representative since it matches with the last column in Table 6.9, which is from the

statistics of the site.

How many groups do you belong to in Beaversource?

Table 6.10 How many groups people belong to

&3

How many groups Survey respondents Beaversource site
people belong to (N =58) (N=1039)

1-3 90% 88%

4-6 7% 8%

7-9 3% 2%

10+ 0% 2%

Groups in their current implementation were not being used by a lot of people. With

over 40% of the users not answering this question, we can only refer to the

remaining 60%. The majority of the people who answered this question, have at

least 1-3 friends. This shows a shift toward social networking vs projects. Table 6.10

shows that the live site also matches the survey responses with a big percentage of

people belonging to only 1-3 groups.

Why do you use Beaversource?

60

Ul
o
|

S
o
1

Number of responses
[\ w
o o
1 1

[uy
o
I

- =

1st 2nd

3rd
Rating

4th 5th

= Other

B Wiki/file hosting
Social Networking

B Project

H Class

N =53

Figure 6.4 Why do survey respondents use Beaversource

84

People had 5 choices (class, project, social networking, wiki/file hosting and other)
and they could rate them from #1 in why they chose to use Beaversource to #5.
Figure 6.4 shows that the #1 reason for respondents using Beaversource is Class
with more than 70% and Project with 20%. The reasons ranking the lowest for

using Beaversource was Social Networking and Other.

Rate the following features

Figure 6.5 shows which features are ranked to be very useful and important in
Beaversource. The lower the score, the better the ranking (1 = strongly agree and 5
= strongly disagree). Figure 6.5 shows the average score from all the submissions.
The factors rated as not very important or useful are user blogs, user profiles, and
project statistics. The rest of the features are very evenly spread out with their

scores.

Code repository
File uploads

User blogs

User profiles
Group discussions
Project discussions
Project history
Project statistics B Usefulness

Beaversource Features

Bug Tracker
SVN Viewer

e N =100

1 1.5 2 2.5 3

E mportance

Rating (1 = strongly agree, 5 = strongly disagree)

Figure 6.5 Average usefulness and importance of Beaversource Features

85

Do you feel that the code-hosting tools and social networking site are well

integrated?

Table 6.11 Are the social and code hosting parts well integrated?

[s the social networking side well Yes -77%
integrated with the code hosting tools? No -21%

No answer - 2%

86

Which features most urgently need improvement in Beaversource?

Wiki

User's profiles

User blog

i

SVN web viewer for projects

Project statistics

B 1st
Project discussions
= 2nd
. . = 3rd
Project History --
_ 10th
11th

Group discussions

File Uploads

Commit code to a project

Bug tracker in projects

]III'

No Answer

10 20 30 40 50 60 70

=)

Figure 6.6 What features need improvement?

Respondents suggested that wiki is area that needs the most improvement
compared to the rest. The second area that needs improvement as stated by users is
SVN viewer followed by file uploads. The areas that need the least attention are the

user blogs and user profiles.

87

Explain why social and code side are not well integrated?
Below are some of the quotes from respondents in answer to this question. An
overall theme emerged:
“It's hard to get from a project to a person'’s site, hard to find different
things, the search feature is not intuitive, [and] the layout is

cumbersome.”

A second common answer was bugs: “I run into bugs too often.” A different set of
users thought that, “Social networking should not be integrated with code-hosting
tools,” and they were against using social networking features in Beaversource.
More examples from included:

“Group pages for projects are confusing. To join a project you have to

find the group page then join that.”

“The trac components feel very separate from the rest of the site.

Changes on one don't well effect the changes on another.”

“Beaversource is very difficult to navigate, and not intuitive at all. The
code repositories and social networking tools could be integrated much

more smoothly if beaversource was designed better.”

6.3. Interviews

The karma system that was previously discussed was implemented as a way to
motivate user interaction throughout the site. After the karma system was in place,
interviews were conducted with five students to find out what they thought of the
karma system, whether or not it was motivating them and how the karma system
could be improved. These students were picked randomly from the set of active

users. The full list of questions is available in Table 4.1.

88

These interviews were conducted over the summer and since the students were not
on campus, the interviews were conducted remotely. Users who were interviewed

did not receive any monetary payment for their help.

6.3.1. Responses

Students indicated that the wiki was a nice feature to have in Beaversource as well
as the code-hosting. They found that the wiki served a documentation function.
Another student pointed out that he started using Beaversource while he was a CS
student, but when he changed majors he kept using Beaversource and pushed for
people collaborating with him to use Beaversource’s SVN functionality. This student
was surprised by how few people backed up their data and didn’t use code revision

control.

All the students were satisfied with the code-hosting aspect of Beaversource and the

functionality provided. They reported being familiar with the code-hosting tools.

Students also pointed out that browsing and searching for projects was a problem in
Beaversource. They said maybe having an area where people could find
recommended or suggested projects would help new people find cool projects. As
far as recruiting new members to their projects, they didn’t find Beaversource to be
a good tool for that. Instead they tried to approach lower level classes that had lots
of incoming freshmen. If somebody showed any interested at all, the groups were
happy to have them. As soon as a new person started working on a group or project,
the group/project members used the new member’s contributions to gauge how

promising that new member was.

As far as using Beaversouce as a communication tool, the students didn’t find it very
useful. They said they met with their group members frequently in classes and it

was more efficient to use face-to-face, IRC or Facebook instead of Beaversource.

89

As pointed out by one student, the “Beaversource karma system, is not useful
because is not about how much a student can produce, but about how much a new
student wants to learn.” Three students said they didn’t pay attention to the karma
badges. The other students said they had looked at karma badges and tried to figure
out how many badges they had. They even tried to see what they could do to earn
the higher level badges.

Various students pointed out that being able to grant karma badges, unique to their
project members, would be fun, for example, “champions of state competition

2010.” If there were more badges people could collect them.

Students also pointed out that having global forums in the site and not per
group/project forums would be useful, to show off the karma badges. People
interacted with other people in their group/projects and they would all know each

other. The karma badge wouldn’t have as much show-off worth.

One user suggested higher karma rankings for an added challenge, as well as extra
badges for the testing category, which only had one badge. The users who were the
most excited about karma badges were the ones that played games or checked their
achievement levels in other communities. When asked for ideas on how to name

badges, the interviewees didn’t have any good naming strategies instead.

Another aspect mentioned by students was that potential employees or people
outside of OSU might look at their profile page and see all the unique badges earned.
The badges were not unique to a group/project and didn’t highlight student

accomplishments.

Overall, the reputation system worked to motivate users. Interviewees noted that

they would like to see the karma system expanded with better icons; an increased

90

participation in the social networking side. All users requested more flexibility in

the karma system such as ability to affect each other’s karma.

91

7. Discussion

The reputation system put in place in Beaversource is still in beta and is a work in
progress. I was experimenting with the community and wanted to see how I could
best utilize karma badges to motivate people and showcase the quality of their

contributions

This section covers some of the lessons I've learned during the development and
feedback process of the Beaversource karma systems. I'll cover my research

questions, before I address issues specific to Beaversource.

7.1. RQ1: Can a karma system boost activity in the site?

The interviews and feedback provided some early preliminary indicators, and more
user data is needed to answer this research question completely. The preliminary
data showed that people were looking at the karma badges and their profile page.
Some of the interviewed users were motivated once they learned the scale and
available badges. One of the people I interviewed wanted a progress bar to know

how far away he was from achieving the last coding badge.

Reputation systems should be kept as simple as possible. These systems need to be
transparent (i.e. everyone should understand what a badge means, and what needs
to be done to attain one), and stay lively (i.e. stay relevant and evolve with the
community) if they are to work as motivators. As reported during the literature
review, users found weak areas in reputation systems and tried to exploit them. The
reputation thus has to keep evolving over time: fine-tuning to account for errors,
and reward as many users as possible while taking into account changes in the

community.

92

It is feasible to construct a simple or complicated automated karma system that
takes a look at the number, frequency and age of contributions, but gauging the
quality of the contributions is difficult. That's where I would use user-generated
karma points come into the picture. Many communities allow users to rate forum
postings, or discussions with a thumbs up/down system or give karma to other

users (with some limitations as to how often it can be done).

7.2. RQ2:Is it possible to reward social activity through karma badges?

Due to the low number of interviewees and with the karma system being in place
during summer vacation, we do not have enough user activity and feedback to draw
significant conclusions for this research question. Based on preliminary data, a few
users disliked that the karma system could not be turned off. A student pointed out,
"How did I suddenly acquire karma badges and how do I get rid of them.
As I did not place them on my page and I have no control over them I
feel that anyone looking at my page sees something that is not true or
anyone's business. 1 would greatly appreciate them removed or the

means to control what gets automatically posted to my page."

Rewarding social interactions between people through karma badges is really a
delicate subject because by providing a badge, we are labeling all the users holding
that badge n a way that they may not identify with. As another user pointed out,
labels then become important, “men wouldn't like to be called butterfly, or
chatterbox.” More user interviews are required to answer to analyze the

ramifications of applying identifying labels while rewarding social activity.

The karma badges in Beaversource were meant to mark the achievements of users,
and they were displayed to show how a user had progressed from one level to the
next. Social interactions or friendliness was considered more of a state, people
didn't like being labeled 'shy,’' 'charming,’ or other things that marked their

personalities. Getting this type of feedback from the users involved in this project

93

was hard. Based on early feedback, users didn't always open up or suggest better

names.

A couple of things I would have done differently would be to hold a contest and get
people to submit their ideas. Then we can let people vote for the badges or
suggestions they liked the most. By involving the users, you could build more

engagement and excitement towards the karma system.

7.3. RQ3: Can a karma system reward multiple types of activities fairly?

The standard of Ul flexibility set by social sites like Facebook is high. People share a
lot of personal information and they want great customizability. [t was common for
users to expect the features that affect everybody in a community to be either opt in
or opt out. The designers of Beaversource considered the karma badges an integral

part of the system, or an identifiable and core piece of information regarding a user,

just like the username, full name or picture, so I chose to make it standard.

The Beaversource karma system didn’t reveal any private information about the
user, or their activities, just how much they contributed to projects, groups and
other areas of the site. Based on the preliminary feedback received so far, I suspect
that the main reason why people didn't want karma badges in their profile page was
due to their dislike of the icons or label names. Next time, [might choose to let the
users give each other karma badges to create more unique badges and let the users

come up with names that they enjoy and feel identified with by their peers.

A lot of the information displayed in a user's profile page was configurable in the
form of widgets. Users could turn on/off these features, as well as move them
around on the page. The karma badges had a fixed position in the page, just like the
personal bio, email, name and picture of the user. I picked a standard location in the
profile page (below the profile picture) to make the badges consistent throughout

the site. The position was chosen because one of the first things visitors see on a

94

profile page was the profile picture. More interviews and data is needed to respond
this question confidently, some of our findings must be taken with a small grain of
salt. At least 6 more months to a year of heavy use are needed to analyze user

patterns.

7.3.1. Sexist badges

The badge names were not gender neutral, and early feedback showed it as being

demotivating to some users of Beaversource. As explained by a user,
"While I think it's a good idea to reward active users with something
tangible, the badge titles seem a little sexist. They seem to be named
with specific gender roles in mind. Take the coder karma badges for
example. "Cowboy" and "Wizard" are generally only applied to men,
thus excluding women from the coding category. In the same light, |
don't think a guy would like being called a butterfly, so they wouldn't
want to gain the "Social Butterfly” badge. It's a small thing, but people
who are looking into joining a community can get turned off by hints of
fixed gender roles (i.e. Women can't be coders and Men shouldn't be

chatterboxes).”

Finding the right set of badge names was extremely difficult, and we didn’t want to
pick names that would confuse new users. Having a different set of badges for
male/female is not possible because the current database did not keep track of the
user's gender. Also the male/female categories might not have been enough to
match people's self-idea of gender. Ideally, finding a good set of gender-neutral
names should not have been hard, but by having to keep things generic, the only
available types of badges that I thought of were based on other disciplines:

* white belt, yellow belt, black belt

* lieutenant, sergeant, captain

* bronze, silver, gold

95

7.3.2. Cheating the karma system

As we found in our literature review, people have tried to cheat reputation and
rating systems since they were first introduced by Amazon and EBay. It is just a
matter of time before users find vulnerabilities or methods to cheat our system.
Reputation systems evolve and change to meet the needs of users. It's hard to
punish people who misuse the karma system to benefit themselves at the expense of
other users since in most FOSS projects they can always come back using a different
nickname or email account. Karma systems are not perfect and a process of
continuous development has to be followed. It is usually best to reveal as little
information as possible about the karma system calculations to prevent end users
from learning the inner workings. This makes it harder for them to cheat the
community, but makes it harder to interpret the value of a badge, or what needs to

be done to attain one, lowering the system transparency and thus it’s value.

7.3.3. Should karma degrade over time?

Ideally when designing a karma system, there should be a way to let new users catch
up to older users in karma points. In many systems, such as Launchpad's, karma
decays over time, mean that if the user is inactive for a period of time, he/she starts
losing karma. On the other hand, in gamer communities, where users spend days or
weeks trying to achieve high levels, it is not an accepted practice to take points away
if the person stops playing the game for months. In fact, people expect their

character to be at the same karma/experience level as when they left it.

In Beaversource, I chose to not decay karma over time because the students, the
bulk of participants, commonly graduate, after which their accounts are deleted.
Thus, the “high score list” continuously renews itself. If Beaversource were to allow
alumni to participate, I would consider making karma decay over time. Conducting
more user interviews to find out how users feel about karma decaying over time

could help develop a better karma system.

96

7.4. FOSS and Karma Systems

There's little research regarding karma systems and FOSS, and we try to extrapolate
some of our early findings to apply them to FOSS projects. Beaversource is geared to
building communities within OSU and teach students to use code-hosting tools and
the workflows used by FOSS projects. However, there are some differences. First
there is huge influx of projects that are short lived, some of our users are not always
happy about having to use the system, and for most this is their first experience with

project hosting.

There is very little community interaction on the Beaversource mailing lists, forums
and IRC channels. Most people on Beaversource only interact with peers in their
projects or friends in class. Also people who are experienced with FOSS projects
usually prefer to roll out their own code-hosting set of tools or use an externally

hosted site such as GitHub or Sourceforge.

In FOSS communities, people are remembered for their contributions, and
developers come and go from projects. Developers or community members who
take breaks for weeks or months come back to a community that still remembers
their names thanks to their contributions, such as patches, mailing list interactions
and forum posts. Karma systems are supposed to mimic earned reputation, but
some of the earned reputation always stays with the person. For example, Linus
Torvalds, gets lots of geek points for creating and getting the Git project started even

though he is no longer actively coding or actively participating in that community.

A simple approach could be taken to design reputation systems in FOSS
communities. Instead of having one set of karma badges or a comprehensive karma
system that looked at different types of activities to grant badges, it might be more

useful to have different karma systems, but one unified display of badges. This could

97

prove to be more resistant to attacks because if one karma systems is compromised
the rest of them would not be. For example, the forum software could take care of
mining its own data and use its metrics to generate badges; the IRC channel could
use an IRC bot to count the number of times a user posted information or tried to
help other users, then it could calculate a set of badges; a separate reputation
system could take care of looking through the code repository and use a bug tracker

to find code contributions.

This is the area that makes reputation systems unfair and hard to design for FOSS
projects. Giving points for different actions through an automated system is difficult,
especially when trying to compare different things such as fix bug to provide end
user support. A user may have contributed a small amount of time, but the bug
fix/documentation/help provided may have impacted the community drastically,
and thus time spent is not always a good metric. A new user might have spent hours
or days working on a contribution, even if it was small, what should be rewarded is
the effort and desire to work, not the size or impact of the contribution. On the other
hand, core developers familiar with the codebase, bugs and project spend a sizeable
amount of time each week to find bugs and add new features, yet they shouldn't be

achieving the next badge/reputation level as fast as new members.

Trying to figure out how much documentation is “worth” vs. forum support vs.
coding vs. lurking in irc is a common dilemma. As discussed during the literature
review, most FOSS projects ignore most of the activities and focus on providing
karma pointes based on just one type of activity. It's not fair to the community to try
to place value or compare different types of contribution. Also the reputation
systems should be more about trying to promote exemplary behavior instead of

rewarding a user just because an action was performed.

98

7.5. Beaversource's Karma Implementation

After the surveys were collected, we found that there were few users having a
reason to use Beaversource for the social elements. Most were already interacting
with friends and family using Facebook. Having to enter their information and use a
second site was not appealing based on the preliminary feedback (answers to the
survey). People pointed out that the site needed something to motivate people and

differentiate from the other sites.

The use of the project hosting tools seems to be successful. People had projects and
they found it useful, but frustrating for class usage. Some people asked questions
that were due to their lack of experience and exposure to code-hosting tools. It was
the goal of the main developer to keep those users happy while we were trying to

recruit more users.

7.5.1. Badge Names

As was discussed previously, the reputation level names were difficult for me to
come up. [changed the names many times, but at the end I couldn't find a good
answer. Neutral names that please every user and are accessible to everybody are
hard to design. By using more generic titles for the badges, I lost the uniqueness

factor of the badges. I tried asking users for new names, but got not feedback.

7.5.2. No Opt Out

Beaversource badges were a requirement just like the name, email and username of
a person. This became a sore area for some users. Historically users who didn't like
the social side of Beaversource were able to just ignore it and not update their
profiles. The karma system used their project contributions and other history data
to calculate karma points and displayed the badges in the users' profiles. This
caused a major shift for some users. Some of them felt as though the karma system

was forced on them and they didn't want the information in their profiles.

99

7.5.3. No good place to showcase badges.

The fact that there was a bunch of bugs that people kept running into was very
demotivating, as shown by early feedback. People who had worked hard to earn
karma badges only had their badges displayed in their profiles and the user listing
pages. There is no single place where Beaversource users could come and idle, hang
out or interact with each other outside of projects (such as a lounge). If there had
been such a place showcasing the user's badges, when they made a forum post or
interacted with each other would have increased the visibility of their karma

badges.

Due to some of the differences in how Trac (a code-hosting tool) displayed user
information, I couldn't display karma badges alongside the username. The one place
where a lot of users spent their time didn't even show their badges. Even if the
badges had been displayed, users would only have gotten to see the badges of peers
outside their projects. They wouldn't have seen a variety of different users with a
wide range of badges. Instead they saw the same users they're used to with the
same set of badges. We are still in the early development stages of the karma system

to make sound conclusions or statements regarding the system.

7.5.4. Rewarding Quantity instead of Quality

My karma badge system was automated which and had one major flaw in that it
counted the number of times various actions have been performed in the site. Based
on that piece of information various badges were awarded to users. There was a
problem with this approach. We are not rewarding what we want. By just rewarding
actions, I didn’t take into account the quality of user's contributions. I learned that
two badges can mean two completely different things if one user just spent time
entering simple repetitive tickets into the system or one line commits that don't add

anything to a project and the other user made huge contributions.

100

By rewarding quantity, I was leaving the system vulnerable to attacks. A
programmer could easily have written a program that would have submitted and
updated a bunch of tickets, wiki pages and commits. This would then have earned
the user the highest-level karma badges in the scale. Also, by not rewarding quality,
[was unable to showcase or demonstrate why one user or set of behaviors is better

than another one.

101

8. Conclusion

A continuous influx of new active members is what keeps FOSS communities afloat.
As end users move from being lurkers to core developers, finding a method to
measure the number of community members, and motivate users to contribute
more to the community, is a challenge faced by all FOSS projects, whether small or

large.

At Oregon State University, Beaversource provides code-hosting services to
students, staff and faculty, with a mix of social networking features. The social
networking features were meant to help users find interesting projects and people
to collaborate with. I conducted a survey to learn about user demographics, and

their experience with Beaversource, especially the social networking features.

As an attempt to motivate users and reward active members, a reputation system
was developed. Unlike reputation systems in other FOSS projects that focus only on
one community activity, I designed the Beaversource system to reward a wide range
of activities on the site. The system went through several iterations and it was made

available to all members.

With this being the first attempt at providing a reputation system for Beaversource,
we learned a lot. Preliminary findings showed that the system did motivate some
users, but there was a group of users who wanted more control of their reputation
display. I also realized that due to the limitations of our automated karma system,
the reputation system was rewarding the actions and not the quality of the actions
performed by the users. Even though there was a karma system in place, the end
users didn’t interact with people outside of their projects or close-knit group of

friends, so there was very little chance for users to showcase their badges. The

102

preliminary feedback from interviews and survey showed that the reputation
system was not effective, because of limitations of the current Beaversource

platform with bugs and lack of global groups or lounge areas.

It's my hope that future researchers can learn from our experiences with designing
an all-encompassing reputation system: Users expect a high level of customizability
features from karma systems. Mixing social networking features with code-hosting
features makes it hard to create reputation labels that reward social interactions.

People take labels regarding their social networking behaviors very personal.

Future steps for this research are to focus on fixing some of the bugs in
Beaversource that limit the use of karma badges. It will be important to delve
deeper into the question of how to reward social behavior, such as adding friends
and interacting with them. Analyzing more of the benefits of mixing social
networking features with code-hosting tools may lead to a new breed of code-
hosting sites that can empower future FOSS communities by connecting people and

ideas together.

103

9. Bibliography

21 Days, 15 Hours, 26 Minutes and 2 Seconds. (n.d.). Retrieved from
http://habitatchronicles.com/2007/09/21-days-15-hours-26-minutes-and-
2-seconds/

ACM. (2008). CS2008 Curriculum Update: The Computing Curricula Computer
Science Volume is complete and approved.

Adler, B. T., & de Alfaro, L. (2007). A content-driven reputation system for the
wikipedia. In Proceedings of the 16th international conference on World Wide
Web, WWW '07 (pp. 261-270). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1242572.1242608

Apache Incubator. (n.d.). http://incubator.apache.org/.

Au. A E Arenas (STFC), A. B. A. (. (2008). Reputation Management in Grid-Based
Virtual Organisations. In International Conference on Security and

Cryptography.

Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. Science,
211(4489), 1390-1396. doi:10.1126/science.7466396

Beware Geeks Bearing Gifts. (n.d.). Retrieved from
http://www.psychologytoday.com/blog/brainstorm /200803 /beware-
geeks-bearing-gifts

Bird, C., Gourley, A., Devanbu, P., Gertz, M., & Swaminathan, A. (2006). Mining email
social networks. In Proceedings of the 2006 international workshop on Mining
software repositories, MSR '06 (pp. 137-143). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1137983.1138016

Boy Scouts of America - Introduction to Merit Badges. (2010). Retrieved from
http://www.scouting.org/scoutsource/BoyScouts/AdvancementandAwards
/MeritBadges.aspx

Burke, M., & Kraut, R. (2008). Mind your Ps and Qs: the impact of politeness and
rudeness in online communities. In Proceedings of the 2008 ACM conference
on Computer supported cooperative work, CSCW '08 (pp. 281-284). New York,
NY, USA: ACM. doi:http://doi.acm.org/10.1145/1460563.1460609

Cathedral and the Bazaar. (2010). Retrieved from
http://catb.org/esr/writings/homesteading/

104

Chatterjee, K., de Alfaro, L., & Pye, I. (2008). Robust content-driven reputation. In
Proceedings of the 1st ACM workshop on Workshop on AlSec, AlSec '08 (pp.
33-42). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1456377.1456387

Clarkson Open Source Institute. (2010) . Retrieved from http://cosi.clarkson.edu/

Clarkson University wins first TuxMasters Invitational. (2010). . Retrieved from
http://www.linux.com/archive/articles /47881

Couple updates... (2010). Retrieved from http://about.digg.com/blog/couple-
updates...

Crowston, K., & Howison,]. (2005). The social structure of free and open source
software development. First Monday, 10(2).

Cummings, J. N, & Kiesler, S. (2008). Who collaborates successfully?: prior
experience reduces collaboration barriers in distributed interdisciplinary
research. In Proceedings of the 2008 ACM conference on Computer supported
cooperative work, CSCW '08 (pp. 437-446). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1460563.1460633

Deiml-Seibt, T., Pschetz, L., & M"uller, B. (2009). A conversational model to display
user activity. In Proceedings of the 23rd British HCI Group Annual Conference
on People and Computers: Celebrating People and Technology, BCS-HCI '09 (p.
6). Swinton, UK, UK: British Computer Society.

Dugan, C., Geyer, W., Muller, M., DiMicco,]J., Brownholtz, B., & Millen, D. R. (2008). It's
all 'about you': diversity in online profiles. In Proceedings of the 2008 ACM
conference on Computer supported cooperative work, CSCW '08 (pp. 703-
706). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1460563.1460672

Employers: Look to gaming to motivate staff. (n.d.).. Retrieved from
http://www.itnews.com.au/News/169862,employers-look-to-gaming-to-
motivate-staff.aspx

Feller,]. (2010). Meeting Challenges and Surviving Success: The 2nd Workshop on
Open Source Software Engineering.

Fitzpatrick, G., Marshall, P., & Phillips, A. (2006). CVS integration with notification
and chat: lightweight software team collaboration. In Proceedings of the 2006
20th anniversary conference on Computer supported cooperative work, CSCW
'06 (pp. 49-58). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1180875.1180884

105

FOSS. (2010). Wikipedia. Retrieved September 6, 2010, from
http://en.wikipedia.org/wiki/Free_and_open_source_software#FOSS

Foster, D. (2010, February). Chat with Dawn Foster.
Foursquare. (2010). Retrieved from http://foursquare.com/learn_more

Friedman, E.]., Friedman, E. J., & Resnick, P. (2000). The Social Cost of Cheap
Pseudonyms. JOURNAL OF ECONOMICS AND MANAGEMENT STRATEGY, 10,
173-199. do0i:10.1.1.30.6376

Fu, W. (2008). The microstructures of social tagging: a rational model. In
Proceedings of the 2008 ACM conference on Computer supported cooperative
work, CSCW '08 (pp. 229-238). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1460563.1460600

Game Mechanics for Interaction Design: An Interview with Amy Jo Kim. (n.d.)..
Retrieved from http://bokardo.com/archives/game-mechanics-for-
interaction-design-an-interview-with-amy-jo-kim/

Good Game Mechanics In Your Web App Are Good For Your Users. (n.d.).. Retrieved
from http://blog.meatinthesky.com/good-game-mechanics-in-your-web-
app-are-good

Google and Open Source. (n.d.). Retrieved from
http://code.google.com/opensource/

Google Project Hosting. (2010). Retrieved from
http://code.google.com/projecthosting/

Google Summer Of Code. (2010). Retrieved from
http://socghop.appspot.com/document/show/gsoc_program/google/gsoc2
010/fags

Gourley, B. (2009). Open Source Software and Cyber Defense.
Halloran T.]., S. W. L. (2002). High Quality and Open Source Software Practices.

Halverson, C. A, Ellis, . B., Danis, C., & Kellogg, W. A. (2006). Designing task
visualizations to support the coordination of work in software development.
In Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, CSCW '06 (pp. 39-48). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1180875.1180883

106

Hancock, J. T., Toma, C. L., & Fenner, K. (2008). I know something you don't: the use
of asymmetric personal information for interpersonal advantage. In
Proceedings of the 2008 ACM conference on Computer supported cooperative
work, CSCW '08 (pp. 413-416). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1460563.1460629

Harper, F. M., Frankowski, D., Drenner, S., Ren, Y., Kiesler, S., Terveen, L., Kraut, R,, et
al. (2007). Talk amongst yourselves: inviting users to participate in online
conversations. In Proceedings of the 12th international conference on
Intelligent user interfaces, IUl '07 (pp. 62-71). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1216295.1216313

Harvard Forge. (2010).. Retrieved from http://forge.abcd.harvard.edu/gf/

Hoffman, K., Zage, D., & Nita-Rotaru, C. (2009). A survey of attack and defense
techniques for reputation systems. ACM Comput. Surv., 42, 1:1-1:31.
doi:http://doi.acm.org/10.1145/1592451.1592452

HomeRun. (2010).. Retrieved from http://homerun.com/how-it-works

Hossain, L., & Zhou, D. (2008). Measuring 0SS quality trough centrality. In
Proceedings of the 2008 international workshop on Cooperative and human
aspects of software engineering, CHASE '08 (pp. 65-68). New York, NY, USA:
ACM. doi:http://doi.acm.org/10.1145/1370114.1370131

How does MediaWiki Work? (n.d.). . Retrieved from
http://www.mediawiki.org/wiki/How_does_MediaWiki_work%3F

[love my chicken wire mommy. (n.d.). Retrieved from http://xoxco.com/clickable/i-
love-my-chicken-wire-mommy

Ingram, M. (n.d.). Huffington Post Does a Foursquare, Offers Readers Badges for
Behavior. Retrieved from
http://www.businessweek.com/technology/content/apr2010/tc20100429_
746797 .htm

Irani, L. C,, Hayes, G. R., & Dourish, P. (2008). Situated practices of looking: visual
practice in an online world. In Proceedings of the 2008 ACM conference on
Computer supported cooperative work, CSCW '08 (pp. 187-196). New York,
NY, USA: ACM. doi:http://doi.acm.org/10.1145/1460563.1460592

IRC. (2010). Retrieved from http://en.wikipedia.org/wiki/Internet_Relay_Chat_bot

Kernel Janitors. (2010). Retrieved from http://kernelnewbies.org/KernelJanitors

107

Kernel Newbies. (2010a). Retrieved from http://kernelnewbies.org/Community
Kernel Newbies. (2010b). Retrieved from http://kernelnewbies.org/KernelProjects

Kerschbaum, F. (2009). A verifiable, centralized, coercion-free reputation system. In
WPES '09: Proceedings of the 8th ACM workshop on Privacy in the electronic
society (pp. 61-70). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1655188.1655197

Ko, A.]., & Chilana, P. K. (2010). How power users help and hinder open bug
reporting. In CHI '10: Proceedings of the 28th international conference on
Human factors in computing systems (pp. 1665-1674). New York, NY, USA:
ACM. doi:http://doi.acm.org/10.1145/1753326.1753576

Ko, E. (2010, February). Chat with Ellen Ko.

Lampe, C., Ellison, N. B., & Steinfield, C. (2008). Changes in use and perception of
facebook. In Proceedings of the 2008 ACM conference on Computer supported
cooperative work, CSCW '08 (pp. 721-730). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1460563.1460675

Lampe, C., & Resnick, P. (2004). Slash(dot) and burn: distributed moderation in a
large online conversation space. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI '04 (pp. 543-550). New York, NY,
USA: ACM. doi:http://doi.acm.org/10.1145/985692.985761

Launchpad Karma. (2010). Retrieved from
https://help.launchpad.net/YourAccount/Karma

Launchpad Mailing lists. (n.d.). Retrieved from
https://help.launchpad.net/Teams/MailingLists

Lee, K.]J. (2006). What goes around comes around: an analysis of del.icio.us as social
space. In Proceedings of the 2006 20th anniversary conference on Computer
supported cooperative work, CSCW '06 (pp. 191-194). New York, NY, USA:
ACM. doi:http://doi.acm.org/10.1145/1180875.1180905

Luther, K., & Bruckman, A. (2008). Leadership in online creative collaboration. In
Proceedings of the 2008 ACM conference on Computer supported cooperative
work, CSCW '08 (pp. 343-352). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1460563.1460619

Metrics for Healthy Communities. (2010). Retrieved from
http://www.horsepigcow.com/2007/10/metrics-for-healthy-communities/

108

Mozilla Computer Science. (2010). Retrieved from
https://wiki.mozilla.org/Education/ComputerScience

Mozilla Education. (2010). Retrieved from
https://wiki.mozilla.org/Education/Overview

Munga, N., Fogwill, T., & Williams, Q. (2009). The adoption of open source software
in business models: a Red Hat and IBM case study. In SAICSIT '09:
Proceedings of the 2009 Annual Research Conference of the South African
Institute of Computer Scientists and Information Technologists (pp. 112-121).
New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1632149.1632165

MyBB Feature Tour. (2010). Retrieved from http://www.mybb.com/features

Ohira, M., Ohsugi, N., Ohoka, T., & Matsumoto, K. (2005). Accelerating cross-project
knowledge collaboration using collaborative filtering and social networks.
SIGSOFT Softw. Eng. Notes, 30, 1-5.
doi:http://doi.acm.org/10.1145/1082983.1083163

Ohloh. (2010). Retrieved from www.ohloh.net/

Open Source As Programming Exp. for College Students. (2010). . Retrieved from
http://ask.slashdot.org/article.pl?sid=02/02/26/198253&mode=nested&tid
=156

Open Source Initiative. (2010, OSI). Retrieved from
http://www.opensource.org/history

Open Source Software. (2010). Retrieved from http://en.wikipedia.org/wiki/Open-
source_software

OSL University College Dublin, Ireland. (2010). . Retrieved from http://osl.ucd.ie/

OSU OSEL. (2010). Retrieved from
http://osel.oregonstate.edu/index.php?title=Main_Page

OSU OSL. (2010). Retrieved from http://osuosl.org/about-osuosl

Pavlou, P. A, Pavlou, P. A., & Gefen, D. (n.d.). Psychological Contract Violation in
Online Marketplaces. ANTECEDENTS, CONSEQUENCES, AND MODERATING
ROLE,” INFORMATION SYSTEMS RESEARCH, 16,372-399. d0i:10.1.1.87.24

Pink, D. (n.d.). Daniel Pink on Motivation. Retrieved from
http://www.youtube.com/watch?v=_mG-hhWL_ug

109

Planet. (n.d.). Retrieved from http://www.planetplanet.org/

Porter,]. (2010). Is Harriet Klausner for real? Retrieved from
http://bokardo.com/archives/is-harriet-klausner-for-real/

Problems and Cheaters Curb Stomp Emergence Day Problems and Cheaters Curb
Stomp Emergence Day dfProblems and Cheaters Curb Stomp Emergence Day
Problems and Cheaters Curb Stomp Emergence Day Problems and Cheaters
Curb Stomp Emergence Day Problems and Cheaters Curb Stomp Emergence
Day. (n.d.).. Retrieved from
http://www.2o0ld2play.com/News/Problems_and_Cheaters_Curb_Stomp_Em
ergence_Day#7058

Resnick, P., Kuwabara, K., Zeckhauser, R., & Friedman, E. (2000). Reputation
systems. Commun. ACM, 43, 45-48.
doi:http://doi.acm.org/10.1145/355112.355122

REVOLUTION OS. (2001, Revolution 0S). Retrieved from http://www.revolution-
os.com/

Riehle, D. (2006). How and why Wikipedia works: an interview with Angela Beesley,
Elisabeth Bauer, and Kizu Naoko. In WikiSym '06: Proceedings of the 2006
international symposium on Wikis (pp. 3-8). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1149453.1149456

Robbins,]. E., & Robbins, J. E. ". (2002). Adopting OSS Methods by Adopting 0SS
Tools. d0i:10.1.1.11.1951

Sen, S., Lam, S. K., Rashid, A. M., Cosley, D., Frankowski, D., Osterhouse, J., Harper, F.
M., et al. (2006). tagging, communities, vocabulary, evolution. In Proceedings
of the 2006 20th anniversary conference on Computer supported cooperative
work, CSCW '06 (pp. 181-190). New York, NY, USA: ACM.
doi:http://doi.acm.org/10.1145/1180875.1180904

Sibisi, S., Jensen, M., Machanick, P., & Blake, E. (2004, July). Free/Libre & Open
Source Software and Open Standards in South Africa. Retrieved from
http://www.naci.org.za/pdfs/floss_v2_6_9.pdf

Social media games: Badges or badgering? (2010).. Retrieved from
http://www.cnn.com/2010/TECH/05/04 /cnet.foursquare.badges/index.ht
ml?hpt=Sbin

SourceForge. (2010). Retrieved from http://sourceforge.net/develop

de Souza, C., Froehlich,]., & Dourish, P. (2005). Seeking the source: software source

110

code as a social and technical artifact. In Proceedings of the 2005 international
ACM SIGGROUP conference on Supporting group work, GROUP '05. New York,
NY, USA: ACM.

Spolsky, J. (2010). Painless Bug Tracking. Retrieved from
http://www.joelonsoftware.com/articles/fog0000000029.html

StackOverflow. (2010). Retrieved from http://stackoverflow.com/faq
StackOverflow Badges. (2010). Retrieved from http://stackoverflow.com/badges
Stanford Open Source. (2010). Retrieved from https://opensource.stanford.edu/

Su, H,, Jodis, S., & Zhang, H. (2007). Providing an integrated software development
environment for undergraduate software engineering courses. . Comput.
Small Coll., 23, 143-149.

Teaching Open Source. (2010). Retrieved from
http://teachingopensource.org/index.php/Main_Page

Tigris. (2010). Retrieved from http://www.tigris.org/
Trac Wiki. (n.d.). Retrieved from http://trac.edgewall.org/wiki/TracWiki

Tracking top diggers. (2010). Retrieved from
http://www.chrisfinke.com/2008/05/23 /tracking-the-top-diggers/

Unable to parse string as BibTeX. (n.d.).

Walsh, K., & Sirer, E. G. (2005). Fighting peer-to-peer SPAM and decoys with object
reputation. In PZPECON '05: Proceedings of the 2005 ACM SIGCOMM workshop
on Economics of peer-to-peer systems (pp. 138-143). New York, NY, USA:
ACM. doi:http://doi.acm.org/10.1145/1080192.1080204

Yahoo Answers. (2010). Retrieved from
http://answers.yahoo.com/info/scoring_system

YDN - Reputation Patterns. (n.d.). Retrieved from
http://developer.yahoo.com/ypatterns/social/people/reputation/

Ye, Y., & Kishida, K. (2003). Toward an understanding of the motivation Open Source
Software developers. In Proceedings of the 25th International Conference on
Software Engineering, ICSE '03 (pp. 419-429). Washington, DC, USA: IEEE
Computer Society. Retrieved from
http://portal.acm.org/citation.cfm?id=776816.776867

