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Of great benefit, but not limited to seafloor mineral
exploration, is a technique that fairly rapidly determines the
composition of a drilled vibracore (in a time comparable to the time
involved in obtaining the core). The rapid assessment is desired to
predict whether a given region warrants further exploration by
coring.

A proposed monitoring system, based on neutron capture gamma
ray analysis, consists of a container tank filled with water and
tubular extensions that house a Cf-252 neutron source and a
detector positioned within the tank. The core sampie is passed
through the system in stop and count steps. The net count rates, due
to "signature" capture gamma rays from neutron capture in elements
in the core sample, are proportional to the amount of the element
responsible for emitting the capture gamma ray.

The proposed system was modeled and simulated by the Monte Carlo

method to predict the relationship between the response of the



detector and the elemental concentrations within the sample.
Accurate and detailed treatment of neutron transport and gamma ray
production and attenuation within the system were employed not only
to predict the relationship of the photopeak responses with respect
to elemental concentrations, but also to permit investigation of the
design parameters and structural material changes in the system.

The developed Monte Carlo code utilizes a variety of variance
reduction techniques, such as implicit absorption with Russian
Roulette and deterministic production of the gamma rays of interest,
along with a form of correlated sampling to predict simultaneously
the responses over a range of interest of the elemental
concentrations. The predicted results were compared with predictions
obtained from a well established general purpose Monte Carlo code

(MCNP) .
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Monte Carlo Model of a Capture Gamma Ray Analyzer
for a Seafloor Core Sample

1. INTRODUCTION
1.1 Neutron Capture Prompt Gamma Ray Analysis

Neutron capture prompt gamma ray analysis (NCPGA) is a nuclear
technique that can be used to perform quantitative analysis of
elemental concentrations in a host matrix. This technique is based
on the principle that neutron captures resuit in the formation of
compound excited nuclei which de-excite promptly (in less than 10-12
s) by the emission of one or more gamma rays with energies
(typically 2 to 11 MeV) and yields that are characteristic of the
excited nuclei and the energy of the original captured neutron that
initiated the reaction.

In general, NCPGA is only sensitive to the major elemental
constituents of a sample and offers a complementary technique for
the conventional delayed gamma ray neutron activation analysis (NAA)
which is best suited for trace element analysis. It has been shown
that NCPGA has greater inherent sensitivity than conventional NAA
for most elements, provided that equal neutron fluxes can be
achieved for activation (Isenhour, 1966). A comparison of the
theoretical sensitivity limits for the analysis of 63 elements by
NCPGA and NAA shows that, calculating with an equal neutron flux,
the NCPGA would be superior for 61 of these elements (Henkelmann,
1978).

The major difference between the two techniques is the fact



that in conventional NAA, the analysis depends on the radioactive
product of the neutron bombardment, if formed in reasonable amounts
with an inherent phenomenon of growth and decay. NCPGA, however, is
independent of the product’s nuclear characteristics.

The term "prompt" gamma ray analysis is to be understood as the
observation of the characteristic electromagnetic radiation
resulting directly from the neutron radiative capture. This
radiation is prompt in the sense that the nuclear decay -time is in
the order of 10712 s and thus strongly contrasts with the time delay
of seconds, or longer, characteristic of gamma radiation following
B~ decay. In fact the term "prompt gamma analysis" is not strictly
accurate since the prompt gamma rays include also those from
inelastic neutron scattering, which is a threshold reaction
determined by the level of the first excited state of the target
nucleus and hence is of interest when fast neutrons are used.

Foremost among the advantages of NCPGA over conventional NAA
is the fact that NCPGA eliminates errors of timing encountered
during corrections for decay during counting. The prompt gamma rays
are emitted before the product has any chance to migrate out of the
sample and the possibility of loss of any volatile species as a
result of Szilard-Chalmers processes is avoided. Also, the sample
to be analyzed needs little or no preparation, and it produces
negligible residual activity. The drawback of NCPGA not being
suitable to take advantage of decay to identify species and observe
contaminants, or avoid interference is not considered serious.

This work pertains to computationally modeling, by the Monte



Carlo method, a proposed monitoring system based on the NCPGA
principle for the purpose of quantitatively analyzing the elemental
concentrations of elements of interest (Mg, Cl1, Ti, Cr, Mn, and Fe)
found in vibracores taken from seafloor sediment core samples. All
of the abovementioned elements have major capture gamma rays of
energies above 3 MeV. In contrast, the gamma rays produced by
neutron activation, neutron inelastic scattering, and natural
radioactivity have energies mainly below 3 MeV.

The non-destructive, fairly rapid sampling of all or most of a
process stream (bulk sampling), thus giving more representative
results, the minimal interference from natural radioactivity, and
the feasibility of portable small intense neutron sources all make
the NCPGA a prime technique for in-situ mineral exploration to
identify and quantify the elements present in a field sample.

Although of no economical interest, chlorine is included in the
list above since in marine applications, the high gamma ray
background from the C1{n,y) reaction is the major interference. The
area under the full energy peaks of the characteristic capture gamma
rays (fingerprints) from these elements are non-linear functions of
the elemental concentrations in the core sample, because of the
competition for neutrons among the various constituents of the
sample, especially if strong neutron absorbers are present. Hence
the relationship between the phdtopeak response and the elemental
concentrations needs to be estimated by Monte Carlo technique.

The Monte Carlo model is useful in the calibration of such a

monitoring system without the need for constructing calibration
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standards representative of the various elemental concentrations of
the sample. This calibration is helpful to investigate and predict
the variation of detector response with elemental concentrations.

A single calibration standard composed of known elemental
concentrations within a matrix of composition similar to that
expected in the field is needed to normalize the responses estimated
by the Monte Carlo model. In addition, the model is thought to be
useful for sensitivity analysis investigations of the design
parameters, such as the sampie to source and detector distances and
relative locations or the concentration of a given element. This is
feasible because of the detailed treatment of neutron transport in

the system and detailed treatment of capture gamma ray transmission.
1.2 Literature Review

The majority of the literature on the use of the NCPGA in
mineral exploration and on-line analysis represents extensive
experimental determination and assessment of the use of this nuclear
technique. Numerous sources are given in the reference listing
(Charbucinski et al., 1986; Clayton, 1983; Failey et al., 1979;
Glascock, 1982; Lukander and Uusitalo, 1979; Moxham et al., 1976;
Nargolwalla et al., 1973; Senftle et al., 1974; Tanner et al., 1972;
Thomas et al., 1983; Uusitalo et al., 1982; Wormald and Clayton,
1983). In this work it is relevant to emphasize the theoretical
modeling and to compare the results of such modeling with
experimental work if possible.

The research in general is concerned with a borehole geometry.



Brief descriptions of previous work, relevant to the potential
benefits of computer simulation, are summarized below. The flux
distribution in the medium of interest as an integral part of a
model, represented by steady-state diffusion theory, has been
applied to obtain the neutron flux distribution from a point source
in cylindrical coaxial geometry (representative of borehole
geometry) (Nargolwalla et al., 1973). The resulting neutron spatial
distribution was used to compute neutron capture reaction rates to
assess the unscattered gamma-ray flux reaching a point detector by
integrating over the medium volume.

A sonde-in-borehole configuration was modeled by Doster (1979)
to predict the photopeak detector response (Fe: 7.64 MeV peak) from
a thin axial zone of iron concentration. The four-group neutron
flux distribution was determined by the two-dimensional multigroup
diffusion theory code PDQ-5. Numerical integration over the medium
volume was performed to calculate the prompt gamma production rate
resulting from the neutron capture reaction rates. The obtained
results were in good agreement with the experimental results .

Sohrabpour and Bull (1979) developed a Monte Carlo model to
predict the photopeak detector response from a capture gamma ray
experiment in an infinite homogeneous medium with a Cf-252 neutron
source and a Ge(Li) detector. Neutron cross sections were based on
six(one thermal)-group cross sections. The predicted responses for
copper and tungsten were shown to be non-linear. The model was
tested experimentally, and the results showed that the model

predictions exceeded the experimental values by 30-40%.



The discrete ordinate (1-dimensional) neutron transport code
ANISN was used to determine the neutron flux distribution in a
multi-layered medium in a spherical geometry of coal with a neutron
source in the center (Reynolds, 1977; Elias and Gozani, 1980).
Analysis of the bulk density, sample uniformity, system size and
hydrogen content on the prompt gamma ray flux in the experimental
system was assessed.

A multigroup Monte Carlo method to determine the ash content of
coal was reported by Wormald et al. (1979).

Clark et al. (1982) reported a Monte Carlo model for borehole
geometry with thorough treatment of neutron transport within the
shielding components. Pointwise ENDF/B-V cross section data were
used after being fitted with analytical functions to reduce the data
storage requirements.

Sanders (1983) applied the multi-group Monte Carlo method to
the problem of geologic formation analysis in oil exploration by
modeling neutron interactions to demonstrate the ability of the
Monte Carlo method to simulate complex geometry problems and to
analyze neutron and gamma ray transport in the field of applied
earth sciences.

The use of the Monte Carlo technique to optimize the
geometrical configuration of an on-line capture gamma ray analyzer
has been reported by Lukander and Uusitalo (1978).

Thomas et al. (1983) reported on a towed seabed spectrometer
for mineral exploration, based on both natural and neutron induced

gamma rays. Monte Carlo calculations were used to simulate the



experimental probe and to estimate the effective sampling depth by
simulating the depth of penetration of neutrons into the seabed and
the subsequent attenuation of capture gamma rays returning to the
detector. The results were represented as sectional contours of
contributions to the detector. Monte Carlo calculations were also
used to simulate an artificial seabed of sand containing varying
concentrations of copper and manganese to investigate the non-linear
relationship between count rate and elemental concentration for
trace elements with significantly large neutron absorption cross
sections.

Monte Carlo modeling to describe the design and calculation of
capture gamma-ray analysis systems has been demonstrated for coal
and compared with experiments (Schmidt and Rose, 1984). The general
Monte Carlo program SAM-CE (Monte Carlo System for Radiation
Transport and Criticality calculations in complex configurations,
developed at the Electric Power Research Institute) has been
modified to have the capability of predicting strong discrete gamma
ray lines and used with ENDF/B-V cross sections (including gamma ray
production data) to calculate a complete gamma ray spectrum. It
seems that the model uses the detector response function to predict
the instrument response.

Rainbow (1985) used the general purpose Monte Carlo code MORSE
and nuclear data derived from ENDF/B-IV to model a conveyor belt
iron ore analyzer which detects thermal neutron capture gamma rays
from Fe-56. A multi-group energy treatment was used with processed

multigroup cross sections for the analyzer materials averaged over



the slowing-down neutron spectrum from a uniformly distributed Cf-
252 fission source in an infinite polyethylene moderator. A user
supplied patch to model the Cf-252 source as a point fission source
with a Maxwellian spectrum was used. The author concluded that such
simulation would be possible provided that the efficiency of the
calculations was improved. Some form of correlated sampling is
recommended to improve the efficiency of simulating a number of
similar systems. Due to the smearing effects of multigroup energy
treatment, only simple gamma ray spectra could be treated.
Otherwise a continuous energy treatment, such as is incorporated in
the MCNP code (a general purpose Monte Carlo code developed at Los
Alamos National Laboratory), has to be used.

The trend of research to understand the influence of perturbing
factors on neutron transport, such as construction materials, sample
constituents and physical state, and hence to make allowance in
equipment design and data interpretation, is leaning heavily on

neutron transport studies by Monte Carlo techniques.



2. REVIEW OF APPLICABLE NEUTRON AND GAMMA RAY PHYSICS

In this chapter, a general review of the interaction of
neutrons with matter and the governing equations that describe the
mechanics of such interactions are discussed along with the origin,
attenuation, and penetration of associated capture gamma rays within
a medium. The significance of the interactions and effects on this

work is emphasized.
2.1 Neutrons

Throughout this discussion, neutrons are pictured as very small
spheres and their wave characteristics are ignored except in the
case of thermal neutrons with energies at thermal equilibrium with
the atoms in the surrounding medium. The deBroglie wavelength
associated with such a neutron (0.0253 eV energy at room
temperature), is 18 nm and is comparable to the lattice parameters.
This is of significance in considering thermal neutron cross
sections (Section 2.1.4). Furthermore, any relativistic effectsvare
ignored since even a neutron with an energy as high as 5 MeV would
have a speed of only ~1% of the speed of light. Beta decay of a
free neutron (half-life of 11.7 minutes) is not considered when
compared with the time scale of the events of interest. Neutron
polarization (up or down % spin) is not considered, since this is
only of significance in determining the azimuthal angle of neutron
scattering reactions.

A very important feature of neutron transport is that, being
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neutral, the electromagnetic fields of the atoms that comprise the
medium where the neutron is being transported play no role in the
interactions. Therefore, the path that neutrons transcribe between

collisions is a straight line.
2.1.1 Neutron Sources and Associated Neutron Spectra

Excluding the bulkier nuclear reactors and accelerators,

practically portabie neutron sources can be categorized into:

A. Radioisotopic decay sources

Many heavy radioisotopes decay by spontaneous fission and in
the process emit neutrons. Among these is Cf-252. The artificially
produced Cf-252 is considered a highly practical neutron source for
research and engineering measurements. It has a half-life of 2.65
years and decays 97% by alpha emission and 3% by spontaneous
fission with the emission of an average of 3.5 neutrons per fission.
On a unit mass basis, 2.3 x 106 neutron/s are produced per pg of
Cf-252. The energy spectrum of the neutrons is reported (Boldeman

et al., 1979) to be accurately represented by:

X(E) = 25 T2 gV2 o B (2.1.1-1)

with T = 1.424 MeV

The mean energy of this spectrum is 2.136 MeV which is
appreciably lower than that of the isotopic sources discussed below.
Furthermore, the specific yield of neutrons is higher and the

associated gamma ray yield is Tower than the isotopic sources. The
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Cf-252 source is considered to be more appropriate for neutron
capture reactions, which are characterized by large thermal neutron

absorption cross sections for many elements.

B. Isotopic sources

Neutrons can be produced by (a,n) and (y,n) reactions. One
such compact source that is commercially available is a mixture of
Be-9 and an a-emitting radioisotope, such as Po-210, Pu-239, Ra-226,
or Am-241, that through the reaction 9Be(a,n)lzc produces neutrons
having a spectrum of energies from 0 to about 11 MeV with an average
neutron energy of about 4.5 MeV.

The (y,n) reaction on a Be-9 has a threshold energy of 1.665
MeV; radioisotopes with both practical half-lives and gamma
radiation with an energy above 1.665 MeV are rare. One such
candidate (Sb-124) has a relatively short half-life of about 60
days. The average energy of the neutrons produced by the antimony-
beryllium 9Be(y,n)8Be source is about 0.0223 MeV (Knoll, 1979). A1l
isotopic neutron sources give yields from about 2 x 108 to 1 x 107

neutron/s per curie of initiating radioisotope.

C. 14-MeV compact d-t neutron generators

These generators make use of either the 3H(d,n)4He or
2H(d,n)3He reactions. In the former case, neutrons are produced
with an energy of 14 MeV and high yields can be obtained. The
latter reaction has a lower yield with lower neutron energies. The

high energy neutrons are suitable for methods based on inelastic
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scattering, and the generator has the advantage that it can be
turned off when it is not in use, thus reducing unnecessary
exposures and irradiations. By pulsing the neutron generator, it is
possible to separate the gamma ray sbectrum produced by neutron
inelastic scattering from those excited in neutron capture
reactions. In addition to being expensive, the neutron flux is not

reliably steady and the lifetime of the generator tube is Timited.
2.1.2 Neutron Interactions

Upon collision of a neutron with a nucleus, one of the
following interactions may take place depending on the neutron

energy and the nucleus involved:

A. Absorption

In the absorption reaction, the neutron totally disappears and
is replaced by one or more secondary radiations. The absorption
reaction leads to the formation of a compound nucleus in an excited
state that might persist anywhere from 10714 5 to years depending on
the nucleus and the state in question. The excited compound nucleus
may decay, with a finite probability, by one of the following modes:

1. Charged particle emission: (e.g., (n,a), (n,p), etc.).

The compound nucleus becomes de-excited by emitting a charged

particle (proton, deuteron, a-particle, or occasijonally an

electron). From the viewpoint of neutron population, the
process results in the loss of a neutron and hence is

equivalent to a neutron capture.
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2. Neutron capture: (n,y). The compound nucleus de-excites
almost instantaneously by emitting a y-ray. Often the nucleus
is still not stable after the y-ray emission, and a B-decay
follows. This reaction is the prime origin of the
characteristic capture gamma rays discussed in Section 2.2.1.
The effect on the neutron population is a loss of the captured
neutron.
3. Neutron producing reaction: ((n,xn), where x is an integer
> 2). The compound nucleus de-excites by emitting two or more
neutrons. The neutron population is considered to be
increased, and thus this reaction is similar to a fission event
from a neutron economy standpoint.
4. Fission: The compound nucleus de-excites by a nuclear
fission, splitting into two large fragments (and one light
fragment in the rare ternary fission reaction) along with the
instantaneous emission of generally from one to three free
neutrons, of which a small fraction of about 0.65% are delayed
neutrons. This mode effectively increases the neutron

population.

B. Scattering

In scattering reactions, a neutron re-emerges after getting
close enough to the nucleus to experience the nuclear force. The
time involved in the formation of the compound nucleus and the
de-excitation is very short. This reaction is classified further

into:
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1. Elastic scattering: A neutron is emitted and the nucleus
returns to its initial ground state. The emitted neutron need
not be the same one that originally interacted with the
nucleus. The lifetime of the excited compound nucleus is so
short (~10‘12 s) that for practical purposes, the collision
process may be analyzed as a "billiard-ball" collision. This
type of elastic scattering is called resonance scattering and
is very rare. A more common form is potential scattering, in
which the impinging neutron does behave exactly Tike one
billiard ball striking another (the nucleus). As judged by the
time involved (~10‘22 s), the neutron interacts with the
nucleus as a whole without forming a compound nucleus. Thus,
whether the elastic scattering is anomalous resonance
scattering or the common potential scattering, the billiard
ball model that pictures the original neutron as striking the
nucleus (causing it to recoil) and moving off in a direction
different from its original flight path is adequate to analyze
the process. Elastic scattering is an extremely important
process since it is the chief mechanism in neutron
thermalization by which the high energy neutrons lose their
kinetic energy.
2. Inelastic scattering: (n,n’y). A neutron is emitted from
the compound nucleus, but the nucleus still remains in an
excited state, usually the first excited state, which decays
promptly, generally with the emission of only one gamma ray.

The time involved in the process (—lO‘12 s) is effectively
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instantaneous. Theoretical models usually account for the
large amount of energy lost by the neutron in the scattering
process to be responsible for the nucleus remaining in an

excited state.
2.1.3 Nuclear Cross Sections

Before any mathematical representations of neutron interactions
can be formulated, the concept of nuclear cross sections has to be
presented.

To obtain a quantitative measure of the events (absorption,
scattering, etc.) that may take place when a neutron interacts with
a nucleus, it is in order to define quantities which specify the
probability that a neutron, having a given kinetic energy and moving
through a medium containing a given material, will interact in a
certain manner. It must be understood that these quantities are
probabilities and one cannot predict exactly which event will occur
in a particular case. However, given that only absorption and
scattering are the two possible events among the statistical
ensemble, and, say papsorption = 0-3 and pgcattering = 0-7, then one
can predict that 30% of the events will be absorptions and 70% of
the events will be scatterings.

Physicists have introduced the concept of a nuclear cross
section by specifying the probability of an interaction, picturing
the nucleus as presenting an "unshadowed" cross sectional area to a
neutron traveling through a medium. Adopting this concept of cross

section literally would require that the nucleus adjust its "size"
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in accord with the energy of a neutron about to hit it, since it is
known by measurements that the probability of interaction depends on
the kinetic energy of the neutron. The cross section is then not to
be taken as a literal, but only a convenient, way of expressing the
probability of an interaction to take place. Thus, the microscopic
cross section for the interaction by a specific process between a
nucleus and a passing neutron can be defined in terms of the
probability that an interaction of type s will take place when a
neutron having kinetic energy E moves a distance dx in a medium
containing Nj atoms of isotope j per cm3, namely Nj os,j(E) dx.

In this definition, it is understood that, since the probability of
interaction depends on the relative kinetic energy between the
neutron and the target nucleus, an average over the thermal motions
of the nuclei has been performed. Thus, one should think of the
os,j(E) as depending implicitly on the temperature of the isotope j
and consider E as the kinetic energy of the neutron relative to the
laboratory system. This temperature dependence of os,j(E) is
important when the neutron energy is in the thermal energy range
(0 < E <1 eV) where the speed of the neutron is comparable to the
thermal motion of the nuclei comprising the medium; this effect is
further investigated in Section 2.1.4. Another situation, when the
energy of the neutron corresponds to a "resonance energy" of the
nucleus it strikes, causing the "Doppler broadening", is also |
referred to in Section 2.1.4.

The product Nj og j(E) is labeled the macroscopic cross

section, which may be used to define the probability of occurrence
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less ambiguously as: the macroscopic cross section is the
probability per unit path length in a material that a neutron of
energy £ will undergo an interaction of type s with material j.

With the above in mind, it is customary to speak of cross
sections for all possible nuclear processes (scattering, absorption,

etc.).
2.1.4 Characteristics of Nuclear Cross Sections

The neutron energy range of interest in this work extends to
the highest neutron energy emitted by the Cf-252 source. It is can
be shown that the probability that a neutron emitted from Cf-252 has
an energy greater than 5 MeV is less than 0.05 (Profio, 1979).
Therefore, the upper 1imit can be safely assumed to be, say, 10 MeV,
and the energy behavior of neutron cross sections in this range of
interest for the nuclei comprising the monitoring system is

addressed next.

A. Behavior of neutron absorption cross sections

General behavior for the neutron absorption cross section of
all elements tend to vary as E-% (one over v behavior) at low (< 2
eV) energies. For most light nuclei the 1/v behavior persists up to
higher energies. However, for intermediate and heavy nuclei, the
curve of o(E) versus E exhibits very high and very sharp peaks
(resonances) begining in the energy range just above thermal. These
peaks are due to the existence of metastable energy levels in the

excited nucleus. Physically, the formation of the compound nucleus
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is strongly favored when the total excitation energy of the nucleus
corresponds to that of the metastable level. The total available
excitation energy being the kinetic energy of the neutron about to
strike the nucleus in addition to the potential energy released
(binding energy) when that neutron enters the potential field of the
nuclear force. Most of the resonance peaks are due to neutron
absorptions although the asymmetric dipping just beyond each
resonance is a scattering effect explained by quantum mechanics.

The resonance widths are very narrow and, because the target nuclei
are in motion, are dependent on the relative motion of the target
nuclei. These resonances are said to be Doppler-broadened with
increasing target nuclei temperature.

Care must be practiced when nuclear cross section data are
obtained. For instance, capture cross section data for a free Na-23
nucleus at 0 9K and 300 OK obtained from the Evaluated Nuclear Data
File (ENDF/B-V) are shown in Figure 2.1.4-1; comparison of the two
curves clearly shows the Doppler broadening effect of the
resonances, indicated by the decrease in the peak magnitude of the
cross section value at the resonance energy. It is feasible to
account for the Doppler-broadening theoretically using the Breit-
Wigner formula for the isolated resonances, when it is deemed that
this adjustment is significant. At neutron energies above a few
hundred eV, the resonance peaks become lower and broader. Due to
the lack of precise measurements of 0g,j(E) in this energy range and
the closeness of the nuclear levels, the curve takes on a smooth

"unresolved resonances" appearance.
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Absorption cross sections are not affected by the absorber atom
nucleus being in a bound state in a molecule or in a crystal lattice
or by being free. Therefore, the cross sections can be taken to be
the same for bound atom nuclei as for free atom nuclei (Bell and

Glasstone, 1982).

B. Behavior of neutron scattering cross sections

Scattering cross sections for low energy neutrons interacting
with most elements are elastic, roughly constant as a function of
energy, and small in magnitude. Important exceptions to this rule
occur when the atomic nucleus with which the neutron is interacting
is bound chemically in molecules (not free) to other atomic nuclei
or in part of a crystalline structure; under these conditions, low
energy neutrons (with wavelength in the order of the lattice
parameters) will Bragg scatter and tend to interact with several
nuclei at once. The nucleus in a bound state cannot recoil freely
in a collision. Instead there is an interaction between the
scattering atomic nucleus and its neighbors in the molecule or
solid.

The kinematics of two-body interactions considers the reduced
mass of the neutron-nucleus system; in heavy nuclei the reduced mass
is practically equal to the neutron mass and the ratio of the
scattering cross §ection for the bound atom to the free atom is
essentially unity. Nevertheless, for light nuclei (e.g.; H), the

reduced mass effect is pronounced. Furthermore, the scattering is
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often inelastic, some of the incident kinetic energy of the neutron
being retained by the molecule in the form of excited vibrational or
rotational motions of its constituent atoms. It is a formidable
effort to apply free hydrogen scattering data in the case of bound
hydrogen in molecules even after theoretically accounting for some
of the aforementioned effects (e.g., the Nelkin model).

Furthermore, the effect of the target nucleus motion as a function
of temperature that affects the interaction at low neutron energies
cannot be ignored as shown in Figures 2.1.4-2. Thus, in general,
the scattering cross sections depend on the physical and chemical
forms and temperature of the scattering material.

Figure 2.1.4-3 schematically shows the origin of the delayed
gamma radiation resulting from the activation of heretofore stable
elements with neutrons, thereby rendering them radioactive, which in
turn decay by emitting nuclear radiation specific to each element.
This process is utilized in the conventional NAA, whereas the NCPGA
utilizes the radiation emitted at the time of neutron activation
rather than that emitted from the de-excitation of the newly-formed
daughter nucleus. Furthermore, Figure 2.1.4-3 schematically shows
the functional dependence of the capture, elastic, and inelastic
cross sections on the neutron kinetic energy exhibiting resonance
behavior at those energies at which the center-of-mass energy Ecp
plus the neutron binding energy match an energy level of the

compound nucleus.



Elastic Scattering Cross Section {b)

Elastic Scattering Cross Section (b)

3
10 L SR AL R AL B AL SRR RL LR SLEAL LLAL/ AR AR EA UL EL SR ILRL I LLL B T 1)

(300°K)

10? —

Ll

19

10° -

LA |

sl sl sownd o Y TN BTSN ET! EPUR WY AP ENET AP AT ET| I T TENEY| NN UT U T Y|

107 107 107 10 10° 10° 10’ 10°

10

Neutron Energy (eV)

3
lo LB AL/ BREREL AR AL BLEREL SLERAL BLELAL | LA SREREL BRERLRL SLSRAL BRELAL SN AL B LAL! BRERAL
b

(0°k) i

10

T

T

10°

T
|

+

pond aaal sl sanl ol UV ISR ET| NN T A SN Y| IS SN UY! AT AN T BEURUT! VAR AT

107 107 107 10 10 10° 10’ 10°

107

Neutron Energy (eV)

Figuf‘e 2.1.4-2 Na-23 Elastic scattering cross section
as a function of incident neutron energy, given at
3000 K (top) and at 00 K (bottom) (ENDF/B-V data).



INELASTIC SCATTERINC

QUANTUM LEVELS

RADIATIVE CAPTURE

SCATTERING

Kinetic energy of incident neufron

ing_L
oscic SBETF
JnR
ic ? ”ﬂ
pest ure

/ N‘“‘M <
A

X Target mucleus + Newtron
z

Cross section bshavior

CROUND STATZ

At
z X Compound nucleus

Daughter nucieus

Figure 2.1.4-3 Schematic representaion of the origin
of the prompt capture gamma rays.

23



24

2.1.5 Mathematical Representation of Neutron Interactions

Quantitative mechanics of the neutron absorption reaction are
not needed in this work since a neutron undergoing absorption is
considered lost. The path length that a neutron traverses between
collisions is discussed in Appendix A. Radiative capture is
discussed qualitatively in Section 2.2, since it is the origin'of
the prompt gamma rays of interest.

Neutron scattering representations and models are investigated
and the models used in this work are outlined. Neutron scattering
reactions may be categorized according to the interacting neutron

energy into:

A. _Thermal Scattering

At thermal neutron energies, where the interacting neutron
kinetic energy is comparable to the thermal agitations of the target
scattering nuclei, the latter can no longer be regarded as being at
rest. Therefore, it is possible that the neutron gains energy, by
upscattering, as well as loses energy in collisions. In addition,
molecular and crystal binding and wave interference effects have to
be accounted for. As mentioned before, since the cross section is
averaged over the target nuclei velocity distribution, one expects
the cross section behavior to be temperature dependent. By using
data at the appropriate temperature, no special considerations are
necessary for radiative capture. On the other hand, the neutron

scattering model has to be modified significantly to account for the
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possibility that the colliding neutron may gain or lose energy in
the collision. Chemical binding, thermal vibrational and rotational
modes of molecules of the target nucleus, and crystalline effects
may be incorporated into the adopted model, depending on the
sophistication of the model.

The S(a,B) scattering law is the most rigorous treatment and is
derived from quantum mechanical theory of neutron scattering from a
system of bound nuclei. The a and B (dimensionless momentum and
energy exchange) parameters uniquely determine the kinetic energy
and scattering angle of the emerging neutron in the laboratory
system. This model requires the storage of only two-dimensional
arrays (Bischoff et al., 1972).

The monatomic gas model, in which the moderating atoms (nuclei)
are modeled as being a monatomic gas in which there is no chemical
binding among molecules, is considered to be a good approximation
(Carter and Cashwell, 1975). The energy distribution among the
atoms is the Maxwell-Boltzmann distribution, which accounts for the
thermal motion, and results in upscatterings and yields a good
approximation to the thermal neutron energy distribution. It is
considered to be a good approximation when chemical binding effects
may be ignored or adequately described by various approximations.
The inherent assumption in this model is that the neutrons are
transported in a monatomic gas of the moderating nuclei; the gas is
assumed to have a Maxwellian velocity distribution:

A 2 _av?
p(V) av = [m] V2 e 2T gv 4o d¢ (2.1.5-1)
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The scattering is assumed to be elastic (no inelastic energy loss as
vibrational, rotational, etc.) and further assumed to be isotropic
in the center-of-mass system, since the thermal target motion tends
to make the scattering more nearly isotropic.

The energy available for an interaction is the sum of the
kinetic energy of the neutron and the nucleus with respect to their

center-of-mass. This reduced mass (M) energy is given by:

E, = 3 fv? (2.1.5-2)

where f = mM/(m+M), m and M are the mass of the neutron and the
nucleus, respectively, and vy is the relative speed of approach.

The relative velocity obtained by the cosine law is given by:

v, = v + V2 - 2uV cosy (2.1.5-3)

where ¥ is the angle between the velocity vectors of the neutron v,
and the nucleus V. The total interaction rate for all nuclei is
therefore:

$ N 6(E,T) = [ n v, 6(E,)N(V) av (2.1.5-4)
v

since ¢ = nv, where v, is the speed of the neutron and ¢ is the
neutron flux. The effective scattering cross section in the

laboratory system for a neutron is:

=

o(E,T) = {J] v, 6(v) N p(v) avdn  (2.1.5-5)

o

Vn
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If it is assumed that the scattering cross section of the nucleus is

independent of this relative velocity, i.e.,

0(E,) = o = constant

with B defined as:

[A_

P = Nzxt (2.1.5-6)

and a new variable x defined as :

2
X=pV-= \Sif (2.1.5=7)

then Equation (2.1.5-1) in terms of the transformed dimensionless

variable x can be rewritten as:

p(x) dx = -J4_-'n‘ x2 e® dx (2.1.5-8)

and Equation (2.1.5-5) can be written as:

n

1 T 0 g3 v? e‘ﬁz"z a1
'(E,T) = U—l‘s T Jd¢{.h§nﬂ—2gyu dpdv
0

(2.1.5-9)

The integral over the cosine variable yields:

)\

§ Juz+vi-2 v Vpdp=cgiy [ (v2+V2-20 V) 2= (u24V24+ 20, V) ¥7) ]

: . :
(2.1.5-10)

and Equation (2.1.5-9) becomes:

0
20"

it
ss' (E,T) 32,2
n

* -ply2
[ (o +V)3=|v,-v|?18%ve™" av
0

(2.1.5-11)
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Implementation of this method to sample thermal scattering reactions

is discussed in Section 5.4.2.1.

B. Non-thermal scattering

When the incident neutron energy is in excess of a value of
the order of 2 eV, the thermal motion of the scattering nuciei may
be neglected and the nucleus can be assumed to be at rest in the lab
system. Furthermore, the nuclei (or atoms) may be treated as being
free because the binding energy in a molecule is not significant in
comparison with the energy involved in the neutron-nucleus
interaction. The scattering (slowing down) process may be described

by elastic or inelastic scattering.

Classical "billiard ball" elastic scattering model:

This is a two-body final constellation elastic scattering
model of a neutron from a free nucleus and is considered to be a
satisfactory approximation of the elastic scattering when the
kinetic energy of the incident neutron is greater than about ten
times the equilibrium kinetic energy of the target nuclei (Carter
and Cashwell, 1975). Details for derivation of this model can be
found in virtually every book in the field of nuclear engineering.
It should be understood that this representation is derived with the
target nucleus at rest, which is not a serious limitation when the
neutron speed is considerably greater than the thermal agitation
velocities of the target nuclei (a good assumption for neutron

energies greater than about 2 eV). The neutron energy E', in the
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laboratory system, after being scattered from a stationary nucleus
of mass A (units of neutron mass) through a polar angle ¥ (relative
to the incident neutron direction @), in the center-of-mass system,

is related to the initial incident neutron energy E by the equation:

, 2
+
%_= A° + 2A cosg 1 (2.1.5-12)
(A + 1)

where A = M/m, M and m are the mass of the scattering nucleus and
the neutron, respectively. The corresponding polar scattering angle
6 in the laboratory system can be obtained as:

A cosy + 1
AAZ + 2A cosy + 1

cosb =

(2.1.5-13)

In the special case of collisions with hydrogen (A~1) and for
an isotropic distribution of ¥, the scattered neutron energy is
uniformiy distributed in the interval (0 to E) and the scattering

angle § in the laboratory system is given by:

cose, = \l—f%s" (2.1.5-14)

The angular distribution of elastically scattered neutrons,
when viewed in the center-of-mass system, can be assumed to be
isotropic at low incident neutron energies for all elements. This
approximation deteriorates with increasing neutron energy or
increasing target nucleus mass. Above about 0.1 MeV, elastic
scattering is anisotropic for most nuclei with the exception of
hydrogen, where it can be assumed to be isotropic for energies of

the incident neutron up to about 15 MeV. The scattering in the
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azimuthal angle ¢ to the incident neutron direction is always
uniform unless the scattered neutrons are polarized (possessing
uniform up or down % spin). Thus, the angular distribution for

elastically scattered neutrons is given by:

p(¥,6) Ay d6 = 4= siny dy ds (2.1.5-15)

In the case when the angular distribution of the scattering
angle is not isotropic, the anisotropic scattering law (supplied in
file 4 in ENDF/B-V)(Kinsey, 1979) is represented for a specific
reaction type as discrete values at a series of incident neutron

energies.

Discrete level and evaporation inelastic scattering models:

Treatment of the inelastic scattering reactions is handled
through the use of the discrete level energy loss model that assumes
the scattering to be isotropic in the center-of-mass system. This
mode]l uses values of the inelastic excitation level energies along
with a probability for each one. If the neutron energy is below a
certain excitation energy, that level cannot be excited. Therefore
this reaction is a threshold reaction and cannot take place unless
the kinetic energy of the colliding neutron exceeds this energy
threshold.

The excited nucleus may be elevated to one of a number of
possible levels; the levels are fairly widely spaced and have well
known thresholds and probabilities of excitation at a given

incident neutron energy. For such discrete levels, the incident
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neutron energy degradation can be represented by (Schaeffer, 1973):

E 1 201-£ _E 112 _
E "~ (a+1)? [1+A (1-§)+2A cosy(1l-g) ] (2.1.5-16)
where E’ = the neutron energy after being scattered

E = the incident neutron energy that will result in the
excitation of a discrete level

€ = the excitation energy required to excite the
discrete level in question

Y = the scattering angle in the center-of-mass system,
and

A = the scattering nucleus mass ratio (units of neutron
mass)

The corresponding laboratory polar scattering angle 8§ is given in

this case by

1 + A cosy(1-§)"

cos8 = (2.1.5-17)

N1 + A%(1-§) + 2A cosy(1-§)

For large A, an approximate relation for the energy after scatter is

EE=E - ¢ (2.1.5-18)

As the excitation energy increases, the levels become
increasingly more closely spaced, until the individual levels are no
longer resolvable at the "continuum threshold". The probability for

the target nucleus to be excited to an infinitesimal energy band
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within the continuum is well-known as a function of neutron energy.
The probability distribution that a neutron will be emitted with an
energy between E' and E'+ dE' when the incident neutron energy is E
for inelastic scattering model, derived from the Tiquid-drop nuclear
model, is given by (Lamarsh, 1972):

E

pP(E) = p eE /T (2.1.5-19)

with a nuclear temperature
T = 3.2 \E (MeV)

The angular distribution of inelastically scattered neutrons
is typically isotropic in the center of mass system for neutron

energies up to approximately 10 MeV.
2.2 Gamma Rays
2.2.1 Prompt Gamma Ray Source and Associated Gamma Ray Spectra

The radiative capture reaction is the prime source of capture
prompt gamma rays. This reaction can take place at all incident
neutron energies of interest here, although the probability is
usually highest at thermal energies. Upon capture of a neutron into
the nucleus, the nuclear binding energy of the neutron to the
nucleus, which ranges from 2.2 MeV in hydrogen to 11 MeV in nitrogen
(Garrett et al., 1973) is usually divided among 1 to 5 photons. The
spectra of most nuclides are fairly complex with discrete energies
ranging up to the value of the neutron binding energy of the

compound nucleus. The Porter-Thomas distribution implies that the
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spectrum results from widely fluctuating transitions to a set of
final nuclear states, and thus each nuclide will display a spectrum
unique to the thermal neutron capture for that specific nuclide.
The elemental spectra will be comprised of the weighted
contributions for the several naturally occurring isotopes of that
element. The shape (relative intensities) of the prompt gamma ray
Tine spectrum is dependent upon the incident neutron energy
(Senftle et al., 1974).

Therefore, the spatial and energy distribution of the neutron
field, caused by one or more of the variations in the type and
abundance of major constituents, density changes, moisture content,
presence of Tow-abundance strong neutron absorbers (neutron
poisons), and temperature changes, affects gamma ray emission and
absorption. Measurements of prompt gamma ray intensities reported
by Lone et al., (1981) are made at thermal energies, and serious
errors can result from applying these data to epithermal captures.
This is especially significant in media for which the fraction of
epithermal capture is appreciable. Thus, radiative capture is an
elementally and energetically specific reaction. In principle, the
gamma rays following the neutron capture can be identified by energy
and, provided there exists an appropriate calibration, the

concentration of the associated element can be determined.

2.2.2 Quantitative Representation of Gamma Ray Attenuation

Analogous to the concept of macroscopic cross sections for

neutron interactions, the probability that gamma ray event s takes
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place per unit path Tength in the material is defined to be pg. The
sum of probabilities for all possible events that might occur
throughout the path of the gamma ray defines the probability per
unit path length (the linear attenuation coefficient) that the gamma
ray photon is removed from the beam :

B = bpe *+ Hcs + Epp
where the customary nomenclature for the three major gamma ray
mechanisms of interactions are used.
The number of uncollided photons (I) passing through a
distance x in a medium with a linear attenuation coefficient pu is
then given in terms of the original unattenuated intensity Ig before

the transmission as:
I=1Ie" (2.2.2-1)

To overcome the drawback that the linear attenuation
coefficient varies with the density of the absorber, even though the
absorber material is the same, the mass attenuation coefficient is
widely used and defined as (u/p). Thus, for a given gamma ray
energy, the mass attenuation coefficient does not change with the
physical state of the absorber. For instance, (p/p) for water does
not depend on the absorber being in the liquid or vapor state.

The mass attenuation coefficient of a compound or mixture of

elements can be calculated from:

(

where w; is the weight fraction of element i in the compound or

h=1k~

] = Sw, [%] (2.2.2-2)

campound i i
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mixture.
2.2.3 Interactions of Gamma Rays

Since in this work the detailed transport and tracking of
gamma rays is not performed, only their penetration is of interest.
A brief qualitative review of the major mechanisms of interactions
of gamma rays in matter is discussed, enough to clarify the concept
of the attenuation coefficient that is used to quantitatively
describe the response of interest in a radiation detector, namely
the photopeak.

Although a large number of possible interaction mechanisms are
known for vy-rays in matter, types can be confined to three
mechanisms that result in the partial or complete transfer of the
v-ray energy to an electron, thus resulting in abrupt changes in
the gamma ray history, in that the photon either disappears entirely

or is scattered through a large angle with a decrease in energy.

A. Photoelectric absorption

The incoming photon interacts with the atom of the material as
a whole, in which case the photon completely disappears and an
energetic photoelectron is ejected from one of the bound electron
shells of the atom. This interaction cannot take place with a free

electron.

B. Compton scattering

The incoming photon interacts with an atomic electron with the
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result that the y-ray is deflected with respect to its original
direction and the electron is recoiled. All angles of scattering

are possible.

C. Pair production

This is a threshold reaction, possible to take place when the
energy of the incident y-ray exceeds twice the rest mass energy of
an electron (1.022 MeV). In the interaction, which must take place
in the coulomb field of a nucleus, the photon disappears and is
replaced by an electron-positron pair. The excess energy above the
1.022 MeV threshold is shared by the created e-et pair. The
positron will subsequently annihilate after slowing down in the
material and produce two annihilation photons of 0.511 MeV energy

and opposing directions.
2.2.4 Gamma Ray Build-up

The intensity of the gamma radiation from a source may be
considered to be composed of primary (uncollided) and scattered
radiations. Buildup factors have been calculated or measured for
various gamma ray energies and for various absorbers and sources
(Cember, 1978) to account for the contribution due to scattered
radiations. The use of this buildup factor is not appiicable in
this work since it is considered that only the unscattered capture
gamma rays will contribute to the full energy peaks, and the
scattered gamma ray contributions represent a background under the

peaks that can be extracted.
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3. REVIEW OF MONTE CARLO TECHNIQUES IN NEUTRON TRANSPORT

Monte Carlo is a statistical procedure wherein the expected
characteristics of a neutron population in an assembly are estimated
by drawing samples from a large number of histories of neutrons
whose individual "lives" are simulated and tracked by a computer

code.
3.1 General Characteristics

The probabilistic Monte Carlo method essentially consists of
following individual histories of the neutron of interest from
"birth" to "death" by randomly sampling parameters such as the
possible angles, path lengths, and energies from the appropriate
probability density functions of the pertinent interactions with
matter. The yield or the number of scored events of interest
divided by the total number of histories (for a large number of
histories) is an estimate of the probability of occurrence of the
phenomenon of interest. "Crude" or hit-or-miss Monte Carlo
techniques use the above-mentioned procedure. If a sufficient
number of particles are tracked, parameters of interest can be
scored with acceptable statistical errors, as discussed in Section
3.1.2. It can be seen that a large number of histories is usually
required to attain a reasonable accuracy. In fact, for events of
interest that have a small probability of occurrence, this number
may be so large that it precludes the use of this method, since much

of the time would be spent, for example, tracking particles which
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are moving in regions where there is a very low probability of their
influencing the detector count rate (the parameter being sought).
However, a Monte Carlo approach can deal with complex source
distributions over space and energy, with asymmetric geometries
through which the particles move, and with the direct usage of
detailed nuclear data (not averaged.over energy groups). A class of
techniques referred to as variance reduction is useful to reduce
the number of histories required to attain a given accuracy so that
most of the computing time will be spent tracking particles which

have a good chance of contributing to the detector counts.
3.1.1 Variance Reduction Methods
From the point of view of particle transport, these methods

may be classified into:

A. Exact analytical replacement

Part of the problem under consideration is solved analytically
or experimentally and used in the problem to replace the Monte Carlo
simulation of that part. For instance, the mechanics of
interactions and their approximations by Monte Carlo methods inside
a detector’s effective volume that result in a desired response may
be bypassed and replaced by an experimentally determined energy-

“dependent detector efficiency with which to multiply the incident

fraction of radiation to yield the desired response.



39

B. Restriction of the range of the sampled variables

The possible range of the values that a sampled variable can
take is restricted to within a selected range expected to contribute
to the desired result. To prevent biasing errors, the weight of the
particle is changed accordingly. The effectiveness of this method
is discussed in Appendix A. Generally, "common sense" knowledge of
the phenomenon in question determines whether this method should be
used. For instance, common sense suggests that the backscatter of
radiation is limited to a thickness beyond which it is known from

experimental evidence that a negligible contribution is made.

C. Mathematical method

This is a purely mathematical technique and usually has no
direct physical basis. Among the examples of this method are
specific cases of splitting, stratified sampling, Russian Roulette,
and variable transform such as the exponential or linear

transformation.
3.1.2 Statistical Fluctuations

Because of Monte Carlo’s inherently statistical nature, the
desired information has to be obtained from a statistical set of
case histories.

The "expected" or "true mean" value <7> of a variable of
interest 7 can be estimated by Monte Carlo as the average 7y over N

case histories of the statistical ensemble, that is:
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1 N
=N 2 T (3.1.2-1)

This estimate, 7y, is expected to approach <7> as the number
of case histories N increases. To determine how close 7y is to <7>
for a given value of N, the central limit theorem provides an
estimate such that as N becomes very large, the probability that

|7y - <7>| will be less than a small number € is given by:

edN/o

= ~ 7 imAll 1272
p(|Ty - <7>|<€) = %ﬂgﬂ% g e dt (3.1.2-2)
where 02 = <1%> - (<1>)° (3.1.2-3)
and <72> is the expected value of:
2 o1&
7 = %}glfi Ei 7! (3.1.2-4)

The probability that | Ty - <7> | will be less than € becomes
unity for a fixed € as N»», since 4?exp(-t2/2) dt = (1r/2)1/2 ,
provided that <7> and <72> exist.

Moreover, for a particular value of N, there is an € such that

p(|TN - <7>|<€) is, say, 0.99; if it is desired to reduce this

value of ¢ in half, it is then necessary to process four times as
many case histories so that ¢/N, and thus the value of the right
hand side of Equation (3.1.2-2), remains constant. It is evident
from Equation (3.1.2-3) that it is desired to have the variance-of
T, namely 02, as small as possible if ?N is to be close to <7>.

In practical applications, with a limited number of case

histories, the variance of Equation (3.1.2-3) can only be
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approximated by:
2 1 il 2

o° = (N-1) (Ty = 7))

(3.1.2-5)

-
—

The variance reduction methods mentioned in Section 3.1.1 are

to be used to obtain a smaller o.

3.2 Random Walks and Integral Equations

This section deals with transport of radiation and its
simulation by transcription of the natural stochastic processes into
a numerical Monte Carlo sampling procedures. The behavior of such

simulation is a kind of random walk to integral equations.

3.2.1 Modular Qutline

The modular steps needed to carry out a Monte Carlo simulation
of radiation transport are:

A. Formulation of a description of the sources of radiation

and their interpretation as probability density functions

that can be sampled to specify initial values of the phase

space coordinates in the simulation.

B. Formulation of the tracing of radiation path and the

description of interactions between radiation and the medium,

including sampling the distance traveled and pertinent

probabilities to determine whether and what kind of radiation

continues the process.

C. Repetition of module B, until either the radiation

disappears or become insignificant.
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D. During the iteration of module B, the events of interest
are counted and recorded as results.
Steps A, B, and C, in effect, are rules for carrying out a
random walk of a radiation particle that moves within a spatial-

energy-direction phase space.

3.2.2 Descriptive Random Walk

To describe the random walk mathematically, one needs to:
1. Characterize the space onAwhich the walk is defined.
2. Describe the probability density function (pdf) of the source,
say S(x).
3. Define the stochastic rule for moving from one point, say, x’
to another, say, x (this will be a density function T(x'=x) for
sampling a new point x when the previous point of the walk was

x’). The probability density function T has to satisfy:

T(x=-x) 2 0

[ T(x>x) dx s 1
X

T is not normalized to permit the probability that the walk
terminates at x’ with probability (l-fT(x’*x) dx).
4. Designate some variable of interest that is desired to be
determined.
A general variable of interest would be the density of
arrivals at x, namely I'(x). That is, summing over all steps of the
random walk and averaging over all possible walks, the expected

number of times that a point is sampled within a region R is
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JgT(x) dx.

The walk starts with an x, say Xy, sampled from S(x). Then if
not absorbed, the neutron moves to xj, sampled from T(xy*xy). In
general T(x,-.1 = Xp) governs the n-th move. The arrival at x can
occur either because it was sampled from S or because the neutron
moved to x from an earlier point, say, x’. The total average density

at x is the sum of these two:

F(x) = S(x) + [T(x>x) I'(x) dx (3.2.2-1)

The integral term of the right-hand side of Equation (3.2.2-1) is
the average density of arrival at x from the next earlier arrival,
where T'(x’)dx’ is the chance that there was an arrival in dx’, and
T(x’=»x) is the probability that this arrival was followed by a move
to x. One integrates over x’ to include all possible positions of
the previous move. This equation describes the average behavior of
the random walk.

T(x’» x) can be factored into:

T(x'-»x) = (1-¥(x')) E(¥X) Y(x,%) (3.2.2-2)

with ¥(x’) = capture probability at x’

Z(x’) is a normalization factor defined by

[ T(x,x)ax
[1-¥(x7)]

E(x) = (3.2.2-3)

and T(x',x) is a normalized collision kernel given by
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Y(x,x) = T (%', X)

" Troe.n ax (3.2.2-4)

The integral in Equation (3.2.2-1) can be solved using a

Neumann expansion as:

r(x) = %jdxojdx,..jdxn_, S (%) T(Xp,%,) - - T(X,_,,X))
"~ (3.2.2-5)

and a functional G = fg(x)r(x) dx can be expressed as:

G = %Idxu. Jax S (%5) [1-¥(x,) 17 (%q,%,) [1-¥(%, )]
T(X, X)) ¥ (X)w (X5 .X) (3.2.2-6)

where

O (% %) = gy (%) -E(%y)

These random walk sampling steps are used to evaluate the
functional G as:
(1) sampling S(xy) for the initial coordinates x of a
particle history.
(2) sampling ¥(x,-1) for termination at the n-th collision.
(3) sampling T(xp-1,Xp) for the next collision point, given
that the chain continues.
W(Xg..Xp) is the "score" for such a history in the Monte Carlo
calculation of G.. Thus, G is the expectation value of the score,
where the expectation implies averaging over all stochastic events

that underline the random walk. Therefore, G can be estimated by
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sampling a number of histories, computing w for each history, and

averaging these scores as:

)

G &g 2 w(xp..x) (3.2.2-7)
1 .

where xio,.., x"n are sampled frbm distributions given by S(xg),
T(Xp-1>Xp)» and n is determined by ¥(x,).

In a sense, since the outcome is a series of points x4, xi,
X2..., the random walk can be regarded as a device for sampling the
function T' that is the solution of Equation (3.2.2-5). The

correctness of the sampling is true asymptotically.
3.2.3 Boltzmann Transport Equation

Although particle transport by the Monte Carlo method can be
performed without even referring to the transport equation, the
following discussion is thought to give an insight into the
simulation.

The time-independent integral transport equation for the

neutron angular flux can be written (Bell and Glasstone, 1982) as:

$(r,E,0) = [ e*®RED g1 E,f) 4R (3.2.3-1)
0

where exp(-a(r,R,E,Q)) is the attenuation factor by which the flux
is reduced in going through distance R to reach point r, a is the
optical thickness which is a measure of the effective absorption
between points r and r’ (separated by distance R), and q(r,E,Q) is

the total rate at which neutrons appear at (r,E,Q) as a result of
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both collisions and the independent (extraneous) source S(r,E,Q),

that is:

q(rlElﬁ) = IJIS(T’IE,"EIﬁ"ﬁ)
$(r,E,0)dEAQ +S (r,E, ) (3.2.3-2)

where 2¢(r',E'~E,Q)'»Q) is the double differential scattering cross
section at r’ that characterizes scattering from an incident energy
E’ and direction @ to a final energy E in dE and direction @ within
the infinitesimal solid angle d2. Therefore, the expected angular
neutron collision density rate at which neutrons suffer collisions
in dr about point r, of neutrons of energies E between E and E+dE,

moving in direction @ in a differential solid angle dQ is given by:

£(r,E,f)drdEQd = %, (r,E)&(r,E,f) draEaft  (3.2.3-3)

where S(r,E,Q) dr dE dQ is the rate of source neutrons appearing in
dr about r, dE about E, and dQ about Q. Substituting Equations
(3.2.3-2) and (3.2.3-3) into Equation (3.2.3-1) yields the time-
independent integral transport equation for the collision density

rate as:

© I (r, E'-bE,ﬁ -)ﬁ)
I (r,E’)

£(r,E,4) = [dR Irp e SCRED[ [qE [af
0

£(r,E,0)+S(r,E, Q)] (3.2.3-4)
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This equation can be rewritten in a form similar to Equation
(3.2.2-1) with:
x as (r,E,Q), the particle phase space coordinates,
S(x)'as the first-flight collision rate density due to the source,
T(x’»x) as the next-flight collision rate density at x due to
collision at x’, and

I[(x) as the particle collision rate density.

The functional of Equation (3.2.2-6) is the detector photopeak
response for capture gamma rays, given by:

£(r,E,Q) (3.2.3-5)

score

G = [ar [aE [af P
0 4n

where Pgeore» discussed in Section 5.5, is the probability that an
interaction within the capture gamma ray source region (the
integration fdr is carried out over the core sample volume) will
score favorably under the detector full energy photopeak.

The steps of the random walk sampling are applied to obtain an
estimate of G.

The sampling scheme can be interpreted physically as first
sampling the initial particle coordinates (rg,E,,Q;) by sampling the
source S(r,E,2). Then the distance to the first collision R is

determined by sampling:

A
-a(ro,R.Eq.Qp)
I (rg,Ep) e 000

The sampled distance R along with the (ry,0Q,) values are used to

determine the location of this collision as:
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r=r0+Rf\20
One could sample from the capture probability:

za (rOIE)

¥(rg,E) = _——Zt(ro,E)

to see whether the particle is captured in the collision so that the
history should be terminated. In practice, it is very inefficient
to terminate histories when a capture event is sampled.
Alternatively, the particle weight can be reduced or the score
increased by the non-capture probability:

Z, (1, Ey)
[1 - ¥(x)] = '—_mr:,Es)

That is, all particles are forced to scatter at rj. Next a
new particle energy Ej and flight direction Q;, are sampled from the

scattering distributions. The energy is sampled from:

1 A A A

while the flight direction @I} is sampled from

Z; (B~ E;, Q5-9))
Idﬁ zs (EU-'EI ’ QU_’QI)

This random walk procedure is applied to successive collision
events until the particle history is terminated (see Section 5.6)
because the particle’s weight has been reduced below some cutoff

value.
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4. DESCRIPTION OF THE SEAFLOOR SEDIMENT CORE MONITORING SYSTEM

In this chapter, a detailed description is presented of the
proposed and modeled monitoring system geometry andvcomposition,
with emphasis on construction materials, compatibility, and
suitability in this work. This design is intended for a prototype

for exploratory use.
4.1 General Configuration

The monitoring system is designed to analyze a cylindrical
vibracore sample from the seafloor sediment by the NCPGA technique.
The rapidity of this technique makes it feasible to pass an intact
(full Tength) core through an assembly that contains the Cf-252
neutron source surrounded by water (moderator) to slow down the
neutron energies to be more effective in inducing (n,y) reactions
within the core. The characteristic gamma rays, resulting from
neutron capture interactions, are detected and recorded by a Ge
detector and a multichannel analyzer spectrometer. The passing of
the core through the monitoring system is done in pause and count
steps. The gamma ray spectra are expected to be complex but contain
distinguishable peaks. In this work, it is desired to simulate this
ﬁonitoring system and to predict the functional dependence of the
characteristic (photopeak) energy peaks on the elemental
concentrations within the core sample.

Such a monitoring system, incorporated in a seagoing survey

vessel and capable of analyzing seafloor sediments while the vessel
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is underway, can be used to give guidance to the ultimate economic
value of seafloor sediment deposits.

The basic geometrical configuration, shown in Figure 4.1-1,
consists of a large cylindrical container (100 cm long and 100 cm in
diameter) that houses the cylindrical vibracore sample of 7 cm
diameter and of full intact length of the extracted vibracore, the
Cf-252 source, and the detector assembly inside tubular
constructions that protrude inside the container. Thg internal
space is filled with a moderating material. A hydrogeneous
moderator may not be optimum, since at distances further than a few
centimeters from the source, neutron absorption by hydrogen becomes
significant (Greenwood, 1978). A relatively pure thermal neutron
flux may be obtained in moderator materials with a diffusion length
greater than the slowing down length. Heavy water is a prime
choice; however, since it is quite expensive, graphite or pure water
may be an alternative.

The exterior dimensions of the container are mainly determined
by the radiation dose limits to personnel during the routine
handling operation, the most hazardous being during the transfer of
the neutron source between its storage container and its operational
location.

The sample tube extends along the entire length of the
container and its axis could be located anywhere within the
container. The only restriction is that it is co-linear with the
major axis of the cylindrical container; this provision enables one

to run the computer program with different relative locations
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Figure 4.1-1 The proposed monitoring system showing
internal configuration.
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between the three tubes‘to examine the most effective positioning of
the sample, source, and detector. The tube is accessible from the
outside to accommodate a cylindrical core sample, which is usually
encased in a lucite casing. The core sample is longer than the
container cylinder and can be maneuvered manually or mechanically to
be passed through the sample tube (it might be required, for good
counting statistics to move the core sample in discrete intervals
and pause to accumulate the required counts in between moves). The
sample tube is lined on the inside with two sleeves in the form of
an annular sandwich that is filled with a thin annular effective
neutron absorber. The sleeves can be moved along the internal
length of the sample relative to each other to form a variable
length window that defines a cylindrical section of the core sample
to be effectively exposed to the neutron flux. Thus, more
information about the distribution of elements along the vibracore
sample length can be gained by consecutively monitoring increments
of the core. Marine mineral deposits generally occur as thin layers
widely spaced in the seabed sediments, since they are often formed
as a result of deposition processes.

The source tube (21 cm long and 6 cm diameter) extends
partially inside the container cylinder; its inner end is closed and
sealed to prevent water leakage into the internals. The tube is
accessible from the outside of the container. The Cf-252 neutron
source (encapsulated) is placed within a machined well along the
axis of a cylindrical mass of lead shield. This shield helps reduce

the background gamma radiations directly from the source. This
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neutron source and its encapsulation contain details that are not
significant in this work. The capsule is modeled to be represented
by a stainless steel 316 solid capsule of 5 cm length and 0.5 cm
radius with a spherical Cf-252 source, of 0.25 cm radius, at its
centerline located at 1 cm from the end. Figure 4.1-2 shows an
actual capsule along with the approximated model. The rest of the
internal of the tube is occupied by a cylindrical bulk of shielding

and moderating material (polyethylene).
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Figure 4.1-2 The industrial Cf-252 neutron source
capsule and the adopted model.

The detector tube (74 cm long and of 14.5 cm diameter) extends

partially along the inside of the container cylinder and is
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positioned to be on the opposite end of the container from the
source tube. Similar to the source tube, it is closed and sealed at
the inner end and is accessible from outside the container. The
innermost end of the tube contains a thin wafer of a neutron
absorber (Cd, 0.3 cm thick) to reduce the intensity of gamma rays
induced by neutron reactions in the detector housing. Since it is
believed that the neutrons are well thermalized at this location,
cadmium was used to accomplish this task. The radius of the wafer
is the same as the inner radius of the tube. Next to the Cd wafer
is a conical cylindrical shield of lead, intended to shield against
the neutron capture gamma rays in the Cd wafer to prevent their
contribution to the background and interference in the detector, and
at the same time, to permit capture gamma rays coming from the core
sample to arrive unshielded. The smaller radius of the conical
cylindrical Pb shield is equal to the radius of the detector casing
which is located next to it. The aluminum encased detector and its
electronics are represented and modeied as shown in Figure 4.1-3.
The detector extends inside the tube at the end of a copper cold
finger. The annular space in between the conical cylindrical Pb
shield, the detector and the inner surface of the detector tube is
occupied by polyethylene to center the internals along the major

axis of the tube.
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4.2 Selection of Materials

.Structural materials, i.e., the encapsulation, container,
moderating, shielding materials, etc., are potential capture gamma
ray sources which can cause a spectral interference that degrades
the signal to background ratio. Thus, materials have to be chosen
to minimize this interference, while considering nuclear propertieé,
which affect the neutron economy, and mechanical fabrication
constraints. For instance, there exists an excited state of oxygen
at 6.14 MeV produced by inelastic scattering. The full, single, and
double escape peaks due to inelastic scattering in oxygen almost
coincide with three of the chromium capture peaks at 6.14, 5.62, and
5.12 MeV, respectively.

The criterion of "interference parameter" Sy, as applied by
Senftle et al., (1971) was used to select low-background materials.
ST is defined to be the sum of discrete energy sensitivity indices
Sg over the energy range from 3 to 10 MeV as defined by Duffy et
al., (1970) and is proportional to the number of gamma rays per unit
incident neutron flux per unit mass. Therefore, the interference,
when defined as above for construction materials of any system, is a
function of the total amount of the individual materials present in

the system. Thus,

(4.2-1)

where Sg = sensitivity index for energy E

the gamma photon yield (photons/100 n captured)

—t
m
L}
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¢ = the elemental thermal capture cross section
(barns), and
A = the atomic weight of the element (g/mole)

Table 4.2-1 lists interference parameter values for some elements of
interest in the proposed monitoring system.

Small Sy values in an element without prominent peaks
indicates a minimal interference in the capture gamma ray spectrum.
A sensitivity index of 0.01 and Ig > 1 is considered a useful rule
of thumb 1imit (Duffy et al., 1970) to assess the usefulness of
analytical analysis below which the interference contribution may be

overlooked.

Interference Sensitivity

Element parameter index

ST SE
max

C 0.028 0.019

Mg 0.291 0.106

Al 0.633 0.175

Mo 0.724 0.096

Ge 1.50 0.069

Na 2.62 0.596
Fe 4.66 2.31
Cr 5.76 1.44
Cu 5.96 1.72
Ni 9.02 3.25
Ti 16.54 6.87
Mn 23.4 2.91
C1 78.3 14.8
Cd 837.3 75.0

Table 4.2-1 The interference parameter along with the
maximum sensitivity index Sg in the range 3-10 MeV
for some elements of interest.
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The californium encapsulation can be custom fabricated to meet
any constraints, although these constraints must be balanced with
safety and service requirements. Iron and chromium have a large
number of capture gamma rays with sensitivity indices above 0.01,
whereas zirconium has only one gamma line with an Sp > 0.01.
Therefore zirconium alloys offer low interference and at the same
time have acceptable resistance to chemical and mechanical damage.

In the case that the detector material and the associated
hardware are exposed to a significant neutron flux, the capture
gamma rays resulting from the detector crystal and the hardware
could be significant and one should endeavor to minimize such
interference either by reducing the neutron flux in the proximity of
the detector or through selective choice of the materials, or both.
The detector cold-finger heat conductor to the liquid-nitrogen
cryostat in a Ge detector is generally fabricated from copper for
its high thermal conductivity; unfortunately copper has moderately
high interference parameters due to a significant number of very
prominent peaks. A trade-off between thermal and interference
properties has to be considered, especially if copper is one of the
elements whose response is of interest.

Calculations by Nichols (1968) indicated that polyethylene
moderators give the best peak thermal neutron flux up to about 10
kcentimeters from a point Cf-252 source. The 4.95 MeV capture gamma
ray from the 12C(n,'y)13C reaction may cause interference for some
experiments. The 2.223 MeV capture gamma ray of hydrogen, when a

hydrogenous moderator is used, is considered below the energy range
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of interest and can usually be ignored, although these gamma rays
can cause significant personnel exposure rates outside the
moderator-shield assembly and thus should be considered from that
point of view. In water, the aforementioned inelastic scattering
from oxygen may cause undesired interference. Small amounts of
zirconium hydride in the immediate vicinity of the source could lead
to a significant increase in the thermal neutron flux, but excessive
amounts of zirconium might also raise the capture gamma ray
background below 6 MeV to undesirable levels.

The thermal neutron shield in the vicinity of the detector and
its surroundings (e.g., electronic components and copper wires)
could be BLi or cadmium. The latter has the disadvantage of
excessive capture gamma rays, but can be shielded by appropriate
geometry. For the former shield, one has to consider the 6Li(n,a)3H
exothermic reaction. S

In general, the best materials to be used will be dictated, to
a certain extent, by the elements one wishes to measure and the
neutron flux in the proximity of the material in question during a

given experiment.
4.3 Choice of the Detector

The energy spectrum of capture gamma rays generated by the
sample consist of a series of isolated narrow lines whose energies
are accurately known. The derivation of elemental concentrations is
based on the absolute intensities of these peaks. In fact, the

identity of a particular gamma ray in a spectrum is determined to
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result from a specific capturing element when it can be shown that
the intensity per unit mass of the capturing element is constant or
that the ratio of intensities of two peaks is constant for several
samples of the elements obtained from different sources.

In the capture gamma ray spectrum, certain gamma ray
interactions in the detector form a background continuum under the
isolated peaks (lines). The Tines become closely spaced due to the
number of contributing elements; the single and double escape peaks
from high energy gamma rays further crowd the spectrum. For
instance, the primary capture lines from Ti are 6.7597 MeV and 6.418
MeV, which are difficult to separate from interference peaks when
there is a small Ti concentration present. The single escape peak
of Fe (7.2789 MeV) interferes with the Ti 6.7597 MeV peak, and the
double escape peak of the C1 7.790 MeV capture peak further
complicates the interference. Also, the double escape peak of the
Cl 7.4138 MeV peak interferes with the Ti 6.418 MeV peak. Table
4.3-1 lists the prominent capture gamma ray energies from all the
materials used in the monitoring system in order of increasing
energy to illustrate the energy interference effects.

Because of this complex spectra of capture gamma rays, a
detector with high energy resolution is essential, thereby
necessitating the use of a solid-state detector. High resolution
germanium detectors have the drawback of having relatively low
efficiency for high energy gamma rays, such as encountered in
neutron capture where the gamma rays released following the capture

process have energies up to 10 MeV. In addition, these detectors



Branching Ratio Energy Responsible
(vy/100 capture) (MeV) Element
82.0 2.1844 0
100.0 2.223 H
5.55 2.4149 Na
14.78 2.5176 Na
10.15 2.8627 Na
39.0 3.028 Ge
8.35 3.0981 Na
18.0 3.271 0
14.95 3.588 Na
32.10 3.6889 c
5.38 3.8785 Na
18.63 3.982 Na
14.94 4.4189 Ca
5.23 4.8824 Ti
67.64 4.9452 c
5.17 5.6167 Na
5.50 5.7152 C1
9.02 5.9203 Fe
9.0 6.0184 Fe
20.0 6.1108 1
22.18 6.3954 Na
30.13 6.4183 Ti
38.89 6.4199 Ca
8.01 6.6195 C1
5.04 6.7364 Pb
24.17 6.7597 Ti
10.79 6.837 Ni
5.33 7.2787 Fe
8.09 7.3062 Cu
94.06 7.3677 Pb
10.42 7.4138 c1
28.51 7.6311 Fe
15.71 7.6366 Cu
24.13 7.6454 Fe
8.55 7.7901 C1
8.19 7.8189 Ni
30.82 7.9145 Cu
16.98 8.5334 Ni
37.74 8.9988 Ni

Thermal neutron cap%ure Cross sictions(barns):
H:0.332, (€:3.37x10°°, 0:2.7x10°%, Na:0.4,
€1:33.2, Ca:0.43, Ti:6.1, Fe:2.55, Ni:4.43,
Cu:3.79, Ge:2.3, Mo:2.65, Cd:2450.,and Pb:0.17

Table 4.3-1 Major capture gamma rays from neutron
captures in various elements of the monitoring system.
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are expensive and unable to operate for a long period in an intense
fast neutron flux. Stelson et al. (1972) showed that ~108 fast
neutron/cm2 will damage a coaxial Ge(Li) detector, which suffers a
Toss of resolution when used at high counting rates, with a
progressive loss of resolution as a result of radiation damage.
Reliable large radiation-hardened Ge detectors, such as the n-type
hyperpure germanium detectors that are not damaged by recycling to
room temperature and have relatively low sensitivities to neutron
damage, are now available. Such a detector with a carefully
designed shield that maximizes the attenuation of the fast neutrons
with only a small impact on the neutron capture gamma rays from the

sampie is an excellent choice.
4.4 Core Sample

The geometry of the core is adopted to be a standard offshore
drilled core, although a cored sample limits the potential of the
nuclear technique. A larger (more representative) volume can be
investigated in an in-situ borehole configuration. The composition
of a typical core is simulated based on reported elemental analysis
(Peterson and Binney, 1988) of Oregon continental shelf samples,
along with some assumptions that are thought to be reasonable.

The core matrix is assumed to be Si0y and salt water (typical
seawater with 35 ppt NaCl). The silicon dioxide density is taken to
be that of shale (sandstone) rocks (2.65 g/cm3). The salt water
density is 1.02072 g/cm3. The core is considered to be 90 W/, Si0,
and 10 W/, salt water, which yields a bulk density of 2.488 g/cm3.
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The core sample is assumed to be neutronically homogeneous, i.e.,
any heterogeneity in the distribution of elements within the sample
is within the range traveled by a neutron.

A typical composition of shale is given in Table 4.4-1.

Element Weight percent
H 0.28
o 0.72
0 49.9
Na* 1.19
Mg* 1.6
Al* 8.79
Si 27.53
Ca* 1.52
Ti* 0.47
Mn* 0.07
Fe* 4.82

Table 4.4-1 Typical composition of shale

The relative abundance of Mg, Ti, Cr, Mn, Fe, Na, Al, and Ca

in Oregon continental shelf sample is estimated in Table 4.4-2.

Element Relative abundance =
Na 0.0053
Mg 0.1239
Al 0.0354
Ca 0.0531
Ti 0.1947
Cr 0.0425
Mn 0.0142
Fe 0.5310

(w) indicates a normalized group

Table 4.4-2 Estimated relative abundance of selected
elements in Oregon continental shelf samples.
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The elements in Table 4.4-2 and their relative abundance are
used to replace the elements that are marked by an asterisk in Table
4.4-1. The Na, C1, H, and O in salt water are added to Table 4.4-1
and normalized to yield aﬁ estimated core sample composition as

shown in Table 4.4-3.

Element Weight percent
H 1.0825
o 0.6684
0 52.8541
Na 0.9503
Mg** 2.1292
Al 0.6083
Si 25.5591
Clx* 1.7903
Ca 0.9125
Tix* 3.3458
Cr** 0.7304
Mn** 0.2440
Fe** 9.1251

** These elements were changed sequentially
to predict the photopeak responses as a
function of elemental concentrations.

Table 4.4-3 Estimated elemental composition of the
(reference) core sample.

The elements, marked with double asterisks in Table 4.4-3 are
those whose prominent capture gamma rays are estimated at the
detector. The energies and branching ratios (yields) are given in

Table 4.4-4 based on thermal neutron captures (Lone et al., 1981).



Element Capture y-ray Branching Ratio
Energy (keV) (7v/100 neutron

captures)

Ma 585.20 25.55
1808.90 29.97

2828.10 42.51

3916.70 48.62

0 I 5715.26 5.50
6110.88 20.00

6619.53 8.01

7413.80 10 .42

7790.16 8.55

Ti 341.70 26.27
1381.48 69.08

6418.35 30.13

6759.78 24.17

Cr 835.10 26.86
7939.30 26.97

Mn 7057.81 11.06
7243.79 12.13

Fe 352.18 11.70
6018.48 9.00

7631.13 28.51

7645.45 24.13

Table 4.4-4 Selected capture y-rays emitted
from the elements of interest along with
their branching ratios.
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5. OVERVIEW OF THE NEUTRON TRANSPORT SIMULATION

In this éhapter, the procedures of the Monte Carlo simulation
- are discussed, along with the nuclear reactions that have been
modeled in various materials and the justifying arguments, where
applicable, to include or exclude some features or reactions. The
Monte Carlo simulation involves several distinctive phases, which

are discussed below.
5.1 Sampling the Neutron Source Parameters

The neutron stéte, which is defined exclusively in this work
via its position, direction, and energy, is required to be known at
all times. For tracking convenience the cartesian coordinates
(x,y,z) are chosen with a specified coordinate origin as shown in
Figure 5.1. The direction parameters are specified through the
polar angle # and the azimuthal angle ¢ in spherical coordinates.
The associated cartesian coordinates for the normalized direction

cosines are given by:

Q, = sin6 cos¢-
(5 = sind sing
Q, = cosb (5.1-1)

Finally, the energy variable is represented by an energy parameter
E. Thus, the neutron state is defined by a seven dimensional vector
(x,y,z,ﬂx,ﬂy,ﬂz,E). For tracking and scoring purposes the neutron

also has some other parameters associated with it. They are the
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Figure 5.1 Schematic diagram of the various cells (cell
numbers in small prints) and the master cartesian
coordinate origin. Cell 1 is the neutron source, cell 33
is the Ge detector, cell 17 is the effective core sample
volume, cells 14,15,22, and 23 are sections of the core
sample considered to assess the effectiveness of the Cd
sleeves (cells 11 and 20)
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absolute weight and a geometrical index which tells which
geometrical region the neutron is in.

For a point source, the position parameters are initialized at

a - xpumt source

Y, =Y

point source

(5.1-2)

= zpomt source

The direction parameters are sampled from an isotropic distribution
of polar and azimuthal angles in the laboratory system. The
isotropic distribution of Equation (2.1.5-15) is repeated here for

convenience:

p(8,¢) d6 dp = 7= sind do do

and since # and ¢ are uncorrelated, is sampled as

p'(0)d0 = 2 sind 4o

6 = cos™! (28 - 1) (5.1-3)

When the random number £€(0,1), then 8€(0,n).

B(e) do = 5= do
¢ = 2mk (5.1-4)

When £€(0,1), then ¢e(0,27).

The energy parameter of the emitted neutron from Cf-252 source is
governed by the probability density function (pdf) of Equation
(2.1.1-1) that can be sampled through the use of three random
numbers £1, €2, and é3 on (0,1) (Carter and Cashwell, 1975) as
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E = 1.424 [-1n§ -1nE, cos’( &)1 (MeV) (5.1-5)

5.2 General 3-D.Tracking

The neutron is followed through the cell geometry (in the case
of a new history with a source neutron, the neutron is initially
located within the source capsule). The tracking utilizes the
essential feature that neutrons travel in a straight 1ine between
collisions.

In general, the parametric equations that describe a point
(Xn>¥YnsZp) vector Q@ in the direction (Qy, Qy, Q;) and starting from

point (Xg,Yg,2Zg) are given (see Appendix E) by:

X, = X, + D Q
yn=y0+DQy
zZ, =2, + DAY, (5.2-1)

where the distance traveled D is given by:

D = \](Xn"xu)2 + (yn-yo)z + (zn-zt,)2 (5.2-2)

Tracking the neutron inside the cell consists of:

A. Evaluation of the microscopic cross sections, pertaining to the
elements in the cell, at the neutron energy E. This is
accomplished by interpolation from ENDF/B-V data.

B. Computation of the macroscopic cross sections, depending on the
cell composition, and the total macroscopic cross section.

C. Computation of the distance to the cell boundary in the
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direction of the neutron flight.

Repetitive geometrical patterns in the monitoring system
permitted the system to be modeled by dividing it into a collection
of 41 cells, as shown in Figure 5.1. All cells can be constructed
from four basic geometries, namely solid circular cylinders, annular
cylinders, circular right conical cylinders, and reversed conical
cylinders inside the container cylinder with three internal tubular
protrusions that contain the sample, the source, and the detector
assemblies. The distance to the boundary for neutrons having an
interaction within the geometry is determined as indicated below for

the various geometries used.
5.2.1 Solid Circular Cylinder

First, the intersection points of the neutron direction of
flight vector @ with the infinite cylinder of radius R are
determined by solving for the projection of the intersection in the

x-y plane. The circular projection is described by the equation
(x = x)% + (v -y )’ =R (5.2.1-1)

Where (xcL.ycL) are the coordinates of the projection of the
geometry centerline on the x-y plane. The intersection points
satisfy Equation (5.2.1-1), whose coordinates (xp,ypn,2p) are given
by the parametric Equations (5.2-1) in terms of the coordinates of
the neutron position inside the cylinder (x,,¥q,Zo), the direction
cosines of the neutron flight vector (Qy,0y,0;), and the distance d

between the points (xy,¥0,2o9) and (Xp,¥p>Zp). This is the distance
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to the boundary.
Substituting Equations (5.2-1) into Equation (5.2.1-1) to
eliminate x and y yields an expression that is quadratic in d and

hence has two roots.

& (Q3+0)) +2A [0, (35=%, ) +0y (Y=Y ,) ]

+[X+y2-2 (Xg%g +y ¥, ) X5 +Y? ~R*]=0 (5.2.1-2)

The discriminant to Equation (5.2.1-2), namely,

410, (39=%q, ) +0y (¥,~Y, ) 1°-4 (4+0))

[Xﬁ*’Yﬁ"Z (XX +Y Y,) +XgL+Y§L‘R2] (5.2.1-3)

determines the nature of the roots.

N

0; two imaginary roots exist (no intersection)

If discriminant 0; two equal real roots exist (5.2.1-4)

> 0; two different real roots exist

Point (Xo,¥0,Zp) 1S within or on the boundaries of the geometry,
although this is not a strictly true statement due to round-off
errors in digital representations. As explained in Section 5.7,
point (Xg,Yg,2p) is always confined to be within the boundaries.
Thus, Equation (5.2.1-2) a1ways‘gives two real roots. The root in
the desired direction @ (denoted by d*) is positive, and the other
is negative, as shown in Figure 5.2.1.

To determine whether the direction vector penetrates the top,
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bottom, or side wall of the finite cylinder before leaving the

cylindrical surface, the z-coordinate of the intersection point:
z2 =2z, +4d Q (5.2.1-5)

is compared with the cylinder end z-coordinates. For z* > Ztop» the
direction vector pierces the top of the cylinder and the desired

distance to the boundary 6 is:

(24 = 2
= ______th o) (5.2.1-6)

2

If Zpottom < 2 < Ztop» the direction of flight vector intersects

the side wall and the desired distance to the bourndary & is given

by:

5§ = a (5.2.1=7)

Figure 5.2.1 Tracking within a solid circular
cylindrical geometry.

If 2* < Zhottom» the direction of flight vector pierces the bottom
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of the cylinder and the desired distance is:

Z - 2
8 = ( otter, o) (5.2.1-8)

2

Knowing whether the direction vector penetrates the top,
bottom, or side wall of the cylinder allows the neutron to enter the

proper neighboring cell, should it escape its present cell.

5.2.2 Annular Cylinder

Again the procedure of Section 5.7 is practiced to ensure
that the neutron is within the geometry. The desired distance to

the boundary (see Figure 5.2.2) is determined by first evaluating

Figure 5.2.2 Tracking within an annular cylindrical
geometry.

Equation (5.2.1-2) at the inner radius Ry; a negative or zero

discriminant as given by Equation (5.2.1-3) indicates that the
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flight direction does not intersect the inner surface or that it
just barely intersects tangentially, respectively. In this case
Equation (5.2.1-2) is re-evaluated at the outer radius Rg and the
geometry js effectively treated as the solid cylinder was treated in
Section 5.2.1. On the other hand, when Equation (5.2.1-2) éva]uated
at the inner radius gives two real roots, (a positive root and a
negative root possibility is excluded since the neutron is not
~within the inner circle), both roots being negative implies that the
flight direction is directed away from the inner surface and the
treatment for the solid cylinder at the outer radius can be used.
Two positive roots indicate that the direction vector pierces
through the inner surface and the desired root is the smaller of the
two, say, d*, which is then used in Equation (5.2.1-5) to determine
the z-coordinate of the intersection point. The comparison with
the z-coordinates of the cylinder ends as explained for the solid
circular cylinder in Section 5.2.1 determines whether the direction

vector penetrates the top, bottom, or the inner surface.
5.2.3 Right Circular Conical Cylinder

With the neutron position at (xq,¥5,2p) and its direction
vector ensured to be within the geometry, the intersection of the
vector @ with the conical shape is determined by substituting the

parametric equations given by Equation (5.2-1) into:

J(x=%)% + (y-9)% - t(z-2) =0 (5.2.3-1)

A A A

where (x,y,z) are the coordinates of the vertex of the cone with a
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slope t (see Figure 5.2.3). An expression that is quadratic in d

results:

d’ (f+a2-t70l) +24 [0, (%,-R) +0, (v,-9) -t%0, (2,-2) ]

A A a2, pl [ 2
+[X§+Y§'2 (Xk+y ¥)+&+9 -t?(22-22,2+£") 1=0 (5.2.3-2)

The two roots may be investigated through the discriminant similar

to Equation (5.2.1-4), the discriminant being

49, (%=%)+0, (yn-fz) -t%0,(z,~£) 1% ~ 4 (f+0l-tal)

[XZ+y2-2 (%&+y 9) +20+9° -2 (22-22 8+8°) ] (5.2.3-3)

Two real roots are expected because the point (xq,¥q,2Zg) is
strictly within the geometry. If one denotes the smaller of the two
roots as dpin= min(djy,dz) and the larger as dpzx= max(dj,ds),
Figure 5.2.3 shows that the two roots are either equal (both
positive or both negative) or a positive root and a negative root.
Case I. Both roots are positive. This subcase includes the special
case when both roots are equal. The root of smaller numerical value
dpin is the desired root d* and is used to evaluate the z-coordinate
of the closest intersection point using Equation (5.2.1-5); this
value of z”* is compared with the z-coordinate of the bottom end of
the conical geometry (the end that is closer to the vertex). If

Zmin € Zbottoms then the vector @ pierces through the the bottom
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Figure 5.2.3 Tracking within a right circular solid
conical geometry
surface and the desired distance § is obtained from Equation
(5.2.1-8). If zpin > Zpottom» then the vector Q pierces through the
side wall surface and the desired distance § is determined as
follows:
The x and y coordinates of the intersection point (x’,y',z*)

which lies on the conical surface are determined from:

A

X = &+ AtH(z-2)° - (y-D)°

A

¥+ Jt(2m8) - (x-%)° (5.2.3-4)

v

The desired distance to the intersection is determined as:
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§ = Q(x‘xmz + (y"-yu)2 + (2'~2,,,)° (5.2.3-5)

Case II. Both roots are negative. This is conclusive that the

vector 0 pierces through the top surface and the desired distance is
obtained from Equation (5.2.1-6).

Case III. One positive and one negative root. The positive root is
chosen as the desired root d*, and the z coordinate of the
intersection point is obtained from Equation (5.2.1-5); if Zpottom <
z* < Ztop» then the vector @ pierces through the side wall surface
and the coordinates of the intersection point and the desired |
distance are obtained from Equations (5.2.3-4) and (5.2.3-5),
respectively. If z* < zpgtiom» them the vector penetrates the
bottom surface, and the desired distance is obtained from Equation
(5.2.1-8). Otherwise, if z* 2 Ztops then the vector @ pierces
through the top surface, and the desired distance is given by

Equation (5.2.1-6).
5.2.4 Reversed Conical Cylinder

For a point (X,,¥9,Zo) and a flight vector @ Tocated within a
finite reversed conical cylinder of smaller radius R, height H, and
geometrical center at (X¢,Yc»Zc), as shown in Figure 5.2.4, the
distance to the closest boundary in the direction of flight is
determined via a procedure analogous to the annular cylinder of
Section 5.2.2. It is more convenient to examine first the
possibility of intersection of the direction of the flight vector

with the inner conical surface by solving Equation (5.2.3-2) for d.
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The solution may either indicate no intersection, intersection in
the negative (back track) direction of @ (two negative roots),
intersection in the direction of 1 (two positive roots), or
intersection in both forward and backward directions of @
(a positive and a negative root). Specific logical considerations'
require that the quadratic Equation (5.2.1-2) be re-evaluated at the

outer cylindrical radius as follows:

Figure 5.2.4 Tracking within a reversed conical
cylindrical geometry.

Case I. If the discriminant of Equation (5.2.3-2) is negative, this
is an indication of no intersection with the conical surface. Then

the quadratic Equation (5.2.1-2) with R as the outer cylinder radius
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is solved and should yield a positive and a negative root. The
positive root is taken to be the desired root d* and is used in
Equation (5.2.1-5) to determine the z-coordinate of the point of
intersection z*. A test is then made by comparing this z-coordinate
with the z-coordinates at the top and bottom ends of the geometry in
a procedure similar to the solid circular cylinder of Section 5.2.1.
The direction of flight intersects the outer cylindrical surface if
Zhottom < z* < Ztop and the desired distance to the boundary § is
given by Equation (5.2.1-7). 1If the inequality is not satisfied,
and z* < Zhottom» the direction vector pierces the bottom surface
of the geometry, and the desired distance to the boundary § is
computed by Equation (5.2.1-8). The possibility that % > Ztop is
excluded logically for it violates the no intersection condition
with the conical surface that led to the re-evaluation at the outer
cylindrical surface. The parameters dyijp and dpzx are defined as
the minimum and maximum, respectively, of the two real roots
resulting from solving Equation (5.2.3-2).

Case II. If the larger of the two roots is negative, implying

interaction in the negative direction of @, then the quadratic
Equation (5.2.1-2) is solved at the outer cylinder surface, and
subcase I is applicable.

Case III. If both roots are positive, the intersection is in the
forward direction of Q@ and the smaller of the two roots dyip is
chosen to be the desired root d* that determines the z-coordinate of
the intersection point, using Equation (5.2.1-5). 1In a logic

similar to the circular cylinder case of Section 5.2.1, if this
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intersection point is located below the bottom end of the geometry,
then the direction vector pierces through the bottom surface and the
distance to the intersection is given by Equation (5.2.1-8). On the
other hand, if the z-coordinate is greater than the z-coordinate of
the bottom of the geometry, then the direction vector pierces
through the inner conical surface and the desired distance is

*

§ = d°. The intersection point z-coordinate is not possible to be
greater than zgop when there are two positive roots, and therefore
is excluded.

Case IV. For the subcase when one of the real roots is positive and
the other is negative, the positive root dpax is chosen as the
desired root d*, and the z-coordinate of the point of intersection
z* is determined from Equation (5.2.1-5) and compared with the end
coordinates as follows:

If Zpottom < 2= < Ztop, then the direction vector pierces the inner
conical surface and the desired distance to the intersection is

*

§ =d. If the inequality is not satisfied but z* > Ztop> then the
quadratic equation of the outer cylindrical surface is solved, and
subcase I is applicable. Otherwise if z* < zpgttom, then the
direction vector pierces the bottom surface, and the desired

distance is given by Equation (5.2.1-8).
5.2.5 Container Cylindrical Tank

Given the neutron is located at a point (xq,yg,2p) within the
container tank, but not within any of the internally protruding

tubes that contain the sample, source, or the detector. The neutron
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is traveling in a path characterized by the vector @ = {ly ? + Qy 3
+ 0, k where (Qx,Qy,0;) are the normalized direction cosines. This
path intersects an infinite cylinder of radius r whose major axis is
located at (XCL,yCL), if the point of closest approach (discussed in
the next paragraph) (xp,yp) from the path of vector @ to the point
(xcL>YcL) is within the radius of the cylinder, i.e., if
)2 < r?

2
(Xp - XCL) .+_ (yp - YCI.

The distance of closest approach is derived by minimizing the
distance from any point (x’,y’) along the vector @ to the point
(XcLo¥cL) in the x-y plane with respect to the parameter t as shown
in Figure 5.2.5-1, where the parametric equations along the vector

2 are given by:
X =x + Q4 t
Y=y, + ot
z=2,+0, t (5.2.5-1)

The distance between an arbitrary point (x’,y’) along @ and the

point (xcp.¥cL) is given by:

D = Q(xumxt-xl.i)2 + (yD+Qyt—yCL)2 (5.2.5-2)

To find the value of t, namely ty, such that D is minimum (Dpip)
requires setting the derivative d(D)/dt equal to zero at the point

of closest approach.
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0, (Xt =%q) + Q (Y Ot~y ) = O (5.2.5-3)

If Equation (5.2.5-3) is solved for tp, the result is

_ QX(XCL-XU) + QY(YCL-YU)

% (2 + @)

(5.2.5-4)

Figure 5.2.5-1 The distance of closest approach.

and the closest point (xp,yp) along the path @ to the point
(xcL»¥YcL) in the x-y plane is given by:
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X, =X + 4 t

yp =y, * Qy tp (5.2.5-5)

Dmin s the normal distance from the path of the vector @I to the
point (xcL,ycL). Values of t, less than zero indicate that the
infinite cylinder is located in the opposite direction of travel
(back track) and can therefore be neglected with the conclusion
that in the forward direction of the vector @1, intersection with
the infinite cylinder under consideration is not possible. Once it
is concluded that the vector Q possibly intercepts the infinite
cylinder, that is, the minimum approach distance Dpj, is less than
the radius r, the intersection points are determined by solving for
the intersection with the equation of the circle, i.e., solving
Equation (5.2.1-1) with R replaced with the appropriate radius,
which should yield two positive roots, d; and dp. It remains to be
determined whether the direction vector penetrates the top, bottom,
or side wall of the finite (tube) cylinder. Given that z¢4, and
Zpottom are the z-coordinates of the top and bottom ends of the
finite cylinder, and letting dyi, = min(dj,dp) and

dpax = max(dj,dp), then the z-coordinates of the intersection points

are:

zmln = ZU + nz dmln

Zpay = 29 * 0, A (5.2.5-6)

max

It should be investigated to see if the point (xq,¥o), where the

neutron is located, is within the radius of the infinite tube under
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consideration to conclude that the point is within the extension of

the finite cylindrical tube. 1In this case, Equation (5.2.1-2)

yields a positive and a negative root; the positive root is taken as

dmax .

The z-coordinates of Equation (5.2.5-6) are compared with the

end z-coordinates of the finite tube to determine the surface of

intersection as follows:

I.

II.

If the point (xg,yp) is not within the extension of the tube,

but the minimum approach distance is within the radius of the

infinite cylinder, this leads to the following subcases:

A.

Zpottom £ Zmin < Ztop- The vector pierces the side wall
of the finite tube and the desired distance to the
intersection is § = dpip.

Zmin < Zbottom < Zmax- 1he vector pierces the bottom
surface of the finite tube and the desired distance to the
intersection is 6 = (Zpottom-20)/0z-

Zmin 2 Ztop > Zmax- 'he vector pierces the top surface of
the finite tube and the desired distance to the
intersection is & = (Z4gp-24)/0;.

If both zpip and zpay are less than zpgttop Or both are
greater than ztop, then it is concluded that there is no

physical intersection with the finite tube in question.

Point (xq,Yo) is within the extension of the tube. In this

case Equation (5.2.1-2) yields a positive and a negative root.

Provision should be made to account for subcases when the

vector @ is parallel or nearly parallel to the z-axis;
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Equation (5.2.1-2) should indicate two imaginary roots in such

a subcase. If the z-coordinate of the point (xg,¥p,Zg) iS

greater than ztop and O, is less than zero, then the vector Q

pierces through the top of the finite tube and the desired

distance to the intersection is § = (ztpp-2p)/0z. If it
happens that the z-coordinate of the point (Xq,¥9,2¢) is less
than Zpgttom and {3; is greater than zero, then the vector @
pierces through the bottom of the finite tube and the desired
distance is given as § = (Zpgttom-Z0)/8z. The positive root
dmax is used to calculate zp,yx from Equation (5.2.5-6) and the
following subcases are recognized:

R. If z5 > ztgp and zpax < Ztop, then the vector @ pierces
through the top of the finite tube, and the desired
distance is given as § = (z{gp-2¢)/0z.

B. When zy < Zpottom < Zmax» the vector @ pierces through
the bottom of the finite tube, and the desired distance is
given as & = (Zpottom=Zo)/%z-

C. Otherwise, there is no physical intersection.

The aforementioned procedure to determine if the vector @
physically intersects a finite tube and to determine the distance to
the intersection if it takes place is repeated for each internally
protruding tubular extension inside the container cylinder while
keeping track of an index specifier of the tube in the case of
physical intersection and recording the desired distance as §; (i=
1,2,3 for the sample, the source, and the detector tubes,

respectively, with §;=0 for no intersection). Since it is
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simultaneously, as shown in Figure 5.2.5-2, the desired distance to
the closest physical intersection with a finite tube is taken to be

the non-zero minimum of the set {é;)

6 = min{&;)} ; 1=1,2,3

Figure 5.2.5-2 Tracking within the cylindrical
container tank.

Finally, in the case when it is concluded that the vector 0
does not intersect any of the finite tubes, the procedure of the
solid circular cylinder of Section 5.2.1 is used to determine the
intersection surface of and the distance to the cylindrical
container tank.

After the distance § to the boundary of the cell in the
direction of flight @ is obtained by one of the procedures in

Section 5.2, the distance to an interaction is sampled as discussed

next.
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5.3 Sampling the Distance to Interaction (Path Length)

The common procedure of sampling the path length in a multi-
region (multi-cell) geometry assuming successive infinite media was
used. A distance D* to an interaction is sampled assuming an
infinite medium of the current cell composition. If this distance
exceeds the distance to the boundary of the present cell in the
dirction of travel, then the position coordinates are advanced to
the cell boundary and the procedure of infinite medium of the
adjacent cell composition is assumed to sample a path length. This
procedure is repeated successively until an interaction is sampled
within the cell under consideration or until the traveling
radiation leaks out of the system.

The path length sampled from the exponential pdf governing
the interaction probability within a medium is given by Equation

(A-1) as:
D' = - %t 1nk (5.3-1)

When the random number é€(0,1), then D*e(O,w).

An exception is made when the intercepted boundary is an
external boundary of the system (in which case the neutron is
assumed to not have a chance to re-enter the cell geometry). In
this case, the neutron is forced to remain within the geometry
(within the distance to the boundary) with a weight equal to the

probability of not escaping the cell, namely:
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-2, 8
We=1=-e"

A (5.3-2)

(This is shown to be a variance reduction technique in Appendix A,
by eliminating the loss of neutron histories that would have escaped
outside the system). Thus, the neutron is forced to have its
collision within the cell; the path length is sampled from the
altered pdf of Equation (A-2) as:

D' = - 2% in[1 -2 - )] (5.3-3)

5.4 Decision Whether the Neufron is Still Within the Cell

This decision is made by comparing the path length D* to an
interaction, sampled in Section 5.3, with the distance to the cell
boundary é in the direction of flight that has been computed in
Section 5.2.

Should the sampled distance exceed the distance to the
boundary (i.e., if D* 3 §), it is concluded that no interaction
occurs in the cell and the neutron escapes the current cell. The
neutron position cartesian coordinates are advanced in the direction
2 to the cell boundary (refer to Section 5.7 for an explanation of
how this is achieved to overcome round-off errors) by using the
parametric Equations (5.2-1) in order to position the point
(Xg:¥g:2Zp)» Where the neutron had its previous collision, to the
point (Xn,¥n>2Zp) jocated just inside the neighboring cell along
direction 2. Otherwise, when D* < §, it is decided that an

interaction occurs within the cell and the cartesian coordinates of
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the neutron position in the phase space are relocated to the
collision position (xy,¥n,2n) using Equations (5.2-1) with d
replaced by the sampled distance (path length to the collision) D*,

and the collision event is handled.
5.4.1 Sampling the Collision Event

At the point where it was decided that the neutron had a
collision, the type of interaction, whether it is absorption,
scattering, etc., has to be sampled. The "expected value" concept,
a variance reduction technique which consists of replacing the
cumulative density function sampling scheme to sample the reaction
type, as shown in Appendix B, may result in having to terminate the
history upon absorption without a favorable contribution to the
desired results with the deterministic probability of scattering,
namely 2g/2t. In this case the weight of the neutron is reduced by
the scattering probability Wge = 25/2¢, that is, the random
process of occurrence of interactions is replaced by its expected

value.
5.4.2 Treatment of the Scattering Event

The scattering event, decided upon in Section 5.4.1, is
simulated by sampling the scattering parameters to determine the
scattered neutron state in the phase space. The state of the
scattered neutron is determined by sampling the energy and/or the
scattering angle of the neutron after being scattered. Therefore,

an appropriate scattering model has to be chosen, which in turn
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requires that the element (nucleus) with which the neutron had its
scattering interaction be sampled.

An energy limit of 2 eV was decided upon (Appendix C) below
which the thermal scattering (the monatomic gas) model was used;
otherwise, a non-thermal scattering model (either the elastic
billiard ball model or the inelastic scattering model) was used.
Mathematical representations of these models are discussed in
Sections 5.4.2.1 and 5.4.2.2, respectively.

The element involved in the scattering reaction is sampled
from the scattering cdf (discrete function). The element, having
the identifier i’ = m+l, is sampled by determining that value of m

which satisfies:

m m+!
s <EX S 2 I (5.4.2-1)
i=0 i=0
M
where o= Y I
izl
and Zps = 0

where 2 ¢ is the macroscopic scattering cross section for the i-th

element in the cell; M is the number of elements in the cell.
5.4.2.1 Thermal Scattering, The Monatomic Gas Model

The integrand on the right hand side of Equation (2.1.5-11) is
proportional to the probability density function given by Equation
(2.1.5-8), which represent the target nucleus velocity distribution
in the transformed variable x. Carter and Cashwell (1975) give a
simplified rejection scheme, with about 40% efficiency, to sample a

target nucleus velocity from this distribution when x < 3
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(equivalent to target velocities V > 9kT). The total probability of
x > 3 is less than 0.00125. Therefore, neglecting target velocities
for_x > 3 should not introduce any significant biasing in the
sampling scheme. The distribution of u, the cosine of the angle
between the target nucleus velocity V and the neutron velocity v, is

given by the cosine law, namely:

£(p) = Jui + V2 - 2y WV (5.4.2.1-1)

or in terms of the new transformed variables a = B v, and x, where 8
and x are defined by Equations (2.1.5-7) and (2.1.5-6),

respectively.

f(p) = C Ja? + x2 - 2axp (5.4.2.1-2)

where C is a normalization coefficient. This equation can be

sampled analytically as:

u=—27.1§[a2+x2-(|oe-x|3-s[[a-x|3-(a—x)3])2’3] (5.4.2.1-3)

The following scheme for sampling the monatomic gas kernel is

adopted from (Carter and Cashwell, 1975).

I. Sample the target nucleus velocity from the transformed
dimensionless variable x (restricted to 0 < x < 3) from
Equation (2.1.5-8) (Maxwellian) by the rejection technique as:
A. Evaluate [p(x)]lpax by setting the derivative dp(x)/dx

equal to zero. The x at which this maximum value occurs

is x =t 1. This value of x is substituted into Equation



II.

III.
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(2.1.5-8) to obtain a numerical value for [p(x)]Impax of
0.830214995.
B. Sample a variable x; on the possible range of x € (0,3)
as x] = 3 £, since when ¢ € (0,1), then x; € (0,3).
C. Evaluate the pdf p(x) of Equation (2.1.5-8) at this value

of x, namely:
- 4
p(x) = i x2 e

D. Evaluate a variable n = £ [p(x)]paxs if n > p(xy), reject
x1 as the sampled variable and repeat step B. If
n < p(xy), accept x* = X1, as to be the randomly sampled
variable of the target nucleus velocity.
Sample the cosine of the angle (denoted py) between the target
nucleus and neutron directions using direct sampling from
Equation (5.4.2.1-3) with x replaced by x*. The accepted
value of x is sampled in step I.D above.
Sample the azimuthal angle ¢ about the direction of flight of
the incident neutron uniformly by Equation (5.1-4). Knowing
the incident neutron direction of flight (Qx,ﬂy,ﬂz), the
"scattering" angle is sampled in step II (ut=cosé#), and the
azimuthal angle ¢. Equations (5.1-1) are used to evaluate the
direction cosines of the target nucleus (QTX,ﬂTy,QTZ). Then
the direction cosines relative to the master coordinates
(QTX,QTy,QTZ) are obtained from Equations (5.4.3-1). 1If the
neutron is assumed to be oriented isotropically after the

scattering in the center-of-mass frame, the polar angle 6, and
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the azimuthal angle ¢, are sampled from the isotropic sampling
of Equations (5.1-3) and (5.1-4), respectively. The direction
cosines, in the center-of-mass .system, of the neutron after
the collision (ﬁ x,ﬁ y,ﬁ z) are calculated from Equations
(5.1-1) with @ and ¢ replaced by 6, and ¢,, respectively. The
final neutron energy E' and direction of flight cosines
(Q’X,Q'y,ﬂ'z) in the laboratory system are given by :

E
(A+1)°?

(X*+Y*+Z%) (5.4.2.1-4)

m\
I

. X
f = =t
SRy

: Y
Q = —Y
N YR
Q = Z (5.4.2.1-5)

A S
SR+

where

Iy xlA
a, + a(sh, + X0

LS
n

Y =0 + A(Sﬁy + %‘T]
z =0, + a(s, + X0

o= A+ (5) - 35,

Appendix C shows that sampling the monatomic gas kernel by

this procedure is equivalent to the well-known Wigner-Wilkins proton

gas theoretical model (Duderstadt and Hamilton, 1976).
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5.4.2.2 Non-Thermal Scattering Treatment

The element i', sampled to be responsible for the scattering,
might exhibit a significant cross section for the inelastic
scattering interaction. This is dependent on the energy of the
incident neutron, if it is high enough above the threshold of this
reaction. Table 5.4.2.2 Tists the first nuclear level excitation
energy for some elements of interest, constituents of the monitoring
system. In this work only Pb was modeled to undergo inelastic
scattering, up to the 35th discrete level. Therefore, if the
element, sampled above, happened to be Pb, then the scattering type
is sampled from the discrete cummulative distribution of the
scattering cross sections as:

If £ < 035(E)/05(E), where 045 and o5 are the microscopic

inelastic and total (elastic and inelastic) scattering cross

sections (0jg is the summation of the 35 discrete level
excitation cross sections), then the scattering is deemed to
be inelastic and the responsible (m+l) discrete level is

sampled when the inequality

m+]
ois.k < Eois 5 g 0is.k

Ms

k=1

is satisfied. Otherwise, when £ > 044(E)/0g(E), the

scattering is elastic.

The angular scattering for Pb is highly anisotropic even when
viewed in the center-of-mass system. The anisotropic law is

supplied as Legendre polynomial expansions, the cosine of the
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15t Excitation Isotope Natural Observed
Level Abundance Inelastic y-ray
(MeV) (%) (MeV)
4.43 c-12 98.892 4.439
6.052(6.131) 0-16 99.759 6.131
0.439 Na-23 100.00 0.44
1.36853 Mg-24 78.60 NoA.
0.58 Mg-25 10.11 N.A.
1.81 Mg-26 11.29 N.A.
0.842 Al-27 1060.00 0.843
1.780 $1-28 92.18 1.779
1.28 $1-29 4.71 1.273
2.23 $1-30 3.12 2.235
1.22 €1-35 75.53 1.22
0.84 c1-37 24.47 N.L.
.74 Ca-40 96.79 N.L.
1.95 Ca-44 2.06 N.L.
0.8894 Ti-46 7.99 N.A.
0.16 Ti-47 7.32 N A,
0.9833 Ti-48 73.99 N.A.
1.31 Ti-49 5.46 N.A.
1.55% Ti-50 5.2% N.A.
0.7831 Cr-50 4.3] 0.7831
1 4336 Cr-52 83.76 N.L.
0.563 Cr-53 9.5% 0.564
0.8353 Cr-54 2.38 0.8348
0.1259 Mn-55 100.00 N.A.
1.409 fe-54 5.84 1.4084
0.8469 Fe-56 91.68 0.8468
0.01439 fe-57 2.17 N.L.
0.8105 Fe-58 0.31 N.L.
i.45 Ni-58 67.76 N.A.
1.3325 Ni-60 26.16 N.A.
0.0674 Ni-61 1.25 N.A.
1.172 Ni-62 3.66 N.A.
1.34 Ni-64 1.16 N.A.
0.669 Cu-63 69.1 N.L.
0.77 Cu-65 30.9 "N.L.
1.04 Ge-70 20.55 N.A.
0.69(0.835) Ge-72 27.37 N.A.
0.0135 Ge-73 7.67 N.A.
0.596 Ge-74 36.74 N.A.
0.5632 Ge-76 7.67 N.A.
1.54 Mo-92 15.86 N.A.
0.871 Mo-94 9.12 N.A.
0.2042 Mo-95 15.7 N.A.
0.778 Mo-96 16.5 N.A.
0.665 Mo-97 9.45 N.A.
0.7868 Mo-98 23.75 N.A.
0.5355 Mo-100 9.62 N.A.
0.6327 €d-106 1.22 N.A.
0.63 €d-108 0.88 N.A.
0.6576 cd-J10 12.39 N.A.
0.247 Cd-111 12.75 N.A.
0.6174 €d-112 24.07 N.A.
0.3 Cd-1:3 12.26 N.A.
0.5581 Cd-114 28.86 N.A.
0.8993 Pb-204 1.4 N.A.
0.8033 Pb-206 25.1 N.A.
0.5696 Pb-207 21.7 N.A.
2.6145 Pb-208 §2.3 N.A.

* From SIGRMCCS listings, MCNP

Table 5.4.2.2 The first nuclear level excitation energy
for some elements of interest.
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scattering angle, g = cosy, being sampled from Equation (D-2),
repeated here for convenience:

NL E
3 e+ 3 28 o ) - b (W] =

The desired g can then be obtained by a numerical rdot finding
scheme (e.g., the bi-section method).

The outgoing neutron energy after being scattered through the
sampled angle ¥ is computed from Equation (2.1.5-12).

The scattering angle Y is transformed into the laboratory
system where the neutron tracking is done by Equation (2.1.5-13),
whereas the azimuthal angle around the incident direction is sampled
by Equation (5.1-4). In the case of neutron scattering by hydrogen,
the corresponding equations to compute the scattered neutron energy
and the scattering angle in the laboratory system are simplified and

given by Equations (5.4.2.2-1) and (5.4.2.2-2), respectively.

E = iE (5.4.2.2-1)

cosd = (k)2 (5.4.2.2-2)

where £€(0,1).

When the sampled element responsible for the scattering is
not modeled to undergo inelastic scattering, then the billiard ball
model was used directly. The polar and azimuthal scattering angles
were determined by Equations (5.1-3) and (5.1-4) respectively. Post
scattering laboratory energy and polar angle were obtained from

Equation (2.1.5-12) and (2.1.5-13), respectively.



97

5.4.3 Computing the Direction Cosines of the Neutron Flight
Direction Leaving the Scattering Point
After the scattering angle 8 (lab system) and the rotational
angle ¢ are sampled, the emerging neutron direction cosines (with
respect to the master cartesian coordinates) can be computed
(Cashwell and Everett, 1959), given the incident (before scattering)

direction cosines as {y, Qy, and Q, from:

sin6é cos¢ _ siné sin¢

N, = 0 cosé + OQ,

_ sinb cos¢ sind® sing
0, = 0, cosh + OO, S—==——— - 0 ="
J1-02 J1-02
Q, = 0, cos® - J1-0Z sind cos¢ (5.4.3-1)

In the case when (1-922)% approaches zero (for practical
applications if |Q,| > 0.99999) the degenerate forms of Equations
(5.4.3-1) are given as (Schaeffer, 1973):

f, = sin® cos¢
§§ = sin® sing
Q, = 2, cosé (5.4.3-2)

5.5 Scoring Routine

Since it is of interest in this work to score the prompt gamma
rays from neutron capture in some elements of interest in the core

sample, the scoring routine is performed only when the neutron being
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tracked is in the core sample material (cells 14, 15, 17, 22, and
23). At each point of collision inside the core sample, the
expected value technique was used to score an expected value of
contribution to the desired result. This expected value is
constructed as probability of occurrences. For example, the

probébi]ity that the collision is a radiative capture reaction is:

(5.5-1)

where 3; and 2t are the macroscopic absorption and total cross
_sections, respectively.
The probability that the radiative capture takes place in the
j-th constituent element of interest in the core sample is:

_ Z,,(E)
Fay = Z,(E)

(5.5-2)

The probability that upon radiative capture in the j-th
element, the k-th characteristic capture gamma ray is emitted is:
Z,(E)
J
P, = %a_(f)— Yy (5.5-3)
where Ty, k s the branching ratio of the k-th capture gamma ray when
emitted by element j.
The probability that the isotropically emitted gamma ray
(Kinsey, 1979) is emitted within the solid angle AQ subtended by

the detector at the point of collision is the fractional solid

angle:

P, = It (5.5-4)
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The prompt gamma rays when emitted from the elements of
interest are forced to be emitted within the solid angle subtended
by the finite size detector at the point of neutron capture. This
is accomplished by restricting the otherwise isotropically emitted
gamma rays (0 < # <7 and -m < ¢ < 1) to limited ranges of polar and
azimuthal angles determined by the relative position and distance
between the point of emission and the detector. Thus, 6 and ¢ are
sampled over these limited ranges and the corresponding weight is
the fractional solid angle subtended by the detector. Gardner et
al. (1987) treated the forcing of radiation scattered or emitted
from an arbitrary point to a right circular cylinder detector. The
algorithm used here to determine the limiting polar and azimuthal
angles and the solid angle is based on the reported work by Mickael
et al. (1988). The general approach of this algorithm is outlined
in Appendix F; more details can be found in the aforementioned
references.

The probability that a gamma ray of energy E emitted at a
point will traverse a distance x; in the direction of flight in
material i possessing a mass attenuation coefficient (u/p); at the

given energy E and density p; is given as:

p, = I e-[%]i i %
z f=1
or
Mz -(E)-p x
P, = elst il (5.5-5)

The summation (from 1 to M) is carried over all the materials
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" located between the point of emission and the detector. The gamma
ray path from the point of emission to the detector is defined by
the po]ar angle 6 and the azimuthal angle ¢ (sampled from the
Timited ranges). The distance through the sample and various
-construction and shielding materials has to be computed. In this
work, detailed attenuation by the sample, shields, construction
materials, moderator, the detector casing and air surrounding the
crystal, along with a reasonable approximation of the associated
detector support structure, were considered. The attenuation and
traversed thicknesses through the source tube were considered only
when it happens that the path of the gamma ray under consideration
intercepts the tube containing the source. Considerable effort was
exerted to write and test computational subroutines to determine the
successive path lengths through the heterogeneous constituents of a
tube assembly in any arbitrarily conceivable direction of
penetration from the point of emission within the sample to the
detector. The general approach of tracking inside coaxial
cylindrical and annular configurations intersected by planes that
are perpendicular to the major axis is outlined as:

I. For a cylindrical geometry, knowing the direction of flight
vector Q1 and the point of emission p within the cylinder
(emission from within the core sample), the z-coordinate of
the point of emission determines the relative location with
respect to given planes perpendicular to the major axis
colinear with the z-direction, say z) and zp, as illustrated

in Figure 5.5(a).
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Solving the quadratic equation for the roots of intersection
between the vector @ and the equation of a circle (planar
projection of the tube) should yield one positive and one
negative root. The positive root is chosen to compute the
coordinates of the intersection point in the direction of
flight. The z-coordinate of the point of intersection
determines the intersection to be on either side of a plane,
at say z, as shown in Figure 5.5(b).
The projection of the radial distance r on the x-y plane at z
is determined by first computing the distance from the point p
to the plane at z as:

(z-2,)
d = — (5.5-6)

2

The x and y coordinates of the intersection point at the plane

z are computed from the parametric equations:

X

x, + & d
yp + Qy d

Yy

Given that the major axis of the tube is at (x.,yc), the

projection of the radial distance is computed from:

d, = A[(x=x)° + (y-y)° (5.5-7)
This radial distance, when compared with a given radius (say a
tube of radius rj), determines whether the'subsequent region
should be region I or region II, as shown in Figure 5.5(c).
For a conical shape inside a cylindrical geometry, the radial

distance dy., when compared with the radii r; at plane z; and
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ro at plane z;, determines whether or not the equation of the
conical surface has to be solved for the intersection point,

as can be seen from Figure 5.5(d).

Figure 5.5 General geometry illustrations to determine
the length/material traversed between the source and the
detector.
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V. Conveniently, the position coordinates can be updated to each
interaction point while keeping track of the distance
traversed, along with an index identifier of the material that
comprises the penetrated medium. This material index allows
the distances through the same materials to be summed up. The
direction of flight @ has to remain unchanged.

VI. The above procedures are repeated until the intersection point
is at the detector surface.

The probability that a gamma ray of energy E, impinging upon
the effective volume of the detector, will contribute to the counts
under the full energy peak at E is the experimentally obtained and
reported photopeak efficiency values (see Section 5.9) at the

incident energy E:

P (5.5-8)

count cphotopeak (E)

The gamma rays reaching the detector are forced to contribute
to the net count area under the relevant photopeaks according to
their respective photopeak efficiencies (expressed as net counts per
incident gamma ray). The detector intrinsic efficiency is dependent
on the point and angle of entry of the gamma ray. Therefore, it is
assumed that suitable experimental efficiency values are averaged
over the emanation point and incident angles, and therefore the
efficiency is only dependent on the detector size, gamma ray energy,
and the specific peak (photopeak, single escape, or double escape)
under consideration. Thus, the intrinsic detector efficiency is

independent of the gamma ray position coordinate. The relative
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detection efficiencies for different gamma ray peaks depend not only
on characteristics of the gamma ray detector and the nature of the
spatial distribution of the source of gamma rays, but also on the
gamma ray attenuation in the samp1e.and in the materials which
surround the detector.

Neutron interactions within the detector, that result in
events which are recorded in the spectra, such as the recoil-
broadened 0.596 MeV and 0.691 MeV lines from the 74Ge(n,n’1) and the
72Ge(n,n’y) reactions, respectively, are not modeled. The 0.691 MeV
line, which is produced by neutrons with energies > 0.7 MeV, is
useful in that it provides a measure of the total number of fast
neutrons which have interacted within the detector and hence of the
degree of neutron damage; this can provide an early warning of
consequent deterioration of the detector energy resolution.

Therefore, the expected probability of contribution is the
probabitlity that Equations (5.5-1) through (5.5-5) and Equation
(5.5-8) occur simultaneously, that is:

P =W P, P

score PQ P, P

x ~ count (5.5-9)

alk

where W, is the absolute weight of the neutron prior to the
collision.

Effectively, the net (interference-free) peak area count rate
of the k-th gammayline emitted by the j-th element of interest in
the sample having a fractional weight (concentration) of Wj is

given by:
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M
®max®max -2 Hox
RkJ=Nj[YJ’koa,j§k [ ar N(ry [ [ 92 e PO gy

sample ®nin ®min

(5.5-10)

where:

Rk ] is the net peak area count rate from the k-th 1ine emitted by
¥ the j-th element.

Nj is the number density of the j-th element.

Tj,k is the branching ratio for the k-th gamma Tine emitted by
the j-th element.

Oa, j is the microscopic neutron capture cross section.

Tk is the intrinsic detector efficiency for the k-th gamma
ray energy

N(r) is the neutron density in units of (neutron/cm3/s)

(u/p); is the mass attenuation coefficient for material i of
density p, and

X is the distance, in the direction of flight, that the
gamma ray has to traverse in material i to reach the
detector.

The integration is over the solid angle that the detector subtends

from the point of emission of the capture gamma ray.
5.6 Termination of the History

Two physical processes are responsible for neutron losses,
namely absorption and escape. Absorption is accounted for by
reducing the weight of the neutron by its absorption probability at
each collision (i.e., by multiplying the weight before the collision

by the non-absorption probability). Escape is accounted for by
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reducing the weight by the escape probability (when the sampled path
length exceeds the distance to an outer physical boundary of the
system, as explained in Section 5.3).

It is seen that no matter how many collisions the neutron
suffers, the weight will never become zero. There has to be some
way of "killing" the neutrons while conserving the total neutron
weight.

Terminating the history when the neutron energy slows down
past a low pre-specified cutoff energy is not desirable since
calculations of thermal parameters are of interest. Instead Russian
Roulette is employed to decide the fate of a neutron when its weight
is reduced below a pre-specified cutoff weight limit (Wgin),
determined such that subsequent contributions to the desired results
are insignificant below this weight and the fraction of computer
time in tracking the neutron further is a waste.

Russian Roulette (Carter and Cashwell, 1975) is a variance
reduction technique implemented such that when the neutron absolute
weight W becomes smaller than the minimum permissible weight Wpin,
i.e., W < Wpijp, a random number £€(0,1) is sampled and compared with
the ratio W/Wyin. If € < W/Wyin, then the neutron survives and its
weight is adjusted (increased by the ratio Wyin/W) to be Wpip and
the history is continued either within the cell or in the
| neighboring cell (following the succession of Sections 5.2 through
5.4).

If &€ > W/Wpip, the neutron perishes (is killed), and the

history is terminated. The simulation is continued starting with
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Section 5.1, and the whole procedure is repeated as many times as
necessary to achieve the accuracy needed for the solution or until

the total specified number of histories is exhausted.

5.7 Cell Boundary Interface Complications

Due to round-off and truncation errors in representing numbers
on a digital computer, the following difficulty may arise. A point
is supposed to lie on a surface bounding a cell when the neutron
escapes interactions in the current cell and is relocated to be on
the boundary. In reality, this relocation might be within te of
the boundary. When the geometrical equations are solved to
determine the distance to the next boundary, this will lead to a
serious error because of the logic in decisions involved in the
determination of positive or negative roots. This complication can
be avoided by advancing the point so that it l1ies a small distance
wholly within the neighboring cell it is supposed to enter next.
This is believed to be the most satisfactory treatment except at
corners or if very thin regions are present (Kalos and Whitlock,
1986) .

The above treatment was implemented in the neutron tracking
subroutines such that a test is made to ensure that the particle is
within the cell before solving for the roots of intersection of the
flight vector and the equation of the cell surface. Then all the
logical decisions are based on the neutron being within the cell
geometry. The advancement of the neutron to the next cell had it

escaped its present cell is dealt with as follows. After sampling
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the distance to the boundary in the direction of flight, say §, then
the path length is sampled, say D*. If the sampled distance
presumably locates the neutron within a small distance ¢ (10'8 cm)
inside the boundary (same cell), that is, if D* » §-€¢, then the
neutron is advanced to the next cell in the direction of flight and
is located just beyond the boundary within the new cell by
stretching the distance on the right hand side of the above
inequality slightly, say to (6-€¢) + 2e.

The position coordinates are computed by Equation (5.2-1) with

d replaced by the distance (é+¢).
5.8 Correlated Sampling

To generate the desired detector responses in this work, it is
of interest to obtain the responses while the elemental
concentrations are small to allow treating the problem as
perturbations of a single case with strong positive correlation.

The correlated sampling technique (Spanier and Gelbard, 1969) can be
utilized to avoid separate Monte Carlo calculations for each system
of elemental concentrations. Instead, it is possible to correlate
the problems by using a single set of particle histories. The base
(reference elemental concentrations) problem is simulated and the
effects of the perturbations to obtain the other elemental
concentrations are calculated at each collision by weight factors
that account for the relative changes in the collision process.

Separate simulations for each elemental concentrations, in

addition to being very impractical, may not provide accurate
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information about the differential effects, due to fact that the
statistical uncertainties in the estimates may maék the differences
being sought. However, in the correlated sampling technique, only
the effects of the perturbation are subject to statistical
fluctuations.

In the special case when the neutron is in a cell occupied by
the core sample material (whose prompt gamma ray response is of
interest), namely cells 14, 15, 17, 22, and 23, the unbiased path
length sampling is done through Equation (5.3-1). In the non-
reentrant case, Equation (5.3-3) is used. In both cases Zi
evaluated at the reference elemental concentrations. The relative
weights, used to force non-escape and subsequent interaction to take
place within the sampled path length D* in the core sample (at
reference elemental concentration) at different elemental

concentrations, are computed from:

W, = —+ — (5.8-1)

DL 5 o
t'Lref

pX e
t'Lref

The relative weights that no interaction takes place within § in the

sample at all elemental concentrations are computed as:

-2y 8
et.L

W, = S—— 5.8-2
sl e—zu‘ref 5 ( )

It should be noticed that relative weights are not computed
for materials other than the core sample material, since neutron
transport within these materials is essentially independent of the

core sample elemental concentrations.
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Within the core sample when the element involved in the
scatfering of the neutron is sampled by Equation (5.4.2-1) where 2
values are evaluated at the reference elemental concentrations, the
relative weights to force the scattering to be with the same
responsible sampled element at all elemental concentrations are

computed as:

;Vsl

z
Wsc.i',l. =3 ,Sl (5.8-3)
1 'S‘Lref

b
S'l'ref

At each collision in the core sample, the expected value given
by Equation (5.5-9) is scored as the desired contribution, and
Equations (5.5-1) and (5.5-3) are evaluated at the reference
elemental concentrations. The first term in the summation of
Equation (5.5-5) (defining material number one to be the core
sample material) is evaluated at the reference elemental
concentration of the core sample.

The relative weights at different elemental concentrations for

the first term of Equation (5.5-5) are computed as:

b
e WL AL %

W, =—2 (5.8-4)

il e-(a)llref pu'ref 3

The relative weights for Equations (5.5-1) and (5.5-3) combined are:

za.j.l.
z
= L (5.8-5)
ajl F-a.J.L

ref

Wp

zt'l'ref
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5.9 Features of the Simulation

The geometrical representation of the monitoring system is
very accurate with reasonable approximations in modeling the Cf-252
encapsulation and the housing of the detector proper that contains
the detector support structure. Inherently, the cell-to-cell
interface is assumed to be a perfect match, which is somehow
questionable when the interface is between two physically different
cells. To overcome this difficulty,fabrication tolerances are
restricted to be minimal and can be assumed as practically close
match in between the material-to-material interface. Furthermore,
the path length over-shooting of Section 5.7 somehow relaxes this
constraint.

The neutron transport simulation is an accurate detailed
treatment of continuous neutron energy with extensive pointwise
cross section data from ENDF/B-V. Nuclear absorption and
scattering reactions are accounted for in all the elements in the
material constituents of the monitoring system. The scattering
reaction is assumed to be predominantly isotropic elastic
scattering, except in the lead shield surrounding the source capsule
where the neutron energy spectrum is approximately the Cf-252
neutron spectrum, which is a hard spectrum, and inelastic scattering
in Pb is significant. Hence, inelastic scattering in Pb due to the
first 35 discrete nuclear excitation levels is considered in
addition to the elastic scattering. Due to the high mass ratio of

the Pb nucleus and the hard neutron spectrum in this vicinity, the
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scattering is anisotropic and is modeled as such.

Inelastic scattering is not accounted for in heavy nuclei that
exhibit a possibility of inelastic scattering reactions, as shown in
Table 5.4.2.2, and comprise a small weight fraction of the material,
since under these conditions there is usually a small probability of
occurrence for inelastic scattering. Specific examples are the
heavy elements in the core sample, where the neutron flux is thought
to be well thermalized. The ratio of thermal (0-2 eV) to epithermal
(2 eV - 15 keV) neutron flux densities is essentially constant
beyond about 10 cm from a point saurce of Cf-252 in fresh water, the
thermal flux density being several times higher than the epithermal
flux density (Senftle et al., 1974). The heavy elements in the
stainless steel source encapsulation are modeled to account for
absorption and isotropic elastic scattering reactions, because it is
thought that the small energy and angular dependency resulting from
anisotropic inelastic scattering will be washed away in the neutron
flux at the region of interest (the core sample), since the neutrons
have to transport through the Pb shield and a considerable path .
length of good moderators (polyethylene and water).

Scattering of neutrons at thermal energies (E < 2 eV),
comparable to the thermal agitation energy of the nuclei comprising
the medium, is treated by the monatomic gas model. This model is
thought to adequately describe the physical process since it
accounts for enefgy upscattering as well as downscattering.
Furthermore, any of the neutron wave effects, referred to in Section

2.1, that are not accounted for by this model are assumed to be
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insignificant for high mass ratio elements and are downscaled in the
light elements by the use of experimentally measured and reported
cross section data for water and polyethylene in the energy range
below 2 eV where these aforementioned effects are observed.

The prompt gamma ray emission and attenuation are treated in
detail. The questionable use of a prompt gamma production spectrum
resulting from thermal neutron captures is not a serious limitation,
since the epithermal to thermal ratio of the neutron fluxes in the
core sample is low. These prompt gamma ray yields are used from the
compilation of Lone et al. (1981).

The solid angle subtended by the detector at the collision
point is determined exclusively for each point of collision where
the prompt gamma ray of interest is forced to be emitted in the core
sample material. The paths in various materials, traversed in the
direction of flight of the emitted gamma ray and that have been
forced to intercept the detector, are computed in detail, and the
attenuation factors of the gamma ray are computed. The mass
attenuation coefficients as a function of the gamma ray energy for
these materials are obtained from the compilation of Storm and
Israel (1970). '

Experimentally determined values of the photopeak efficiency
of the Ge(Li) detector were taken from Knoll (1979) and are shown
graphically in Figure 5.9-1. It should be understood that it is
assumed that the incident gamma ray is averaged from emissions
(sources) uniformly distributed around the detector and not

exclusive at the centerline axis of the detector.
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Figure 5.9-1 Absolute photopeak efficiency values
for a Ge(Li) detector.

Variance reduction techniques are used to increase the
1ikelihood that the history will contribute favorably to the desired
result. The neutrons are forced to remain within the boundaries of
the monitoring system and are not allowed to escape. The neutrons
are forced to undergo a scattering interaction at each collision
point throughout the simulation. The expected value technique is
used exclusively in non-analog simulation to score the prompt gamma
rays of interest in the detector using experimentally measured and
reported values of detector efficiency to replace the Monte Carlo
simulation of the gamma ray detection and transport inside the
detector. Russian Roulette is used to decide the fate of the

neutron when its absolute weight reaches the cutoff weight limit
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without introducing biasing in the process.

Correlated sampling (Spanier and Gelbard, 1969) was used,
where the histories generated for a reference elemental
conéentration of the core sample are used concurrently to generate
the prompt gamma ray responses for all other elemental
concentrations using well-defined physical principles. This
effectively allows the generation of the calibration curve for gamma
ray counting rates at various elemental concentrations for any
element of interest in one execution of the Monte Carlo program with
the stipulation that this curve is normalized at the reference

elemental concentration.
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6. MCNP MONTE CARLO CODE

The Monte Carlo Neutron and Photon Transport Code (MNCP) is a
very general code developed at Los Alamos National Laboratory with
approximately 250 person-years of collaborated efforts. It is used
about 60 Cray hours per month by Los Alamos users. To say the
least, it is the state-of-the-art Monte Carlo code. '

In this chapter no attempts will be made to describe the code
or its applicability to the solution of an ever increasing number of
problems; rather, the voluminous MCNP manual (Briesmeister, 1986)
should be consulted whenever a question arises about the code. This
chapter is intended to investigate the capability of MNCP to handle
discrete neutron-induced photon lines and to 1list the input
parameters necessary to utilize this feature to obtain the photopeak
response as a function of elemental concentrations in the sample.
The photopeak responses are then compared with the responses

obtained from the code (MCNCP) developed in this work.
6.1 Neutron-Induced Photon Production Data

MCNP has an optional mode (MODE:N P), in which, upon a neutron
interaction in the medium, uncorrelated photons are sampled randomly
(up to 10 per collision) to be emitted at that site. In fact, they
are stored in data banks and are tracked throughout the medium after
the neutron tracking has been accomplished. The energy distribution
and the intensity of these emitted photons are sampled from

tabulated distributions (32 equally probable cosine bins)
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specifically processed from ENDF/B-V cross section data and
tailored for MCNP. These photons are tracked in the medium, and the
Detailed Physics or the optional Simple Physics treatment may be
specified for the photons to undergo the simulated -processes of
Section 2.2.3. It is obvious that a photon tally accumulated at any
position consists of direct contributions due to the photons
arriving uncollided from the source, in addition to an associated
spectrum due to scattering processes in between the source and the
point under consideration. This feature is tailored to furnish
dosimetry calculations when the full energy spectrum of photons is
desired.

In this work, as referred to in Section 2.2.4, the net area
under the photopeak (response) of interest is mainly due to the
unscattered full energy contributions. The expected detector
background in an experimental setup consists of contributions from
scatterings in the vicinity of the detector as well as within the
detector. Therefore, the background in a real situation is expected
to be slightly higher. Thus, detailed tracking of the photons
through the processes of Section 2.2.3 is a waste of computer time.
Furthermore, the distribution sampled to generate the photons,
although predominantly due to neutron captures, also is composed of
photon production due to inelastic scattering and other
contributions that might be significant.

MCNP version 3B has a unique option (PIKMT card) that enables
the user to turn on selected "monoenergetic" photons resulting from

neutron capture reactions in specific elements. Currently, only



118
partial data are available for some elements, and none is available
for some. Nevertheless, this option was utilized to compare the
results obtained from the computer code MCNCP (Monte Carlo Neutron
Capture Photon Production Code) developed by the author with those
obtained from MCNP.

6.2 Discrete Photon Lines

Whenever one is interested in a small subset of the entire
photon energy spectrum (such as the discrete line spectrum resulting
from neutron captures in an element of interest in this work), MCNP
version 3B provides a biasing capability to bias the spectrum of
neutron-induced (in the coupled neutron-photon mode) photons to
produce only those that are of interest (PIKMT card). These photons
could be produced at neutron collision sites from isotopes other
than the isotope with which the neutron collided. This feature of
biasing the photon productions is the first production version of
collision biasing in MCNP.

The data for the discrete photon lines are generally from the
ENDF/B-V evaluations and are available from Los Alamos National
Laboratory, listed in file SIGRMCCS.

For the elements listed in Table 4.4-4 whose capture gamma
rays are of interest, there exist nb specified "signature photons"
for Mg nor for Mn. Data for Ti, Cr, and Fe have no gamma ray lines
due to neutron capture. Table 6.2-1 shows some of the tabulated

data for C1.
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Element Capture y-ray Identifier
Energy (MeV) mt number
C1 5.717 102010
6.108 102007
6.620 102005
7.413 102003

Table 6.2-1 Discrete photon lines from neutron
captures in C1 (SIGRMCCS listings)

6.3 Tallying Discrete Photon Lines

Tallying the gamma rays arriving at the location of the
circular cylindrical detector was accomplished by specifying a
DXTRAN sphere (a variance reduction technique in MCNP). The prompt
gamma rays have only a small probability of being emitted in a
direction so as to intersect the detector. To ameliorate this
deficiency the DXTRAN concept was used to "force" the capture gamma
rays toward the region occupied by the detector. The DXTRAN inner
sphere has to enclose the entire detector volume. This technique
deterministically forces the gamma rays to be emitted in the solid
angle subtended by the DXTRAN outer sphere at the site of collision
and deterministically transports the y-rays, without collisions, to
the surface of the DXTRAN sphere. The energy spectrum of a discrete
gamma when emitted at the sample is not a discrete spectrhm oncé
inside the DXTRAN sphere. Rather it consists of discrete lines with
a continuum background, as explained next. After forcing the
emission and transmission of the "pseudo y-rays" into the DXTRAN

sphere, the physical gamma ray is treated and tracked in a normal
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fashion and, if it hapﬁens that the tracked gamma ray reaches the
DXTRAN sphere, then it is killed to balance the weight of the gamma
rays that are forced toward the sphere. Once the "pseudo y-ray" is
at the DXTRAN sphere, the DXTRAN game of forcing the direction and
the transport towards a desired region is stopped because the gamma
ray is already in the desired region and because it is impossible to
define the aforementioned solid angle.

The "pseudo y-ray" at the surface of the sphere is treated as
a "real y-ray" tracked and transported in a random walk process.
Therefore, it is expected that a monoenergetic gamma ray at the
surface of the DXTRAN sphere will result in a spectrum due to gamma
ray interaction mechanisms with the materials within the sphere.
This energy spectrum is shown, for illustrative purposes, in Figures
6.3-1A and 6.3-1B. Inspection of the two figures clearly shows
that the relative magnitudes of the peaks in the lowest chlorine
concentration spectrum differ appreciably from the corresponding
relative magnitudes among the peaks in the highest chlorine
concentration spectrum. The deviation is mainly due to the fact
that at high chlorine concentrations, the spatial and energy
distribution of the neutron flux within the core sample are
significantly different. The epithermal to thermal neutron flux
ratios are different, resulting in the aforementioned yield
difference (see Section 2.2.1) of the capture gamma ray emission.
Furthermore, the magnitude of the corresponding peaks in both
figures are not a factor of nine different in spite of the fact that

the highest to lowest chlorine concentrations is a factor of nine.
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This non-linearity is further investigated in Chapter 7. The net
counts under a desired peak is therefore deduced by subtracting out
the background continuum. It should be mentioned that some of the
discrete (capture) gamma ray data are "almost discrete" because the
emitted gamma ray energies are given to be within E £ §, where § is
less than 1% of the energy E. This should be kept in mind when
deciding on tally energy bins. The relative strength (branching
ratio) of individual discrete gamma rays should be used as a tally
muitiplier to determine the number of photons produced with that
energy.

The simulation of a real physical detector (not a point
detector) was accomplished by tallying the gamma ray current at the
top, side, and bottom surfaces of a cylindrical geometry (detector)
in order to determine the gamma ray current incident into the
detector volume. The tally segment card and the cosine card were
used to tally the gamma rays in the "positive" direction entering
the bottom of the detector and in the "negative" direction entering
the top of the detector. The tally energy card was used to single
out the response of an energy bin around the photopeak energy. The
detector full energy (photopeak) responses were estimated knowing
the efficiency of the detector as a function of incident gamma ray
energy (Figure 5.9-1) and the branching ratio of the discrete energy
capture gamma ray. These branching ratios were not used in the
PIKMT card; rather, the discrete gamma rays were sampled with equal
probability to improve statistics. A listing of a sample input

file for MCNP is given in Appendix I.
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6.4 Correlated Sampling in MCNP

" Of interest in this work is the variation of the photopeak
responses due to variations in the elemental concentrations in the
sample. The inherent statistical fluctuations of the Monte Carlo
method makes it impossible to assess that a small perturbation in
the elemental concentration of the sample is responsible for the
observed variations in the photopeak responses unless appropriate
means are taken for controlling the sequence of the random numbers,
in both the perturbed and the unperturbed problem. If both problems
were started with the same initial pseudorandom number (seed), and
the same sequence of random numbers were used for each history, then
it could be said that in subsequent histories only the perturbation
in the elemental concentrations causes the sequence to diverge.

MCNP always uses the same pseudorandom number in the first history
of a problem (unless the user specifies otherwise via the debug
information card DBCN). Also the increment of the random number in
between histories is internally controlled. At the beginning of a
new history the random number sequence is increased by 4297 random
numbers from the beginning of the previous history regardless of how
many random numbers were used in the previous history. This
quantity was deemed not enough for the problem at hand (on the
average, it takes about 7300 random numbers to simulate one neutron
history). Therefore, the increment value should be increased to be
at least 9000, by altering the source code in MCNP (Entry ADVIJK in

subroutine RAND). The random number generator RAND seems to have a
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constraint such that a formula that is not valid if the values of
the variables within the formula exceed pre-specified values (the

increment 4297 does not violate this condition).
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7. RESULTS, COMPARISONS, AND DISCUSSIONS

The developed computer program MCNCP models the proposed
monitoring system by the Monte Carlo procedures of Chapter 5.

To predict the detector photopeak responses as a function of
elemental concentrations, an "average" core sample composition (see
Table 4.4-3) was chosen as the reference (base) elemental
concentrations. The mass of each element of interest (Mg, C1, Ti,
Cr, Mn, or Fe) was changed sequentially to cover an arbitrary range
of interest, namely, 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, and 1.8
times the mass of that element in the reference elemental
concentrations while the masses of the remaining constituents of the
sample were kept invariant, although the density and the weight
percent were adjusted accordingly (constant volume).

The relative responses, normalized to a value of unity at the
reference elemental concentrations, of the changed element were
calculated according to the correlated sampling procedure of Section
5.8. The outputs are given in tabular forms in Appendix H and afe
presented graphically in Figures 7-1 through 7-6.

Due to the lack of funds to construct an experimental setup to
test and validate the predicted photopeak responses from MCNCP,
testing the code was facilitated by comparing its predicted results
with results obtained from the well-established MCNP code. As
mentioned in Section 6.2, MCNP does not have a full set of data for
discrete capture gamma rays for all the elements of interest in this

work. Therefore, the comparison between the results obtained from
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Figure 7-1 The relative variation of the photopeak
response as a function of elemental concentrations of
magnesium in the "seafloor core sample"
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Figure 7-2 The relative variation of the photopeak
response as a function of elemental concentrations of
chlorine in the "seafloor core sample"
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Figure 7-5 The relative variation of the photopeak
response as a function of elemental concentrations of

manganese in the "seafloor core sample"
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Figure 7-6 The relative variation of the photopeak
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131



132
MCNCP and the results from MCNP was based on comparing four
discrete capture gamma lines available from neutron captures in C1,
namely 5.7153, 6.1109, 6.6195, and 7.4138 MeV. The chlorine mass
was changed sequentially to cover the same range of interest in both
MCNP and MCNCP. The masses of the elements exclusive of chlorine
were kept invariant but the weight percentages were adjusted
appropriately. Tables 7-1 and 7-2 summarize the pertinent data
obtained from MCNP. To simulate the same range of variation in the
C1 concentration, nine different computer runs are necessary with
MCNP with appropriate values of the weight percentage of the various
elements in the core sample, in contrast to a single correlated run

with MCNCP.

Element Capture y-ray Absolute response
Energy (Mev) per source neutron
(o 5.717 3.1199x10-11
6.11 4.9960x10-10
6.619 1.2405x10-10
7.414 5.8106x10-11

Basgd on the branching ratios from SIGRMCCS and the
estimated detector photopeak efficiency at the
reference elemental concentrations.

Table 7-1 The absolute photopeak responses for chlorine
at the reference elemental concentrations, obtained from
MCNP.
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C1 Neutron capture
Elemental v-ray photopeak response
concentration __ _
number
5.715 6.11 6.619 7.414
MeV MeV MeV MeV
1 0.3362 0.2988 | 0.2603 0.2851
2 0.5125% 0.5290 0.5116 0.5272
3 0.7064 0.7323 0.6918 0.6552
4 0.8972 0.8461 0.7126 0.7769
5 1.0 1.0 1.0 1.0
6 1.4788 1.2808 1.2759 1.3018
7 0.9486 1.0005 1.1180 1.0572
8 1.4146 1.4163 1.2776 1.2044
9 1.3529 1.1413 1.1548 1.1492

The responses are normalized to the reference elemental
concentrations (5)

Table 7-2 The relative photopeak responses for chlorine
at different concentrations in the core sample (MCNP).

‘Reference to Figures 7-1 through 7-6 shows, in general, that
the photopeak responses increase with increasing concentrations of
the element of interest. The non-linear relationship is pronounced
in trace elements with significantly large neutron absorption cross
sections (e.g., Cl; o, = 33.5 b, the resonance integral Iy = 13.7
b), especially when present in larger concentrations. The general
observable trend is that When the photopeak response variation with
concentration is almost linear (Cr_and Mn), the variation of the
response of the remaining elements of interest in the sample is
almost nil or just slightly decreasing. On the other hand, when
the photopeak response of the varied element increases but is
charaterized by a negative curvature with respect to the x-axis (Mg

and Fe), the decrease in the response of the remaining elements is
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more enhanced. The variations of C1 and Ti result in an increasing
photopeak response with a positive curvature with respect to the
x-axis and the response for the remaining elements increases
noticeably. The photopeak responses from the remaining elements of
interest in the sample were expected to decrease slightly due to the
competition for neutron absorption in favor of the element that has
been increased in mass. To further investigate this behavior and to
carry out the intended comparison with results obtained from MCNP,
the monitoring system was simulated using MCNP (the nuclear cross
section data used in the developed MCNCP code were extracted from
the same data used in MCNP). The results, given in Table 7-2 and
represented graphically in Figure 7-7, when compared with Figure 7-2
show significant deviations at the higher concentrations of
chlorine. Nevertheless, the lower concentrations show close
agreement (same trend of relationship between the relative photopeak
responses and the elemental concentrations) between the results from
MCNCP and MCNP, as shown in Figure 7-8.

MCNCP is "insensitive" to the neutron absorptions with
energies above thermal energies and treats such neutron absorptions
(as far as photon production is concerned) as thermal absorptions.
Hence the resulting capture gamma ray spectrum and intensities
presumably have the same spectrum and yields as for thermal
absorption. This was explained in Section 2.2.1, and the last
paragraph cautioned that serious errors might result from this

assumption.
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Figure 7-7 The relative variation of the photopeak
response as a function of elemental concentrations of
chlorine in the "seafloor core sample" (MCNP)
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Figure 7-8 The relative variation of the photopeak
response at 5.715 MeV as a function of elemental
concentrations of chlorine in the "seafloor core sample"
with the Tower concentrations having been fit by a second
order curve.
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It was decided to investigate the neutron absorptions in the

sample having energies above thermal by assessing the magnitude of

the epithermal neutron flux relative to the thermal neutron flux

within the core sample.
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Figure 7-9 The average neutron flux within the core sample,

obtained from MCNP.

Results from MCNP for the thermal neutron flux (< 2 eV) and

the epithermal neutron flux (> 2 eV), averaged over sections of the

core sample, are shown graphically in Figure 7-9.

The neutron flux
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at the lowest (0.2) and highest (1.8) relative chlorine
concentrations in the core sample imply that the ratio of the
thermal to the epithermal neutron flux is in excess of 1.5 for the
lowest chlorine concentrations. At the highest concentration of
chlorine, the epithermal neutron flux is roughly equal in magnitude
to that of the thermal neutron flux. In fact, this behavior was
observed at as low a relative chlorine concentration as 1.2, where
the functional relationship between the photopeak response and the
elemental concentration deteriorated as shown in Figure 7-7.
Therefore, the deterioration in the relationship between the
photopeak response and the elemental concentration can be explained
as follows. The presence of the core sample perturbs the spatial
and energy distribution of the neutrons. The neutron flux within
the core sample is in turn the result of a balance between
thermalizing effects and absorption by the various elements present
(especially by those elements with high capture cross sections).
Since the capture gamma ray production and its relative intensities
are functions of the captured neutron energy, the harder epithermal
neutron spectrum enhances the epithermal resonance absorptions,
which have different relative intensities of capture gamma rays than
those following absorptions of thermal neutrons. In fact this
behavior is observable in the prompt gamma ray spectra of Figures
6.3-1A and 6.3-1B.

Allowances for these effects should be made in the design of
the monitoring system and in the method of data utilization.

The variation of elemental concentrations, in principle, in
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the sample can be deduced from the model given the photopeak
response.

Finally, because of the exploratory nature of this work, low
levels of precision were tolerated in the Monte Carlo runs. The
results were deemed sufficiently accurate to indicate whether a
practical experimental model is feasible and whether any
improvements in the calculational efficiency or procedures should be

expended.
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8. SUMMARY AND RECOMMENDATIONS FOR FOLLOWUP STUDIES

A computer code was developed specifically to simulate the
proposed monitoring system based on the neutron capture prompt gamma
ray analysis (NCPGA) technique to predict the variations of the
detector responses as a function of elemental concentrations of some
elements of interest in the seafloor core sample by the Monte Carlo
method. The code is refered to as MCNCP (Monte Carlo Neutron
Capture Photon Production).

The neutron emission from the Cf-252 neutron source and its
transport through the various media were treated in a detailed
continuous energy variable. The emission and transmission (toward
the detector) of capture gamma rays was treated deterministically.
Various built-in variance reduction techniques in MCNCP were
employed to make the computational task more economical and
efficient.

It has been shown that the Monte Carlo method is conceptually
simple even when irregular complicated boundaries and geometriesv
exist. However, the logical decisions to cover every conceivable
event make the programming difficult to construct and debug.

The model and the code have been developed to have the
capability of handling arbitrary dimensions and relative positions
between the sample tube, the detector tube, and the neutron source
tube; thus lending MCNCP to suit the exploratory nature for
optimization of system design. The optimization, in principle,

could be investigated by increasing a parameter (e.g., the
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hydrogeneous moderator between the neutron source and the sample)
that results in an increase in the thermal neutron flux, especially
in the vicinity of the neutron source. This increase is expected to
enhance capture gamma ray production, but the same change will
decrease the chance that the thermalized neutrons will reach the
sample. Instead they diffuse thermally and wander in the
moderator. Such counteracting processes, under the right conditions
(e.g., proper geometry), may cancel in full or partially to render
the signal (the photopeak response) nearly independent of the other
parameters exclusive of the elemental concentrations of the sample.
Therefore, a good system design and optimization would make the
expression in the parentheses in Equation-(5.5-10) a constant
independent of the parameters that are difficult to control and of
the composition of the other elements within the sample, if
possible. This constant is then determined during calibration. To
determine the relation between the counts under the photopeak and
the elemental concentration, a sample for which the elemental
concentrations are known from some other type of assay (e.g.,
chemical analysis) and which is fairly representitive of the
expected samples that might be encountered in the field has to be
used for calibration. This calibration may be invalidated if the
system, when in use, encounters a sample having different neutron
and gamma ray transport characteristics than that used in the
calibration.

MCNCP is useful in reducing the expended time and costs by

providing interpolation of results and by predicting conditions
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which may be practically difficult to simulate experimentally. For
example, it might be advantageous to use multiple distributed
neutron sources around the sample. The code has been exclusively
tested as individual subroutines and as an integrated unit. But it
is conceivable that during the process of parameter and relative
positioning changes, a difficulty might arise (built in error or
warning messages help locate the source of the difficulty). It will
be appreciated to bring any encountered difficulties or suggestions
to the attention of Dr. S. E. Binney (Dept. of Nuclear Engineering,
Oregon State University).

No "serious" attempts were made to make the code run fast and
efficient, although the author feels that the following improvements
may prove worthwhile to investigate.

The detailed continuous energy treatment of the neutron energy
and the cross section data is time and storage consuming. If it can
be shown that the desired results (responses) are not significantly
affected when coarse group averaged data are employed, appreciable
saving in computer space and time might be achieved. Further
savings might be investigated by applying the probability table
method to handle the voluminous cross section data (Cullen, 1974;
Levitt, 1972).

Calculating the probability of capture gamma ray emission into
the solid angle subtended by the detector at the point of emission
at each interaction site within the core sample and the calculations
of individual path lengths traversed by the emitted gamma rays in

various materials are very time consuming. If the fractional solid
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angle calculations can be simplified, e.g., by using the idea of a
DXTRAN sphere or the effective target volume "geometrical
efficiency"” (Van Otten et al., 1988) and if the path of the gamma
rays travelling from a point within the sample to the detector can
be computed from a distance vector at the center of the "volumetric
effective solid angle" (might be feasible for small enough
detectors), then a tremendous time saving can be achieved. The same
approach, which might be an effective variance reduction technique,
could be used to deterministically scatter neutrons, transporting
them within the monitoring system toward the sample without a great
sacrifice to the efficiency of the calculations.

It should not be difficult to incorporate a subroutine within
MCNCP to calculate and provide information about the position
(depth) of the neutron capture and gamma ray emission. This is
useful to calculate the effective depth of neutron penetration
within the core sample and the subsequent attenuation of emitted
capture gamma rays within the sample (the attenuation of high energy
gamma rays might be insignificant). In fact this depth already has
been calcuiated in subroutine DSAMPTX by calculating the path
length traversed between the point of emission and the outer surface

of the sample tube for individual gamma rays.
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APPENDIX A
Importance Sampling as a Variance Reduction Method

In many transport phenomena, it is possible to render that
portions of a pdf in the phase space might be more likely to
contribute to the desired result than the rest of the distribution.
These regions are said to therefore be more important and the pdf
could be mathematically altered to emphasize these regions, and the
variance of the result may be correspondingly reduced.

Importance sampling can be illustrated by considering a
function f(x) defined on the interval [a,b]. The variation of x on
[a,b] is governed by the pdf p(x). The expected value of the

function f(x) in the interval is:

b
<> = [ £(x) p(x) ax
a
Suppose that for convenience or to reduce the error in x, one
wishes to sample x from an altered pdf constructed as p*(x). It is
required that the expected value is unaltered through the use of an

appropriate weight function:

b
<> = | £(x) p(x) w(x) dx

The weight function w(x) clearly should have the form:

p(x)
P’ (%)

w(x) =

The variances as obtained from both distributions are:
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b
o2 = [ [£(x)-7]° p(x) dx

a

= j' f2(x) p(x) dx - 7

a

and
w2 b a2
§ = | £(x) p(x) dx - 72
where
f(x) = £(x) w(x)
b
§ = [ 1£(x) w(x)1? pr(x) dx - 72
b
- [z P px) ax - 7
- | g,((’;)) £(x) p(x) dx - 7

Both 02 and ¥2 are positive and for the variance to be reduced
in the new altered pdf sampling, the weight p(x)/p*(x) must be <1
over the portion of the interval that is deemed important.

The above method can be implemented in a Monte Carlo
simulation, given a pdf p{(x) on xe[a,b]. An importance function
I(x), which is designed to emphasize the important region of [a,p],

is defined, and the new altered pdf p*(x) is constructed such that:

p*(x) = C p(x) I(x)

where C is a normalization constant such that

? p'(x) dx = 1

a

To prevent biasing, it is required that the total number of
sampled variables from each interval of the two distributions is the

same, which defines the weight function:
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w(x) p'(x) dx = p(x) dx

The random variable x is sampled from the modified
distribution p*(x) and the history is weighted by w(x).

A discrete function may bé defined to define a truncated path
Tength. The pdf that governs the path length between collisions is
given by:

p(x) dx = p e dx ,x€(0,®) (A-1)

When the region of interest is within a small distance, say §,
of the cell boundary, a discrete importace function I(x) can be
defined to emphasize the region inside the cell and to undermind the
regions beyond the distance § (since any particle that exits the

cell is considered lost) such that:

I(x)

I
o

1X€(0,8)

I(x)

i
o

iX€ (8, w)
The modified pdf is
p(x) dx = C p(x) I(x) dx

The normalization constant

1

2
> I(x) [ p(x) ax
n= Axn

—

1
3 ©

() w e™ ax + (0)] p e™ax
0 8
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Therefore,

~px
pr(x) ax = L= _CX

T 1%€(0,8) (A-2)

and the weight is

w(x) = B

This result is equivalent to the "common sense" of forcing an

interaction to take place within [0,8].

It is obvious that, since p(x)/p*(x) < 1, that this procedure
would result in reducing the variance.
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APPENDIX B
Sampling the Type of Interaction

This scheme is based on sampling from a discrete cummulative
distribution function (cdf) that is constructed by summing up the
macroscopic j-th type cross section for the i-th element, Ei,j,
over all constituents of the medium where the transport phenomenon
is taking place. Thus, the total macroscopic cross section of the
j-th type reaction for the medium-is

M
Zj(E) = Z Zx,j(E)

—

where M is the total number of elements in the medium.

The total macroscopic cross section 3 for the medium is
obtained by summing over all possible interaction types (a total of
N types), i.e.,

N
Zt(E) = Z Zj(E)

—
—

Therefore, the probability that the j-th type interaction takes
place is Pj = zj/zt and the type of interaction (m+l) is sampled by

determining the value of m that satisfies:

m . m+l
2 % <E < 2 %
=0 }=0

where 3, = 0 by definition and £ is a random number uniformly

distributed on (0,1).
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An absorption of a neutron by any element removes that neutron
from the system and no further tracking is possible. If this
absorption is by an element whose neutron capture gamma ray response
is not of interest, the neutron history is terminated before a
favorable contribution to the desired response. This in fact
increases the variance. Thus, it can be seen that, provided the
absorption type reaction is one of the reactions under
consideration, when a neutron absorption reaction is sampled, the

history is terminated inefficiently.
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APPENDIX C
The Proton Gas Model

The probability that a neutron with the laboratory energy E
will collide with a monatomic hydrogen gas in thermal equilibrium at
the temperature T and emerge with an energy between E' and E'+ dE’

is given by the Wigner-Wilkins proton gas model:

erfq%% :E<E

P(E-E’) = f(E) {: (C-1)

(E-E))
kT APEL B
e erf T :E>E

where the normalization factor f(E) is independent of E.

The upscattering in neutron energy in the thermal region
neutron scattering reactions is illustrated in Figure C-1 that
shows a graph of Equation (C-1) at three different energies of the
neutron prior to the scattering. Figure C-2 shows the Monte Carlo
sampled monatomic gas model of Section 5.4.2.1 in comparison to the
calculated Wigner-Wilkins model.

A neutron of 80 kT (kT = 0.0253 eV at room temperature) energy
scatters almost isotropically. Therefore, it is safe to assume that
the gas model should be used only when the neutron energy (prior to
scattering) is below 2 eV (80 kT).

Except for the inherent statistical fluctuations in the Monte

Carlo results, the agreement in Figure C-2 is evident.
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Figure C-1 The scattering probability distribution
given by the proton gas model.
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Figure C-2 The monatomic gas model, sampled by the
Monte Carlo method (histogram), at three different
neutron temperatures as compared to Equation (C-1)
(solid curve).
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APPENDIX D
Angular Distribution of.Scattered Neutrons

ENDF/B-V data are given for a series of incident neutron
energies in order of increasing energy. The angular distributions

are expressed as normalized probability distributions, i.e.,

1
[ p(w,E) dp =1
-1

where p(u,E) is the probability that a neutron of incident energy E
will be scattered into the interval du about an angle whose cosine
is . Since the angular distribution of scattered neutrons is
generally assumed to have azimuthal symmetry, the polar angular

distributions may be represented as Legendre polynomial series:

2n_ Ao (Q,E) _ % 2n+1
2

P(w,E) = 535y ~ap a,(E) p_(n) (D-1)

n=0

where:

[} is the cosine of the scattering angle in either the
laboratory or the center-of-mass system, depending on the
data furnished,

E is the energy of the incident neutron in the laboratory
system,

og(E) is the scattering cross section (e.g., elastic) at energy

n is the order of the Legendre polynomial,

do(Q,E)/dQ is the differential scattering cross section in units of
barns per steradian, and
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ap is the n-th Legendre polynomial coefficient of expansion;
it is understood that a5 = 1.

The given coefficients ap(E) are tabulated as a function of
discrete incident neutron energies. The coefficients at
intermediate neutron energies that are not tabulated may be obtained
by Tinear interpolation (Kinsey, 1979).

To sample the angular distribution in Monte Carlo simulation,
the Legendre expansion coefficients are interpolated. at the incident
neutron energy of interest, say E. Then the cosine of the

scattering angle y may be sampled directly from:

n
| p(W,E) dw =& ,EE(0,1)
-1

or

NL W
e= 2 T am e aw

n=

o

K NL H
= 3 a(E) [ p,(w) aw + > 2ntl a.(B) | B, (W) a4
-1 n= - )
1 N on+1 Poa(K)=p__ (W)
= S(utl) + 2 =5=a (E) s

n+l

NL a (E
= F(w+1) + 3 JLI

n+l

(W=-p,_,(W)-p,,, (-1)+Py,(-1)]

n+l
The last two terms in the RHS brackets vanish since
p (-1) = (-1)"

hence,
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M a, (E)
E=35 (p+l) + 3 5= [p_ (1) - P _(4)] (D-2)
2 n+l n+l n-1

A numerical root-locating scheme is employed to solve for p (e.9.,

the bisection method).
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APPENDIX E

Some Vector Properties Relevant to Tracking

Direction cosines

P(X,y"%)

Figure E-1 Direction cosines in cartesian coordinates.

In reference to the cartesian coordinates shown in Figure E-1,

the distance § from point (xg5,yq,2g) to point (x’,y’,z’) is:

5 = N(x-x)7 + (y-y)l + (z-zp)° (E-1)

and the x, y, and z projections of the vector P are given as:

X = X, = & coso
Y -y, = & cosp
2" - 25 = § cosb (E-2)

The following variables can be defined as direction cosines:
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Q, = coso
Qy = cosf
Q, = cosb (E-3)

Therefore, one can write the expressions in Equation (E-2) as:

X=X, Y-y, z’-z,
5 =% 5 =% 4 =% (E=4)
or
X' = X + £, 8
y = Y, + Qy )
2z =2z, +Q, 8 (E-5)

2 2 2

The normalization can be verified by substituting the expressions in
Equation (E-4) for Q,, Qy, and @, and using the distance of Equation
(E-1).

The Equations (E-4) allow one to determine the direction
cosines of a line between any two points in a 3-D space.
Furthermore, given an initial point in the 3-D space, a particle
direction, and a particle path length, one can determine the final

particle position via the parametric Equations (E-5).

Vector Representation and Parametric Equations

A vector P spanning the distance from point (x,,¥q,2q) to

point (X1,¥1,21) can be represented as:
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where a, b, and ¢ are called the direction numbers and i, j, and k
are unit vectors in the x, y, and z direction, respectively. By
substituting for the direction numbers, the vector may be written in

particular as:

P = (%x-%,) i+ (y]-yu) 3 + (2,-2;) ]'i

Since parallel vectors have proportional direction numbers,

therefore, a vector Q in the same direction as P may be written as:

o=01i+0 3+0k

where Qy,Qy, and 0, are the direction cosines. Thus, any vector
between two points may be described by the direction cosines of that
path, and the parametric representation of lines between points

follows, namely

X =%+ Q8

<
]

Y, + Qy )

z2=2,+0,8

The parameter § is recognized as the distance between points

(Xg>Y¥0>2p) and (Xx,y,z).

Some Properties of Vectors and Direction Cosines

The cosine of the angle ¥ between the vectors Py= 0y 3+ Qy1

J+ 0y k and Po= Qy2 i+ Qy2 3 + {172 k is obtained by the dot
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product Py-Pp, i.e., cos¥ = Qy10y5 + Qy10yp + 0710;2. It can be
shown that two parallel vectors have cos¥ =1 or ¥ = 0, and two

perpendicular vectors have cos¥ = 0.

Relationship between 8., ¢, and the direction cosines

The polar angle 6 and the azimuthal angle ¢ are used to

compute the cartesian coordinates associated with the vector P as

X =0+ § sind cos¢o
y =0+ 8§ siné sin¢

2 =0+ § cosé

which are recognized as the parametric representations of the line

for point (0,0,0) to point (x,y,z). Therefore,

sing cos¢

P P
Il Il

siné sing

0 = cosé
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APPENDIX F

General Algorithm to Calculate the Solid Angle
(Adopted from Mickael, 1988)

If the axes are translated (and rotated in the case that the
incident particle direction at the point of interaction is not
collinear with the new translated axis, although this is irrelevant
in the case of isotropic capture gamma ray emission at the point of
interaction), the new cartesian coordinate system should have the

origin (0,0,0) at the interaction point as shown in Figure F-1.

Figure F-1 Limiting polar and azimuthal angles for
the solid angle subtended by the detector at the origin.
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Let (Xg,Yo>Zo) be the cartesian coordinates of the interaction

point relative to the master coordinate system, (fyq,fyq,0z0) be
the direction cosines of the incident particle (gamma ray) direction
(for isotropic emission at this point, these are arbitrarily taken
to be (0,0,1), (xg,¥d-Z4) be the cartesian coordinates of the
detector geometrical center, R and H be the radius and the height of
the detector, respectively, and (Qyt,08yt,0;¢) be the direction
cosines of the major axis of the detector (in the proposed
monitoring system in this work, this axis is collinear with the
master axis on the z-axis and Oyt=0, Qyt=0, Q,¢=1). It has been
recognized that the calculations of the limiting angles can be
simplified when measured from the direction that is parallel to the
detector z-axis, for then the projection of the intersection of the
polar angle cone with the circular cylinder in the perpendicular
plane to the direction is a circle rather than an ellipse. If the
axes are translated such that the interaction point coordinates are
at the new coordinate origin, then the detector center coordinates

are



Qz = ta
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and the transferred axis such that the detector axis lies on the z-

axis results in the coordinates:

, -2 -172
Xy = 0, (0%, + QytYd) (1-Q§t) 2 - (1-Q§t) 24

Yy = (¥, - Q) (1-05) 7

e = WXy + Y, + Q7

Notice that if Q,4=1, then X'g, Y'q, and Z'y are identical to Xg,

Y4, and Z4. The position of the interaction point with respect to

the detector is determined by first calculating:

2 _ w2 2
@ = x2 + Y/

The following cases are recognized:
Case I: d2 » RZ

The cosines of the Timiting polar angles are given by:

v, = Zg 22.>0
min 3 ) 1&g
J(a+R)? + 22
v, = %y :2.<0
min 1 4p

J(@-R)? + 22
and
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Z
= T .
vmax - _ 2 2 'ZT>0
(d-R)* + 22
ZT
vmax = ;ZT<0 .

J(d+R)2 + 22

Cosines vy and vy are defined as

Z;
vV, & ———nu
! Iz 2
:I:'C-l-ZT

2

v, = B

where

rl = @ - R’

min

where
A 4 Z(-vY) + ri?
w = cos ;V,SVSV
2dZT1)AJl—v2 ! max
Aw = sin’! [g] HRSASTA
A o Zi(1-vY) + riy?
w = cos [V SVSY
2dz,v{1-v? minTmTE

Case II: d2 < RZ

The cosines of the limiting polar angles are given by

ZB
vmin = 2 2 ;ZB>O
(84+R)° + Z¢

Vpin = =1 i21<0



and
Vo, = 1 $25>0
ZT
Vioay = > > 12.<0
J(@+R)? + 22
If ve is defined as
VA
v, = 2 ;23>0
J(d-R%) + 22
VA
v, = ! 12:<0

J(A-R?) + 22
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when v is sampled from v € (Vpin,Ymax), the limiting azimuthal

angles, shown in

min

max

where

Aw

Aw

Aw

Figure F-2, are given by

and

and

52 2 252 )
27 (1-v°) + ryv

2dz,v4{1-v?

. A

52 2 N
Z; (1-v%) + ri?

2dZ,v{1-v?

" S

Z,>0

Z,<0

;vc<v<vmax;ZT<0

;vmm<v<vc;ZB>O

The fractional solid angle subtended by the detector at the

interaction point (the probability that the emission is to intersect

the finite detec

v

Wy =

v

tor) is calculated as:

max “max
[ ] A(v,e) dv do

min “min
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where A(v,w) is a transformed pdf. In the case of isotropic

emission:
_ 1
A(v,w) dv dw = in dv duw

where v and w are the cosines of the limiting polar and azimuthal

angles to the detector.

|

- i

Figure F-2 The limiting azimuthal angles when the
emission point is within the radius of the detector.

The probability that the emission is to intersect the

cylindrical detector is calculated as follows: The limiting polar
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and azimuthal angles are independent of each other for a subset of v
between the Timiting polar angles. The integral in the expression
for Wq is evaluated analytically whenever v and w are independent.
For the integrals when the limiting azimuthal angles are dependent
on v, the angle can be evaluated based on an average value of v
between its limits with the integral of w being carried out
analytically.
When d2 » R?

w=wy v=v w=0) v=v
Woa = A(V,w max 2 + A(v,w max !
Q (v, @) Iw:“’mln I":vmln (v, @) l“’zwmin V=
=W v
A(v’w)l“”"max V=Vmax

=¥ -
w-wm in v-vl

where the superscript (.) indicates that the azimuthal angle is

evaluated at an average value of the polar angle as

(1)2 + vmin)
2

Simitarly, for the superscript (*) the azimuthal angle is evaluated

at
(vmax + 'U])
2
When d2 < R?
For Z1 < 0:
W, = A(v,w) Iw=“’max v=ve + A(v,) I“’“"x?lax V=Vmax
Q ! Wnin ' Y“Umin ! w=w$m V=ve
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and for Zg > 0:

v=v V=l)max

l.u):(;)a W=Ww,
WQ = A(v,w) ,w_ max c + A(v,w) , max v,

(=] - -
“Wmin  Y“Ymin W=Wmin

The superscript (@) indicates that the azimuthal angle is evaluated

at an average value of the polar angle as

(vc + vmu)
2

and similarly for the superscript (®) at

(vc + vmin)
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APPENDIX G

Statistical Estimates

The most probable estimate of the mean g of a population (of

limited number N) is the average x of the observations:

N
1% X, (G-1)

p g x =

2l

The best estimate of the variance in the mean °x2 is given by

the sample variance:

2 2. 1 3 2
oz s® = N=-1 1% (Xi - X) (G-2)

1R

When the values 2x; and 2x§ are accumulated, Equation (G-2)

may be written in the form:
2 1 X 2 - - 2
0f = §-1 E {x{ - 2xx; + (x)°)

L[Sx-2x %+ 5 (0
= JoT X - 2% X, + X
N-1 : i=1 i i=l ()

2[5 2o a2k + vy

= N1 5 Xi x (Nx) (x)
. _

= g1 | 2 - N(X)z:]

and

N
1 N 2 (gi xl)z
% = \m IR (6-3)

For the relative detector responses, it is necessary to
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determine the standard deviation of a ratio. Given that R=x/y and
a statistical ensemble of x and y values can be found using Equation
(6-1), and oy and Oy values from Equation (G-3), the theory of

propagation of errors yields:

= o257 + oG + 204 (5D (53 (G-4)

Q
g N
R

where

m
=
[

X - -
2 1 - -
O = 3R N 2 (x7X) (¥Y)

For a finite value of N,

2 R I v - xy 4 %y
o3 = N=T i gi (x;y, = ¥y = Xy, + X y):]
1 [ 3 N -
= §N=1 ley -y2x1 -XZy + Nx y]

and

N N ,
1 EPg ;;yi
Op = N\_Tﬁ—fy Z XY, - - (G=5)

If the definition of Equation (G-4) is applied to R = x/y:
2 = 2 LY - 542 1 2 (L -
o2 = °i(y2) ZOXY(R)(YZJ + 0§(R)[y2] (G-6)

If Equations (G-3) and (G-5) are substituted into the corresponding

values in Equation (G-6):
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2 2x,Zy Sy, 1
2 1 I: [ 2 2% )NZ,_ZR( Sxy | JN2+R2( s2 1 |2
RNy 2 HTw PN SN

and '
. , 12
(Sx )2) =x,Sy [ Sy} ]
2 i) 2| <2 ¥
SN [[ i Nl -ZR[ xiyi- N +R TN
z ¥,
i=]
12
1 N o ZY; N R lt (T PP LY @]
RN TN ORI Ty, )R | .3y
Sy i 1Yy
=11
or

N N
6 = 1 ,Jfo - 2RY Xy, + R®S Y, (G=7)

1l
—
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APPENDIX H

Printouts from MCNCP
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MONTE CARLO SIMULATION

CAPTURE GAMMA RAY ANALYZER OF A SEAFLOOR CORE SAMPLE
Proarammer: Abduliah M.S. Almsasoumi (Nov, 1989)

Monitoring System Dimensions (cm)i

Container tank radius = 50.00
Container tank heisht =100.00
x-coordinate of the centerline of sample tube = 0.00
v-coordinate of the centerline of sample tube = 17.55
Radius of the core sample = 375
Thickness of the casins around the sample = 0,50
Thickness of the sample tube material = 1,00
Thickness of the Cd annular shield = 0.3
Thickness of the polvethviene surroundins the Cd = 0,%
Lenath of the lower sample sleeve = §9.00
Lensth of the upper saarle sleeve = 10.00
x-coordinate of the centerline of source tube = 0.00
v-coordinate of the centerline of source tube = -3,00
Radius of the Cf~252 neutron source carsule = 0%
Lenath of the CF-252 neutron source capsule = 5.00
Inner radius of the source tube = 5.00
Thickness of the source tube construction material = 1,00
Lenath of the Pb shield around the source = 10.00
Lensth of the polvethylene shield above the Pb = 10,00
¥-coordinate of the centerline of detector tube = 0,00
v-coordinate of the centerline of detector tube = 3,00
Inner radius of the detector tube = 625
Inner lensth of the detector tube = 73.00
Thickness of the detector tube construction material = 1,00
Thickness of the Cd wafer inside detector tube = 0,30
Lenoth of the Pb cone inside detector tube = 5,00
Lenath of the detector Al casins = 13.50
Radius of the detector Al casine = 375
Heisht of the detector crystal = 35,00
Radius of the detector crystal = 2.9

Refer to Section 4.1 for detailed description of the monitoring system.



M.C. PREDICTED PHOTOPEAK RESPONSES OF CAPTURE GAMMA RAYS

Element

R

Ti

Cr

Mn

Fe

(1000 histories)

Enerav
{MeV)

0.5832
1.8089
2.8281
3.9167

3. 7153
6.1109
6,619
7.4138
7.7902

0.3417
1.3815
6.4184
6.7598

0.8331
7.933
8.8841

1.0578
7.2438

0.3522
6.0185
7.6311
7.4

@bsolute
Response

Std. dev.

{y-rav/source n)

8.6460-17
7.1830-17
8.3320-17
7.8730-17

4.0990-17
1,3730-16
4.6380-17
3.8090-17
3.0880-17

1.7290-16
1,2260-13
6.5010-17
4,2310-17

3.0240-17
1.9160-18
2.9820-18

1,760D-18
1.718D-18

2,0230-16
2,0230-16
9.0470-17
7.6240-17

3.3860-17
3.086D-17
3.6740-17
3. 55017

1.6660-17
3.9960-17
1.8870-17
1.5520-17
1. 259017

7.3530-17
4.874D-16
2,5780-17
1.6780-17

1,1990-17
-3,674D0~-39 *
-8.902D-39

~-3.100D-39
-2,9530-39

8,2330-17
2,0350~17
3.4830-17
2,9360-17

* The expression for the standard deviation, Equation (G-3),

contains a sum of the squares of the score per history (2x;);

subroutine STATS in MCNCP accumulates the summation with the

condition that when x; < 10']5, the quantity x1 is set to zero to

avoid an underflow error on the PC.

Apparently, this condition

reduces the sum Zx; enough to yield a very small negative value

when Equation (G-3) was used.
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NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Eleuyent ne.

Elenent Enersy

(NeV)

Mg 0.9852
1.8089
2.8281
3.9167

a 3. 7153
6.1109
6.6195
7.438
7.7902

Ti- 0.3417
1.3815
6.4184
6.7598

Cr 0.8351
7.9393
8.8841

M 7.0578
7.2438

Fe 0.3%22
6.0185
7.6311
7.6435

{ {Ms) has been chansed sequentially

Concentration #

t 2 3 4 5 6 7 8

0.208 0.412 0.612 0.808 1,000 1.189 1.374 1.356 1

0.207 0.411 0.610 0.807 1,000 1.190 1.377 1,561 1

0.207 0.410 0.610 0.806 1.000 1.191 1.378 1.563 1

0.207 0.410 0.610 0.806 1.000 1.191 1.379 1.564 |

1.020 1,015 1.010 1.005 1,000 0.995 0.990 0.986 0.981
1,026 1,019 1.013 1.006 1,000 0.994 0.987 0.981 0.975
1.020 1,015 1.010 1.005 1.000 0.995 0.9%0 0.985 0.981
1,020 1.015 1.010 1,005 1.000 0.995 0.9%0 0.985 0,981
1,019 1,015 1.010 1.005 1,000 0.995 0.990 0.986 0.981
1,026 1.020 1.013 1.006 1,000 0.994 0.987 0.981 0.975
1.023 1,017 1.012 1{.006 1.000 0.994 0.989 0.983 0.977
1,020 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.981
1,020 1,015 1,010 1.005 1.000 0.995 0.990 0.985 0.981
1,025 1,019 1.013 1,006 1,000 0.994 0,988 0.982 0.976
1,021 1.016 1.010 1.005 1.000 0.995 0.990 0.985 0.980
1,021 1.015 1.010 1,005 1.000 0.995 0.990 0.985 0.980
1,021 1.015 1.010 1.005 1.000 0.995 0.9%0 0.985 0,980
1,021 1,015 1.010 1.005 1.000 0,995 0.990 0,985 0.980
1.025 1.019 1.013 1.006 1.000 0.994 0.988 0.982 0.976
1,020 1,015 1.010 1,005 1,000 0.995 0.990 0.985 0.981
1,020 1.015 1.010 1,005 1.000 0.995 0.990 0,985 0,981
1,020 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.981

# Relative to value at reference concentration no. 5
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The photopeak responses are given at different concentrations of the element that has

been changed sequentially.
Given that the element i has a weight percentage w;, the mass of the element i is

changed sequentially as:

k (0.2) w, p ,k=1,2,..9

core sample

The reference elemental concentration is given in Table 4.4-3.

Where m; y is the mass of the i-th element in the core sample at the k-th concentration.



Element Eneray Concentration +
{MeV) 1 2 3 4 5 6
Mo 0.9852 0.708 0.783 0.857 0.929 1.000 1.069
1.8089 0.706 0.782 0.836 0.929 1.000 1.070
2.8281 0.708 0.783 0.837 0.929 1.000 1.069
3.9167 0.710 0.785 0.858 0.930 1.000 1.049
C) 5.7153 0.118 0.278 0.479 0.721 1.000 1.317
6.1109 0.118 0.278 0.479 0.720 1.000 1.317
6.6195 0.118 0.278 0.479 0.720 1.000 1.317
7.4138 0.118 0.278 0,479 0.720 1.000 1.317
7.7902 0.118 0.278 0.479 0,720 1.000 1.317
Ti 0.3817 0.660 0,748 0,834 0.918 1,000 1.030
1.3815 0.632 0.727 0.820 0.911 1.000 1.097
6.4184 0.626 0,723 0.817 0.909 1,000 1,089
6.7598 0,626 0.723 0.817 0.909 1.000 1.089
Cr 0.8351 0,645 0,737 0.826 0.914 1.000 1,084
7.9393 0.631 0.726 0,819 0,911 1,000 1.088
8.8841 0.631 0.726 0.819 0.911 1.000 1.088
Mn 7.0578 0.609 0.710 0.809 0.905 1.000 1.092
7.2438 0.609 0.710 0.809 0.905 1.000 1.093
Fe 0.3522 0.677 0.760 0.842 0.922 1,000 1.077
5.0195 0.624 0.721 0.816 0.909 1.000 1.089
7.6311 0.624 0.721 0.815 0.909 1.000 1.090
7.6455 0.624 0,721 0.815 0.90%9 1.000 1.090
# Relative to value at reference concentration no. S

NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 2 (C1) has been chansed sesventially

See note at bottom of page 180
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Element

Ti

Cr

Mn

Fe

NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 3 (Ti) has been chansed sequentially

Eneray Concentration #

(MeV) 1 2 3 A 5 6
0.5852 0.940 0,955 0.971 0,985 1.000 1.014
1.8089 0.932 0.950 0.967 0.983 1.000 1.016
2.8281 0.930 0.948 0.965 0.983 1.000 1.017
3.9167 0.929 0.947 0.965 0.983 1.000 1.017
5.7153 0.909 0.932 0.955 0.978 1.000 1.022
6.1109 0.909 0.932 0.955 0.978 1,000 1,022
6.6195 0.909 0.932 0,995 0.978 1.000 1.022
7.4138 0.909 0.932 0.935 0.978 1.000 1,022
7.7902 0,909 0,932 0.955 0.978 1,000 1.022
0.3417 0.18% 0.377 0.577 0.785 1.000 1.222
1.3815 0.184 0,377 0.577 0.785 1.000 1.223
6.4184 0.184 0.377 0,377 0,785 1,000 1.223
5.7598 0.184 0.377 0.577 0.785 1.000 1.223
0.8351 0.922 0.942 0.962 0,981 1.000 1,019
7.9393 0.921 0.941 0.961 0.981 1.000 1.019
8.8041 0.921 0.941 0.961 0.981 1.000 1.019
7.0978 0.909 0,932 0.955 0.978 1.000 1.022
7.2438 0,909 0,932 0,935 0.978 1.000 1,022
0.3522 0.929 0,947 0,965 0.983 1.000 1.01
6.0185 0.924 0,943 0.963 0.981 1.000 1.01
7.631% 0.924 0.943 0,962 0.981 1.000 1.01
7.6455 0,924 0,943 0,962 0.981 1.000 1.0t

+ Relative to value at reference concentration no. 5

See note at bottom of page 180
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Element Enersy

Ms

Cl

Ti

Cr

Mn

Fe

*

NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 4 (Cr) has been changed sequentially

Concentration #

(MeV) 1 2 3 4 3 1)
0.5852 1.001 1,001 1.001 1.000 1.000 1.000
1.8089 0.997 0.998 0.998 0,999 1.000 1.001
2.8281 0.99% 0.997 0.998 0,999 1.000 1,001
3.9167 0.995 0.996 0.997 0.999 1,000 1.001
3.7133 1.003 1.002 1.001 1,001 1.000 0
6.1109 1.003 1.002 1.001 1.001 1.000 0
6.6195 1.003 1.002 1.001 1.001 1.000 O
7.4138 1.003 1.002 1,001 1,001 1.000 0
7.7902 1,003 1,002 1.001 1.001 1.000 0
0.3417 1.005 1.004 1.003 1.001 1.000 0,999
1.3815 1,002 1.001 1.001 1.000 1.000 1.000
6.4184 0.999 0.999 0.999 1.000 1,000 1.000
6.7598 0.999 0.999 0.999 1.000 1.000 1.000
0.8351 0.201 0.401 0.601 0.801 1.000 1.199
7.9393 0.200 0.400 0.600 0.800 1.000 1.200
8.8941 0.200 0,400 0.600 0,800 1,000 £.200
7.0578 1.002 1.001 1.001 1.000 1,000 1.000
7.2438 1,002 1,001 1.001 1.000 1,000 1.000
0.3522 1.006 1.004 1.003 1,001 1.000 0.999
6.0185 1.002 1.001 1.001 1.000 1,000 1.000
7,631 1,002 1.001 1.001 1,000 1.000 1.000
7,643 1,002 1.001 1.001 1,000 1,000 1.000

Relative to value at reference concentration no. 5

See note at bottom of page 180
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999 0.999 0.998 0.997
<999 0.999 0.998 0.997
<999 0.999 0.998 0.997
999 0.999 0.998 0,997
<999 0.999 0.998 0.997

997 0.996 0.995
999 0.999 0.998
001 1.001
.001 1.001

0.997 0.996 0.994
0.999 0.999 0.998
0.999 0.999 0.998
0.999 0,997 0.998
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NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 5 (Mn) has been chansed sequentially

Concentration #

Eneray

Element

4

(NeV)

Ms

¢

Ti

Cr

g &8

0.200 0.400 0.600 0.
0.200 0.400 0.400 0.

7.0578
7.2438

Mn

222
m333

Mzzz

¥ Relative to value at reference concentration no. 5

See note at bottom of page 180



Element Eneray Concentration #

{(MeV) 1 2 3 4 5 6

Ms 0.5852 0.993 0.996 0.999 1.000 1.000 0.999
1.8089 0.957 0.96% 0.981 0.991 1.000 1,008
2.8281 0.946 0.961 0.975 0.988 1.000 1.011
3.9187 0.939 0.956 0.972 0.987 1.000 1.012

Ci 5.7153 1.055 1.041 1,027 1.013 1.000

: 6.1109 1,054 1.040 1,027 1.013 1.000
6.6195 1.055 1.041 1.027 1.013 1.000
7.4138 1.055 1,041 1,027 1,013 1.000
7.7902 1.055 1.041 1,027 1.013 1.000

Ti 0.3417 1.066 1.049 1,032 1.0156 1.000 ©
1.3815 1.043 1.032 1,022 1.01] 1.000 0
6.4184 1.024 1.018 1,012 1.006 1,000 0
6.7998 1.024 1.018 1,012 1.006 1.000 0

Cr 0.8351 1.046 1,034 1,023 1.011 1,000
7.9393 1.014 1.010 1,007 1.004 1.000
8.8841 1.014 1.010 1,007 1.004 1.000

Mn 7.0578 1.033 1.025 1.016 1.008 1.000 0
7.243 1,032 1,025 1,016 1.008 1.000 0

Fe 0.3522 0.212 0,418 0,418 0.812 1.000 1.182
5.0185 0.204 0,407 0,607 0,805 1.000 1.193
7.6311 0.204 0.407 0,607 0,805 1.000 1.193
7.6455 0.204 0.407 0.4607 0.805 1,000 1.193

L

NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. & (Fe) has been chansed sequentially

Relative to value at reference concentration no. 5

See note at bottom of page 180
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0.987 0.974 0.962 0.949
0.987 0.974 0.962 0.930
0.987 0.974 0.962 0.949
0.987 0.974 0,962 0.949
0.987 0.974 0.962 0.949

984 0.96% 0,953 0.938
.989 0.979 0.968 0.957
.994 0,988 0.981 0.975
994 0,988 0,981 0.975

0.989 0.977 0.966 0.955
0.996 0.993 0.989 0.985
0.996 0.993 0.989 0.985

<992 0.984 0.976 0.968
992 0.984 0.976 0.968
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APPENDIX I

Sample Input File for MCNP



1 MNP VERSIOWN 383 LI=

a-
4
-
44~
&5
‘6-
47-
48.
49-

S1-
52-

b1~
b2-
A3
b4-
[
b6~
47-
8-
69~
70~

19-NIN-37 001442
HHEF PR AR R R R R R E R LR A R R R R R R R R R H SRR H R R E R HH S H A R AR EL R AL

NCPGR SEAFLOOR CORE ANALYZER (ABDULLAH ALMASOUMI)

L
¢
[

YD M e OO6O0

Cell definition cards

N
P

SBL25288 2848928 BBYYNIN

~ ol
mm»g‘ow\lﬁCJI-.WN——O‘OQ\'O“M&’-'N‘—‘

— -
OO WO ™ WML~~~ NN

O C = = OW R WWOWWRWNAW OO ECW

+

i
by

Lol r
cooocooco

-1.0
=989
-.969
-.969
-8.96
-2.699
=969
<2.699

-2.699
-.969
-2.699

-5.36
-2.699
-, 969
-11.3%
-8.65
-.969
-.969
-11.35
-11.35
-7.84
-.969
<969
=969
-6.65
-.969
-.969

-.969
-.969
-8.85
-.969
=969

“119-H28
~40 19 -35 13
40 3 -39 13
129 -4
-1 39 -3 4
-41 39 -30 13
-130-34 4 10
~41 30 -33 10 13
~41 33 -34 10 13
-219-283
=228 -29
=319 -2 8
-819 -2
~420-218
320-24
~42t-2¢6
521 -238
‘2 -3
“32-25
S2-5B6
5 23-2%47
- 24 -5
128 -4
S5-%
=329

-9 26 =27
-321 -8
-10 30 -3t
~10 31 -34 11
=11 31 -32
-11 32 -3 12
1232 -8
~i1 33 =34
~13 19 -34 14
~14 19 -35 1§
“15 19 <35 16
-16 19 -35 17
~14 35 -3 17
~14 36 -37 17
-14 37 -38 17
-14 38 -34 {5
-15 38 - 16
~16 38 -34 {7
~17 19 -4 18

-2.45236567 -18 §9 ~35
-2.45235587 18 35 -38
-2.45236587 -18 38 -34

(1:-19:34) 51
St

Surface detinition cards

SO N e WD N e

SWATER
SWATER
SWATER
SHATER
SHATER
SWATER
SWATER
SWATER
SHATER

$TUBE MATERIAL (POLY)
$TUBE MATERIAL (POLY)

SPOLYETHYLENE
$COPPEK
SALUMINM
SPOLYETHYLENE
SALUMINUM
SAIR
SALUMINUM
SPOLYETHYLENE
SALUMINGY
$AIR

$AIR

$DETECTOR {APPROXINATED WITH GALLIUM)

SALUMINUY
SPOLYETHYLENE
SLEAD CONE
SCADMIU

$TUBE MATERIAL (POLY)
$TUBE MATERIAL (POLY)

SLEAD

SLEAD

$5.8. 316
SPOLYETHYLENE

$TUBE MATERIAL (POLY)

SPOLYETHVLENE
SCADMIUN
$POLYETHYLENE
$POLYETHYLENE
$AIR
$POLYETHYLENE
SPOLYETHYLENE
SCADMIUN
SPOLYETHYLENE

SSAMPLE CASING (POLY)

SCORE SAPLE

SCORE SAMPLE

$CORE SAMPLE
SINNNER ENVELOPE
SUNIVERSE

Surfaces 1-39 are to describe the physical seometry,

£l
(7
c1
¢/l
o
t/1
¢l

40-50 are used for tally, importance. and definition
sureoses onlv. An additional cuter surface S1 mav be
added for seometry check

50.0

0.0 -3.0 .25
0.0 -3.0 6,25
0.0 =3.0 4.75
0.0 -3.0 3.75
0.0 -3.0 3.55
0.0 -3.0 2.5

PROBID =

19-NV-87

00:44:
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188

The SOEF with SUR=51 card is used for aecometry debussing

SIEF  SUR=50 NRM=-1

8 w1 0.0 -3.0 0.9
T K/l 0.0 -3.0 60,2 0.25 1
1 L/ 0.0 -3.0 4.0
1 /1 0.06-3050
1z /1 0.0 -3.0 0.5
13 /1 0.0 22,35 6.5
14 €/7 0.0 2.5 5.5
15 C/1 0.0 22,55 5.0%
16 €1 0022547
17 ¢ 0.0 2.5 4.2
18 /1 0.022.553.7
19 P 00
20 Pl 44,2
21 Pl S50.2
2 Pl 542
B Pl 623
24 PL 613
%P1 615
2% Pl 617
27 P 727
28 Pl 730
2% PL 740
¥ P 7190
31 Pl 80.0
2 P 8.0
< o S N
3% PL 1000
¥ PL 590
¥ Pl NS
37 PL 8.5
B Pl %.0
¥ PL TIO
& C€/1  0.022.5510.55
4 C/1 0.0 22.55 27.00
2 Pl 5.0
43 P1 820
4 P1 87,0
6 PI 720
&% P .TNO
49 Pl 8.0
48 Pl 87.0
4 PL 930
% P -3.0
St ST 0.0 80.0
c
C  Source particles are neutrons but samea ravs will be senerated
€ at nevtron collisions
c
MOIE N P
¢
C Isotropic point neutron source of CF-252 with D1 enerar
[ distribution
o
[
[
L

SDEF  PO5=0.0 -3.0 86,0 ERG=U1 DIR=D2 VEC=0 ,83642734 -,5480837
SC1 Maxwell fission spectrum with temperature of 1,424 MeV

P1 -2 1.428

§C2 Continuous exponential directional bias

=31 3.5

Seecification of cell irortance w.r.t. neutron transeort. Cells

SB2

€ Initial direction of flicht. My ic sampled w.r.t. VEC
c

[

¢

that are likely to transport neutrons towards the samele are

W:NT13

i
21

21
233

considered more imeortant

3

1311318R211211121211121%33
300

3
3

C
€ Force collisions to take place when the neutron is in the samele
3

FCLIN 440 0.5 1.0 0.50 0



145-
146~
147-
148-
149-

151-
152-

154-
155~
156~
157-
158-
1%-
160~
161~
162-
163-
164-

166~
167-
168-
169-
170~
171~
172-
173-
174-

176~
177-
178-

HAS TO RE-ADMIST ACCRORDING TO THE BRANCHING RATIO

o

C Specification of cell importance w.r.t. samma rav trnsmisssion,

C  Cells that are likely to be traversed by photons towards the

C  detector are considred important. Otherwise, photons scattered

[ off other cells are *killed" (0 importance!

c

IMP:P 1 4R 00

[

C  Materials and cross section tables seecification

c

M1 12000,51C -,0214014 17000.51C ~.0036326 22000.51C -.0339442
24000,.50C -, 0074101 25055.51C -,0024754 26000.55C -,0925769
100£.50C -.0109823 6012,50C -,0067811 8016.50C -.5382210
11023.51C -.0096411 13027,50C -,0061714 14000,51C ~.2593048
20000, 51C -, 0092576 $CORE SAMPLE

M3 1001.50C ~.1437176 6012.50C -.8362824 $POLYETHYLENE

M4 48000,51C 1.0 $SCADRIUN

15 1001.50C -.1437176 6012,50C -,8562824 $POLYETHYLENE

N6 82000,50C 1.0 SLERD

N7 1001.50C -.1119013 8016.50C -,8830937 SWATER

¥8  1001,50C -.1437176 6012.50C -,8562824 SPOLYETHYLENE

M9 24000.50C -.18048 250%%5.51C -.01956 26000.35C -.62924
28000,50C -.13998 42000.51C -, 03074 $S.S 316

mi0  13027.50C 1.0 SALUMTNUM

M1 29000.50C 1.0 $COPPER

M2 31000 1.0 SGALLIUN

c

€ S{asbd) treatment is seecified for water and rolvethriene

€ AT 300K

[

T3 POLY.OIT

TS POLY.OIT

NT7 LWTR.O1T

N8 POLY.OIT

C

€ ONLY SELECTED LINE GAPPRS ARE ALLOWED. ALL OTHER GAMMAS AS R

C  RESULT OF COLLISIONS ARE TURNED OFF

c s 0.472,.87,2,027, AND 2,517 HeV

C  CI: S.715:6.11,6.619, AOD 7.413 eV

C  THE FREQUENCY OF SAMPLING IS EQUAL FOR ALL LINE GAMMA RAYS:

IS

.

PIKMT 11023.51 4 102060 1.0 102054 1,0 102042 1.0 102037 1.0
17000.51 4 102010 1.0 102007 1,0 102005 1.0 102003 1.0

-

Tally seecificatiens
all taliies are per source neutron

P

o

FC4  Neutron flux averased over sections of the core samle
FAIN 45

€4 2.0e-6 10.0

FS4  -42

F4 FSE

F14:N 46

E14 2.06-6 10,0

FSI4 -43 -84 45 -44 47 A%

FO14 FSE

F24:N 47

£24  2,0E-6 10.0

FS24 49

F24 FSE

FC34 Neutron fiux averased over the detector voluse, cell 23
F34:N 23

SF3A 2

E3%  2.0E-6 10.¢

F@3% FDE

FCM  Neutron flux averased over the detector tube C4 volume
FARIN 27

EA4 2,086 10.0

FoMd FDE

c
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c A DXTRAN SPHERE 15 SPECIFIED TO SURROND THE DETECTOR

8

DXT:P 0. -3, 64.8 3.4 3.8

FC1  Photon current intesrated over detector toe syrface (~DIRECTION)

FL1:p 24

3} 4.2.3.6.5.6.7.8.91. 1.1 1L.20L31L.41.51.61.71.8
1,92, 21 222.32.42,52462728293,3.13.23.33.4
395363738294, 4,14,24,3044454,648,74,84,95,
S.1 5,2 5.35.45.55.65.7 5.85.96.0 6.1 6,26.3 6.4 6.5
6.6 6.768697.7.17.27237.47.57.46

Ct 01

2

Fei FSCE

FC1t Photon current intesrated over detector side wall

Fit:F 7

Eff  .1.2.3.4.5.6.7.8.70 L14L2L31.41.51.61.71.8
192 2,1 2,22.32.42.52462728293, 3.13.23.33.4
3.93.63.7 38394, 4,1 4,24.34.44,54,64.74,84.95,
S.1 5.2 5,3 5.4 5.55.65.7 5.85.9 6.0 6.1 6.2 6,3 6.4 6.5
6.6 6.76.86.97.7.17.27.37.4757.%6

Fsit -50 -23 -4

Fa11 FSE

FC21 Photon current intesrated over detector bottom (¢DIRECTION)

PN

21 .1.2.3.4.5.46.7.8.94.1.11.21.31.41.51.61.71.8
1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3, 3.13.23.3 3.4
3.53.63.73.83.94, .1 4243 444.54.64,74.84.965,
5.1 5.25.35.455955465.785.85.96.0641626.36465
6,6 6768697, 7.1 7.27.37.4757.%

2t o0
Fs21 -7
FQ21 FSCE

C
Iy The VOID card is for seometrv check
C

rvaie

[

€ cenrtional termination

C

QUT:P ) 0.1 )

5 1000 sexcusion is terainated when histories are extausted
PRINT serint full outeut
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