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Of great benefit, but not limited to seafloor mineral

exploration, is a technique that fairly rapidly determines the

composition of a drilled vibracore (in a time comparable to the time

involved in obtaining the core). The rapid assessment is desired to

predict whether a given region warrants further exploration by

coring.

A proposed monitoring system, based on neutron capture gamma

ray analysis, consists of a container tank filled with water and

tubular extensions that house a Cf-252 neutron source and a

detector positioned within the tank. The core sample is passed

through the system in stop and count steps. The net count rates, due

to "signature" capture gamma rays from neutron capture in elements

in the core sample, are proportional to the amount of the element

responsible for emitting the capture gamma ray.

The proposed system was modeled and simulated by the Monte Carlo

method to predict the relationship between the response of the



detector and the elemental concentrations within the sample.

Accurate and detailed treatment of neutron transport and gamma ray

production and attenuation within the system were employed not only

to predict the relationship of the photopeak responses with respect

to elemental concentrations, but also to permit investigation of the

design parameters and structural material changes in the system.

The developed Monte Carlo code utilizes a variety of variance

reduction techniques, such as implicit absorption with Russian

Roulette and deterministic production of the gamma rays of interest,

along with a form of correlated sampling to predict simultaneously

the responses over a range of interest of the elemental

concentrations. The predicted results were compared with predictions

obtained from a well established general purpose Monte Carlo code

(MCNP).
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Monte Carlo Model of a Capture Gamma Ray Analyzer
for a Seafloor Core Sample

1. INTRODUCTION

1.1 Neutron Capture Prompt Gamma Ray Analysis

Neutron capture prompt gamma ray analysis (NCPGA) is a nuclear

technique that can be used to perform quantitative analysis of

elemental concentrations in a host matrix. This technique is based

on the principle that neutron captures result in the formation of

compound excited nuclei which de-excite promptly (in less than 10-12

s) by the emission of one or more gamma rays with energies

(typically 2 to 11 MeV) and yields that are characteristic of the

excited nuclei and the energy of the original captured neutron that

initiated the reaction.

In general, NCPGA is only sensitive to the major elemental

constituents of a sample and offers a complementary technique for

the conventional delayed gamma ray neutron activation analysis (NAA)

which is best suited for trace element analysis. It has been shown

that NCPGA has greater inherent sensitivity than conventional NAA

for most elements, provided that equal neutron fluxes can be

achieved for activation (Isenhour, 1966). A comparison of the

theoretical sensitivity limits for the analysis of 63 elements by

NCPGA and NAA shows that, calculating with an equal neutron flux,

the NCPGA would be superior for 61 of these elements (Henkelmann,

1978).

The major difference between the two techniques is the fact
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that in conventional NAA, the analysis depends on the radioactive

product of the neutron bombardment, if formed in reasonable amounts

with an inherent phenomenon of growth and decay. NCPGA, however, is

independent of the product's nuclear characteristics.

The term "prompt" gamma ray analysis is to be understood as the

observation of the characteristic electromagnetic radiation

resulting directly from the neutron radiative capture. This

radiation is prompt in the sense that the nuclear decay -time is in

the order of 10-12 s and thus strongly contrasts with the time delay

of seconds, or longer, characteristic of gamma radiation following

fl" decay. In fact the term "prompt gamma analysis" is not strictly

accurate since the prompt gamma rays include also those from

inelastic neutron scattering, which is a threshold reaction

determined by the level of the first excited state of the target

nucleus and hence is of interest when fast neutrons are used.

Foremost among the advantages of NCPGA over conventional NAA

is the fact that NCPGA eliminates errors of timing encountered

during corrections for decay during counting. The prompt gamma rays

are emitted before the product has any chance to migrate out of the

sample and the possibility of loss of any volatile species as a

result of Szilard-Chalmers processes is avoided. Also, the sample

to be analyzed needs little or no preparation, and it produces

negligible residual activity. The drawback of NCPGA not being

suitable to take advantage of decay to identify species and observe

contaminants, or avoid interference is not considered serious.

This work pertains to computationally modeling, by the Monte
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Carlo method, a proposed monitoring system based on the NCPGA

principle for the purpose of quantitatively analyzing the elemental

concentrations of elements of interest (Mg, Cl, Ti, Cr, Mn, and Fe)

found in vibracores taken from seafloor sediment core samples. All

of the abovementioned elements have major capture gamma rays of

energies above 3 MeV. In contrast, the gamma rays produced by

neutron activation, neutron inelastic scattering, and natural

radioactivity have energies mainly below 3 MeV.

The non-destructive, fairly rapid sampling of all or most of a

process stream (bulk sampling), thus giving more representative

results, the minimal interference from natural radioactivity, and

the feasibility of portable small intense neutron sources all make

the NCPGA a prime technique for in-situ mineral exploration to

identify and quantify the elements present in a field sample.

Although of no economical interest, chlorine is included in the

list above since in marine applications, the high gamma ray

background from the Cl(n,/) reaction is the major interference. The

area under the full energy peaks of the characteristic capture gamma

rays (fingerprints) from these elements are non-linear functions of

the elemental concentrations in the core sample, because of the

competition for neutrons among the various constituents of the

sample, especially if strong neutron absorbers are present: Hence

the relationship between the photopeak response and the elemental

concentrations needs to be estimated by Monte Carlo technique.

The Monte Carlo model is useful in the calibration of such a

monitoring system without the need for constructing calibration
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standards representative of the various elemental concentrations of

the sample. This calibration is helpful to investigate and predict

the variation of detector response with elemental concentrations.

A single calibration standard composed of known elemental

concentrations within a matrix of composition similar to that

expected in the field is needed to normalize the responses estimated

by the Monte Carlo model. In addition, the model is thought to be

useful for sensitivity analysis investigations of the design

parameters, such as the sample to source and detector distances and

relative locations or the concentration of a given element. This is

feasible because of the detailed treatment of neutron transport in

the system and detailed treatment of capture gamma ray transmission.

1.2 Literature Review

The majority of the literature on the use of the NCPGA in

mineral exploration and on-line analysis represents extensive

experimental determination and assessment of the use of this nuclear

technique. Numerous sources are given in the reference listing

(Charbucinski et al., 1986; Clayton, 1983; Failey et al., 1979;

Glascock, 1982; Lukander and Uusitalo, 1979; Moxham et a7., 1976;

Nargolwalla et al., 1973; Senftle et al., 1974; Tanner et al., 1972;

Thomas et al., 1983; Uusitalo et a7., 1982; Wormald and Clayton,

1983). In this work it is relevant to emphasize the theoretical

modeling and to compare the results of such modeling with

experimental work if possible.

The research in general is concerned with a borehole geometry.
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Brief descriptions of previous work, relevant to the potential

benefits of computer simulation, are summarized below. The flux

distribution in the medium of interest as an integral part of a

model, represented by steady-state diffusion theory, has been

applied to obtain the neutron flux distribution from a point source

in cylindrical coaxial geometry (representative of borehole

geometry)(Nargolwalla et al., 1973). The resulting neutron spatial

distribution was used to compute neutron capture reaction rates to

assess the unscattered gamma-ray flux reaching a point detector by

integrating over the medium volume.

A sonde-in-borehole configuration was modeled by Doster (1979)

to predict the photopeak detector response (Fe: 7.64 MeV peak) from

a thin axial zone of iron concentration. The four-group neutron

flux distribution was determined by the two-dimensional multigroup

diffusion theory code PDQ-5. Numerical integration over the medium

volume was performed to calculate the prompt gamma production rate

resulting from the neutron capture reaction rates. The obtained

results were in good agreement with the experimental results .

Sohrabpour and Bull (1979) developed a Monte Carlo model to

predict the photopeak detector response from a capture gamma ray

experiment in an infinite homogeneous medium with a Cf-252 neutron

source and a Ge(Li) detector. Neutron cross sections were based on

six(one thermal)-group cross sections. The predicted responses for

copper and tungsten were shown to be non-linear. The model was

tested experimentally, and the results showed that the model

predictions exceeded the experimental values by 30-40%.
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The discrete ordinate (1-dimensional) neutron transport code

ANISN was used to determine the neutron flux distribution in a

multi-layered medium in a spherical geometry of coal with a neutron

source in the center (Reynolds, 1977; Elias and Gozani, 1980).

Analysis of the bulk density, sample uniformity, system size and

hydrogen content on the prompt gamma ray flux in the experimental

system was assessed.

A multigroup Monte Carlo method to determine the ash content of

coal was reported by Wormald et a7. (1979).

Clark et al. (1982) reported a Monte Carlo model for borehole

geometry with thorough treatment of neutron transport within the

shielding components. Pointwise ENDF/B-V cross section data were

used after being fitted with analytical functions to reduce the data

storage requirements.

Sanders (1983) applied the multi-group Monte Carlo method to

the problem of geologic formation analysis in oil exploration by

modeling neutron interactions to demonstrate the ability of the

Monte Carlo method to simulate complex geometry problems and to

analyze neutron and gamma ray transport in the field of applied

earth sciences.

The use of the Monte Carlo technique to optimize the

geometrical configuration of an on-line capture gamma ray analyzer

has been reported by Lukander and Uusitalo (1978).

Thomas et al. (1983) reported on a towed seabed spectrometer

for mineral exploration, based on both natural and neutron induced

gamma rays. Monte Carlo calculations were used to simulate the
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experimental probe and to estimate the effective sampling depth by

simulating the depth of penetration of neutrons into the seabed and

the subsequent attenuation of capture gamma rays returning to the

detector. The results were represented as sectional contours of

contributions to the detector. Monte Carlo calculations were also

used to simulate an artificial seabed of sand containing varying

concentrations of copper and manganese to investigate. the non-linear

relationship between count rate and elemental concentration for

trace elements with significantly large neutron absorption cross

sections.

Monte Carlo modeling to describe the design and calculation of

capture gamma-ray analysis systems has been demonstrated for coal

and compared with experiments (Schmidt and Rose, 1984). The general

Monte Carlo program SAM-CE (Monte Carlo System for Radiation

Transport and Criticality calculations in complex configurations,

developed at the Electric Power Research Institute) has been

modified to have the capability of predicting strong discrete gamma

ray lines and used with ENDF/B-V cross sections (including gamma ray

production data) to calculate a complete gamma ray spectrum. It

seems that the model uses the detector response function to predict

the instrument response.

Rainbow (1985) used the general purpose Monte Carlo code MORSE

and nuclear data derived from ENDF/B-IV to model a conveyor belt

iron ore analyzer which detects thermal neutron capture gamma rays

from Fe-56. A multi-group energy treatment was used with processed

multigroup cross sections for the analyzer materials averaged over
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the slowing-down neutron spectrum from a uniformly distributed Cf-

252 fission source in an infinite polyethylene moderator. A user

supplied patch to model the Cf-252 source as a point fission source

with a Maxwellian spectrum was used. The author concluded that such

simulation would be possible provided that the efficiency of the

calculations was improved. Some form of correlated sampling is

recommended to improve the efficiency of simulating a number of

similar systems. Due to the smearing effects of multigroup energy

treatment, only simple gamma ray spectra could be treated.

Otherwise a continuous energy treatment, such as is incorporated in

the MCNP code (a general purpose Monte Carlo code developed at Los

Alamos National Laboratory), has to be used.

The trend of research to understand the influence of perturbing

factors on neutron transport, such as construction materials, sample

constituents and physical state, and hence to make allowance in

equipment design and data interpretation, is leaning heavily on

neutron transport studies by Monte Carlo techniques.
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2. REVIEW OF APPLICABLE NEUTRON AND GAMMA RAY PHYSICS

In this chapter, a general review of the interaction of

neutrons with matter and the governing equations that describe the

mechanics of such interactions are discussed along with the origin,

attenuation, and penetration of associated capture gamma rays within

a medium. The significance of the interactions and effects on this

work is emphasized.

2.1 Neutrons

Throughout this discussion, neutrons are pictured as very small

spheres and their wave characteristics are ignored except in the

case of thermal neutrons with energies at thermal equilibrium with

the atoms in the surrounding medium. The deBroglie wavelength

associated with such a neutron (0.0253 eV energy at room

temperature), is 18 nm and is comparable to the lattice parameters.

This is of significance in considering thermal neutron cross

sections (Section 2.1.4). Furthermore, any relativistic effects are

ignored since even a neutron with an energy as high as 5 MeV would

have a speed of only 1% of the speed of light. Beta decay of a

free neutron (half-life of 11.7 minutes) is not considered when

compared with the time scale of the events of interest. Neutron

polarization (up or down If spin) is not considered, since this is

only of significance in determining the azimuthal angle of neutron

scattering reactions.

A very important feature of neutron transport is that, being
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neutral, the electromagnetic fields of the atoms that comprise the

medium where the neutron is being transported play no role in the

interactions. Therefore, the path that neutrons transcribe between

collisions is a straight line.

2.1.1 Neutron Sources and Associated Neutron Spectra

Excluding the bulkier nuclear reactors and accelerators,

practically portable neutron sources can be categorized into:

A. Radioisotopic decay sources

Many heavy radioisotopes decay by spontaneous fission and in

the process emit neutrons. Among these is Cf-252. The artificially

produced Cf-252 is considered a highly practical neutron source for

research and engineering measurements. It has a half-life of 2.65

years and decays 97% by alpha emission and 3% by spontaneous

fission with the emission of an average of 3.5 neutrons per fission.

On a unit mass basis, 2.3 x 106 neutron/s are produced per gg of

Cf-252. The energy spectrum of the neutrons is reported (Boldeman

et al., 1979) to be accurately represented by:

2 T-3/2 E1/2 e-E/T

with T = 1.424 MeV

(2.1.1-1)

The mean energy of this spectrum is 2.136 MeV which is

appreciably lower than that of the isotopic sources discussed below.

Furthermore, the specific yield of neutrons is higher and the

associated gamma ray yield is lower than the isotopic sources. The
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Cf-252 source is considered to be more appropriate for neutron

capture reactions, which are characterized by large thermal neutron

absorption cross sections for many elements.

B. Isotopic sources

Neutrons can be produced by (a,n) and (1,n) reactions. One

such compact source that is commercially available is a mixture of

Be-9 and an a-emitting radioisotope, such as Po-210, Pu-239, Ra-226,

or Am-241, that through the reaction 9Be(a,n)12C produces neutrons

having a spectrum of energies from 0 to about 11 MeV with an average

neutron energy of about 4.5 MeV.

The (/,n) reaction on a Be-9 has a threshold energy of 1.665

MeV; radioisotopes with both practical half-lives and gamma

radiation with an energy above 1.665 MeV are rare. One such

candidate (Sb-124) has a relatively short half-life of about 60

days. The average energy of the neutrons produced by the antimony-

beryllium 9Be(1,n)8Be source is about 0.0223 MeV (Knoll, 1979). All

isotopic neutron sources give yields from about 2 x 106 to 1 x 107

neutron/s per curie of initiating radioisotope.

C. 14-MeV compact d-t neutron generators

These generators make use of either the 3H(d,n)4He or

2H(d,n)3He reactions. In the former case, neutrons are produced

with an energy of 14 MeV and high yields can be obtained. The

latter reaction has a lower yield with lower neutron energies. The

high energy neutrons are suitable for methods based on inelastic
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scattering, and the generator has the advantage that it can be

turned off when it is not in use, thus reducing unnecessary

exposures and irradiations. By pulsing the neutron generator, it is

possible to separate the gamma ray spectrum produced by neutron

inelastic scattering from those excited in neutron capture

reactions. In addition to being expensive, the neutron flux is not

reliably steady and the lifetime of the generator tube is limited.

2.1.2 Neutron Interactions

Upon collision of a neutron with a nucleus, one of the

following interactions may take place depending on the neutron

energy and the nucleus involved:

A. Absorption

In the absorption reaction, the neutron totally disappears and

is replaced by one or more secondary radiations. The absorption

reaction leads to the formation of a compound nucleus in an excited

state that might persist anywhere from 10-14 s to years depending on

the nucleus and the state in question. The excited compound nucleus

may decay, with a finite probability, by one of the following modes:

1. Charged particle emission: (e.g., (n,a), (n,p), etc.).

The compound nucleus becomes de-excited by emitting a charged

particle (proton, deuteron, a-particle, or occasionally an

electron). From the viewpoint of neutron population, the

process results in the loss of a neutron and hence is

equivalent to a neutron capture.



13

2. Neutron capture: (n,/). The compound nucleus de-excites

almost instantaneously by emitting a 7-ray. Often the nucleus

is still not stable after the 7-ray emission, and a )6-decay

follows. This reaction is the prime origin of the

characteristic capture gamma rays discussed in Section 2.2.1.

The effect on the neutron population is a loss of the captured

neutron.

3. Neutron producing reaction: ((n,xn), where x is an integer

> 2). The compound nucleus de-excites by emitting two or more

neutrons. The neutron population is considered to be

increased, and thus this reaction is similar to a fission event

from a neutron economy standpoint.

4. Fission: The compound nucleus de-excites by a nuclear

fission, splitting into two large fragments (and one light

fragment in the rare ternary fission reaction) along with the

instantaneous emission of generally from one to three free

neutrons, of which a small fraction of about 0.65% are delayed

neutrons. This mode effectively increases the neutron

population.

B. Scattering

In scattering reactions, a neutron re-emerges after getting

close enough to the nucleus to experience the nuclear force. The

time involved in the formation of the compound nucleus and the

de-excitation is very short. This reaction is classified further

into:
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1. Elastic scattering: A neutron is emitted and the nucleus

returns to its initial ground state. The emitted neutron need

not be the same one that originally interacted with the

nucleus. The lifetime of the excited compound nucleus is so

short (-10-12 s) that for practical purposes, the collision

process may be analyzed as a "billiard-ball" collision. This

type of elastic scattering is called resonance scattering and

is very rare. A more common form is potential scattering, in

which the impinging neutron does behave exactly like one

billiard ball striking another (the nucleus). As judged by the

time involved (-10-22 s), the neutron interacts with the

nucleus as a whole without forming a compound nucleus. Thus,

whether the elastic scattering is anomalous resonance

scattering or the common potential scattering, the billiard

ball model that pictures the original neutron as striking the

nucleus (causing it to recoil) and moving off in a direction

different from its original flight path is adequate to analyze

the process. Elastic scattering is an extremely important

process since it is the chief mechanism in neutron

thermalization by which the high energy neutrons lose their

kinetic energy.

2. Inelastic scattering: (n,n'/). A neutron is emitted from

the compound nucleus, but the nucleus still remains in an

excited state, usually the first excited state, which decays

promptly, generally with the emission of only one gamma ray.

The time involved in the process (-10-12 s) is effectively
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instantaneous. Theoretical models usually account for the

large amount of energy lost by the neutron in the scattering

process to be responsible for the nucleus remaining in an

excited state.

2.1.3 Nuclear Cross Sections

Before any mathematical representations of neutron interactions

can be formulated, the concept of nuclear cross sections has to be

presented.

To obtain a quantitative measure of the events (absorption,

scattering, etc.) that may take place when a neutron interacts with

a nucleus, it is in order to define quantities which specify the

probability that a neutron, having a given kinetic energy and moving

through a medium containing a given material, will interact in a

certain manner. It must be understood that these quantities are

probabilities and one cannot predict exactly which event will occur

in a particular case. However, given that only absorption and

scattering are the two possible events among the statistical

ensemble, and, say pabsorption = 0.3 and Pscattering 0.7, then one

can predict that 30% of the events will be absorptions and 70% of

the events will be scatterings.

Physicists have introduced the concept of a nuclear cross

section by specifying the probability of an interaction, picturing

the nucleus as presenting an "unshadowed" cross sectional area to a

neutron traveling through a medium. Adopting this concept of cross

section literally would require that the nucleus adjust its "size"
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in accord with the energy of a neutron about to hit it, since it is

known by measurements that the probability of interaction depends on

the kinetic energy of the neutron. The cross section is then not to

be taken as a literal, but only a convenient, way of expressing the

probability of an interaction to take place. Thus, the microscopic

cross section for the interaction by a specific process between a

nucleus and a passing neutron can be defined in terms of the

probability that an interaction of type s will take place when a

neutron having kinetic energy E moves a distance dx in a medium

containing Nj atoms of isotope j per cm3, namely Nj as,j(E) dx.

In this definition, it is understood that, since the probability of

interaction depends on the relative kinetic energy between the

neutron and the target nucleus, an average over the thermal motions

of the nuclei has been performed. Thus, one should think of the

as,j (E) as depending implicitly on the temperature of the isotope j

and consider E as the kinetic energy of the neutron relative to the

laboratory system. This temperature dependence of as,j(E) is

important when the neutron energy is in the thermal energy range

(0 < E < 1 eV) where the speed of the neutron is comparable to the

thermal motion of the nuclei comprising the medium; this effect is

further investigated in Section 2.1.4. Another situation, when the

energy of the neutron corresponds to a "resonance energy" of the

nucleus it strikes, causing the "Doppler broadening", is also

referred to in Section 2.1.4.

The product Nj as,j(E) is labeled the macroscopic cross

section, which may be used to define the probability of occurrence
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less ambiguously as: the macroscopic cross section. is the

probability per unit path length in a material that a neutron of

energy E will undergo an interaction of type s with material j.

With the above in mind, it is customary to speak of cross

sections for all possible nuclear processes (scattering, absorption,

etc.).

2.1.4 Characteristics of Nuclear Cross Sections

The neutron energy range of interest in this work extends to

the highest neutron energy emitted by the Cf-252 source. It is can

be shown that the probability that a neutron emitted from Cf-252 has

an energy greater than 5 MeV is less than 0.05 (Profio, 1979).

Therefore, the upper limit can be safely assumed to be, say, 10 MeV,

and the energy behavior of neutron cross sections in this range of

interest for the nuclei comprising the monitoring system is

addressed next.

A. Behavior of neutron absorption cross sections

General behavior for the neutron absorption cross section of

all elements tend to vary as E-k (one over v behavior) at low (< 2

eV) energies. For most light nuclei the 1/v behavior persists up to

higher energies. However, for intermediate and heavy nuclei, the

curve of a(E) versus E exhibits very high and very sharp peaks

(resonances) begining in the energy range just above thermal. These

peaks are due to the existence of metastable energy levels in the

excited nucleus. Physically, the formation of the compound nucleus
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is strongly favored when the total excitation energy of the nucleus

corresponds to that of the metastable level. The total available

excitation energy being the kinetic energy of the neutron about to

strike the nucleus in addition to the potential energy released

(binding energy) when that neutron enters the potential field of the

nuclear force. Most of the resonance peaks are due to neutron

absorptions although the asymmetric dipping just beyond each

resonance is a scattering effect explained by quantum mechanics.

The resonance widths are very narrow and, because the target nuclei

are in motion, are dependent on the relative motion of the target

nuclei. These resonances are said to be Doppler-broadened with

increasing target nuclei temperature.

Care must be practiced when nuclear cross section data are

obtained. For instance, capture cross section data for a free Na-23

nucleus at 0 °K and 300 °K obtained from the Evaluated Nuclear Data

File (ENDF/B-V) are shown in Figure 2.1.4-1; comparison of the two

curves clearly shows the Doppler broadening effect of the

resonances, indicated by the decrease in the peak magnitude of the

cross section value at the resonance energy. It is feasible to

account for the Doppler-broadening theoretically using the Breit-

Wigner formula for the isolated resonances, when it is deemed that

this adjustment is significant. At neutron energies above a few

hundred eV, the resonance peaks become lower and broader. Due to

the lack of precise measurements of as,j(E) in this energy range and

the closeness of the nuclear levels, the curve takes on a smooth

"unresolved resonances" appearance.



0

1 0'

10'

10"

10'

10'

10'

10'

10'

1 1 1 1 11 1 1 1 1 1 1 1 I 1 1 1 1 1 1 11 I I I I r 1 1 1 1 1 ITT 1 1111 1

(300°K)
:-

:-

7

7

7

1 1 1 1 1 1 1 1 1 1_1111_1 1_111 1 1 1 1 1 1 L_L11 A .1 LL1 I 1111 _1 1 1°l 1

I 11

1111 I I 11 1

10-5 10`' 1 10' 10' 10' 10'

10'

10't

10-' 7

Neutron Energy (eV)

10'

(00 K)

1
I I n( 9

0-5 _i....1111 1 1111 1 1111 1 I. 1 1111 1 1111 1 1111 1 1111 1 1111 111 / III 1 1111 1 I III I III
IW 10' 10' 10' 10'

Neutron Energy (eV)

Figure 2.1.4-1 Na-23 Radiative capture cross section
as a function of incident neutron energy given at
300° K (top) and at 0° K (bottom) (ENDF/B-V data).

19



20

Absorption cross sections are not affected by the absorber atom

nucleus being in a bound state in a molecule or in a crystal lattice

or by being free. Therefore, the cross sections can be taken to be

the same for bound atom nuclei as for free atom nuclei (Bell and

Glasstone, 1982).

B. Behavior of neutron scattering cross sections

Scattering cross sections for low energy neutrons interacting

with most elements are elastic, roughly constant as a function of

energy, and small in magnitude. Important exceptions to this rule

occur when the atomic nucleus with which the neutron is interacting

is bound chemically in molecules (not free) to other atomic nuclei

or in part of a crystalline structure; under these conditions, low

energy neutrons (with wavelength in the order of the lattice

parameters) will Bragg scatter and tend to interact with several

nuclei at once. The nucleus in a bound state cannot recoil freely

in a collision. Instead there is an interaction between the

scattering atomic nucleus and its neighbors in the molecule or

solid.

The kinematics of two-body interactions considers the reduced

mass of the neutron-nucleus system; in heavy nuclei the reduced mass

is practically equal to the neutron mass and the ratio of the

scattering cross section for the bound atom to the free atom is

essentially unity. Nevertheless, for light nuclei (e.g., H), the

reduced mass effect is pronounced. Furthermore, the scattering is
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often inelastic, some of the incident kinetic energy of the neutron

being retained by the molecule in the form of excited vibrational or

rotational motions of its constituent atoms. It is a formidable

effort to apply free hydrogen scattering data in the case of bound

hydrogen in molecules even after theoretically accounting for some

of the aforementioned effects (e.g., the Nelkin model).

Furthermore, the effect of the target nucleus motion as a function

of temperature that affects the interaction at low neutron energies

cannot be ignored as shown in Figures 2.1.4-2. Thus, in general,

the scattering cross sections depend on the physical and chemical

forms and temperature of the scattering material.

Figure 2.1.4-3 schematically shows the origin of the delayed

gamma radiation resulting from the activation of heretofore stable

elements with neutrons, thereby rendering them radioactive, which in

turn decay by emitting nuclear radiation specific to each element.

This process is utilized in the conventional NAA, whereas the NCPGA

utilizes the radiation emitted at the time of neutron activation

rather than that emitted from the de-excitation of the newly-formed

daughter nucleus. Furthermore, Figure 2.1.4-3 schematically shows

the functional dependence of the capture, elastic, and inelastic

cross sections on the neutron kinetic energy exhibiting resonance

behavior at those energies at which the center-of-mass energy Ecm

plus the neutron binding energy match an energy level of the

compound nucleus.
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Figure 2.1.4-3 Schematic representaion of the origin
of the prompt capture gamma rays.
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2.1.5 Mathematical Representation of Neutron Interactions

Quantitative mechanics of the neutron absorption reaction are

not needed in this work since a neutron undergoing absorption is

considered lost. The path length that a neutron traverses between

collisions is discussed in Appendix A. Radiative capture is

discussed qualitatively in Section 2.2, since it is the origin of

the prompt gamma rays of interest.

Neutron scattering representations and models are investigated

and the models used in this work are outlined. Neutron scattering

reactions may be categorized according to the interacting neutron

energy into:

A. Thermal Scattering

At thermal neutron energies, where the interacting neutron

kinetic energy is comparable to the thermal agitations of the target

scattering nuclei, the latter can no longer be regarded as being at

rest. Therefore, it is possible that the neutron gains energy, by

upscattering, as well as loses energy in collisions. In addition,

molecular and crystal binding and wave interference effects have to

be accounted for. As mentioned before, since the cross section is

averaged over the target nuclei velocity distribution, one expects

the cross section behavior to be temperature dependent. By using

data at the appropriate temperature, no special considerations are

necessary for radiative capture. On the other hand, the neutron

scattering model has to be modified significantly to account for the
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possibility that the colliding neutron may gain or lose energy in

the collision. Chemical binding, thermal vibrational and rotational

modes of molecules of the target nucleus, and crystalline effects

may be incorporated into the adopted model, depending on the

sophistication of the model.

The S(a,fl) scattering law is the most rigorous treatment and is

derived from quantum mechanical theory of neutron scattering from a

system of bound nuclei. The a and /3 (dimensionless momentum and

energy exchange) parameters uniquely determine the kinetic energy

and scattering angle of the emerging neutron in the laboratory

system. This model requires the storage of only two-dimensional

arrays (Bischoff et al., 1972).

The monatomic gas model, in which the moderating atoms (nuclei)

are modeled as being a monatomic gas in which there is no chemical

binding among molecules, is considered to be a good approximation

(Carter and Cashwell, 1975). The energy distribution among the

atoms is the Maxwell-Boltzmann distribution, which accounts for the

thermal motion, and results in upscatterings and yields a good

approximation to the thermal neutron energy distribution. It is

considered to be a good approximation when chemical binding effects

may be ignored or adequately described by various approximations.

The inherent assumption in this model is that the neutrons are

transported in a monatomic gas of the moderating nuclei; the gas is

assumed to have a Maxwellian velocity distribution:

2/

A
T

1
3/2 Apt

1k
p (V) dV = V2 e 2kT dV d8 do (2.1.5-1)
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The scattering is assumed to be elastic (no inelastic energy loss as

vibrational, rotational, etc.) and further assumed to be isotropic

in the center-of-mass system, since the thermal target motion tends

to make the scattering more nearly isotropic.

The energy available for an interaction is the sum of the

kinetic energy of the neutron and the nucleus with respect to their

center-of-mass. This reduced mass (M) energy is given by:

1 ~ 2Eon = .2- Trt Ur (2.1.5-2)

where M = mM/(m+M), m and M are the mass of the neutron and the

nucleus, respectively, and Ur is the relative speed of approach.

The relative velocity obtained by the cosine law is given by:

U
r
= 113n

2 + v2 21,11V cosh (2.1.5-3)

where 0 is the angle between the velocity vectors of the neutron un

and the nucleus V. The total interaction rate for all nuclei is

therefore:

§ N a(E,T) = f n ur a(Ecm)N(V) dV (2.1.5-4)

since 4, = nun where un is the speed of the neutron and 4, is the

neutron flux. The effective scattering cross section in the

laboratory system for a neutron is:

ar(E,T) =
N1un 1 f ur a(ur) N p(V) dV dig (2.1.5-5)
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If it is assumed that the scattering cross section of the nucleus is

independent of this relative velocity, i.e.,

a(Ecm) = es = constant

with $ defined as:

13 NI2tT

and a new variable x defined as :

\IAV2
2kT

(2.1.5-6)

(2.1.5-7)

then Equation (2.1.5-1) in terms of the transformed dimensionless

variable x can be rewritten as:

p(x) dx = x2 e-x2 dx
4fir

and Equation (2.1.5-5) can be written as:

4ff(E,T) = 1 les 03 V2 e-13

2

V2
.v, n3/2

0

(2.1.5-8)

21T 1

1 diti jun2+V2-2unVii dp.dV
o -I

(2.1.5-9)

The integral over the cosine variable yields:

1

.1 Alun2+172-2unVildv_ 1 r r ,,2±v2-2unv) 3/2_ (13.14.172+21.7nv) 3/2)
1

3 tinV L "ri

and Equation (2.1.5-9) becomes:

(sr (E , T) =

(2.1.5-10)

37r1/2u2

011 co
,

1[ ( Un+V) 3 I UsV 13 ] 11-11e-rk2v2 dV
n 0

(2.1.5-11)
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Implementation of this method to sample thermal scattering reactions

is discussed in Section 5.4.2.1.

B. Non-thermal scattering

When the incident neutron energy is in excess of a value of

the order of 2 eV, the thermal motion of the scattering nuclei may

be neglected and the nucleus can be assumed to be at rest in the lab

system. Furthermore, the nuclei (or atoms) may be treated as being

free because the binding energy in a molecule is not significant in

comparison with the energy involved in the neutron-nucleus

interaction. The scattering (slowing down) process may be described

by elastic or inelastic scattering.

Classical "billiard ball" elastic scattering model:

This is a two-body final constellation elastic scattering

model of a neutron from a free nucleus and is considered to be a

satisfactory approximation of the elastic scattering when the

kinetic energy of the incident neutron is greater than about ten

times the equilibrium kinetic energy of the target nuclei (Carter

and Cashwell, 1975). Details for derivation of this model can be

found in virtually every book in the field of nuclear engineering.

It should be understood that this representation is derived with the

target nucleus at rest, which is not a serious limitation when the

neutron speed is considerably greater than the thermal agitation

velocities of the target nuclei (a good assumption for neutron

energies greater than about 2 eV). The neutron energy E', in the
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laboratory system, after being scattered from a stationary nucleus

of mass A (units of neutron mass) through a polar angle 0 (relative

to the incident neutron direction 0), in the center-of-mass system,

is related to the initial incident neutron energy E by the equation:

E" A2 + 2A cos* + 1
1T (A + 1) 2 (2.1.5-12)

where A = M/m, M and m are the mass of the scattering nucleus and

the neutron, respectively. The corresponding polar scattering angle

0 in the laboratory system can be obtained as:

A cos* + 1
rose = (2.1.5-13)

4A2 + 2A comp + 1

In the special case of collisions with hydrogen (A-1) and for

an isotropic distribution of 0, the scattered neutron energy is

uniformly distributed in the interval (0 to E) and the scattering

angle 0 in the laboratory system is given by:

11 + cos*
coseH 2

(2.1.5-14)

The angular distribution of elastically scattered neutrons,

when viewed in the center-of-mass system, can be assumed to be

isotropic at low incident neutron energies for all elements. This

approximation deteriorates with increasing neutron energy or

increasing target nucleus mass. Above about 0.1 MeV, elastic

scattering is anisotropic for most nuclei with the exception of

hydrogen, where it can be assumed to be isotropic for energies of

the incident neutron up to about 15 MeV. The scattering in the



30

azimuthal angle 0 to the incident neutron direction is always

uniform unless the scattered neutrons are polarized (possessing

uniform up or down li spin). Thus, the angular distribution for

elastically scattered neutrons is given by:

p(0,e) c10 de = A sing d4 dO (2.1.5-15)

In the case when the angular distribution of the scattering

angle is not isotropic, the anisotropic scattering law (supplied in

file 4 in ENDF/B-V)(Kinsey, 1979) is represented for a specific

reaction type as discrete values at a series of incident neutron

energies.

Discrete level and evaporation inelastic scattering models:

Treatment of the inelastic scattering reactions is handled

through the use of the discrete level energy loss model that assumes

the scattering to be isotropic in the center-of-mass system. This

model uses values of the inelastic excitation level, energies along

with a probability for each one. If the neutron energy is below a

certain excitation energy, that level cannot be excited. Therefore

this reaction is a threshold reaction and cannot take place unless

the kinetic energy of the colliding neutron exceeds this energy

threshold.

The excited nucleus may be elevated to one of a number of

possible levels; the levels are fairly widely spaced and have well

known thresholds and probabilities of excitation at a given

incident neutron energy. For such discrete levels, the incident
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neutron energy degradation can be represented by (Schaeffer, 1973):

i = 1 , [ 1+A2(1--1) +2A cosip (1-1)1/2] (2.1.5-16)
(A+1 )

where E' = the neutron energy after being scattered

E = the incident neutron energy that will result in the

excitation of a discrete level

E = the excitation energy required to excite the

discrete level in question

0 = the scattering angle in the center-of-mass system,

and

A = the scattering nucleus mass ratio (units of neutron

mass)

The corresponding laboratory polar scattering angle 8 is given in

this case by

1 + A cos (14)1/2
cose = (2.1.5-17)

1\11 + A2 (1-4) + 2A cos p (1-i) 1/2

For large A, an approximate relation for the energy after scatter is

E" = E 6 (2.1.5-18)

As the excitation energy increases, the levels become

increasingly more closely spaced, until the individual levels are no

longer resolvable at the "continuum threshold". The probability for

the target nucleus to be excited to an infinitesimal energy band
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within the continuum is well-known as a function of neutron energy.

The probability distribution that a neutron will be emitted with an

energy between E' and E'+ dE' when the incident neutron energy is E

for inelastic scattering model, derived from the liquid-drop nuclear

model, is given by (Lamarsh, 1972):

P(V) = ..11;

with a nuclear temperature

T = 3.2 \TI (MeV)

(2.1.5-19)

The angular distribution of inelastically scattered neutrons

is typically isotropic in the center of mass system for neutron

energies up to approximately 10 MeV.

2.2 Gamma Rays

2.2.1 Prompt Gamma Ray Source and Associated Gamma Ray Spectra

The radiative capture reaction is the prime source of capture

prompt gamma rays. This reaction can take place at all incident

neutron energies of interest here, although the probability is

usually highest at thermal energies. Upon capture of a neutron into

the nucleus, the nuclear binding energy of the neutron to the

nucleus, which ranges from 2.2 MeV in hydrogen to 11 MeV in nitrogen

(Garrett et 0., 1973) is usually divided among 1 to 5 photons. The

spectra of most nuclides are fairly complex with discrete energies

ranging up to the value of the neutron binding energy of the

compound nucleus. The Porter-Thomas distribution implies that the
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spectrum results from widely fluctuating transitions to a set of

final nuclear states, and thus each nuclide will display a spectrum

unique to the thermal neutron capture for that specific nuclide.

The elemental spectra will be comprised of the weighted

contributions for the several naturally occurring isotopes of that

element. The shape (relative intensities) of the prompt gamma ray

line spectrum is dependent upon the incident neutron energy

(Senftle et al., 1974).

Therefore, the spatial and energy distribution of the neutron

field, caused by one or more of the variations in the type and

abundance of major constituents, density changes, moisture content,

presence of low-abundance strong neutron absorbers (neutron

poisons), and temperature changes, affects gamma ray emission and

absorption. Measurements of prompt gamma ray intensities reported

by Lone et al., (1981) are made at thermal energies, and serious

errors can result from applying these data to epithermal captures.

This is especially significant in media for which the fraction of

epithermal capture is appreciable. Thus, radiative capture is an

elementally and energetically specific reaction. In principle, the

gamma rays following the neutron capture can be identified by energy

and, provided there exists an appropriate calibration, the

concentration of the associated element can be determined.

2.2.2 Quantitative Representation of Gamma Ray Attenuation

Analogous to the concept of macroscopic cross sections for

neutron interactions, the probability that gamma ray event s takes



34

place per unit path length in the material is defined to be As. The

sum of probabilities for all possible events that might occur

throughout the path of the gamma ray defines the probability per

unit path length (the linear attenuation coefficient) that the gamma

ray photon is removed from the beam :

A Ape ACS App

where the customary nomenclature for the three major gamma ray

mechanisms of interactions are used.

The number of uncollided photons (I) passing through a

distance x in a medium with a linear attenuation coefficient A is

then given in terms of the original unattenuated intensity I0 before

the transmission as:

I = Io e-" (2.2.2-1)

To overcome the drawback that the linear attenuation

coefficient varies with the density of the absorber, even though the

absorber material is the same, the mass attenuation coefficient is

widely used and defined as (A/p). Thus, for a given gamma ray

energy, the mass attenuation coefficient does not change with the

physical state of the absorber. For instance, (A/p) for water does

not depend on the absorber being in the liquid or vapor state.

The mass attenuation coefficient of a compound or mixture of

elements can be calculated from:

wiE 3)
compound i

(2.2.2-2)

where wi is the weight fraction of element i in the compound or
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2.2.3 Interactions of Gamma Rays
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Since in this work the detailed transport and tracking of

gamma rays is not performed, only their penetration is of interest.

A brief qualitative review of the major mechanisms of interactions

of gamma rays in matter is discussed, enough to clarify the concept

of the attenuation coefficient that is used to quantitatively

describe the response of interest in a radiation detector, namely

the photopeak.

Although a large number of possible interaction mechanisms are

known for 7-rays in matter, types can be confined to three

mechanisms that result in the partial or complete transfer of the

7-ray energy to an electron, thus resulting in abrupt changes in

the gamma ray history, in that the photon either disappears entirely

or is scattered through a large angle with a decrease in energy.

A. Photoelectric absorption

The incoming photon interacts with the atom of the material as

a whole, in which case the photon completely disappears and an

energetic photoelectron is ejected from one of the bound electron

shells of the atom. This interaction cannot take place with a free

electron.

B. Compton scattering

The incoming photon interacts with an atomic electron with the
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result that the 1 -ray is deflected with respect to its original

direction and the electron is recoiled. All angles of scattering

are possible.

C. Pair production

This is a threshold reaction, possible to take place when the

energy of the incident 7-ray exceeds twice the rest mass energy of

an electron (1.022 MeV). In the interaction, which must take place

in the coulomb field of a nucleus, the photon disappears and is

replaced by an electron-positron pair. The excess energy above the

1.022 MeV threshold is shared by the created e-e+ pair. The

positron will subsequently annihilate after slowing down in the

material and produce two annihilation photons of 0.511 MeV energy

and opposing directions.

2.2.4 Gamma Ray Build-up

The intensity of the gamma radiation from a source may be

considered to be composed of primary (uncollided) and scattered

radiations. Buildup factors have been calculated or measured for

various gamma ray energies and for various absorbers and sources

(Cember, 1978) to account for the contribution due to scattered

radiations. The use of this buildup factor is not applicable in

this work since it is considered that only the unscattered capture

gamma rays will contribute to the full energy peaks, and the

scattered gamma ray contributions represent a background under the

peaks that can be extracted.
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3. REVIEW OF MONTE CARLO TECHNIQUES IN NEUTRON TRANSPORT

Monte Carlo is a statistical procedure wherein the expected

characteristics of a neutron population in an assembly are estimated

by drawing samples from a large number of histories of neutrons

whose individual "lives" are simulated and tracked by a computer

code.

3.1 General Characteristics

The probabilistic Monte Carlo method essentially consists of

following individual histories of the neutron of interest from

"birth" to "death" by randomly sampling parameters such as the

possible angles, path lengths, and energies from the appropriate

probability density functions of the pertinent interactions with

matter. The yield or the number of scored events of interest

divided by the total number of histories (for a large number of

histories) is an estimate of the probability of occurrence of the

phenomenon of interest. "Crude" or hit-or-miss Monte Carlo

techniques use the above-mentioned procedure. If a sufficient

number of particles are tracked, parameters of interest can be

scored with acceptable statistical errors, as discussed in Section

3.1.2. It can be seen that a large number of histories is usually

required to attain a reasonable accuracy. In fact, for events of

interest that have a small probability of occurrence, this number

may be so large that it precludes the use of this method, since much

of the time would be spent, for example, tracking particles which
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are moving in regions where there is a very low probability of their

influencing the detector count rate (the parameter being sought).

However, a Monte Carlo approach can deal with complex source

distributions over space and energy, with asymmetric geometries

through which the particles move, and with the direct usage of

detailed nuclear data (not averaged over energy groups). A class of

techniques referred to as variance reduction is useful to reduce

the number of histories required to attain a given accuracy so that

most of the computing time will be spent tracking particles which

have a good chance of contributing to the detector counts.

3.1.1 Variance Reduction Methods

From the point of view of particle transport, these methods

may be classified into:

A. Exact analytical replacement

Part of the problem under consideration is solved analytically

or experimentally and used in the problem to replace the Monte Carlo

simulation of that part. For instance, the mechanics of

interactions and their approximations by Monte Carlo methods inside

a detector's effective volume that result in a desired response may

be bypassed and replaced by an experimentally determined energy-

dependent detector efficiency with which to multiply the incident

fraction of radiation to yield the desired response.
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B. Restriction of the range of the sampled variables

The possible range of the values that a sampled variable can

take is restricted to within a selected range expected to contribute

to the desired result. To prevent biasing errors, the weight of the

particle is changed accordingly. The effectiveness of this method

is discussed in Appendix A. Generally, "common sense" knowledge of

the phenomenon in question determines whether this method should be

used. For instance, common sense suggests that the backscatter of

radiation is limited to a thickness beyond which it is known from

experimental evidence that a negligible contribution is made.

C. Mathematical method

This is a purely mathematical technique and usually has no

direct physical basis. Among the examples of this method are

specific cases of splitting, stratified sampling, Russian Roulette,

and variable transform such as the exponential or linear

transformation.

3.1.2 Statistical Fluctuations

Because of Monte Carlo's inherently statistical nature, the

desired information has to be obtained from a statistical set of

case histories.

The "expected" or "true mean" value <r> of a variable of

interest r can be estimated by Monte Carlo as the average 7N over N

case histories of the statistical ensemble, that is:
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(3.1.2-1)

This estimate, TN, is expected to approach <r> as the number

of case histories N increases. To determine how close TN is to <r>

for a given value of N, the central limit theorem provides an

estimate such that as N becomes very large, the probability that

ITN - <r>I will be less than a small number c is given by:

411/a

P (I <7> I <e) z 1 iM\17-,r e-t /2 dt
r 2

N-no " 0

where a2
<72> (<7>)2

and <r2> is the expected value of:

72 = 1 im ral E T2
N-c0 " i4

(3.1.2-2)

(3.1.2-3)

(3.1.2-4)

The probability that
I

TN - <r> I will be less than e becomes

unity for a fixed c as N-.(0, since 5 exp( -t2/2) dt = (172)1/2
0

provided that <r> and <72> exist.

Moreover, for a particular value of N, there is an e such that

p(ITN <r>I<e) is, say, 0.99; if it is desired to reduce this

value of E in half, it is then necessary to process four times as

many case histories so that eiR, and thus the value of the right

hand side of Equation (3.1.2-2), remains constant. It is evident

from Equation (3.1.2-3) that it is desired to have the variance of

T, namely a2, as small as possible if 77N is to be close to <r>.

In practical applications, with a limited number of case

histories, the variance of Equation (3.1.2-3) can only be
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(3.1.2-5)

The variance reduction methods mentioned in Section 3.1.1 are

to be used to obtain a smaller a.

3.2 Random Walks and Integral Equations

This section deals with transport of radiation and its

simulation by transcription of the natural stochastic processes into

a numerical Monte Carlo sampling procedures. The behavior of such

simulation is a kind of random walk to integral equations.

3.2.1 Modular Outline

The modular steps needed to carry out a Monte Carlo simulation

of radiation transport are:

A. Formulation of a description of the sources of radiation

and their interpretation as probability density functions

that can be sampled to specify initial values of the phase

space coordinates in the simulation.

B. Formulation of the tracing of radiation path and the

description of interactions between radiation and the medium,

including sampling the distance traveled and pertinent

probabilities to determine whether and what kind of radiation

continues the process.

C. Repetition of module B, until either the radiation

disappears or become insignificant.
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D. During the iteration of module B, the events of interest

are counted and recorded as results.

Steps A, B, and C, in effect, are rules for carrying out a

random walk of a radiation particle that moves within a spatial-

energy-direction phase space.

3.2.2 Descriptive Random Walk

To describe the random walk mathematically, one needs to:

1 Characterize the space on which the walk is defined.

2. Describe the probability density function (pdf) of the source,

say S(x).

3. Define the stochastic rule for moving from one point, say, x'

to another, say, x (this will be a density function T(x'.x) for

sampling a new point x when the previous point of the walk was

x'). The probability density function T has to satisfy:

T(x'-)x) ?. 0

1 T(x' -'x) dx s 1
x

T is not normalized to permit the probability that the walk

terminates at x' with probability (1-fT(x'-x) dx).

4. Designate some variable of interest that is desired to be

determined.

A general variable of interest would be the density of

arrivals at x, namely r(x). That is, summing over all steps of the

random walk and averaging over all possible walks, the expected

number of times that a point is sampled within a region 1 is
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jEr(x) dx.

The walk starts with an x, say xo, sampled from S(x). Then if

not absorbed, the neutron moves to xl, sampled from T(x0-)(1). In

general T(xn_i xn) governs the n-th move. The arrival at x can

occur either because it was sampled from S or because the neutron

moved to x from an earlier point, say, x'. The total average density

at x is the sum of these two:

r(x) = S(x) + fT(x' -ix) r(x') (3.2.2-1)

The integral term of the right-hand side of Equation (3.2.2-1) is

the average density of arrival at x from the next earlier arrival,

where r(x')dx' is the chance that there was an arrival in dx', and

T(x'-.x) is the probability that this arrival was followed by a move

to x. One integrates over x' to include all possible positions of

the previous move. This equation describes the average behavior of

the random walk.

T(x' x) can be factored into:

T(x' -.x) E (1-4,(x') ) 27(x') T(x',x) (3.2.2-2)

with $(x') E capture probability at x'

E(x') is a normalization factor defined by

E(x') =
11-,(x')

T(x',x)dx

and T(x',x) is a normalized collision kernel given by

(3.2.2-3)
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JT(x-,x) dx-
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(3.2.2-4)

The integral in Equation (3.2.2-1) can be solved using a

Neumann expansion as:

r(x) = JCIX0ldX1.. idXn_i S(XD)T(XD,Xj)
n=0

(3.2.2-5)

and a functional G = $g(x)r(x) dx can be expressed as:

where

G = Iclx0.. IdxnS (x0) [1-4' (x0) yr (x0, xi) [1-*(xn_1) ]
n=0

T(Xn_1,Xdii(Xn)(0(X0..xn) (3.2.2-6)

_ g()w(x0..xn) _ t(xx11 _(x0)

These random walk sampling steps are used to evaluate the

functional G as:

(1) sampling S(x0) for the initial coordinates x of a

particle history.

(2) sampling il(xo_i) for termination at the n-th collision.

(3) sampling T(xo_i,xo) for the next collision point, given

that the chain continues.

w(x0..xo) is the "score" for such a history in the Monte Carlo

calculation of G. Thus, G is the expectation value of the score,

where the expectation implies averaging over all stochastic events

that underline the random walk. Therefore, G can be estimated by



sampling a number of histories, computing w for each history, and

averaging these scores as:

G -=*-- Fil E woct,..x.0
i
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(3.2.2-7)

where xio,.., xio are sampled from distributions given by S(x0),

T(xo..1,xo), and n is determined by Ilf(xo).

In a sense, since the outcome is a series of points xo, xl,

x2..., the random walk can be regarded as a device for sampling the

function r that is the solution of Equation (3.2.2-5). The

correctness of the sampling is true asymptotically.

3.2.3 Boltzmann Transport Equation

Although particle transport by the Monte Carlo method can be

performed without even referring to the transport equation, the

following discussion is thought to give an insight into the

simulation.

The time-independent integral transport equation for the

neutron angular flux can be written (Bell and Glasstone, 1982) as:

I (r,E,6) = 7 e-c(rAxii) q(r,E,Q) dR (3.2.3-1)
0

where exp(-a(r,R,E,O)) is the attenuation factor by which the flux

is reduced in going through distance R to reach point r, a is the

optical thickness which is a measure of the effective absorption

between points r and r' (separated by distance R), and q(r,E,O) is

the total rate at which neutrons appear at (r,E,O) as a result of
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that is:
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q(r,E,f) = I fis

§(r',E",6') dE"dii+S (r,E, 6) (3.2.3-2)

where Es(r',E'-.E0-,0) is the double differential scattering cross

section at r' that characterizes scattering from an incident energy

E' and direction 0' to a final energy E in dE and direction 0 within

the infinitesimal solid angle &I. Therefore, the expected angular

neutron collision density rate at which neutrons suffer collisions

in dr about point r, of neutrons of energies E between E and E+dE,

moving in direction U in a differential solid angle diz is given by:

f(r,E,6)drdEd6 = It(r,E)§(r,E,6) drdEd6 (3.2.3-3)

where S(r,E,O) dr dE dig is the rate of source neutrons appearing in

dr about r, dE about E, and d0 about 0. Substituting Equations

(3.2.3-2) and (3.2.3-3) into Equation (3.2.3-1) yields the time-

independent integral transport equation for the collision density

rate as:

f (r,E,Q) = jaR zt(r,E) fdE'fa8 s
(r', E -+Q)

(r',E)

f(r,E",6')+S(r,E,6) (3.2.3-4)
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This equation can be rewritten in a form similar to Equation

(3.2.2-1) with:

x as (r,E,0), the particle phase space coordinates,

S(x) as the first-flight collision rate density due to the source,

T(x' -x) as the next-flight collision rate density at x due to

collision at x', and

r(x) as the particle collision rate density.

The functional of Equation (3.2.2-6) is the detector photopeak

response for capture gamma rays, given by:

G = fdr idE 5d6 Pscore f(r,E,S2) (3.2.3-5)
o 41T

where Pscore, discussed in Section 5.5, is the probability that an

interaction within the capture gamma ray source region (the

integration fdr is carried out over the core sample volume) will

score favorably under the detector full energy photopeak.

The steps of the random walk sampling are applied to obtain an

estimate of G.

The sampling scheme can be interpreted physically as first

sampling the initial particle coordinates (ro,E0,00) by sampling the

source S(r,E,0). Then the distance to the first collision R is

determined by sampling:

cc(ro,R,E0,80)
Et (ro,E0) e

The sampled distance R along with the (r0,00) values are used to

determine the location of this collision as:
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r = ro R60

One could sample from the capture probability:

ii(ro,E) =
(ro,E)

to see whether the particle is captured in the collision so that the

history should be terminated. In practice, it is very inefficient

to terminate histories when a capture event is sampled.

Alternatively, the particle weight can be reduced or the score

increased by the non-capture probability:

xs (ri , E0)
[1 (xi) =

Et (ri , ED)

That is, all particles are forced to scatter at rl. Next a

new particle energy El and flight direction 01, are sampled from the

scattering distributions. The energy is sampled from:

1 I del ES (E0-0E1, 604204nEs (ri , ED)

while the flight direction 01 is sampled from

ES ( E0-+E1 , )

jdf2 is (ED -'E1, i20 -4i21)

This random walk procedure is applied to successive collision

events until the particle history is terminated (see Section 5.6)

because the particle's weight has been reduced below some cutoff

value.
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4. DESCRIPTION OF THE SEAFLOOR SEDIMENT CORE MONITORING SYSTEM

In this chapter, a detailed desCription is presented of the

proposed and modeled monitoring system geometry and composition,

with emphasis on construction materials, compatibility, and

suitability in this work. This design is intended for a prototype

for exploratory use.

4.1 General Configuration

The monitoring system is designed to analyze a cylindrical

vibracore sample from the seafloor sediment by the NCPGA technique.

The rapidity of this technique makes it feasible to pass an intact

(full length) core through an assembly that contains the Cf-252

neutron source surrounded by water (moderator) to slow down the

neutron energies to be more effective in inducing (n,7) reactions

within the core. The characteristic gamma rays, resulting from

neutron capture interactions, are detected and recorded by a Ge

detector and a multichannel analyzer spectrometer. The passing of

the core through the monitoring system is done in pause and count

steps. The gamma ray spectra are expected to be complex but contain

distinguishable peaks. In this work, it is desired to simulate this

monitoring system and to predict the functional dependence of the

characteristic (photopeak) energy peaks on the elemental

concentrations within the core sample.

Such a monitoring system, incorporated in a seagoing survey

vessel and capable of analyzing seafloor sediments while the vessel



50

is underway, can be used to give guidance to the ultimate economic

value of seafloor sediment deposits.

The basic geometrical configuration, shown in Figure 4.1-1,

consists of a large cylindrical container (100 cm long and 100 cm in

diameter) that houses the cylindrical vibracore sample of 7 cm

diameter and of full intact length of the extracted vibracore, the

Cf-252 source, and the detector assembly inside tubular

constructions that protrude inside the container. The internal

space is filled with a moderating material. A hydrogeneous

moderator may not be optimum, since at distances further than a few

centimeters from the source, neutron absorption by hydrogen becomes

significant (Greenwood, 1978). A relatively pure thermal neutron

flux may be obtained in moderator materials with a diffusion length

greater than the slowing down length. Heavy water is a prime

choice; however, since it is quite expensive, graphite or pure water

may be an alternative.

The exterior dimensions of the container are mainly determined

by the radiation dose limits to personnel during the routine

handling operation, the most hazardous being during the transfer of

the neutron source between its storage container and its operational

location.

The sample tube extends along the entire length of the

container and its axis could be located anywhere within the

container. The only restriction is that it is co-linear with the

major axis of the cylindrical container; this provision enables one

to run the computer program with different relative locations
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Figure 4.1-1 The proposed monitoring system showing

internal configuration.
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between the three tubes to examine the most effective positioning of

the sample, source, and detector. The tube is accessible from the

outside to accommodate a cylindrical core sample, which is usually

encased in a lucite casing. The core sample is longer than the

container cylinder and can be maneuvered manually or mechanically to

be passed through the sample tube (it might be required, for good

counting statistics to move the core sample in discrete intervals

and pause to accumulate the required counts in between moves). The

sample tube is lined on the inside with two sleeves in the form of

an annular sandwich that is filled with a thin annular effective

neutron absorber. The sleeves can be moved along the internal

length of the sample relative to each other to form a variable

length window that defines a cylindrical section of the core sample

to be effectively exposed to the neutron flux. Thus, more

information about the distribution of elements along the vibracore

sample length can be gained by consecutively monitoring increments

of the core. Marine mineral deposits generally occur as thin layers

widely spaced in the seabed sediments, since they are often formed

as a result of deposition processes.

The source tube (21 cm long and 6 cm diameter) extends

partially inside the container cylinder; its inner end is closed and

sealed to prevent water leakage into the internals. The tube is

accessible from the outside of the container. The Cf-252 neutron

source (encapsulated) is placed within a machined well along the

axis of a cylindrical mass of lead shield. This shield helps reduce

the background gamma radiations directly from the source. This
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neutron source and its encapsulation contain details that are not

significant in this work. The capsule is modeled to be represented

by a stainless steel 316 solid capsule of 5 cm length and 0.5 cm

radius with a spherical Cf-252 source, of 0.25 cm radius, at its

centerline located at 1 cm from the end. Figure 4.1-2 shows an

actual capsule along with the approximated model. The rest of the

internal of the tube is occupied by a cylindrical bulk of shielding

and moderating material (polyethylene).

S. S. 31

252
Cf

1 cm
I

5 cm

Modeled Source

O

120 UNC 'NO

O

L-0.500

Actual Source

WELO ALL AROUND

OUTER CONTAINER

0.0. S STEEL

INNER CONTAINER
0.36 0.D. STEEL

Al TUBE LINER
0.250 0.0 TO
HOLD PELLET
IN PLACE

CF SOURCE
(IN PRESSED
AI PELLET)

Figure 4.1-2 The industrial Cf-252 neutron source
capsule and the adopted model.

The detector tube (74 cm long and of 14.5 cm diameter) extends

partially along the inside of the container cylinder and is
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positioned to be on the opposite end of the container from the

source tube. Similar to the source tube, it is closed and sealed at

the inner end and is accessible from outside the container. The

innermost end of the tube contains a thin wafer of a neutron

absorber (Cd, 0.3 cm thick) to reduce the intensity of gamma rays

induced by neutron reactions in the detector housing. Since it is

believed that the neutrons are well thermalized at this location,

cadmium was used to accomplish this task. The radius of the wafer

is the same as the inner radius of the tube. Next to the Cd wafer

is a conical cylindrical shield of lead, intended to shield against

the neutron capture gamma rays in the Cd wafer to prevent their

contribution to the background and interference in the detector, and

at the same time, to permit capture gamma rays coming from the core

sample to arrive unshielded. The smaller radius of the conical

cylindrical Pb shield is equal to the radius of the detector casing

which is located next to it. The aluminum encased detector and its

electronics are represented and modeled as shown in Figure 4.1-3.

The detector extends inside the tube at the end of a copper cold

finger. The annular space in between the conical cylindrical Pb

shield, the detector and the inner surface of the detector tube is

occupied by polyethylene to center the internals along the major

axis of the tube.
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0.2

Detector tube inner wall

7.5

Figure 4.1-3 The detector proper and its approximation
as modeled in this work.
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4.2 Selection of Materials

.Structural materials, i.e., the encapsulation, container,

moderating, shielding materials, etc., are potential capture gamma

ray sources which can cause a spectral interference that degrades

the signal to background ratio. Thus, materials have to be chosen

to minimize this interference, while considering nuclear properties,

which affect the neutron economy, and mechanical fabrication

constraints. For instance, there exists an excited state of oxygen

at 6.14 MeV produced by inelastic scattering. The full, single, and

double escape peaks due to inelastic scattering in oxygen almost

coincide with three of the chromium capture peaks at 6.14, 5.62, and

5.12 MeV, respectively.

The criterion of "interference parameter" ST, as applied by

Senftle et a7., (1971) was used to select low-background materials.

ST is defined to be the sum of discrete energy sensitivity indices

SE over the energy range from 3 to 10 MeV as defined by Duffy et

a7., (1970) and is proportional to the number of gamma rays per unit

incident neutron flux per unit mass. Therefore, the interference,

when defined as above for construction materials of any system, is a

function of the total amount of the individual materials present in

the system. Thus,

10 MeV 10 MeV

ST = E s= E I-
E A

3 3

(4.2-1)

where SE = sensitivity index for energy E

IE = the gamma photon yield (photons/100 n captured)
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= the elemental thermal capture cross section
(barns), and

A = the atomic weight of the element (g/mole)

Table 4.2-1 lists interference parameter values for some elements of

interest in the proposed monitoring system.

Small ST values in an element without prominent peaks

indicates a minimal interference in the capture gamma ray spectrum.

A sensitivity index of 0.01 and IE > 1 is considered a useful rule

of thumb limit (Duffy et al., 1970) to assess the usefulness of

analytical analysis below which the interference contribution may be

overlooked.

Element
Interference
parameter

ST

Sensitivity
index

SE
max

C 0.028 0.019
Mg 0.291 0.106
Al 0.633 0.175
Mo 0.724 0.096
Ge 1.50 0.069
Na 2.62 0.596
Fe 4.66 2.31
Cr 5.76 1.44
Cu 5.96 1.72
Ni 9.02 3.25
Ti 16.54 6.87
Mn 23.4 2.91
Cl 78.3 14.8
Cd 837.3 75.0

Table 4.2-1 The interference parameter along with the
maximum sensitivity index SE in the range 3-10 MeV
for some elements of interest.
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The californium encapsulation can be custom fabricated to meet

any constraints, although these constraints must be balanced with

safety and service requirements. Iron and chromium have a large

number of capture gamma rays with sensitivity indices above 0.01,

whereas zirconium has only one gamma line with an SE > 0.01.

Therefore zirconium alloys offer low interference and at the same

time have acceptable resistance to chemical and mechanical damage.

In the case that the detector material and the associated

hardware are exposed to a significant neutron flux, the capture

gamma rays resulting from the detector crystal and the hardware

could be significant and one should endeavor to minimize such

interference either by reducing the neutron flux in the proximity of

the detector or through selective choice of the materials, or both.

The detector cold-finger heat conductor to the liquid-nitrogen

cryostat in a Ge detector is generally fabricated from copper for

its high thermal conductivity; unfortunately copper has moderately

high interference parameters due to a significant number of very

prominent peaks. A trade-off between thermal and interference

properties has to be considered, especially if copper is one of the

elements whose response is of interest.

Calculations by Nichols (1968) indicated that polyethylene

moderators give the best peak thermal neutron flux up to about 10

centimeters from a point Cf-252 source. The 4.95 MeV capture gamma

ray from the 12C(n,7)13C reaction may cause interference for some

experiments. The 2.223 MeV capture gamma ray of hydrogen, when a

hydrogenous moderator is used, is considered below the energy range
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of interest and can usually be ignored, although these gamma rays

can cause significant personnel exposure rates outside the

moderator-shield assembly and thus should be considered from that

point of view. In water, the aforementioned inelastic scattering

from oxygen may cause undesired interference. Small amounts of

zirconium hydride in the immediate vicinity of the source could lead

to a significant increase in the thermal neutron flux, but excessive

amounts of zirconium might also raise the capture gamma ray

background below 6 MeV to undesirable levels.

The thermal neutron shield in the vicinity of the detector and

its surroundings (e.g., electronic components and copper wires)

could be 6Li or cadmium. The latter has the disadvantage of

excessive capture gamma rays, but can be shielded by appropriate

geometry. For the former shield, one has to consider the 6Li(n,a)3H

exothermic reaction.

In general, the best materials to be used will be dictated, to

a certain extent, by the elements one wishes to measure and the

neutron flux in the proximity of the material in question during a

given experiment.

4.3 Choice of the Detector

The energy spectrum of capture gamma rays generated by the

sample consist of a series of isolated narrow lines whose energies

are accurately known. The derivation of elemental concentrations is

based on the absolute intensities of these peaks. In fact, the

identity of a particular gamma ray in a spectrum is determined to
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result from a specific capturing element when it can be shown that

the intensity per unit mass of the capturing element is constant or

that the ratio of intensities of two peaks is constant for several

samples of the elements obtained from different sources.

In the capture gamma ray spectrum, certain gamma ray

interactions in the detector form a background continuum under the

isolated peaks (lines). The lines become closely spaced due to the

number of contributing elements; the single and double escape peaks

from high energy gamma rays further crowd the spectrum. For

instance, the primary capture lines from Ti are 6.7597 MeV and 6.418

MeV, which are difficult to separate from interference peaks when

there is a small Ti concentration present. The single escape peak

of Fe (7.2789 MeV) interferes with the Ti 6.7597 MeV peak, and the

double escape peak of the Cl 7.790 MeV capture peak further

complicates the interference. Also, the double escape peak of the

Cl 7.4138 MeV peak interferes with the Ti 6.418 MeV peak. Table

4.3-1 lists the prominent capture gamma ray energies from all the

materials used in the monitoring system in order of increasing

energy to illustrate the energy interference effects.

Because of this complex spectra of capture gamma rays, a

detector with high energy resolution is essential, thereby

necessitating the use of a solid-state detector. High resolution

germanium detectors have the drawback of having relatively low

efficiency for high energy gamma rays, such as encountered in

neutron capture where the gamma rays released following the capture

process have energies up to 10 MeV. In addition, these detectors
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Branching Ratio
(7/100 capture)

Energy
(MeV)

Responsible
Element

82.0 2.1844 0

100.0 2.223 H

5.55 2.4149 Na
14.78 2.5176 Na
10.15 2.8627 Na
39.0 3.028 Ge
8.35 3.0981 Na

18.0 3.271 0

14.95 3.588 Na
32.10 3.6889 C

5.38 3.8785 Na
18.63 3.982 Na
14.94 4.4189 Ca
5.23 4.8824 Ti

67.64 4.9452 C

5.17 5.6167 Na
5.50 5.7152 Cl

9.02 5.9203 Fe
9.0 6.0184 Fe

20.0 6.1108 Cl

22.18 6.3954 Na
30.13 6.4183 Ti

38.89 6.4199 Ca
8.01 6.6195 Cl

5.04 6.7364 Pb
24.17 6.7597 Ti

10.79 6.837 Ni

5.33 7.2787 Fe
8.09 7.3062 Cu

94.06 7.3677 Pb
10.42 7.4138 Cl

28.51 7.6311 Fe
15.71 7.6366 Cu
24.13 7.6454 Fe

8.55 7.7901 Cl

8.19 7.8189 Ni

30.82 7.9145 Cu
16.98 8.5334 Ni

37.74 8.9988 Ni

Thermal neutron capture cross sections(barns):
H:0.332, C:3.37x10-s, 0:2.7x10-4, Na:0.4,
C1:33.2, Ca:0.43, Ti:6.1, Fe:2.55, Ni:4.43,
Cu:3.79, Ge:2.3, Mo:2.65, Cd:2450.,and Pb:0.17

Table 4.3-1 Major capture gamma rays from neutron
captures in various elements of the monitoring system.
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are expensive and unable to operate for a long period in an intense

fast neutron flux. Stelson et al. (1972) showed that -108 fast

neutron/cm2 will damage a coaxial Ge(Li) detector, which suffers a

loss of resolution when used at high counting rates, with a

progressive loss of resolution as a result of radiation damage.

Reliable large radiation-hardened Ge detectors, such as the n-type

hyperpure germanium detectors that are not damaged by recycling to

room temperature and have relatively low sensitivities to neutron

damage, are now available. Such a detector with a carefully

designed shield that maximizes the attenuation of the fast neutrons

with only a small impact on the neutron capture gamma rays from the

sample is an excellent choice.

4.4 Core Sample

The geometry of the core is adopted to be a standard offshore

drilled core, although a cored sample limits the potential of the

nuclear technique. A larger (more representative) volume can be

investigated in an in-situ borehole configuration. The composition

of a typical core is simulated based on reported elemental analysis

(Peterson and Binney, 1988) of Oregon continental shelf samples,

along with some assumptions that are thought to be reasonable.

The core matrix is assumed to be Si02 and salt water (typical

seawater with 35 ppt NaCl). The silicon dioxide density is taken to

be that of shale (sandstone) rocks (2.65 g/cm3). The salt water

density is 1.02072 g/cm3. The core is considered to be 90 14/0 Si02

and 10 11/0 salt water, which yields a bulk density of 2.488 g/cm3.
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The core sample is assumed to be neutronically homogeneous, i.e.,

any heterogeneity in the distribution of elements within the sample

is within the range traveled by a neutron.

A typical composition of shale is given in Table 4.4-1.

Element Weight percent

H 0.28
C 0.72
0 49.9
Na* 1.19
Mg* 1.6
Al* 8.79
Si 27.53
Ca* 1.52
Ti* 0.47
Mn* 0.07
Fe* 4.82

Table 4.4-1 Typical composition of shale

The relative abundance of Mg, Ti, Cr, Mn, Fe, Na, Al, and Ca

in Oregon continental shelf sample is estimated in Table 4.4-2.

Element Relative abundance

Na
Mg
Al

Ca
Ti

Cr
Mn
Fe

0.0053
0.1239
0.0354
0.0531
0.1947
0.0425
0.0142
0.5310

() indicates a normalized group

Table 4.4-2 Estimated relative abundance of selected
elements in Oregon continental shelf samples.
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The elements in Table 4.4-2 and their relative abundance are

used to replace the elements that are marked by an asterisk in Table

4.4-1. The Na, Cl, H, and 0 in salt water are added to Table 4.4-1

and normalized to yield an estimated core sample composition as

shown in Table 4.4-3.

Element Weight percent

H 1.0825
C 0.6684
0 52.8541
Na 0.9503
Mg ** 2.1292
Al 0.6083
Si 25.5591
Cl ** 1.7903
Ca 0.9125
Ti** 3.3458
Cr** 0.7304
Mn** 0.2440
Fe** 9.1251

** These elements were changed sequentially
to predict the photopeak responses as a

function of elemental concentrations.

Table 4.4-3 Estimated elemental composition of the
(reference) core sample.

The elements, marked with double asterisks in Table 4.4-3 are

those whose prominent capture gamma rays are estimated at the

detector. The energies and branching ratios (yields) are given in

Table 4.4-4 based on thermal neutron captures (Lone et al., 1981).
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Element Capture /-ray
Energy (keV)

Branching Ratio
(//100 neutron
captures)

Mg

Cl

Ti

Cr

Mn

Fe

585.20
1808.90
2828.10
3916.70

5715.26
6110.88
6619.53
7413.80
7790.16

341.70
1381.48
6418.35
6759.78

835.10
7939.30

7057.81
7243.79

352.18
6018.48
7631.13
7645.45

25.55
29.97
42.51
48.62

5.50
20.00
8.01
10.42
8.55

26.27
69.08
30.13
24.17

26.86
26.97

11.06
12.13

11.70
9.00

28.51
24.13

Table 4.4-4 Selected capture 7-rays emitted
from the elements of interest along with
their branching ratios.
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5. OVERVIEW OF THE NEUTRON TRANSPORT SIMULATION

In this chapter, the procedures of the Monte Carlo simulation

are discussed, along with the nuclear reactions that have been

modeled in various materials and the justifying arguments, where

applicable, to include or exclude some features or reactions. The

Monte Carlo simulation involves several distinctive phases, which

are discussed below.

5.1 Sampling the Neutron Source Parameters

The neutron state, which is defined exclusively in this work

via its position, direction, and energy, is required to be known at

all times. For tracking convenience the cartesian coordinates

(x,y,z) are chosen with a specified coordinate origin as shown in

Figure 5.1. The direction parameters are specified through the

polar angle 8 and the azimuthal angle 0 in spherical coordinates.

The associated cartesian coordinates for the normalized direction

cosines are given by:

= sin0 coso

CI = sine sing

i/z = cos() (5.1-1)

Finally, the energy variable is represented by an energy parameter

E. Thus, the neutron state is defined by a seven dimensional vector

(x,y,z,0x,f2y,Oz,E). For tracking and scoring purposes the neutron

also has some other parameters associated with it. They are the
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Figure 5.1 Schematic diagram of the various cells (cell
numbers in small prints) and the master cartesian
coordinate origin. Cell 1 is the neutron source, cell 33
is the Ge detector, cell 17 is the effective core sample
volume, cells 14,15,22, and 23 are sections of the core
sample considered to assess the effectiveness of the Cd
sleeves (cells 11 and 20)
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absolute weight and a geometrical index which tells which

geometrical region the neutron is in.

For a point source, the position parameters are initialized at

XO = Xpo int source

yo =
point source

Z = Zpoint source (5.1-2)

The direction parameters are sampled from an isotropic distribution

of polar and azimuthal angles in the laboratory system. The

isotropic distribution of Equation (2.1.5-15) is repeated here for

convenience:

p(8,0) de dO = AAT sine de dO

and since B and 0 are uncorrelated, is sampled as

p' (0) de = sine d8
8 = cos -I (2t - 1)

When the random number EE(0,1), then 0E(0,70.

15(0) d0 = d0

0 = 2nt

When eE(0,1), then 0E(0,270.

(5.1-3)

(5.1-4)

The energy parameter of the emitted neutron from Cf-252 source is

governed by the probability density function (pdf) of Equation

(2.1.1-1) that can be sampled through the use of three random

numbers el, e2, and e3 on (0,1) (Carter and Cashwell, 1975) as
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E = 1.424 [-1r1 1/1t2 cost (1- t3) ] (MeV) (5.1-5)

5.2 General 3-D Tracking

The neutron is followed through the cell geometry (in the case

of a new history with a source neutron, the neutron is initially

located within the source capsule). The tracking utilizes the

essential feature that neutrons travel in a straight line between

collisions.

In general, the parametric equations that describe a point

(xn,yn,zn) vector 0 in the direction (fly, fly, Oz) and starting from

point (x0,y0,z0) are given (see Appendix E) by:

x.n = xo + D flx

yr, = yo + D ny

Zn = 20 + D Q2

where the distance traveled D is given by:

D = Ni(xn x0) 2 + (yr, y0)
2 + (znzo) 2

(5.2-1)

(5.2-2)

Tracking the neutron inside the cell consists of:

A. Evaluation of the microscopic cross sections, pertaining to the

elements in the cell, at the neutron energy E. This is

accomplished by interpolation from ENDF/B-V data.

B. Computation of the macroscopic cross sections, depending on the

cell composition, and the total macroscopic cross section.

C. Computation of the distance to the cell boundary in the
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direction of the neutron flight.

Repetitive geometrical patterns in the monitoring system

permitted the system to be modeled by dividing it into a collection

of 41 cells, as shown in Figure 5.1. All cells can be constructed

from four basic geometries, namely solid circular cylinders, annular

cylinders, circular right conical cylinders, and reversed conical

cylinders inside the container cylinder with three internal tubular

protrusions that contain the sample, the source, and the detector

assemblies. The distance to the boundary for neutrons having an

interaction within the geometry is determined as indicated below for

the various geometries used.

5.2.1 Solid Circular Cylinder

First, the intersection points of the neutron direction of

flight vector 0 with the infinite cylinder of radius R are

determined by solving for the projection of the intersection in the

x-y plane. The circular projection is described by the equation

(x xcL)2 + (y yCL ) 2 = R2 (5.2.1-1)

Where (xcl. ,ycL) are the coordinates of the projection of the

geometry centerline on the x-y plane. The intersection points

satisfy Equation (5.2.1-1), whose coordinates (xn,yn,zn) are given

by the parametric Equations (5.2-1) in terms of the coordinates of

the neutron position inside the cylinder (x040,z0), the direction

cosines of the neutron flight vector ((x,fly,k), and the distance d

between the points (x0,y0,z0) and (xn,yn,zn). This is the distance
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to the boundary.

Substituting Equations (5.2-1) into Equation (5.2.1-1) to

eliminate x and y yields an expression that is quadratic in d and

hence has two roots.

d2(i2ft-i-f2y2)+2d[Ox(xo-xcL)+0.y(yo-Ycdi

+[x2+y2-2 (x
0
x

CL
+y

0
y

CL C
) +x2

L C
+y2

L
-R2]=0 (5.2.1-2 )

The discriminant to Equation (5.2.1-2), namely,

4[07(x0-xcL)+03,(y0-1;ra.))2-4( fl;
)

r x+-2y 2 (xoxa+y y )
0- CL

+4+ycyR2]
L 0

determines the nature of the roots.

(5.2.1-3)

< 0; two imaginary roots exist (no intersection)

If discriminant = 0; two equal real roots exist (5.2.1-4)

> 0; two different real roots exist

Point (xo,y0,4) is within or on the boundaries of the geometry,

although this is not a strictly true statement due to round-off

errors in digital representations. As explained in Section 5.7,

point (xo,y0,z0) is always confined to be within the boundaries.

Thus, Equation (5.2.1-2) always gives two real roots. The root in

the desired direction 0 (denoted by d*) is positive, and the other

is negative, as shown in Figure 5.2.1.

To determine whether the direction vector penetrates the top,
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bottom, or side wall of the finite cylinder before leaving the

cylindrical surface, the z-coordinate of the intersection point:

z' = zo + nz (5.2.1-5)

is compared with the cylinder end z-coordinates. For z* > 'top, the

direction vector pierces the top of the cylinder and the desired

distance to the boundary 6 is:

6 =
(ztop zo)

Oz
(5.2.1-6)

If 'bottom < '* < 'top, the direction of flight vector intersects

the side wall and the desired distance to the boundary 6 is given

by:

6 = (5.2.1-7)

Figure 5.2.1 Tracking within a solid circular
cylindrical geometry.

If z* < 'bottom, the direction of flight vector pierces the bottom



of the cylinder and the desired distance is:

6
(Z

bottom Z0)

cz
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(5.2.1-8)

Knowing whether the direction vector penetrates the top,

bottom, or side wall of the cylinder allows the neutron to enter the

proper neighboring cell, should it escape its present cell.

5.2.2 Annular Cylinder

Again the procedure of Section 5.7 is practiced to ensure

that the neutron is within the geometry. The desired distance to

the boundary (see Figure 5.2.2) is determined by first evaluating

Figure 5.2.2 Tracking within an annular cylindrical
geometry.

Equation (5.2.1-2) at the inner radius RI; a negative or zero

discriminant as given by Equation (5.2.1-3) indicates that the
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flight direction does not intersect the inner surface or that it

just barely intersects tangentially, respectively. In this case

Equation (5.2.1-2) is re-evaluated at the outer radius R0 and the

geometry is effectively treated as the solid cylinder was treated in

Section 5.2.1. On the other hand, when Equation (5.2.1-2) evaluated

at the inner radius gives two real roots, (a positive root and a

negative root possibility is excluded since the neutron is not

within the inner circle), both roots being negative implies that the

flight direction is directed away from the inner surface and the

treatment for the solid cylinder at the outer radius can be used.

Two positive roots indicate that the direction vector pierces

through the inner surface and the desired root is the smaller of the

two, say, d*, which is then used in Equation (5.2.1-5) to determine

the z-coordinate of the intersection point. The comparison with

the z-coordinates of the cylinder ends as explained for the solid

circular cylinder in Section 5.2.1 determines whether the direction

vector penetrates the top, bottom, or the inner surface.

5.2.3 Right Circular Conical Cylinder

With the neutron position at (x0,y0,z0) and its direction

vector ensured to be within the geometry, the intersection of the

vector 0 with the conical shape is determined by substituting the

parametric equations given by Equation (5.2-1) into:

1(x-k)2 + (Y4)2 t(zz) = 0 (5.2.3-1)

^ ^ ...

where (x,y,z) are the coordinates of the vertex of the cone with a



75

slope t (see Figure 5.2.3). An expression that is quadratic in d

results:

d20.2x2+r2y2_t2r22z) +2d(xo_k)

A A A A 2
[3q+y0-2 (x0X+yoy) +x

2+y t2
( zo2 2 zoz+) ) 3=0 ( 5.2.3 -2)

The two roots may be investigated through the discriminant similar

to Equation (5.2.1-4), the discriminant being

4[f2x(xoX)+05,(yoY) _t2ri2 (zo_oi) 32 4 (r2,z4A2j_t2nz2)

+k2.4.sr,2..t2.z.,... A A
[ )qi+y02 2 (xok+yo) ( 8 2z0z+z2) (5. 2 .3-3)

Two real roots are expected because the point (xo,y0,z0) is

strictly within the geometry. If one denotes the smaller of the two

roots as dmin= min(di,d2) and the larger as dmax= max(di,d2),

Figure 5.2.3 shows that the two roots are either equal (both

positive or both negative) or a positive root and a negative root.

Case I. Both roots are positive. This subcase includes the special

case when both roots are equal. The root of smaller numerical value

dmin is the desired root d* and is used to evaluate the z-coordinate

of the closest intersection point using Equation (5.2.1-5); this

value of z* is compared with the z-coordinate of the bottom end of

the conical geometry (the end that is closer to the vertex). If

zmin < zbottom, then the vector 0 pierces through the the bottom
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Figure 5.2.3 Tracking within a right circular solid
conical geometry

surface and the desired distance 6 is obtained from Equation

(5.2.1-8). If zmin > zbottom, then the vector 0 pierces through the

side wall surface and the desired distance 6 is determined as

follows:

The x and y coordinates of the intersection point (x',y',z*)

which lies on the conical surface are determined from:

A\t2(z0_2)2

= 1t2(z0_2)2_ (x0.4) 2
(5.2.3-4)

The desired distance to the intersection is determined as:
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6. _x0)2 _y0)2 (z,..zmax)2 (5.2.3-5)

Case II. Both roots are negative. This is conclusive that the

vector 0 pierces through the top surface and the desired distance is

obtained from Equation (5.2.1-6).

Case III. One positive and one negative root. The positive root is

chosen as the desired root d*, and the z coordinate of the

intersection point is obtained from Equation (5.2.1-5); if z bottom

z
< ztop, then the vector 0 pierces through the side wall surface

and the coordinates of the intersection point and the desired

distance are obtained from Equations (5.2.3-4) and (5.2.3-5),

respectively. If z* < zbottom, then the vector penetrates the

bottom surface, and the desired distance is obtained from Equation

(5.2.1-8). Otherwise, if z* ztop, then the vector 0 pierces

through the top surface, and the desired distance is given by

Equation (5.2.1-6).

5.2.4 Reversed Conical Cylinder

For a point (x0,310,z0) and a flight vector 0 located within a

finite reversed conical cylinder of smaller radius R, height H, and

geometrical center at (xc,yc,zc), as shown in Figure 5.2.4, the

distance to the closest boundary in the direction of flight is

determined via a procedure analogous to the annular cylinder of

Section 5.2.2. It is more convenient to examine first the

possibility of intersection of the direction of the flight vector

with the inner conical surface by solving Equation (5.2.3-2) for d.
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The solution may either indicate no intersection, intersection in

the negative (back track) direction of 0 (two negative roots),

intersection in the direction of 0 (two positive roots), or

intersection in both forward and backward directions of 0

(a positive and a negative root). Specific logical considerations

require that the quadratic Equation (5.2.1-2) be re-evaluated at the

outer cylindrical radius as follows:

H

Figure 5.2.4 Tracking within a reversed conical
cylindrical geometry.

Case I. If the discriminant of Equation (5.2.3-2) is negative, this

is an indication of no intersection with the conical surface. Then

the quadratic Equation (5.2.1-2) with R as the outer cylinder radius
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is solved and should yield a positive and a negative root. The

positive root is taken to be the desired root d* and is used in

Equation (5.2.1-5) to determine the z-coordinate of the point of

intersection z*. A test is then made by comparing this z-coordinate

with the z-coordinates at the top and bottom ends of the geometry in

a procedure similar to the solid circular cylinder of Section 5.2.1.

The direction of flight intersects the outer cylindrical surface if

zbottom < z* < ztop and the desired distance to the boundary 6 is

given by Equation (5.2.1-7). If the inequality is not satisfied,

and z* < zbottom, the direction vector pierces the bottom surface

of the geometry, and the desired distance to the boundary 6 is

computed by Equation (5.2.1-8). The possibility that z* > ztop is

excluded logically for it violates the no intersection condition

with the conical surface that led to the re-evaluation at the outer

cylindrical surface. The parameters dmin and dmax are defined as

the minimum and maximum, respectively, of the two real roots

resulting from solving Equation (5.2.3-2).

Case II. If the larger of the two roots is negative, implying

interaction in the negative direction of 0, then the quadratic

Equation (5.2.1-2) is solved at the outer cylinder surface, and

subcase I is applicable.

Case III. If both roots are positive, the intersection is in the

forward direction of 0 and the smaller of the two roots dmin is

chosen to be the desired root d* that determines the z-coordinate of

the intersection point, using Equation (5.2.1-5). In a logic

similar to the circular cylinder case of Section 5.2.1, if this
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intersection point is located below the bottom end of the geometry,

then the direction vector pierces through the bottom surface and the

distance to the intersection is given by Equation (5.2.1-8). On the

other hand, if the z-coordinate is greater than the z-coordinate of

the bottom of the geometry, then the direction vector pierces

through the inner conical surface and the desired distance is

6 = d*. The intersection point z-coordinate is not possible to be

greater than ztop when there are two positive roots, and therefore

is excluded.

Case IV. For the subcase when one of the real roots is positive and

the other is negative, the positive root dmax is chosen as the

desired root d*, and the z-coordinate of the point of intersection

z* is determined from Equation (5.2.1-5) and compared with the end

coordinates as follows:

If zbottom < z* < ztop, then the direction vector pierces the inner

conical surface and the desired distance to the intersection is

6 = d*. If the inequality is not satisfied but z* > ztop, then the

quadratic equation of the outer cylindrical surface is solved, and

subcase I is applicable. Otherwise if z* < zbottom, then the

direction vector pierces the bottom surface, and the desired

distance is given by Equation (5.2.1-8).

5.2.5 Container Cylindrical Tank

Given the neutron is located at a point (xo,y0,z0) within the

container tank, but not within any of the internally protruding

tubes that contain the sample, source, or the detector. The neutron
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is traveling in a path characterized by the vector 0 = Ox 1 + fly 1

where (Dx,0y,0z) are the normalized direction cosines. This

path intersects an infinite cylinder of radius r whose major axis is

located at (xci_ ,YCL), if the point of closest approach (discussed in

the next paragraph) (xp,yp) from the path of vector 2 to the point

(xCL,YCL) is within the radius of the cylinder, i.e., if

( X - X
0.

)
2

I- Y YU)
2

s r2

The distance of closest approach is derived by minimizing the

distance from any point (x',y') along the vector 0 to the point

(xCL,YCL) in the x-y plane with respect to the parameter t as shown

in Figure 5.2.5-1, where the parametric equations along the vector

0 are given by:

x = x0 + t

y = yo + Dy t

z = zo + n t (5.2.5-1)

The distance between an arbitrary point (x',y') along 0 and the

point (xcL ,YCL) is given by:

D =' (x0-1-11,txcL)
2

(YO+nYt-YCL)
2 (5.2.5-2)

To find the value of t, namely tp, such that D is minimum (Dmin)

requires setting the derivative d(D)/dt equal to zero at the point

of closest approach.



c1.(4:0441.tpxcL) cly(1"0oO'Yti, Yu)

If Equation (5.2.5-3) is solved for tp, the result is

nx(XCL-34:13) r2Y (YCL-YD)tp =
Px2 r1;)

Q

Figure 5.2.5-1 The distance of closest approach.
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(5.2.5-3)

(5.2.5-4)

and the closest point (xp,yp) along the path 0 to the point

(xCL,YCL) in the x-y plane is given by:



xP =xo +a tp

y =y+0t
0 P
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(5.2.5-5)

Dmip is the normal distance from the path of the vector 0 to the

point (xci. ,YCL). Values of tp less than zero indicate that the

infinite cylinder is located in the opposite direction of travel

(back track) and can therefore be neglected with the conclusion

that in the forward direction of the vector 0, intersection with

the infinite cylinder under consideration is not possible. Once it

is concluded that the vector 0 possibly intercepts the infinite

cylinder, that is, the minimum approach distance Dmin is less than

the radius r, the intersection points are determined by solving for

the intersection with the equation of the circle, i.e., solving

Equation (5.2.1-1) with R replaced with the appropriate radius,

which should yield two positive roots, d1 and d2. It remains to be

determined whether the direction vector penetrates the top, bottom,

or side wall of the finite (tube) cylinder. Given that ztop and

zbottom are the z-coordinates of the top and bottom ends of the

finite cylinder, and letting dmin = min(d1,d2) and

dmax = max(d1,d2), then the z-coordinates of the intersection points

are:

Zmin = ZO + 02 dmin

Zmu = ZO + flz dmax (5.2.5-6)

It should be investigated to see if the point (x0,y0), where the

neutron is located, is within the radius of the infinite tube under
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consideration to conclude that the point is within the extension of

the finite cylindrical tube. In this case, Equation (5.2.1-2)

yields a positive and a negative root; the positive root is taken as

dmax

The z-coordinates of Equation (5.2.5-6) are compared with the

end z-coordinates of the finite tube to determine the surface of

intersection as follows:

I. If the point (x040) is not within the extension of the tube,

but the minimum approach distance is within the radius of the

infinite cylinder, this leads to the following subcases:

A. zbottom < zmin < Ztop The vector pierces the side wall

of the finite tube and the desired distance to the

intersection is 6 = dmin

B. zmin < zbottom < zmax The vector pierces the bottom

surface of the finite tube and the desired distance to the

intersection is 8 = (zbottom-zo)/Oz

C. zmin ztop > zmax The vector pierces the top surface of

the finite tube and the desired distance to the

intersection is 6 = (ztop-zo)/Oz

D. If both zmin and zmax are less than zbottom or both are

greater than ztop, then it is concluded that there is no

physical intersection with the finite tube in question.

II. Point (xo,y0) is within the extension of the tube. In this

case Equation (5.2.1-2) yields a positive and a negative root.

Provision should be made to account for subcases when the

vector 0 is parallel or nearly parallel to the z-axis;
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Equation (5.2.1-2) should indicate two imaginary roots in such

a subcase. If the z-coordinate of the point (xo,y0,z0) is

greater than ztop and az is less than zero, then the vector i

pierces through the top of the finite tube and the desired

distance to the intersection is 6 = (ztop-zo) /ilz . If it

happens that the z-coordinate of the point (xo,y0,z0) is less

than zbottom and az is greater than zero, then the vector 0

pierces through the bottom of the finite tube and the desired

distance is given as 6 = (,zbottom-zo) /ilz. The positive root

dmax is used to calculate zmax from Equation (5.2.5-6) and the

following subcases are recognized:

A. If zo > ztop and zmax < ztop, then the vector 0 pierces

through the top of the finite tube, and the desired

distance is given as 6 = (ztop-zo)/nz

B. When zo < z bottom < zmax, the vector 0 pierces through

the bottom of the finite tube, and the desired distance is

given as 6 = (zbottom-zo)az

C. Otherwise, there is no physical intersection.

The aforementioned procedure to determine if the vector 0

physically intersects a finite tube and to determine the distance to

the intersection if it takes place is repeated for each internally

protruding tubular extension inside the container cylinder while

keeping track of an index specifier of the tube in the case of

physical intersection and recording the desired distance as Si (i=

1,2,3 for the sample, the source, and the detector tubes,

respectively, with 8i=0 for no intersection). Since it is
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simultaneously, as shown in Figure 5.2.5-2, the desired distance to

the closest physical intersection with a finite tube is taken to be

the non-zero minimum of the set (60

6 = min(60 ; i =1,2,3

( X ,y
Ca. Ct.

Figure 5.2.5-2 Tracking within the cylindrical
container tank.

Finally, in the case when it is concluded that the vector 0

does not intersect any of the finite tubes, the procedure of the

solid circular cylinder of Section 5.2.1 is used to determine the

intersection surface of and the distance to the cylindrical

container tank.

After the distance 6 to the boundary of the cell in the

direction of flight 0 is obtained by one of the procedures in

Section 5.2, the distance to an interaction is sampled as discussed

next.
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5.3 Sampling the Distance to Interaction (Path Length)

The common procedure of sampling the path length in a multi-

region (multi-cell) geometry assuming successive infinite media was

used. A distance D* to an interaction is sampled assuming an

infinite medium of the current cell composition. If this distance

exceeds the distance to the boundary of the present cell in the

dirction of travel, then the position coordinates are advanced to

the cell boundary and the procedure of infinite medium of the

adjacent cell composition is assumed to sample a path length. This

procedure is repeated successively until an interaction is sampled

within the cell under consideration or until the traveling

radiation leaks out of the system.

The path length sampled from the exponential pdf governing

the interaction probability within a medium is given by Equation

(A-1) as:

Ds = 1nit (5.3-1)

When the random number eE(0,1), then D*E(000).

An exception is made when the intercepted boundary is an

external boundary of the system (in which case the neutron is

assumed to not have a chance to re-enter the cell geometry). In

this case, the neutron is forced to remain within the geometry

(within the distance to the boundary) with a weight equal to the

probability of not escaping the cell, namely:
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-E,
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(5.3-2)

(This is shown to be a variance reduction technique in Appendix A,

by eliminating the loss of neutron histories that would have escaped

outside the system). Thus, the neutron is forced to have its

collision within the cell; the path length is sampled from the

altered pdf of Equation (A-2) as:

Ds = ln[l t(1 e-2ta) J (5.3-3)

5.4 Decision Whether the Neutron is Still Within the Cell

This decision is made by comparing the path length D* to an

interaction, sampled in Section 5.3, with the distance to the cell

boundary 6 in the direction of flight that has been computed in

Section 5.2.

Should the sampled distance exceed the distance to the

boundary (i.e., if D* > 6), it is concluded that no interaction

occurs in the cell and the neutron escapes the current cell. The

neutron position cartesian coordinates are advanced in the direction

to the cell boundary (refer to Section 5.7 for an explanation of

how this is achieved to overcome round-off errors) by using the

parametric Equations (5.2-1) in order to position the point

(x0,y0,z0), where the neutron had its previous collision, to the

point (xn,yn,zn) located just inside the neighboring cell along

direction 0. Otherwise, when D* < 6, it is decided that an

interaction occurs within the cell and the cartesian coordinates of
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the neutron position in the phase space are relocated to the

collision position (xn,yn,zn) using Equations (5.2-1) with d

replaced by the sampled distance (path length to the collision) D*,

and the collision event is handled.

5.4.1 Sampling the Collision Event

At the point where it was decided that the neutron had a

collision, the type of interaction, whether it is absorption,

scattering, etc., has to be sampled. The "expected value" concept,

a variance reduction technique which consists of replacing the

cumulative density function sampling scheme to sample the reaction

type, as shown in Appendix B, may result in having to terminate the

history upon absorption without a favorable contribution to the

desired results with the deterministic probability of scattering,

namely Es/Et. In this case the weight of the neutron is reduced by

the scattering probability Wsc = Is/2t, that is, the random

process of occurrence of interactions is replaced by its expected

value.

5.4.2 Treatment of the Scattering Event

The scattering event, decided upon in Section 5.4.1, is

simulated by sampling the scattering parameters to determine the

scattered neutron state in the phase space. The state of the

scattered neutron is determined by sampling the energy and/or the

scattering angle of the neutron after being scattered. Therefore,

an appropriate scattering model has to be chosen, which in turn



requires that the element (nucleus) with which the neutron had its

scattering interaction be sampled.

An energy limit of 2 eV was decided upon (Appendix C) below

which the thermal scattering (the monatomic gas) model was used;

otherwise, a non-thermal scattering model (either the elastic

billiard ball model or the inelastic scattering model) was used.

Mathematical representations of these models are discussed in

Sections 5.4.2.1 and 5.4.2.2, respectively.

The element involved in the scattering reaction is sampled

from the scattering cdf (discrete function). The element, having

the identifier i' = m+1, is sampled by determining that value of m

which satisfies:

m m+1

< txs < E
1.0 i=o

where

and

M

= E xi,s

to s = 0

(5.4.2-1)
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where 2i,s is the macroscopic scattering cross section for the i-th

element in the cell; M is the number of elements in the cell.

5.4.2.1 Thermal Scattering, The Monatomic Gas Model

The integrand on the right hand side of Equation (2.1.5-11) is

proportional to the probability density function given by Equation

(2.1.5-8), which represent the target nucleus velocity distribution

in the transformed variable x. Carter and Cashwell (1975) give a

simplified rejection scheme, with about 40% efficiency, to sample a

target nucleus velocity from this distribution when x < 3
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(equivalent to target velocities V > 9kT). The total probability of

x > 3 is less than 0.00125. Therefore, neglecting target velocities

for x > 3 should not introduce any significant biasing in the

sampling scheme. The distribution of g, the cosine of the angle

between the target nucleus velocity V and the neutron velocity vn is

given by the cosine law, namely:

f' (g) = 1131,2 + V2 - 2u Vµ (5.4.2.1-1)

or in terms of the new transformed variables a = fi vn and x, where $

and x are defined by Equations (2.1.5-7) and (2.1.5-6),

respectively.

f (11) = C 11242 + x2 - 2axp. (5.4.2.1-2)

where C is a normalization coefficient. This equation can be

sampled analytically as:

-2c11 oc[a
2

"fx
2

-(1°1-xj
3 1-t( I a-xl 3-(a-x) 3 j) 2/3

] (5.4.2.1-3)

The following scheme for sampling the monatomic gas kernel is

adopted from (Carter and Cashwell, 1975).

I. Sample the target nucleus velocity from the transformed

dimensionless variable x (restricted to 0 < x < 3) from

Equation (2.1.5-8) (Maxwellian) by the rejection technique as:

A. Evaluate [p(x)]max by setting the derivative dp(x)/dx

equal to zero. The x at which this maximum value occurs

is x = ± 1. This value of x is substituted into Equation
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(2.1.5-8) to obtain a numerical value for [p(x)]max of

0.830214995.

B. Sample a variable xl on the possible range of x E (0,3)

as xl = 3 f, since when f E (0,1), then xl E (0,3).

C. Evaluate the pdf p(x) of Equation (2.1.5-8) at this value

of x, namely:

4 2
2

P x e-xi

D. Evaluate a variable n = f [P(x)]max; if n > p(x1), reject

xl as the sampled variable and repeat step B. If

n < p(x1), accept x* E xi, as to be the randomly sampled

variable of the target nucleus velocity.

II. Sample the cosine of the angle (denoted gt) between the target

nucleus and neutron directions using direct sampling from

Equation (5.4.2.1-3) with x replaced by x*. The accepted

value of x is sampled in step I.D above.

III. Sample the azimuthal angle 0 about the direction of flight of

the incident neutron uniformly by Equation (5.1-4). Knowing

the incident neutron direction of flight (0x,Dy,Oz), the

"scattering" angle is sampled in step II (gt=cos0), and the

azimuthal angle 0. Equations (5.1-1) are used to evaluate the

direction cosines of the target nucleus (0Tx,OTy,OTz). Then

the direction cosines relative to the master coordinates

(gTx,0Trez) are obtained from Equations (5.4.3-1). If the

neutron is assumed to be oriented isotropically after the

scattering in the center-of-mass frame, the polar angle 00 and
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the azimuthal angle 00 are sampled from the isotropic sampling

of Equations (5.1-3) and (5.1-4), respectively. The direction

cosines, in the center-of-mass system, of the neutron after

the collision (n x,11 pia z) are calculated from Equations

(5.1-1) with 8 and 0 replaced by 00 and 00, respectively. The

final neutron energy E' and direction of flight cosines

(0 x,0 y,0 z) in the laboratory system are given by :

- E
( A+1) 2

x2+y2+z2)

X
CI; x2+y2+72

n = Y

4X2-1-172-1-Z2

n;
six2+y2+72

X = fl + Al 66 fk)
A Xs^ TY = SI + A( 803, + a -y

Z = flz + AitSelz + aitz )

6= N11+ (>02 2x*
a Pt

(5.4.2.1-4)

(5.4.2.1-5)

Appendix C shows that sampling the monatomic gas kernel by

this procedure is equivalent to the well-known Wigner-Wilkins proton

gas theoretical model (Duderstadt and Hamilton, 1976).
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5.4.2.2 Non-Thermal Scattering Treatment

The element i', sampled to be responsible for the scattering,

might exhibit a significant cross section for the inelastic

scattering interaction. This is dependent on the energy of the

incident neutron, if it is high enough above the threshold of this

reaction. Table 5.4.2.2 lists the first nuclear level excitation

energy for some elements of interest, constituents of the monitoring

system. In this work only Pb was modeled to undergo inelastic

scattering, up to the 35th discrete level. Therefore, if the

element, sampled above, happened to be Pb, then the scattering type

is sampled from the discrete cummulative distribution of the

scattering cross sections as:

If e < ais(E)/as(E), where cis and as are the microscopic

inelastic and total (elastic and inelastic) scattering cross

sections (cis is the summation of the 35 discrete level

excitation cross sections), then the scattering is deemed to

be inelastic and the responsible (m+1) discrete level is

sampled when the inequality

m m+1

ais,k < taIs < ais,k
k4

is satisfied. Otherwise, when e > ais(E)/as(E), the

scattering is elastic.

The angular scattering for Pb is highly anisotropic even when

viewed in the center-of-mass system. The anisotropic law is

supplied as Legendre polynomial expansions, the cosine of the
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1st Excitation Isotope Natural Observed
Level Abundance Inelastic 7-ray
(MeV) (%) (MeV)

4.43 C-12 98.892 4.439
6.052(6.131) 0-16 99.759 6.131
0.439 Na-23 100.00 0.44
1.36853 Mg-24 78.60 N.A.
0.58 Mg-25 10.11 N.A.
1.81 Mg-26 11.29 N.A.
0.842 A1-27 100.00 0.843
1.780 Si-28 92.18 1.779
1.28 Si-29 4.71 1.273
2.23 51-30 3.12 2.235
1.22 C1-35 75.53 1.22
0.84 C1-37 24.47 N.L.
1.74 Ca-40 96.79 N.L.
1.95 Ca-44 2.06 N.L.
0.8894 Ti-46 7.99 N.A.
0.16 71-47 7.32 N A.
0.9833 Ti-48 73.99 N.A.
1.31 Ti-49 5.46 N.A.
1.55 Ti-50 5.25 N.A.
0.7831 Cr-50 4.31 0.7831
1 4336 Cr-52 83.76 N.L.
0.563 Cr-53 9.55 0.564
0.8353 Cr-54 2.38 0.8348
0.1259 Mn-55 100.00 N.A.
1.409 Ft-54 5.84 1.4084
0.8469 Fe-56 91.68 0.8468
0.01439 Fe-57 2.17 N.L.
0.8105 Fe-58 0.31 N.L.
1.45 Ni-58 67.76 N.A.
1.3325 Ni-60 26.16 N.A.
0.0674 Ni-61 1.25 N.A.
1.172 N1-62 3.66 N.A.
1.34 Ni-64 1.16 N.A.
0.669 Cu-63 69.1 N.L.
0.77 Cu-65 30.9 N.L.
1.04 Ge-70 20.55 N.A.
0.69(0.835) Ge-72 27.37 N.A.
0.0135 Ge-73 7.67 N.A.
0.596 Ge-74 36.74 N.A.
0.5632 Ge-76 7.67 N.A.

1.54 M0-92 15.86 N.A.
0.871 Mo-94 9.12 N.A.
0.2042 Mo-95 15.7 N.A.
0.778 Mo-96 16.5 N.A.
0.665 Mo-97 9.45 N.A.
0.1868 Mo-98 23.75 N.A.
0.5355 Mo-I00 9.62 N.A.
0.6327 Cd -106 1.22 N.A.
0.63 Cd -108 0.88 N.A.
0.6576 Cd-110 12.39 N.A.
0.247 Cd-111 12.75 N.A.
0.6174 Cd -112 24.07 N.A.
0.3 Cd-113 12.26 N.A.
0.5581 Cd-114 28.86 N.A.
0.8993 Pb-204 1.4 N.A.
0.8033 Pb-206 25.1 N.A.
0.5696 Pb-207 21.7 N.A.
2.6145 Pb-208 52.3 N.A.

From SIGRMCCS listings, MCNP

Table 5.4.2.2 The first nuclear level excitation energy
for some elements of interest.
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scattering angle, A = cos0, being sampled from Equation (D-2),

repeated here for convenience:

1 NL

(

an (E)
11+1) E 2 [Pn+I(11) Pn_1(11) J =

n=1

The desired A can then be obtained by a numerical root finding

scheme (e.g., the bi-section method).

The outgoing neutron energy after being scattered through the

sampled angle 0 is computed from Equation (2.1.5-12).

The scattering angle 0 is transformed into the laboratory

system where the neutron tracking is done by Equation (2.1.5-13),

whereas the azimuthal angle around the incident direction is sampled

by Equation (5.1-4). In the case of neutron scattering by hydrogen,

the corresponding equations to compute the scattered neutron energy

and the scattering angle in the laboratory system are simplified and

given by Equations (5.4.2.2-1) and (5.4.2.2-2), respectively.

E" =

cos() =
1/2

(5.4.2.2-1)

(5.4.2.2-2)

where eE(0,1).

When the sampled element responsible for the scattering is

not modeled to undergo inelastic scattering, then the billiard ball

model was used directly. The polar and azimuthal scattering angles

were determined by Equations (5.1-3) and (5.1-4) respectively. Post

scattering laboratory energy and polar angle were obtained from

Equation (2.1.5-12) and (2.1.5-13), respectively.
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5.4.3 Computing the Direction Cosines of the Neutron Flight
Direction Leaving the Scattering Point

After the scattering angle 8 (lab system) and the rotational

angle 0 are sampled, the emerging neutron direction cosines (with

respect to the master cartesian coordinates) can be computed

(Cashwell and Everett, 1959), given the incident (before scattering)

direction cosines as Ox, 0y, and Oz from:

sine cos sine sing)
= r/x cose + r2xn,

03, cose + nyoz
sine cosh sink

Q; = nZ cose - 11111! sine cos (5 . 4 . 3-1)

In the case when (1-02z)k approaches zero (for practical

applications if (0z1 > 0.99999) the degenerate forms of Equations

(5.4.3-1) are given as (Schaeffer, 1973):

0; = sine cos0

r2;
= sine sing)

n; = i2z cose (5.4.3-2)

5.5 Scoring Routine

Since it is of interest in this work to score the prompt gamma

rays from neutron capture in some elements of interest in the core

sample, the scoring routine is performed only when the neutron being



tracked is in the core sample material (cells 14, 15, 17, 22, and

23). At each point of collision inside the core sample, the

expected value technique was used to score an expected value of

contribution to the desired result. This expected value is

constructed as probability of occurrences. For example, the

probability that the collision is a radiative capture reaction is:

Ia(E)

Pa It (E)
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(5.5-1)

where Ea and Et are the macroscopic absorption and total cross

sections, respectively.

The probability that the radiative capture takes place in the

j-th constituent element of interest in the core sample is:

Iaj(E)
P
aJ Ma (E)

(5.5-2)

The probability that upon radiative capture in the j-th

element, the k-th characteristic capture gamma ray is emitted is:

ZOE)
P = r

2,1,k Ea (E) .bk
(5.5-3)

where Tj,k is the branching ratio of the k-th capture gamma ray when

emitted by element j.

The probability that the isotropically emitted gamma ray

(Kinsey, 1979) is emitted within the solid angle M subtended by

the detector at the point of collision is the fractional solid

angle:

0 AO
'0 4 7r

(5.5-4)
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The prompt gamma rays when emitted from the elements of

interest are forced to be emitted within the solid angle subtended

by the finite size detector at the point of neutron capture. This

is accomplished by restricting the otherwise isotropically emitted

gamma rays (0 < 8 < 7r and -7r < 0 < 7) to limited ranges of polar and

azimuthal angles determined by the relative position and distance

between the point of emission and the detector. Thus, 0 and 0 are

sampled over these limited ranges and the corresponding weight is

the fractional solid angle subtended by the detector. Gardner et

al.. (1987) treated the forcing of radiation scattered or emitted

from an arbitrary point to a right circular cylinder detector. The

algorithm used here to determine the limiting polar and azimuthal

angles and the solid angle is based on the reported work by Mickael

et a1. (1988). The general approach of this algorithm is outlined

in Appendix F; more details can be found in the aforementioned

references.

The probability that a gamma ray of energy E emitted at a

point will traverse a distance xi in the direction of flight in

material i possessing a mass attenuation coefficient (p/p)i at the

given energy E and density pi is given as:

or

P

i
M P x.n p i 1

x 1=1

M
E )

P = el=1
(

-`ri Pi Xi
x (5.5-5)

The summation (from 1 to M) is carried over all the materials
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located between the point of emission and the detector. The gamma

ray path from the point of emission to the detector is defined by

the polar angle 0 and the azimuthal angle 0 (sampled from the

limited ranges). The distance through the sample and various

-construction and shielding materials has to be computed. In this

work, detailed attenuation by the sample, shields, construction

materials, moderator, the detector casing and air surrounding the

crystal, along with a reasonable approximation of the associated

detector support structure, were considered. The attenuation and

traversed thicknesses through the source tube were considered only

when it happens that the path of the gamma ray under consideration

intercepts the tube containing the source. Considerable effort was

exerted to write and test computational subroutines to determine the

successive path lengths through the heterogeneous constituents of a

tube assembly in any arbitrarily conceivable direction of

penetration from the point of emission within the sample to the

detector. The general approach of tracking inside coaxial

cylindrical and annular configurations intersected by planes that

are perpendicular to the major axis is outlined as:

I. For a cylindrical geometry, knowing the direction of flight

vector 0 and the point of emission p within the cylinder

(emission from within the core sample), the z-coordinate of

the point of emission determines the relative location with

respect to given planes perpendicular to the major axis

colinear with the z-direction, say z1 and z2, as illustrated

in Figure 5.5(a).
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II. Solving the quadratic equation for the roots of intersection

between the vector 0 and the equation of a circle (planar

projection of the tube) should yield one positive and one

negative root. The positive root is chosen to compute the

coordinates of the intersection point in the direction of

flight. The z-coordinate of the point of intersection

determines the intersection to be on either side of a plane,

at say z, as shown in Figure 5.5(b).

III. The projection of the radial distance r on the x-y plane at z

is determined by first computing the distance from the point p

to the plane at z as:

(zzj
d = (5.5-6)

The x and y coordinates of the intersection point at the plane

z are computed from the parametric equations:

X = X.p n,

y= yp +Qyd

Given that the major axis of the tube is at (xc,yc), the

projection of the radial distance is computed from:

dr = ( x-xc) 2 + (y-yd 2 (5.5-7)

This radial distance, when compared with a given radius (say a

tube of radius ri), determines whether the subsequent region

should be region I or region II, as shown in Figure 5.5(c).

IV. For a conical shape inside a cylindrical geometry, the radial

distance dr, when compared with the radii r1 at plane z1 and
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r2 at plane z2, determines whether or not the equation of the

conical surface has to be solved for the intersection point,

as can be seen from Figure 5.5(d).

(a)

z

(b)

(c)

Figure 5.5 General geometry illustrations to determine
the length/material traversed between the source and the
detector.
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V. Conveniently, the position coordinates can be updated to each

interaction point while keeping track of the distance

traversed, along with an index identifier of the material that

comprises the penetrated medium. This material index allows

the distances through the same materials to be summed up. The

direction of flight fl has to remain unchanged.

VI. The above procedures are repeated until the intersection point

is at the detector surface.

The probability that a gamma ray of energy E, impinging upon

the effective volume of the detector, will contribute to the counts

under the full energy peak at E is the experimentally obtained and

reported photopeak efficiency values (see Section 5.9) at the

incident energy E:

P =count t'photopeak ( E ) (5.5-8)

The gamma rays reaching the detector are forced to contribute

to the net count area under the relevant photopeaks according to

their respective photopeak efficiencies (expressed as net counts per

incident gamma ray). The detector intrinsic efficiency is dependent

on the point and angle of entry of the gamma ray. Therefore, it is

assumed that suitable experimental efficiency values are averaged

over the emanation point and incident angles, and therefore the

efficiency is only dependent on the detector size, gamma ray energy,

and the specific peak (photopeak, single escape, or double escape)

under consideration. Thus, the intrinsic detector efficiency is

independent of the gamma ray position coordinate. The relative
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detection efficiencies for different gamma ray peaks depend not only

on characteristics of the gamma ray detector and the nature of the

spatial distribution of the source of gamma rays, but also on the

gamma ray attenuation in the sample and in the materials which

surround the detector.

Neutron interactions within the detector, that result in

events which are recorded in the spectra, such as the recoil-

broadened 0.596 MeV and 0.691 MeV lines from the 74Ge(n,n'7) and the

72Ge(n,n17) reactions, respectively, are not modeled. The 0.691 MeV

line, which is produced by neutrons with energies > 0.7 MeV, is

useful in that it provides a measure of the total number of fast

neutrons which have interacted within the detector and hence of the

degree of neutron damage; this can provide an early warning of

consequent deterioration of the detector energy resolution.

Therefore, the expected probability of contribution is the

probability that Equations (5.5-1) through (5.5-5) and Equation

(5.5-8) occur simultaneously, that is:

Pscore = Wn Pa Pa,j,k Px Pcount (5.5-9)

where Wn is the absolute weight of the neutron prior to the

collision.

Effectively, the net (interference-free) peak area count rate

of the k-th gamma line emitted by the j-th element of interest in

the sample having a fractional weight (concentration) of wj is

given by:
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0
M

MaX MaX Px
=

R =N 0
aJ

C
k

j dr N (r)
8

f j TIT 1 1 P i i ie dx.
sample emin °min

(5.5-10)

where:

Rk,i is the net peak area count rate from the k-th line emitted by
the j-th element.

Nj

Ti,k

cla,j

ck

xi

is the number density of the j-th element.

is the branching ratio for the k-th gamma line emitted by
the j-th element.

is the microscopic neutron capture cross section.

is the intrinsic detector efficiency for the k-th gamma
ray energy

is the neutron density in units of (neutron/cm3/s)

is the mass attenuation coefficient for material i of

density p, and

is the distance, in the direction of flight, that the
gamma ray has to traverse in material i to reach the
detector.

The integration is over the solid angle that the detector subtends

from the point of emission of the capture gamma ray.

5.6 Termination of the History

Two physical processes are responsible for neutron losses,

namely absorption and escape. Absorption is accounted for by

reducing the weight of the neutron by its absorption probability at

each collision (i.e., by multiplying the weight before the collision

by the non-absorption probability). Escape is accounted for by
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reducing the weight by the escape probability (when the sampled path

length exceeds the distance to an outer physical boundary of the

system, as explained in Section 5.3).

It is seen that no matter how many collisions the neutron

suffers, the weight will never become zero. There has to be some

way of "killing" the neutrons while conserving the total neutron

weight.

Terminating the history when the neutron energy slows down

past a low pre-specified cutoff energy is not desirable since

calculations of thermal parameters are of interest. Instead Russian

Roulette is employed to decide the fate of a neutron when its weight

is reduced below a pre-specified cutoff weight limit (Wmin),

determined such that subsequent contributions to the desired results

are insignificant below this weight and the fraction of computer

time in tracking the neutron further is a waste.

Russian Roulette (Carter and Cashwell, 1975) is a variance

reduction technique implemented such that when the neutron absolute

weight W becomes smaller than the minimum permissible weight Wmin,

i.e., W < Wmin, a random number CE(0,1) is sampled and compared with

the ratio W/Wmin If e < W/Wmin, then the neutron survives and its

weight is adjusted (increased by the ratio Wmin/W) to be Wmin and

the history is continued either within the cell or in the

neighboring cell (following the succession of Sections 5.2 through

5.4).

If e > W/Wmin, the neutron perishes (is killed), and the

history is terminated. The simulation is continued starting with
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Section 5.1, and the whole procedure is repeated as many times as

necessary to achieve the accuracy needed for the solution or until

the total specified number of histories is exhausted.

5.7 Cell Boundary Interface Complications

Due to round-off and truncation errors in representing numbers

on a digital computer, the following difficulty may arise. A point

is supposed to lie on a surface bounding a cell when the neutron

escapes interactions in the current cell and is relocated to be on

the boundary. In reality, this relocation might be within ±c of

the boundary. When the geometrical equations are solved to

determine the distance to the next boundary, this will lead to a

serious error because of the logic in decisions involved in the

determination of positive or negative roots. This complication can

be avoided by advancing the point so that it lies a small distance

wholly within the neighboring cell it is supposed to enter next.

This is believed to be the most satisfactory treatment except at

corners or if very thin regions are present (Kalos and Whitlock,,

1986).

The above treatment was implemented in the neutron tracking

subroutines such that a test is made to ensure that the particle is

within the cell before solving for the roots of intersection of the

flight vector and the equation of the cell surface. Then all the

logical decisions are based on the neutron being within the cell

geometry. The advancement of the neutron to the next cell had it

escaped its present cell is dealt with as follows. After sampling



108

the distance to the boundary in the direction of flight, say (5, then

the path length is sampled, say D*. If the sampled distance

presumably locates the neutron within a small distance e (10-8 cm)

inside the boundary (same cell), that is, if D* > S-e, then the

neutron is advanced to the next cell in the direction of flight and

is located just beyond the boundary within the new cell by

stretching the distance on the right hand side of the above

inequality slightly, say to (6-0 + 2e.

The position coordinates are computed by Equation (5.2-1) with

d replaced by the distance (8+e).

5.8 Correlated Sampling

To generate the desired detector responses in this work, it is

of interest to obtain the responses while the elemental

concentrations are small to allow treating the problem as

perturbations of a single case with strong positive correlation.

The correlated sampling technique (Spanier and Gelbard, 1969) can be

utilized to avoid separate Monte Carlo calculations for each system

of elemental concentrations. Instead, it is possible to correlate

the problems by using a single set of particle histories. The base

(reference elemental concentrations) problem is simulated and the

effects of the perturbations to obtain the other elemental

concentrations are calculated at each collision by weight factors

that account for the relative changes in the collision process.

Separate simulations for each elemental concentrations, in

addition to being very impractical, may not provide accurate
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information about the differential effects, due to fact that the

statistical uncertainties in the estimates may mask the differences

being sought. However, in the correlated sampling technique, only

the effects of the perturbation are subject to statistical

fluctuations.

In the special case when the neutron is in a cell occupied by

the core sample material (whose prompt gamma ray response is of

interest), namely cells 14, 15, 17, 22, and 23, the unbiased path

length sampling is done through Equation (5.3-1). In the non-

reentrant case, Equation (5.3-3) is used. In both cases It

evaluated at the reference elemental concentrations. The relative

weights, used to force non-escape and subsequent interaction to take

place within the sampled path length D* in the core sample (at

reference elemental concentration) at different elemental

concentrations, are computed from:

WD.,1

I e

-24
"-re!

D.

It.Lref e

(5.8-1)

The relative weights that no interaction takes place within S in the

sample at all elemental concentrations are computed as:

146.1.

e
-241_e rd

-2t..1. 6
(5.8-2)

It should be noticed that relative weights are not computed

for materials other than the core sample material, since neutron

transport within these materials is essentially independent of the

core sample elemental concentrations.
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Within the core sample when the element involved in the

scattering of the neutron is sampled by Equation (5.4.2-1) where Es

values are evaluated at the reference elemental concentrations, the

relative weights to force the scattering to be with the same

responsible sampled element at all elemental concentrations are

computed as:

1
i ,s,L

W
Is,I.

Sc.! ,1 Ir.slref

Islref

(5.8-3)

At each collision in the core sample, the expected value given

by Equation (5.5-9) is scored as the desired contribution, and

Equations (5.5-1) and (5.5-3) are evaluated at the reference

elemental concentrations. The first term in the summation of

Equation (5.5-5) (defining material number one to be the core

sample material) is evaluated at the reference elemental

concentration of the core sample.

The relative weights at different elemental concentrations for

the first term of Equation (5.5-5) are computed as:

e-(Al. %I. xi

Px,1,L -(Z11,1,
ref -ref

(5.8-4)

The relative weights for Equations (5.5-1) and (5.5-3) combined are:

ILL=
La'i'Lref

ILL/et

(5.8-5)
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5.9 Features of the Simulation

The geometrical representation of the monitoring system is

very accurate with reasonable approximations in modeling the Cf-252

encapsulation and the housing of the detector proper that contains

the detector support structure. Inherently, the cell-to-cell

interface is assumed to be a perfect match, which is somehow

questionable when the interface is between two physically different

cells. To overcome this difficulty,fabrication tolerances are

restricted to be minimal and can be assumed as practically close

match in between the material-to-material interface. Furthermore,

the path length over-shooting of Section 5.7 somehow relaxes this

constraint.

The neutron transport simulation is an accurate detailed

treatment of continuous neutron energy with extensive pointwise

cross section data from ENDF/B-V. Nuclear absorption and

scattering reactions are accounted for in all the elements in the

material constituents of the monitoring system. The scattering

reaction is assumed to be predominantly isotropic elastic

scattering, except in the lead shield surrounding the source capsule

where the neutron energy spectrum is approximately the Cf-252

neutron spectrum, which is a hard spectrum, and inelastic scattering

in Pb is significant. Hence, inelastic scattering in Pb due to the

first 35 discrete nuclear excitation levels is considered in

addition to the elastic scattering. Due to the high mass ratio of

the Pb nucleus and the hard neutron spectrum in this vicinity, the
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scattering is anisotropic and is modeled as such.

Inelastic scattering is not accounted for in heavy nuclei that

exhibit a possibility of inelastic scattering reactions, as shown in

Table 5.4.2.2, and comprise a small weight fraction of the material,

since under these conditions there is usually a small probability of

occurrence for inelastic scattering. Specific examples are the

heavy elements in the core sample, where the neutron flux is thought

to be well thermalized. The ratio of thermal (0-2 eV) to epithermal

(2 eV - 15 keV) neutron flux densities is essentially constant

beyond about 10 cm from a point source of Cf-252 in fresh water, the

thermal flux density being several times higher than the epithermal

flux density (Senftle et al., 1974). The heavy elements in the

stainless steel source encapsulation are modeled to account for

absorption and isotropic elastic scattering reactions, because it is

thought that the small energy and angular dependency resulting from

anisotropic inelastic scattering will be washed away in the neutron

flux at the region of interest (the core sample), since the neutrons

have to transport through the Pb shield and a considerable path

length of good moderators (polyethylene and water).

Scattering of neutrons at thermal energies (E < 2 eV),

comparable to the thermal agitation energy of the nuclei comprising

the medium, is treated by the monatomic gas model. This model is

thought to adequately describe the physical process since it

accounts for energy upscattering as well as downscattering.

Furthermore, any of the neutron wave effects, referred to in Section

2.1, that are not accounted for by this model are assumed to be
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insignificant for high mass ratio elements and are downscaled in the

light elements by the use of experimentally measured and reported

cross section data for water and polyethylene in the energy range

below 2 eV where these aforementioned effects are observed.

The prompt gamma ray emission and attenuation are treated in

detail. The questionable use of a prompt gamma production spectrum

resulting from thermal neutron captures is not a serious limitation,

since the epithermal to thermal ratio of the neutron fluxes in the

core sample is low. These prompt gamma ray yields are used from the

compilation of Lone et al. (1981).

The solid angle subtended by the detector at the collision

point is determined exclusively for each point of collision where

the prompt gamma ray of interest is forced to be emitted in the core

sample material. The paths in various materials, traversed in the

direction of flight of the emitted gamma ray and that have been

forced to intercept the detector, are computed in detail, and the

attenuation factors of the gamma ray are computed. The mass

attenuation coefficients as a function of the gamma ray energy for

these materials are obtained from the compilation of Storm and

Israel (1970).

Experimentally determined values of the photopeak efficiency

of the Ge(Li) detector were taken from Knoll (1979) and are shown

graphically in Figure 5.9-1. It should be understood that it is

assumed that the incident gamma ray is averaged from emissions

(sources) uniformly distributed around the detector and not

exclusive at the centerline axis of the detector.
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Figure 5.9-1 Absolute photopeak efficiency values
for a Ge(Li) detector.

Variance reduction techniques are used to increase the

likelihood that the history will contribute favorably to the desired

result. The neutrons are forced to remain within the boundaries of

the monitoring system and are not allowed to escape. The neutrons

are forced to undergo a scattering interaction at each collision

point throughout the simulation. The expected value technique is

used exclusively in non-analog simulation to score the prompt gamma

rays of interest in the detector using experimentally measured and

reported values of detector efficiency to replace the Monte Carlo

simulation of the gamma ray detection and transport inside the

detector. Russian Roulette is used to decide the fate of the

neutron when its absolute weight reaches the cutoff weight limit
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without introducing biasing in the process.

Correlated sampling (Spanier and Gelbard, 1969) was used,

where the histories generated for a reference elemental

concentration of the core sample are used concurrently to generate

the prompt gamma ray responses for all other elemental

concentrations using well-defined physical principles. This

effectively allows the generation of the calibration curve for gamma

ray counting rates at various elemental concentrations for any

element of interest in one execution of the Monte Carlo program with

the stipulation that this curve is normalized at the reference

elemental concentration.
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6. MCNP MONTE CARLO CODE

The Monte Carlo Neutron and Photon Transport Code (MNCP) is a

very general code developed at Los Alamos National Laboratory with

approximately 250 person-years of collaborated efforts. It is used

about 60 Cray hours per month by Los Alamos users. To say the

least, it is the state-of-the-art Monte Carlo code.

In this chapter no attempts will be made to describe the code

or its applicability to the solution of an ever increasing number of

problems; rather, the voluminous MCNP manual (Briesmeister, 1986)

should be consulted whenever a question arises about the code. This

chapter is intended to investigate the capability of MNCP to handle

discrete neutron-induced photon lines and to list the input

parameters necessary to utilize this feature to obtain the photopeak

response as a function of elemental concentrations in the sample.

The photopeak responses are then compared with the responses

obtained from the code (MCNCP) developed in this work.

6.1 Neutron-Induced Photon Production Data

MCNP has an optional mode (MODE:N P), in which, upon a neutron

interaction in the medium, uncorrelated photons are sampled randomly

(up to 10 per collision) to be emitted at that site. In fact, they

are stored in data banks and are tracked throughout the medium after

the neutron tracking has been accomplished. The energy distribution

and the intensity of these emitted photons are sampled from

tabulated distributions (32 equally probable cosine bins)
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specifically processed from ENDF/B-V cross section data and

tailored for MCNP. These photons are tracked in the medium, and the

Detailed Physics or the optional Simple Physics treatment may be

specified for the photons to undergo the simulated-processes of

Section 2.2.3. It is obvious that a photon tally accumulated at any

position consists of direct contributions due to the photons

arriving uncollided from the source, in addition to an associated

spectrum due to scattering processes in between the source and the

point under consideration. This feature is tailored to furnish

dosimetry calculations when the full energy spectrum of photons is

desired.

In this work, as referred to in Section 2.2.4, the net area

under the photopeak (response) of interest is mainly due to the

unscattered full energy contributions. The expected detector

background in an experimental setup consists of contributions from

scatterings in the vicinity of the detector as well as within the

detector. Therefore, the background in a real situation is expected

to be slightly higher. Thus, detailed tracking of the photons

through the processes of Section 2.2.3 is a waste of computer time.

Furthermore, the distribution sampled to generate the photons,

although predominantly due to neutron captures, also is composed of

photon production due to inelastic scattering and other

contributions that might be significant.

MCNP version 3B has a unique option (PIKMT card) that enables

the user to turn on selected "monoenergetic" photons resulting from

neutron capture reactions in specific elements. Currently, only
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partial data are available for some elements, and none is available

for some. Nevertheless, this option was utilized to compare the

results obtained from the computer code MCNCP (Monte Carlo Neutron

Capture Photon Production Code) developed by the author with those

obtained from MCNP.

6.2 Discrete Photon Lines

Whenever one is interested in a small subset of the entire

photon energy spectrum (such as the discrete line spectrum resulting

from neutron captures in an element of interest in this work), MCNP

version 3B provides a biasing capability to bias the spectrum of

neutron-induced (in the coupled neutron-photon mode) photons to

produce only those that are of interest (PIKMT card). These photons

could be produced at neutron collision sites from isotopes other

than the isotope with which the neutron collided. This feature of

biasing the photon productions is the first production version of

collision biasing in MCNP.

The data for the discrete photon lines are generally from the

ENDF/B-V evaluations and are available from Los Alamos National

Laboratory, listed in file SIGRMCCS.

For the elements listed in Table 4.4-4 whose capture gamma

rays are of interest, there exist no specified "signature photons"

for Mg nor for Mn. Data for Ti, Cr, and Fe have no gamma ray lines

due to neutron capture. Table 6.2-1 shows some of the tabulated

data for Cl.
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Element Capture 7-ray
Energy (MeV)

Identifier
mt number

Cl 5.717
6.108
6.620
7.413

102010
102007
102005
102003

Table 6.2-1 Discrete photon lines from neutron
captures in Cl (SIGRMCCS listings)

6.3 Tallying Discrete Photon Lines

Tallying the gamma rays arriving at the location of the

circular cylindrical detector was accomplished by specifying a

DXTRAN sphere (a variance reduction technique in MCNP). The prompt

gamma rays have only a small probability of being emitted in a

direction so as to intersect the detector. To ameliorate this

deficiency the DXTRAN concept was used to "force" the capture gamma

rays toward the region occupied by the detector. The DXTRAN inner

sphere has to enclose the entire detector volume. This technique

deterministically forces the gamma rays to be emitted in the solid

angle subtended by the DXTRAN outer sphere at the site of collision

and deterministically transports the 7-rays, without collisions, to

the surface of the DXTRAN sphere. The energy spectrum of a discrete

gamma when emitted at the sample is not a discrete spectrum once

inside the DXTRAN sphere. Ratherit consists of discrete lines with

a continuum background, as explained next. After forcing the

emission and transmission of the "pseudo 7-rays" into the DXTRAN

sphere, the physical gamma ray is treated and tracked in a normal
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fashion and, if it happens that the tracked gamma ray reaches the

DXTRAN sphere, then it is killed to balance the weight of the gamma

rays that are forced toward the sphere. Once the "pseudo 7-ray" is

at the DXTRAN sphere, the DXTRAN game of forcing the direction and

the transport towards a desired region is stopped because the gamma

ray is already in the desired region and because it is impossible to

define the aforementioned solid angle.

The "pseudo 7-ray" at the surface of the sphere is treated as

a "real 7-ray" tracked and transported in a random walk process.

Therefore, it is expected that a monoenergetic gamma ray at the

surface of the DXTRAN sphere will result in a spectrum due to gamma

ray interaction mechanisms with the materials within the sphere.

This energy spectrum is shown, for illustrative purposes, in Figures

6.3-IA and 6.3-1B. Inspection of the two figures clearly shows

that the relative magnitudes of the peaks in the lowest chlorine

concentration spectrum differ appreciably from the corresponding

relative magnitudes among the peaks in the highest chlorine

concentration spectrum. The deviation is mainly due to the fact

that at high chlorine concentrations, the spatial and energy

distribution of the neutron flux within the core sample are

significantly different. The epithermal to thermal neutron flux

ratios are different, resulting in the aforementioned yield

difference (see Section 2.2.1) of the capture gamma ray emission.

Furthermore, the magnitude of the corresponding peaks in both

figures are not a factor of nine different in spite of the fact that

the highest to lowest chlorine concentrations is a factor of nine.
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This non-linearity is further investigated in Chapter 7. The net

counts under a desired peak is therefore deduced by subtracting out

the background continuum. It should be mentioned that some of the

discrete (capture) gamma ray data are "almost discrete" because the

emitted gamma ray energies are given to be within E ± 6, where 6 is

less than 1% of the energy E. This should be kept in mind when

deciding on tally energy bins. The relative strength (branching

ratio) of individual discrete gamma rays should be used as a tally

multiplier to determine the number of photons produced with that

energy.

The simulation of a real physical detector (not a point

detector) was accomplished by tallying the gamma ray current at the

top, side, and bottom surfaces of a cylindrical geometry (detector)

in order to determine the gamma ray current incident into the

detector volume. The tally segment card and the cosine card were

used to tally the gamma rays in the "positive" direction entering

the bottom of the detector and in the "negative" direction entering

the top of the detector. The tally energy card was used to single

out the response of an energy bin around the photopeak energy. The

detector full energy (photopeak) responses were estimated knowing

the efficiency of the detector as a function of incident gamma ray

energy (Figure 5.9-1) and the branching ratio of the discrete energy

capture gamma ray. These branching ratios were not used in the

PIKMT card; rather, the discrete gamma rays were sampled with equal

probability to improve statistics. A listing of a sample input

file for MCNP is given in Appendix I.
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6.4 Correlated Sampling in MCNP

Of interest in this work is the variation of the photopeak

responses due to variations in the elemental concentrations in the

sample. The inherent statistical fluctuations of the Monte Carlo

method makes it impossible to assess that a small perturbation in

the elemental concentration of the sample is responsible for the

observed variations in the photopeak responses unless appropriate

means are taken for controlling the sequence of the random numbers,

in both the perturbed and the unperturbed problem. If both problems

were started with the same initial pseudorandom number (seed), and

the same sequence of random numbers were used for each history, then

it could be said that in subsequent histories only the perturbation

in the elemental concentrations causes the sequence to diverge.

MCNP always uses the same pseudorandom number in the first history

of a problem (unless the user specifies otherwise via the debug

information card DBCN). Also the increment of the random number in

between histories is internally controlled. At the beginning of a

new history the random number sequence is increased by 4297 random

numbers from the beginning of the previous history regardless of how

many random numbers were used in the previous history. This

quantity was deemed not enough for the problem at hand (on the

average, it takes about 7300 random numbers to simulate one neutron

history). Therefore, the increment value should be increased to be

at least 9000, by altering the source code in MCNP (Entry ADVIJK in

subroutine RAND). The random number generator RAND seems to have a
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constraint such that a formula that is not valid if the values of

the variables within the formula exceed pre-specified values (the

increment 4297 does not violate this condition).
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7. RESULTS, COMPARISONS, AND DISCUSSIONS

The developed computer program MCNCP models the proposed

monitoring system by the Monte Carlo procedures of Chapter 5.

To predict the detector photopeak responses as a function of

elemental concentrations, an "average" core sample composition (see

Table 4.4-3) was chosen as the reference (base) elemental

concentrations. The mass of each element of interest (Mg, Cl, Ti,

Cr, Mn, or Fe) was changed sequentially to cover an arbitrary range

of interest, namely, 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, and 1.8

times the mass of that element in the reference elemental

concentrations while the masses of the remaining constituents of the

sample were kept invariant, although the density and the weight

percent were adjusted accordingly (constant volume).

The relative responses, normalized to a value of unity at the

reference elemental concentrations, of the changed element were

calculated according to the correlated sampling procedure of Section

5.8. The outputs are given in tabular forms in Appendix H and are

presented graphically in Figures 7-1 through 7-6.

Due to the lack of funds to construct an experimental setup to

test and validate the predicted photopeak responses from MCNCP,

testing the code was facilitated by comparing its predicted results

with results obtained from the well-established MCNP code. As

mentioned in Section 6.2, MCNP does not have a full set of data for

discrete capture gamma rays for all the elements of interest in this

work. Therefore, the comparison between the results obtained from
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response as a function of elemental concentrations of
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Figure 7-5 The relative variation of the photopeak
response as a function of elemental concentrations of
manganese in the "seafloor core sample"
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MCNCP and the results from MCNP was based on comparing four

discrete capture gamma lines available from neutron captures in Cl,

namely 5.7153, 6.1109, 6.6195, and 7.4138 MeV. The chlorine mass

was changed sequentially to cover the same range of interest in both

MCNP and MCNCP. The masses of .the elements exclusive of chlorine

were kept invariant but the weight percentages were adjusted

appropriately. Tables 7-1 and 7-2 summarize the pertinent data

obtained from MCNP. To simulate the same range of variation in the

Cl concentration, nine different computer runs are necessary with

MCNP with appropriate values of the weight percentage of the various

elements in the core sample, in contrast to a single correlated run

with MCNCP.

Element Capture 7-ray
Energy (MeV)

Absolute response
per source neutron

Cl 5.717
6.11
6.619
7.414

3.1199x10-11
4.9960x10-10
1.2405x10-10
5.8106x10-11

Based on the branching ratios from SIGRMCCS and the
estimated detector photopeak efficiency at the
reference elemental concentrations.

Table 7-1 The absolute photopeak responses for chlorine
at the reference elemental concentrations, obtained from
MCNP.
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Elemental
concentration

number

7-ray

5.715
MeV

Cl Neutron
photopeak

6.11
MeV

capture
response

6.619
MeV.

7.414
MeV

1 0.3362 0.2988 0.2603 0.2851
2 0.5125 0.5290 0.5116 0.5272
3 0.7064 0.7323 0.6918 0.6552
4 0.8972 0.8461 0.7126 0.7769
5 1.0 1.0 1.0 1.0
6 1.4788 1.2808 1.2759 1.3018
7 0.9486 1.0005 1.1180 1.0572
8 1.4146 1.4163 1.2776 1.2044
9 1.3529 1.1413 1.1548 1.1492

The responses are normalized to the reference elemental
concentrations (5)

Table 7-2 The relative photopeak responses for chlorine
at different concentrations in the core sample (MCNP).

Reference to Figures 7-1 through 7-6 shows, in general, that

the photopeak responses increase with increasing concentrations of

the element of interest. The non-linear relationship is pronounced

in trace elements with significantly large neutron absorption cross

sections (e.g., Cl; ua = 33.5 b, the resonance integral = 13.7

b), especially when present in larger concentrations. The general

observable trend is that when the photopeak response variation with

concentration is almost linear (Cr and Mn), the variation of the

response of the remaining elements of interest in the sample is

almost nil or just slightly decreasing. On the other hand, when

the photopeak response of the varied element increases but is

charaterized by a negative curvature with respect to the x-axis (Mg

and Fe), the decrease in the response of the remaining elements is
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more enhanced. The variations of Cl and Ti result in an increasing

photopeak response with a positive curvature with respect to the

x-axis and the response for the remaining elements increases

noticeably. The photopeak responses from the remaining elements of

interest in the sample were expected to decrease slightly due to the

competition for neutron absorption in favor of the element that has

been increased in mass. To further investigate this behavior and to

carry out the intended comparison with results obtained from MCNP,

the monitoring system was simulated using MCNP (the nuclear cross

section data used in the developed MCNCP code were extracted from

the same data used in MCNP). The results, given in Table 7-2 and

represented graphically in Figure 7-7, when compared with Figure 7-2

show significant deviations at the higher concentrations of

chlorine. Nevertheless, the lower concentrations show close

agreement (same trend of relationship between the relative photopeak

responses and the elemental concentrations) between the results from

MCNCP and MCNP, as shown in Figure 7-8.

MCNCP is "insensitive" to the neutron absorptions with

energies above thermal energies and treats such neutron absorptions

(as far as photon production is concerned) as thermal absorptions.

Hence the resulting capture gamma ray spectrum and intensities

presumably have the same spectrum and yields as for thermal

absorption. This was explained in Section 2.2.1, and the last

paragraph cautioned that serious errors might result from this

assumption.
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Figure 7-7 The relative variation of the photopeak
response as a function of elemental concentrations of
chlorine in the "seafloor core sample" (MCNP)
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Figure 7-8 The relative variation of the photopeak
response at 5.715 MeV as a function of elemental
concentrations of chlorine in the "seafloor core sample"
with the lower concentrations having been fit by a second
order curve.
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It was decided to investigate the neutron absorptions in the

sample having energies above thermal by assessing the magnitude of

the epithermal neutron flux relative to the thermal neutron flux

within the core sample.
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Figure 7-9 The average neutron flux within the core sample,
obtained from MCNP.

Results from MCNP for the thermal neutron flux (< 2 eV) and

the epithermal neutron flux (> 2 eV), averaged over sections of the

core sample, are shown graphically in Figure 7-9. The neutron flux
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at the lowest (0.2) and highest (1.8) relative chlorine

concentrations in the core sample imply that the ratio of the

thermal to the epithermal neutron flux is in excess of 1.5 for the

lowest chlorine concentrations. At the highest concentration of

chlorine, the epithermal neutron flux is roughly equal in magnitude

to that of the thermal neutron flux. In fact, this behavior was

observed at as low a relative chlorine concentration as 1.2, where

the functional relationship between the photopeak response and the

elemental concentration deteriorated as shown in Figure 7-7.

Therefore, the deterioration in the relationship between the

photopeak response and the elemental concentration can be explained

as follows. The presence of the core sample perturbs the spatial

and energy distribution of the neutrons. The neutron flux within

the core sample is in turn the result of a balance between

thermalizing effects and absorption by the various elements present

(especially by those elements with high capture cross sections).

Since the capture gamma ray production and its relative intensities

are functions of the captured neutron energy, the harder epithermal

neutron spectrum enhances the epithermal resonance absorptions,

which have different relative intensities of capture gamma rays than

those following absorptions of thermal neutrons. In fact this

behavior is observable in the prompt gamma ray spectra of Figures

6.3-1A and 6.3-1B.

Allowances for these effects should be made in the design of

the monitoring system and in the method of data utilization.

The variation of elemental concentrations, in principle, in
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the sample can be deduced from the model given the photopeak

response.

Finally, because of the exploratory nature of this work, low

levels of precision were tolerated in the Monte Carlo runs. The

results were deemed sufficiently accurate to indicate whether a

practical experimental model is feasible and whether any

improvements in the calculational efficiency or procedures should be

expended.
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8. SUMMARY AND RECOMMENDATIONS FOR FOLLOWUP STUDIES

A computer code was developed specifically to simulate the

proposed monitoring system based on the neutron capture prompt gamma

ray analysis (NCPGA) technique to predict the variations of the

detector responses as a function of elemental concentrations of some

elements of interest in the seafloor core sample by the Monte Carlo

method. The code is refered to as MCNCP (Monte Carlo Neutron

Capture Photon Production).

The neutron emission from the Cf-252 neutron source and its

transport through the various media were treated in a detailed

continuous energy variable. The emission and transmission (toward

the detector) of capture gamma rays was treated deterministically.

Various built-in variance reduction techniques in MCNCP were

employed to make the computational task more economical and

efficient.

It has been shown that the Monte Carlo method is conceptually

simple even when irregular complicated boundaries and geometries

exist. However, the logical decisions to cover every conceivable

event make the programming difficult to construct and debug.

The model and the code have been developed to have the

capability of handling arbitrary dimensions and relative positions

between the sample tube, the detector tube, and the neutron source

tube; thus lending MCNCP to suit the exploratory nature for

optimization of system design. The optimization, in principle,

could be investigated by increasing a parameter (e.g., the
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hydrogeneous moderator between the neutron source and the sample)

that results in an increase in the thermal neutron flux, especially

in the vicinity of the neutron source. This increase is expected to

enhance capture gamma ray production, but the same change will

decrease the chance that the thermalized neutrons will reach the

sample. Instead they diffuse thermally and wander in the

moderator. Such counteracting processes, under the right conditions

(e.g., proper geometry), may cancel in full or partially to render

the signal (the photopeak response) nearly independent of the other

parameters exclusive of the elemental concentrations of the sample.

Therefore, a good system design and optimization would make the

expression in the parentheses in Equation-(5.5-10) a constant

independent of the parameters that are difficult to control and of

the composition of the other elements within the sample, if

possible. This constant is then determined during calibration. To

determine the relation between the counts under the photopeak and

the elemental concentration, a sample for which the elemental

concentrations are known from some other type of assay (e.g.,

chemical analysis) and which is fairly representitive of the

expected samples that might be encountered in the field has to be

used for calibration. This calibration may be invalidated if the

system, when in use, encounters a sample having different neutron

and gamma ray transport characteristics than that used in the

calibration.

MCNCP is useful in reducing the expended time and costs by

providing interpolation of results and by predicting conditions
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which may be practically difficult to simulate experimentally. For

example, it might be advantageous to use multiple distributed

neutron sources around the sample. The code has been exclusively

tested as individual subroutines and as an integrated unit. But it

is conceivable that during the process of parameter and relative

positioning changes, a difficulty might arise (built in error or

warning messages help locate the source of the difficulty). It will

be appreciated to bring any encountered difficulties or suggestions

to the attention of Dr. S. E. Binney (Dept. of Nuclear Engineering,

Oregon State University).

No "serious" attempts were made to make the code run fast and

efficient, although the author feels that the following improvements

may prove worthwhile to investigate.

The detailed continuous energy treatment of the neutron energy

and the cross section data is time and storage consuming. If it can

be shown that the desired results (responses) are not significantly

affected when coarse group averaged data are employed, appreciable

saving in computer space and time might be achieved. Further

savings might be investigated by applying the probability table

method to handle the voluminous cross section data (Cullen, 1974;

Levitt, 1972).

Calculating the probability of capture gamma ray emission into

the solid angle subtended by the detector at the point of emission

at each interaction site within the core sample and the calculations

of individual path lengths traversed by the emitted gamma rays in

various materials are very time consuming. If the fractional solid
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angle calculations can be simplified, e.g., by using the idea of a

DXTRAN sphere or the effective target volume "geometrical

efficiency" (Van Otten et a7., 1988) and if the path of the gamma

rays travelling from a point within the sample to the detector can

be computed from a distance vector at the center of the "volumetric

effective solid angle" (might be feasible for small enough

detectors), then a tremendous time saving can be achieved. The same

approach, which might be an effective variance reduction technique,

could be used to deterministically scatter neutrons, transporting

them within the monitoring system toward the sample without a great

sacrifice to the efficiency of the calculations.

It should not be difficult to incorporate a subroutine within

MCNCP to calculate and provide information about the position

(depth) of the neutron capture and gamma ray emission. This is

useful to calculate the effective depth of neutron penetration

within the core sample and the subsequent attenuation of emitted

capture gamma rays within the sample (the attenuation of high energy

gamma rays might be insignificant). In fact this depth already has

been calculated in subroutine DSAMPTX by calculating the path

length traversed between the point of emission and the outer surface

of the sample tube for individual gamma rays.
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APPENDIX A

Importance Sampling as a Variance Reduction Method

In many transport phenomena, it is possible to render that

portions of a pdf in the phase space might be more likely to

contribute to the desired result than the rest of the distribution.

These regions are said to therefore be more important and the pdf

could be mathematically altered to emphasize these regions, and the

variance of the result may be correspondingly reduced.

Importance sampling can be illustrated by considering a

function f(x) defined on the interval [a,b]. The variation of x on

[a,b] is governed by the pdf p(x). The expected value of the

function f(x) in the interval is:

b

<T> = f f(x) p(x) dx
a

Suppose that for convenience or to reduce the error in x, one

wishes to sample x from an altered pdf constructed as p*(x). It is

required that the expected value is unaltered through the use of an

appropriate weight function:

b

<7> = f f (x) p*(x) w(x) dx
a

The weight function w(x) clearly should have the form:

p(x)
w(x)

p,(x)

The variances as obtained from both distributions are:



and

where

a2 = 1 [f(x)-7]2 p(x) dx
a

= 1 f2(x) p(x) dx 72

2 li. 2

G = j f (x) p*(x) dx 72
a

N
(x) = f(x) w(x)
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,2
a =

b
[f(x) w(x) )2 p*(x) dx 7.2

a

= 1 [ f (x) pPS((xx))) 2 p*(x) dx 7.2

= 1 P= (X) f2(x) p(x) dx 7.2

Both a2 and W2 are positive and for the variance to be reduced

in the new altered pdf sampling, the weight p(x)/p*(x) must be <1

over the portion of the interval that is deemed important.

The above method can be implemented in a Monte Carlo

simulation, given a pdf p(x) on xE[a,b]. An importance function

I(x), which is designed to emphasize the important region of [a,b],

is defined, and the new altered pdf p*(x) is constructed such that:

p*(x) = C p(x) 1(x)

where C is a normalization constant such that

b

p*(x) dx = 1

To prevent biasing, it is required that the total number of

sampled variables from each interval of the two distributions is the

same, which defines the weight function:



152

w(x) 13*(x) dx = p(x) dx

The random variable x is sampled from the modified

distribution p*(x) and the history is weighted by w(x).

A discrete function may be defined to define a truncated path

length. The pdf that governs the path length between collisions is

given by:

p(x) dx = ii e-" dx ,x6(0,03) (A-1)

When the region of interest is within a small distance, say 6,

of the cell boundary, a discrete importace function I(x) can be

defined to emphasize the region inside the cell and to undermind the

regions beyond the distance 6 (since any particle that exits the

cell is considered lost) such that:

I(x) = 1 ;x6(0,6)

1(x) = 0 ;xE(6,03)

The modified pdf is

p` (x) dx = C p(x) I(x) dx

The normalization constant

C =

=

1

± In (x) J p(x) dx
rrzl azn

1
a co

(1) j II Clix dx + (0) 1 1.1 e-4dx
o a



Therefore,

C
1

1 - e-P6

p' (x) dx . 11 e-mx dx
1 - e-la

and the weight is

p(x)
w(x) = p

1 - e-P6
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;xE(0,6) (A-2)

This result is equivalent to the "common sense" of forcing an

interaction to take place within [0,6].

It is obvious that, since p(x)/p*(x) < 1, that this procedure

would result in reducing the variance.
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APPENDIX B

Sampling the Type of Interaction

This scheme is based on sampling from a discrete cummulative

distribution function (cdf) that is constructed by summing up the

macroscopic j-th type cross section for the i-th element, 2i,j,

over all constituents of the medium where the transport phenomenon

is taking place. Thus, the total macroscopic cross section of the

j-th type reaction for the medium.is

xj(E) = E Ei j (E)

where M is the total number of elements in the medium.

The total macroscopic cross section Et for the medium is

obtained by summing over all possible interaction types (a total of

N types), i.e.,

N

Et (E) = Ei(E)

Therefore, the probability that the j-th type interaction takes

place is pj = Ej/Et and the type of interaction (m+1) is sampled by

determining the value of m that satisfies:

xj `Et < E EjJ.0

where E0 = 0 by definition and e is a random number uniformly

distributed on (0,1).
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An absorption of a neutron by any element removes that neutron

from the system and no further tracking is possible. If this

absorption is by an element whose neutron capture gamma ray response

is not of interest, the neutron history is terminated before a

favorable contribution to the desired response. This in fact

increases the variance. Thus, it can be seen that, provided the

absorption type reaction is one of the reactions under

consideration, when a neutron absorption reaction is sampled, the

history is terminated inefficiently.
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APPENDIX C

The Proton Gas Model

The probability that a neutron with the laboratory energy E

will collide with a monatomic hydrogen gas in thermal equilibrium at

the temperature I and emerge with an energy between E' and E'+ dE'

is given by the Wigner-Wilkins proton gas model:

erf,\FE"

p(E->E") = f (E) ( (C-1)

;E"<E

(E -E")
kT erf\IEkT ;E">E

where the normalization factor f(E) is independent of E'.

The upscattering in neutron energy in the thermal region

neutron scattering reactions is illustrated in Figure C-1 that

shows a graph of Equation (C-1) at three different energies of the

neutron prior to the scattering. Figure C-2 shows the Monte Carlo

sampled monatomic gas model of Section 5.4.2.1 in comparison to the

calculated Wigner-Wilkins model.

A neutron of 80 kT (kT = 0.0253 eV at room temperature) energy

scatters almost isotropically. Therefore, it is safe to assume that

the gas model should be used only when the neutron energy (prior to

scattering) is below 2 eV (80 kT).

Except for the inherent statistical fluctuations in the Monte

Carlo results, the agreement in Figure C-2 is evident.
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Figure C-1 The scattering probability distribution
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Figure C-2 The monatomic gas model, sampled by the
Monte Carlo method (histogram), at three different
neutron temperatures as compared to Equation (C-1)
(solid curve).
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APPENDIX D

Angular Distribution of Scattered Neutrons

ENDF/B-V data are given for a series of incident neutron

energies in order of increasing energy. The angular distributions

are expressed as normalized probability distributions, i.e.,

1

1 p(p,E) dp. E 1
1

where p(JL,E) is the probability that a neutron of incident energy E

will be scattered into the interval dil about an angle whose cosine

is A. Since the angular distribution of scattered neutrons is

generally assumed to have azimuthal symmetry, the polar angular

distributions may be represented as Legendre polynomial series:

where:

A

Is/ 2n+1p ( EI 27r da(Q,E)
nE.0 2 an (E) Pn ( p) (D-1 )' as (E) dfl

is the cosine of the scattering angle in either the
laboratory or the center-of-mass system, depending on the
data furnished,

E is the energy of the incident neutron in the laboratory
system,

as(E) is the scattering cross section (e.g. , elastic) at energy
E,

n is the order of the Legendre polynomial,

da(0,E)/d0 is the differential scattering cross section in units of
barns per steradian, and



an
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is the n-th Legendre polynomial coefficient of expansion;
it is understood that an = 1.

The given coefficients an(E) are tabulated as a function of

discrete incident neutron energies. The coefficients at

intermediate neutron energies that are not tabulated may be obtained

by linear interpolation (Kinsey, 1979).

To sample the angular distribution in Monte Carlo simulation,

the Legendre expansion coefficients are interpolated. at the incident

neutron energy of interest, say E. Then the cosine of the

scattering angle i may be sampled directly from:

or

II

1 P (P.' t E) ClIf =
-1

, tE (0 , 1)

NLE 2 n+ 1
2 an(E) 1 P (W) cill'

n=0 _1 n

N P1 NL ,,,+,
= 2 a

0
(E) f po ( if) dp' + E `'" -I- a (E) f p ( p:) dp:2 n

-1 n=1 n

1 NI' 2n+1 Pn+1 (P.') ID (V) 11P1 -1(µ)
1= f ([1+1) + E 2 at (E) 2n+1 IE1

1 NL an (E)
= (11+1) + ! 2 [Pn +1 00 Pn -1 (1) Pn+1 (-1) +Pn-i (-1) ]

n=1

The last two terms in the RHS brackets vanish since

pn (-1) = (-1)n

hence,



NL

(V+1)
a

E n2
(E)

[Pro,1(1.1) Pri_1(1-1)
n+1
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(D-2)

A numerical root-locating scheme is employed to solve for A (e.g.,

the bisection method).
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APPENDIX E

Some Vector Properties Relevant to Tracking

Direction cosines

Figure E-1 Direction cosines in cartesian coordinates.

In reference to the cartesian coordinates shown in Figure E-1,

the distance 6 from point (x0,y0,z0) to point (x',y',z') is:

6 = \i(x' -x0)2 + (y' y0)2 + (z'.-Z0)
2

and the x, y, and z projections of the vector P are given as:

x' - xo = 6 cosa

y' - yo = 8 cos13

z' - zo = 8 cos9

The following variables can be defined as direction cosines:

(E-1)

(E-2)



ix = COSI);

0
Y

= cosi3

nx = cose

Therefore, one can write the expressions in Equation (E-2) as:

or

3e-34:0 l''-'110 z'zo

6 nx ' 8 nY ' 8

x' = x0 + Ox 6

y' = yo + ily 6

z' = zo + 0, 6

nz
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(E-3)

(E-4)

(E-5)

2 2 2

Notice that Ox + fly + Oz = 1.

The normalization can be verified by substituting the expressions in

Equation (E-4) for Ox, Dy, and Oz and using the distance of Equation

(E-1).

The Equations (E-4) allow one to determine the direction

cosines of a line between any two points in a 3-D space.

Furthermore, given an initial point in the 3-D space, a particle

direction, and a particle path length, one can determine the final

particle position via the parametric Equations (E-5).

Vector Representation and Parametric Equations

A vector P spanning the distance from point (xo,y0,z0) to

point (x1,y1,z1) can be represented as:
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P = a + b +cfc

where a, b, and c are called the direction numbers and i, j, and k

are unit vectors in the x, y, and z direction, respectively. By

substituting for the direction numbers, the vector may be written in

particular as:

1
P = (x1x0) + (y1y0) j + (z1 z0)

Since parallel vectors have proportional direction numbers,

therefore, a vector Q in the same direction as P may be written as:

Q = 0 i+Qy j +Q2]

where Dx,fly, and Oz are the direction cosines. Thus, any vector

between two points may be described by the direction cosines of that

path, and the parametric representation of lines between points

follows, namely

X = x0 nx 8

y = 170 + y 8

z= Zo + Q, 8

The parameter 6 is recognized as the distance between points

(x0,y0,z0) and (x,y,z)

Some Properties of Vectors and Direction Cosines

A

The cosine of the angle between the vectors Pi= Oxl 23,1
A A A A
j Ozi k and P2= 1x2 ny2 j + Oz2 k is obtained by the dot
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product P1P2, i.e., cos* = nxlnx2 nylny2 Oz10z2 It can be

shown that two parallel vectors have cos* = 1 or * = 0, and two

perpendicular vectors have cos = 0.

Relationship between 0, 6, and the direction cosines

The polar angle 8 and the azimuthal angle 0 are used to

compute the cartesian coordinates associated with the vector P as

x = 0 + 6 sine coso

y = 0 + 6 sine sin0

z = 0 + 6 cose

which are recognized as the parametric representations of the line

for point (0,0,0) to point (x,y,z). Therefore,

nx = sine cosq

0 = sine sing

nz = COSe
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APPENDIX F

General Algorithm to Calculate the Solid Angle

(Adopted from Mickael, 1988)

If the axes are translated (and rotated in the case that the

incident particle direction at the point of interaction is not

collinear with the new translated axis, although this is irrelevant

in the case of isotropic capture gamma ray emission at the point of

interaction), the new cartesian coordinate system should have the

origin (0,0,0) at the interaction point as shown in Figure F-1.

oint of interaction

Figure F-1 Limiting polar and azimuthal angles for
the solid angle subtended by the detector at the origin.
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Let (xo,y0,z0) be the cartesian coordinates of the interaction

point relative to the master coordinate system, (a ). xo,yo, zo, be

the direction cosines of the incident particle (gamma ray) direction

(for isotropic emission at this point, these are arbitrarily taken

to be (0,0,1), (xd,yd,zd) be the cartesian coordinates of the

detector geometrical center, R and H be the radius and the height of

the detector, respectively, and (fIxt,nyt,azt) be the direction

cosines of the major axis of the detector (in the proposed

monitoring system in this work, this axis is collinear with the

master axis on the z-axis and Oxt=0, nyt4, nzt=1). It has been

recognized that the calculations of the limiting angles can be

simplified when measured from the direction that is parallel to the

detector z-axis, for then the projection of the intersection of the

polar angle cone with the circular cylinder in the perpendicular

plane to the direction is a circle rather than an ellipse. If the

axes are translated such that the interaction point coordinates are

at the new coordinate origin, then the detector center coordinates

are

Xd =
d Xd XO

Yd Yd
yo

Zd = Zd ZO

The direction cosines that are parallel to the detector z-axis are:

=nxt

by = 0yt
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nz = ne

and the transferred axis such that the detector axis lies on the z-

axis results in the coordinates:

Xd = nzt (neXd nytYd) (1-n2zt)
-112 -

(1-n2e) -112 Zd

Yd = (neYd nytXd) (1-02zo

Z; = fIxtY:d + flytYd + OeZd

Notice that if Ozt=1, then X'd, Y'd, and Zed are identical to Xd,

Yd, and Zd. The position of the interaction point with respect to

the detector is determined by first calculating:

d2 x'd2 y'd2

ZB = Z; - H

ZT = Z; 12-1

lydJ
Wo = tart-'

"d

The following cases are recognized:

Case I: d2 > R2

The cosines of the limiting polar angles are given by:

V -min
4 (d+R) 2 + ZB

ZB
V =min

(d-R) 2 + ZB

ZB

and

; ZB>0

; ZB<0



max

Vmax

ZT

(dR) 2 + Z.2/.

ZT

(d+R) 2 +

Cosines vi and v2 are defined as

where

V1

+

ZB
v

2
=

1r2 + Z2

ZT

2 = d2 R2r - -c

; ZT>0

; ZT<0

For a sampled v E (vmin,vmax), the limiting azimuthal angles are

where

Wmin = (.00 AW

Wmax = W0 + ita

Au.) = cos-i

= sin-1

AW = cos-1

Case II: d2 < R2

z2
T
(1v2) + r2v2

2dZTV 41-2

ZB (1v2) + r.c2v2

2 dZB v 3A1:2

ViV_<Vmax

112<v<vt

Vmin5V5V2

The cosines of the limiting polar angles are given by

Vmin

ZB

4(d +R)2 ZB

Vmin = 1

;ZB>0

ZT<0
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and

Vmax = 1

V =max
411 (d+R) 2

If vc is defined as

ZT

Ve

(d-R2) + Z123

Z
T

Vc
4(dR2) Z.1.

zB

; ZB>0

; ZT<0

;ZB>0

;ZT<0

when v is sampled from v E (Oimin,ymax), the limiting azimuthal

angles, shown in Figure F-2, are given by

where

Wmin wo Aw

Wmax = (0 +

Aw = n ; vcs. s v and ZB>0

or vmth<- v<v and ZT<0

Aw = cos-1
2dZTv 341-17-V2

[ZT (1v2) + r2c.u2

r2c1/2

Ow = cos -'
2dZBv

; V
c
<v<Vmax ; ZT<0

Vmin<V<V
c Z

B
>0
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The fractional solid angle subtended by the detector at the

interaction point (the probability that the emission is to intersect

the finite detector) is calculated as:

vmax wmax

wo = f f A(v,w) dv dw
vmin wmin
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where A(v,w) is a transformed pdf. In the case of isotropic

emission:

A(v,w) dv dw = 4n dv dw

where v and w are the cosines of the limiting polar and azimuthal

angles to the detector.

z

Figure F-2 The limiting azimuthal angles when the
emission point is within the radius of the detector.

The probability that the emission is to intersect the

cylindrical detector is calculated as follows: The limiting polar
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and azimuthal angles are independent of each other for a subset of v

between the limiting polar angles. The integral in the expression

for Wo is evaluated analytically whenever v and w are independent.

For the integrals when the limiting azimuthal angles are dependent

on v, the angle can be evaluated based on an average value of v

between its limits with the integral of w being carried out

analytically.

When d2 > R2

W=Win. 1 V=1.12 w=wmax riwo = A(v,w) I ax I + A(v,w) +
6)=6"min v=vmin 4'4°min v=v2

v=A(v,(0 1 w=wms ax 1 vmax
/ 1 (J=W* I V=1.1Mill i

where the superscript () indicates that the azimuthal angle is

evaluated at an average value of the polar angle as

(v2 + vmill)
2

Similarly, for the superscript (*) the azimuthal angle is evaluated

at

(vmax + v1)
2

When d2 < R2

For 4 < 0:

(J=4) Irzi)
-Wmax v =vmax= A(v,w) I max I c + A(v,w) I meax I max0 w=wmin v=vmin v=

w=wmin vc
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and for 4 > 0:

0
(,).1...) v=pc v vW = A (v Go 1 wax + A (v w) 1 w=t'max I max

w=wmin
v=vmin 6-'14min v=vc

The superscript (e) indicates that the azimuthal angle is evaluated

at an average value of the polar angle as

(vc + vmax)
2

and similarly for the superscript ( ®) at

(vc + vmin)
2
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APPENDIX G

Statistical Estimates

The most probable estimate of the mean g of a population (of

limited number N) is the average x of the observations:

c- X = 4, Xi
1:1

(G-1)

The best estimate of the variance in the mean ax2 is given by

the sample variance:

2 2 NR = -
-37 N1 E x) 2 (G-2)

When the values Exi and Exl are accumulated, Equation (G-2)

may be written in the form:

and

2ci_ = [
x N-1 E (4 2xxi + (x)2)

N N[ 2

N-1 L xi 2xE xi + E (x)

N-1 1 [ 2x(Nx) + N(x)- 2

r N

N-1 L N
(x)

N

2(E Xi)
1 14' 2 i.71°I N (N-1)

r.4 xi
N

2

For the relative detector responses, it is necessary to

(G-3)
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determine the standard deviation of a ratio. Given that R=x/y and

a statistical ensemble of x and y values can be found using Equation

(G-1), and ax and ay values from Equation (G-3), the theory of

propagation of errors yields:

where

2 2 ,aR ,2 2 aR 2 2 0Ba
R

=
ax ay (ay) + aR

ay

N

Cqy E -g (xix)

For a finite value of N,

and

[02 =
xy N-1 E (xiyi x1y xyi + x y)

i=1

1 N 'N
= 11_1 [ YExi xEY. Nx

i=1

4sj

N N

N x EY,1 1=1 1=1

axY N (14-1) Xilri N

If the definition of Equation (G-4) is applied to R = x/y:

vIZ
,2 ,2 ( .4_ ,2 (1302 \

,2 2axy (R) 1,2 ' 1,2

(G-4)

(G-5)

(G-6)

If Equations (G-3) and (G-5) are substituted into the corresponding

values in Equation (G-6):



and

or
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DriEy

ZxiYi N
iN24-R21D,2 (ZYi)2

N N`

7 (EX )2 ) r zxiiy, )4._21 (Eyi)

GR N 1 ( LITisF J 2R( ZxiYi N R IYj 7T2[
E y,

1=1 .

1/2

1
N v

2 I- N
Zx Ey 7

151Z N
)+R2zy2 ExiEx_

Ey
i N Ey Ey

i=1

N N

v6R N
1 c- 7

2,XT 2R X iyi + R2 Y.

I Y 1=1 1=1 1=1 I

1=1 1

1/2

(G-7)
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APPENDIX H

Printouts from NCNCP
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MONTE CARLO SIMULATION

CAPTURE GAMMA RAY ANALYZER OF A SEAFLOOR CORE SAMPLE

Programmer: Abdullah M.S. Almasoumi (Nov. 19891

Monitoring System Dimensions (cm):

Container tank radius

Container tank height

= 50.00

=100.00

x-coordinate of the centerline of sample tube = 0.00

y-coordinate of the centerline of sample tube = 17.55

Radius of the core sample = 3.75

Thickness of the casing around the samPle = 0.50

Thickness of the sample tube material = 1.00

Thickness of the Cd annular shield = 0.30

Thickness of the polyethylene surrounding the Cd = 0.50

Length of the lower samPle sleeve = 59.00

Length of the upper sample sleeve = 10.00

x-coordinate of the centerline of source tube = 0.00

Y-coordinate of the centerline of source tube = -3.00

Radius of the Cf-252 neutron source capsule = 0.50

Length of the Cf-252 neutron source capsule = 5.00

Inner radius of the source tube = 5.00

Thickness of the source tube construction material = 1.00

Length of the Pb shield around the source = 10.00

Length of the Polyethylene shield above the Pb = 10.00

x- coordinate of the centerline of detector tube = 0.00

Y-coordinate of the centerline of detector tube = -3.00

Inner radius of the detector tube = 6.25

Inner length of the detector tube = 73.00

Thickness of the detector tube construction material = 1.00

Thickness of the Cd wafer inside detector tube = 0.30

Length of the Pb cone inside detector tube = 5.00

Length of the detector Al casing = 13.50

Radius of the detector Al casing = 3.75

Height of the detector crystal = 5.00

Radius of the detector crystal = 2.50

Refer to Section 4.1 for detailed description of the monitoring system.
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N.C. PREDICTED PHOTOPEAK RESPONSES

(1000 histories)

Element Energy Absolute

(MeV) Response

(Y-rav/sourc

Ms 0.5852

1.8089

2.8281

3.9167

Cl 5.7153

6.1109

6.6195

7.4138

7.7902

8.6460-17

7.1830-17

8.332D-17

7.8730-17

4.0990-17

1.3750-16

4.6380-17

3.8090 -17

3.0880-17

Ti 0.3417 1.7290-16

1.3815 1.2260-15

6.4184 6.501D-17

6.7598 4.2310-17

OF CAPTURE GAMMA RAYS

e n)

Std.dev.

3.3860-17

3.0460-17

3.6740-17

3.5550-17

1.6660-17

5.5960-17

1.::70-17

1.5520-17

1.2590-17

7.3530-17

4.8740-16

2.5780-17

1.6780-17

Cr 0.8351 3.024D-17 1.1990-17

7.9393 1.9160-18 -3.6740-39 *

8.8841 2.9820-18 -8.9020-39 *

Mn 7.0578 1.7600-18 -3.1000-39 *

7.2438 1.7180-18 -2.9530-39 *

Fe 0.3522 2.0230-16 8.2330-17

6.0185 2.0230-16 2.0350-17

7.6311 9.0470-17 3.4830-17

7.6455 7.6240 -17 2.9360-17

The expression for the standard deviation, Equation (G-3),

contains a sum of the squares of the score per history (Ixi);

subroutine STATS in MCNCP accumulates the summation with the

condition that when xi < 105, the quantity xi is set to zero to

avoid an underflow error on the PC. Apparently, this condition

reduces the sum Exi enough to yield a very small negative value

when Equation (G-3) was used.
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NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 1 (Mg) has been changed sequentially

Element Energy Concentration *

(MeV) 1 2 3 4 5 6 7 8 9

M9 0.5852 0.208 0.412 0.612 0.808 1.000 1.189 1.374 1.556 1.735

1.8089 0.207 0.411 0.610 0.807 1.000 1.190 1.377 1.561 1.743

2.8281 0.207 0.410 0.610 0.806 1.000 1.191 1.378 1.563 1.746

3.9167 0.207 0.410 0.610 0.806 1.000 1.191 1.379 1.564 1.746

Cl 5.7153 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.986 0.981

6.1109 1.026 1.019 1.013 1.006 1.000 0.994 0.987 0.981 0.975

6.6195 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.986 0.981

7.4138 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.986 0.981

7.7902 1.019 1.015 1.010 1.005 1.000 0.995 0.990 0.986 0.981

Ti 0.3417 1.026 1.020 1.013 1.006 1.000 0.994 0.987 0.981 0.975

1.3815 1.023 1.017 1.012 1.006 1.000 0.994 0.989 0.983 0.977

6.4184 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.981

6.7598 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.981

Cr 0.8351 1.025 1.019 1.013 1.006 1.000 0.994 0.988 0.982 0.976

7.9393 1.021 1.016 1.010 1.005 1.000 0.995 0.990 0.985 0.980

8.8841 1.021 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.980

Mn 7.0578 1.021 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.980

7.2438 1.021 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.980

Fe 0.3522 1.025 1.019 1.013 1.006 1.000 0.994 0.988 0.982 0.976

6.0185 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.981

7.6311 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.981

7.6455 1.020 1.015 1.010 1.005 1.000 0.995 0.990 0.985 0.981

* Relative to value at reference concentration no. 5

The photopeak responses are given at different concentrations of the element that has

been changed sequentially. The reference elemental concentration is given in Table 4.4-3.

Given that the element i has a weight percentage wi, the mass of the element i is

changed sequentially as:

k ( 0 . 2 ) w, pear. , k=1, 2 , . . 9

Where mirk is the mass of the i-th element in the core sample at the k-th concentration.
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NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 2 (Cl) has been changed sequentially

Element Energy Concentration *

(MeV) 1 2 3 4 5 6 7 8 9

Mt 0.5852 0.708 0.783 0.857 0.929 1.000 1.069 1.137 1.204 1.269

1.8089 0.706 0.782 0.856 0.929 1.000 1.070 1.138 1.206 1.272

2.8281 0.708 0.783 0.857 0.929 1.000 1.069 1.138 1.204 1.270

3.9167 0.710 0.785 0.858 0.930 1.000 1.069 1.137 1.203 1.269

Cl 5.7153 0.118 0.278 0.479 0.721 1.000 1.317 1.669 2.057 2.479

6.1109 0.118 0.278 0.479 0.720 1.000 1.317 1.670 2.057 2.479

6.6195 0.118 0.278 0.479 0.720 1.000 1.317 1.670 2.058 2.480

7.4138 0.118 0.278 0.479 0.720 1.000 1.317 1.670 2.059 2.481

7.7902 0.118 0.278 0.479 0.720 1.000 1.317 1.670 2.059 2.481

Ti 0.3417 0.660 0.748 0.834 0.918 1.000 1.080 1.159 1.236 1.311

1.3815 0.632 0.727 0.820 0.911 1.000 1.087 1.173 1.256 1.338

6.4184 0.626 0.723 0.817 0.909 1.000 1.089 1.176 1.261 1.344

6.7598 0.626 0.723 0.817 0.909 1.000 1.089 1.176 1.261 1.344

Cr 0.8351 0.645 0.737 0.826 0.914 1.000 1.084 1.166 1.247 1.326

7.9393 0.631 0.726 0.819 0.911 1.000 1.088 1.173 1.257 1.340

8.8841 0.631 0.726 0.819 0.911 1.000 1.088 1.173 1.258 1.340

Mn 7.0578 0.609 0.710 0.809 0.905 1.000 1.092 1.183 1.272 1.358

7.2438 0.609 0.710 0.809 0.905 1.000 1.093 1.183 1.272 1.358

Fe 0.3522 0.677 0.760 0.842 0.922 1.000 1.077 1.152 1.225 1.298

6.0185 0.624 0.721 0.816 0.909 1.000 1.089 1.177 1.263 1.348

7.6311 0.624 0.721 0.815 0.909 1.000 1.090 1.178 1.264 1.348

7.6455 0.624 0.721 0.815 0.909 1.000 1.090 1.178 1.264 1.348

* Relative to value at reference concentration no. 5

See note at bottom of page 180



182

NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 3 (Ti) has been charmed sequentially

Element Energy Concentration *

(MeV) 1 2 3 4 5 6 7 8 9

M9 0.5852 0.940 0.955 0.971 0.985 1.000 1.014 1.028 1.042 1.056

1.8089 0.932 0.950 0.967 0.983 1.000 1.016 1.032 1.048 1.064

2.8281 0.930 0.948 0.965 0.983 1.000 1.017 1.034 1.050 1.066

3.9167 0.929 0.947 0.965 0.983 1.000 1.017 1.034 1.051 1.067

Cl 5.7153 0.909 0.932 0.955 0.978 1.000 1.022 1.044 1.065 1.086

6.1109 0.909 0.932 0.955 0.978 1.000 1.022 1.044 1.065 1.086

6.6195 0.909 0.932 0.955 0.978 1.000 1.022 1.044 1.065 1.087

7.4138 0.909 0.932 0.955 0.978 1.000 1.022 1.044 1.065 1.087

7.7902 0.909 0.932 0.955 0.978 1.000 1.022 1.044 1.066 1.087

Ti 0.3417 0.185 0.377 0.577 0.785 1.000 1.222 1.451 1.687 1.929

1.3815 0.184 0.377 0.577 0.785 1.000 1.223 1.453 1.690 1.934

6.4184 0.184 0.377 0.577 0.785 1.000 1.223 1.453 1.690 1.935

6.7598 0.184 0.377 0.577 0.785 1.000 1.223 1.453 1.690 1.935

Cr 0.8351 0.922 0.942 0.962 0.981 1.000 1.019 1.037 1.055 1.072

7.9393 0.921 0.941 0.961 0.981 1.000 1.019 1.038 1.057 1.075

8.8841 0.921 0.941 0.961 0.981 1.000 1.019 1.038 1.057 1.075

Mn 7.0578 0.909 0.932 0.955 0.978 1.000 1.022 1.044 1.065 1.086

7.2438 0.909 0.932 0.955 0.978 1.000 1.022 1.044 1.065 1.086

Fe 0.3522 0.929 0.947 0.965 0.983 1.000 1.017 1.033 1.049 1.065

6.0185 0.924 0.943 0.963 0.981 1.000 1.018 1.037 1.054 1.072

7.6311 0.924 0.943 0.962 0.981 1.000 1.018 1.037 1.054 1.072

7.6455 0.924 0.943 0.962 0.981 1.000 1.018 1.037 1.055 1.072

* Relative to value at reference concentration no. 5

See note at bottom of page 180
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NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 4 (Cr) has been changed seguentiallY

Element Energy Concentration *

(MeV) 1 2 3 4 5 6 7 8 9

M9 0.5852 1.001 1.001 1.001 1.000 1.000 1.000 0.559 0.999 0.959

1.8089 0.997 0.998 0.998 0.999 1.000 1.001 1.002 1.002 1.003

2.8281 0.995 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004

3.9167 0.995 0.996 0.997 0.999 1.000 1.001 1.003 1.004 1.005

CI 5.7153 1.003 1.002 1.001 1.001 1.000 0.999 0.999 0.998 0.997

6.1109 1.003 1.002 1.001 1.001 1.000 0.999 0.999 0.998 0.597

6.6195 1.003 1.002 1.001 1.001 1.000 0.999 0.999 0.998 0.997

7.4138 1.003 1.002 1.001 1.001 1.000 0.999 0.999 0.998 0.997

7.7902 1.003 1.002 1.001 1.001 1.000 0.999 0.999 0.998 0.997

Ti 0.3417 1.005 1.004 1.003 1.001 1.000 0.999 0.997 0.996 0.995

1.3815 1.002 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.998

6.4184 0.999 0.999 0.999 1.000 1.000 1.000 1.001 1.001 1.001

6.7598 0.999 0.999 0.999 1.000 1.000 1.000 1.001 1.001 1.001

Cr 0.8351 0.201 0.401 0.601 0.801 1.000 1.199 1.397 1.595 1.792

7.9393 0.200 0.400 0.600 0.800 1.000 1.200 1.399 1.599 1.798

8.8841 0.200 0.400 0.600 0.800 1.000 1.200 1.399 1.599 1.798

Mn 7.0578 1.002 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.998

7.2438 1.002 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.998

Fe 0.3522 1.006 1.004 1.003 1.001 1.000 0.999 0.997 0.996 0.994

6.0185 1.002 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.998

7.6311 1.002 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.998

7.6455 1.002 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.598

* Relative to value at reference concentration no. 5

See note at bottom of page 180
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NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 5 (Mn) has been changed sequentially

Element Energy Concentration *

(MeV) 1 2 3 4 5 6 7 8 9

Mg 0.5852 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1.8089 0.998 0.998 0.999 0.999 1.000 1.001 1.001 1.002 1.002

2.8281 0.997 0.998 0.999 0.999 1.000 1.001 1.001 1.002 1.003

3.9167 0.997 0.998 0.998 0.999 1.000 1.001 1.002 1.002 1.003

Cl 5.7153 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6.1109 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6.6195 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7.4138 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7.7902 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ti 0.3417 1.001 1.001 1.001 1.000 1.000 1.000 0.999 0.999 0.999

1.3815 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

6.4184 0.998 0.999 0.999 1.000 1.000 1.000 1.001 1.001 1.002

6.7598 0.998 0.999 0.999 1.000 1.000 1.000 1.001 1.001 1.002

Cr 0.8351 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

7.9393 0.998 0.999 0.999 1.000 1.000 1.000 1.001 1.001 1.002

8.8841 0.998 0.999 0.999 1.000 1.000 1.000 1.001 1.001 1.002

Mn 7.0578 0.200 0.400 0.600 0.800 1.000 1.200 1.401 1.601 1.802

7.2438 0.200 0.400 0.600 0.800 1.000 1.200 1.401 1.601 1.802

Fe 0.3522 1.001 1.001 1.000 1.000 1.000 1.000 1.000 0.999 0.999

6.0185 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.003

7.6311 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004

7.6455 0.996 0.997 0.998 0.999 1.000 1.001 1.002 1.003 1.004

* Relative to value at reference concentration no. 5

See note at bottom of page 180
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NORMALIZED VARIATION OF RESPONSES WITH CONCENTRATION

Element no. 6 (Fe) has been changed sequentially

Element Energy Concentration *

MeV) 1 2 3 4 5 6 7 8 9

Mg 0.5852 0.993 0.996 0.999 1.000 1.000 0.999 0.997 0.995 0.991

1.8089 0.957 0.969 0.981 0.991 1.000 1.008 1.015 1.021 1.026

2.8281 0.946 0.961 0.975 0.988 1.000 1.011 1.020 1.029 1.037

3.9167 0.939 0.956 0.972 0.987 1.000 1.012 1.024 1.034 1.043

Cl 5.7153 1.055 1.041 1.027 1.013 1.000 0.987 0.974 0.962 0.949

6.1109 1.054 1.040 1.027 1.013 1.000 0.987 0.974 0.962 0.950

6.6195 1.055 1.041 1.027 1.013 1.000 0.987 0.974 0.962 0.949

7.4138 1.055 1.041 1.027 1.013 1.000 0.987 0.974 0.962 0.949

7.7902 1.055 1.041 1.027 1.013 1.000 0.987 0.974 0.962 0.949

Ti 0.3417 1.066 1.049 1.032 1.016 1.000 0.984 0.969 0.953 0.938

1.3815 1.043 1.032 1.022 1.011 1.000 0.989 0.979 0.968 0.957

6.4184 1.024 1.018 1.012 1.006 1.000 0.994 0.988 0.981 0.975

6.7598 1.024 1.018 1.012 1.006 1.000 0.994 0.988 0.981 0.975

Cr 0.8351 1.046 1.034 1.023 1.011 1.000 0.989 0.977 0.966 0.955

7.9393 1.014 1.010 1.007 1.004 1.000 0.996 0.993 0.989 0.985

8.8841 1.014 1.010 1.007 1.004 1.000 0.996 0.993 0.989 0.985

Mn 7.0578 1.033 1.025 1.016 1.008 1.000 0.992 0.984 0.976 0.968

7.2438 1.033 1.025 1.016 1.008 1.000 0.992 0.984 0.976 0.568

Fe 0.3522 0.212 0.418 0.618 0.812 1.000 1.182 1.359 1.531 1.697

6.0185 0.204 0.407 0.607 0.805 1.000 1.193 1.384 1.572 1.757

7.6311 0.204 0.407 0.607 0.805 1.000 1.193 1.384 1.572 1.758

7.6455 0.204 0.407 0.607 0.805 1.000 1.193 1.384 1.572 1.758

* Relative to value at reference concentration no. 5

See note at bottom of page 180
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APPENDIX I

Sample Input File for NCNP
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1 MC*

1-

2-

3-

4-

VERSION 383 LEr. 19-N00-39 00:44:

PROMO = 19-NOV-89 00:44:

NOWA SEAFLOCIR CORE ANALYZER (ABDULLAH ALmAGamli

C

C Cell definition cards

C

5- 1 7 -1.0 -1 19 -29 2 40 SWAYER

6- 2 7 -1.0 -40 19 -35 13 WATER

7- 3 7 -1.0 -40 35 -39 13 WATER

8- 4 7 -1.0 -1 29 -39 40 WATER

9- 5 7 -1.0 -1 39 -30 41 *WATER

10- 6 7 -1.0 -41 39 -30 13 WATER

7 7 -1.0 -1 30 -34 41 10 *WATER

12- 8 7 -1.0 -41 30 -33 10 13 WATER

13- 9 7 -1.0 -41 33 -34 10 13 WATER

14- 10 5 -.969 -2 19 -28 3 *TUBE MATERIAL (POLY)

15- 11 5 -.969 -2 28 -29 *TUBE MATERIAL (POLY)

16- 12 3 -.969 -3 19 -20 8 SPOLYEIHYWE

17- 13 11 -8.96 -8 19 -22 COPPER

18- 14 10 -2.699 -4 20 -21 8 SALUMINUM

19- 15 3 -.969 -3 20 -22 4 (POLYETHYLENE

20- 16 10 -2.699 -4 21 -22 6 IALUIIMII

21- 17 0 -6 21 -23 8

22- 18 10 -2.699 -8 22 -23 SALUMINUM

23- 19 3 -.969 -3 22 -26 5 * POLYETHYLENE

24- 20 10 -2.699 -5 22 -25 6 SALUMINLM

25- 21 0 -6 23 -24 7 fAIR

26- 22 0 -6 24 -25 LAIR

27- 23 12 -5.36 -7 23 -24 StETECTOR (APPROXIMATED WITH GALLIUM)

28- 24 10 -2.699 -5 25 -26 SALLIMINUM

29- 25 3 -.969 -3 26 9 SPOLYEINYLIDE

30- 26 6 -11.35 -9 26 -27 SLEAD CONE

71- 27 4 -8.65 -3 27 -28 *CADMIUM

32- 28 5 -.969 -10 30 -31 SUE MATERIAL (POLY)

33- 29 5 -.969 -10 31 -34 11 MIME MATERIAL (POLY)

34- 30 6 -11.35 -11 31 -32 SLEAD

35- 31 6 -11.35 -11 32 -33 12 (LEAD

36- 32 9 -7.84 -12 32 -33 U.S. 316

37- 33 3 -.969 -11 33 -34 SPCIYETHYLENE

38- 34 5 -.969 -13 19 -34 14 MEE MATERIAL (POLY)

39- 35 3 -.969 -14 19 -35 15 SPOLYETHYLENE

4() 36 4 -6.65 -15 19 -35 16 CADMIUM

41- 37 3 -.969 -16 19 -35 17 SPCLYETHYLENE

42- 38 3 -.969 -14 35 -36 17 SPOLYETHYLENE

43- 39 0 -14 36 -37 17 LAIR

44- 40 3 -.969 -14 37 -38 17 SPCLYETHYLBE

45- 41 3 -.969 -14 38 -34 15 * POLYETHYLENE

46- 42 4 -6.65 -15 38 -34 16 SCAOMIUM

47- 43 3 -.969 -16 38 -34 17 *POLYETHYLENE

48- 44 8 -.969 -17 19 -34 18 *SAMPLE CASING (POLY)

49- 45 1 - 2.45236587 -18 19 -35 SCORE SAMPLE

50- 46 1 -2.45236587 -18 35 -38 SCORE SAMPLE

51- 47 1 -2.45236587 -18 38 -34 SCORE SAMPLE

52- 48 0 11:-19:341 -51 SIMPER ENVELOPE

53- 49 0 51 SIMIVERSE

54-

55- C

56- C Surface definition cards

57- C

58- C

59- C Surfaces 1-39 are to describe the ehrsical semetry.

60- C 40-50 are used for tally, importance, and definition

61- C PUrPOSt5 only. An additional outer surface 51 SAY be
62- C added for seottry check

63- C

64- 1 CI 50.0

65- 2 C/Z 0.0 -3.0 7.25

66- 3 C/2 0.0 -3.0 6.25

67- 4 C/Z 0.0 -3.0 4.75

68- 5 C/1 0.0 -3.0 3.75

69- 6 C/Z 0.0 -3.0 3.55

70- 7 C/Z 0.0 -3.0 2.5
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71-

72-

73-

74-

75-

76-

77-

78-

79-

80-

81-

82-

83-

84-

85-

86-

87-

89-

90-

91-

92-

93-

94-

95-

96-

97-

98-

99-

100-

101-

102-

103-

104-

105-

106-

107-

108-

109-

110-

111-

112-

113-

114-

115,

116-

117- C Source Particles are neutrons but saw res will be senerated

118- C at neutron collisions

119-

120- MODE N P

121-

122- C Isotropic point neutron source of Cf-252 with DI cranny

123- C distribution

124- C The SDEF with SUR.51 card is used for geometry debasing

125-

126- C SDEF SUMO NRM=-1

i27-

129- SDEF POG=0.0 -3.0 86.0 ERG.D1 Dlft D2 VEC=0 .8364234 -.5480837

129- SC1 Maxwell fission spectra with temperature of 1.424 MeV

130- SF1 -2 1.424

131- SC2 Continuous exponential directional bias

132- 582 -31 3.5

133- C Initial direction of flight. Mu is sampled w.r.t. VEC

134-

C Specification of cell iportance w.r.t. neutron transport. Cells

136- C that are likely to transport neutrons towards the maple are

137- C considered more important

138-

139- 1MP:N 1 1 3 2 1 3 1 3 1 1 3 1 8R 2 1 1 2 1 1 1 2 1 2 1 1 1 2 1 3R 3 3

140- 2 I 2 3 3 3 3 0 0

141-

142- C Force collisions to take Place when the neutron is in the summit

143-

FCL:N 44J 0.5 1.0 0.5 0 0

8

9

10

11

12

1::/Z

VIZ

C/Z

C/i

C/i

0.0 -3.0

0.0 -3.0

0.0 -3.0

0.0 -3.0

0.0 -3.0

0.9

60.2 0.25 1

6.0

5.0

0.5

13 C/Z 0.0 22.55 6.55

14 C/7 0.0 22.55 5.55

15 C/2 0.0 22.55 5.05

16 C/2 0.0 22.55 4.75

17 C/2 0.0 22.55 4.25

18 C/2 0.0 22.55 3.75

19 PZ 0.0

20 PZ 48.2

21 P2 50.2

22 PZ 54.2

23 P2 62.3

24 P2 67.3

25 P2 67.5

26 PZ 67.7

27 P2 72.7

28 P2 73.0

29 PZ 74.0

30 P2 79.0

31 PZ 80.0

32 PZ 85.0

33 P2 90.0

34 PZ 100.0

35 PI 59.0

36 P2 59.5

37 P2 89.5

38 P2 90.0

39 PZ 77.0

40 C/2 0.0 22.55 10.55

41 C/2 0.0 22.55 27.00

42 PZ 56.0

43 P2 62.0

44 PI 67.0

45 PZ 72.0

46 PZ 77.0

47 PZ 82.0

48 'PZ 87.0

49 PI 93.0

50 PY -3.0

51 SZ 50.0 80.0
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145-

146- C Specification of cell importance o.r.t. soma ray trnsmisssion,

147- C Cells that are likely to be traversed by photons tosards the

148- C detector are considred important. Otherwise. Photons scattered

149- C off other cells are 'killed' (0 imPortancel

150-

151- IMP:P146R00
152-

153- C Materials and cross section tables specification

154-

155- MI 12000.51C -.0216014 17000.51C -.0036326 22000.51C -.0339442

156- 24000.50C -.0074101 25055.51C -.0024754 26000.550 -.0925769

157- 1001.50C -.0109823 6012.50C -.0067811 8016.50C -.5362210

158- 11023.51C -.0096411 13027.50C -.0061714 14000.51C -.2593048

159- 20000.51C -.0092576 SCORE SN1PLE

160- M3 1001.50C -.1437176 6012.50C -.8562824 SPOLYETHYLBE

161- M4 48000.510 1.0 CADMIUM

162- M5 1001.50C -.1437176 6012.50C -.8562824 NPOLYEARLEE

163- M6 82000.500 1.0 ALEAD

164- M7 1001.50C -.1119013 8016.50C -.8880937 WATER

165- MB 1001.5CC -.1437176 6012.50C -.8562824 APOLYEI) IDE

166- M9 24000.500 -.18048 25055.51C -.01956 26000.55C -.62924

167- 28000.50C -.13998 42000.51C -.03074 SS.S 316

168- M10 13027.50C 1.0 'ALUMINUM

169- MII 29000.50C 1.0 COPPER

170- M12 31000 1.0 SGALLILM

171-

172- C S(a.b) treatment is specified for rater and Polyethylene

173- C AT 300 K

174-

175- MT3 POLY.017

176- MT5 POLY.017

177- PIT7 LINA.017

178- MT8 POLY.OIT

179-

180- C OILY SELECTED LINE GAMMAS ARE ALLOWED, ALL 07/ER OMIAS AS A

181- C RESULT OF COLLISIONS ARE RAGED OFF

182- C Na: 0.472..87.2.027. AND 2.517 Meg

183- C Cl: 5.715,6.11.6.619, AND 7.413 Meg

184- C THE FREQUENCY OF SAMPLING IS EQUAL FOR ALL LINE OPM1A RAYS:

185- C. HAS TO RE -ADJUS1 ACCRORDING TO TIE BRANCHING RATIO

1fk,-

187- P1KMT 11023.51 4 102060 1.0 102054 1.0 102042 1.0 102037 1.0

188- 17000.51 4 102010 1.0 102007 1.0 102005 1.0 102003 1.0

189-

19(,- C Tally specifications

191- C all tallies are per source neutron

192-

193- FCA Neutron flux averased over sections of the core sample

194- F4:N 45

195- E4 2.0E-6 10.0

196- FS4 -42

177- F04 F S E

193- F14:N 46

199- E14 2.0E-6 10.0

200- FSI4 -43 -44 -45 -46 -47 -48

201- F014 F S E

202- F24:8 47

203- E24 2.0E-6 10.0

204- FS24 -49

205- FQ24 F S E

206- FC34 Neutron flux averaged over the detector volume, cell 23

207- (34:N 23

208- SF34 24

209- E34 2.0E-6 10.0

210- FQ34 FOE
211- FC44 Neutron flux averaged over the detector tube Cd volume

212- F44:8 27

213- E44 2.0E-6 10.0

214- FQ44 FDE
215-
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216- C A DXTRAN SPIERE IS SPECIFIED TO MOM THE DETECTOR

217-

218- DIT:P O. -3. 64.8 3.54 3.8

219- FC1 Photon current integrated over detector toe surface (-DIRECTION)

220- F1:P 24

221- El .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

222- 1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4

223- 3.5 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.

224- 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5

225- 6.6 6.7 6.8 6.9 7. 7.1 7.2 7.3 7.4 7.5 7.6

226- Cl 0 1

227- FS1 -7

228- FOl FSCE
229- FC11 Photon current integrated over detector side wall

230- F11:P 7

231- Ell .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

232- 1.9 7. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4

233- 3.5 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.

234- 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5

235- 6.6 6.7 6.8 6.9 7. 7.1 7.2 7.3 7.4 7.5 7.6

236- FS11 -50 -23 -24

237- F011 F S E

238- FC2I Photon current integrated over detector bottom (+DIRECTION/

239- F2I:P 23

240- E21 .1 .2 .3 .4 .5 .6 .7 .8 .9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

241- 1.9 2. 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3. 3.1 3.2 3.3 3.4

242- 3.5 3.6 3.7 3.8 3.9 4. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.

243- 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5

244- 6.6 6,7 6.8 6.9 7. 7.1 7.2 7.3 7.4 7.5 7.6

245- C21 0 I

246- FS21 -7

247- FQ21 FSCE
248

219- C The VOID card is for geometry check

250-

251 C VOID

252-

253- C Conditional termination

254-

255- CuT:P 0.1

256- MPS 1000 Mexcusioh is terminated when histories are exhausted

257- PRINT Sprint full outrut


