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Introduction

Forest Products Laboratory Report No. 1871 (1) 3 presents two mathematical analyses
of the torsion of rectangular sandwich plates. In one analysis the Saint Venant theory is
used, although it does not satisfy the detail boundary conditions in regard to the applied
load. In the other, a more rigorous treatment is used that satisfies all boundary condi-
tions. In Report No. 1874 (2) the derivation of a system of suitable differential stress
strain relations is carried out by means of the variational theorem of complementary
energy in conjunction with Lagrangian multipliers. A system of differential equations
was obtained. These equations (which can be applied to bending or twisting of sandwich
panels) are then applied to the torsion of sandwich panels of trapezoidal, triangular,
and rectangular cross sections by using the Saint Venant torsion in their solutions. The
formula for the torsional stiffness of a sandwich panel of rectangular cross section so
obtained agrees with the infinite series solution given in the Report No. 1871 (1).

The purposes of the present report are as follows

(1) To obtain from the differential stress strain relations and equations of equilibrium
derived in the Report No. 1874 (2) a six order partial differential equation, correspond-
ing to the role of the, equation pew = P in the thin solid plate theory (3), that governs

!This progress report is one of a series (ANC-23, Item 57-4) prepared and distributed
by the Forest Products Laboratory under U.S. Navy, Bureau of Aeronautics Order
No. NAer 01967 and U.S. Air Force Contract No. DO 33(616)58-1. Results reported
here are preliminary and may be revised as additional data become available.

Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

Underlined numbers in parentheses refer to Literature Cited at the end of the text.
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the small deflection of sandwich panels under bending or twisting. The problem of
bending or twisting of sandwich panels thus reduced to the integration of this governing
differential equation of deflection.

(2) By applying the governing differential equation and equations for stresses to solve
the problem presented in Report No. 1871 (1) that is the torsion of rectangular sand-
wich panel having the torque applied by forces concentrated at the corners of the panel.
The result which satisfies all boundary conditions shows that the expressions of homo-
geneous solution remain essentially the same and the series of particular solution
converge more rapidly than those of the rigorous treatment presented in Report No.
1871 (1).

Notation

x, y, z	 rectangular coordinates (fig. 1).

a, b	 half length and width of sandwich.

h	 half thickness of core.

t	 thickness of facings.

E, v	 Young' s modulus of elasticity and Poisson° s ratio of the facings.

	  , shear modulus of the facings.
2 (1 + v)

Gxz' Gyz	 shear modulii of the core.

w	 deflection of the panel in the z direction, Lagrangian multiplier.

0, y	 Lagrangian multipliers.

'T x , cr y T

	

	 stresses in facings.

stresses in core.

p

xz Tyz

load per unit area.

Gxz

Gth(1 + 1.)2
2h

vz 

Gth(1 + ..L)2
2h

t
4Gth

2
 (1 +

2h 2

Dl	 (1 - v)Dx + 2Dy
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D2	 2Dx + (1 - v) Dy

am	 (2m + 1) 11. 

2a

On	
(2n + 1) 1r 

lb 1
YIn	 Dx Dx 2-

+	 )
D	 ay m

1
D D

6n	 (./ Y)2
Dx gn2

P	 resultant force applied at a corner.

4
P1	

4P
ab

Am, Bm , Cm, Dm
Km, An, Bn, Fn,
Hn, Ln

Gyz

xz

parameters.

T	 applied torque.

0	 angle of twist per unit length in radians.

Derivation of Differential Equations for Deflection and Stresses 

By setting a = 0., equations (6), (7), (8), (10), (11), (12), (13), and (14) of Report No.
1874 (2) are reduced respectively to the following equations:

to. + —t )( acrx + aT )rxz
2h 8x	 ay

t	 acry	 Or
r = t(1 + — 	  + )yz	 2h)( By	 8x

aT3cz	 8Tyz	 p

8x	 By	 211

cr x	v (r y _ 813

hE(1 +	 Ox
2h
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(5)

Gyz (1 - v)

Gth (1 + t )2
2h

Gyz az Txz
= 2 — — + (1 - v)

Gxz 8x2	 Gxz 8y2
TXZ

Gyz 82 TXZ

cr y - vo• x = 81/

	

hE(1 +	 By
2h

T = Gh(1 + ))(811+2h By Ox

Txz 8w
Gxz Ox

= Ly2. ow

Gyz By

To find the physical interpretation of the Lagrangian multiplier w we notice that
E under the double integral jj wpdxdy (which is a term contained in the energy expres-
sion I, equation (9) of Report No. 1874 (2)) represents the applied load intensity. We
conclude that the term if wpdxdy represents the virtual work and w, the Lagrangian
multiplier, is actually the deflection of the surface of sandwich panels.

Solving equations (4) and (5) for o x and a, gives

Eh(1	 zgt ) aft vaN

	

6x- 	 	 (9)
(1 - v2 )	 8x	 By

t
Eh(1 + —2h)	 + v10)cr	 -	 (10)y 

(1 - v2 ) By	 Ox

Substituting these expressions and equation (6) in equations (1) and (2) and carrying out
the differentiations with respect to x and y, we obtain

t 2 	2	 8 20	 82 0	 1 + v 8Zy
T = th(1 + —) G( —	 +	 +	 )xz 2h	 1- v Ox 2	 8y4	1- v 8x8y

t ,	 2	 8Zy	 8 2y	 1 + v 820
T	 = th(1 + ..._)4 G( 	 	 (12) •

Y z	 + — + — — )
2h	 1- v By2 8x 2	1- v 8x0y

By substituting for 0 and / their expressions (7) and (8) into equations (11) and (12)
the following equations are found

P =

82-r
+ (1 + v) —Y-a 2Gyz 1 V2 w

Ox 8y	 Bx
(13)
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Gyz (1 - v)

Gth(1 + t )2
2h

TyZ

8 2 Tyz	a2Tyz	 Gyz 8 2Txz
= 2 	  + (1 - v)	 + (1 + v)

ay 2	 ax2	 Gx5 ay ax

- 2G	 v2wyz a—
ay

where V 2 is the Laplacian operator.

Differentiating equation (13) with respect to x and using equation (3), we obtain

G 0 3 T	 G a 3 T	 Gyzo. - v) a-ryz
(1 + v - 2 --n) 	 Y4	 (1	 v)	 + 	 	 2G az v2w

Gxz ax2ay	 Gx5 8y 3	Gth(1 + t )2 ay	
yz

9x4.
2h

Gyz 8 2p (I	 v) a 2 p	 Gyz (1 - v)r

Gxzh 8x2	 2	 ay2 2Gth2 (1 +	
, P

Zh

rb
Substituting for	 its expression (3) in equation (14) gives

ax

8 2 -r y ,	 aZTyz	 Gym (1 - v)
[2 - (1	 v)  Yz	 	  + (1	 v)

Gxz	 ay2	 ax2	 Gth(1 + t)2
2E.

Tyz 2Gyz	V2w
ay

G	 (1 + v) Oyz 	 p+	 (16)
2Gxyh	 ay

Differentiating equation (16) twice with respect to x and equation (15) once with respect
to y, then subtracting one from the other, we obtain the following differential equation
for the shearing stress Tyz •

a 4T z	 ,4u Tyz	
8

4Tyz	 ,2	 Dv 8
DX  Y  + (DX + Dy ) 	  ,	 —	

x, y v Tyz = ' 	 (Dxp - V2p)
ax4	 8x28y 2	 ' ay4	 2h 8y

(17)
where	 Gym	 Gyz

Dx - 	 	 D
Y 

- 	
	Gth(1 + 1_)2	Gth( 1 + t )2

2h	 2h

Equation (17) can also be written as

2
V4r	 8	 - V 213)D,	 - (Dx - Dy) a v 2 Tyz - DxD	 =	 ‘DxPyz	 y	 yz

ay2	2h ay

Differentiating equation (16) with respect to y and adding equation (15), gives

(14)

(15)

(18)
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= D[ -2 v 4p + (1 _ v
Dy

Dx 2
+	 p

Dr

4hD(Dx - Dv)2._ V 2 Tyz = DxDyV 4w + DDy [2V 2 p - (1 - v)Dxp]
8y

where
D = 	 1 

4Gth2 (1 + zfft )2

Differentiating equation (18) with respect to y and applying equation (19), we obtain

D„ ,	 ,	 D 2
v 6w - (1 -	 V'w - D V 4w = D[-	 V4p + (1 - v + 2 _Ly7 p +

D, 8 y2	 Dx

D

D az
(l+v) (1 -	 - (1 - v) Dypj

x 8 yz

In the same manner as the derivation of equation (18), (19), and (20), or by considering
the condition of symmetry, we obtain

2,	 D, 	 ,	 2
Dy 4T - (D - D )	 V'T - D D V ZT =	 (Du? - V Pi	 (21)
 .xz	 y	 x	 xz	 x y	 xz	 2h ax 1

4hD(D - D )	 T = DxDyV 4w + DDx[2V 2P - (1 - v)Dyp]
y	

x a 2 
XZ

(19)

(20)

(22)

V 6w - (1 - DX) 
a2 

V 4w - DxV4w
Dy axz

Dx aZp
(l+v) (1 -

axl
(1 - v)Dxpl	 (23)

Subtracting equation (23) from equation (2.0), gives

(D Dy - D —az - Dy a
2

) V 4w = D[2V 4p - D1 	 - D2 a_22 + (1 - v)DxDyp]
8x2	ay	 8x2	 8y2	 (24)

where
Dl = (1 - v) Dx + 2Dy	D2 = 2Dx + (1 - v)Dy

It is seen that the problem of bending of rectangular sandwich panel by a lateral load
p reduces to the integration of equation (24). The shearing stresses 2:m and Txz can

now be determined from equation (18) or (21) and equation (3).

Once w, T z and Txz are obtained, the remaining five quantities 13, y, T, o• z, and try

can be readily found from equations (7), (8), (6), (9), and (10) by differentiation. It
is of interest to note that equation (24) reduces to the differential equation of the sand-
wich plate given by Reissner as equation (70) in reference (4) if Gx, is assumed to be

equal to az . When Gxz = Gyz = oo equation (24) reverts to the known form of this equa-
tion for the homogeneous plate.
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Torsion of Sandwich Panel of Rectangular Cross

Section having the Torque Applied by Forces

Concentrated at the Corners of the Panel (fig. 1)

The Loading 

For the purpose of integrating equation (24) for the deflection of a rectangular sandwich
panel by the loading shown in figure 1 we express the load intensity p in the form of a
double trigonometric series:

co	 oo
m + 1)wx	 .	 n2 + 1).rryp=E Z Amn sin(2 sin(

2

	

 n=o	 2a	 Zb

To calculate any particular coefficient A m , nl of this series for a given load distribu-
tion, that is, for a given p, we multiply both sides of equation (a) by sin(2n + 1pry dy

2b
and integrate from 0 to b. Observing that

I b
 sin (2n + 1)wy sia(2n° + 1)wy  dy = 0	 when n 4 n°

b	 2b	 2b

(a)

fb

b

sia(2n + 1)wy sin (2n° + 1) wy dy = b

2b	 2b
when n = n'

we find in this way

f
b

p sia(2n° + 1)TrY  dy = b> Amni sin(2m	 1)1rx
-b	 2b	 m=o	 2a

xMultiplying both sides of equation (b) by sin(2m' + 1) nx 	 and integrating from 0
to a, we obtain	 2a

a	 f b	 (2m° + 1)wx  sin (2n° + I)TrY  dxdy = abArni n°p sin
2a	 2b-a	 -b

from which

(b)

a	 b
Am, =	 ff	 p sin(2m' + 1)wx

ab -a	 -b	 2a
sin( Zni	1)117dxdy

Zb
(c)

In the case of the four concentrated loads applied as shown in figure 1 equation (c)
is integrated over four very small areas at the corners of the panel. Equation (c) be-
comes
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4	 (2m' + 1)n  sin(2n1 + 1)a
f a 	 fb

Am' ni = — sinab	 2	 2	 a-6	 b-6
pd dx y

where 6 can be made as small as desired. It is evident that the value of the double in-
tegral is equal to the concentrated load P or

4P . (2m +Amn = -a-T3 sin 	 2 	 sin (2n + 1)n 4P	 m+n
ab 

( 1)2
Hence we find

OC,	 oo
4P	 m+n

P = — 5—	 (-1)	 sin a x sin PnY
ab	 m

m=o n=o

where - (2m + 1) .ir	 (2n + 1)ir
-2	 2b

The Particular Solution

For the loading shown in figure 1 the deflection w is an odd function of x and E. With
this restriction we take the following expression as the particular solution for deflec-
tion

oo	 oo

w = Z Z wmn h sin amx sin fitly	 (26)
m=o n=o

in which the constant wmn must be chosen so as to satisfy equation (24). Substituting
expression (26) and (2 intoequation (24), we find

DPI (-1)m+n[2(am2 + 13/1 2 )2 + Diam2 + P2i3n2 + (1 - v)DxDy]
wmn	

h(am2 + gn2 )2 (Dxam2 + Dygn2 + DxDy)

where 4PP = —1	 ab
Taking the particular solution of equation (18) for .1:m which must be an odd function of
x and an even function of y as

oo	 oo
yz

Z. Amn gn h sin amx cos On y
Gyz m=o n=o

and substituting this expression with equation (25) into equation (18), we obtain

2DP1 (-1)m+n (am2 + f3n2 + Dx)
Amn -

Using equations (26), (27), (28), and (29) the remaining six particular solutions of
13 ,	 T, cr x, and oly can readily be obtained from equations (3), (7), (8), (6), (9), and M.
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It is seen that the above series converge more rapidly than those given in the Report No.

18 71 (1).

The Homogeneous Solutions

In order that all the boundary conditions can be satisfied solutions other than the partic-
ular solution must be found. This is accomplished by setting the left side of equation
(24) equal to zero, (p = 0). A suitable general integral of this equation is

	

co	 Cm Binh amy + Dmamy cosh amy 	 Km sinh ymamy

	

w = h >--	 [ 	  + 	  ] sin a xm
m=o	 cosh climb	 y m cosh ym a n0

	

oo	 Fn sinh /3nx + Hni3nx cosh 13n x 	 L n sinh bn /3nx

+ h	 [	 	 	 ] sin f3ny	 (36)

	

n=o	 cosh I3na	 bn cosh Onf3na

where

M =

D Dx	 x 2
72)Y

D D
b n =	 +	 )2

x
(37)

and Cm, Din, Km, Fn, Hn, and L fl are arbitrary constants to be determined later from
the boundary conditions. The expression (36) is considered the homogeneous solution
of w because it does not contribute to the loading.

It is noticed here that the expressions (36) and (37) are similar to those found in the
previous Report No. 1871 (1).

In view of the equations (36) and (16) the homogeneous solution of equation (18) for Tyz is:

co
T

3	
cosh amy 

+ Bm
cosh ymamy

-	 IA 	 m=h	 sin amx + h	 13n[Ancosh gna
G -ham' izO 

oIll rn 
cosh arnb	 ym coshy m am b	 n=o

yz

Elinh 6n8nx
+ B 	 j cos Po

ncosh Oni3na

Substituting equation (38) and (36) into equation (16) and using equations (37), we obtain

Am -
4Dm (39)

2 - c[(1 - v) ym2 + 1 + v 

00
	 sinhi3nx

(38)

Bm -
(Yrn2 - 1) Km (40) 

ym (1 - c) 

-4Hn
A = 	 	

(41)

[(1 - v) 5 n2 - 2c + 1 + v
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00 Fn sinh jinx + HnOnx cosh finx Ln sinh 6nt3nx

n=o	 cosh Ina	 bn cosh bni3na
+	 [ sin Ony

	
(43)

CO
	

(-1)m+n1n(am2 + 13n2 Llx)

n=o (amt on2 )(Dxam2 Dy1n2 DxDy
sin a nic cos itny

oo
= 2DP1

m=o
yz

Gyz

oo

n=o (a mt + (3,1 2 ) (Dxam2 + Dyfin 2 + DxDy)

TXZ = 2DP1 oo
xz	 m=o

(..1)m+n am(am2 i3n2 Dy)
cos a mx sin finy 

- (6,12 - 1) Ln
Bn =	 b n (1 - c)
	 (42)

By using the expressions (36) and (38) we obtain the remaining six homogeneous solutions
of Txz, 13, y, r, T

x
, and cr by means of equations (3), (7), (8), (6), (9), and (10).

The Complete Solution 

From the foregoing analysis the complete solutions may be written as follows:

(-1)rn+n [2(am2 + 13n2 ) + Diam2 + D 2 13n2 + (1-v)DxDy]
	  sin amxsin 13ny

n=o

w	 DPI	 CO

h
VII= 0 (amt + f3n2 ) 2 (Dxam2 + Dy i3n2 + DxDy)

C m sinh amy + Dma my c osh amy	 Km sinh yrnam y    
] sin amx

m =0 cosh amb ym cosh ymam b

oo
+h

m=o

cosh amy
am(Am 	 + Bm

cosh amb

cosh ymcrmy

yin cosh ymarnb
sin amx 

sinh finx
+ Bn

Binh fonfinx

cosh Ongna
) cos Ony (44)

oo
+ h	 i3n (An

n =o cosh Ona

co
+chZa (Am

sinh amy sinh ymamy
+ Bm 	) cos amx

cosh ymambcosh amb

+ch L
n=o

(An
cosh flnx cosh ()jinx

+ Bn 	) sin 13ny
bn cosh öntina

(45)
cosh Ona
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[(c+6/f)Bn-21,n6n] cosh bnfinx

6 n cosh bill3na

-12-

COB 13nYi (48)

= - DP (-1)m+nam[Dx(1-v)(am2 + On + Dy) (Dx- Dy)(1+v)Pn2] cos a mx sin tiny
2	 2	 2n=o	 (am + I32n ) 2 (Dxam + D/3n + DxDy) II1=0

oo 
h > a

m=o

[ (cA m - Cm) Binh amy Dmamy cosh amy

cosh amb

(cBmym - Km) sinh ymam Y 1 cos
ymcosh Ymamb

r(cAn-Fn -Hn)cosh 13nx -Hdinx Binh Onx
amx +	 /3 	

n=o	 cosh 13iia

(cBn-Ln8n) cosh bdinx
• sin (3ny	 (46)

6 n cosh bni3na

oo	 (-1)m+11/3n[Dy(1-v)(arlit +	 + Dx)-(Dx-Dy)(1+v)ath
y = - DPI 	 	  sinamx cos I3ny

m=o n=o	 (amt + I31 2 ) 2 (Dxanf + Dyl3n2 + DxDy)

oo	 (Am - Cm - Dm) cosh amy - Dmamy sinh amy
+ %if	

cosh amb

(Bm - K inym) cosh ymamy	 w (An-Fn) sinh I3nx-Hfinx cosh 13 x

• ] sin amx + hLI3n[	
n=o	 cosh /3na

(Bn6 n -Ln) sinh 6n Sn x
] cos I3ny	 (47)

bn cosh ,b n /3na

co	 co	 m+n( 4 )	 ampn [Diam +D2 (3,12 ]

	

G = (1 +	 {-2DPih
2h m=o n=o (crni /31202(Dxani Don2 DxD

(Dx+Dy)(am2 +13212 ) -( 1 - v)DxDy

	

. 2	 n 2%	 2	 2
kain + pn

2i (Dxam + Dy13,1 + Dipy)

2 >--°° 
am 2 

1(1+c)A m - 2(Cm+Dm)] cosh amy -2Dmamy sinh amy
+h 

m=o	 L. cosh amb

+ [(c ym2 +1)Bm - 2 Km ym ] cosh ymamy 20 13,7 		  cos amx +11. , 
`1) , l.+c)An -2(Fn +Hn)] cosh finx

c
y m cosh yrnarnb	 n=o	 cosh 13na

2Hnfinx sinh finx

cosh I3na
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sx cosh qx cos sx
q2+82

Determinations of Six Parameters Cm, Dm, Km, Fn , Hn , and Ln

in the Expression of Deflection w from the Six Boundary Conditions

As seen from the expressions of the complete solutions of w, Tyz, Txy,	 y, T, crx,

andgiven in the preceeding section, the problem of torsion of rectangular sandwich
_Lir

panel has been reduced to finding the six arbitrary constants C m, Dm, Km, Fn, Hn,

and Ln . These six constants can be evaluated from the following six boundary condi-
tions—Of the sandwich panel:

(1) The requirement r	 = 0 at y = + b givesyz

Bm = -yrnAm

(2) The requirement Txz = 0 at x = + a gives

Bn - OnAn

(3) The requirement r = 0 at y = + b gives

l+c	 Bm(cym2 + 1)
2 Am -Cm -Dm(1 + amb tanh amb) +

	

	  Km = 0
2Ym

(4) The requirement r = 0 at x = + a gives

l+c -Hn(1 + fina tanh fie) + Bn(8+ c) - Ln = 0	 (54)
2	 26n

(5) By means of the Fourier sine transform 4— of equation (49) and (50) it can be shown
that the requirement, o- x = 0 at x = + a gives

Both  sides of equation (49) are multiplied by sin tiny and integrated from 0 to b. Both
sides of equation (50) are multiplied by sin amx and integrated from 0 to a. The fol-
lowing integrals are needed for these operations.

fsinh qx sin sx dx -,2-17 (q cosh qx sin sx - s sinh qx cos sx)4 

jx cosh qx sin ex dx - 
q2+ s2 

sinh qx sin sx -qx

ci2 Eg2	 Zqs
	  cosh qx sin sx + 	 sinh qx cos sx

(q24.s2)2(q2 +s2 )2
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2 n2 % ,	 2	 202/00 (-1) i(am+vPnikpxam+Dy 2 +DxDy) + 2amPn n Dx-Dy)]	 oo
DP „5— 	 _ 2	 4m+n

m=o	 (am2+0112)2(Dxurn_ 2 +Dyf3a2+DxDy )	 b m=o

, [a ryi c : vv Am _ cm + 2/vDm )
(amhr 	  - DnIcrm (amb tanh a b 4431)

am2+ f3n2	 an+ flli —	 m a2 02
+Pn

21-vym 
a m&L-i 'Ym Bm - 1-v Km )

+ - (finh) 2 (-Fn -F --LH
n

 ) tanh fina-Hnfina
1-v n n 1-v

Yrriani+19n

c-v	 6! -v
+ [B 	 Ln] tanh 6 apaal	 (55)

1-v n (1 -v)6 n

and

(6) The requirement, o- y = 0 at y = + b gives

DPIh
co

n=o

2
-O

m [(va +13n2)(Dxam2+Dyi3n2+DxDy)+2am213,2(Dy-Dx)]
(- 1

(ani+13,i) 2 (Dxani+ Dy1+DxDy)
- (amh)2

1-vc vc	
)

-12
(—Am -Cm - Dm) tanh amb - Dmamb + [—Bm m	 K m]tanhymcrmb

1-v	 1-v 1-v	

y 2-v

(1-v)ym

oo
1-vc	 2v	 2 02

2	 )3, n( i::;, An -Fn+y_T Hn)	 Hnfin	 am-Pn
+ I (-1)m+n(ph)6 	a	 - 	 Ala tanh Ona + 2 2 )

ani +.13n2	 arri+Ori	 am+fIn

Pil l 7:7 nBn4--et— La)
v6 2-1,1-vc 5

2 2 2
am+6n13n

Solving equations (53) and (54) by using equations (39), (40), (41), (42), (51), and (52),
gives

n=o

(56)

Dm -
(y m-1) lc [1+v+yni(1- v)]-2) Cm 

(57)
2(c ym4_2ym2+0_,yrn2_k	 1)(1+amb tanh arab) tc[1+v+ym2 (1-v)]-2}

(62n-1)[(1-v)62n-2c+1+v]Fn
Hn =	 (58)

4	 22(8 n -2c6n+1) - (62n -1)(1+13na tanh fina)[(1 - 081i -2c+1+v]

Substituting expressions (57) and (58) into expressions (51), (52), and using equations
(39), (40), (41), (42), gives
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4yri1-c) Cm
4	 2	 2	 m	 22(cym -Zym+c)-(ym -1)(1+ab tanh amb) 	 - 2}

-451(1-c)Fn
Ln = 	 	 (60)

2(4-2c6 n2 +1)-(6 n2 -1)(1+(3na tanh 13na)[(1 - v)6121.42c+1+v]

Substituting equations (57) and (58) into equations (39 and (41) gives

-4(ym2 -1) Cm

2(cym4 -2ym2 +c)-(ym2 -1)(1+amb tanh amb) tc[l+v+ym2 (1-v)] - 2}

-4(61-1)Fn

-2c6n+1) - (6 121 -1)(1+13na tanh Ona)[(1-v)612.1 -2c+1+v]

Equations (51), (52), (57), (58), (59), (60), (61), and (62), show that the constants Dm,
Hn, Km, Ln, Am, An, Bm, Bn can be expressed in terms of two arbitrary constants
Cm and Fn.

The first parts on the right side of equation (55) and (56) can be expressed in terms of
Cm by means of equations (57), (59), (61), and (40).

The second parts on the right side of equations (55) and (56) can be expressed in terms
of Fn by means of equations (58), (60), (62), and (42). Thus equations (55) and (56) may
be solved for Cm and Fn in terms of the load P for as many values of m and n as de-
sired. These values can then be substituted in equations (43), (44), (45), (48), (49),
and (50) to obtain the deflections of and stress in the sandwich panel.

Determination of Torsional Rigidity -er

The loads acting at the corners of the sandwich panel form a couple the magnitude of
which is

T = 2Pb

The angle of twist per unit length is

w x=a, y=b
-

ab

The displacement w is given by equation (43).

Thus the torsional rigidity can be expressed as

T _	 ZPab2
0w

x=a, y=b
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(59)

Am -

An =

(61)

(62)

(63)



Conclusion

The results of the foregoing analysis show that the series of the particular solution
obtained by the present method converge more rapidly than those found in Report No.
1871 (1) and the series of homogeneous solution remain essentially the same. It is
expected that the numerical results will be close to the results computed in Report No.
1871 (1).
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