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Chapter 1: Introduction

Robots are entering the world at an increasing rate, and as they do, the tasks
they are solving become increasingly complex and multi-faceted. Traditional rein-
forcement learning methods use a single reward to capture, or at least attempt to
capture, this complexity. Using multiple rewards to represent the different aspects
of these problems introduces new problems - how should the different rewards
be weighted, and how do robots deal with situations where what is important
changes? We introduce alignment as a metric to identify which reward matters
when. Alignment is a time-varying state-dependent weighting of rewards. Once the
appropriate sub-reward is known, we introduce three decision making algorithms

that make use of this information.

1.1 Learning for Long Term Autonomy

Robots have great potential to assist humans accomplish a wide variety of tasks
in environments ranging from in the home to the ocean floor to the outer reaches
of space. For robots to be useful outside of the controlled environments they are
currently in, however, we must develop robots capable of acting autonomously for
long periods of time. In these long missions outside of the research lab and far from

the factory floor, robots must not only plan over exceptionally long time horizons,



but they must learn to accomplish new tasks and respond to unforeseen challenges,
ideally by leveraging their existing knowledge of related tasks.

Despite the long time horizons and increasing problem difficulty, the problems
associated with long term autonomy can still be formulated as traditional reinforce-
ment learning problems with a state, action, reward structure for reinforcement
learning agents to solve. In order to do that, the original problem, with all its
variabilities, intricate parts, and quirks is traditionally summarized into a single
reward signal. For example, consider a team of soccer players. Each player must be
able to pass and control the ball, shake off defenders, shoot the ball, etc. In such a
scenario, each sub-task is critical to playing the game well. In the typical reinforce-
ment learning structure, the performance of a learning agent is summarized as a
single reward signal, e.g. winning or losing the soccer match. Historically, learning
algorithms applied to multiagent systems have used a single reward signal [1, 9, 18].

The use of a single reward signal, however, fails to fully capture all of the
different components of the problem, e.g. the different skills a player must learn to
win a match. Learning each task independently is problematic, however, because
problems can arise when the task at hand has different conflicting or situationally-
relevant sub-problems that vary in their importance across different states and
time. To continue the soccer analogy, knowing how to score from a teammate’s
corner-kick is a very useful skill, but is not relevant for the majority of game play.
An agent learning from a single reward signal is not likely to learn techniques such
as corner kicks by following the reward gradient; the win/loss reward is distribute

over all their actions, and does not focus on learning a specific sub-task well.



These rewards are not optimal for learning because they are often sparse, binary,
and/or delayed. A sparse reward is frequently zero, making it difficult for the
reinforcement learning to explore any actions that actually result in a reward.
A binary reward gives no partial credit for partially correct actions, forcing the
learning agent to be completely correct before a reward is given and removing
a gradient of progressively more correct actions. A reward being delayed means
that the reward for an action is not received immediately, but is given only after
many time steps. Taken together, an agent not only must explore the correct
action exactly in an action space of predominately useless actions, but also must
properly attribute the reward to that particular correct action after taking many
other (potentially zero reward) actions.

Beyond being difficult to use to learn these secondary, but still important,
skills, such a sparse reward makes it difficult to know when to utilize niche skills.
An agent might have learned to corner kick, but that information is not generally
useful. Agents must be able to identify not only how to accomplish certain tasks,
but when they are most appropriate in the greater context of winning the game.

The problems associated with using a sparse reward to learn - the difficulty in
initially identifying correct behavior and the infrequent feedback - become even
more challenging in multiagent problems, where the non-stationary aspect of the
problem introduces added complexity. A non-stationary problem is time dependent
and not Markovian (from the agent’s perspective), with each subsequent state not
being a strict function of the current state and the action taken. The introduction

of other agents means that the reward an agent receives after taking the same



action in two identical states (assuming no noise) will not necessarily be the same
- it depends on the actions of other agents. In order for an agent to learn, the
agent itself must be in the right state, trying to take the right action (e.g, get a
header on their teammate’s cross) while all their teammates are taking the correct
actions as well (kicking a cross properly, and clearing defenders). With a single
spare reward signal, the likelihood of the entire team exploring this particular
state-action sequence in training is low.

Shaping the reward by dividing the goal task into intermediate objectives can
help in learning by leveraging domain-specific information, and ameliorating the
sparsity of rewards. This approach has been shown to improve the overall team
performance in multiagent systems [8]. Transfer learning (TL) and multi-task
learning (MTL) approaches have also been explored in multiagent domains to
accelerate learning and generate better generalizable policies [2, 36, 22].

However, in all of these approaches, the performance of a learning agent is still
summarized by a single reward signal, and learning in tightly coupled domains

such as multiagent systems is difficult [27].

1.2 Reward Alignment Concept

Reward Alignment is an effort to increase the signal from a sparse reward by intel-
ligently examining and using sub rewards in the problem. By splitting the reward
signal into logical components, we can ascribe a separate reward for each compo-

nent of the overall reward. This problem solving technique has a very human-like



quality to it, where an agent would learn how to shake off defenders separately from
practicing shootouts. This separation between discrete skills removes the noise in
the reward signal caused by the interplay of all the sub-components, allowing an
agent to focus on a single sub-reward. An agent learning to optimize only this sub-
reward will learn an effective strategy for a subset of the original task. Learning
strategies for subsets of the original problem introduces a new problem: when a
particular reward and corresponding strategy is relevant and should be followed.
It is not enough to simply learn policies for each sub-reward, to act optimally an
agent must also know which reward to follow when. Alignment provides a princi-
pled way to calculate which reward is relevant at a given time and place. This way;,
agents will have discrete sub-policies which are trained to solve a simpler problem
than, for example, the entire game of soccer, but will be able to combine these
sub-policies to solve the larger problem.

This formulation is similar to task decomposition [33], as we break apart the
complex task into several sub-components. However, task decomposition does not
consider time-varying tradeoffs between the sub-tasks. An agent equipped with
discrete policies trained to optimize each sub-reward can only leverage them if it
knows which policy to use at a given state and time. If the agent can identify when
it finds itself in a corner kick situation vs. a penalty shootout, it can use policies
trained for these specific situations. A similar approach for switching between
policies in multiagent adversarial scenarios has shown to produce near optimal
results [12].

In order to find the most effective sub-reward, we have to be able to quickly
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Figure 1.1: Different rewards are aligned in different regions of space and time.
There are two rewards - one based on proximity to points of interest (mountains)
and one based on proximity to other rovers. In this problem, two rovers need to
be within the circle around the point of interest for the rovers to receive a reward.
In the left scenario, there is no reward available to the exploring rover. In the
middle scenario, the agent will not receive a reward if it moves to meet the rover
on the left. However, if it moves to go to the POI, it will enter the POI region with
another rover and receive a score. Thus, the reward function to go toward a POI is
aligned with the global reward. Similarly, in the right scenario, the move-to-rover
sub-reward is aligned with the global reward.

compare each sub-rewards’s alignment with the current state. By calculating the

alignment between each reward, we can decide when we should follow each sub-

reward to best approximate the global reward.

1.3 Reward Alignment for learning in complex domains

This work introduces three different approaches to using reward alignment for deci-
sion making: selecting the action which has the highest alignment without learning
(alignment action selection), following the policy trained with the reward which
has the highest alignment (alignment policy selection), and combining selecting the

action which has the highest alignment with learning (alignment based learning).



Alignment policy selection uses the alignment of all subrewards in a particular
state across a sample set of actions to determine the most aligned subreward, and
then acts according to a policy designed to maximize that subreward. Figure 1.1
visualizes the alignment metric between two simple policies. The exploring rover
has been trained on two rewards to move toward other rovers and toward points
of interest. However, the policies that move the rover toward a rover or a POI are
exclusive: it will not try to navigate toward both at once. In this problem, two
rovers need to be within the circle around the point of interest for the rovers to
receive a reward. In the left scenario, there is no reward available to the exploring
rover; there is no global reward for moving to the other rover, and no other rover is
present at the point of interest. In the middle scenario, the agent will not receive a
reward if it moves to meet the rover on the left. However, if it moves to go to the
POI, it will enter the POI region with another rover and receive a score. Thus, the
reward function to go toward a POI is aligned with the global reward. In the right
scenario, the move-to-rover sub-reward is aligned with the global reward because
it clearly moves the exploring rover into a POI region with another rover. The
POI following reward is not aligned because it will direct the agent toward the
POI on the right, where the agent will not receive any reward. In the middle and
right scenarios, if our agent can identity the most aligned reward of the two it was
trained with, it will be able to take the correct action and receive a reward.
Alignment action selection considers the alignment of all subrewards for the
same particular state and sample set of actions, but instead selects the action

that resulted in maximum alignment for one of the subrewards. Alignment based



learning is a variant of transfer learning that generalizes from alignment action
selection by training a policy in tandem with alignment action selection. Agents
initially take only aligned actions, but gradually use their own policies to select
actions instead.

Alignment is a useful metric because using if a reward is aligned with another
in a direction, moving in that direction will optimize both in that direction. If
it is known that two rewards are aligned but only how to optimize one of the
rewards, then optimizing the reward that we do know how to optimize will, at the
very least, not negatively impact the other reward. All strategies using alignment
exploit this fact, and seek to optimize rewards with known optimization strategies
in a manner that also improves another target reward. Alignment is a metric to
determine if maximizing a reward can act as a surrogate for maximizing another.
Alignment provides a way to leverage simple rewards and simple policies to solve
complicated problems. This strategy can be used when the complicated problem
cannot be solved with reinforcement learners and a single reward, or when there is
insufficient data to learn a solution to that particular problem. Consider the use
case of learning for long term autonomy; novel tasks must frequently be learned,
often with very few samples. However, such a robot has already learned many
other tasks previously, and would have access to both their associated reward
functions and policies. Alignment provides a principled mechanism to combine
simpler policies to solve more complex and novel tasks without needing to learn
directly on the more complicated (and potentially unique) task.

By using alignment in a complicated multiagent domain, we show that these



methods of reward decomposition and using alignment decision making outper-

forms state of the art multiagent learning methods.
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Chapter 2: Literature Review

We introduce the current literature in multi reward learning, including multi task
learning, scalarization, and Pareto methods. Additionally, we introduce other
methods of learning in complex domains, including transfer learning and reward

shaping.

2.1 Multi objective optimization

Pareto methods and scalarization are two algorithmic approaches for optimizing
multiple rewards. Pareto methods search directly in the multi dimensional re-
ward space for a solution along the Parteo front, while scalarization maps multiple
rewards to a single reward in order to subsequently use traditional optimization
techniques. Alignment is not a Pareto-based method because the performance on
subrewards is not important at all times - only the main reward is important. The
final solution is not looking to maximize any reward but the global reward. The
(time and state-dependent) willingness to sacrifice any particular reward without
consideration for the trade-offs between any reward but the global separates align-
ment from these multiobjective optimization approaches. A solution alignment
finds (the maximal global reward) is not even necessarily in the non-dominated

Pareto set because the solution can be dominated by another solution with a
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higher subreward value.

2.1.1 Pareto Optimization

When the learning goal is to optimize multiple objectives, a frequent difficulty
is that the multiple objectives often conflict. For example, a surveying robot
might have to balance the utility of the information gathered with the cost of the
exploration [3]. A common strategy for a multi-objective problem is to find the
Pareto Front [16][42][41], the set of combinations of objective values that are not
strictly worse than any other.

The Pareto front is the set of solutions that are not strictly worse than any
other solution. Informally, we might not be able to decide if its worth giving up
wine for more cheese without knowing an individual’s preferences, but if we can
get more wine without giving up any cheese, that’s a better choice. More formally,
a solution point x is along the Pareto front if it is not dominated by any other

point. A solution x* dominates a solution x if:

Vix; >x, AN X >x =X =X (2.1)

Which one of these objective combinations is preferable will be determined by
some weighting of the different objectives. When the combination function is ad-
ditive or monotonically increasing, selecting between different combinations is a
matter of preference along the Pareto Front. Under a nonlinear scalarization func-

tions, the Pareto Front is more difficult to find. While the Pareto Front contains
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the optimal solution, not only is it difficult to calculate, but there is no guarantee
the solution is feasible for a generic nonconvex relationship between objectives.

Pareto methods look to find an optimal solution to a multi objective problem
by finding a solution along the Pareto front. There are many different strategies
for identifying solutions, and many approaches are evolutionary, including Multi-
objective evolutionary algorithms based on decomposition [39], strength Pareto
evolutionary algorithm [41], and non-dominated sorting genetic algorithm II [6].
It is not necessary to solve the full problem, and in fact Roijers shows that the
convex coverage set is sufficient [29]. For non-convex problems, there are solu-
tions, including Pareto Concavity Elimination Transformation (PaCcET) [37] - a
transformation into a convex solution space, that can be used.

Alignment, however, is solving an easier problem. Instead of looking to optimize
multiple objectives, it only optimizes a single one. The other objectives are only

relevant along the path towards finding the solution.

2.1.2 Scalarization

The simplest way to solve a multi-reward problem is to convert the vector of
rewards into a single reward, and then optimize that with all of the standard
optimization tools. Scalarization is also the technique by which different points in
the non-dominated set are compared with each other.

Scalarizing assumes the existence of a function f : R” x R"” — R and weight

vector w such that f(z,w) allows two vectors x; and z; to be compared.
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The most common scalarization function is a linear weighting of the objectives:

|wl

[z w) = Zwi * T (2.2)

Less common is a geometric function, although Qiao et al. have shown that
such a weighting is capable of solving many Pareto optimization problems [26].
|w|
[z, w) = Hwi * T (2.3)
i=0
Both linear and geometric approaches are convex functions, and the challenge
is identifying the correct weight vector. Roijers proposes two motivating scenarios
and corresponding solutions for which weight vector to use [28]. The first is when
the weight vector will be known at run time (either calculated or determined from
user preference). The approach here is to solve for solutions along the Pareto
Front and select the correct one, and has been extended to at least fifty distinct
objectives [13]. However, not all f are additive. In this case, even if the weight
vector is known during planning or learning, selecting the proper action during
execution is still a challenge.
Alignment can be viewed as a nonlinear scalarization function that is also a
function of the state and time. In other words, the weighting of different objectives

is dynamic during execution.
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2.2 Multi Reward Learning

There are two main use cases for multiple rewards that are conceptually distinct.
The first is that many problems cannot be expressed adequately with a single re-
ward. The second is that multiple rewards can be used to learn multiple tasks
simultaneously, both to improve the performance of a main task with auxiliary
tasks and to transfer knowledge and learn faster across tasks. In practice, opti-
mizing over multiple rewards can be the goal or the means to the goal. The use of
multiple rewards is the focus of the this thesis, especially with regards to proposed
research, but background is provided on the multi-objective literature.

Learning with multiple rewards can be a tool to improve the learning process.
In Multi Task Learning (MTL), multiple tasks are trained simultaneously, sharing
some aspect of their model (for example, two neural networks may share bottom
layers). This technique can be used to train separate policies for separate tasks, but
it can also be used to leverage an auxiliary task to augment the learning process for
a main task. In this case of MTL, additional rewards - even if not related directly

to the main task - improve learning.

2.3  Multi Task Learning

Multi Task Learning (MTL) is using information from multiple reward signals in
the learning process. There are two key insights. The first is that because tasks
have some measure of similarity, it should be possible to transfer knowledge of

one task to another. Pre-training neural networks (such as with ImageNet [7], a
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database with tens of millions of labeled images) can be seen as sequential multi-
task learning [19], as can the entire field of transfer learning [23][34]. But MTL
is more than just transferring knowledge to enable learning a new task, it is a
means of improving performance on tasks. Each task trained on biases a policy’s
representations and feature space toward the space of generally useful features for
tasks [30]. This reason is why training with an auxiliary task improves performance
on a main task. While MTL has been many varied components and a relatively
long history [4], this paper focuses on recent deep learning-related developments.
A common domain for MTL is in computer vision. There are many problems
beyond classification - from motion prediction [15] to scene reconstruction [40]
to semantic understanding [14] to abnormal behavior detection [5]- solutions to
those problems all benefit from the knowledge contained in image classification.
Indeed, using a network trained with ImageNet improves the performance of all of
the aforementioned tasks. That is, the performance of a deep neural network on
a separate task - even one not directly related to classification - achieves better
accuracy when the network is first trained to correctly classify images from a
common dataset. Roijers suggests that the additional tasks contribute to the
success of the target task by introducing an inductive bias in the policy [28]. That
is, the representations learned in the classification process are a useful subset of
the general representations for image related problems, and biasing towards that is
better than nothing. Indeed, the more separate tasks that are trained, the more the
inductive bias is towards the general space of related problems, and the more likely

that representation can rapidly learn new tasks with minimal data. This effect is
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not unique to just deep artificial networks, and is also present with other machine
learning techniques such as Gaussian processes and random decision forests [11],
as well as working in a variety of other domains, including deep reinforcement
learning (DRL) with Atari games [20].

Not all tasks use the same features, however, and it is possible that blindly
using multi task learning will result in negative performance if the wrong task is
used [10]. The challenge of MTL is to learn which features to share at what time
- some tasks may benefit from sharing higher or lower level features then others.
Recently proposed solutions include low supervision [32], cross stitch networks[19],
and sluice networks|[31].

Alignment theory is different than MTL because the sub-tasks do not need to
be auxiliary tasks. Instead of jointly learning policies for related tasks that benefit
from shared information, decision making with using the alignment metric switches
between rewards by focusing on what information matters now. Alignment based
methods are principled strategies for determining the relevance of subrewards while

acting in the world.

2.4 Transfer Learning

Transfer learning is the set of techniques used to improve the quality of learning
and efficiency of resulting behaviors, by transferring the knowledge gained from
one problem instance or domain to another. The idea is to learn a difficult task

by starting on a simple task and progressively increasing the task difficulty. For
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example, in a multiagent coordination task, an agent can first be trained to co-
ordinate with another single agent. Once the agent has learned this task, the
learned knowledge can be transfered to a more complex scenario where the agent
has to learn to coordinate with multiple other agents. The knowledge can be a
direct transfer of information, such as via the values in a temporal difference-based
value table [35], or the weights in a neural network [38], or it can be transformed
through some task-aware mapping [36]. Transfer learning has shown some success
in multiagent domains [2, 36]. However, assumptions such as full observability of
the world [2], and availability of inter-task mappings for knowledge transfer [36]
pose a hindrance for real world applications. Alignment guided control is similar
to transfer learning in that both make use of different rewards, with the end goal
of improving the learning process for a final objective. However, they differ in
that alignment does not require any transfer of knowledge. And unlike transfer
learning, alignment switches between sub-policies based on the current state and

time.

2.5 Reward Shaping

Reward shaping aims to guide the agent’s exploration to improve time to con-
vergence by providing domain specific knowledge to the agent through additional
rewards for intermediate objectives. For example, in a multiagent coordination
task where multiple agents have to jointly observe POlIs, a simple shaping approach

would be to provide intermediate rewards for forming agent teams. Potential-based
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reward shaping ensures that good policies for a modified reward function are also
good for the original [21], and has been shown to work in multiagent domains.
Reinforcement learning with reward shaping has shown success in hardware vali-
dations of multiagent systems [17]; however success in tightly coupled multiagent
tasks have been limited.

Another variant of reward shaping used in multiagent domains is the difference
reward (D). The difference reward (D) for an agent is the difference between the
actual global reward (G) and what the global reward would have been if that agent
was not a part of the team [25]. Alignment and reward shaping are related concepts
because the shaped reward function can be designed to be aligned with the reward
for the actual goal task. However, reward shaping combines the intermediate

rewards into a final single reward signal.
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Chapter 3: Concept

3.1 Reward Alignment

Reward alignment is related to the concept of factoredness, as defined by Agogino
and Tumer [1]. An agent’s reward signal (as a result of its action) is considered
factored with respect to a global reward, if the reward signal changes in the same
direction as the global reward function’s value, while holding everything else in the
world fixed.

Traditionally, two reward signals are defined as being aligned if the rewards
trend up and down together for all states of an agent given that all the actions of
the other agents are fixed. That is, for a given agent, a local reward function Ry,

is considered aligned with a global reward R, if:

i ORpe(s,a)\ . ORi0(s, a)
sign <T) = sign (T (3.1)

where a is the action of the agent at state s.

Given two reward signals that are not truly aligned, we can extend the definition
to say they are locally aligned if they are aligned over the neighborhood of the state
space, extending alignment to arbitrary states. Figure 1.1 visualizes this concept
of alignment. In a domain with a main task of jointly observing with two agents

a single point of interest, agents can also consider two other rewards - a reward
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for moving closer to points of interests and a reward for moving closer to another
agent. There are regions of the state space over which the reward for moving closer
to points of interest increases with the main task reward, and there are regions over
which moving closer to another agent increases the main task reward. Alignment
is a metric that agents can use to select between the rewards.

To achieve a mathematical value for alignment, we compare the change in re-
ward signal between two states when all actions are taken. The alignment between

two rewards functions Rj,. and R, on a subset of states (Sp) given by Equation 3.2.

ASO (Rloc; Rglo) =
DD ul(Rioe(s,a) = Rioe(s, @) (Ryio(s, a) = Ryio(s, )]

s€Sp a a’ ZZZl

s€Sp a a’

(3.2)

In Equation 3.2, actions a and a’ are valid actions from state s, and u[z] is the
unit step function, which is equal to 1 if x > 0. This equation calculates a local
alignment by measuring the change in reward by taking actions from the state s.
If an agent takes various actions and the change in reward is the same, then it has
found that the rewards are aligned for these actions. If at state s, every action
a € Action Set leads to an increase in the global reward and the local reward,
the two rewards will be maximally aligned. Since the degree of alignment is based
on the number of actions, two local rewards can be objectively compared by their

alignment score if one reward function is aligned in more (s, a) pairs.
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By collecting several reward signals, an agent can find a good policy to solve the
global reward signal through a composition of functions which are locally aligned in
different subspaces in the broader state space. We can think of alignment as a linear
combination of all sub-rewards into a single reward signal with the parameters of

the linear combination continually adapting depending on the state of the world.

3.1.1 Calculating Alignment

In domains where the action set is well defined, finite, and reasonably sized, the
alignment formulation in Equation 3.2 could be explicitly calculated at all states.
However, in most complex real world problems this is not the case; it may not
possible to explicitly evaluate which sub-reward is more aligned right now. Equa-
tion 3.2 can be approximated to get around this limitation. For example, in con-
tinuous action domains one can sample actions from the available action set; with
a sufficient number of samples, the alignment scores of two reward functions will
converge to their true value, and they can be compared appropriately. Moreover,
because a policy trained to maximize a reward will most likely move in a direction
that increases that reward, alignment can be further estimated by considering only
the subset of the action space (for a particular state) in which the subreward is

increasing. This sampling process is defined in Algorithm 1.
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3.1.1.1 Computational Complexity of Alignment Calculation

The complexity of the calculation of a single reward depends on the particular
reward. In this thesis, rewards scaled linearly and quadratically with the number
of agents, but that is not a property of calculating alignment. The process of

calculating alignment scales with the number of rewards.

3.1.2 Sampling to approximate alignment

To improve the tractability of calculating alignment for each agent, alignment val-
ues are stored as a mapping between agent state and alignment. Agents compare
their state during run time to the sampled alignment values and adopt the align-
ment of the most similar agent state. A k-dimensional (K-d) tree is used in these
experiments because it supports nearest neighbor searches in O(logn) time with
the 8-vector agent state as a key. The process for generating the tree is described
in algorithm 2. The alignments are calculated according to Algorithm 1. Note that
the alignment for each sample is an estimation, with only the most aligned reward
being remembered. Each sample is associated with only one alignment, with bet-
ter (strictly positive changes in the target reward) overriding previous alignments.
The alignment for the state is the reward from the most strongly aligned sample.
This one-to-one mapping within the data structure is why the algorithm uses an
upsert operation instead of an insert. This method makes a simplifying assump-
tion that the subrewards have been chosen such if there is alignment in the action

space, the subreward policy will most likely select from that portion of the action
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Algorithm 1 Alignment Calculation

function CALC_ALIGNMENT (initW, objG, objs)
: agentState < GET_STATE(initWV)

1:
2
3 newW, dir + PERTURB_-WORLD (initW)
4: dG < EVAL(newW, 0bjG) - EVAL(initW, 0bjG)
5: Alignment, < ()
6 for obj € objs do
7 dO < EVAL(newW, obj) - EVAL(initW, obj)
8 Alignment, < max (Alignment,, ALIGN(dG, dO,11,))
9 end for

return Alignment,, agentState, dir
10: end function

> Enables max operator in CALC_ALIGNMENT.

11: function GREATER_THAN_ALIGNMENT (alignA, alignB)
12: if alignA.dG > 0 and alignA.dO > 0 then

13: if alignB.dG > 0 and alignB.dO > 0 then
14: return alignA.dG > alignB.dG

15: else

16: return True

17: end if

18: else

19: if alignB.dG > 0 and alignB.dO > 0 then
20: return False

21: else

22: return alignA.dO > alignB.dO

23: end if

24: end if

25: end function

space.
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Algorithm 2 Alignment K-d Tree Generation

1: function ADD_ALIGNMENT (tree, obj A, objs)

2 for i € Num Samples do

3: alignment, state, direction «— CALC_ALIGNMENT (0bjA, objs)
4: UPSERT (tree, state, (alignment.I1, direction))
5

6:

end for
end function

3.2 Using Alignment for Decision Making

This work introduces three different approaches to using reward alignment for
decision making: selecting the action in which a reward had the highest alignment
(alignment action selection), following the policy trained with the reward with the
highest alignment (alignment policy selection), and learning while also selecting
actions in which a reward had the highest alignment (alignment based learning).
Following the policy trained with the reward with the highest alignment uses the
alignment of all subrewards in a particular state across a sample set of actions
to determine the most aligned subreward, and then acts according to a policy
designed to maximize that subreward. Selecting the action in which the reward
has the highest alignment also considers the alignment of all subrewards for the
same particular state and sample set of actions, but instead selects the action
that resulted in maximum alignment for one of the subrewards. Alignment based
learning is a variant of transfer learning that generalizes from selecting the action
that is most aligned by training a policy in tandem with alignment action selection.
Agents initially take only aligned actions, but gradually use their own policies to

select actions instead.
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3.2.1 Following a policy of the most aligned reward

For alignment based policy selection (Algorithm 3), each agent attempts to deter-
mine the reward that is most aligned to the global reward (in a given direction),
and then use the policy trained with that reward (hopefully, but not necessarily)
moving in the direction of maximum alignment. An agent does so by comparing
its current state to the most similar state it has seen before (or sampled randomly
during an initialization period), and moving in the direction determined by the

policy corresponding to the most aligned reward for that similar state.

Algorithm 3 Alignment-based policy selection

1: function POLICY _SELECT (tree, input_state)

2 alignment, direction <~ NEAREST_NEIGHBOR(tree, input_state)
3: return alignment.II(input_state)

4: end function

3.2.2 Selecting actions that are maximally aligned

For alignment based action selection (Algorithm 4), each agent attempts to move
in the direction that has the greatest alignment between any reward and the global
reward. It does so by comparing its current state to the most similar state it has
seen before, and moving in the direction that had the most aligned reward for that
similar state.

A difference between agent-based action selection and agent-based policy selec-

tion is that agent-based action selection is unaffected by the simplifying assumption
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made in the alignment calculation that policies should move in the direction of op-
timal alignment. Differences in the performance of the two methods are directly
attributable to the breakdown of this assumption.

Currently, the action selection method only samples over an action space that
corresponds to a single time step. In more challenging domains, a roll out of
multiple steps will be needed to avoid local minimums that a trained policy might
be able to climb out of.

The distinction between the two methods is subtle, but important. Alignment
policy selection estimates which policy is most likely to be aligned when followed,
and follows it (Algorithm 3). Alignment action selection moves in the direction

that is most aligned (Algorithm 4).

Algorithm 4 Alignment-based action selection

1: function ACTION_SELECT (tree, input_state)

2: alignment, direction <— NEAREST_NEIGHBOR(tree, input_state)
3: return direction

4: end function

3.2.3 Selecting aligned actions with learning

We combine selecting the action that the most aligned reward is most aligned in
with learning to improve the performance of the selection algorithm and to make
it more generalizable. Agents probabilistically select between alignment based
action selection or their own neural network policy. The probability they select

their own network increases each generation, and the networks are trained with a
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co-operative coevolutionary algorithm (CCEA) in an identical manner to the other
trained policies.

A direct transfer of the information from alignment to use as a baseline for
learning is not possible because there is no neural network policy involved in the
alignment based selection. Instead, agents use the alignment algorithm (either
policy or action selection) like a set of training wheels, gradually decreasing their
dependence on the algorithm as they train their own neural network policies. In
this setup, alignment functions as an exploratory aid in the evolutionary algorithm,

biasing the agents towards exploring aligned regions of the state space.
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Chapter 4: Rover Domain

All experiments are performed in the simulated multi-rover exploration domain
that aims to represent a team of rovers observing and exploring points of interest

over an environment.

4.1 Overview

The rover domain contains a set of rovers (agents) and points of interests (POIs)
in a two-dimensional continuous plane. The objective is for agents to observe the
POIs after a discrete number of time steps. Each POI has an observation radius.
Each agent’s view is divided into four quadrants (north-east, north-west, south-
east, and south-west) relative to its current heading, see Figure 4.1. The agent
state (as in, the input to the agent’s neural network policy) is determined by 2
sensors (POI, agent) in each quadrant which returns the density of observable POls
and and other agents in that quadrant. The density value is the sum of the values
of each of the POIs or agents scaled inversely by the euclidean distance from the
sensor. The input to the neural networks is therefore an 8 dimensional vector.
Thus at each time step, each agent receives a feature vector of length 8 that
summarizes the world from the agent’s point of view (ie, the quadrant summaries

are in the agent’s coordinate frame because all measurements are taken from the
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Figure 4.1: Diagram of the rover domain. The world is broken up into four quad-
rants relative to the rover position and orientation. POIs and fellow robots that
are observed in each quadrant are summed resulting in 8 state variables. At
each timestep, the robot’s neural network controller yields two continuous out-
puts [d,, d,]|, which determine the robot’s motion in the next timestep. Each POI
has an observation radius such that only robots within that radius are able to
observe that POI and a coupling requirement such that no reward is received until
that number of agents simultaneously observe the POI in a given timestep.
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position of the agent and with respect to the agent’s heading). The agents select
their actions simultaneously during the episodes using a feedforward neural network
policy that takes agent state as input and outputs a movement action (a (d,,d,)
tuple). The reward for an episode is determined over the entire path of all of the
agents’ trajectories at the end of the episode. During training, this reward is used

as a fitness signal in the evolutionary algorithms training the agent policies.

4.2 Single Observation Required

In the simplest case, each POI must only be observed by a single agent in a given
time step within its observation radius to count as observed. The reward at the
end of the episode for the system is based on the closest observation over the entire
episode. Each POI's maximum total reward is determined by randomly sampling a
uniform distribution between 4 and 10. The equation below (4.1) describes how to

calculate the reward for a domain in which POIs only require a single observation.
VoV

ro =23 (4.1)

where z is the combined joint action of all agents, V), is the value of observing the

p-th POL, 4, ; is the distance between the p-th POI and the i-th agent (rounded up

to one if the distance would be less than one), and N7, is an indicator variable that

is only one if agent ¢ was the a-th closest observation to POI p and the observation

was within the maximum allowable observation distance (7.ps), described by the
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equation below.
Ny =1if8,; < rops and 0; < 0pq Va # i

This reward can be calculated in O(PA) time, with P being the number of

POIs and A being the number of agents.

4.3 Multiple Observations Required

To increase the difficulty of the problem, we can increase the number of simulta-
neous observations required. We refer to the number of simultaneous observations
as the coupling requirement, or coupling. As the coupling requirement increases,
agents must learn to form teams of appropriate size.

The results for increasing coupling requirements are shown in Figure 4.2. Trials
of 25 time steps were run in randomly initialized test worlds of size 30 by 30
containing 10 agents and 10 POlIs, with the requirement that all observations must
be within 4 units. The reward decreases as the coupling requirement increases
because the problem becomes more difficult, and a satisfactory policy becomes
harder to learn. The difference reward does better for a coupling requirement
of 2, with no statistically significant differences for other levels of coupling. The
difference reward does not learn in these higher coupling domains because the
problem is not credit assignment, but state discovery: as the number of required

observing agents increases, the probability of initially being in a state satisfying
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those requirements decreases. If the team itself cannot receive a reward signal, an
individual agent’s contribution to that failure will not be helpful.

Based on the decreasing performance of CCEA with both the global reward and
the difference reward after two observations, we chose to use a reward with a cou-
pling requirement of 3 for our experiments (unless otherwise stated), meaning that
every POI must have 3 agents simultaneously observe it to receive a reward. Our
algorithms were effective for higher coupling requirements (we tested up through
6 simultaneous observations required), but 3 required is the last domain in which
random actions and other methods can reliably get nonzero rewards. This feature
makes the task difficult because of how unlikely it is that multiple agents will stum-
ble upon the proper configuration - the reward space is very sparse with respect
to the joint state-action space. Even worse from the learning perspective, is that
random exploration of the joint state-action space biases away from the region of
reward (the more agents there are, the less likely they are moving in the same
direction).

These features make the problem an ideal one to test alignment guided explo-
ration because the reward from just the global reward is insufficient to learn, as
seen in figure 4.2 where an increasing coupling requirement results in dramatically
lower reward. Because of this lack of information in just the global reward, addi-
tional rewards must add the information for the alignment based method (or any
method) to succeed in compensating for the relatively nonexistent gradient for the

global reward in the bulk of the state space.
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Figure 4.2: The performance of rovers in the multiagent domain decreases as the
number of agents required to make a successful observation increase. Reward
shaping with difference rewards (D) trends in the same direction.
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The global reward, for a coupling of 3, is:

V,N! N2 N3,

pt” P,

Pla) =222, zk: (8,0t 00y + 600) (42)

where z is the combined joint action of all agents, V), is the value of observing the
p-th POL, ¢,; is the distance between the p-th POI and the i-th rover, and Ny,
indicates whether POI 7 was the a-th closest rover within the maximum allowable

observation distance dg.

N;,i =1if 6p,i < 60 and 5p,i < (51,,1 Vi ;é 7 (43)
Ny =1if 8,5 < do and 6, < G,y VI #1i,j (4.4)
N;k =1if 6,5 < & and 6,1 < 0,y VI £ 4,5,k (4.5)

This reward can be calculated in O(PAlogk) time and O(k) space, with P
being the number of POIs, A being the number of agents, and k being the coupling

requirement.
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Chapter 5: Experiments

We present experiments for the three different types of alignment algorithms: align-
ment policy selection, alignment action selection, and alignment based learning.
We propose experiments to show that no single reward or subpolicy is capable
of individually outperforming alignment based methods. Additionally, we com-
pare against the state of the art in multiagent domains - evolutionarily learning

strategies with and without reward shaping.

5.1 Learning Sub-Rewards

As alignment is a property between objective functions, we compared a total of
seven sub-rewards with the global reward function. These rewards fell into two
categories: a reward to go toward POIs (Single POI, Exclusive Single POI) and
variants of a pair of rewards to form teams (Shared Team and Exclusive Team).
The rewards are detailed below. For each objective, we trained a policy on a
simple world, with the experimental configurations detailed in Table 5.1. When
using these trained policies with alignment or testing on a domain, the best policy
from each team member’s population was selected after a series of tests in random
worlds. Random worlds are initialized by placing a cluster of agents in the center

of the world, and randomly distributing the POI in around the agents so no agent
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is likely to be able to observe a POI without taking an action.

The rovers receive no information regarding the task prior to learning, and
are trained with CCEA [24], a multiagent evolutionary algorithm described in
Algorithm 5. In CCEA, each agent maintains an internal pool of potential neural
networks solutions. During each episode, one network from each agent’s pool
is randomly selected to be a member of the team. That team is then tested.
The reward the network receives is determined by the reward the team of agents
receives. A generation consists of evaluating all networks within the agents pools
once. After each generation, each agent eliminates bad solutions from its pool of
neural networks and generates new candidates from the good solutions. We added
Gaussian noise with zero mean and unit variance to a randomly selected 10% of

our neural network weights as our mutation operator.

Algorithm 5 Cooperative Co-Evolutionary Algorithm (CCEA)

1: foreach Generation do

2 foreach Population do

3 Generate k successor solutions

4: end for

5: for:=1— 2k do

6 Randomly select one agent from each population
7 Add agents to team T;

8 Assign fitness to all agents based on simulation
9

: end for
10: foreach Population do
11: Select k networks with rank probability
12: end for

13: end for
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5.1.1 Single POI

Single POI are rewards agents receive for traveling within the observation radius

of a POL.

szngle E E

ac€A peP Oa P

(5.1)

A is the set of all agents, and P is the set of all POIs within the observation
radius of a. d,, is the Euclidean distance between the positions of the rover and
the POL.

There are two Single POI objectives used: Exclusive POI in which only the
closest agent scores (similar to the global objective) and Single POI in which every
agent scores. They are both, however, trained on the same domain.

The computational complexity for both of these rewards is O(AP).

5.1.2 Shared Teams

Populations of agents are placed in a world with POI who are rewarded for observ-
ing other agents. A shared team is defined as having another agent within a short
radius of the other teammate, analogous to the observation radius for POI’s in the
rover domain. We use rewards for forming teams of 2, 3, and 4 agents. Below is

the equation for a team size of 3.

N, N2,

shared Z Z Z % 50” T 5a] (52)

a€EA i j
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A is the set of all agents. N}, is an indicator variable for whether agent k is the
i-th closest agent to agent a. 0,4 is the distance between agents a and k. As
before, the indicator variable is only non-zero when a, 7, and j are distinct agents.

Similar to the global reward, the computational complexity for these rewards

is O(A%logk), with k being the size of the team.

5.1.3 Exclusive Teams

Populations of agents are placed in a world with POI who are rewarded for form-
ing explicit teams with others. A team is similar, but distinct from a shared team
because an agent can only be in one team. A team is calculated by iteratively
clustering the agents and seeing which tightly clustered agents are within an ob-
servation radius of each other. Agents in these teams are marked and removed
from consideration, and the next best cluster of agents is determined. This con-
tinues until all agents uniquely satisfy the teaming requirements or are determined
as not a part of a team.

Agents are ranked according to the average distances to the closest agents that
would be in the team centered on that agent. Agents are selected for teams based
on descending score. Below is the equation for the score (S) of teams of size 3.
The score is the individual component of Rgpqred-

Ny iNZ;

ZZ v +”5J) (5.3)

These agents are, if not selected to be a member of another agents’s team,
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Reward Coupling Obs Radius World Size Rovers POIs Timesteps

Single POI 1 4 30 1 3 25

Shared Team 1 4 40 2 0 20
Shared Team 2 4 40 3 0 30
Exclusive Team 2 2 40 6 0 20
Exclusive Team 3 3 40 9 0 25
Exclusive Team 4 4 40 12 0 30

Table 5.1: Training configuration for sub-reward policies. The coupling is the
number of POIs (or agents) that a scoring agent must approach within radius units
to receive a reward (scaled by distance). The world size is the length and width
of a square world. Single POI and Exclusive Single POI were trained identically.
All experiments were trained over 1000 generations with population of 40 neural
networks per agent.

the centroids of their respective teams. The reward is then calculated similarly to

Rpared, €xcept an agent cannot be a part of more than one team.

ezcluswe Z Z Z 5a ; T 5 (54)

acA i
In this case, M & 1s only one if agent k is the i-th closest agent to agent a
considering only agents not already selected to be in teams with higher scored

leaders. A is iterated through in order of leader score.
M’k—llfVal€A|S < LS., M, k—O (5.5)

The computational complexity for these rewards is O(A4?%). The computation is
dominated by the pairwise distance calculation between all agents and subsequent

per agent sum of those distances.
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5.2  Alignment Demonstration

We first show that choosing a policy associated with the most aligned sub-reward
produces logical decisions for an agent.

In the first experiment, an agent is placed inside a world which has two areas
with other agents and POI, with a no man’s land in the middle (similar to the
choice faced in Figure 1.1). The agent is placed randomly around the middle, but
with a bias to one side. On their left, a plethora of agents exist, but only one POI
(which has two other agents next to it). On their right, a plethora of POI, but
only one has agents next to it.

The agent has two sub-policies available to it: one trained to go towards POI,
and the other trained to go towards other agents. The agent should be able to
select the right policy among the assorted sub-rewards to score. This directly tests
the “knowing what to chose when” aspect of the reward alignment selection, as
agents should identify which reward function is more aligned and use the associated
policy, as there is only one right decision in each case. (This is assuming only two

rewards like GoTo POI and GoTo rover are provided.)

5.3 Multiagent Rover Performance with Alignment Decision Mak-
ing

Next, we test alignment, sub-policies, and other learning methods in the general

rover domain with the global reward. Each POI requires 3 simultaneous agents
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to observe it within a radius of 4 units to be counted as observed. We tested
on several world sizes and configurations to show generalizable performance of
alignment agents. For all experimental setups, the world was divided into a 3 by
3 grid, and agents were initialized only in the middle section with POIs scattered
among the other eight sections. This setup aims to minimize the reward agents
would receive no reward if the team remained stationary.

For the teams using alignment to select policies, sub-policies were trained on
random worlds with single sub-rewards. These rewards and the domain they are
training in are summarized in Table 5.1. The sub-policies were trained in simpler
worlds wiht fewer agents and POIs. Additionally, the sub-policies only look at a
subset of the agent input state. The Single POI objectives only look at POI quad-
rant summaries, and Teaming objectives only look at agent quadrant summaries.

For the first domain, teams of 18 rovers are dropped into the middle of a
25 x 25 world. 6 points of interest are scattered around the team randomly, and
each POI requires 3 rovers within the observation radius of 4 units to be marked
off as observed. Agents have 30 timesteps to move around the world and attempt
to observe the POI’s.

We train additional teams of rovers in larger, more difficult domains. These
tests put teams in a 50 x 50 world, with 45 timesteps to observe POIs. A larger
world is more difficult because it is less likely that a series of random walks from
the agents will observe the POIs, thus increasing the importance of learning. The
size of larger domains was chosen because it is twice the size of the smaller one.

There were three domain configurations labeled “More Agents,” “More POlIs,”
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and “Large.” They have 30 agents and 10 POlIs, 10 agents and 30 POlIs, and 30
agents and 30 POISs respectively. The intent behind this experimental setup was to
preserve the ratio of agents to POIs of the original problem in ”More Agents” and
explore the effects of increasing problem difficulty by lowering the ratio of agents
to POIs. This ratio corresponds roughly to the difficulty of the problem, because
the lower the ratio, the greater the need for the agents to form teams.

For alignment-based policy, at each timestep, an agent using alignment will
calculate the most aligned sub-reward and pick an action using a policy trained to
operate on this sub-reward. For alignment-based selection, at each timestep, an
agent will move in the direction in which a sub-reward is most aligned.

We compare alignment against a team of agents trained using evolutionary
algorithm and transfer learning. The evolutionary algorithm trained agents using
CCEA with the difference reward as the fitness function.

We also compared our results to a transfer learning method. Policies trained
on simpler instances of the problem - a relaxed coupling requirement - were used to
bootstrap training of the stricter coupling requirement instances. We used a three
step process. First, policies were trained with CCEA with fitness determined by
our main objective G, but with an observational coupling requirement of 1 (instead
of 3). This reward is identical to the Single Exclusive POI subreward. Then, those
policies were used to seed the initial population in another round of CCEA trained
on a fitness signal from the objective, but this time with an observational coupling
requirement of 2. Finally, these policies seeded the training of the actual reward,

observation with a coupling of 3.
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As an additional baseline, we compare against random-action policies, which

randomly select an action to take every timestep.

5.4 Alignment Robustness

Alignment is a measure between different types of rewards, but it may not be
always possible to correctly determine alignment. We examine the robustness
of alignment to both incorporation of unhelpful objectives and the addition of
deliberate noise to the alignment-based selection.

First, we examine the average rate of selection across the domains for the
different rewards. Then, we compare this addition of noise to removing that reward

from consideration.

5.5 Learning from Alignment

We then trained policies with alignment based learning, combining CCEA with
alignment action selection. Learning is done by training a neural network policy
to control actions (in a similar manner to all other neural network control policies
described in this work), but incorporating information from alignment during the
learning process. The agent will choose between using it’s policy or using alignment
to select an action, with the neural networks being evaluated after each episode
normally. Agents probabilistically select between alignment based action selection

or their own neural network policy. The probability they select their own network
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increases each generation, and the networks are trained with CCEA in an identical
manner to the other trained policies. Alignment functions in similar manner to
training wheels - the novice cyclist is given a reduced state space over which to
learn, with the support gradually receding as the agent learns.

A direct transfer of the information from alignment to use as a baseline for
learning is not trivial because there is no neural network policy involved in the
alignment based selection. The alignment map could also be learned by a super-
vised learning technique mapping state to action, with that trained classifier being
the initial policy for the reinforcement learner.

We test alignment-based learning across all domains mentioned in this work

(regular, large, more POlIs, and more agents).
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Chapter 6: Results

We show converged performance comparisons as there is no comparable learning-
per-epoch curve to directly compare reward alignment with other techniques such
as reinforcement learning. We test the general performance of agents using align-
ment decision making in a tightly coupled rover domain instance. The agents
selecting policies based on alignment outperform agents trained on G, D, or trans-
fer learning, as well as each of the subrewards. The agents directly going in the
direction of maximal alignment achieve the highest performance. This effect is
seen in both the smaller, 18 agent, 25 x 25 world in Figure 6.1, and in the larger 30
agent, 50 x 50 world with both 10 POIs in Figure 6.2 and 30 POlIs in Figure 6.4.

For the 50 x 50 world with 30 agents and 10 POlIs, shown in Figure 6.2, the
performance of alignment policy selection agents continues to hold strong against
the baseline methods. Alignment-based action selection remains the clear winner.
Additionally, as the world size increases and the difficulty rises, the relative drop in
performance between smaller, easier worlds and larger, difficult worlds is smaller for
alignment agents. This drastically increases the relative performance of alignment
agents versus the baseline, even though there is a drop in overall performance
between the smaller worlds and this one.

However, in a similarly sized large world with 10 agents and 30 POls, align-

ment based policy selection does not perform better than any other objective (or
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Figure 6.1: Basic world - 25x25 with 18 agents and 6 POIs. Results show converged
performance for different strategies in the rover domain with observations requir-
ing three agents. In this figure the best performance is achieved by teams using
alignment action selection with learning, followed by selection without learning,
and finally alignment policy selection. Due to the high number of required obser-
vations, teams trained with difference rewards and sub-reward transfer learning do
not find higher performance policies, and perform approximately as effectively as
a policies trained on a single sub-reward.

random), see Figure 6.3. The direct direction selection, however, still scores higher
than all other policies.

In large world with 30 POIs and 30 agents, shown in Figure 6.4, the performance
of the alignment action selection with and without learning is again higher than
other methods. However, in this setup, the control methods of learning with
the global reward and difference reward manages to match the alignment policy

selection performance.
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Figure 6.2: More agent world - 50x50 with 30 agents and 10 POIs. Results show
converged performance for different strategies in the tightly coupled rover domain.
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Figure 6.3: More POI world - 50x50 with 10 agents and 30 POIs. Results show
converged performance for different strategies in the tightly coupled rover domain.
As the number of agents decreases, the importance of both forming teams and
observing POls successfully increases because it becomes much less probably that
accidental teams are formed. For this domain setup, alignment based policy se-
lection fails to outperform single objective teaming rewards. However, alignment
based action selection still dominates the other methods.
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Figure 6.4: Large world - 50x50 with 30 agents and 30 POIs. Results show con-
verged performance for different strategies in the tightly coupled rover domain.
For this larger world, the global reward is able to perform better than many of
the simple rewards, and within the margin of error of alignment based policy se-
lection. However, alignment based action selection with and without learning still
dominates the other methods.
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6.1 Reward Alignment Case Study Analysis

To support the claim that picking aligned rewards is what drives the improved
performance in the tightly coupled domain, we examine the most aligned reward
at every point in the world at a single time step. As the agent’s position varies
throughout the world, the most important component of their task changes. The
most important task is captured by the most aligned reward signal, which we see in
Figure 6.5. A rover domain problem with a coupling of 3 is presented to an agent.
On the left, there are more rovers than POI, but these rovers extend beyond the
observation radius of the lone POI. On the right, two rovers are near a POI, but
multiple POI are found on the border. The agent has two rewards to chose from:
a reward for going toward POI, and a reward for going toward other rovers. This
situation is designed to test the agent in picking the obviously aligned reward
wherever it may find itself in the world. Plotted are the local reward gradients
for the POI reward (blue stars) and the rover reward (green dots). The vectors
shown are the most aligned reward at these points in the world, where the reward
gradient and the gradient of G strongly match. The blank space is where G has
no local gradient, so the each reward is ambiguously aligned and is not shown for
visual clarity. As seen, the POI reward (blue stars) is correctly calculated as the
most aligned reward in the situation at the bottom left of the world, as it homes
the agent toward the region of high reward, whereas the rover reward does not
guarantee moving the agent toward the POI observation area. The inverse of this

situation is seen in the situation at top right of the world, with the Rover reward
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Figure 6.5: The most aligned reward for an agent placed at various points in a
world. Plotted are the local reward gradients for the POI reward (blue stars) and
the rover reward (green dots). The vectors shown are the most aligned reward at
these points in the world, where the reward gradient and the gradient of G strongly
match.
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signal being calculated as most aligned in the presence of multiple POI.

In Figure 6.5, we show a map of the world with the type of the most aligned
reward at each position overlaid. We see that alignment captures the most favor-
able reward signal to follow, as the GoToPOI reward brings the agent toward the
scoring region in the lower left, and the Shared Team reward brings the agent to
the scoring region in the upper right area. The Shared Team reward signal is am-
biguous in the lower left due to the plethora of rovers in the area. The converse is
true on the right side: the GoTo POI reward is ambiguous as it sees high rewards
for moving toward any of the POI on the left.

We can draw intuition about this as due to the interactions between the two
rewards on the periphery of the clusters. Note the cluster of aligned Team Forming
(blue star) reward points in the lower-left corner, on the fringe of the aligned Single
POI reward signal points (green dots). Here, following the Shared Team and GoTo
POI rewards are roughly equal, as demonstrated by the few POI points intermixed
in the outcropping. However, as the agent moves closer to the POI observation
region it draws closer to the rovers. Critically, these rovers are not in the direction
of the POI - the direction the agent should move toward in this situation. Instead,
the agent moving toward the rovers will move along the border of the radius 4 circle
that defines the POI observation region. If the other rover is just outside the POI
region, an agent following the Shared Team reward will start moving away from
the POI scoring region. Thus, it is more beneficial, and more strongly aligned, to

follow the POI reward in this area.
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6.2 Reward Alignment Robustness to Reward Selection

We show that alignment is moderately robust to reward choice and noise. We
repeatedly recorded the frequency with which a reward was most aligned with the
global reward. The most aligned reward is the reward that the agent uses to make
its decision, so this frequency is a measure of the importance of the reward to the
decision making process. We then removed the rewards most important with that
metric.

As can be see in Table 6.1, the most frequently aligned reward with the global

reward with all rewards initially present is Exclusive Single POI.

| Objective | Frequency (%) |
Single POI 0
Exclusive POI 85
Shared Team 2 0.2
Shared Team 3 2.6
Exclusive Team 2 4.8
Exclusive Team 3 3.8
Exclusive Team 4 3.6

Table 6.1: Frequency an individual sub reward was selected as the most aligned.
The majority of the time, the Exclusive POI reward is most aligned. These data
were collected in a 25 x 25 world with 18 agents and 6 POIs over a period of 25
time steps. The frequencies are over 5400 actions.

We then repeated the experiments above without objective Exclusive Single
POI. Table 6.2 shows the new reward frequencies, and Figure 6.6 shows the impact
on alignment selection before and after the removal of the reward. The direct

selection of direction with alignment suffers a dramatic hit to performance with
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Figure 6.6: The performance of alignment based selection methods with and with-
out the Exclusive Single POI objective (the most commonly selected objective).
Alignment selection of direction achieved a substantially lower score, but alignment
selection of policy did not have a statistically significant change.

the removal of the most frequently selected reward, but the selection of policy is not
impacted. This result is probably because the exclusive team policies encourage
dispersion, the net effect of which is similar to exploration in the direction of a
POI. However, this dispersion does not improve the value of the reward at any
given step, so the directional alignment fails to discover it.

To further examine the contributions of individual rewards, the above experi-

ments were repeated with

1. All exclusive team forming rewards removed (frequencies in Table 6.3)

2. Just exclusive team 4 removed (frequencies in Table 6.4)
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‘ Objective Frequency (%) ‘
Single POI 0.1
Shared Team 2 13.8
Shared Team 3 14.6
Exclusive Team 2 19.3
Exclusive Team 3 27.4
Exclusive Team 4 24.8

Table 6.2: Frequency an individual sub reward was selected as the most aligned
with Exclusive Single POI removed. Without that reward, the frequencies are
much more evenly distributed, with the exception of Single POI. These data were
collected in a 25 x 25 world with 18 agents and 6 POIs over a period of 25 time
steps. The frequencies are over 5400 actions.

The results of alignment action selection and alignment policy selection are shown
in Figure 6.7.

Alignment policy selection is robust to losing exclusive team forming 4, but not
to losing all of the exclusive team forming rewards. This result is consistent with
the hypothesis that having exclusive team forming rewards encourages dispersion.

Alignment action selection increases performance as exclusive team forming

rewards are removed.

‘ Objective ‘ Frequency (%) ‘
Single POI 0.1
Shared Team 2 48
Shared Team 3 51

Table 6.3: Frequency an individual sub reward was selected as the most aligned
with Exclusive Single POI and all Exclusive Team Forming rewards removed.
These data were collected in a 25 x 25 world with 18 agents and 6 POIs over
a period of 25 time steps. The frequencies are over 54000 actions.
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| Objective | Frequency (%) |
Single POI 0.1
Shared Team 2 24.7
Shared Team 3 21.5
Exclusive Team 2 25.2
Exclusive Team 3 28.4

Table 6.4: Frequency an individual sub reward was selected as the most aligned
with Exclusive Single POI and Exclusive Team Forming 4 rewards removed. These
data were collected in a 25 x 25 world with 18 agents and 6 POIs over a period of
25 time steps. The frequencies are over 54000 actions.

Alignment Action SEE—=——
Alignment Action - No Ex POI -
Alignment Action - No Ex Team 4 =
Alignment Action - No Ex Teams _
Alignment Policy r —
Alignment Policy - No Ex POI _—
Alignment Policy - No Ex Team 4 {000 =

Alignment Policy - No Ex Teams =
0 5 10 15
Average Reward with Converged Policies

Figure 6.7: The performance of alignment based selection methods without Exclu-
sive Single POI, and without Exclusive Teams / Exclusive Team 4 (in addition to
without Exclusive Single POI reward).



o7

25x25 18A 6P Alignment - =

25x25 18A 6P Alignment Learning -J =
50x50 10A 30P Alignment -

50x50 10A 30P Alignment Learning - —
50x50 30A 10P Alignment =
50x50 30A 10P Alignment Learning L=
50x50 30A 30P Alignment [
50x50 30A 30P Alignment Learning - =

0 5 10 15 20 25
Average Reward with Converged Policies

Figure 6.8: Alignment with learning. Alignment acts as training wheels for an
agent training a neural network, with the neural network becoming progressively
more responsible for action selection over the duration of training. Across all
domains, alignment with learning is able to score equal to or greater than alignment
for all domains but the 50x50 10 Agents 30 POls.
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Chapter 7: Conclusion

Alignment allowed agents to solve problems they otherwise were not able to solve
using traditional methods. Agents trained in simple cases, such as the single agent
rover domain problem or the artificially constructed tightly coupled domain for
a single agent show that combining policies trained on distinct sub-rewards is
effective at creating a robust policy. Teams using difference rewards fail to learn
an effective policy due to the complexity of the problem (the requirement for three
simultaneous observations did not allow for the teams to stumble upon the correct
action, even if they had reward shaping that would have properly attributed the
credit of such an action). Agents trained with a transfer learning approach can
build up knowledge about converging around POI, but only perform as well as
some of the simple sub-reward policies applied directly on the rover domain.

This work introduced three different approaches to using reward alignment
for decision making, alignment policy selection, alignment action selection, and
alignment based learning. Alignment policy selection uses the alignment of all
subrewards in a particular state across a sample set of actions to determine the most
aligned subreward, and then acts according to a policy designed to maximize that
subreward. Alignment action selection considers the alignment of all subrewards
for the same particular state and sample set of actions, but instead selects the

action that resulted in maximum alignment for one of the subrewards. Alignment
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based learning is a variant of transfer learning that generalizes from alignment
action selection by training a policy in tandem with alignment action selection.
Agents initially take only aligned actions, but gradually use their own policies to
select actions instead.

Picking these sub-rewards by their alignment is effective because it allows the
agent to answer the question which reward matters when? As seen in the analysis
based on Figure 6.5, the agents calculating strongly aligned rewards are able to
pick which sub-rewards solve the current state best. This, in turn, provides them
a structured manner to find the best action to take, which increases their overall
performance.

Alignment action selection had the highest performance. As seen in Figures 6.1
and 6.2, this increase in performance is also not due to any specific sub-reward
which efficiently solves the rover exploration task. Instead, a combination of these
sub-rewards is required to achieve the increased performance. Additionally, the
removal of sub-rewards decreases the performance of this approach.

Alignment policy selection allows agents to act as if they have a single policy
which was trained to solve the original, complex problem. While the method did
not perform as well as alignment action selection, it may be more generalizable
in other domains, and it is more robust to the specifics of the subrewards. One
potential disadvantage of this method is that the agents now need a policy for each
sub-reward they will leverage to solve the task. As task complexity increases, the
number of sub-rewards, and number of policies needed to train and remember, will

increase. For robotics applications such as this, we do not foresee remembering
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policies becoming a direct inhibitor to solving the task due to the ever decreasing
cost of computer storage.

The additional computation needed to train policies for each sub-reward may
seem daunting, as now a variable number of neural networks are being trained to
replace a single neural network. However, while using this alignment based policy
selection does require training several sub-policies, the sub-rewards can be simple,
and easier to learn than the general task as we have shown. Moreover, alignment
provides a framework to use pre-existing policies as building blocks to solve a more
complex problem.

Alignment action selection, in contrast, does not require the training of any
additional policies, however, it is inherently limited to a smaller region of the state
space. Future work can explore alignment sampling in conjunction with some
form of rollout to allow for multiple actions (especially if the action space is only
movement).

Finally, alignment based learning improved upon the other two alignment algo-
rithms by learning from a baseline performance level of alignment action selection.
Alignment based learning provides an algorithm to produce a generalizable con-
trol policy more effective than the current state of the art for complex multiagent
problems.

Further work of this research will look at extending alignment learning to more
domains to examine how to create sub-rewards for a single reward signal. Cur-
rently, sub-rewards are still hand-created and do not have a qualitative measure to

differentiate a good sub-reward from a bad sub-reward. Furthermore, multiagent
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teams using alignment could generate explanations of their actions understandable
by humans by describing which aligned sub-reward is selected at a given time, and
why it was the most aligned with GG. Explanations like these could serve as a new

research direction into assured autonomy and human robot interactions.
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