Green Feed and Pasture for Poultry

Fig. 1. Kale is the best winter green feed.

Agricultural Experiment Station
Oregon State Agricultural College
CORVALLIS, OREGON
STAFF OF AGRICULTURAL EXPERIMENT STATION

W. J. Ker, B.S., LL.D. ... President
J. H. Huns, B.S. Professor, Botany
E. T. Reed, B.S., A.B. .. Editor
H. P. Bates, A.B., S.M. ... Plant Pathologist
W. H. Selden, M.A. ... Assistant Agricultural Economist
R. S. Bishop, M.S. Assistant in Farm Management
P. M. Brandt, B.S. ... Dairy Husbandman
F. Bierley, M.S. ... Assistant Pathologist, U. S. Dept. of Agri.
A. G. Bouquet, B.S. ... Horticulturist (Vegetable Gardening)
E. N. Ressman, M.S. ... Associate Agronomist
C. G. Brown, B.S. ... Horticulturist, Hood River Br. Exp. Station, Hood River
W. S. Brown, A.B., M.S. ... Horticulturist in Charge
D. B. Berton, B.S. ... Assistant Chemist
S. A. Borer, M.S. ... Assistant in Farm Management
J. P. Childs, A.B. ... Supt. Hood River Br. Exp. Station, Hood River
G. V. Copson, M.S. ... Bacteriologist
J. W. Deitsch, M. S. ... Assistant Veterinarian
G. E. Donham, M.S., D.V.M. ... Assistant Poultry Husbandman
E. M. Dickinson, D.V.M. ... Associate Agricultural Economist
W. H. Deeskin, Ph.D. ... Associate Plant Pathologist, U. S. Dept. of Agri.
A. E. Engbrecht, B.S. ... Supt. John Jacob Astor Br. Exp. Station, Astoria
V. W. Halverson, M.S. ... Ass't. Horticulturist (Horticultural Products)
L. R. Haag, Ph.D. ... Associate Agricultural Economist
H. Hartman, M.S. ... Associate Agronomist
F. E. Hartway, Ph.D. ... Horticulturist (Horticulture)
D. D. Hill, M.S. ... Assistant Agriculturist
A. R. Hite, B.A. ... Scientific Assistant Seed Lab., U. S. Dept. of Agri. (Seed Analyst)
C. R. Hutchinson, Jr. ... Asst. to Supt. of Sherman County Exp. Station, Talent
C. S. Johnson, B.S. ... Jr. Poultry Husbandman
W. T. Johnson, B.S., D.V.M. ... Poultry Husbandman
I. R. Jones, Ph.D. ... Associate Dairy Husbandman
K. B. Jones, M.S. ... Chemist
G. W. Karp, M.S. ... Agricultural Economist
E. L. Knowlton, B.S. ... Poultry Husbandman
G. W. Kuhlman, M.S. ... Assistant in Farm Management
A. R. Lott, B.S. ... Poultry Husbandman in Charge
A. M. McCaffey, D.V.M. ... Asst. Animal Husbandman
M. B. McKay, M.S. ... Plant Pathologist
I. F. Martin, B.S. ... Asst. to Supt. of Sherman County Exp. Station, Talent
E. B. Mittelman, Ph.D. ... Associate Agricultural Economist
D. D. Moore, M.D. ... Entomologist
M. C. Moss, Ph.D. ... Agricultural Economist
O. M. Nelson, B.S. ... Animal Husbandman
K. R. Norris, B.S. ... Assistant to Supt. of Southern Oregon Exp. Station, Talent
H. W. Oliver, B.S. ... Assistant Animal Husbandman
L. L. Potter, M.S. ... Animal Husbandman
W. L. Powers, Ph.D. ... Chief, Department of Soils
R. C. Reimer, M.S. ... Supt. Southern Oregon Br. Exp. Station, Talent
H. M. Robinson, A.B., M.S. ... Chemist
C. B. Roper, B.S. ... Associate in Soils (Geology)
C. E. Schuster, M.S. ... Associate Horticulturist (Pomology)
H. D. Scudder, B.S. ... Chief in Farm Management
M. H. Shedlock, M.S. ... Associate in Farm Management
O. M. Schutt, M.S. ... Supt. Harney Valley Br. Exp. Station, Burns
J. N. Shaw, D.V.M. ... Assistant Veterinarian
A. E. Simmons, M.S. ... Assistant Bacteriologist
B. T. Simms, D.V.M. ... Assistant Agriculturist
V. E. Smith ... Laboratory Technician, Poultry Pathology
D. E. Stephens, B.S. ... Supt. Sherman County Br. Exp. Station, Mote
M. G. Stevenson, M.D. ... Associate Pathologist, B.S.
B. G. Thompson, M.S. ... Assistant Entomologist
E. F. Borgerson, B.S. ... Assistant in Soils (Soil Survey)
A. E. Collett, B.S. ... Asst. Agronomist, Eastern Ore. Branch Exp. Station, Union
C. F. Whitehead, B.S. ... Associate Agronomist
E. H. Wiegand, B.S. ... Horticulturist (Horticultural Products)
Joseph Wilcox, B.S. ... Assistant in Entomology
M. F. Wilson, B.S. ... Asst. Animal Husbandman
R. W. Dearborn, B.S. ... Supt. Eastern Ore. Branch Exp. Station, Union
S. M. Zeller, Ph.D. ... Plant Pathologist
Green Feed and Pasture for Poultry

By

H. A. Schoth,
Associate Agronomist, Forage Crops, United States
Department of Agriculture

INTRODUCTION

The object of this publication is to bring briefly to the attention of poultrymen the better methods of producing green feed and pasture, the crops best to use, and how to practice economical utilization of such crops.

The poultry business is becoming more specialized and competitive. Green feed for poultry is in many cases not available on the market. Transportation and cost usually require that it be produced near where it is to be fed. Because of its necessity and value to the flocks, and because of high land valuation in many cases, an intensive system of cropping is necessary to produce a maximum of green feed on a minimum of land.

It is very important that a continuous supply of green feed be provided. To do this a definite cropping system must be arranged and in some sections root storage facilities provided. Systems of providing this feed are herein presented as suggestions for the various sections where poultry is important. There are many plants well adapted for green feed that will grow under a wide range of conditions. There are but few sections where some kind of fresh feed cannot be grown for at least part of the year and in practically all of them roots can be grown and stored to provide winter succulents.

If maximum results are to be obtained, green feed crops should be grown in a regular rotation. Liberal manuring or fertilization of the land usually assures better and larger yields. Where the crop is grown on land used as yards, the poultry manure may add to the parasite and disease problem and therefore should not be used. Other manure or commercial fertilizers should be used instead. Green feed to be economical must produce heavy yields since production and harvest methods of these succulent crops, on a poultry ranch scale, cannot otherwise compete with mass production of larger farms.

Often the green feed is grown in part on vacant yards that are being cleaned up by cropping them.

LOCATION OF PLANTINGS

Areas for production of green feed for poultry should be as convenient as possible to the place of utilization. This is especially true

1Forage crop work at the Oregon Agricultural Experiment Station is conducted in cooperation with the Office of Forage Crops, Bureau of Plant Industry, United States Department of Agriculture and credit is hereby acknowledged as jointly due to the above named office and the Oregon Station.
where crops are to be harvested each day or two in small quantities and
by hand methods. If crops are grown for storage the location of the
field is of minor importance because harvesting is usually done at one
time and the transportation problem is small. Fields to be pastured
should be close to houses or pens if they are to be utilized to the best
advantage. Some fields are also pastured after crop is removed. This
allows of more thorough utilization, saves labor, and serves as exercise
ground for short periods.

CROPS FOR POULTRY PASTURE

To maintain the necessary continuous supply of fresh green feed it
is necessary to grow a number of plants. Grasses, cereals, legumes,
crucifers, and roots are used successfully in different parts of Oregon.
The majority of these crops are annuals. Several biennials and peren-
nials are also included. Many are suited to a wide range of growing con-
ditions. It is therefore comparatively easy to grow a succession that
will furnish a continuous supply of fresh feed in many parts of the
state.

Palatable, nutritious, high-yielding, soil-enriching crops, such as the
legumes, are of special value. Roots are vitally necessary in supplying
succulence during periods of extreme cold or when it is too wet to per-
mit harvesting. Kale is especially valuable for use during late summer,
fall, and winter weather where winter temperatures do not fall below
13° F. Grains are often cheap and quick producers. Perennial sod
formers are particularly useful where permanent sods are desired.

It is not practicable to cover all the conditions here. Directions for
the general culture of several of the crops included in this circular may
be had upon request to Oregon State Agricultural College. Special
problems will be given attention if they are presented to the Experiment
Station.

GROWING CROPS FOR POULTRY PASTURE

Grains—barley, oats, wheat, and rye. Winter grains are usually selected
for this purpose. The special value of these grains is that some of them
can be grown on practically any kind of land with reasonable drainage
in almost any section of the state. Seed-bed preparation is easy and
cheap, seed is cheap, the plants are winter hardy, and they supply feed
for long periods in early spring.

On land in good condition, oats should be sowed at 3 bushels an
acre, and barley, wheat, and rye at 2 bushels an acre. If the use of a
grain drill is not practicable, seedings on small areas are usually broad-
cast and harrowed in. In that event from 30 to 50 percent more seed
should be used. Seedings should be made in the early fall.

Fall-sown barley is ready for spring use first, followed by rye, oats,
and wheat. These crops, beginning with barley, are usually ready to cut
March 20 to April 1. Early cuttings usually produce second crops.
Their use may continue until June 1. By seeding a small area of each
grain a maximum period of production is obtained.

Good varieties of winter grain for this purpose for Western Oregon
are O. A. C. No. 7 barley, gray winter oats, white winter and Jenkin
GREEN FEED AND PASTURE FOR POULTRY

Club wheat, and winter rye. For Eastern Oregon, winter barley and oats are often not hardy enough; hence Rosen rye and Hybrid 128 or Fortyfold wheat should be sowed.

Spring barley, wheat, and oats may be made use of at times; for instance, when winter grains are badly damaged by cold or where a short-time pasture crop is practicable between two long-season crops. Good varieties to sow in Western Oregon are Hannchen barley, Victory or Three Grain oats, and Huston or Marquis wheat; in Eastern Oregon, Federation wheat, Markton and Three-grain oats, and Trebi barley.

Fall wheat such as Fortyfold, or rye such as Rosen, sowed in April often gives good summer pasture until quite late.

Vetches. Common and Hungarian vetch are well suited for green feed. They grow on a wide range of soils and in many localities and supply a large amount of high protein green feed. Common vetch is winter hardy in most well drained sections in Western Oregon. Hungarian vetch is more hardy and is better suited to some sections in the north end of the Willamette Valley, to some higher, colder locations, and to some soils a little too wet and sour for Common vetch. For the sour and run-down soil and really cold sections Hairy and Woolly podded vetch are superior. These varieties may be seeded alone or with any of the small grains. It is preferable to seed with the small grains because in combination the vetches grow well, stand up better, the amount of feed is increased and the quality improved. Harvest is also easier. When seeded alone 80 to 100 pounds of Common or Hun-

![Fig. 2. Vetch and oats for early spring green feed.](image-url)
Seed-bed preparation is similar to that for the grains when seeded alone. Common and hairy vetch make better combinations with barley and rye because they are earlier than Hungarian. Hungarian combines well with oats or wheat.

Vetch or vetch and grain is usually ready for cutting or pasturing April 15. By using the various kinds of grain and vetch on rich soils that hold moisture well, second cuttings may extend this period to July 10.

The use of grains alone or in combination with vetch makes possible early green feed. Vetch is usually harvested early enough to allow the land to be cultivated and used for other crops such as kale or rape.

Vetch responds to the use of land-plaster and an application of 75 pounds an acre is often profitable. It should be applied early in March. Sometimes early spring applications of sulfate of ammonia make large increases in yield; this is most likely to take place where the land is not heavily manured.

Kale and cabbage. Kale is highly prized in Western Oregon because of its palatability and its high protein and ash content. Thousand-headed kale is the best variety, it makes vigorous growth, is quite winter hardy for most of Western Oregon and produces a large amount of feed over a long period.

Kale grows best on fertile, well drained land. The latter is especially important for winter feed. Kale will winter-kill easily in wet, soggy land.

The plants are usually grown in a bed and transplanted rather deeply. Some growers seed direct in the field and thin. This practice is not recommended where plants are expected to remain in the field during the winter because the rooting system is shallow, the heavy tops develop too high and many plants fall over. Deep transplanting, such as 5 to 6 inches, makes a deeper rooting system, a lower top development, and the plants remain more upright and are less injured by cold. Plants are ready to set when they have six to seven true leaves. Thorough cultivation is necessary to keep down weeds and retain moisture.

Kale may be planted during a fairly long period of the spring. Seeding in late March or early April or transplanting in late April usually produces a growth which may be used as summer feed. Because of the tendency of early kale to be strong and to go to seed, however, it is probable that summer cabbage is better in many cases.

From the standpoint of yield of fall and winter green feed, late spring or early summer transplantings of kale made from June 1 to July 1 are in most cases more satisfactory. These plants usually escape root-maggot injury and do not go to seed until the following spring. When planted at this time the land must be in excellent tilth and have ample summer moisture available to start and keep the plants growing.

Kale is quite winter hardy and when temperatures do not go below 13° F. there is usually little injury on well drained land. Below that all except the hardiest plants may be badly damaged unless they are covered with snow.
GREEN FEED AND PASTURE FOR POULTRY

It takes about 5,000 kale plants for an acre when set 36 inches each way. One pound of good seed will produce enough strong plants for an acre.

In some sections cabbage offers a possibility for green feed and may in some cases be stored for winter feed. Where cabbage, broccoli, and cauliflower are commercial crops, the waste foliage may be used for poultry feeding purposes.

Rape. Rape is not generally recommended but in some cases may be useful. It is a summer crop probably better suited to growing stock than to laying birds, because of the greenish yolk color produced. Laying stock if fed on rape should be started on it gradually to minimize the danger of making the yolks off color.

Two varieties of rape, Dwarf Essex and Victoria, are most commonly grown for poultry green feed.

Rape is usually considered as a catch crop, occupying the land for short periods or at times when it is desired to have a crop on the land between two more regular season crops.

Rape may be seeded any time from April 15 until June 20 that a reasonably fine seed-bed can be made. It makes rapid growth if sufficient moisture is available to start it. Once started, the plants will endure considerable dry weather.

On land that has been used for growing a small grain or small grain and vetch combination and has had the crop removed early, a good crop of rape can often be grown if seeded late in June or early in July.

Seedings are sometimes made in early May on a well prepared seed-bed with the idea that the crop is to occupy the land all summer and be used for green feed during that time. Clover is often started by sowing it with the rape. The clover is available for use the following year.

Rape should be seeded at the rate of 5 pounds an acre alone or with 10 to 12 pounds of red clover.

Clover. The use of clover as poultry green feed is in the introductory stage. It is valuable where ample land is available and a short-lived perennial sod is desired. It often makes a heavy and sustained summer growth. Where frequently cut it is very tender and palatable. More mature clover is perhaps not consumed quite so readily as some other crops but makes a feed of high quality. Alsike is better on some soils too sour and wet for red clover. Some use may be made of alsike clover, but it is short lived and does not recover from cutting as well as red clover. Where a winter grain crop is grown these clovers may be sowed in it in early spring and if ample moisture is available good stands may be obtained. This is especially true when the grain is cut for green feed. Seedings may be made alone or with rape on a well prepared seed-bed in April or May. This is the surest way to get a stand. A fine, firm seed-bed must be provided. The first year red clover usually provides only a small amount of feed. Beginning with the second year, large amounts of feed are obtained either as cut or pastured material. A good stand should last two years after seeding. Twelve pounds of seed of red clover should be used.
The New Giant Italian White or Ladino clover is one of the most promising perennial poultry green feed and pasture crops for Western Oregon. It is durable, palatable, nutritious, and yields well. It is something of a sod former and affords soil protection. It starts early and grows late where plenty of moisture is available. It is especially suited to irrigated soils too shallow or a little too sour for alfalfa. It is shallow rooted and dries up on unirrigated land during late June or July.

Ladino clover is usually sowed alone on a firm, fine seed-bed in April, May, or June. Three to 5 pounds of seed an acre are usually used. It is often sowed with grasses. A good mixture is 5 pounds rye-grass, 3 pounds timothy, 3 pounds orchard-grass, and 2 pounds Ladino clover.

Common white or Little Dutch clover may be used as a constituent of a permanent sod mixture, but seeded alone it has little value. The amount of green feed produced is usually low. It is primarily a pasture clover.

Thin stands of clover may often be thickened successfully by sowing in rye-grass seed in the early fall. Common domestic rye-grass is best for short time use while English rye-grass is better adapted for a longer time sod.

An application of 75 pounds of land-plaster an acre increases the yield of clovers materially. Apply early in March.

Alfalfa. The use of alfalfa as a green feed for poultry shows great possibilities in both Eastern and Western Oregon. A good stand properly handled will produce an abundance of spring, summer, and early fall green feed for poultry for from three to seven or more years after seeding. The feed is of high quality and poultry consume it very readily either cut or pastured.

Land suitable for alfalfa must be well drained, deep, mellow, sweet, and of reasonably good fertility. Sour soil should be liberally limed. It should be rolled and thoroughly cultivated several times before seeding to make sure that the seed-bed is fine, firm, and free from weeds. Seventy-five pounds of land-plaster put on the field in March or early April helps to make good stands. Seedings should be made alone unless irrigation is possible. When seeded alone the seedings are made in May or early June using 12 to 15 pounds of seed an acre. It is best to sow certified Grimm alfalfa.

It is necessary to inoculate the seed or the land on which it is to be grown if alfalfa has not been growing successfully on it within the past two years. If sowed on rich land or if the crop is irrigated it will usually make enough growth the first season so that in early fall some green feed can be obtained. It is not advisable under any condition to cut the crop too early the first year because that weakens the plants. It is better to get the plants well established. An application of 125 pounds of land-plaster or 35 pounds of sulfur in the early spring will stimulate growth in most sections of Oregon and result in a large increase in green feed.

Alfalfa responds very readily to irrigation. Where water for this purpose is available cheaply enough it pays to irrigate.

Alfalfa is so valuable as a summer green feed that poultrymen are often justified in an unusual expense to make it grow successfully.
Heavy liming or the expense incident to summer irrigation is frequently quite worth while.

Dry alfalfa leaves and blossoms are highly prized as a substitute for green feed.

Root crops. Roots fill an important place in the fresh feed program of poultry and are especially valuable for winter use when other succulent feed is not available.
Those of most general value for poultry in both Eastern and Western Oregon are mangels and carrots. Turnips and rutabagas are of little value except in the Coast section, because they are especially susceptible to root-maggot attack. Their production is limited to the cool, moist Coast section and certain high elevation areas in the North Willamette Valley where late planting avoids the root maggots and there is still moisture enough to grow the crop.

Mangels and carrots are grown primarily for the roots. The tops of mangels have some value but those of carrots little value for poultry feed.

These roots require a fine, firm, well fertilized seed-bed as free from weeds as possible before seeding is done. Seedings are made with a garden drill early in May. Rows are spaced at 18 to 36 inches apart depending on how they are to be cultivated. Eight to 10 pounds of mangel seed and 3 pounds of carrot seed are required for an acre. Mangels are thinned, after the seedlings have their fourth permanent leaf, to single strong plants 10 to 12 inches apart. Carrots are sometimes thinned to 4 to 6 inches apart but they are usually not thinned. Several cultivations should be given during the growing season.

The highest yielding varieties of mangels in many sections are Prize-winner, Giant Half Sugar, Giant Intermediate, Heavy Cropper, Danish Sludstup, and Mammoth Long Red. Poultry consume all these varieties equally well. The orange fleshed varieties of carrots are considered better than those with white flesh for poultry. Chantenay and Yellow Giant are good yielders in all sections of the state and have high quality. Mangels generally outyield carrots except in Eastern Oregon in years of serious leaf-hopper infection.

These roots grow well under irrigation. Mangels produce good yields under rather dry conditions if proper cultivation is given.

Mangels and carrots should be pulled for storage before heavy frosts. While these roots can stand considerable freezing without appreciable injury, any damage done by freezing reduces their ability to stand up in storage. After pulling, the tops should be twisted or cut off, injuring the root as little as possible. The roots should be left in the field to dry before storing. This allows the earth to dry out and drop off and the root gets cooled out before storing. It is best to store them on a slatted floor allowing ventilation up through the pile. Storage conditions for potatoes are excellent for these roots. They should be kept in a cool, dry, dark place and have ventilation while in storage. When properly handled they will remain in good condition until late spring.

Grass seedings. Grasses from the poultry-pasture standpoint have to do mainly with their use as sod in yards and runs and should be perennials that can grow under rather adverse conditions. A mixture of grasses usually produces better sod and more material for poultry than seedings of one kind. For sections where ample moisture is available for grass during most of the year a mixture of English rye-grass, 10 pounds, orchard-grass, 3 pounds, Kentucky blue-grass, 5 pounds, redtop 3 pounds, and Ladino clover, 2 pounds, makes a quick covering of the ground and a heavy sod. Seeding should be done in the early fall or early spring on a well prepared, firm seed-bed. The seed is broadcast
and harrowed or raked in lightly. Poultry should be kept off during the winter, spring, and early summer of the first year, thus giving the plants time to get well rooted. As the stands get thin, reseeding each fall with a small amount of new seed will help maintain and lengthen its life. It is good practice to keep poultry off these grass areas during very wet weather as trampling and scratching at that time do much injury.

In dry sections there are few grasses that will be very successful for long periods. Tall oat grass, orchard grass, and Chewing's fescue are good dry-land grasses but are not as productive of feed as spring-sowed fall grains, corn, or thin stands of alfalfa which are given cultivation. Under Eastern and Western Oregon dry conditions seedings of varieties with cheap seed such as rye-grass can be made each fall and considerable green material will be available during the spring and early summer of the following year. Seedings should be at the rate of 25 to 30 pounds an acre.

HARVEST METHODS: PREPARATION FOR FEEDING

Poultry will consume most readily the young succulent growth. When allowed to select their own green material they usually choose the newer growths because they are tender, in smaller sections, and fresher. When material is harvested for fresh feed it should be cut each day so that it will be as nearly fresh as possible when fed.

Grains and vetch grown alone or in combination may be cut but are often pastured off. Close pasturing of these crops must be avoided until the crops are well started. The poultry is allowed to spend an hour or two in the planting each day when the crops are young. As the plants get older the poultry may be left there longer. This reduces the tendency to produce yolks of off color. If the growth is especially abundant the poultry may be left on the pasture continuously. Where large flocks are to obtain green feed from small areas the pasture should be divided and alternate or rotation pasturing practiced. This gives the plants opportunity to increase growth and more feed is produced. These crops should not be eaten down so closely that rapid subsequent growth will not take place.

When cut and fed it is best to begin when the plants are still tender and succulent. Where cut early, good second crops are practically always produced and the feeding period during which very succulent feed is produced is lengthened.

These crops provide good succession of feed, barley being ready first, followed by rye, wheat, oats, and vetch.

Where vetch is seeded with these grains it increases both the quantity and quality of the feed.

These crops when harvested to be fed are often cut with a feed cutter so that better utilization is made of them. The pieces should be small, not more than one-fourth inch long. This green material should never be allowed to remain long in a pile as it soon heats and is not so good.

Kale is sometimes pastured off. More often, however, it is harvested and taken to the poultry. When plants have made large growth they are
often stripped by taking off the larger lower leaves. They are either run through a cutter or tied into bunches for the birds to pick. Many poultrymen, beginning with early fall, cut off the plants and either run the softer parts through a cutter or hang the plant up and allow the birds to pick off the leaves and tender stems.

Rape is practically always pastured off. Occasionally where the growth is large, leaves are picked. By careful pasturing and alternate use of small areas increased feed is obtained since rape, if not eaten down too heavily, recuperates very rapidly.

Clover of the larger growing varieties such as red and alsike is either pastured or harvested and fed. When harvested it is run through a cutter or tied in bunches to be picked. The season for clover, especially red, is long and after it is eaten or cut off it comes back quickly and makes successive crops. Clover responds to irrigation readily. Alsike makes much less feed than red and often lasts but one year whereas red is usually good for at least two years. Ladino clover is good for both cutting and pasturing and is long lived. White clover is only good for pasture as it seldom gets large enough to harvest profitably.

Alfalfa is either pastured or mowed and run through a cutter before feeding. Continuous early cutting of alfalfa shortens the life of the stand. The best stage for cutting from the standpoint of the life of the stand is from the beginning of blooming period to full bloom. Feed demands often require earlier cutting. If cut early and often the length of life is decidedly shortened. Pasturing continually has somewhat similar effects. Rotation pasturing or cutting is recommended. By rotating the early and late cut portions of the field, vigor and life of the stand may be maintained, and the plants are injured but little. On
the pastured areas it is advisable to cut any remaining growth at the bloom stage so as to clean up the patch and induce production of a new crop.

Roots are used for winter green or succulent feed and taken from storage as necessary. Roots are often split and checked with a knife, in order to induce poultry to eat them. To hold roots stationary for picking they are often nailed to blocks of wood or to the wall. They should be fed in a clean place.

Grass is usually used for making a sod, and any green feed obtained from it is in the form of pasture. It is seldom practicable to harvest and chop it or tie it in bundles in the pens because the quality at the time it is large enough for this is poor and only a small amount is consumed.

Field and sweet corn may have considerable use as a green feed in mid to late summer, if early and late varieties are used, and with a series of plantings it may be available from mid August until frost. Any corn not used will make good grain if early ripening varieties are chosen. The flint varieties are often early and leafy, while Minnesota No. 13 at different planting dates provides later feed. Chopped green corn makes good green feed until the grain reaches the roasting-ear stage.

Lettuce, cabbage, and curly kale are often available for poultry feed. These are very good feed if fresh and clean, but it is not generally advisable to grow them for that purpose exclusively because the amount of feed produced is too small and the crop is often too expensive and difficult to grow. Lawn clippings are often used. If fresh and short, large amounts are consumed. Chicken lettuce, a non-heading, tall-growing plant resembling lettuce in leaf appearance, produces large amounts of feed on rich land and is being used to some extent.

POULTRY GREEN FEED CROP SUCCESSION

To maintain a supply of green feed for poultry throughout the year a rather definite system of crop rotation must be followed so as to utilize the land fully and be reasonably certain that green feed will be on hand at all times. Much depends on the location and climate.

The following crop successions are practical under the conditions mentioned and during ordinary years supply continuously large amounts of good feed.

<table>
<thead>
<tr>
<th>TABLE I. WILLAMETTE VALLEY WELL DRAINED LANDS, USING ALFALFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Small grains.</td>
</tr>
<tr>
<td>Winter barley, rye, wheat, oats</td>
</tr>
<tr>
<td>Vetch or grain and vetch</td>
</tr>
<tr>
<td>Alfalfa, established</td>
</tr>
<tr>
<td>Kale, Thousand Headed</td>
</tr>
<tr>
<td>Roots, mangels, carrots</td>
</tr>
</tbody>
</table>
TABLE II. WILLAMETTE VALLEY HEAVY LANDS WITH SOME SUMMER IRRIGATION

<table>
<thead>
<tr>
<th>Crop</th>
<th>Time seeded</th>
<th>Time usable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small grains as barley or rye</td>
<td>September 1 to October 15</td>
<td>March 15 to June 15</td>
</tr>
<tr>
<td>Vetch or vetch and rye or oats</td>
<td>September 1 to October 15</td>
<td>April 1 to July 1</td>
</tr>
<tr>
<td>Ladino clover established</td>
<td>April 15 to May 15</td>
<td>April 15 to October 15</td>
</tr>
<tr>
<td>Kale</td>
<td>April seed, June transplant</td>
<td>October 1 to March 1</td>
</tr>
<tr>
<td>Roots</td>
<td>May 1 to 10</td>
<td>October 15 to May 1</td>
</tr>
</tbody>
</table>

TABLE III. WILLAMETTE VALLEY WELL DRAINED LANDS NOT IRRIGATED

<table>
<thead>
<tr>
<th>Crop</th>
<th>Time seeded</th>
<th>Time usable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small grains as barley or rye</td>
<td>September 1 to October 15</td>
<td>March 15 to June 15</td>
</tr>
<tr>
<td>Vetch or vetch and rye or oats</td>
<td>September 1 to October 15</td>
<td>April 1 to July 1</td>
</tr>
<tr>
<td>Corn</td>
<td>May 1 to 10</td>
<td>August 15 to October 1</td>
</tr>
<tr>
<td>Rape or summer cabbage</td>
<td>April to June</td>
<td>August 1 to October 1</td>
</tr>
<tr>
<td>Kale</td>
<td>April seed, June transplant</td>
<td>October 1 to March 1</td>
</tr>
<tr>
<td>Roots</td>
<td>May 1 to 10</td>
<td>October 15 to May 1</td>
</tr>
</tbody>
</table>

TABLE IV. COAST SECTION

<table>
<thead>
<tr>
<th>Crop</th>
<th>Time seeded</th>
<th>Time usable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small grain, winter rye, oats</td>
<td>September 15 to October 15</td>
<td>April 15 to June 15</td>
</tr>
<tr>
<td>Spring peas (Blue Prussian)</td>
<td>April 1 to 15</td>
<td>May 15 to July 20</td>
</tr>
<tr>
<td>Kale, Thousand Headed</td>
<td>April seed, June transplant</td>
<td>May 15 to July 1</td>
</tr>
<tr>
<td>Japanese barnyard millet</td>
<td>May 15 to June 15</td>
<td>July 15 to October 1</td>
</tr>
<tr>
<td>Roots, mangels, carrots</td>
<td>May 15 to June 1</td>
<td>October 15 to April 15</td>
</tr>
<tr>
<td>Grass mixed with Ladino or white clover</td>
<td>October 1</td>
<td>January 1 to December 31</td>
</tr>
</tbody>
</table>

TABLE V. IRRIGATED SECTIONS, EASTERN OREGON

<table>
<thead>
<tr>
<th>Crop</th>
<th>Time seeded</th>
<th>Time usable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter wheat or rye</td>
<td>October 1</td>
<td>May 1 to June 15</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>May 1 to June 1</td>
<td>May 15 to October 1</td>
</tr>
<tr>
<td>Ladino clover</td>
<td>May 1 to June 1</td>
<td>May 1 to October 1</td>
</tr>
<tr>
<td>Red clover</td>
<td>May 1 to June 1</td>
<td>May 15 to October 1</td>
</tr>
<tr>
<td>Roots, mangels, carrots</td>
<td>May 1 to 15</td>
<td>September 15 to May 15</td>
</tr>
</tbody>
</table>

TABLE VI. UNIRRIGATED SECTIONS, EASTERN OREGON

<table>
<thead>
<tr>
<th>Crop</th>
<th>Time seeded</th>
<th>Time usable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter grain, wheat, rye</td>
<td>September 1 to October 1</td>
<td>April 15 to June 15</td>
</tr>
<tr>
<td>Spring grain, wheat, oats, barley</td>
<td>March 1 to April 1</td>
<td>May 15 to July 10</td>
</tr>
<tr>
<td>Spring planted – Fall wheat or rye</td>
<td>March 1 to 15</td>
<td>Pasture June to October 1</td>
</tr>
<tr>
<td>Alfalfa in cultivated rows</td>
<td>April 1 to May 1</td>
<td>May 1 to September 1</td>
</tr>
<tr>
<td>Corn</td>
<td>April 15 to May 10</td>
<td>August 15 to September 15</td>
</tr>
<tr>
<td>Roots, mangels</td>
<td>April 15</td>
<td>September 15 to May 1</td>
</tr>
</tbody>
</table>
GREEN FEED AND PASTURE FOR POULTRY

TABLE VII. SOUTHERN OREGON IRRIGATED

<table>
<thead>
<tr>
<th>Crop</th>
<th>Time seeded</th>
<th>Time usable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter grain, barley, rye, wheat, oats</td>
<td>September 15 to October 15</td>
<td>March 1 to June 1</td>
</tr>
<tr>
<td>Vetch or vetch and grain</td>
<td>September 15 to October 15</td>
<td>March 15 to June 15</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>April 15 to May 15</td>
<td>April 1 to October 15</td>
</tr>
<tr>
<td>Red clover</td>
<td>February to May</td>
<td>April 15 to July 15</td>
</tr>
<tr>
<td>Ladino clover</td>
<td>April 1 to May 1</td>
<td>April 1 to October 15</td>
</tr>
<tr>
<td>Corn</td>
<td>April 20 to May 10</td>
<td>August 15 to October 1</td>
</tr>
<tr>
<td>Kale</td>
<td>April 15 to June 1</td>
<td>October 15 to March 1</td>
</tr>
<tr>
<td>Rape</td>
<td>April 15 to June 1</td>
<td>June 1 to September 1</td>
</tr>
<tr>
<td>Roots, mangels, carrots</td>
<td>May 1 to 10</td>
<td>October 15 to April 15</td>
</tr>
<tr>
<td>Grass</td>
<td>September 15 to October 15</td>
<td>January 1 to December 31</td>
</tr>
</tbody>
</table>

The individual poultryman will necessarily have to decide what crops he will grow because of the soil, moisture and climatic conditions he has to deal with. Any plan followed should be such that the land be fully utilized, good use made of manure produced by the poultry, and a continual supply of fresh feed produced for the flock.

A crop rotation system should also be followed for purposes of better sanitation and increased crop yields. It is advisable to use manure on land to be plowed as it covers it and the decay is beneath the surface. Cultivated crops usually make best use of manure. Crops that follow also benefit proportionately.

The amount of green feed produced by various crops in different locations is so variable that any estimate might be misleading. The amount will vary according to soil, climatic conditions, time and manner of harvesting, and variety used.

Calculated on the acre basis and considering the general harvest at an early stage before maximum weight is obtained, the various crops that can be grown for poultry green feed under ordinary good farming conditions may be expected to yield somewhat as here indicated.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Average yield green material in tons an acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter barley</td>
<td>5.00</td>
</tr>
<tr>
<td>Winter oats</td>
<td>7.00</td>
</tr>
<tr>
<td>Winter wheat</td>
<td>7.00</td>
</tr>
<tr>
<td>Winter rye</td>
<td>6.00</td>
</tr>
<tr>
<td>Vetch</td>
<td>9.00</td>
</tr>
<tr>
<td>Vetch and grain</td>
<td>9.00</td>
</tr>
<tr>
<td>Kale</td>
<td>20.00</td>
</tr>
<tr>
<td>Rape</td>
<td>6.00</td>
</tr>
<tr>
<td>Clover</td>
<td>10.00</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>15.00</td>
</tr>
<tr>
<td>Mangels</td>
<td>20.00</td>
</tr>
<tr>
<td>Carrots</td>
<td>12.00</td>
</tr>
<tr>
<td>Grass (mixture)</td>
<td>3.00 to 8.00</td>
</tr>
</tbody>
</table>

GREEN FEED SUBSTITUTES

In some sections the poultry industry is conducted on land so high priced that the poultryman cannot afford to use much of it for the production of green feed. In other sections the land will grow only such a small amount that it is not profitable to try to grow a year-round supply.

Under these conditions it is necessary to substitute materials that when consumed by poultry will answer the purpose and be practically as beneficial as fresh green feed.
The best substitutes are alfalfa and clover hay. These kinds of hay should be sweet, green in color, well cured, and leafy. The second and third cuttings of alfalfa are best as the proportion of leaf to stem is usually larger and it is in the leafy part of the plant that most of the proteins and vitamins are carried.

This hay may be chopped in one-fourth to one-half inch lengths and fed from screened hoppers, or it may be fed in racks, unchopped. It may also be tied in bundles and suspended within easy reach of the birds.

Ground alfalfa fed either wet or dry is of doubtful value because the product is often made of inferior stock and is sometimes very dusty.

Alfalfa and clover hay are not expected to replace fresh green feeds. During times when green feeds are not available or in sections where they cannot be grown profitably these substitutes can be used for a part of the year at least, with good success.

AMOUNTS OF GREEN FEED FOR POULTRY

Poultry gathering their green feed as pasture are usually allowed to remain on the field throughout the day. It is usually considered that fowls, especially chickens, will consume all the green feed desired in one day in less than an hour if ample supplies are available. This is usually done early in the morning. During the remainder of the day only small amounts are consumed.

Some poultrymen allow the flock to remain on pasture for about two hours each morning if weather is suitable and then put them in other quarters. This is desirable where range is small as it economizes on the feed and prevents loss from scratching and tramping. Where large areas are available it is not so necessary to conserve the feed supply.

Poultrymen with large flocks and comparatively small areas for production of green feed practice indoor feeding to a large extent. The material is harvested each day and enough is obtained to provide the fowls with ample supplies throughout the day either as cut material or in bunches hung up.

It is estimated that 100 healthy hens will consume from 12 to 15 pounds of green feed each day if they have had green feed in ample supply continually. Some kinds of green feed are consumed more readily than others. Alfalfa is especially relished. Kale and rape follow closely, with vetch, grains, clover, and roots, of value in the order named when considered from desirability as to amounts consumed.

In some places difficulty has been experienced with traces of green developing in the yolks of eggs when fowls were allowed to eat too much green feed. This difficulty has not become troublesome in this state. Allowing poultry to become accustomed to new green feed by limited feeding or pasturing at the beginning of the harvest period is recommended as a preventive of this trouble.

Figured on the basis of one thousand chickens and ordinarily good land capable of growing kale, rape, grains, vetch, grass, and roots, two acres well handled and cropped to capacity, should furnish a year-round supply of good green feed. If the land is suitable for alfalfa as well as other crops this can be reduced to one and one-half acres. If the above crops cannot be grown satisfactorily it might be necessary to devote as much as five acres to production of crops. The poultryman will be the final judge in this matter and after the first year or two he should be able to gauge very closely how much land is necessary and how the cropping system may be fitted into his rotation of yards.