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1. Introduction

Thomas Kuhn publishedhe Structure of Scientific Revolutioms1962. The book was in
part an effort to determine systematically the reatf sociological influences on the work of
scientists. To accomplish this, Kuhn analyzesdé&eelopment of science from a historical
perspective, focusing on the change from a gedcerigw of the solar system (in this case
the Ptolemaic system) to a heliocentric one (alsown as the Copernican system). He
determines that the methods used to create bothi¢senvere essentially scientific; however
he argues that many other factors went into theor@ag that scientists used as they changed
from one view to the other. The change was nat @®ut the traditionally recognized
virtues of the accuracy, simplicity, scope, frumkess or consistency of either theory; there
were also political and religious motivations tonsmler. Kuhn carefully considers the
historical context of the development of particutaientific theories, acknowledging that
scientists are humans who are influenced in tHeiroce of scientific theory by their broader
social environments. However, he incorporatesetk@anatory role of this broader social
influence without thereby portraying scientistsrastional® His view of the social nature of
scientific knowledge enabled Kuhn to account foarghes in scientific theories without

necessarily labeling the discarded ideas and tegas irrelevant or unscientific.

A side effect of Kuhn's theory about the role otisb influences in theory choice is that it
shows how science does not have to grow by stfaigidrd accumulation of knowledge;
i.e. by only building on existing theories. In tt@se of astronomy, the heliocentric view was

developed in part by individuals who did not hokltaghtly to certain religious beliefs as

! Early commentators on Kuhn’s work inaccuratelydréds aspect of his theory as portraying all tigezitoice
in science as a product of ‘mob psychology’ (Lakati®74).



those people who preferred a geocentric view asdguah, Copernicans were open to ideas
that Ptolemaic followers were not. Because ofitfileience of their non-scientific beliefs,
the Copernicans developed a system that did ndd bpon the Ptolemaic system. Instead,

the new system replaced the old entirely.

As this example clearly demonstrates, Kuhn does batieve that scientific knowledge
accumulates in any straightforward fashion whenganeheories must necessarily build on
old ones. Instead, he thinks that scientific kremgle progresses in two distinct phases.
These phases are determined with reference to ef $@ivs and assumptions, agreed upon
both consciously and unconsciously by scientistsiciv Kuhn refers to as a ‘paradigm’.
Work that is contained within the paradigm is adlfeormal science’, while work that
challenges a paradigm is called ‘revolutionary sog. Kuhn believes that science cycles
through alternating phases of normal and revolatipnscience. In the former, the
traditionally recognized criteria of accuracy, seppimplicity, fruitfulness, and consistency
are employed to evaluate research results. Duhiaddtter, these criteria do not suffice for
making decisions between competing paradigms, amich-scientific concerns are often

considered.

Since the publication of Kuhn’s book in 1962, matiempts have been made to see whether
his theory can provide similar insights into theusture of other disciplines. Of particular
interest to me is the application to mathematicBhe growth of mathematics is often

assumed to be strictly cumulative, meaning thagraws only by building on previous



theories’> However, | believe that it is more complex thaatt Do changes of the non-
cumulative type, characterized by replacement ajldrtheory by a new one, as described in
the astronomy debate happen within mathematicsRe kcientists, mathematicians are
human and are capable of being influenced by tbelsworlds they live in, as well as their
views about their discipline. These broader infleess impact how scientists choose between
competing paradigms; since mathematicians havesadoethe same tools, there is potential
for them to make similar choices. Exploring the hegtions of Kuhn's work for
mathematics may give mathematicians a way to ¢lagbie changes that occur in
mathematics, as well as a way to gain insight theoeffects these social influences have on
the discipline as a whole. Once we gain a greateferstanding of how mathematics

develops, we may be able to apply this knowledgeablems in mathematics education.

Although Kuhn rarely mentions mathematicsSinucture when he does, it is most often in
conjunction with various sciences. From Kuhn's dgalone, most would infer that he was
content to consider mathematics to be a type anseil. However, the consensus in the
mathematical community appears to be the oppodlihematics may be related to science,
and is certainly a useful tool for scientists, st mathematicians believe that mathematics
and science are not the same. However, even ifienadticians are right about this, the
guestion remains whether mathematics differs endugim science that Kuhn's theories
regarding science are not applicable to mathemati¢his is a question that must be

answered before proceeding to determine whethdoahdw to apply Kuhn to mathematics.

2 (Crowe, 1992)



The nature of mathematics is not all that must ddressed. Kuhn’s use of terms such as
‘revolution’ and ‘paradigm’ must also be examinadcs these are open to interpretation.
Much of the debate over the applicability of Kulemmtathematics can be reduced to a debate
of definitions about these key concepts. Changesaich definition affect the question
whether and/or how Kuhn’s work can be applied tah@@atics. Once the definitions have
been determined, using Kuhn’s theories to clag$iéy growth of mathematical knowledge
becomes a simpler task. My review of the literatghows that, when these terms are
properly defined, it does indeed appear that tlware be, and have been non-cumulative

changes in mathematics.

1.1 Thomas Kuhn’s Theory of Scientific Revolutions
1.1.1 Paradigms and Normal Science
Clearly, paradigms are a key component of Kuhn'scdption of science and scientific
change. Kuhn defines a paradigm as the colleatiohasic assumptions that are agreed
upon, often unconsciously or implicitly, by the mimems within a discipliné. These
assumptions can include scientific laws, observnatiand theories. Though the scientists are
not necessarily aware of it, they accept the defiralements of the paradigm as true, and as
such do not spend time continuously questioningaghelements. In the example of the
Ptolemaic and Copernican theories, the paradigm®aunh would consist of different
assumptions about moving bodies, the makeup ofespad matter, as well as what would

count as exemplars of these phenomena.

% See Chapter Il in (Kuhn, 1962).



Normal science is the process of using a paradigm aollection of reference points for
discovering knowledge about the world. Kuhn déssithis process as ‘puzzle-solvifig'.
The term refers to how paradigms, while constrgrtlre kinds of questions that are asked,
do not supply all the answers within themselveber€ are still unanswered questions about
the world that scientists can address within thetexd of a paradigm, in order to develop
their understanding of the world. These questamespuzzles within a paradigm. Puzzles
can take many forms, like finding a more preciseasneement of a physical constant, or

testing the extension of an already known théory.

1.1.2 Anomalies, Crises, and Revolutions

Normal science is done entirely within the contekfan existing paradigm. As such, it is
generally assumed by scientists that the resultisedf puzzle solving will be consistent with
the elements that make up that paradigm. Howehat,is not always the case. Kuhn calls
these contrary instances ‘anomali2sAn anomaly can be caused by many different factor
like human or experimental error. These problearslee identified and corrected. In cases
when an explanation cannot be found, a single alyoosn often be explained away as a

special case.

However, if unexplainable anomalies begin to acdabey scientists typically begin to
suspect a fault in the current paradigm. Anomadsg these problems to light, and cause
researchers to have doubts about the assumptiegsatie working with. This uncertainty

regarding their paradigm causes some scientistsbemdon normal science in favor of

* See Chapter IV in (Kuhn, 1962).
® (Kuhn, 1970, p. 15)
® (Kuhn, 1962, p. 52)



looking for solutions or a new paradigm. At thisirg, the discipline is in ‘crisis’. During a

time of crisis, all manner of solutions are develbgo fix the paradigm. Sometimes a
paradigm can be salvaged, while other times itegaced. When the old paradigm is
replaced with a new one in response to crisisjensfic revolution has occurred. Once the

community has become acclimatized to the new pgnadnormal science begins again.

Shifting between paradigms is not an easy procdé3fien, if standard criteria of a good
theory, such as accuracy and scope, cannot betassmmpare the competing paradigms,
then scientists may turn to social factors to helfhe decision making process. This can be
seen in the astronomy example, where religiouspatitical influences played a greater role
than scientific factors in the change from the &ftwic to the Copernican system. It is in
this way that Kuhn’s theory accounts for and exgahe role of sociological influences in

scientific practice.

1.2 Problems Arising Within Kuhn’s Theory
The most important problem with Kuhn’s theory, asntioned above, is that of definitions.
For example, one critic claimed to find the worédradigm’ used in over twenty different
ways in Kuhn's booR. Though that result may be slightly exaggerateee is no doubt that
Kuhn’s definition is rather ambiguous. The propegle of a paradigm and its relationship to
a scientific community are not always clear. Samy with the elements in a paradigm.
Kuhn is not completely clear whether all partshe paradigm must be directly related to the

scientific theories in question. Is it possible &her ideas, such as shared values and ideals

" (Kuhn, 1962, p. 69)
8 (Gillies, 1992, p. 270)



to be part of a paradigm? If so, this would opgnamother way that paradigms might
change. For example, Kuhn spends a lot of timeudsnog how paradigms affect and are
affected by the education of scientidt©lder science textbooks often teach the lawhef t
current paradigm without describing the revolutignscience that caused the paradigm to
begin with. This reinforces the conception of sce as growing through straightforward
accumulation. However, since the publication ofhK's work, more awareness of the
history of science has changed the way some teksbae written. Newer textbooks tend to
place more emphasis on the historical aspectsiehse and, as such, these books portray
science as progressing in a more Kuhnian fashidms is certainly an important change in
the way we look at science, but is it a paradigcnatiange? From Kuhn’'s ambiguous

arguments irBtructureit is impossible to tell.

There are also problems with Kuhn’s definition eévolution’. While it is clear that a
revolution in science means that a great changeobasrred, Kuhn’s writing irStructure
makes it difficult to determine how large a chamgest be to count as a revolution. If the
required changes are too large, revolutions woeldi extremely rare occurrence; perhaps
so rare that it would not be possible to find aguatin their nature. On the other hand, if the
required changes are relatively small, then it ddag¢ argued that revolutions are occurring
all the time, a situation that would rob the corceipits usefulness. In addition, there are
disputes among readers of Kuhn about how muchpoéaous paradigm may remain after a

revolution®

° See Chapter XI in (Kuhn, 1962).
19 For examples of this in the context of mathemases the works of Michael Crowe and Joseph Dauben.



This point is especially important in the case daitimematical revolutions, because of the
tendency of previously proved theories to stillne¢d true, even when a considerable change
has occurred in mathematics. Some mathematicizhglailosophers of mathematics might
take this as support for the claim that mathemagrosvs by straightforward accretion, but it
is my opinion that while mathematics can proceeadhdatively it also has periods of non-

cumulative growth and even revolution.



2. Mathematics
2.1 Conceptions of Mathematics

Mathematics clearly has very close ties to sciehog, as mentioned above, mathematics is
not typically regarded as a science. Commonlydctag#ferences between the two are the
objects under investigation, and the methods usedcience, it is clear that it is the world
around us that is being studied. For example, iphys the study of motion; botany is the
study of plants, etc. In mathematics, it is nofteguso simple. The objects under
investigation in mathematics can be numbers, shapesgical relationships. Though we
can see examples of these things in the world; itieal forms, which mathematicians study,
are mental constructs. Additionally, mathematisssudeductive methods as opposed to the
inductive methods most often used by scientistsathmaticians and philosophers of
mathematics often take these differences to mean mhathematics and science are

fundamentally different, and as such must changkfierent ways.

One attribute often associated with mathematicghest of certainty. The results of
mathematical research are commonly thought to ainewhereas the results of science are
fallible. Once a mathematical theorem is proveanynpeople believe it is true forever.
Clearly that is not the case with scientific thesri which is one of the reasons that
revolutions occur in science. However, | argud tha is not the case with mathematical

theories either.

Due to the use of deductive reasoning in mathesiatiteorems can have deductive

certainty, but this does not mean that theoremsgatan this way are always true. All that
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deductive certainty entails is validity, i.€. the premises of a proof are truben the
conclusion must follow. Since there is no guarartkat any particular premises will always

be held true, the truth of the conclusion of a protheorem is not guaranteed either.

The absence of such guarantees can be shown tlmautte history of mathematics. The
ancient Greeks began by assuming that incommenrsunadégnitudes could not exist, i.e.
they assumed all numbers could be representeda®af two whole numbers. However,
upon the discovery that these magnitudes did etkisttheories that were derived from this
assumption no longer held true. Because they wwrelonger useful to ancient
mathematicians, the false theories were discardétbw theories were developed that
assumed incommensurable magnitudes—and these reswieth did not depend on the
previous, now inaccurate theories. The practicenathematics allows for theories to be
discarded, if the premises are later shown to ksefdn fact it is just this practice that
explains how completely new mathematical theorresistroduced. These new theories are
examples of non-cumulative growth, as they do notdbon the accepted truths of prior
theories. Contrary to popular belief, and as th@udtive nature of certainty in mathematics
makes clear, there are at least a few historicsiantes of non-cumulative changes in
mathematics. Whether these changes constigwtdutionsin math is the question to which

| now turn.

2.1.1 Michael Crowe’s Mathematics
Michael Crowe is a professor emeritus in the histord philosophy of science at University

of Notre Dame, with some training in mathematies 1975 articleTen ‘laws’ concerning
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patterns of change in the history of mathematiwas one of the first works to address
applying Kuhn’s theories to mathematics. The tisthese ten laws states that revolutions
never occur in mathematics. According to Crowe, rtiost important aspect of his final law
is the preposition ‘in’. No revolutions ever ocenmathematics, but they can occur outside
of mathematics, e.g. in mathematical nomenclatwsgmbolism, methodology, and
metamathematics. This implies that Crowe does not consider thestatlements to be part
of mathematics proper. However, Crowe never defaghds stipulation of what counts as
mathematics proper. To exacerbate the problemomigtdoes he not defend his definition
of mathematics proper, but the definition itselneens largely implied. Crowe never gives
an example of something thata part of mathematics. The features that, fom@raare not

a part of mathematics—mathematical nomenclaturenbsiism, methodology, and
metamathematics—are, he acknowledges, susceptibévolutionary chang¥ However, |
argue that some of the features that Crowe desgraes ‘non-mathematics’, and capable of

revolutionary change, should actually be seentagial to mathematics proper.

‘Mathematical nomenclature’ simply refers to thenes we give to mathematical objects,
such as numbers. As times change and languagk® etlee names for mathematical objects
may certainly change as well. This may appear d¢oabtrivial part of mathematical

knowledge, but when we consider the integral rosg tibstract entities play in mathematics,
we can see its importance. For example, numberre of the foundational objects of
mathematics, and they are completely abstract. hdAiit names for numbers it would be

difficult to use them. Since numbers are the djepon which the earliest mathematics was

1 (Crowe, 1975, p. 19)
12 (Crowe, 1975, p. 19)
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based, it is difficult to imagine mathematics pesging far without mathematical
nomenclature to help us use them efficiently. Aikir argument can be made about
symbolism in mathematics. ‘Mathematical symbolisrefers to the use of symbols to
represent mathematical objects. Just like nomamelasymbolism allows us to efficiently
represent abstract concepts within mathematicse @wample of a change in mathematical
symbolism is the change from using words to repregaknown quantities to using letters.
Both mathematical nomenclature and symbolism aneely important tools for the use of
mathematics. They are perhaps so important thatconld argue that mathematics would

not have developed into its modern form withoutthe

Mathematical ‘methodology’ and ‘metamathematic® &ery closely connected concepts.
Methodology refers to the rules and methods thaegoa discipline. In mathematics, this
specifically refers to the types of logical methatist are used to make mathematical
advances. In contrast, metamathematics is the tsgd to denote the study of the structure
and methods of mathematics, as well as beliefsdegathe nature of mathematics. Both of
these aspects of mathematics have changed over tifiee development of logical,
especially deductive, methods used in mathematigsthe ancient Greeks was a
methodological change from previous practice, as Wee introduction of the rigorous
methods of calculus promoted by Cauchy. Metamathematical changes include the
acceptance of incommensurable line segments andltheges in mathematical thinking
caused by Godel's incompleteness theorEms. Mathematical methodology and

metamathematics have given mathematics its veugtsire. Is it possible for them to be

13 (Dauben, 1992, p.73)
14 (Dauben, 1984, p.64)
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completely separate from mathematics proper? nkthiot, as they are clearly intertwined
with mathematics at a very basic level, and changésem serve to shape the progression of

mathematics.

To review, Crowe admits that non-cumulative, andrekevolutionary changes can and have
occurred in the above areas, but he insists tredtetlareas are not a part of mathematics
proper. | think this is an error on his part, dratlieve the above discussion demonstrates
the ways that these areas are integral to mathesnaBecause he gives no defense of his
definitions and examples of elements within math#sa Crowe’s view of mathematics
seems unnecessarily and arbitrarily restrictivend Aas | argue below, Crowe’s picture of
mathematics is inconsistent with the way most nmadieians and philosophers of

mathematics see the discipline.

2.1.2 Other views of mathematics

Michael Crowe is not the only one to weigh in oa tjuestion of revolutions in mathematics.
Many other philosophers and mathematicians havéenriresponses to his 1975 article.
Each respondent has had a slightly different viédwnathematics, which correspondingly

changes their view of the question of revolutiansiathematics.

Caroline Dunmore, a philosopher of mathematics vatime training in mathematics,
believes that mathematics consists of two partghe first part consists of mathematical

objects, like notation, terminology, definitionsidatheorems. The second piece is the views

15 (Dunmore, 1992, p. 211)
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and methods that constitute metamathematics. Tiwes@ieces are distinct, according to

Dunmore, but, she argues, considered togethermtbeymanathematics.

In contrast to this position is the mathematicsppsed by Joseph Dauben, a professor who
studies the history of mathematics at the City @rsity of New York. His view of

mathematics combines Dunmore’s objects and metamettics into an inseparable utfit.

It is important to consider these different idedsvbat mathematics is, because these ideas
can affect the outcome of applying Kuhn’s theoryntathematics. The views that each
philosopher has regarding mathematics influence tggoroaches to the task of applying
Kuhn. As we will see in later sections, each ofsth definitions of mathematics will

correspond to different definitions of paradigms aevolutions.

2.2 Mathematics vs. Views of Mathematics
The main question driving all of the different ceptions of mathematics reviewed above is
whether to include meta-level views of mathematiosl other abstract entities as part of
mathematics proper. The various answers to thestipn impact the arguments about
revolutions in mathematics because typically mot@ngples of revolutions in mathematics
can be found when these pieces are included. i@y be because it is easier for
mathematicians to reinterpret existing theorieseims of their new views of mathematics

than to discard the older theories entirely.

16 (Dauben, 1984)
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3. Paradigms in Mathematics
Just as paradigms are an important part of Kuhmjeraents about the structure of science,
So too are they important in the analysis of matitezs. An analysis of what would count as
a paradigm in mathematics would not only help indarstanding the mathematical
equivalent of normal science, but would also helpdetermining what may count as

revolutionary mathematics.

3.1 Formalizing Paradigms
In his 1999 paper©On Classification of Scientific Revolutiorisadislav Kvasz, a Slovakian
philosopher and mathematician, tries to deterntieentature of scientific revolutions, so that
any possible implications for mathematics mighto@e easily identified.To do this, Kvasz
reformulates Kuhn’s rather ambiguous concept ofaemgigm into a much more rigorous

definition.

Kvasz starts with something he refers to as anstepiic framework” of a theory, a concept
roughly analogous to Kuhn’s paradigiKvasz divides the epistemic framework of a theory
into three parts: the formal, the conceptual, drelavidential® They serve to provide for
those working within the framework the same kindrdbrmation that a paradigm provides
to scientists. Each piece of the framework bridifferent information. The formal frame is
the formal structure of the theory. It encompasses theory’s symbolic language and
descriptions of the theory in that language. Tbeceptual frame consists of the semantic

structure, explanation, and interpretation of theoty. The last piece is the evidential

7 (Kvasz, 1999, p. 208)
18 (Kvasz, 1999, p. 211-212)
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frame, which contains the perceptive structurehef theory. When taken together these

pieces form Kvasz’s equivalent of a paradigm.

To illustrate each of these aspects of the framkwvasz uses the scientific example of the
epistemic framework of Newtonian mechanics. Thenfd frame of Newtonian mechanics
is the symbols, such a&sfor mass, and also relationships between the skanlikke F = m -

a, and the description of motion as second-ordeanyos, which enhances the meaning of
the symbols. The conceptual frame includes theldmrental quantities, e.g. mass and
volume, derived quantities, as well as the legitan@xplanations and questions allowed in
Newtonian mechanics. For example, in Newtonianhaeics we can explain freefall with
gravitational force, but it is inappropriate to asky gravity works, because Newtonian
mechanics cannot explain that. The evidential &&ihnNewtonian mechanics is what allows
us to perceive mechanics on earth and in spaceuasied theory, in contrast to Aristotelian
mechanics, for example, which treats the two assgmarately. This Newtonian example
helps us to more clearly see the nature of anapistframework as it applies in science.
Kvasz concludes that, conceived of as epistemiodmorks, mathematics has had a number

of paradigms and that these have shifted over fime.

Euclidean geometry can provide us with a mathemlagicample of an epistemic framework,
which supports Kvasz’ claim that the concept ofepistemic framework can be applied to
mathematics well as science. The formal frame aslenup of the symbols of Euclidean
geometry, e.gA, B, «, || (here the pointd andB, pi, and parallel lines), and the description

of Euclidean geometry—a constructive geometry whhee parallel postulate holds. The

19 (Kvasz, 1999, Chap. 2)
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conceptual frame would contain the fundamentalaibjesuch as lines, planes, and angles, as
well as proven theorems and unproven questiondriftesl by the parallel postulate).
Finally, the modern evidential frame of Euclideaometry is the perception of Euclidean

geometry as one of many different types of geometri

As can be seen from the above analysis, Kvasz'soapp to mathematical paradigms is
based primarily on determining the exact naturehef elements within a paradigm. This
results in a very formal, yet universal, notionagbaradigm and all of its parts, which can be

applied to both mathematics and science.

3.20ther Interpretations of Mathematical Paradigms
While Kvasz has certainly presented one of the nforenal interpretations of Kuhn’'s
concept of a paradigm, and discussed how it malydappmathematics, his interpretation is
not the only one available. In this section | exsmnthe work of Joseph Dauben and Leo

Corry who present alternative views regarding pgrad in mathematics.

3.2.1 Cultural Paradigms

In his work on mathematical paradigms, Joseph Dautxamines the impact cultural
differences have on the work of mathematicianscifipally in the cultures of ancient

Greece and China. He studies the differences enrdlactions of these cultures to their
separate discoveries of incommensurable magnitudése different paradigms in which

ancient Greek and Chinese mathematicians workededathem to have very different

responses to this discovery. For the Greeks, intensurable magnitudes caused problems
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within their paradigm. However, the Chinese pagadiwas already equipped to deal with

these magnitudes, so it was not adversely affected.

The ancient Greek paradigm that Dauben refers tthasmathematical practices of the
Pythagoreans. The Pythagoreans had an intereséiwgof the mathematical world. For the
Pythagoreans, ‘number was the measure of all thimgsaning that everything could be
assigned some ratio of whole numb&r<Essentially, the Pythagoreans understood thedworl
as being wholly rational. Unfortunately, thesewse—which Dauben considers to be
something analogous to a ‘Pythagorean paradigm’-sedhurouble for the Pythagoreans
when it came to computing certain geometric ergtiti€or example, consider a right triangle
with two legs of length 1. Using the Pythagore&edrem, the remaining side of the triangle
can be computed to B& . However,/2 is irrational and cannot be expressed as a Isiio,
any Pythagoreans attempting to compute this woeldubpleasantly surprised; unable to
comprehend such a number. Thus, it is easy tavhgehe discovery of irrational numbers
caused such uproar among the Pythagoreans. Tkeemoe of irrational numbers went
against the Pythagorean paradigm, inciting greahges in Greek mathematics. As we shall
see, however, the same situation produced a diffevatcome in the context of Chinese

mathematics.

For his knowledge of Chinese mathematics, Daubdergeto the ancient Chinese
mathematics textJiu Zhang Suan Sh(Nine Chapters on the Mathematical Art). Nine
Chaptersis one of the oldest Chinese mathematical textss often considered to be the

Chinese equivalent of EuclidElementsas it was a fundamental text in mathematics fer th

2 (Dauben, 1995, p. 127)
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ancient Chinese. Chapter four Mfne ChaptersShao Guangdiscusses the extraction of
square roots. This is described using the geomptdcess of finding the length of the side
of a square that has a given area. Chinese maticeana developed an algorithm to
compute these roots, and if the given area wasrfeqgbesquare, such as 16 or 36, the
algorithm terminated in a finite number of stepdowever, if the area was not a perfect
square, then the steps could continue indefinitétythese cases, if the Chinese did not find a
solution within a certain number of steps, theyseglaworking, saying that the number was
incomputable. Unlike Greek mathematicians howether Chinese were not troubled by this
result, likely, Dauben argues, because of the idiffees in these cultural paradigms. Nothing
in the Chinese paradigm prevented Chinese mathearatrom accepting irrational numbers
as they were, whereas the Pythagorean paradigotedjthem outright. Though the Chinese
were interested in proofs, they did not use th@mstic methods that the Greeks were so
well known for. Instead, ancient Chinese mathersatias primarily algorithmic in nature.
In addition, the Chinese did not hold to the Pytragn ideal of the world as rational in
measure. Thus there was no contradiction to tietstre of Chinese mathematics, or to their
mathematical world-view. It is for these reasohattChinese mathematicians, while
recognizing that irrational numbers were differrotn rational ones, did not have need for a

change in their paradigm at this discovery.

Though Dauben’s look at mathematical paradigm®isas thorough as Kvasz’s, it definitely
shows how cultural influences can be interpreted iparadigmatic fashion. This is an

especially interesting viewpoint when consideringiant mathematics, as the elements in an
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ancient paradigm, such as theorems, constantsaetcnot as likely to be as cut and dry as

they are in the present.

3.2.2 Structural Paradigms

Leo Corry, a philosopher of science at Tel-Aviv,shalso analyzed Kuhn's notion of

paradigm in relation to mathematics. He thinkg,tl@ough Kuhn’s idea of a paradigm is
rather ambiguous, we can assert some fundameraéties that all paradigms must have*.
First, a paradigm must be something that diffecsnfran individual discovery or theory.

Secondly, a paradigm must be able to influencedinelopment of theories. With this

classification of a paradigm in mind, Corry turlmsan example regarding the structure of

modern algebr&*

Before the rise of modern, structural algebra, lagewvas considered to be the study of
algebraic forms and polynomial equations, espscidlé problem of equation solvability.

However, the publication of the earliest modernebtg textbooks brought forth a new
emphasis on algebra as the study of algebraictstre??> This emphasis is what Corry

wishes to consider a paradigm. Though there athemrems explicitly stating that algebra
is the study of structures, the changes to thie akthe discipline clearly shaped our modern
theories of algebra. In addition, Corry notes tbae unique feature of these types of
mathematical paradigms is that there is no logieason why a mathematician cannot work

within both the nineteenth-century algebra paradigmd the modern algebra paradigm

2L (Corry, 1995, p. 185)
2 For example, Corry citddoderne Algebrg1930] by B. L. van der Waerden as the first @xtalgebraic
structures. (Corry, 1995, p. 186)
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simultaneously. This is an interesting point, hseathere is much discussion about whether

scientists are capable of such work during a ghscientific paradigm.

All three of these different pictures of mathemaitiparadigms, from Kvasz to Corry, place
emphasis on different aspects of Kuhn's originalaagpt. Kvasz emphasizes a paradigm as a
network of interconnected theories and conceptlenbauben focuses on the cultural aspects
that may be included in a paradigm. Finally, Caroysiders as aspects of a paradigm those
underlying assumptions mathematicians have aboat dtructure of their particular

discipline.
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4. Revolutions in Mathematics
The word ‘revolution’, in the sense that Thomas Kuises it, means a great change within a
discipline—a specific type of upheaval. Howevex | &ave noted, Kuhn is ambiguous as to
how great a change must be in order to constituevalution and how much of a previous
incarnation of a discipline should remain post-tation. These issues have been the cause
of a great deal of conflict in the discussion ofalgtions in mathematics. In this section |
discuss the definitions of revolution that appeastroften in the literature on this topic, as
well as the way that the various definitions of heshatics and paradigms affect these

discussions about revolutions.

4.1 Strict Revolutions
In this section | will discuss a certain type ofakitions that | call ‘strict revolutions’. Strict
revolutions are characterized by the fact thateéhesolutions completely discard previous

ideas and/or theories associated with them.

4.1.1 Michael Crowe

Recall that Michael Crowe claims as his tenth ldvattthere are no revolutions in
mathematics. | have argued that, due to Crowewwiabout the nature of mathematics, it is
difficult to determine how useful any of his cormilons are. As discussed above, Michael
Crowe’s views of mathematics are unclear, becaas#ols not provide specific examples of

the elements within mathematics proper.
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However, Crowe does provide a clear explanationwbfat he means by revolution.
Unfortunately, it is an overly restrictive defirmmti. It requires that “some previously existing
entity must be overthrown and irrevocably discatd@d The conditions of this type of
revolution are difficult to satisfy because theg &0 severe. Given his limited view of
mathematics, it is unsurprising that Crowe concudleat there are no revolutions in
mathematics.  Further, if we remove nomenclatungnb®lism, methodology, and
metamathematics from within mathematics—as Crowmulsttes that we should— it then
seems that there is little left in mathematics, Isgattered numerical concepts and
computations. This formulation of mathematics doesallow for an in-depth study of the
development of mathematics. As it is this develeptal type of study that typically
motivates the application of Kuhn's methods to reathtics in the first place, it is easy to
see where many authors have found fault with thma@'s work. While being one of the
first to address the mathematical revolution qoestin terms of Kuhn, Crowe is too
restrictive in his definition of revolution to ademtely capture the aspects of mathematics
that make such questions interesting to philos@blyiecninded mathematicians and

historians and philosophers of mathematics.

4.1.2 Caroline Dunmore

Like Crowe, Caroline Dunmore uses strict revolusiam her analysis. However, because of
her conception of mathematics, her theory offershmmore interesting results than Crowe'’s.
As noted above, Dunmore thinks of mathematics 0 fparts; an object part, and a

metamathematical part. Because she includes thenmathematical aspects of mathematics,

her analysis yields actual revolutions. These &aievel’ revolutions, as Dunmore calls

% (Crowe, 1975, p. 19)
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them, represent strict revolutionary changes iramethematics. However, Dunmore asserts
that no revolutions occur on the object level otimeanatics. The example of the shift from

Euclidean to non-Euclidian geometries can be imétegl as a meta-level revolutith.

According to Dunmore, when non-Euclidean geometmee developed there was a
revolution in the ways geometry was conceived; medadhematically speaking, there was a
change from thinking of the single Euclidean geaynas the only possible geometry to the
notion that Euclidean geometry was consistent widny other non-Euclidean geometries.
Because the first idea is incompatible with théelabne, it was discarded, causing a strict
revolution. On the other hand, Euclidean geomstistill used; so on the object level there
was no revolution. | argue, however, that them raumerous other ways to interpret the

geometry example that reveal revolutions evenenathject level.

4.2 Conceptual Revolutions
This section concerns what | will call ‘conceptuabolutions’. Unlike strict revolutions,
conceptual revolutions leave previous concepts lacegy albeit often in a diminished

capacity.

4.2.1 Joseph Dauben

Joseph Dauben, in a 1984 response to Crowe, @f@ther definition of revolution. He felt
that Crowe’s definition was too restrictive to bseful to philosophers and historians of
mathematics. Dauben’s work is focused on ‘cona@ptevolutions’, a view of revolutions

that allows for the possibility of revolutionaryantges in views regarding mathematics, and

24 (Dunmore, 1992, p.212)
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changes within metamathematics. These revolutionsot require the complete elimination
of previous entities the way strict revolutions déor example, the creation of non-Euclidean
geometry caused a change in mathematicians’ caonospbf mathematics. Instead of
holding to the previous belief that Euclidean getsgnevas the only possible geometry, they
changed their views, allowing non-Euclidean geometrto become legitimate in

mathematics. This is a good example of the typeswblution Dauben proposes, because
non-Euclidean geometries did not eliminate Eucldegeometry. Instead, Euclidean
geometry became one of many different geometridsis is the essence of Dauben’s
revolutions: Nothing is eliminated and the formesncepts are retained, just with a

significantly lower stature than they had previgusl

4.2.2 Yuxin Zheng

Yuxin Zheng, a teacher of mathematics and profestphilosophy at Nanjing University,
holds a view of mathematical revolutions that isydorid of the views of Dunmore and
Dauben. Zheng believes that best explanations hef ¢oncepts ‘mathematics’ and
‘revolution’ will come from careful observation ttie ordinary usages of the words.lt is
his opinion that Caroline Dunmore presents an gpate view of mathematics, and Joseph
Dauben’s view of revolutions is accurate. Using tixample of Euclidean and non-
Euclidean geometry, we can note that Zheng holdsvibw that there were revolutions on
both the meta- and object-levels of mathematiceweVer, instead of strict revolutions, as
Dunmore would define them, these revolutions wemnceptual ones. Both the
metamathematics and the objects of Euclidean gegpmadre left behind and incorporated

into a new comprehensive theory of multiple georestr

% (Zheng, 1992, p. 171)
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4.3 Multiple Revolutions
This section discusses those theories that incladiiple types of revolutions. Some of
these notions of revolutions are the same as ths discussed above, but new definitions are
also introduced. The primary proponent of thisetygf analysis is Ladislav Kvasz, who
presents three types of scientific revolutionsated by building off of his concept of an
epistemic framework, introduced earlier. Kvasggnt for revolution is ‘epistemic ruptures’

because they are revolutions that come about \aag#s in the epistemic framework.

4.3.1 Epistemic Ruptures

Kvasz’s identifies four types of rupture, threewdfich cause revolutionary changes. They
are idealizations, re-presentations, objectivisetjaand re-formulatiorfS. Each of these is
caused by different levels of rupturing in the feamork. | will treat each of these types of

epistemic ruptures in turn, along with mathematsrad scientific examples of each type.

The first type of rupture, idealization, is the mdgastic type of revolutionary change. Itis a
change in the way important concepts are idealinea theory. For example, in science,
Kvasz cites the Galilean rupture—the change fromstéielian to Newtonian mechanics—as
an idealization, because of the fundamental chamgdsow these two theories idealize
motion. In mathematics, the Pythagorean ruptime name which Kvasz uses to denote the
change from computational Egyptian and Babyloniaath@matics to deductive Greek

mathematics, is an idealization because of the gdwamn these theories’ idealization of

% (Kvasz, 1999, p. 220-222)
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shapes. These types of ruptures cause a revolh@bms a strict revolution, in that a former

doctrine is replaced by a new one.

The second type of rupture is re-presentation.s&maptures create new areas in the field by
re-creating the fundamental objects. There are ymexamples of these ruptures in
mathematics. They include the Cartesian ruptut@chvrepresents the birth of analytic
geometry and a recreating of curves, as well asLl#ibnizean rupture—the birth of

differential and integral calculus.

Objectivisations are the third kind of rupture, ahd last of the revolutionary kinds. These
ruptures are characterized by a change in the agital status of the objects they affect.
One example of this is the Lobachevskyean ruptwihgch is responsible for non-Euclidean
geometry. This rupture did not change any of theclmanics of Euclidean geometry;
however it did change the ontological status ofngetry. Similarly with the Einsteinian
rupture in physics. Both the objectivisation arebresentation types of epistemic ruptures

fall into the category of conceptual revolutionkelthe idealizations discussed above.

The last type of rupture is re-formulations. Tkiisd of rupture makes the smallest changes,
which are not revolutions but rather direct extensi of a theory. An example of a
mathematical re-formulation is the switch from gsiRoman numerals to using Arabic
notation. Both kinds of numerals give the samailtesn calculations; however Arabic

numerals are clearly more convenient to use.
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All of these classifications of mathematical rextaas provide solutions to the ambiguities
that are present in Kuhn’s work. However, | witgae in the next section that Kvasz's
solution of defining multiple types of scientificevolutions that may be applied to
mathematics is likely to provide philosophers andthematicians with the most accurate

view of the development of mathematics.
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5. Conclusion
From my review of the literature on the topic ofpng the theories of Kuhn to the
development of mathematics, | have established khdin's theories can be applied to
mathematics, in some very general sense, at lddsive presented numerous examples in
support of my claim. However, having establishieat tuhn’s theories can be applied to
mathematics, there are specific factors that imibeethe details of this application, and it is

to these more specific factors that | now turn.

5.1 Factors Influencing the Application of Kuhn’s feory
The first, and perhaps most important of theseofacts the definition of mathematics that
one subscribes to. Without a clear image of whathematics is, Kuhn’s theory cannot be
applied in a way that is coherent. Second, isifisee of scale of paradigms and, by
extension, revolutions. In cases where paradigmso® small in scale—say at the scale of
individual theories—revolutions and paradigmatiamges occur too often for mathematical
revolutions to be a useful concept to analyze. dyaosite effect can happen if paradigms
are conceived of on an overly large scale. Indhesses, shifts rarely occur at all, which
prohibits mathematicians from seeing any kind adfulspattern in the changes. With these
important factors in mind, | next make a case fowlbest to conceive of the details of

applying Kuhn’s theories to mathematics.

5.2 The Ideal Application of Kuhn to Mathematics
It is my opinion that, in response to the firstttamoted above, the most useful way to define

mathematics is modeled by Joseph Dauben, namalwidiv that mathematics consists not
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only of theories and concepts, but also of metaemtttics and mathematicians’ notions of
how mathematics behaves. | believe that the nmbstasting effect of using Kuhn’s theory

in conjunction with mathematics is the insightsain give into these additional aspects of
various mathematical disciplines. For exampleéhaoften mentioned cases of the discovery
of non-Euclidean geometries, | find the meta-mathigal conceptual leap from the mindset
of a singular geometry (Euclidean) to thinking @zt of multiple geometries (non-

Euclidean) to be the most important aspect ofghiff. Therefore, to me, metamathematical

concepts are an essential part of any definitiomathematics.

With respect to defining paradigms, | agree witlo IGorry’s idea that a paradigm cannot be
an individual theory or result, and that it mustdmesuch a scale that it is able to influence
the development of new theories. However, | belivat there is an important historical
aspect to what paradigms entail in mathematicsJobeph Dauben’s work, he emphasized
the cultural paradigms of ancient mathematicialrs moving to more recent time periods,
however, | believe that cultural differences haeedme less salient, due to the global nature
of mathematics as a discipline. With the adventnaidern communication systems,
mathematicians are able to communicate with internal colleagues in a way that was not
possible previously. This has virtually eliminatibb@ more parochial nature of mathematical
work that existed before modern times. It is foistreasons that | believe mathematical
paradigms are most accurately viewed as being depe¢mon historical context. In the case
of primitive mathematics, paradigms may not evenmabeapplicable concept. Moving to
ancient mathematics, cultural influences have atgréluence. And finally, in more modern

times, paradigms are based more on structure @odeims, and less on cultural factors.
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Finally, in considering the topic of revolutionsthink that, because it is evident that many
different types of revolutions are possible in neatlatics, the strategy of using multiple
conceptions of revolutions (following the exampfeLadislav Kvasz) will enable the most
accurate and detailed representation of the effénas revolutions have on mathematics.
Using such a classification of revolution in thiadk of project will enable philosophers and
mathematicians to examine which types of revolutiappen most frequently—because they
all occur—and determine the reasons for such aghenon. This kind of detailed approach

will be most useful in creating an accurate desiompof mathematical growth.

To summarize, | have argued that, when attemporapply Kuhn to mathematics, three key
things should be included in the analysis. Fasty conception of mathematics that is used
should involve a metamathematical component. Skcidnshould be kept in mind that
paradigms can be conceived as dependent on hatopatexts. Lastly, multiple types of
revolutions should be considered. Utilizing threnmiework provides the most fruitful
application of Kuhn to mathematics. It gives botatnematicians and philosophers the most
detailed description of the growth of mathematieiich in turn will allow this analysis to be

successfully applied to other fields.
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