
 
AN ABSTRACT OF THE THESIS OF 

 
Samantha A. Smee for the degree of Honors Baccalaureate of Science in Mathematics 
presented on May 26, 2010.  Title: Applying Kuhn’s Theory to the Development of 
Mathematics. 
 
 
 
Abstract Approved:   
   _________________________________________________________ 
                         Sharyn Clough 
 
 
 
Presented in this paper is an analysis of the body of scholarly work that attempts to apply 
Thomas Kuhn’s theory of scientific revolutions to mathematics.  These applications vary on 
several levels, from the authors’ interpretation of Kuhn’s original work to the definitions 
used for terms such as paradigm, revolution, and mathematics.  The number of these works 
combined with their variety makes it difficult to grasp the whole of the literature.  This paper 
is an attempt to consolidate and streamline this information in order to facilitate further 
research on the subject.   This analysis makes it clear that Kuhn’s theory can be successfully 
applied to mathematics in a way that provides an accurate view of the growth of 
mathematical knowledge. 
 
 
Key Words: Thomas Kuhn, philosophy of science, mathematics, paradigms, revolutions  
 
Corresponding E-mail Address: leibnitzfreak@gmail.com  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by Samantha A. Smee 
May 26, 2010 

All Rights Reserved 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Applying Kuhn’s Theories to the Development of Mathematics 
 

by 

Samantha A. Smee 

 

 

A PROJECT 

 

submitted to 

 

Oregon State University 
University Honors College 

 

 

in partial fulfillment 
of the requirements 

for the degree of 
 

Honors Baccalaureate of Science in Mathematics (Honors Associate) 

 

Presented May 26, 2010 

Commencement June 2010 

 

 
 
 
 
 



Honors Baccalaureate of Science in Mathematics project of Samantha A. Smee presented 
May 26, 2010. 
 
 
APPROVED: 
 
 
 
 
Mentor, representing Philosophy 
 
 
 
 
Committee Member, representing Mathematics 
 
 
 
 
Committee Member, representing History 
 
 
 
 
Chair, Department of Mathematics 
 
 
 
 
Chair, Department of Philosophy 
 
 
 
 
Dean, University Honors College 
 
 
 
I understand that my project will become part of the permanent collection of Oregon State 
University, University Honors College.  My signature below authorizes the release of my 
project to any reader upon request. 
 
 
 
 

Samantha A. Smee, Author 



TABLE OF CONTENTS 

                  Page # 
INTRODUCTION                                                                                                                     1 

Thomas Kuhn’s Theory of Scientific Revolutions…………………………………..4 

Paradigms and Normal Science…………………………………………….4 

Anomalies, Crises, and Revolutions…………….…………………………..5 

Problems Arising Within Kuhn’s Theory………………………….………………..5 

MATHEMATICS                                                                                                                      9 

 Conceptions of Mathematics………………………..………………………………9 

  Michael Crowe’s Mathematics…………………………………………….10 

  Other Views of Mathematics……………………………………………….13 

 Mathematics vs. Views of Mathematics……….………………………………….14 

PARADIGMS IN MATHEMATICS                                                                                      15                                                                                                                     

 Formalizing Paradigms……………………………………………………………15 

 Other Interpretations of Mathematical Paradigms………………………………...17 

  Cultural Paradigms………………………………………………………...17 

  Structural Paradigms………………………………………………………20 

REVOLUTIONS IN MATHEMATICS                                                                                  22 

 Strict Revolutions………………………………………………………………….22 

Michael Crowe……………………………………………………………..22 

Caroline Dunmore……………………………………………...………….23 

 Conceptual Revolutions……………………………………………………………24 

Joseph Dauben……………………………………………………………..24 

Yuxin Zheng………………………………………………………………...25 

 Multiple Revolutions……………………………………………………………….26 

  Epistemic Ruptures…………………………………………………………26 

CONCLUSION                                                                                                                        29 

 Factors Influencing the Application of Kuhn’s Theory…………………………....29 

 The Ideal Application of Kuhn to Mathematics…………………………… ……...29 

BIBLIOGRAPHY                                                                                                                    32 

 



1 
 

1. Introduction 

Thomas Kuhn published The Structure of Scientific Revolutions in 1962.  The book was in 

part an effort to determine systematically the nature of sociological influences on the work of 

scientists.  To accomplish this, Kuhn analyzes the development of science from a historical 

perspective, focusing on the change from a geocentric view of the solar system (in this case 

the Ptolemaic system) to a heliocentric one (also known as the Copernican system).  He 

determines that the methods used to create both theories were essentially scientific; however 

he argues that many other factors went into the reasoning that scientists used as they changed 

from one view to the other.  The change was not just about the traditionally recognized 

virtues of the accuracy, simplicity, scope, fruitfulness or consistency of either theory; there 

were also political and religious motivations to consider.  Kuhn carefully considers the 

historical context of the development of particular scientific theories, acknowledging that 

scientists are humans who are influenced in their choice of scientific theory by their broader 

social environments.  However, he incorporates the explanatory role of this broader social 

influence without thereby portraying scientists as irrational.1  His view of the social nature of 

scientific knowledge enabled Kuhn to account for changes in scientific theories without 

necessarily labeling the discarded ideas and theories as irrelevant or unscientific. 

 

A side effect of Kuhn’s theory about the role of social influences in theory choice is that it 

shows how science does not have to grow by straightforward accumulation of knowledge; 

i.e. by only building on existing theories.  In the case of astronomy, the heliocentric view was 

developed in part by individuals who did not hold as tightly to certain religious beliefs as 

                                                      
1 Early commentators on Kuhn’s work inaccurately read this aspect of his theory as portraying all theory-choice 
in science as a product of ‘mob psychology’ (Lakatos, 1974). 
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those people who preferred a geocentric view and, as such, Copernicans were open to ideas 

that Ptolemaic followers were not.  Because of the influence of their non-scientific beliefs, 

the Copernicans developed a system that did not build upon the Ptolemaic system.  Instead, 

the new system replaced the old entirely.   

 

As this example clearly demonstrates, Kuhn does not believe that scientific knowledge 

accumulates in any straightforward fashion where newer theories must necessarily build on 

old ones.  Instead, he thinks that scientific knowledge progresses in two distinct phases.  

These phases are determined with reference to a set of laws and assumptions, agreed upon 

both consciously and unconsciously by scientists, which Kuhn refers to as a ‘paradigm’.  

Work that is contained within the paradigm is called ‘normal science’, while work that 

challenges a paradigm is called ‘revolutionary science’.  Kuhn believes that science cycles 

through alternating phases of normal and revolutionary science. In the former, the 

traditionally recognized criteria of accuracy, scope, simplicity, fruitfulness, and consistency 

are employed to evaluate research results. During the latter, these criteria do not suffice for 

making decisions between competing paradigms, and extra-scientific concerns are often 

considered. 

 

Since the publication of Kuhn’s book in 1962, many attempts have been made to see whether 

his theory can provide similar insights into the structure of other disciplines.  Of particular 

interest to me is the application to mathematics.  The growth of mathematics is often 

assumed to be strictly cumulative, meaning that it grows only by building on previous 
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theories.2  However, I believe that it is more complex than that.  Do changes of the non-

cumulative type, characterized by replacement of an old theory by a new one, as described in 

the astronomy debate happen within mathematics?  Like scientists, mathematicians are 

human and are capable of being influenced by the social worlds they live in, as well as their 

views about their discipline.  These broader influences impact how scientists choose between 

competing paradigms; since mathematicians have access to the same tools, there is potential 

for them to make similar choices. Exploring the implications of Kuhn’s work for 

mathematics may give mathematicians a way to classify the changes that occur in 

mathematics, as well as a way to gain insight into the effects these social influences have on 

the discipline as a whole.  Once we gain a greater understanding of how mathematics 

develops, we may be able to apply this knowledge to problems in mathematics education. 

 

 Although Kuhn rarely mentions mathematics in Structure, when he does, it is most often in 

conjunction with various sciences.  From Kuhn’s words alone, most would infer that he was 

content to consider mathematics to be a type of science.  However, the consensus in the 

mathematical community appears to be the opposite.  Mathematics may be related to science, 

and is certainly a useful tool for scientists, but most mathematicians believe that mathematics 

and science are not the same.  However, even if mathematicians are right about this, the 

question remains whether mathematics differs enough from science that Kuhn’s theories 

regarding science are not applicable to mathematics.  This is a question that must be 

answered before proceeding to determine whether and/or how to apply Kuhn to mathematics. 

 

                                                      
2 (Crowe, 1992) 
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The nature of mathematics is not all that must be addressed.  Kuhn’s use of terms such as 

‘revolution’ and ‘paradigm’ must also be examined since these are open to interpretation.  

Much of the debate over the applicability of Kuhn to mathematics can be reduced to a debate 

of definitions about these key concepts.  Changes in each definition affect the question 

whether and/or how Kuhn’s work can be applied to mathematics.  Once the definitions have 

been determined, using Kuhn’s theories to classify the growth of mathematical knowledge 

becomes a simpler task.  My review of the literature shows that, when these terms are 

properly defined, it does indeed appear that there can be, and have been non-cumulative 

changes in mathematics. 

 

1.1 Thomas Kuhn’s Theory of Scientific Revolutions 

1.1.1 Paradigms and Normal Science 

Clearly, paradigms are a key component of Kuhn’s description of science and scientific 

change.  Kuhn defines a paradigm as the collection of basic assumptions that are agreed 

upon, often unconsciously or implicitly, by the members within a discipline.3  These 

assumptions can include scientific laws, observations, and theories.  Though the scientists are 

not necessarily aware of it, they accept the defining elements of the paradigm as true, and as 

such do not spend time continuously questioning these elements.  In the example of the 

Ptolemaic and Copernican theories, the paradigms of each would consist of different 

assumptions about moving bodies, the makeup of space and matter, as well as what would 

count as exemplars of these phenomena.   

 

                                                      
3 See Chapter II in (Kuhn, 1962).  
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Normal science is the process of using a paradigm as a collection of reference points for 

discovering knowledge about the world.  Kuhn describes this process as ‘puzzle-solving’.4  

The term refers to how paradigms, while constraining the kinds of questions that are asked, 

do not supply all the answers within themselves.  There are still unanswered questions about 

the world that scientists can address within the context of a paradigm, in order to develop 

their understanding of the world.  These questions are puzzles within a paradigm.  Puzzles 

can take many forms, like finding a more precise measurement of a physical constant, or 

testing the extension of an already known theory.5   

 

1.1.2 Anomalies, Crises, and Revolutions 

Normal science is done entirely within the context of an existing paradigm.  As such, it is 

generally assumed by scientists that the results of their puzzle solving will be consistent with 

the elements that make up that paradigm.  However, that is not always the case.  Kuhn calls 

these contrary instances ‘anomalies’.6  An anomaly can be caused by many different factors, 

like human or experimental error.  These problems can be identified and corrected.  In cases 

when an explanation cannot be found, a single anomaly can often be explained away as a 

special case.  

 

However, if unexplainable anomalies begin to accumulate, scientists typically begin to 

suspect a fault in the current paradigm.  Anomalies bring these problems to light, and cause 

researchers to have doubts about the assumptions they are working with.  This uncertainty 

regarding their paradigm causes some scientists to abandon normal science in favor of 

                                                      
4 See Chapter IV in (Kuhn, 1962). 
5 (Kuhn, 1970, p. 15) 
6 (Kuhn, 1962, p. 52) 
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looking for solutions or a new paradigm.  At this point, the discipline is in ‘crisis’.7  During a 

time of crisis, all manner of solutions are developed to fix the paradigm.  Sometimes a 

paradigm can be salvaged, while other times it is replaced.  When the old paradigm is 

replaced with a new one in response to crisis, a scientific revolution has occurred.  Once the 

community has become acclimatized to the new paradigm, normal science begins again. 

 

Shifting between paradigms is not an easy process.  Often, if standard criteria of a good 

theory, such as accuracy and scope, cannot be used to compare the competing paradigms, 

then scientists may turn to social factors to help in the decision making process.  This can be 

seen in the astronomy example, where religious and political influences played a greater role 

than scientific factors in the change from the Ptolemaic to the Copernican system.   It is in 

this way that Kuhn’s theory accounts for and explains the role of sociological influences in 

scientific practice. 

 

1.2 Problems Arising Within Kuhn’s Theory 

The most important problem with Kuhn’s theory, as mentioned above, is that of definitions.  

For example, one critic claimed to find the word ‘paradigm’ used in over twenty different 

ways in Kuhn’s book.8  Though that result may be slightly exaggerated, there is no doubt that 

Kuhn’s definition is rather ambiguous.  The proper scale of a paradigm and its relationship to 

a scientific community are not always clear.  Similarly with the elements in a paradigm.  

Kuhn is not completely clear whether all parts of the paradigm must be directly related to the 

scientific theories in question. Is it possible for other ideas, such as shared values and ideals 

                                                      
7 (Kuhn, 1962, p. 69) 
8 (Gillies, 1992, p. 270) 
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to be part of a paradigm?  If so, this would open up another way that paradigms might 

change. For example, Kuhn spends a lot of time discussing how paradigms affect and are 

affected by the education of scientists.9  Older science textbooks often teach the laws of the 

current paradigm without describing the revolutionary science that caused the paradigm to 

begin with.  This reinforces the conception of science as growing through straightforward 

accumulation.  However, since the publication of Kuhn’s work, more awareness of the 

history of science has changed the way some textbooks are written.  Newer textbooks tend to 

place more emphasis on the historical aspects of science and, as such, these books portray 

science as progressing in a more Kuhnian fashion.  This is certainly an important change in 

the way we look at science, but is it a paradigmatic change?  From Kuhn’s ambiguous 

arguments in Structure it is impossible to tell. 

 

There are also problems with Kuhn’s definition of ‘revolution’.  While it is clear that a 

revolution in science means that a great change has occurred, Kuhn’s writing in Structure 

makes it difficult to determine how large a change must be to count as a revolution.  If the 

required changes are too large, revolutions would be an extremely rare occurrence; perhaps 

so rare that it would not be possible to find a pattern in their nature.  On the other hand, if the 

required changes are relatively small, then it could be argued that revolutions are occurring 

all the time, a situation that would rob the concept of its usefulness.  In addition, there are 

disputes among readers of Kuhn about how much of a previous paradigm may remain after a 

revolution.10 

 

                                                      
9 See Chapter XI in (Kuhn, 1962). 
10 For examples of this in the context of mathematics, see the works of Michael Crowe and Joseph Dauben. 
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This point is especially important in the case of mathematical revolutions, because of the 

tendency of previously proved theories to still be held true, even when a considerable change 

has occurred in mathematics.  Some mathematicians and philosophers of mathematics might 

take this as support for the claim that mathematics grows by straightforward accretion, but it 

is my opinion that while mathematics can proceed cumulatively it also has periods of non-

cumulative growth and even revolution.   
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2. Mathematics 

2.1 Conceptions of Mathematics 

Mathematics clearly has very close ties to science, but, as mentioned above, mathematics is 

not typically regarded as a science.  Commonly cited differences between the two are the 

objects under investigation, and the methods used.  In science, it is clear that it is the world 

around us that is being studied.  For example, physics is the study of motion; botany is the 

study of plants, etc.  In mathematics, it is not quite so simple.  The objects under 

investigation in mathematics can be numbers, shapes, or logical relationships.  Though we 

can see examples of these things in the world, their ideal forms, which mathematicians study, 

are mental constructs.  Additionally, mathematics uses deductive methods as opposed to the 

inductive methods most often used by scientists.  Mathematicians and philosophers of 

mathematics often take these differences to mean that mathematics and science are 

fundamentally different, and as such must change in different ways.      

 

One attribute often associated with mathematics is that of certainty.  The results of 

mathematical research are commonly thought to be certain, whereas the results of science are 

fallible.  Once a mathematical theorem is proven, many people believe it is true forever.  

Clearly that is not the case with scientific theories, which is one of the reasons that 

revolutions occur in science.  However, I argue that this is not the case with mathematical 

theories either.   

 

Due to the use of deductive reasoning in mathematics, theorems can have deductive 

certainty, but this does not mean that theorems proved in this way are always true.  All that 
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deductive certainty entails is validity, i.e. if the premises of a proof are true, then the 

conclusion must follow.  Since there is no guarantee that any particular premises will always 

be held true, the truth of the conclusion of a proven theorem is not guaranteed either.  

 

The absence of such guarantees can be shown throughout the history of mathematics.  The 

ancient Greeks began by assuming that incommensurable magnitudes could not exist, i.e. 

they assumed all numbers could be represented as a ratio of two whole numbers.   However, 

upon the discovery that these magnitudes did exist, the theories that were derived from this 

assumption no longer held true.  Because they were no longer useful to ancient 

mathematicians, the false theories were discarded.  New theories were developed that 

assumed incommensurable magnitudes—and these new theories did not depend on the 

previous, now inaccurate theories.  The practice of mathematics allows for theories to be 

discarded, if the premises are later shown to be false. In fact it is just this practice that 

explains how completely new mathematical theories are introduced.  These new theories are 

examples of non-cumulative growth, as they do not build on the accepted truths of prior 

theories.  Contrary to popular belief, and as the deductive nature of certainty in mathematics 

makes clear, there are at least a few historical instances of non-cumulative changes in 

mathematics.  Whether these changes constitute revolutions in math is the question to which 

I now turn. 

 

2.1.1 Michael Crowe’s Mathematics 

Michael Crowe is a professor emeritus in the history and philosophy of science at University 

of Notre Dame, with some training in mathematics.  His 1975 article, Ten ‘laws’ concerning 
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patterns of change in the history of mathematics, was one of the first works to address 

applying Kuhn’s theories to mathematics.  The last of these ten laws states that revolutions 

never occur in mathematics.  According to Crowe, the most important aspect of his final law 

is the preposition ‘in’.  No revolutions ever occur in mathematics, but they can occur outside 

of mathematics, e.g. in mathematical nomenclature, symbolism, methodology, and 

metamathematics.11  This implies that Crowe does not consider the latter elements to be part 

of mathematics proper.  However, Crowe never defends this stipulation of what counts as 

mathematics proper.  To exacerbate the problem, not only does he not defend his definition 

of mathematics proper, but the definition itself remains largely implied. Crowe never gives 

an example of something that is a part of mathematics.  The features that, for Crowe, are not 

a part of mathematics—mathematical nomenclature, symbolism, methodology, and 

metamathematics—are, he acknowledges, susceptible to revolutionary change.12  However, I 

argue that some of the features that Crowe designates as ‘non-mathematics’, and capable of 

revolutionary change, should actually be seen as integral to mathematics proper.   

 

‘Mathematical nomenclature’ simply refers to the names we give to mathematical objects, 

such as numbers.  As times change and languages evolve, the names for mathematical objects 

may certainly change as well.  This may appear to be a trivial part of mathematical 

knowledge, but when we consider the integral role that abstract entities play in mathematics, 

we can see its importance.  For example, numbers are one of the foundational objects of 

mathematics, and they are completely abstract.  Without names for numbers it would be 

difficult to use them.  Since numbers are the objects upon which the earliest mathematics was 

                                                      
11 (Crowe, 1975, p. 19) 
12 (Crowe, 1975, p. 19) 
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based, it is difficult to imagine mathematics progressing far without mathematical 

nomenclature to help us use them efficiently.  A similar argument can be made about 

symbolism in mathematics.  ‘Mathematical symbolism’ refers to the use of symbols to 

represent mathematical objects.  Just like nomenclature, symbolism allows us to efficiently 

represent abstract concepts within mathematics.  One example of a change in mathematical 

symbolism is the change from using words to represent unknown quantities to using letters.   

Both mathematical nomenclature and symbolism are extremely important tools for the use of 

mathematics.  They are perhaps so important that one could argue that mathematics would 

not have developed into its modern form without them.  

 

Mathematical ‘methodology’ and ‘metamathematics’ are very closely connected concepts.  

Methodology refers to the rules and methods that govern a discipline.  In mathematics, this 

specifically refers to the types of logical methods that are used to make mathematical 

advances.  In contrast, metamathematics is the term used to denote the study of the structure 

and methods of mathematics, as well as beliefs regarding the nature of mathematics.  Both of 

these aspects of mathematics have changed over time.  The development of logical, 

especially deductive, methods used in mathematics by the ancient Greeks was a 

methodological change from previous practice, as was the introduction of the rigorous 

methods of calculus promoted by Cauchy.13  Metamathematical changes include the 

acceptance of incommensurable line segments and the changes in mathematical thinking 

caused by Gödel’s incompleteness theorems.14  Mathematical methodology and 

metamathematics have given mathematics its very structure.  Is it possible for them to be 

                                                      
13 (Dauben, 1992, p.73) 
14 (Dauben, 1984, p.64) 



13 
 

completely separate from mathematics proper?  I think not, as they are clearly intertwined 

with mathematics at a very basic level, and changes in them serve to shape the progression of 

mathematics.    

 

To review, Crowe admits that non-cumulative, and even revolutionary changes can and have 

occurred in the above areas, but he insists that these areas are not a part of mathematics 

proper.  I think this is an error on his part, and I believe the above discussion demonstrates 

the ways that these areas are integral to mathematics.  Because he gives no defense of his 

definitions and examples of elements within mathematics, Crowe’s view of mathematics 

seems unnecessarily and arbitrarily restrictive.  And as I argue below, Crowe’s picture of 

mathematics is inconsistent with the way most mathematicians and philosophers of 

mathematics see the discipline.  

 

2.1.2 Other views of mathematics 

Michael Crowe is not the only one to weigh in on the question of revolutions in mathematics.  

Many other philosophers and mathematicians have written responses to his 1975 article.  

Each respondent has had a slightly different view of mathematics, which correspondingly 

changes their view of the question of revolutions in mathematics.     

 

Caroline Dunmore, a philosopher of mathematics with some training in mathematics, 

believes that mathematics consists of two parts.15  The first part consists of mathematical 

objects, like notation, terminology, definitions, and theorems.  The second piece is the views 

                                                      
15 (Dunmore, 1992, p. 211) 
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and methods that constitute metamathematics.  These two pieces are distinct, according to 

Dunmore, but, she argues, considered together they become mathematics.   

 

In contrast to this position is the mathematics proposed by Joseph Dauben, a professor who 

studies the history of mathematics at the City University of New York.  His view of 

mathematics combines Dunmore’s objects and metamathematics into an inseparable unit.16   

 

It is important to consider these different ideas of what mathematics is, because these ideas 

can affect the outcome of applying Kuhn’s theory to mathematics.  The views that each 

philosopher has regarding mathematics influence their approaches to the task of applying 

Kuhn.  As we will see in later sections, each of these definitions of mathematics will 

correspond to different definitions of paradigms and revolutions.   

 

  2.2 Mathematics vs. Views of Mathematics 

The main question driving all of the different conceptions of mathematics reviewed above is 

whether to include meta-level views of mathematics and other abstract entities as part of 

mathematics proper.  The various answers to this question impact the arguments about 

revolutions in mathematics because typically more examples of revolutions in mathematics 

can be found when these pieces are included.  This may be because it is easier for 

mathematicians to reinterpret existing theories in terms of their new views of mathematics 

than to discard the older theories entirely.    

 

 
                                                      
16 (Dauben, 1984) 
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3. Paradigms in Mathematics 

Just as paradigms are an important part of Kuhn’s arguments about the structure of science, 

so too are they important in the analysis of mathematics.  An analysis of what would count as 

a paradigm in mathematics would not only help in understanding the mathematical 

equivalent of normal science, but would also help in determining what may count as 

revolutionary mathematics.   

 

 3.1 Formalizing Paradigms 

In his 1999 paper, On Classification of Scientific Revolutions, Ladislav Kvasz, a Slovakian 

philosopher and mathematician, tries to determine the nature of scientific revolutions, so that 

any possible implications for mathematics might be more easily identified.  To do this, Kvasz 

reformulates Kuhn’s rather ambiguous concept of a paradigm into a much more rigorous 

definition.   

 

Kvasz starts with something he refers to as an “epistemic framework” of a theory, a concept 

roughly analogous to Kuhn’s paradigm.17  Kvasz divides the epistemic framework of a theory 

into three parts: the formal, the conceptual, and the evidential.18  They serve to provide for 

those working within the framework the same kind of information that a paradigm provides 

to scientists.  Each piece of the framework brings different information.  The formal frame is 

the formal structure of the theory.  It encompasses the theory’s symbolic language and 

descriptions of the theory in that language.  The conceptual frame consists of the semantic 

structure, explanation, and interpretation of the theory.    The last piece is the evidential 

                                                      
17 (Kvasz, 1999, p. 208) 
18 (Kvasz, 1999, p. 211-212) 
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frame, which contains the perceptive structure of the theory.  When taken together these 

pieces form Kvasz’s equivalent of a paradigm.   

 

To illustrate each of these aspects of the framework, Kvasz uses the scientific example of the 

epistemic framework of Newtonian mechanics.  The formal frame of Newtonian mechanics 

is the symbols, such as m for mass, and also relationships between the symbols, like � = � ∙

�, and the description of motion as second-order dynamics, which enhances the meaning of 

the symbols.  The conceptual frame includes the fundamental quantities, e.g. mass and 

volume, derived quantities, as well as the legitimate explanations and questions allowed in 

Newtonian mechanics.  For example, in Newtonian mechanics we can explain freefall with 

gravitational force, but it is inappropriate to ask why gravity works, because Newtonian 

mechanics cannot explain that.  The evidential frame of Newtonian mechanics is what allows 

us to perceive mechanics on earth and in space as a unified theory, in contrast to Aristotelian 

mechanics, for example, which treats the two areas separately.  This Newtonian example 

helps us to more clearly see the nature of an epistemic framework as it applies in science.  

Kvasz concludes that, conceived of as epistemic frameworks, mathematics has had a number 

of paradigms and that these have shifted over time.19   

 

Euclidean geometry can provide us with a mathematical example of an epistemic framework, 

which supports Kvasz’ claim that the concept of an epistemic framework can be applied to 

mathematics well as science.  The formal frame is made up of the symbols of Euclidean 

geometry, e.g. A, B, π, ║, (here the points A and B, pi, and parallel lines), and the description 

of Euclidean geometry—a constructive geometry where the parallel postulate holds.  The 
                                                      
19 (Kvasz, 1999, Chap. 2) 
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conceptual frame would contain the fundamental objects, such as lines, planes, and angles, as 

well as proven theorems and unproven questions (restricted by the parallel postulate).  

Finally, the modern evidential frame of Euclidean geometry is the perception of Euclidean 

geometry as one of many different types of geometries.  

 

As can be seen from the above analysis, Kvasz’s approach to mathematical paradigms is 

based primarily on determining the exact nature of the elements within a paradigm.  This 

results in a very formal, yet universal, notion of a paradigm and all of its parts, which can be 

applied to both mathematics and science.  

 

3.2 Other Interpretations of Mathematical Paradigms 

While Kvasz has certainly presented one of the more formal interpretations of Kuhn’s 

concept of a paradigm, and discussed how it may apply to mathematics, his interpretation is 

not the only one available.  In this section I examine the work of Joseph Dauben and Leo 

Corry who present alternative views regarding paradigms in mathematics. 

 

3.2.1 Cultural Paradigms 

In his work on mathematical paradigms, Joseph Dauben examines the impact cultural 

differences have on the work of mathematicians, specifically in the cultures of ancient 

Greece and China.  He studies the differences in the reactions of these cultures to their 

separate discoveries of incommensurable magnitudes.  The different paradigms in which 

ancient Greek and Chinese mathematicians worked caused them to have very different 

responses to this discovery.  For the Greeks, incommensurable magnitudes caused problems 
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within their paradigm.  However, the Chinese paradigm was already equipped to deal with 

these magnitudes, so it was not adversely affected. 

 

The ancient Greek paradigm that Dauben refers to is the mathematical practices of the 

Pythagoreans.  The Pythagoreans had an interesting view of the mathematical world.  For the 

Pythagoreans, ‘number was the measure of all things’, meaning that everything could be 

assigned some ratio of whole numbers.20  Essentially, the Pythagoreans understood the world 

as being wholly rational.  Unfortunately, these views—which Dauben considers to be 

something analogous to a ‘Pythagorean paradigm’—caused trouble for the Pythagoreans 

when it came to computing certain geometric entities.  For example, consider a right triangle 

with two legs of length 1.  Using the Pythagorean Theorem, the remaining side of the triangle 

can be computed to be √2 .  However, √2 is irrational and cannot be expressed as a ratio, so 

any Pythagoreans attempting to compute this would be unpleasantly surprised; unable to 

comprehend such a number.  Thus, it is easy to see why the discovery of irrational numbers 

caused such uproar among the Pythagoreans.  The existence of irrational numbers went 

against the Pythagorean paradigm, inciting great changes in Greek mathematics.  As we shall 

see, however, the same situation produced a different outcome in the context of Chinese 

mathematics.  

 

For his knowledge of Chinese mathematics, Dauben refers to the ancient Chinese 

mathematics text, Jiu Zhang Suan Shu (Nine Chapters on the Mathematical Art).  Nine 

Chapters is one of the oldest Chinese mathematical texts.  It is often considered to be the 

Chinese equivalent of Euclid’s Elements as it was a fundamental text in mathematics for the 
                                                      
20 (Dauben, 1995, p. 127) 
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ancient Chinese.  Chapter four of Nine Chapters, Shao Guang, discusses the extraction of 

square roots.  This is described using the geometric process of finding the length of the side 

of a square that has a given area.  Chinese mathematicians developed an algorithm to 

compute these roots, and if the given area was a perfect square, such as 16 or 36, the 

algorithm terminated in a finite number of steps.  However, if the area was not a perfect 

square, then the steps could continue indefinitely.  In these cases, if the Chinese did not find a 

solution within a certain number of steps, they ceased working, saying that the number was 

incomputable.  Unlike Greek mathematicians however, the Chinese were not troubled by this 

result, likely, Dauben argues, because of the differences in these cultural paradigms.  Nothing 

in the Chinese paradigm prevented Chinese mathematician from accepting irrational numbers 

as they were, whereas the Pythagorean paradigm rejected them outright.  Though the Chinese 

were interested in proofs, they did not use the axiomatic methods that the Greeks were so 

well known for.  Instead, ancient Chinese mathematics was primarily algorithmic in nature.  

In addition, the Chinese did not hold to the Pythagorean ideal of the world as rational in 

measure.  Thus there was no contradiction to the structure of Chinese mathematics, or to their 

mathematical world-view.  It is for these reasons that Chinese mathematicians, while 

recognizing that irrational numbers were different from rational ones, did not have need for a 

change in their paradigm at this discovery.     

 

Though Dauben’s look at mathematical paradigms is not as thorough as Kvasz’s, it definitely 

shows how cultural influences can be interpreted in a paradigmatic fashion.  This is an 

especially interesting viewpoint when considering ancient mathematics, as the elements in an 
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ancient paradigm, such as theorems, constants, etc., are not as likely to be as cut and dry as 

they are in the present.  

  

3.2.2 Structural Paradigms 

Leo Corry, a philosopher of science at Tel-Aviv, has also analyzed Kuhn’s notion of 

paradigm in relation to mathematics.  He thinks that, though Kuhn’s idea of a paradigm is 

rather ambiguous, we can assert some fundamental qualities that all paradigms must have*.   

First, a paradigm must be something that differs from an individual discovery or theory.  

Secondly, a paradigm must be able to influence the development of theories.  With this 

classification of a paradigm in mind, Corry turns to an example regarding the structure of 

modern algebra.21 

 

Before the rise of modern, structural algebra, algebra was considered to be the study of 

algebraic forms and polynomial equations, especially the problem of equation solvability.  

However, the publication of the earliest modern algebra textbooks brought forth a new 

emphasis on algebra as the study of algebraic structures.22  This emphasis is what Corry 

wishes to consider a paradigm.  Though there are no theorems explicitly stating that algebra 

is the study of structures, the changes to this view of the discipline clearly shaped our modern 

theories of algebra.  In addition, Corry notes that one unique feature of these types of 

mathematical paradigms is that there is no logical reason why a mathematician cannot work 

within both the nineteenth-century algebra paradigm, and the modern algebra paradigm 

                                                      
21 (Corry, 1995, p. 185) 
22 For example, Corry cites Moderne Algebra [1930] by B. L. van der Waerden as the first text on algebraic 
structures. (Corry, 1995, p. 186) 
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simultaneously.  This is an interesting point, because there is much discussion about whether 

scientists are capable of such work during a shift in scientific paradigm.   

 

All three of these different pictures of mathematical paradigms, from Kvasz to Corry, place 

emphasis on different aspects of Kuhn’s original concept.  Kvasz emphasizes a paradigm as a 

network of interconnected theories and concept, while Dauben focuses on the cultural aspects 

that may be included in a paradigm.  Finally, Corry considers as aspects of a paradigm those 

underlying assumptions mathematicians have about the structure of their particular 

discipline.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 
 

4. Revolutions in Mathematics 

The word ‘revolution’, in the sense that Thomas Kuhn uses it, means a great change within a 

discipline—a specific type of upheaval.  However, as I have noted, Kuhn is ambiguous as to 

how great a change must be in order to constitute a revolution and how much of a previous 

incarnation of a discipline should remain post-revolution.  These issues have been the cause 

of a great deal of conflict in the discussion of revolutions in mathematics.  In this section I 

discuss the definitions of revolution that appear most often in the literature on this topic, as 

well as the way that the various definitions of mathematics and paradigms affect these 

discussions about revolutions. 

 

4.1 Strict Revolutions 

In this section I will discuss a certain type of revolutions that I call ‘strict revolutions’.  Strict 

revolutions are characterized by the fact that these revolutions completely discard previous 

ideas and/or theories associated with them.  

 

4.1.1 Michael Crowe 

Recall that Michael Crowe claims as his tenth law that there are no revolutions in 

mathematics.  I have argued that, due to Crowe’s views about the nature of mathematics, it is 

difficult to determine how useful any of his conclusions are. As discussed above, Michael 

Crowe’s views of mathematics are unclear, because he does not provide specific examples of 

the elements within mathematics proper.   
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However, Crowe does provide a clear explanation of what he means by revolution.  

Unfortunately, it is an overly restrictive definition.  It requires that “some previously existing 

entity must be overthrown and irrevocably discarded”.23  The conditions of this type of 

revolution are difficult to satisfy because they are so severe.  Given his limited view of 

mathematics, it is unsurprising that Crowe concludes that there are no revolutions in 

mathematics.  Further, if we remove nomenclature, symbolism, methodology, and 

metamathematics from within mathematics—as Crowe stipulates that we should— it then 

seems that there is little left in mathematics, but scattered numerical concepts and 

computations.  This formulation of mathematics does not allow for an in-depth study of the 

development of mathematics.  As it is this developmental type of study that typically 

motivates the application of Kuhn’s methods to mathematics in the first place, it is easy to 

see where many authors have found fault with this Crowe’s work.  While being one of the 

first to address the mathematical revolution question in terms of Kuhn, Crowe is too 

restrictive in his definition of revolution to adequately capture the aspects of mathematics 

that make such questions interesting to philosophically-minded mathematicians and 

historians and philosophers of mathematics. 

 

4.1.2 Caroline Dunmore 

Like Crowe, Caroline Dunmore uses strict revolutions in her analysis.  However, because of 

her conception of mathematics, her theory offers much more interesting results than Crowe’s.  

As noted above, Dunmore thinks of mathematics in two parts; an object part, and a 

metamathematical part.  Because she includes the metamathematical aspects of mathematics, 

her analysis yields actual revolutions.  These ‘meta-level’ revolutions, as Dunmore calls 
                                                      
23 (Crowe, 1975, p. 19) 
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them, represent strict revolutionary changes in metamathematics.  However, Dunmore asserts 

that no revolutions occur on the object level of mathematics.  The example of the shift from 

Euclidean to non-Euclidian geometries can be interpreted as a meta-level revolution.24   

 

According to Dunmore, when non-Euclidean geometries were developed there was a 

revolution in the ways geometry was conceived; meta-mathematically speaking, there was a 

change from thinking of the single Euclidean geometry as the only possible geometry to the 

notion that Euclidean geometry was consistent with many other non-Euclidean geometries.  

Because the first idea is incompatible with the latter one, it was discarded, causing a strict 

revolution.  On the other hand, Euclidean geometry is still used; so on the object level there 

was no revolution.  I argue, however, that there are numerous other ways to interpret the 

geometry example that reveal revolutions even in the object level. 

 

4.2 Conceptual Revolutions 

This section concerns what I will call ‘conceptual revolutions’.  Unlike strict revolutions, 

conceptual revolutions leave previous concepts in place, albeit often in a diminished 

capacity.   

 

4.2.1 Joseph Dauben 

Joseph Dauben, in a 1984 response to Crowe, offers another definition of revolution.  He felt 

that Crowe’s definition was too restrictive to be useful to philosophers and historians of 

mathematics.  Dauben’s work is focused on ‘conceptual revolutions’, a view of revolutions 

that allows for the possibility of revolutionary changes in views regarding mathematics, and 
                                                      
24 (Dunmore, 1992, p.212) 
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changes within metamathematics.  These revolutions do not require the complete elimination 

of previous entities the way strict revolutions do.  For example, the creation of non-Euclidean 

geometry caused a change in mathematicians’ conceptions of mathematics.  Instead of 

holding to the previous belief that Euclidean geometry was the only possible geometry, they 

changed their views, allowing non-Euclidean geometries to become legitimate in 

mathematics.  This is a good example of the type of revolution Dauben proposes, because 

non-Euclidean geometries did not eliminate Euclidean geometry.  Instead, Euclidean 

geometry became one of many different geometries.  This is the essence of Dauben’s 

revolutions: Nothing is eliminated and the former concepts are retained, just with a 

significantly lower stature than they had previously. 

 

4.2.2 Yuxin Zheng 

Yuxin Zheng, a teacher of mathematics and professor of philosophy at Nanjing University, 

holds a view of mathematical revolutions that is a hybrid of the views of Dunmore and 

Dauben.  Zheng believes that best explanations of the concepts ‘mathematics’ and 

‘revolution’ will come from careful observation of the ordinary usages of the words.25  It is 

his opinion that Caroline Dunmore presents an appropriate view of mathematics, and Joseph 

Dauben’s view of revolutions is accurate.  Using the example of Euclidean and non-

Euclidean geometry, we can note that Zheng holds the view that there were revolutions on 

both the meta- and object-levels of mathematics.  However, instead of strict revolutions, as 

Dunmore would define them, these revolutions were conceptual ones.  Both the 

metamathematics and the objects of Euclidean geometry were left behind and incorporated 

into a new comprehensive theory of multiple geometries.   
                                                      
25 (Zheng, 1992, p. 171) 
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      4.3 Multiple Revolutions 

This section discusses those theories that include multiple types of revolutions.  Some of 

these notions of revolutions are the same as the ones discussed above, but new definitions are 

also introduced.  The primary proponent of this type of analysis is Ladislav Kvasz, who 

presents three types of scientific revolutions, created by building off of his concept of an 

epistemic framework, introduced earlier.  Kvasz’s term for revolution is ‘epistemic ruptures’ 

because they are revolutions that come about via changes in the epistemic framework.  

 

4.3.1 Epistemic Ruptures 

Kvasz’s identifies four types of rupture, three of which cause revolutionary changes.  They 

are idealizations, re-presentations, objectivisations, and re-formulations.26  Each of these is 

caused by different levels of rupturing in the framework.  I will treat each of these types of 

epistemic ruptures in turn, along with mathematical and scientific examples of each type. 

 

The first type of rupture, idealization, is the most drastic type of revolutionary change.  It is a 

change in the way important concepts are idealized in a theory.  For example, in science, 

Kvasz cites the Galilean rupture—the change from Aristotelian to Newtonian mechanics—as 

an idealization, because of the fundamental changes in how these two theories idealize 

motion.  In mathematics, the Pythagorean rupture, the name which Kvasz uses to denote the 

change from computational Egyptian and Babylonian mathematics to deductive Greek 

mathematics, is an idealization because of the changes in these theories’ idealization of 

                                                      
26 (Kvasz, 1999, p. 220-222) 
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shapes.  These types of ruptures cause a revolution that is a strict revolution, in that a former 

doctrine is replaced by a new one.  

 

The second type of rupture is re-presentation.  These ruptures create new areas in the field by 

re-creating the fundamental objects.  There are many examples of these ruptures in 

mathematics.  They include the Cartesian rupture, which represents the birth of analytic 

geometry and a recreating of curves, as well as the Leibnizean rupture—the birth of 

differential and integral calculus.   

 

Objectivisations are the third kind of rupture, and the last of the revolutionary kinds.  These 

ruptures are characterized by a change in the ontological status of the objects they affect.  

One example of this is the Lobachevskyean rupture, which is responsible for non-Euclidean 

geometry.  This rupture did not change any of the mechanics of Euclidean geometry; 

however it did change the ontological status of geometry.  Similarly with the Einsteinian 

rupture in physics.  Both the objectivisation and re-presentation types of epistemic ruptures 

fall into the category of conceptual revolutions, like the idealizations discussed above.   

 

The last type of rupture is re-formulations.  This kind of rupture makes the smallest changes, 

which are not revolutions but rather direct extensions of a theory.  An example of a 

mathematical re-formulation is the switch from using Roman numerals to using Arabic 

notation.  Both kinds of numerals give the same results in calculations; however Arabic 

numerals are clearly more convenient to use.   

 



28 
 

All of these classifications of mathematical revolutions provide solutions to the ambiguities 

that are present in Kuhn’s work.  However, I will argue in the next section that Kvasz’s 

solution of defining multiple types of scientific revolutions that may be applied to 

mathematics is likely to provide philosophers and mathematicians with the most accurate 

view of the development of mathematics.       
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5. Conclusion 

From my review of the literature on the topic of applying the theories of Kuhn to the 

development of mathematics, I have established that Kuhn’s theories can be applied to 

mathematics, in some very general sense, at least.  I have presented numerous examples in 

support of my claim.  However, having established that Kuhn’s theories can be applied to 

mathematics, there are specific factors that influence the details of this application, and it is 

to these more specific factors that I now turn. 

 

 5.1 Factors Influencing the Application of Kuhn’s Theory 

The first, and perhaps most important of these factors, is the definition of mathematics that 

one subscribes to.  Without a clear image of what mathematics is, Kuhn’s theory cannot be 

applied in a way that is coherent.  Second, is the issue of scale of paradigms and, by 

extension, revolutions.  In cases where paradigms are too small in scale—say at the scale of 

individual theories—revolutions and paradigmatic changes occur too often for mathematical 

revolutions to be a useful concept to analyze.  The opposite effect can happen if paradigms 

are conceived of on an overly large scale.  In these cases, shifts rarely occur at all, which 

prohibits mathematicians from seeing any kind of useful pattern in the changes.  With these 

important factors in mind, I next make a case for how best to conceive of the details of 

applying Kuhn’s theories to mathematics. 

 

5.2 The Ideal Application of Kuhn to Mathematics  

It is my opinion that, in response to the first factor noted above, the most useful way to define 

mathematics is modeled by Joseph Dauben, namely, his view that mathematics consists not 
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only of theories and concepts, but also of metamathematics and mathematicians’ notions of 

how mathematics behaves.  I believe that the most interesting effect of using Kuhn’s theory 

in conjunction with mathematics is the insights it can give into these additional aspects of 

various mathematical disciplines.  For example, in the often mentioned cases of the discovery 

of non-Euclidean geometries, I find the meta-mathematical conceptual leap from the mindset 

of a singular geometry (Euclidean) to thinking instead of multiple geometries (non-

Euclidean) to be the most important aspect of this shift.  Therefore, to me, metamathematical 

concepts are an essential part of any definition of mathematics.   

 

With respect to defining paradigms, I agree with Leo Corry’s idea that a paradigm cannot be 

an individual theory or result, and that it must be on such a scale that it is able to influence 

the development of new theories.  However, I believe that there is an important historical 

aspect to what paradigms entail in mathematics.  In Joseph Dauben’s work, he emphasized 

the cultural paradigms of ancient mathematicians.  In moving to more recent time periods, 

however, I believe that cultural differences have become less salient, due to the global nature 

of mathematics as a discipline.  With the advent of modern communication systems, 

mathematicians are able to communicate with international colleagues in a way that was not 

possible previously.  This has virtually eliminated the more parochial nature of mathematical 

work that existed before modern times.  It is for this reasons that I believe mathematical 

paradigms are most accurately viewed as being dependent on historical context.  In the case 

of primitive mathematics, paradigms may not even be an applicable concept.  Moving to 

ancient mathematics, cultural influences have a great influence.  And finally, in more modern 

times, paradigms are based more on structure and theorems, and less on cultural factors.  
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Finally, in considering the topic of revolutions, I think that, because it is evident that many 

different types of revolutions are possible in mathematics, the strategy of using multiple 

conceptions of revolutions (following the example of Ladislav Kvasz) will enable the most 

accurate and detailed representation of the effects that revolutions have on mathematics.  

Using such a classification of revolution in this kind of project will enable philosophers and 

mathematicians to examine which types of revolution happen most frequently—because they 

all occur—and determine the reasons for such a phenomenon.  This kind of detailed approach 

will be most useful in creating an accurate description of mathematical growth. 

 

To summarize, I have argued that, when attempting to apply Kuhn to mathematics, three key 

things should be included in the analysis.  First, any conception of mathematics that is used 

should involve a metamathematical component.  Second, it should be kept in mind that 

paradigms can be conceived as dependent on historical contexts.  Lastly, multiple types of 

revolutions should be considered.  Utilizing this framework provides the most fruitful 

application of Kuhn to mathematics. It gives both mathematicians and philosophers the most 

detailed description of the growth of mathematics, which in turn will allow this analysis to be 

successfully applied to other fields.    
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