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An introduction to the generalized measures of deforma-

tion-rates involving not only velocity gradients but also

acceleration gradients is given and constitutive equations

using these measures have been discussed. These new con-

stitutive equations are then used to study torsional

flows of viscoelastic fluids between two infinite parallel

planes. In order to assess the advantage of this theory

over the existing theories, a brief review of the existing

nonlinear theories of continuous media has been made. In

this review, it has been pointed out that the existing

theories involve a number of terms in powers and products

of the ordinary measures of strain or strain-rate and

several unknown response functions of invariants of kine-

matic matrices. This is owing to the fact that the order



of the measures of strain and strain-rates have not been

fixed and their generalized measures have not been used in

the formulation of constitutive equations.

In the present investigation we have, by fixing a pri-

ori the orders of the measures of the deformation-rates

mentioned above, developed the concept of the generalized

measures and been able to obtain a suitable constitutive

equation for viscoelastic fluids. The orders of the mea-

sures are so chosen that the resulting constitutive equa-

tion describes pseudoplastic fluids, for which the apparent

coefficient of viscosity decreases with the increase in

rate of shear. These new constitutive equations have been

found to contain only four terms in the deformation-rate

tensors and four rheological constants, and no unknown

functions of the invariants,.

The constitutive equation obtained thus is applied to

torsional flows of a viscoelastic fluid between two infi-

nite parallel planes. The velocity components and pressure

have been expanded in power series of a small parameter,

and first- and second-order approximations to the velocity

components have been obtained. The normal stress dif-

ferences, velocity profiles, apparent coefficient of vis-

cosity and their behavior depending on the rheological

constants nave been investigated. The phenomena of re-

versed flows have also been discussed. Besides the freedom



to choose the order of the measures, the rheological para-

meter entering the constitutive equations can also be suit-

ably varied so as to correlate the theory with experiments.

It is found that the behavior of a viscoelastic fluid de-

pends on the sign as well as the magnitude of the rheolog-

ical constants. Thus, the constitutive equations based on

the concept of combined generalized measures predict ad-

equately qualitative as well as quantitative information

on the behavior of viscoelastic fluids and eliminate the

need for assuming unknown response coefficients.
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NOTATION

The following is a list of symbols used in this

analysis.

Symbols Meaning

a.
1

i
th vector component of acceleration

a
r,

a , az

B

I
B'

II
B'

III
B

b..
1J

B*

b.
13

D

I
D'

II
D'

III
D

d..
1J

D*

d.
13

gii
I

k, k'

n, n

p

physical components of acceleration in
cylindrical coordinates

second deformation-rate matrix

first, second and third invariants of
second deformation-rate matrix

second deformation-rate tensor

generalized second deformation-rate
matrix

generalized second deformation-rate
tensor

first deformation-rate matrix

first, second and third invariants of
first deformation-rate matrix

first deformation-rate tensor

generalized first deformation-rate
matrix

generalized first deformation-rate
tensor

metric tensor

identity matrix

dimension correcting constants

measure indices

pressure of fluid



Symbols

q'

r, 6, z

R

T

t. .

13

t
rr'

t
r6'

t
zz'

etc. physical components of stress in
cylindrical coordinates

Meaning

irreversibility indices

cylindrical coordinates

Reynolds number

stress matrix

stress tensor

t time

vi i
th

vector component of velocity

U, V, W

S.1]

n

A

physical components of velocity in
cylindrical coordinates

Kronecker delta

dimensionless small parameter

dimension correcting constant

frequency of oscillation

Newtonian coefficient of viscosity

apparent coefficient of viscosity

amplitude of oscillation

density of fluid

normal stress differences

nondimensional time

partial differentiation

covariant differentiation
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GENERALIZED MEASURES OF DEFORMATION-RATES
IN TORSIONAL FLOWS OF VISCOELASTIC FLUIDS
BETWEEN TWO INFINTE PARALLEL PLANES

CHAPTER 1

INTRODUCTION

1.1 Preliminary Remarks

In the classical theory of fluid mechanics, the con-

stitutive equations relate the stress tensor to the strain

or strain-rate tensors linearly. The Newtonian viscosity

depends only on pressure and temperature and is independ-

ent of the rate of shear.

Non-Newtonian fluids are those for which the above

mentioned linear relation does not hold since these fluids

exhibit certain phenomena such as variable viscosity de-

pending on the rates of shear in the fluids, normal stress

effects etc. and they may even depend on the previous

history of deformation. Examples of such fluids are high

polymer solutions, pastes, paints, colloidal solutions,

condensed milk, etc. and these occur in everyday life as

well as in industry. In order to study, for instance, the

behavior of viscosity of such fluids, we define the ap-

parent coefficient of viscosity as the ratio of shear

stress to shear rate. The fluids for which this coef-

ficient decreases with increasing shear-rate are known as

pseudoplastic fluids and those for which it increases as
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dilatant fluidE.

Internal constitution of the materials is responsible

for these differences in behavior. In order to explain,

therefore, the response of a material to the applied

forces, we need to set up a relation, depending on the in-

ternal constitution of the material. This leads to the

formulation of constitutive equations of materials which

are relations between the stress and the deformation

(strain) or motion (strain-rate). It is, therefore,

important to study the internal constitution of these ma-

terials and to construct suitable constitutive equations

for these materials.

A number of nonlinear constitutive equations have been

proposed by various workers. The concept of stress is well

defined but the measure of strain used is flexible as it

should be. In the classical theory when the displacements

are finite, the use of a linear measure of strain or

strain-rate does not lead to a satisfactory solution of

problems. The present trend to explain experimental re-

sults involving finite deformations is based on the use of

a linear strain measure even though we know from experi-

ments that the strain is nonlinear in character. Thus the

order of the measure of strain is not fixed in the class-

ical theory of constitutive equations and consequently they

have become unnecessarily complicated and involve unknown
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response coefficients.

Thus, it becomes necessary to use generalized measures

with their orders fixed, a priori, instead of the ordinary

measure, in order to provide a satisfactory scientific

basis for explaining viscoelastic behavior of real ma-

terials. Further, we shall find later in our invest-

igation that in order to explain a variety of viscoelastic

and viscoelastic phenomena, it will be necessary to combine

generalized measures of different orders and construct ac-

cordingly suitable constitutive equations. Thus one can

explain pseudoplastic, dilatant and many other types of

phenomena in real fluids with the help of combined gen-

eralized measures of the rates of deformation

1.2 Object of the Present Study

In order to avoid any further complexity of the

stress-strain relations, and at the same time to explain the

phenomena arising out of finite deformations in the case of

solids and non-Newtonian behavior in the case of fluids,

Seth (1964) introduced the generalized measure concept in-

to continuum mechanics. He also suggested the generalized

measure of deformation-rate to be used in fluid mechanics.

Narasimhan and Sra (1969) have found that in certain

viscoelastic flows, the mere use of the generalized measure of

rate of deformation involving. velocity gradients would

predict two of the normal stresses to be always equal,which
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is contrary to experiments (Truesdell and Noll, 1965).

Hence they have suggested that for viscoelastic fluids, in

addition to the generalized measures of deformation-rate

involving velocity gradients, those of another deformation-

rate involving acceleration gradients should also be used.

They proposed the following constitutive equation

T = - pI + 2 p D* + 4 i B* (1.2.1)

where D* = generalized first deformation-rate matrix,

B* = generalized second deformation-rate matrix,

p = isotropic pressure,

I = identity matrix,

p,-n = dimension correcting constants.

It is the object of the present investigation to

study torsional flows of viscoelastic fluids characterized

by the above constitutive equation between two infinite

parallel planes, one of which performs torsional ocilla-

tions while the other is at rest.

1.3 Basic Assumptions

The following assumptions will be made in the analysis

of the flow problems:

a. the flow is isothermal,

b. the fluid is homogeneous, isotropic and

incompressible.
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1.4 Plan of the Present Investigation

We have divided our work into four chapters. Chapter

2 is devoted to the generalized measures of deformation and

rates of deformation to be used in the constitutive equa-

tions and a review of the nonlinear theories of continuum

mechanics using ordinary measures. The constitutive

equations involving the generalized measures of deforma-

tion-rates are set up for incompressible isotropic fluids.

As an illustration, we have so fixed the orders of the

measures of the deformation-rates and combined them suit-

ably that the fluids obtained are found to be pseudo-

plastic.

In chapter 3 we apply the concept of generalized

measures to torsional flows of viscoelastic fluids and show

that this new powerful approach provides a sound scientific

basis for constructing constitutive equations and enables

one to explain non-Newtonian effects on real fluids ade-

quately. The influence of generalized measures of rates of

deformation on the velocity profiles has been determined

and shown graphically.

Chapter 4 contains the summary and conclusion.
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CHAPTER 2

THE CONSTITUTIVE EQUATIONS OF VISCOELASTIC MATERIALS

2.1 Preliminary Remarks

The fundamental conservation laws of the theory of

continuous media are valid for all materials irrespective

of their constitution. In order to take account of the

nature of different materials, we must therefore find ad-

ditional equations identifying the basic characteristics

of the body with respect to the response sought. In the

theory of continuous media this is done by introducing

models appropriate to the particular class of phenomena

under scrutiny.

In section 2 we cite some of the limitations of the

classical theory of fluid dynamics; for example, its fail-

ure to explain the normal stress effects, variable vis-

cosity of fluids, stress relaxation, etc. In section 3 we

discuss various nonlinear theories that have emerged in an

attempt to find suitable mathematical models which could

explain the non-Newtonian behavior of fluids, and draw

special attention to the fact that these constitutive

equations are very complicated and involve many unknown re-

sponse functions.

In section 4 we discuss the constitutive equations
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involving generalized measures. In section 5 we set up a

suitable constitutive equation by combining three different

orders of generalized measures of rates of deformation.

2.2 Limitations of the Classical Theory of Continuous

Media

In the classical theory of continuous media, the con-

stitutive equation of incompressible viscous fluids is

with

where

T = - pI + 2pD, (2.2.1)

0,

T = stress matrix,

D = deformation-rate matrix,

I = identity matrix,

I
D
= first invariant of D,

p = fluid pressure,

p = coefficient of viscosity.

(2.2.2)

The equation (2.2.1) is linear in D and viscosity

is a function of temperature. Fluids whose behavior is

governed by (2.2.1) are known as incompressible Newtonian

fluids.
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It was found by experiments that (2.2.1) of classical

theory of continuous media cannot furnish explanations for

any of the phenomena such as normal stress effects, var-

iable viscosity, viscoelasticity, viscoplasticity, pseudo-

plasticity, stress relaxation, time-dependent effects, etc.

which are exhibited by real fluids. Furthermore in the

classical theory of Newtonian fluids rectilinear flows are

possible in a cylinder of any cross section. But, for non-

Newtonian fluids, it was discovered that such flows cannot

be maintained in non-circular tubes without the application

of an appropriate body-force distribution in addition to a

uniform pressure gradient along the tube. Such flows are

known as secondary flows ( Ericksen, 1960).

2.3 Nonlinear Theories of. Continuous Media

Since the classical theory of continuous media fails

to explain many non-Newtonian phenomena, we need to set up

suitable mathematical models which can explain these pheno-

mena. A number of nonlinear theories have been proposed by

various workers.

Reiner-Rivlin Theory (1945). According to this theory

the constitutive equation for incompressible, isotropic

viscous fluids is

T = -pI al D + a2 D2
, (2.3.1)
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where a
1

and a
2 are functions of the second and the

third invariants of D. This theory appears to be mathe-

matically simpler than other theories, but the response

coefficients a
1

and a
2 which are functions of the in-

variants of the first deformation-rate tensor are unknown

and cannot be specified explicitly. This theory always

predicts the existence of two equal normal stresses in

certain viscometric flows, but experiments contradict such

a prediction when the rate of shear becomes appreciably

large.

Rivlin-Ericksen Theory (1955). Rivlin and Ericksen

assumed that the stress at a point x and at time t is

a function of the gradients, in the spatial system, of vel-

ocity, acceleration, second acceleration and higher ac-

celerations at the point x , measured at time t. This

assumption led to the formulation of the constitutive

equation

N

T = a0 I+ E a (II + 11 *),
P P P

p=1
(2.3.2)

for incompressible, isotropic fluids, where a's are unknown

functions of the second and the third invariants of kin-

ematic matrices, and HP and H are certain matrix pro-

ducts formed from the kinematic matrices and its transpose
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respectively. This theory is successful in obtaining norm-

al stresses which need not be equal, but the constitutive

equation has been made very complicated by the introduction

of several higher order kinematic matrices and unknown

functions of their invariants.

Green and Rivlin Theory (1957). This theory is a

further generalization of Rivlin and Ericksen's theory. In

this theory the stress t..
13

depends on the complete de-

formation history of the material and is assumed to be a

functional of DxP(T) over the range -co < T < t:

axq

t

t = F ( 3xP(T))
lj 13 Deg

T = co
(2.3.3)

where xP and Xq refer to the deformed and undeformed

states respectively. The remarks made earlier apply to

this theory as well.

Oldroyd Theory (1951). Oldroyd proposed the following

constitutive equation

(1+A1.74--)tIV-2k (d. t
(e)m

+ d.
1 im 3 3m

t(e)m )

= 2p(1 + A2 di 8pk d. d' ,

2 ot lj 2 im 3 (2.3.4)



where

(e) (e)6 t.. D t..
1

= 13 + t() vm + t . vm. + t. V.13;m m3 ;1 im ;3 ,dt at

(e)
t. = deviatoric part of the stress tensor,13

A
l'

X
2

= relaxation times,

11

and k
1

and k
2

are arbitrary scalar constants. Oldroyd

(1958) introduced another generalization by using the Jaumann

derivative instead of convective derivatives.

Noll's Theory (1958). Noll assumed that the stress in

an incompressible fluid at time t depends, to within a

hydrostatic pressure, on the history of motion, (in part-

icular, the past history of the relative deformation grad-

ient) up to time t. His constitutive equation has thus

the form

CO

T = - pI + F(G(s)),
s = 0

.

(2.3.5)

where F is the constitutive functional and G(s) is the

history of the relative deformation gradient.

The solution of any problem in this theory depends on

the experimental determination of the three material func-
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tions, that is, the viscosity and the two normal stress

functions.

The ever-increasing complexity of the constitutive

equations of continuous media and their ad hoc generaliza-

tions aimed at obtaining simple results have been criti-

cized by Seth. He (1964, 1966) observed that the con-

stitutive equations have to be complicated so long as we

use ordinary measures of strain (or strain rate) in their

formulation instead of the generalized measures.

2.4 Constitutive Equations Involving Generalized Measures

In order to avoid bringing unnecessary complications into

the stress-strain relations, and at the same time to elimi-

nate unknown response coefficients and to predict results

fairly compatible with experimental investigations, Seth

has strongly felt the need to construct generalized measures

of deformation which should reduce to the known ones in

special cases.

The ordinary measures of deformation-rate are

and

d..
13

=
3 ,1

(v. . + v. .) ,
1,3

bid = -a- (a
i,j

+ a
jfi

+ 2 v
m,i v

m
,j

)
'

(2.4.1)

(2.4.2)
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where the symbol , denotes partial differentiation with

respect to the spatial coordinate x1.

Narasimhan and Sra (1969) generalized the ordinary

measures of deformation-rates as follows:

where m

k q
dt. - (6.. - 2md..)2
1.3 2.3 13 13 (2.4.3)

mqnq

=bl3
k'

[6.. (6.. - 2m'b..)7] q' (2.4.4)
m,q n,q 13 13 13

m , k, and k' are dimension correcting con-

stants and n, n' are measure indices and q, q' are

irreversibility indices of generalized measures. The

measures el13*. and lot.
13

are the generalized measures of

deformation-rates and for n, n'=2, q, q'=1 and k,

k'=1, these generalized measures reduce to the ordinary

one d.. and b.. respectively.
13 13

Narasimhan and Sra (1969) proposed a new constitutive

equation for incompressible and isotropic fluids of the

following form:

T = - pI + 2pD* + 41.1B* , (2.4.5)

where B* = 11 and D* = II d.*II in matrix forms andij 13

n is the dimension correcting constant. Substituting the
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expressions for D* and B* from (2.4.3) and (2.4.4)

into (2.4.5) we obtain, for incompressible isotropic

fluids

T = - pI + a
1
D+ a2 D2 + (3

1
B + (3

2
B
2

, (2.4.6)

where, for specific values of n, q, n', q', the co-

efficients a
1 '

a
2 are known functions of the invariants

of D , and (3

1 '
(3

2 are known functions of the invar-

iants of B with finite number of terms in each case.

It is obvious that whatever the positive integral

values of n, q, n', q' the deviatoric part of the

stress matrix can never contain more than four terms. This

has a clear advantage over the general Rivlin- Ericksen

constitutive equation or even its simplest form. In all

other nonlinear theories the order of the measures of

deformation-rates have not been fixed, and one does not know

in these theories how to choose the rheological coeffic-

ients, since they are, in general, infinite series of the

invariants of the kinematic matrices. On the other hand,

by first generalizing the ordinary measures and then fixing

the orders of the generalized measures, the nonlinearity

has been condensed, essentially into two terms, viz. 211D*

and 4n113*, and the rheological coefficients al, a2,

and (3

2
occuring in (2.4.6) are also known explicitly.
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A further advantage of the generalized measures is that

they help to avoid the unnecessary introduction of a number

of response functions.

Narasimhan and Sra (1969), by fixing the orders of the

generalized measures appropriately, have discussed the di-

latant fluid behavior. In our investigation we propose to

consider combinations of generalized measures of deform-

ation-rates in order to explain a variety of viscoelastic

and viscoplastic phenomena. In particular we consider

pseudoplastic behavior of materials for which the apparent

coefficient of viscosity decreases with increasing rate of

shear.

2.5 Combination of Generalized Measures of Different

Orders

A variety of irreversible phenomena such as creep,

fatigue, pseudoplasticity and dilatancy etc. can be suc-

cessfully explained by using a combination of generalized

deformation-rate measures rather than just one set of gen-

eralized measures. For illustration, we discuss here the

pseudoplastic behavior of materials. This can be accomp-

lished by first choosing three different sets of orders of

measures (n
r

, q
r

, n', q'), where r takes values 1,

2 and 3 such that
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(n1,

(n2,

(n3,

q1,

q2,

q3,

nl,

2
n'

'

3
n'

'

cal)

2
ql)

3
q')

=

=

=

(2,

(2,

(2,

1,

2,

3,

0,

0,

2,

0),

0),

1).

(2.5.1)

Now from (2.4.3) and (2.4.4) we obtain

Dl* = k
1 2
D, D* = k

2
D
2

' 3
D* = k3D3,

(2.5.2)

B
1
* = 0 , B

2
* = 0 , B

3
* = k'B ,

where k's and k' are as before dimension correcting

constants.

Since the generalized measures (2.4.3) and (2.4.4) are

those of rates of deformation, we can combine them with

their orders fixed above and obtain

D* = k
1
D + k2D2 + k3D3

and (2.5.3)

B* = k'B.

We shall find later that these orders of measures

chosen would predict pseudoplastic behavior of fluids.
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Use of Cayley-Hamilton theorem now yields

D* = k D + k2D2 + k3 (III
D
I - IIDD + IDD2 )1

(2.5.4)

= k
3
III

D
I + (k

1
- k

3
II D) + (k

2
+ k

3
I
D
) D

where I
d'

II
D'

III
D denote the first, second and third

invariants of first deformation-rate matrix.

Since we shall deal with incompressible fluids, we

have

I
D

= 0, (2.5.5)

and equations (2.5.3) and (2.5.4) together with (2.5.5)

yield the constitutive equation

or

where

T = (-p + 2pk3IIID)I + 2p (k1 k2IID) D

+ 2pk
2
D
2

+ LITIMB ,

T = a
0
I + a

1
D + a2D2

ao = -p + 2pk3IIID,

(2.5.6)

(2.5.7)
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a
1

= 211 (k 1 k
2 II D)

a
2

= 2pk
2 '

a 3 = 4nk' .
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CHAPTER 3

APPLICATION OF THE NEW THEORY OF CONSTITUTIVE EQUATIONS TO
TORSIONAL FLOWS OF VISCOELASTIC FLUIDS BETWEEN TWO

INFINITE PARALLEL PLANES

3.1 Preliminary Remarks

In section 2 we mention the basic equations governing

continuous media, viz. the equation of continuity and the

equations of motion which are expressed in cylindrical co-

ordinates. In section 3, 4 and 5 using the constitutive

equation developed in the previous chapter, the problem of

the flow of an incompressible viscoelastic fluid due to tor-

sional oscillations of an infinite plane when the fluid is

bounded by another stationary parallel plane has been formu-

lated and solved by expanding the velocity components and

the pressure in powers of small amplitude of oscillation of

the plane. First- and second-order approximations to the

velocity, stress and deformation-rates have been obtained.

In section 6 and 7 asymptotic solutions for large

values of R and small values of R have been obtained

respectively. In section 8 the stress and deformation-

rates have been expanded in powers of small parameter and

the first- and second-order solutions have been obtained

for large values of R as well as for small values of R.

Section 9 deals with the discussion of the results.
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3.2 Basic Equations of Continuous Media

The principles of conservation of mass and conserva-

tion of linear momentum lead to the following two equations

respectively.

The equation of continuity is

Dip

at
+

(p vi)
= 0 (3.2.1)

;i

and the equations of motion are

p a1 = tij .

]
+ p f1

where v1 = i
th

vector component of velocity,

a1 = i
th

vector component of acceleration,

(3.2.2)

p = density of fluid,

t
ij = stress tensor,

fi = i
th

vector component of body force per unit

mass,

;j = covariant differentiation with respect to

spatial coordinates xj.

We shall assume the density p to be constant and

there is no body force acting on the fluid. Consequently

the equations of continuity and of motion reduce to the

following forms:



v . = 0,
;1

pal = tij
;3

21

(3.2.3)

(3.2.4)

The equations of continuity and of motion in the cy-

lindrical coordinates are

and

where

1
(rvr) + 1 av

e +
avz = 0

r ar T ae az

a(rt )

pa
r

1 rr 1
at

re
at

zr
-

00
ar r DO az

pa
e

1
a(rt

re
) at

ez
t
re1

at
ee

Dr -r ae az

a(rt
zr )

1
at

Oz
at

zzpa 1
z

Dr + ae az

(3.2.5)

(3.2.6)

v
r'

v
0'

v
z
= physical components of velocity ,

ar, ae, az = physical components of acceleration ,

t
rr

, t
rz

, etc. = physical components of stress tensor.
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3.3 Formulation of the Problem

We consider an oscillatory flow between two infinite

parallel planes a distance z
o

apart. We assume that one

of the planes at zo is stationary and the other is per-

forming torsional oscillations about its own axis with an

angular velocity Qcos AT where A denotes the frequency

of oscillation and 0 the amplitude of angular velocity.

The space between the planes is occupied by an incompress-

ible non-Newtonian fluid of density p.

Equations of Motion

The equations of motion in cylindrical coordinates for

axisymmetric flow with azimuthal variation neglected are

p( LI
au au au v2)^

m
at

rz
m

t
rr -

-- w --)=at ar az r ar az r

n(2.17_ way uv atre at
ez

t
re

" at ar az r ' ar az
+ 2

aw aw awl = t
rz t

zz trz
P' at u war az' 3r az

and the equation of continuity is

au u aw
ar r az

0
'

(3.3.1)

(3.3.2)

where u , v , and w are velocity components in the



direction of r , 6 and z respectively.

Boundary Conditions

The boundary conditions are

u= 0, v= rQcos At , w= 0 , at z= 0

23

(3.3.3)
u = 0 , v = 0 , w = 0 , at z = z

o
,

3.4 Method of Solution

We assume the solution of the equations of motion in the

forms;

u = rS2F1(y, T)

v = rOG(y, T)

w = -2z
o
QF(y, T) ,

p = 2pk1Qf - p1 (y, T)

2
f_ ,or

z
2

(3.4.1)

where y = 2/20 , T = At and a prime denotes different-

iation with respect to y and p1 and p2 are functions

of y and T. The equation of continuity is satisfied.

The stress tensor in physical components is given by

t
rr
= - p + 20(11k

1
F' + 2nklA--9F)

+ 2 Q 2
{Ilk

2
(F'

2
+

r
2

F' , 2) + 4flkl(F'
2

- FF")}
4z

2



@F'
t
88

= - p + 2Q(pk1F' + 2nkIX--- )
DT

2

+ 20
2
{pk

2
(F1

2
+

r
2

G'
2

) + 4nkt(F' 2
FF")}

4z
0

+ n 33
pk

3
F' ,

t
zz

p= - - 2Q(pk
1 dT
F' + @F

2

+ 2Q 2
pk

2
{4Ft

2 r
2

+ (F"
2

+ G'
2

) }

4z 0

2

+ 4C2
2
ilk' {4 (FF" + 2F'

2 r
) + (F1

, 2
+ G'

2
) }

zo

3 3r
2

- 2Q
3
pk

3
{ 8FT + F'(F'

,2
+ G'

2
)} ,

4z
o

t = (rS2
2) F"G' ,

re 2 zo

t
rz z

= [Q(pk
1 D
F" + 2 MOF"

)

0

tto

-S2
2
{Ilk

2
F'F" -

+ Q
3
Tik F" {3F1

2

4nkl(FF"

2

+
r

(F"
2

FF")}

+ G1
2

)
3 2

4z
0

1
G' + 2nk'X--aG

z
0

)

- Q
2
{Ilk

2
FtGt- 4 nkl(FIG! FG")}

3 2
2

+ Q Ilk
3
G'{3F' +

r
(F"

2
+ G' 2 )}]

2
4z

o

.
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(3.4.2)
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It may be noted that the normal stresses are found to

be not equal to one another as should be the case according

to viscometric experiments. Thus as mentioned before, in

order to explain viscodlastic behavior of materials it is

necessary to use generalized measures of the deformation-

rates.

Equations of Motion in Dimensionless Form

The equations of motion (3.3.1) reduce to the dimen-

sionless form:

'DFr G2)} DF"R t
DT

e(F'
2

- 2FF" G
2
)r = - 4p2 + F"' + a

+ c{2a(Fu 2
- FF"") + 13(F" 2

- G'
2 - 2 F'F")1

+ y E 2 OF"(2F" 2
+ F'F"')

2
r
2

(3F"
2
F"' + 2G'G"F" + G' 2

F"')} , (3.4.3)
4z

0

DG DG"
{ 2 e(F'G FG')1 = G" + a, + 2c{a(F"G' FG"')DT dT

f3(FIIG' + F'G")}

+ ye 2
{3F'(F'GH + 2F"G')

2
r
2
(3G' 2G "' + 2F"F"'G' + G "F "2) }

, (3.4.4)
4z

0

r
2

FHR(-2
BF

+ 4EFF') = 2p' 2p° - 2F" - 2aDDTDT
1 2 z

o



where

+ 26{2a(11F1F" + FF"') + 1413F1F"

2r
+ 2a) (F "F "' + GIG"))

z
2

0
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(3.4.5)

+ yc
2

r
2

{3F'F"(F"' + G') +4- (F" 3
+ F"G'2)} ,

z
2

0

2nAk'
a

p ki

Y

k
3
X
2

kl

R
pAz

o
2

pkl

k
2X

Yk
1

(3.4.6)

Boundary Conditions

The boundary conditions (3.3.3) now become

F = 0, F' = 0, G = COST, at y = 0,
(3.4.7)

F = 0, F' = 0, G = 0, at y = 1.

Equating the terms independent of r/zo and the coef-

ficient of (r/z 0)
2

on both sides of (3.4.5) we get two

equations. Integrating the equation arising out of the
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terms independent of r/zo we get pl, while integrating

the second one we get

where

n
2 -2

E(2a + (i)(F"
2

+ G'
2

) + (1)(T) + p3 ,L-1 (3.4.8)

p3 = yE2 1{3F'F"(F"' + G') +1 F"(F"2 + G'2)} dy.

With this expression for p2 the equation of motion

(3.4.3) becomes

" , 3E1"
R{7DE - + c(F'

2
- 2FF" G

2 )1= -4(4) + p3) + (1,57-

- c{2a(F"2 + 2G'2 + FF"")

+ fi(F"2 + 3G'2 + 2F'F")}

+ yc2{3F'(2F"2 + F'F")

+ r
2
(3F"

2F"' + 2G'G"F" + G' 2F")} .

4z
2

0

(3.4.9)

3.5 Solutions of the Equations of Motion in Power Series

E

The equations of motion (3.4.9) have nonlinear terms

associated with the small parameter c, and hence the
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method of Poincare can be applied (Courant and Hilbert,

1962). Following this method we assume that a solution can

be found by expanding the function F(y,T) and G(y,T)

in ascending powers of the small parameter E. We further

assume that the parameter E is sufficiently small so that

the series expansions converge fast enough and the first

two terms give good accuracy. On substituting the series

F = F
o

+

G = G
o

+

(1)c,

EF
1

EG
1

"1

+

+

e
2
F
2

6
2
G
2

62(1)2

+

+ m'

.."

(3.5.1)

into (3.4.3) and (3.4.9) and equating the coefficients of

like powers of E we obtain the following system of linear

partial differential equations :.

and

3F"'
RaT° ,

440 , (3.5.2)

ac
o = G" + a

DT 0 DT

aFi
,+ (F'

2
- 2F F" G

2
)1DT 0 0 0 0

(3.5.3)



= F"'
1

13{F"
2 + 2F'F"' + G'

2
}

1 o o

."" F"2 G,2+ ai--1 - 2(F F""
0

1 1

DT 0 0 0 1j
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(3.5.4)

DG
1

R{ + 2(F' G' - F G')} = G" 213(G'F" + FIG")
3T 0 0 0 0 1 0 0 0 o

3G"
+ al

DT
1
+ 2(F"G' - FooG")} ,00

(3.5.5)

The boundary conditions to be satisfied are

Fm = 0 , F = O , G
o

. COST, Gm+1
= 0, at y = 0,

(3.5.6)

Fm = 0, Fm = 0, Gm = 0, at y = 1,

for m = 0, 1, 2, ...

First-order Solutions

The solution of equation (3.5.2) and (3.5.3) satisfy-

ing the boundary conditions (3.5.6) are

F0(y,T) = 0,

G(y,T) = Re [eiTsinh{A(1-y)}]
o sinhA

= 11)1(y) COST *2(y) sinT, (3.5.7)

4)0(T) = 0,



where

A = a + ib,

a
{ (1

2

+ (12)1 + a}
1

2

=

1

,

(1 + a
2

)

2 1

a f

1

2

(1 + a2)
[R{

2(1 + a2)

cosh{a(y-2)}cosby - coshay cos{b(y-2)}

cosh2a - cos2b

t_I sinh{a(y-2)}sinby - sinhay sin{b(y-2)}
cosh2a - cos2b
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(3.5.8)

(3.5.9)

and the symbol Re denotes the real part of the functions.

Second-order Solution

The solutions of (3.5.4) and (3.5.5) can be so chosen

as to consist of a steady and an unsteady part as follows:

F
1
(y

'

T) = f(y) + h(y)e
2iT

,

4)1(T) = K + Me2iT

(3.5.10)

(3.5.11)

with the understanding that only the real parts of the

complex quantities have any physical meaning. Here K and

M are constants.



From (3.5.5) we obtain

G
1
(y,T) = 0.

31

(3.5.12)

Substituting the expressions (3.5.10) and (3.5.11)

into (3.5.4) and (3.5.5), and equating the coefficients of

e
2iXt and terms independent of it, we obtain two equations

for f(y) and h(y):

where

f"' = a
1
cosh{2a(y-1)} + a

2
cosh{2b(y-1)} - 4K ,

(3.5.13)

2iRh' - (1 + 2ia)h" = Al [cosh{2A(y-1)} -1] - 4M ,

(3.5.14)

R{4a + 33 - (1 + a2)2
al =

2
2(1 + )2 (cosh2a cos2b)

(3.5.15)
1

R{4a + + (1 + a2)2
a
2

=
2 L

2(1 + a )2 (cosh2a - cos2b) '

R A(4a + 3(i)
Al

2(cosh2A - 1)

Solving (3.5.13) we obtain the function f(y) and the

constant K:
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8f(y) = a2b-3sin{2b(1-y)} - a1a-3sinh{2a(1-y)}

+ (a
2
b
-3 sin2b - a

1
a
-3

sinh2a) (3y
2 - 2y 3

-1)

(3.5.16)

+ 2(a
2
b
-2 cos2b - a

1
a
-2cosh2a)y(1-y)

2

+ 2(a
2
b
-2 - a

1
a
-2

)y
2
(1-y)

8K = 3a
2
b
-3

(b + bcos2b sin2b)

- 3a
1
a
-3

(a + acosh2a - sinh2a). (3.5.17)

Solving

constant M;

h(y) =

RM
2

where

A =

=

(3.5.14) we obtain the function

Co + CieBY + C2e-BY + C3y + C4sinh{2A(y-1)}

(4a + 313) - (1 - 3a
2

- 3a(3) .

h(y) and

I

(3.5.18)

(3.5.19)

,

(3.5.20)

4(1 + a 2
) (cosh2A

a + ib ,

1
+ (1 + 4a

2 2

- 1)

B =

1

1

-1C
3

c + id

[R{2a

(1 + 4a
2

)
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1 _.1

R{(1 + 4a2) 2 - 2a} 12

d =
i I

(1 + 4a2) 1

..:L

and C's are known functions of a, b, c and d.

Velocity field

The transverse velocity is

v = TS-2{11)1(y) COST +
i2

(y) sinT} + 0(62) ,

(3.5.21)

where the last term can be neglected, and *1 and *
2

are

given by (3.5.8) and (3.5.9).

We may separate the radial and axial velocity compo-

nents u and w into a steady part, denoted by u
s

and

ws and a fluctuating part, denoted by of and w

respectively;

f

gus = 4g a
2
b
-2

cos{2b(1-y)} a
1
a
-2

cosh{2a(1-y)}

w
s

=

+

+

z Q
2

3(a
2
b
-3

sin2b - a
1
a
-3

sinh2a)y(1-y)

(a
2
b
-2

cos2b a
1
a
-2

cosh2a)(1-y)(1-3y)

(a
2
b
-2

- a
1
a
-2

)(3y-2)y

a
2
b-3sin{2b(1-y)} a a

1

(3.5.22)

-3
sinh{2a(1-y)}4X
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+ (a
2
b
-3sin2b - a

1
a

3 sinh2a)(3y2 - 2y 3
- 1)

and

+ 2(a b
-2

+ 2(a
2
b
-2

1.
2

= Re

cos2b a
1
a
-2

cosh2a)(1-y)

- a
1
a
-2

)(1-y)y2

{C3 + C1 BeBY

- 2A)}e21T

Re [
o

+ C
1
e
By

- 2A) )e

C2Be-BY

I

+

2y

'

C
2
e
-By

+ C
3
y

(3.5.23)

(3.5.24)

(3.5.25)

of -

+ 2AC
4
cosh(2Ay

2
2z

o
Q

w
X

+ C
4
sinh(2Ay

Thus the above analysis completes the solution for the

velocity field and the solution for the pressure field can

also be obtained from the equation (3.4.1).

3.6 Asymptotic Solutions for Large Values of the Reynolds

Number

For large values of R the functions G
o
(y,T) , f(y)

and h(y) become

G
o
(y,T) = e-aycos(by - T) (3.6.1)



where
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f(y) = a3{e-lay + 2ay(1-y)2 (1 + 2y) (1 - y)
2

} ,

C5

h(Y) Re 2AB 2Ae
-By

- Be-2Ay

2AB - B {B
- 1) - 1

1

- e
-B(1 y) + e-BY}

1
(1 + a

2
){(1 + a2)2 - (4a + 3(3) }

a
3

8a(1 + a2
)

1/2

{a + (1 + a
2

(6a + + i(1 9a2 9(0)
C
5

4(1 + 9a 2
)

a and (3 are given by (3.4.6).

(3.6.2)

(3.6.3)

(3.6.4)

(3.6.5)

Consequently, the transverse velocity (3.5.21) for

large values of R can be written as

where

v = rOe-aycos(by - T (3.6.6)



1
z

b = 2
n 2

b*
2 nk'

v =

1
I

a* = tea, (1 + a2)2'
a2 -2-

1 + a2

1

b* = (1 (1 + a2) 2 a2 1/2

(1 + a2)

36

(3.6.7)

Similarly, for large values of R the steady parts of

the radial and axial velocities are

2r0
2
a
3

u
s

= 3y(1 - y) + all - y) (1 - 3y) - ae-2aY}
A

1

(3.6.8)

2z
o
Q
2
a
3

w
s

= {2ay(1-y)
2 (1+2y)(1-y)

2 + e-2 ay 1

(3.6.9)

and the unsteady parts of the radial and axial velocities

are

2

u
f

= Re rc5
1e-By 2211-u111{1_e-By_e-B(1-y)}

(3.6.10)



zoC5Q2
w
f
= - Re

AAB
2Ae-By - Be-2Ay

37

(3.6.11)

2A-B
{B(y 1) - 1 - e

-B(1 y) e-By}

where A and B are given by (3.5.20).

3.7 Solutions for Small Values of the Reynolds Number

For small values of R the functions Go(y,T). f(Y)

and h(y) become

where

Go(y,T) = (1 y){(1 + ilycosT - IP4sinT} + 0(R3)

(3.7.1)

f(y) = y
2
(1-y)

2
{a

4
(3-y) + a

5
(10-10y-5y 2

-y
3
)} + 0(R

3
)

(3.7.2)

= Re C6 + C7y + C8y2
+ C9y 3 + C10y

4
[h(y)

(3.7.3)

+ 2AC
4
(y 1) {1 + 7 A

2
(y - 1)

2
} + C

4
0 (R 2 )1

,

2

Ry(y-2)
(0t2-1) (3y2-6y-4)

IP (y)
2

a +
60(1+a

2
)

6(1+a )

Ry(y-2) Ra(3y 2-6y-4)

1P4(17)
6 (1+a

2
1 +

30(1+a
2

)

)



a
4

=

b

38

1(1+5a2 +3aW1 +a2
)2(a

4
+b

4
) (5a+3(3)(1+a

2
)(a

4
-b

4
)

40{3(a2-b2) + (a4+134)}

(1+5a2+3a8.)(1+a2)1(a6+0 ) (504+3W1+a2)(a6-0),
4

840{3(a2-b2) + (a44.0)}

and C's are known functions of A and B.

Consequently, the transverse velocity (3.5.21) can now

be written

are

v = rQ(1 - y){(1 + ilycosT - 1P4sinT}. (3.7.4)

The steady parts of the radial and axial velocities

,2 1
us = X y(1 y)fa4(6 - 15y + 5y 2)

+ 2a
5
(20 70y + 7y2 - 35y 3

+ 7y
4
)}

w
s

= -2z
o
Q
2
X
-1

y
2
(1 y)

2
{a

4
(3 y)

+ a
5
(10 lOy - 5y 2

y
3

) } ,

(3.7.5)

(3.7.6)

and the unsteady parts of the radial and axial velocitites

are



u
f

= rQ2
X
-1

Re I {C
7
+ 2C

8
y + 3C

9
y
2 + 4C

10
y
3

+
2
C
4
(1 + 2A

2
(y - 1

e2iXt
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(3.7.7)

w
f

= -2z
o
Q
2
X
-1

Re 1 {C
6
+ C7y + C8y2 + C9y3 C

10
y
4

+ 2AC
4
(y - 1) (1 +

2 A2 (y 1)
2)

1 e2iX
t

3

(3.7.8)

3.8 Discussion of the Results

The first-order approximation is equivalent to neg-

lecting the convective terms compared with the time rate of

change of velocity components in the equations of motion.

This is valid provided the amplitude of oscillation is

sufficiently small.

Transverse Velocity. The first-order solution cor-

responds to the unsteady shear layer for the transverse

velocity. For large values of R the transverse velocity

is

v = rQe-aycos(by T) (3.8.1)

and is oscillatory with an amplitude decreasing exponent-

ially with distance from the oscillating plane, and a phase

which progressively diminishes with increasing distance



40

from the oscillating plane.

The critical distance,over which the amplitude falls

off by a factor of e, is zo/a. The phase difference be-

tween the two planes is given by the constant b.

Attenuation coefficient of shear wave a/z
o

is given

by

where

k
, a ,

)

2
= pa*

2
----

Z
o

177- '

a*
2 a

2
+ a (1 + a2)2-

1 + a 2

(3.8.2)

(3.8.3)

In order to investigate the behavior of the attenua-

tion coefficient we study its variation with a. Differ-

entiating a*
2

with respect to a and solving the re-

suiting expresSion after setting it to zero, we obtain

a = -1/V7 and a 4' co. It is found that the attenuation

coefficient reaches a maximum for a = -1/V7 and a 4- 03.

This behavior of the attenuation coefficient is also given

in figure (3.1).

We now consider the behavior of transverse velocity

for the cases k' 0, k' > 0 and k' < 0.

Case 1 When k' 0. When the constant k' approach-

es zero, the constants a and b become



R
a = b = zo (2k

1
v) = (f) ,

and the transverse velocity becomes

1 1

2

V = r e-(R/2)2Ycos{(R/2) y - T} ,

which for fixed rO depends only on R and A.

Case 2 When k' > 0. In this case the constant

and b become frequency-dependent and a*
2

is a monotonic

41

(3.8.4)

(3.8.5)

increasing function which approaches a limit 2 as a

tends to infinity.

Case 3 When k' < 0. The constant a and b become

frequency-depenpent. In this case the constant a*2 at

first increases with frequency, but when a = -1/1/7 , it

attains its maximum value of & , after which it drops to

zero. That is, an oscillation of very high frequency is

propagated without much attenuation. The critical fre-

quency at which the maximum damping occurs is given by

Ac
(3.8.6)

and the ratio VA
c

= 1/5 a depends only on a.

The corresponding Reynolds number at this critical

frequency is



R
Rc =

17a '

42

(3.8.7)

and the ratio R/R
c
= 7a depends only on a. The ratio

a*2 R Rc

A
c

8A 8X
c

(3.8.8)

is a constant for all negative values of k'.

From the figure (3.1) it is interesting to note that

the damping for k' 0 is found to be more rapid than for

k' > 0 for all a except in a narrow range given by

2a
2

a + (1 + a
2

)

R 1 + a
2

< 1 (3.8.9)

that is for a approximately less than 1.6. Again the

damping for k' 0 is found to be more rapid than for

k' < 0.



Figure 3.1 Attenuation Coefficient of Shear Wave
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This shows the nature of the dependence of the damping

on the measure index k'. This is essentially due to the

viscoelastic nature of the fluid. The measure index k
2

does not play any role in this respect. Numerical values

for the damping of the shear wave and for the distance

between nodes have been plotted against the dimensionless

variables in figure (3.2).

For small values of R the fluid has transverse

velocity for all y. The profile assumes the form of a

polynomial in y , and the fluid acquires phase lag with

respect to the oscillating plane. In the limit R 0 ,

the transverse velocity is linear in y and vanishes near

the stationary plane.

Radial and Axial Velocities. The second-order sol-

ution yields the radial and axial velocities composed of

steady and unsteady components with frequency twice that of

the oscillating plane.

The centrifugal and shearing. forces, acting near the

oscillating plane gives rise to steady components of radial

and axial velocities. The centrifugal force causes fluid

to be thrown radially outwards and consequently fluid is

drawn inwards along the axis of oscillation towards the

oscillating plane. The fluid thrown radially outwards

must be balanced by fluid sucked radially inwards. To

maintain this inward flow, a radial pressure gradient is
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induced.

For large R , boundary layers are found to be formed

near the planes and the steady components of radial and

axial velocities consist of three terms, one of which

decreases exponentially with y and hence its influence

diminishes outside the boundary layer. Also near an oscil-

lating plane the steady radial and axial velocities in-

crease linearly with the distance from the plane. Near a

stationary plane the steady radial velocity increases

linearly with the distance from the plane while the steady

axial velocity diminishes.

The steady radial and axial velocities in non-dimen-

sional form,

u*
s

= (1

w*
s

= (1

denoted by u:

y){(1 - 3y)

y)
2
{a
-1

(1 +

and w*
s

+ 3a-ly} -

2y) - 2y}

are
'

e-2aY
,

- a
-1

e
-2ay

,

(3.8.10)

(3.8.11)

The points at which the steady radial and axial vel-

ocity components attain their maxima can be obtained by

differentiating and setting the resulting expression to

zero;

4a - 3 a
(3.8.12)Yr 6(a 1) ' 'a 3(a - 1) '

respectively.
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We now consider the behavior of steady radial and

axial velocities for the cases k' 0 , k' > 0 and

k' < 0.

Case 1 When k' i 0. As frequency approaches infini-

ty, yr and ya approach 2/3 and 1/3 respectively;

that is, at infinite frequency the steady axial velocity

has its maximum at 1/3 whereas the steady radial velocity

has its maximum at 2/3 and minimum at 1/3. For all

finite frequency, yr and ya are greater than 2/3 and

1/3 respectively. The magnitude of steady radial and

axial velocity components increases as frequency increases

and attains maximum values at infinite frequency.

It is interesting to note that the steady radial and

axial velocity components vanish when the combined measure

parameter (3 = 1/3 and reverse directions when (3 < 1/3.

Case 2 When k' > 0 or k' < 0. In this case yr

and ya depend on frequency A as well as measure index

k'. The magnitude of axial velocity is smallest when

a = 0 (k' 0). For a = 0.5 (k' > 0) it increases

slightly, but when a = -0.5 (k' < 0) the increment of

magnitude of axial velocity is about twice that of the case

a = 0.5.

The influence of a , involving the viscoelastic

effects, on steady radial velocity is found to be similar

to that on axial velocity. The steady radial and axial



velocity components vanish when

1 2 2
= (1 U ) 4a and reverse direction when

1

3
(1 + a

2 )2 - 4a .
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Normal Stress Differences. By expanding the deformation-

rate and stress tensors in powers of E and taking the

first-order terms, we obtain the non-vanishing first de-

formation-rate, denoted by S ,

(0) rOG'
= d

ez
2z

o
'

and the first-order normal stresses

t
(0)

= p ,

rr

t
)

= - p + 21.1k2S
2

,

00

t
(0) = - p + 2pk2S 2 + 64nk'z 2

r
-2 2

.

zz

(3.8.13)

(3.8.14)

The normal stress differences, denoted by a
1

and

a
2

are given by

a
1

= t
(0)

t
(0)

= 211k
2
6
2

ee rr
(3.8.15)

a
2
= t

(0)
t
(0)

= 21.ik
2

cS

2
+ 64Tik'z

2
r
-2 2

.

zz rr

The normal stress differences are proportional to the

square of transverse shear-rate. When k' approaches

zero, a
2

tends to a
1

.
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We consider the behavior of the normal stress dif-

ferences for large values of R as well as for small

values of R.

Case 1 When R is large. For large values of R ,

the first-order non-vanishing deformation-rate is given by

6 = 6 msin(T -by -
e
o

) , (3.8.16)

1 1

-
where eo = tan-1 (a/b) and Sm = zo

1
r Q Ej (1 + a2) e

-ay

The normal stress differences are

, c,2 r,
G
1

= ILK
2
om LI cos{2(T -by e0)}1 ,

(3.8.17)
2

a
2

= 62 1.11{pk
2

+ rl }[l cos{2(T -by e0)}] .

z-
0

The normal stress differences oscillate with twice the

frequency of the transverse velocity and deformation-rate,

and decreases exponentially with y. A special feature of

the flow is that a sinusoidal deformation-rate gives rise

to sinusoidal stress differences which are in phase with

the frequency of deformation-rate. When r i 0 , a

proaches zero and

1
ap-

(3.8.18)

a
2

81-1k'Q
2
R(1 + a

2
)

-
e
-2ay

[1 cos{2(T -by 00) }] .
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This shows there is an axial flow along the axis of

oscillation and its direction is determined by k'. When

r -4- 0 and k' 0 , a
2

approaches zero and there is no

motion along the axis of oscillation.

Case 2 When R is small. For small values of R ,

the first-order non-vanishing first deformation-rate is

given by

(0) S2r.
d
8z

[ -6(1 + a 2
) cosT

12z0(1 + a 2
)

+ R{2 (y 1)
2

+ y (y 2) } (COST - asin T)

(
+ R2 6y (y 1)

2
(y - 2) + (3y

2
6y -4) (3y

2-
6y + 2 1

160(1 + a
2

)

{2a sinT + (1 - a
2
)cosT}

and the first-order normal stresses are given by

t
(0)

= prr

(0) Qr 1+ cos2TLoa P 11'2( 2z
o
)[

(3.8.19)

(3. 8.20)

2
2 (y +2y (17- R 2) ) (1 + cos2T - sin2T ) ,

,

3(1 + a )



2

t
(0)

= p -k
2 2

Qz
[---1 + cos2T sin2Tzz

r

0

- R -1)
2
+ Y(Y 29 (1 -cos2T + sin2T)] .2,3(1 +a )

The normal stress differences are given by

2a
1

= mk
2 2

1 [ 1 + cos2TQz r

o

1112.(17 1)2 Y(Y -2) (1 cos2T - sin2T) ,

3(1 + a
2

)

Pk
C2r )2 + [sin2 T COS2 T - 1

2 2 2z
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(3.8.21)

(2(y 1)
2

Y(Y 2)) (sin2T - cos2T + 1)]
3(1 + a

2
)

For small values of R the normal stress differences

assume the form of a polynomial in y.

Apparent Coefficient of Viscosity.

The transverse shear-rate is given by

too) = 211(k
1

+ k
3
6
3
+ ak )

1 asT I

(3.8.22)

and the apparent coefficient of viscosity, denoted by p
a



is

= 2p (k1 + k
3
6
2 + ak

1 dT
6
-1 D6

)

= 2p{ki + k362 + ak
1
cot(T +

1
)}

'

where 01 = tan -1 (4)11/ 11)2) .
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(3.8.23)

Since the apparent coefficient of viscosity approaches

the Newtonian viscosity coefficient as the shear-rate tends

to zero, we have

limpa = 2p{ki + akicot(T + el)}

6 0

=

which leads to

k
1

+ ak
1
cot (T + 01) =I

2

(3.8.24)

(3.8.25)

Using this result in (3.8.23), the apparent coef-

ficient of viscosity may be written as

p
a

= p (1 + 2k
3
6
2

) . (3.8.26)

Since the apparent coefficient of viscosity of a real

pseudoplastic fluid is defined to be positive and decreases



with increasing shear-rate, we should have

dp

dd
= 4pk

3
6 < 0 .

56

(3.8.27)

That is, the combined measure index k
3

should be

negative, since p > o .

This completes the discussion of the behavior of

pseudoplastic fluids based on the combined generalized

measures of deformation-rates.
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CHAPTER 4

SUMMARY AND DISCUSSIONS

The response of real materials to external forces is,

in general, nonlinear in character. The classical theory

which relates the stress to the strain or strain-rate

linearly fails to explain these non-linear phenomena. The

failure of the classical theories to explain the non-linear

response of materials led to the search for more general

theories.

In our present work, we have given a brief discussion

of the various constitutive theories proposed by Reiner,

Rivlin, Ericksen, Green, Oldroyd and Noll. All of these

theories have been developed using ordinary measures of

deformation or deformation-rate and have resulted in very

complicated constitutive equations involving terms in

powers and products of kinematic matrices and also a num-

ber of unknown response functions. The main source of all

these difficulties is the use of ordinary measures of de-

formation or deformation-rate in the constitutive equations

of non-linear materials. Any such restriction put on the

strain measure will naturally result in straining the

constitutive equation into complicated forms.

In order to avoid any further complexity of the

stress-strain relations and at the same time to explain
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the phenomena arising out of finite deformations in the

case of solids and non-Newtonian behavior in the case of

fluids, Seth (1964) introduced_the generalized measure

concept into continuum mechanics. He also suggested the

generalized measure of deformation-rate to be used in fluid

mechanics.

Narasimhan and Sra (1969) have found that in certain

viscometric flows of viscoelastic fluids, the mere use of the

generalized measure of the rate of deformation involving

velocity gradients predicts two of the normal stresses to be

equal which is contrary to experiments. Hence they have

suggested that in addition to the generalized measure of

deformation-rate involving velocity gradients, that of a

second deformation-rate involving acceleration gradients

should be used. This is reasonable since the viscoelastic

behavior depends not only on velocity gradients but also on

acceleration gradients. Further there is no need to use

higher order kinematic tensors of deformation-rates, since

their generalized measures play an adequate role of pre-

dicting viscoelastic phenomena.

In the present thesis, we have developed the concept

of combining generalized measures of deformation-rates of

different orders, fixed a priori, in order to explain

certain non-linear phenomena such as pseudoplasticity

which cannot be explained by the mere use of generalized
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measures. A suitable constitutive equation based on the

combined generalized measures of rates of deformation has

been constructed for viscoelastic fluids. For illustration

purposes, the orders of the measures have been so chosen

that the resulting constitutive equation describes pseudo-

plastic fluids. This constitutive equation has been ap-

plied to study the flow generated by torsional oscillations

of an infinite plane in the presence of another parallel

plane at rest and situated at a finite distance from the

oscillating plane.

The constitutive equation obtained thus does not

contain any unknown functions of the invariants of kine-

matic matrices and hence provides a great improvement over

other theories of constitutive equations. Besides the

freedom to choose the orders of the generalized measures

of rates of deformation, one can vary the combinations of

these measures so as to correlate the theory with exper-

iments involving a variety of irreversible phenomena and

thus this theory provides a lot of flexibility. Since the

constitutive equations using combined generalized measures

are much simpler and flexible than other theories, this

approach has enabled us to discuss the results with greater

clarity. After the orders of the combined generalized

measures have been fixed, one needs to know only the values

of the rheological constants, in order to obtain from our
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analysis concrete information on the behavior of any fluid.

Expressions for the velocity field, the stress-field,

and the apparent coefficient of viscosity have been obtain-

ed and their behaviors have been adequately discussed. It

is interesting to note that the behaviors of these quanti-

ties depend both on the sign and the magnitude of the

rheological constants.
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