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A MAXIMUM LIKELIHOOD APPROACH TO PREDICTION WITH APPLICATIONS
TO BINOMIAL AND POISSON POPULATIONS

I. INTRODUCTION

The information contained in a sample drawn from a population whose
distribution is known up to some parameter valué is used in classical
statistical theories to make inferences about this unknown parameter.
Prediction theory, however, is concerned about inferences on a future
sample to be drawn from the same populétion, where two sources of un-
certainty are combined; one is the uncertainty about the true value of
the parameter, the other is due to the randomness of the variables to
be "predicted". |

A prediction statement well known to statisticiané is found in
regression theory where one seeks an:interval that will contain an
oﬁtcome of the dependent variablevat a given value of the independent
variabie with some given probability. Another familiar problem of the
predictive type is the so-called ''rule of succession' which Laplace was
concernedeith. (see Fisher (1959).). |

In this thesis we restrict our interest to inferences on a 6ne—
dimensional statistic of a future sample, typically the sample‘Sum.

The basic type of prediction that will be considered is in the form of

a "prediction interval" defined as follows:

Definition: Let X = (xl,x ,...,xn) be a random sample from a

2

population with distribution Fx(x;e) where 6 € © 1is unknown. Denote

Y= (yl,yz,...,ym) m "future" outcomes from the same population and



let Z = h(g)v be a one-dimensional function of these outcomes.

Suppose we find two functions Lu(g) and UG(X) such that:
Pr{L X) <cZ<U X))} = a (1.1)
6 a -~ o~

for all ¢ ¢ © and with a independent of g¢. Then the intervals

[L(g),U(g)] are said to be a family of prediction intervals on 2

given § of confidence level qa. |
For an outcome x of X the values L(§) and U(§) are

respectively, the g-lower and upper prediction limits of Z given x.

A favorable situation occurs when there exists a function £(X,Z)
whose distribution is independent of ¢ and which is monotone and
continuous in 2z . A case of this type is the prediciton of the mean

Y of a future sample of size m from a Normal population. Since

7 2
izl(xi - %

Ll
1
i

~ t(n - 1) , where s2 =
X
n-1

]
3=
+
=N B

a prediction interval follows immediately. Moreover for an observed
X = x the determination of a prediction interval at any confidence level

reduces to the computation of fractiles for the random variable with

distribution

=J
+
B |~

x+ t(n - 1) sx



Conéequently we call this distribution a "prediétive distribution" of
Y given Xx.

As another example, Fisher (1959), who devoted much attention to
the prediction problem, shows that the ratio of the sample sums X and
Y is independent of © when sampling from an exponential distribution.

A more general type of situation is when the distribution function
of X, Fx(g;e) yields a pivotal quantity. In this casé the fiducial
argument ;s introduced by Fisher (1959) may be applied. According to
this argument the "logical status" of the parameter is changed from
"one in which nothing is known to the status of a random variable having
a well-defined distribution". Let G(8|x) bé this distributibn, then

a predictive distribution on Y is defined as

Fy(ysx) = OI Py | (730)46(8[x)

A quite illustrative example is given by Kalbfleisch and Sprotﬁ (1969)
for a life testing problemn.

In many situations however there is no fiducial argument available
and some alternative general method must be used.

A first class of methods are the "frequentist methods", i.e.,
methods where the probability statement l.lvof the definition is
dérived.in classical ways from the probability distributions. Faulken-
berry (1972) gives a "frequentist conditional" approach which is fairly
general. Nelson (1970) has shown a hypothesis testing approach in some

special cases. The Bayesian approach is certainly the most general in



the sense that it can be used in ﬁost situations; Ai;chison and
Sculthorpe (1965) give the Bayesian formulation as Vell as a decision
theoretic formulation for the prediction problem. A quite different
class of approaches is based on likelihood statements és was first
suggested by Fisher (1959) and further emphasizéd by Sprott and
Kalbfleiscﬁ (1969,1971). It is to be noted that the concept of likeli-
hood is controversial (see Kempthorne (1969) and Barnard (1969).).

On the basis of its asymptotic properties a 'Maximum Likelihood
Predictive Distribution" (MLPD) which is available and easy to derive
in regular cases is proposed in this thesis. Comparisons of the
frequentist conditional, Bayesian and likelihood approaches are
conducted in the special‘cases of binomial and Poisson populations for
which special problems arise from the discreteness. In both cases it
is seen that the'MLPb is very much in agreement with predictions avail-

able from other approaches.



II. PREDICTION METHODS

In this.chaptef the frequentistbconditional and the Bayésian ap—-
proaches are presented. Some results specific to discrete random vari-
ables are derived for the frequentist conditional method. Thg émphasis
is put on 1ikelih00d‘approaches. A close examination of the 1ikelihood
proposed by Fisher leads to the definition of another type of likelihood
called the "Prediction Likelihood Function'. It is shown that under
certain regularity conditions this PLF converges in probability to the
true density of the predicted variables up to a proportionality constant
when the observed sample size tends to infinity. This asymptotic prop-
perty leads to the introduction of the "Maximum Likelihood Predictive
Distribution" (MLPD) whose density is defined to be proportional to

the PLF whenever the latter is integrable.

II.1 Frequentist conditional approach'

I1I.1.1 General formulation

Let us formulate the solution given by Faulkenberry (1973) in a
slightly different way.

Let X be a random vector with distribution FX(§[9) and Z a
(one-dimensional) random variable independent of X with distribution
Fz(zle), where 6 is the same for both distributions. Suppose T 1is
a sufficient statistic for the joint distribution of (§,Z) and there

exists a region R'(t) in Rl such that



f dF (zjt) = o .
.Z € R'(E) ZIT ~ . . ‘

Suppose further that there.exists an interval R(g) in R; such that
z € R(x) # z.eR’(g).
Then
Pre{Z e RX)} = o fo? all 6 ¢ 0.

Thét is, for any outcome x of g,R(f) is an a-confidence prediction
interval.

Note that the only theoretical restrictionbisvthe existence of R(x)
as an interval on Rl. |

Olsen (1974) gave various conditions under which this method has
an easy solution, especially for problems where the sample sums X and
Z are sufficient statistics for the observed and the future sample
respectively, and where T is chosen to be X + Z. Olsen defines
further a predictive distribution for Z, but as will be seen in the next
section some problems arise when dealing with discrete distributions.

Note: One may also think of conditioning the observed variable X
(or a function of X) on a sufficient statistic T(X,Z2). T can now be
seen as a parameter and be given a confidence interval in the classical
maﬁner, hoping that this interval can bé translated into an interval on
Z. 1In the case of sample sums the solution for Z[X +2Z is equivalent

to the solution for X]X +Z,



II.1.2 Discrete case

In the discrete case we face the same difficulty in prediction as
for confidence limifs for the parameter of a discrete distribution (see
Stevens (1950) and Pratt (1965).). This has been described for the
binomial prediction by Thatcher (1964) and in this section we will
generalize some of his'resuits. |

Let us first give a definition that will be convenient when

stating results concerning discrete distributioms.

Definition 2.1: The "B-upper fractile" of a distribution is the
smallest real number u such that for a random variable X havingb
this distributidn ‘

CPr{X <u} > B.
The "g-lower fractile" is the largest real number & such that

Pr{X > 2} > B.

To simplify the following developments assume that the discrete
random variables X,Y take values on Ix = {0,1,2,..;,nx} and
Iy = {0,1,2,...,ny} respectively where n_ and ny ‘éan be infinite.
The sample sums are X and Y, and T=X+Y is sufficient; we are
looking first for an upper prediciton limit on Y.

Once a confidence level o has been chosen, the determination of

an upper limit in the conditional problem . YIT cannot be accomplished



at the exact confidence level. 1In fact for T = t we can only choose

an integer-valued function h(t) such tha;
Priy i h ()T =t} > o | @D
and
Pr{Y > h (t) lT=¢t} >1-a . (2.2)

As this is done for all t, the (x,y) plane is partitioned into two

sets of points R and R , Where
R={(x,9): ¥y fiha(x + y)}

By taking the expectations over the density of T of both sides of
(2.1) and (2.2) for some 6 we find'that for the unconditional problem

we have
Pre{Y j_ha(T)} >« vand Pre{Y 3_ha(T)} > 1 -a for all 6,
The first relationship can bé written as
Pre{(x,Y) e R} > ao.
Suppose now that it is possible to define R as

R = {(x,y): y<u@®}



then Pre{Y’f_u(X)} > a - for all © (2.3)

and thus u(X) defines a family of '"conservative" a-upper prediction

limits.
We show now that with some rather standard assumptions on h(t)

the function u(x) exists and can be determined in a convenient way.

Theorem 2.2: Assume that the functions ha(t) and t—ha(t) are

" non-decreasing for any o. Then the o-upper prediction limit of Y

given x is the unique value U such that

PriY<U|T=U+x+1} > a
_ (2.4)
and Pr{Y <U-1{T=U+x} < a

Proof: From the assumptions we have

h,(t) <h (t+1)
and t-h(t) <t+1- ha(t + 1)

or. ha(t +1) < ha(t) + 1

Thus ha(t) is inctremented by either 0 or 1. Lét us see what this
means for the boundary of the region R (see figure 2.1). Since

the points x + y = constant are located on a left diagonal, the
previous results mean that,bgoing.away from the origin along the
boundary of R, each point is followed by a point 1oca£ed either to its
right or just.above. Obviously for this to happen the assumptions are
necessary., |

Then for a given x, we look for the highest point in R on the
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vertical x, i.e., we look for U such that (x,U) e R and

(x,U + 1) ¢ R, or equivalently

Pr{Y >U|U+x} > 1l-a

and PriY >U+ 1[U+x+1} <l-ua
which can be readily written in the form (2.4).

Corollary 2.3: Suppose that for all k ¢ KL I there exists a

discrete distribution Pk over Iy such that for a r.v. Z having

this distribution:
Pr{z < y;k} =Pr{Y <y|T=y+k}.

Then if x + 1 ¢ K the (conservative) a-upper prediction limit is the

a-upper fractile of the distribution Px £1°

This result is immediate since (2.4) is equivalent to
CPr{Z <U; x+ 1} > «a
Pr{Z <U-1; x+ 1} <a.

Note that Fk(y) = Pr{Y f_yIY + k} is always non-decreasing in y.
Suppose that Pr{Y <y + l|y + 1 + k} < Pr{Y f_yly + k} = o, then

for an a-upper prediction the points (k,y) and (k,y + 1) would

be respectively a boundary and an interior point ofb R, which contradicts
the assumptions in theorem 2.1. Moreover for the finite discrete casé

Fk(y) attains the value 1 for all k ¢ Ix’ namely when y = n,y
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For the infinite case it will be generally true that Fk(y) + 1 when
y + o (or equivalently Pr{X < x|T} + O, when T > «). So
that in most situations the distribution Px exists for all x € Ix .

For an o-lower prediction limit we define the set of points R
tn the (X,y)-plane R' ={(x,y): y > h;(x + Y)} , where the function
h1 is such that

priy > nl () [T

fl
ot
e
| v
e

1
t
A

A\
[

|
Q

and PriY < hl(t)lT

We establish now the result for a lower prediction limit corresponding

to theorem 2.2.

Theorem 2.4: Assume that h;(t) and t - h;(t) are non-decreasing
for all ©. Then the 0-lower prediction limit of Y given x is the
unique value L such that

PriY <LfT=L+x} > 1~a
(2.5)

Pr{Y <L-1|T=L+x-1} < l-a

Proof: The boundary of R' has the same shape as for R, (see
figure 2.1) and thus we have to find the lowest value L for which

(L,x) is in R' which readily leads to (2.5).

Corollary 2.5: With the same assumptions as in corollary 2.3

L 1is the o-lower fractile for the distribution Px .
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In conclusion we see that we had to define limits in a conserva-
tive way. For example if we were to choose for upper limit ﬁhe iowest
points vertically on the upper boundary of R then statement (2.3)
would no longer be true. It is to be noted that what is described
as a conservati§e'procedure for the upper limit is an anti-conservative

procedure when applied to the lower limit, and vice-versa.
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11.2 Bayesian approach

. : k
Suppose a prior w(8) is given for the parameter e @ CR

which has here the status of a random variable. Then x being an
observation of a random variable (or vector) X, we define the posterior

density of 6 given x as

£, (x]6)7(6)

m(8|x) =
f£_(x|6)m(6)do
vex

whenever ffx(xle)ﬂ(e)de exists.
S}

The Bayesian predictive density of Z given x 1is

h, (z|%) Offz(zle)ﬂ(elx)de

Offz(z|e)fx(x|e)n(e)de

[£4(x]0)m(0)d6
©)

This density hz(zlx) éan be viewed as the density of the conditional

distribution ZlX, where the numerator is the joint distribution of

Z and X, and the denominator is the marginal distribution of X .
The a-upper (resp. lower) fraqtile of this distribution is‘called

the "o-Bayes upper (resp. 1ower)‘prediction 1imit for Z given X = X

under prior T '".

Case of uniform prior: Assuming that the integral ffx(xle)de
C]

exists, one can choose 7(8) =1 for all O ¢ ©, and
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h, (z[x) = Pffz(zle)fx(xle)de .

)
One should note that to integrate out the unknown parameter 6 in
this way corresponds to mixing the density of Z, fz(zle), with a density

for © proportional to its likelihood function infefre& from the

observation.
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II.3 Likelihood approaches

IT.3.1 Fisher's Likelihood

This method was first introduced by Fisher (1959) ona 2 x 2
contingency table and extended by Kalbfleisch and Sprott (1969) to the

general prediction problem.

Definition 2.6: Suppose X and Z are independent random vectors

with densities fX(x;e) andv fz(z;e) respectively where 6 ¢ 0 is
known to have the same value for both densities (By "density" it is
meant a probability density function of either the continuous or the
discrete type). We define RX(G;X) as the relative likelihood of 6
based on the outcome x of X , where

RX(S;X) = fX(x;e)/Sup fx(x;e) ,
B6ecO

and in the same way we define Rz(e;z).

If X 4is observed and Z is to be predicted, then "Fisher's
likelihood" of Z given X = x is defined by

L(z;x) = Sup R.(85%) R,(852) .
6e®

Fisher's reasoning for the use of this measure is that the likeli-
hood function of the "aggregate'" of two independent sets of data is the
product of the likelihood of the two sets; here the unknown parameter

® 1is taken to be the "most plausible value" for each given conjecture
p

(x,2). Fisher emphasizes the symmetry in x and 2z and the fact that
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"the same measure may be taken to be the likelihood of the hypothesis"
that ¢ is the same for the distribufion of X and Z.

Kalbfleisch and Sprott (1969) in their extension of the method
tried to justify Fisher's choice. But only ulteriorally Kalbfleisch
(1971) gave a theoretical foundation for this likelihood. Doing this

.he brings up the fact that it is essentially a measure of the plausibilify
of the hypothesis that X and Z come from members of their respective
parametric families of distributions with the same value for 0.

Then following an argument used by Nelson (1970) in his hypothesis
testing approach, Kalbfleisch states that since 6 1is known to be the
same the likelihood has to measure the plausibility of a value z of Z.
The latter statement is not entirely convincing and rather vague.
Nevertheless this likelihood would certainly be appropriate to test
whether a given value of Z, were it observed subsequently to an outcome
x of X, would support the hypothesis that GX = GZ . In this case
the symmetry in x and 2z (say when X and Z are identical
statistics) is nécessary. But for dur‘prediction problem the difference
in status of X and Z, known and unknown, should induce an asymmetry
in the likelihood of Z since such a measure is relative and compares
all possible values of Z , with x being fixed. |

Let us now turn to some properties of Fisher's Likelihood. 1In

the following we assume that there exists éXZ(x,z) or briefly 6y,

such that

R, (6 -X)Rz(exz;z) = Sup R

x{ Oz P (e;x)Rz(e;Z)

X
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Property 1: exz(x,z) as defined above is the maximum likelihqod

estimator based on X and 'Z jointly, since:

RX(G;X)RZ(G;Z).= k(x)h(z) fx(x;e) fz(z;e) .

Property 2: Assume further that for aimost every X 1 there
exists a MLE for 6 denoted éx(x), i.e. éx(x) .SatiSfieS
RX(éx(X);X) = eszpe Ro(05x) =1 .
Assume the same for Z and denote the MLE of 6 based on Z by
éz(z) . Let éX be the set image of the fpnction éX(x) for the set
of x's such that fX(X;eQ) > 0 for some 60 .

Then a necessary and sufficient condition for i(z;x) to attain
for a.e. x a maximum (equal to 1) for a value of 2z in the sample‘
space ;%5 of Z 1is that for all 6 € éX there exisfs a z ¢ ?2; such
that

8 = éz(z) or z= 6, [6].

A A

Then the value of 2z yielding the maximum is 2z = ez [ex)y] .

Proof: (necessary) Since Rx(e;x) and Rz(e;x) are at most equal
to 1 for all x,y,8 the only way to get L(z;x) = 1 is to have both
above terms equal to 1. Because x is fixed we have to take
eXZ = ex(x) in order to get RX(QXZ;X) = 1 and then we must find z
such that Rz(éx(x);z) =1, i.e. there must exists a z such that
1(A condition on a family of distributions {P.(x) , 6 € ©} is said to

hold '"for almost every x" when it holds for all x except for a set
A such that P,(A) =0 for all 6 e 0). '
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GZ(Z) = 9X(X) _ (2.6)

and this for a.e. x . It is obvious that the condition is sufficient.
This property makes it easy fo find the maximum z . In fact

even when 2 is not in the sample space ;E? it can be obtained by

solving (2.6) . For example for a Poisson distribution with unknowﬁ

n m R ;
parameter A and = X = in and z = ZZi , 2z 1is such that A(x) = A (z),
i=1 i=1

i.e. ‘ x/n=2%/m or %=mx/n .

In general z will be fractional.

Property 3: Asymptotic behavior whenAthe observed sample size
o :

Let us first show what happens when the observed sample size n
becomes large and the future sample size m remains finite for the
binomial case studied by Fisher (1959).

We denote by x the number of observed successes, y the number

of predicted successes and p the unknown proportion of successes.

Then

Xn-2zx

(033) P q

R (psx) = -

x /)X - x/a)™
ym-y

- P'q
R _(p; =
ypy)

(¥ - ym™ Y

and ﬁ(y;x) = RX(§XY;X)Ry(§XY;y) with ﬁXY = (x+y)/(m+n) .

From the consistency property of the MLE we know that x/n.—)p0
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almost surely, where P, is the true proportion. We will see in section

I1.3.2 that PXY tends also almost surely to P, - Thus the maximum

y = mx/n tends to mp and since we are interested in values of 'y

around the maximum, we look at i(y;x) for y finite .

Writing
ﬁXY = (x/n)(1 + y/x)/(1 + m/n)
and
Qg = A - x/)[1+ (@ =-y/(n - x)1 /(1 + m/n)
, . x _ _ n-x
we get RX(PXY;X) - (1 + y/x%) [1+ (m - y)/(n - x)]
(1 + m/n)* (1 +w/no)* "%

Noting that n - x > « when n > ®, since n - x = n(l —'X/n), we

obtain
ym-Yy
1 . =3 ie__— = b
llmn+w RX(PXY,x) o 1
thus ym-y
poqo .

limn+w L(y3x) = -
(y/mY (1 - y/m™ 7
This shows the deceiving behavior of this measure, because one would
expect an appropriate measure to tend to be proportional to the density
of Y, fY(y;pO).
We will see in section II.3.2 that under certain regularity
conditions Fisher's likelihood will tend to

fz(z;eo)/ Sup fz(z;e)
8 e 0O
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However it will be seen for the special cases studied subsequently
that when both m and n become large Fisher's Likelihood yields the
same kind of inference as the usual normal approximation. -

We now introduce another "likelihood" that will have the required

asymptotic properties so that more emphasis will be given to it.

I1.3.2 The prediction likelihood function

Definition 2.7: Let X be a random vector with density

fx(x;e) » © € © and Z a random vector with density fz(z;e) , where
© dis known to be the same for both densities. Then we define as the
"prediction likelihood function (PLF) of Z having observed X = x"
the function

L(z;x) = k(x) Sup f_(x;6)f (z;6) ,

X Z
0 e 0

where k(x) is a normalizing constant chosen such that

Sup ﬁ(z;x) =1 and §?=={z:fz(z;e) > 0 for some 8}.

z e .
Note that the value of 6 that yields the supremum is the MLE based

on x and 2z as in Fisher's method.

Interpretation: The likelihood thus defined has a direct inter-

pfetation in the discrete case. The likelihood ratio of two values

of 2z, z, and is equal to the ratio of the highest probability

zZ, »
of occurrence of (x,zl) and (x,zz) for all possible states of nature.

In other words the prospective values of Z are compared according

and proportionally to the highest probability of observing them in
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combination with the evenﬁ X=x.

For the continuous case "probability' has to be replaced by
"probability density".

Assuming .that Z is one-dimensional we can give a geometric
representation of the PLF. Since x is fixed, k(x)fx(x;e)fz(zie)
is a parametric family of curves, Pe(z) , whose envelope is the PLF.

If we were to look at likelihood intervals by cutting the PLF by
horizontai lines (see for example Hudson(1971).), we would include
the set of values of 2z such that the combined observation (x,z) has
a probability (resp. probability density) larger than a chosen level
for at least one 6. Or, equivalently, we exclude those values that
give to the event (x,z) a‘probability below the chosen level what-

ever the state of nature is.

Example: We want to make predictions‘from a normal population
with unknown mean and unknown variance.

Let x = (xl,xz,x3,...,xn) denote the observed sample, X the
sample sum and Si the sum of squares. We want to predict the'sum, Y,

of a sample of size m . We have

n
. - 2
fX(x;u,cjz) = (Zﬁdz) n/2 exp{—'~l§ z (x, - w1} ,
X PR T
> 207 1i=1
2 -1 2
fY(Y;u ,0 ) = (2nm02) 2 exp { - 12 Y - o)}
' 2mo
and
~L - ’ .
fx(lf;u,cz)fY(Y;u,oz) =m 2(21702) (n+1)/2 (2.7)

¥
m

-
exp{-—l-z-[in+
20

2K + ) + (a+muTd
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Taking the logarithm of this expression and differentiating with respect

2 \
to ¥ and 0 , we obtain

p= (X+Y)/(m+n)

2 2
_ A2 1 %2 Y X+
and O_n+1|:,2 Xi* T T mFnd
i=1
1

o 1 r2.  m o Byy2
T n+41 |:Sx + m(m + n) ¥ IIX) ]

Noting that the exponential term in (2.7) is a constant for 'u = M

2 ~2
and 0 =0 , the PLF is

-(n + 1)/2

A " n m 2 2
L(Y;x) [———m(m ) (¥ - — X)© + sx]
n m .2 -(n + 1)/2
[m(m+n)sz ¥ --%" + 1]
X
2 =(n +1)/2 o 2
t 2 n _my2
“[E + 1] where t ————m(m+n)S}2< ¥ -2%
. . 2 19 -2
and defining s'x = ;-Z (xi - x) , then
i=1
2 0 (Y- mm)? F - %
tt = — 5 or t =
(m + n)s v 1 _1_
X Sxln * o

Thus the PLF is proportional to a central t-distribution with n

degrees of freedom if we rescale Y in

]}
|
ol

)
=T
+
8 |-
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This is the standard result inferred from the fiducial argument

except for the degrees of freedom n instead of n - 1 and s; ‘with
-a divisor n instead of n -1 .

Note that we can't define Fisher's likelihood for Y alone. We

. . . 2 :
cannot disassociate inference on Y and SY because of the factor

2

fY(Y;g(Y)) for which ) is a function of both Y and SY

When the variance is known (and equal to 1) we have

2 2
f¥(§;u)fY(Y;u) « exp {1 'nn“) + -mmu) T

f.(Y§2$) « eXP{—l/ZEm(T:J ¥ - %X)z:}} , since 1: = (X+Y)/(m+n)

3

L(¥;%) = expl-% ( - Ezz}
T 1

= 4 =
m n

which is equivalent to the frequentist result. For Fisher's method

we get the same result since we have to divide by

fY(Y;uY) « exp{-%(Y - mﬁY)} = constant .
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Properties and theorems for the PLF:

Property 1: The PLF, ﬁ(z,x), depends on x only through its suffi-
cient statistic with respect to . This follows immediately from the

definition.

Property 2: The following theorems show that in regular cases the PLF
tends to be proportional to the true density function of the random

variable to be predicted, when the observed sample size increases.

Theorem 2.8: Let {f(x30), 6 ¢ 0} and {g(y;08), 6 ¢ O} be

v 1
two parametric families of probability density functions with O &R .

Let XI’XZ""’Xn be a random sample from f(x;eo) and assume the
following conditions of regularity:
i) E, {[(3/36) log £(X,0)|} <= . yeo €0
o .

ii) Ee {I(BZ/BOZ) log £(X,0)|} < = Vo e 0
o

]

H independent of ©

iii) Hy = {y € RP: g(y;0) > 0}

iv) (9/98) log g(y;®) is continuous in 6, yy ¢ H
v) For all n and all y € H there exists an unique 6 ¢ O

noted 6 such that K (8 ) = 0 , where
n n' n

n
(L1 (2/20) log £(x;30) +2 (3/30) log g (y36) (2.8

=T

K (8) =
n

>

then 6 -~ 6 almost surely when n + o .
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Proof: For any 6 (3/39) log g(y;6) is finite because of iv)
so that -Kn(G) converges almost surely to the same expression as the
likelihood equation based on the Xi's , i.e., by i) and Kolmogorov's

theorem:

Ey 1(3/30) log £(X;6)} () (2.9)

o

Assumptions i) and ii) imply that S(eo) 0 and, for any ¢ small
enough, S(GO - €) >0 and S(eO + &) < 0. Thus for almost all

sequences Kn(e) there exists N such that for n > N

Kn(e0 ~€) >0 and Kn(e0 +e) <0 .

Because of the continuity of Kn(e) with respect to 0, its unique

root Bn is in the interval (60 - €, 60'+ £) and since € can be

chosen arbitrarily small én - 60 s with probability one.

Theorem 2.9: Under the assumptions of theorem (2.8) and the

additional assumption that (3/36) log f(x;6) is amonotone function

of © in some neighborhood of 60, for any Yqs¥, € H we have when

n -> ©
ﬁ(yl;X) g(yl;él) .ﬁlf(X.;él) a.s g(yl;eo)
= n * i= 1 n ;
N . a2 n A2 .
L(y,3%) 8(y,30) RISEACIEL g(y,38,)
~1 ~2

where en and Gn are the roots of Kn(e) with y = Y1 and y = Yo

respectively.
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Proof: If we can prove that the right ratio of the right hand

side of the above equality tends a.s. to one or equivalently Zn

2
n

~

tends a.s. to zero, the theorem is proven since en and ©
tend to 90 a.s. and g 1is a continuous function of 8, where

n
~1 ~2
= . - '9 .
zn i__Zl{log f(xi, en) log f(Xi, n)}

We show that whenever the sequences {ei} and {eh} converge to 6
it implies that Zn tends to zero, and thus

52

+. 0} = 1 ,
n‘

priz > 0} > priél,
n . - n

i.e., Zn tends to zero almost surely.

Using a Taylor expansion we can write

n
Al A2 * )
= - . 2.10
z_ = (6 - 6)) izl(a/ae) log £(X,36 ) (2.10)

%* ~ A ’\1 "2
where Gn is between Gi and ei . By definition en and ©

satisfy

n
A k
L, (3120 logf(Xi;S:) - -(3/20) log g(y,30%)  k=1,2 (2.11)

We can choose n large enough so that éi and éi be in a neighbor-
hood of 60 where .(8/86) log f£(x;0) is monotone in 6. From iv)
(3/38) log g(yk;e)., k = 1,2 , are bounded in this neighborhood and
therefore the left hand sides of the equations (2.11) are also bounded.

Since ég lies between éi and éi it follows from the monotonicity



n

SO%) ¢ . 8- -
that i21(3/ 90 ) 1log f(Xi,en) is bounded and thus from (2.10) 0 a

‘tends to.zero implies Zn tends to zero, which completes the proof. -

Remarks 2.10

a) Because of the assumption of unicity in v) the maximum likelihood
estimator based on XI’XZ""’Xn and y , when it exists, has to be
én' . Its existence, however, is required in the definition of the PLF.
b) By picking up a fixed value for Yy and setting y = Yy a variation
of theorem 2.9 is that there exists a function 'k such that

k(§)ﬁ(y;X) - g(y;eo) almost surely.

c) All érevious results are true for the regular class of exponential
families as defined by Zacks (1971), theorem 5.1.2.

d) Note also that if (9/ 86) log g(y;e) is a bounded function of ¥y
for any fixed 6 ¢ © , then from equality (2.8) the convergence of
Kn(e) , and consequently that of én , is uniform in y. Furthermore
the summation in Taylor's expansion (2.10) is bounded and thus the
convergence of Zn is uniform in y as well. If additionally g(y;6)
is continuous in 6 uniformly in y, then the convergence of the PLF
is uniform in vy.

e) TFor the regular class of exponential families, h(y)exp{fy + k(8)},
the two conditions above are satisfied for y on any bounded interval

which generally will be sufficient to have a uniform convergence
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for all vy bécause density functions have to vanish at infinity (see
proof in section III1.6.1).

f) It seems that the previous results could be generalized to ﬁhe
 case where 6 bis k-dimensional by taking assﬁmp;ions similar to those

for the classical proof of the consistency of the MLE (see Zacks (1971)).

Corollary 2.11: Under the assumptions of theorem (2.9), Fisher's

likelihood tends to g(y;eo)/g(y;é(y)) a.s. when n » = , where

é(y)- is the MLE based on y

Proof: Consider the ratio i(y;g)/i(y2;§) for Yis¥,€ H .

Then

ACHR S Y

~ - ~2
L(y,3%) R(6_

Al.
3X) * R(en;yl)

~2
3X) * R(en;yz)

Al A

where en and en are the same as previously. Therefore

ACES SIS J¢ ST 10 BT VT AR LTC AP

H]

L(y,3%) R £(X36

s ) g(yz;éi)/g(yz;é(yz))

which shows the relationship between Fisher's likelihood and the PLF.

That is

i(yl;X) LoD g(yz;é(yz))

- (2.12)
L(y,:X) L(y,:X) g(yy38(yy))
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But by theorem (2.8) the first ratio on the right hand side tends to

g(yl’eo) /g(yz’eo) a.s., so that

L% L . 8(y,36,)/8(y,36(y)))

Ly;8 7 8,30 )/8(r,36(y,))

and the result stated follows from the normalization of L(y;X) .

Remark 1l: Suppose y is tﬁe sample mean (or total) of a sample
of size m from the same population as xl,xz,...,xn . If for
all 06 the density functions satisfy the assumptions of the central
‘1imit theorem, then the density of y tends to be normal ﬁhen m-> ® .
Thus when both m and n tend to infinity Webexpect the PLF to

tend to have a normal shape.

Remark 2: One may ask about the behavior of ﬁ(y;x) when m -+ o
and n remains finite. As will be shown in special cases ulteriorally,

the limiting form depends on the distribution of the population.

Remark 3: Another question of interest is the existence of a
Bayes prior yielding a Bayesian predictive density pfoportional to
the PLF. We restrict our investigation to y being the sum of

a future sample from the exponential family
f(x;6) = h(x) exp{bx + Y(6)}

i.e. the subclass of the exponential family for which the sample sum

is a sufficient statistic.
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Then denoting by X and y the sample sums, we have

Liysx) = k(x,n,m) exp{(x + )8 + (a + mu(d)} (2.13)

~

where © satisfies
x+y+ (n+m)(3/30)p(6) =0

or
-1
5 = —g—g—— [-(x+y)/(m+ n)]

For a prior w(0) we obtain the density of y ,

fn(ylx) = h(k,m,n) [ exp{(x + y)8 + (n+m)y(6)} n(0)de
0

Thus we are looking for a solution T for the integral equation

fexp{te + Ny(8)}n(8)d6 = q(x,m,n) exp{té + Ny(6)} Vt,
o

where t=x+y and N=n+m . But since § 1is a function of t
only, the previous equation becomes

fexp{to + Ny(8)}m (8)d6 = c(N) exp{té + Nw(é)} vt .

0
If ©0 is the whole real line (resp. half real line) we see by setting
t = -=s that a necessary and sufficient condition for = to exist is

that the right hand side, as a function of t, be a bilateral (resp.

one-sided) Laplace-Transform of a positive function, i.e.,
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m(0) = c() exp{-to - Ny(6)} L Lexpied +xp(®)] .

Generally the right hand.side will be a rather complex function and no
explicit solution will be available. The existence of an inverse will
be easy to verify, but the.conditions for it to be poéitive as
given by Widder (1971) or Doetsch (1950) are hard to verify.

For the Poisson and Binoﬁial cases we will exhibit, however, a

Bayesian predictive density that is very close to the PLF.

I1.4 Likelihood function and probability distribution.

In the classical likelihood terminology the likelihood ratio for
two values of an unknown parameter is the ratio of the probabilities
of observing the data x under both states of nature. The type
of likelihoods we defined previously is conceptually different. A
likelihood ratio for two values Y1 apd Y, is related to the ratio
of the highest probabilities of observing Y1 and Yy themselves,
although in combination with the observed data X.

As for the parameter in’the classical approach, the probability
distribution of y cannot be recovefed from its likelihood since we
compare probabilities of events under different states of nature
with éxy a function of‘ y.

Whereas in the classical case a bridge from likelihood to
probability distribution of an unknown parameter is provided by the
Bayesian argument, in prediction theory a bridge can be provided

by the asymptotic property in theorem 2.9. ‘Just as not any prior
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is valid for the Bayesian argument, here the PLF is not necessarily
integrable; but the fact that it is integrable asymptotically indicates
that it might very well be so for n finite, and in such a case the
density function obtained by proportionality to the PLF defines‘a
distribution that we name the "Maximum Likelihood Predictive

Distribution" or briefly MLPD.
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III SIMPLE RANDOM SAMPLING FROM A POISSON DISTRIBUTION

The methods presented in the preceding chapter are now applied
to the Poisson distribution. The MLPD exists and it is shown how its
CDFlais located with respect tothe CDF's derived from the other methods.
The asymptotic behaviors are emphasized for n and/or m tending to
infinity. An explicit expression of the density of the MLPD is not

available but a quite accurate approximation is developed.

III.1 Problem and application.

Suppose we observe a sample of size n , xl,xz,x3,...,xn , from
a Poisson distribution with unknown parameter A. What prediction
interval can we give at a chosen.confidence level for‘the sum of a
future sample drawn from the same population?

We assume that we are sampling from an infinite population. How-
ever the case of a finite population can be brought into the same
framework if we assume that this finite population has originated from
a "superpopulation' with a Poisson distribution. Then we make the
prediction on the total of the whole finite population in the following
way:

We sample n items out of the N items constituting the whole
population and thereby observe a total x for the sample. We ndw
consider the remaining N - n items with sum y as our future sample.

After computing a prediction interval on Yy ,

PrA{L(x).i y <UE) = «a VX,

laCDF = Cumulative Distribution Function
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we derive a prediction interval for the total t =x +y,

PrA{L(x) +x <t < Ux) + x} = a VA

I11.2 Frequentist conditional approach.

A sufficient (and complete) statistic for the joint distribution
of X and Y is T =X+ Y . It can easily be shown that the
distribution of Y given T is Binomial with parameters T and

q=m/(m+n),
t t -
fY{T(ylt) = (y) ’p Y, y=0,1,2,...,t

Then from theorem 2.2 the conservative g-upper limit U is defined by
the following inequalities:

U
] B(k; U+x+1,9) > a
k=0

U-1
and Z B(k; U+ x,q) < o
k=0 :

But it can be shown (see Olsen (1974).) that

S
Z B(k; s + r,0) = Pr{Z < s} s

where Z is a random variable having a NB(r,e)2 distribution.

Z is said to have a Negative Binomial distribution with parameters

(r,8) when _

Pri{Z=2z} = (z +Z 1) of(1 - % z¢1=10,1,2,...}

. o

Then E(Z) = (1-6)r/6 and 1y, (t) = - (see Feller
Z 1- (1-0)et

(1957).).

0
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Consequently U is the a-upper fractile of a NB(x + 1,p) distribution
(see also corollary 2.3.).
For a B-lower limit we have from theorem 2.4

L .

g;o B(k; L+ x,q9) > 1-28
L-1 | |
y B(k; L+x-1,9) <1-8

k=0 '

That is L is the B-lower fractile of a NB(x,p) distribution (see

corollary 2.5), except for x =0 where L =0 .

We summarize the previous results in the following theorem.

Theorem 3.1: The o-upper prediction limit given by the frequentist

conditional approach for the sum of a’random sample of size m from
a Poisson distribution, given the sum x of a sample of size n ,

is the a-~upper fractile of the NB[x + 1, n/(n + m)] distribution.
The B-lower prediction limit is thé B-lower fractile of the

NB[x,n/(n + m)] distribution (except for x = 0).

II1.3 Bayesian approach

In the second chapter we have seen that the Bayesian predictive

density of Y is defined by

©

J Eg M E DT

[T s m()ar
o

f(yx) =

Consider priors of the form 2> % . Then we have
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- © em) -n -
iy J e @nTe™ @M ar

£ Glx) = X

- - -
&7 [Te nA ) Ea %
where in order for both integrals to be convergent, for a given x,
we must have o <x+1.
Then introducing the Gamma function we can write

+y+1-
EZ T(x+y+1-gqg)/(m+ Y ¢

Y: 1
rx+1-g)/m*tl-0a

f (y|x) =

n/(n+m) and q = m/(n + m),

and further by setting p

r(x + y+1-q) x+1- an

£ (y[x) - r(x+1- a)y!

for y e I = {0,1,2;...}
In particular for a uniform prior, i.e. o = 0 , we have
le ~ NB(x + 1,p)
For a 1/) prior (assuming x # 0) we have
Ylx ~ Ns(x,p) .
The next theorem follows immediately.

Theorem 3.2: The frequentist lower and upper prediction limits

as described in the theorem of section III.2 coincide respectively

with the Bayes lower prediction limit under prior 1/X (when it exists,
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i.e., x # 0) and the Bayes upper prediction limit under uniform
prior.
Usingian argument similar to the one given by Thatcher (1964) for

the binomial prediction one could show that no prior will yield the

same limits as the frequentist approach.

III.4 Likelihood approaches

I11.4.1 Fisher's likelihood

Applying Fisher's likelihood approach to the Poisson problem

gives

L(y;x) = R(x;1) R(y;A)

A

e-nxix e—mk (X)y

* -
e *(x/n)* e (y/m)”
with A=(x+y)/(m+n) , or

x + N + ypqu/ (xxyy) R

L]

L(y5x)

it

m/(m + n)

~

with p=n/(m+n) , q

, i.e. y=mx/n.

Wi

The maximum 1 is obtained for y =

111.4.2 Prediction likelihood approach (PLF)

The predictive likelihood approach yields

>
I

Lys®) = £,(xsME (y;h)  with (x + y)/(@ + n)

« @ FMAXY XY a0
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or

~ - +
L(y;x) < e y(x + y)x b qy/y!

. A : ~
We now look for the value y of y that maximizes L(y;x). 1In
order to do this we have to make certain approximations. First using

Stirling's formula,
+ 1 -
y! = ray T %7,

we obtain

Lo = @+ X T IF T
Taking the logarithm of the right side we have

(x+7y) log (x+y) +ylog q~- (y+7%) 19g y o
and by differentiation

log (x + %) + log q - log ¥ ~ % = 0

~

- . 1
or (x+y)q/y=eéy = 1+% +

>

i.e. for y not small: (x + ¥)aq ;_§ + %

, ~m
or yog (x-%) -4

e

We see that § is less than § = mx/n of Fisher's approach.

III1.4.3 Comparison of the two likelihoods

Let us look at the ratio of Fisher's likelihood to the PLF as a

function of y, that is
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i(Y§X)/ﬁ(y;x) « @—d

By Stirling's formula which is fairly accurate even for small values of
y , the right hand side is approximately equal to V}i Thus the above
ratio is an increasing function of y ; it could be shown by using a
theorem analogous to theorem 3.4 for likelihood functions, that Fisher's
likelihood is always located to the fight of the PLF. This is confirmed
by the fact that § is larger than y .

More will be said about the two likelihoods when we study their
asymptotic behavior. However we can already note that the maxima will
tend to be the same only when x » = ; m/n not going to O .

ITI.5 Comparison between the MLPD and the Bayesian predictive distri-
butions. '

We first need to establish theorem 3.3 and theorem 3.4. (see also

Pratt (1965).).

Theorem 3.3: Let g(x) be a density function strictly positive

on the interval [a,+®) where a is finite. If f(x) is a function
positive on the same interval and such that £(x)/g(x) is non-

increasing for x > M, then f(x) can be normalized to a density
.|.oo
function, i.e. af f(t)dt < = .

) C 4o M e
Proof: [ £()de = fe(e)de + [ £()dt
a : M

a
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oo
kK + J [E@©)/a(t)] slt)de

IA

o
K +[E0D/g] [ s(o)de

IA

K + [fM/g][1 -6M] < =

This theorem holds as well in the discrete case, if f(x) and g(x)
are strictly positive on the same discrete set of values of x. The
integral is then replaced by a summation sign. For convenience the |
interval of definition has beeh chosen as [a,+®). TFor an interval

(-»,b] the convergence is insured when f(x)/g(x) is non-decreasing.

Theorem 3.4: If f£(x) and g(X) are density functions strictly

positive on the same interval (a,b) and £(x)/g(x) is a non-
decreasing function on (a,b) then for their corresponding CDF's we

have F(k) < G(x)

]
o

Proof: For x < a, F(x) G(x)

1l
[

G(x)

For x> b, F(x)

For a <x<b,

X

o ox
F(x) = [ [E(e)/g(6)Jg(e)de < [E@)/g(x)] [ s(r)de

IA

- [£G)/8(® I

b b
- X) = t)/g(t)lg(t)at > x)/g(x) _j g(t)dt
1-F(x) = _[ [E(e)/g()]g(t)de > £(x)/g() [ g(t)d

= [f(x)/g(x)J1-G6(x)]
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then:
_Fx) < __Gx) = F(x) < G(x) .
1 - F(x) 1 - G6(x) '

The proof holds for the discrete case when the integral sign is
replaced by a summation sign.

We now come to the main statement of this section:

Theorem 3.5: When random sampling from a Poisson distribution
there exists a Maximum Likelihood Predictive Distribution, noted
F(y;x), for the sum, Y, of a future sample. Moreover if we denote
by Fl(ylx) and Fz(yix) the Bayesian predictive CDF's for a 1/}

and a uniform prior respectively the following inequalities hold:

FZ(YIX) < F(y;x) < FI(Y|X)

Proof: Let ﬂ(y;x) .be the PLF and fl(y[x) and fz(y[x)
the probability mass functions for the Bayesian 1/} and uniform
priors. We are going to show that:

1) ﬁ(y;x)/fz(yix) is a non-increasing function of y for all
xe{I = 0,1,2,...} . Then by theorem 3.3 the existence of ﬁ(y;x) is
proven and by theorem 3.4 the left inequality holds.

ii) ﬁ(y;x)/fl(ylx) is non-decreasing in y and by theorem 3.4
the right inequaliﬁy holds.

Reéall that

(x +y)

A . - + »
L(y;x) = k(xl,n,m) e (x + y)x yqy/y! s

£,(y ) = k' (x,n,m) (x + y)! Iyt
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" and fl(ylx) = k"(x,n,m) (x+y - 1)! qy/y! .
For i) we look at the ratio

L(ysx) /£, (70 = heomn) & FF D+ T Y@+ y1

and have to show equivalently that u = e "n"/n!

is a non-increasing sequence.  Let V.= log u . Then
Vos1” vn = - (n+1)log(n+1)-log(n+1)!+n~-nlogn+logn!

= «1 4+ 1 log (1+1/n) (n # 0)

But since log (1+x) < x for all x # 0 we have

Voo l—vn <=1 4+ n(l/n) or %r+1_vn< 0 for n=1,2,...
Consequently UL < u for n=1,2,... and this holds also for
n =0 since u, = 1 and u, = 1/e .

For ii) we consider:
ﬁ(y;x)/fl(y[x) = hl(x,m,n) e—(x + y)(x-l-y)x‘l-y/(x-l-y--l)!

I3 —n .

i.e. we have to show that w o =e n/(n - 1)!

in a non-decreasing sequence. Note that the sequence is not defined
for n = 0 which corresponds to the fact that the prior 1/} does not

apply when x = 0 .

5. = 1ogwn= - n+n logn - log(n - 1)!
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s

0+ 1° Sn = (n+ 1) log(1+1/n)-1

But since logx > 1 - 1/x for x > 1, taking x =1+ 1/n we find

n+1 n

We will see in section II.6.2 that ﬁ(y;x) can also be normalized

to a density and that the corresponding CDF is always below Fz(ylx)

Existence of a Bayes prior yielding the MLPD:

At this point we may ask if there is a Bayes prior m(A,n,m) that

leads to E(y;x) , 1.e. that satisfies
(x!y!)flofwe'(n‘+ WA ) F@)? (,n,mdr = (3.1)
kmme T vy Y oYy
for x,y ¢ I ={0,1,2,...}

By setting t=x+y and N=m+n , (3.1) can be,rewfitten
equivalently as
e et

W—A e t )
fe N Atn(k,m,n)dk = k(x,m,n) Lt , for all t, xe I

o N

This equality shows that k does not depend on X , and . further, 7
depends only on N and A. Then,

oo

J e M atroLMdr = e ' for all tel

By setting u = NA one sees that T (A;N) has to be of the form
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~1
N "y(NA) and an equivalent condition for the existence of a Bayes

prior is the existence of a non-negative function p such that

of:Luutp(u)du = e—ttt tel ' | (3.2)
The conditions for e_ttt to be a bilateral Laplace transform (see
section II1.3.2) are fulfilled and thus there exists a unique fungtion
p(u) verifying (3.2). However p(u) is not a classical function and
we are unable to verify its positiveness. |
Instead of this we exhibit a prior that leads to a predictive

distribution that is very close to the MLPD. The prior we chose is

L
2

pu) =u

Using the formulae (see for example Widder (1961).)

T(t +3%) = \ (2t)!2’2t/t! (3.2a)
and t! = VEE et 1/ze_texp{—I/th) - 1/(36Ot3) + o(t—s)} R
‘we get

T(t+% = \2r e 5tb exp{R(t)} (3.3)
with R(t) = -1(24t) + 7/(8 x 360t>) + o(t°) .

i . -t t
I'(t + ) gives a good a good approximation for e t  and consequently

N\H

so does the Bayesian distribution with prior A for the MLPD. The

larger t = x +y the better the approximation. The posterior



distribution for this priof is a NB(x +v1/2,p)3 distribution.

Determination of the normalization constant for f(y;x)

Our purpose is now to find the function K(x,p) such that

v - +
K(x,p) Z e y(x + y)X yqy/y! = 1
y=0

Consider the expression Q , where

x+k% o - x +
Q= -2 62 e (x +y) Vg’
: x '
X y=0 V.
o -(x + x + x+5%
] EFV L ¥t Y S ' n
=0 XX Syl
We substitute for e—(X * y)(x + y)x Ty expressions from (3.3) and
obtain
x+ky
Q= ) [(x + ¥‘+ 2 P —4 exp{R(x) - R(x+y)} ,
y=0 I'(x + %) y:

or equivalently Q = E[lexp{R(x) - R(x + y)}] where the expectation
is to be taken with respect to a NB(x + 1/2,p) distribution. But

since

3We can extend the definition of a NB(r,8) of section III.2 to non-

integer values of r as follows:

. = - I‘(z+r) r - z I
PriZ = z} Tz 8 (1 -~ 8) zZ €

45
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, . 1 1

exp{R(x) - R(x + y)} = 1 - 5= 24(x + )
~ 1 1 1

Q= 1-5 t Ay

As a second order approximation we may compute the expectation with

respect to a NB(k + 1,p) distribution:

Xx+y y=0 xly! x+y
.!R“’ (x+vy -1 XX _ P
X {O(X—n:y: Pq X
N 1 1
Thus Q&1 -5 EZ};%
= 9
Q=1-%ux

Going back to the definition of Q we establish formula (3.4):

x+ 5%

F eV Iy 21 (3.4

q P
1+ 24x )
y=0

X
X

Note 1: Had we used for exp{R(x)} its exact value (see (3.3))

exp{R(x)} = T(x + %)/ ( 2= e Xx%) = (2x)!/(22x-+%x1e_xxx),

we would have obtained (3.5) alternately to (3.4):

(3.5)
2x+% x+%
2 ' 3 -(x+ x+ ~
(1 - 2oy Z—Ep F e eIy 21
! =0
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The difference between the two approximations is negligible.
Tables I and II give the exact value of the left hand side of (3.4)

and (3.5) respectively for various values of x and p .

Note: Formulae (3.4) and (3.5) do not apply when x =0 .
'We will develop a solution which has been inspired by an article of
Haight and Breuer (1960) on the Borel-Tanner distribution. This

solution for x = 0 leads eventually to the general solution for

the sum
R +
= y X =Y Yo
S, ygo(y + x) e °q’ /y!
Borel (1942) has shown that defining B8 = se " we have the relation-
ship
o0
-1 .
o = Ly 87 /y! 5

y=1

which by taking B =q/e and o =1 - u can be written. as

[ .
1 -u-= yzlyy--le-yqy/y! with gq= (1 - u)eu
Let us differentiate this equality with respect to q , then

o0

-du/dq = (1/q) ylly e-yqy/y!

and by replacing dq/du = - ue'=-uq/(1l - u) ,

o]

yglyye—yqy/y! = (1 -~ u)/u
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Finally we obtain

S =

y_ =y Y =
o y Oy e /y. - ]./u

Furthermore by differentiating S0 with respect to q we have

zlyye Y T Yy - 1t = ds_/da

o
0]
-
72
[}

e(dSo/dq)

e(du/dq)(dSO/du)

(e/q) (1 - 1/u) (dS_/du)
and in the same way

= (e/qQ)(1 - 1/u)(dS, /du) , with S _ = 1/u

Sk + 1

or by setting t = l/u
S .= (e/q) (£ - t%) (ds, /dt) (3.6)
Kk + 1 K

with

S =t and q=(1- :L/t)e'”t

The relationship (3.6) allows us to obtain the expression of Sk by

recurrence, €.g.

= (e/q)(t3 - tz)



39

(Y-
o217
o4y
32
« 2
10
+d5

TABLE I.

b 2
« 95731 « 99954
«33750 89971
«95¢38 160528
1.031080 T.00u%8
ledi192 1.90081
1laGu2t5 1euid97
1600312 1.C0103
1.0C226 1.001060
1.53¢98 1eutuBdy
s JJ2LY Led2db2
1.3513°0 1.96333

TABLE TI.

1 2
1.36¢123 1ed0dut
1.3u0l5 Y 1.00419
1302125 leltuldn
1.0y2386 1.00069
162331 1.00495
1e03L07 l.d0114
1.304€1 1.06125
1,00690 1.30126
leudl87 1.0412¢
100443 100100
1.902338 1.,0udby
1.33249 1.30039

Approximation (3.4)

« 98934
¢854 32
1.00(01
100018
1.30032
100042
leul{ue
1.60{(49
1.00C4u¢
1.30C37
1.3uc22
1.50¢01¢

1.390032
1.0603¢
1.00G018
1.30033
1ol 44
1.406(52
1.4tC5¢
1.30L5¢
le00f614
10001
1.0062¢0
100013

« 990992
85597
1.03C02
1.00C12
1.06€C2¢0
1.00025
1.00028
1.80€C29
1.06626
1.00021
1.656012
1.00637

r

1eflLOL
10500608
1.000160
1.390189
1.66825
1.06C3¢0
1.00032
1.30631
1..0028
1.00022
1.00612
1.000%6

- (Value of left hand side)

¢« ©3995
e $3S5C
1.333562
1.053¢08
1.01012
1.831047
1.031618
1.0i01¢
1.403017
1,.01012
1.61207
1.06Jo04

~ (Value of left

I

101301
101004
101607
1.2i3012
1.C1U1E
1.0137%1¢
1.030290
1.716280
1.63018
1.03612
1.01097
1.851003

99997

«€4C93
1.00062
1.50008
1.60009
1.00¢012
1.00013
1.,00013
1.06612
1.00009
1.000C8
1.00003

1.600C1
1.000C3
1.06G0CS
130009
1.6001¢8
1.00C013
1.00014
1.00014
1.006C12
1.066089
1.C0005
1.00062

7 8
+99998 .96548
1.05000  1.00£00
1.50094  1.06004
1.00005 1.,d3GC4
1.00007  1.336C5
1.60009  1.00007
1.00010 1.00007
1.00010  1.00007
1.00068 1.000C6
1,00006  1.00705
1.00803  1,06662
1,00002 1.00¢C1
hand side)

7 8
1.00000 1.00000
1,00002 1.006¢C1
1.00006  1.00063
1.0n006  1.300CS5
1,00909  1.000¢C7
1.00040  1.000C8
1.00018  1.00008
1.00010  1.00008
1.900€9  1,00007
1.000606  1.00005
1,00003  1.00002
1.00001  1.00001

+ 99999

1.00¢0¢C0
1.000401
1.00093
1.00000
1.00006%

- 1.000006

1.308¢06
1.0000%
1.0000¢
1.06001

1.00001

1.60030
1.0000¢
1.00002

1400084

1.05005
1.000086
1.00008
1.08006
1.06035
1.00004
1.00002
1.00000

19

«99999
i.00080
1.00001
1.0064902
1.00004
1.006C0%
1.05005
i.98405
100004
1.08083
i.00081

1,300081 -

S in

1-00000
1.00001
1.00002
1.006C3
1.00004
1.00005
1.00005
1.60065
1.00004
1.00003
1.00001
1.00000

6%
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I11.6 Asymptotic properties.

II1.6.1 Limits when m/n > 0

This means that n - and m remains finite, i.e., the observed
sample size alone becomes large. The behavior of L(y3x) and L(y;x)

has been studied from a general point of view in chapter II. If Ao

. ' a.s.
is the true value of the parameter then x/n "5 Ao and further

a.s.

-mAo y
2 s A
f(y;x) °% fY(y;Ao) = f___(m o’

1

y.

~ —Mig y
L(y;x) ass. ¢ (on) for y=20,1,2,...

eV Y

which exhibits for the Poisson case the deceiving behavior of Fisher's
likelihood.

As for the Bayésian predictions we know (see Feller (1957).) that
if Z ~ NB(r,®) and r » > but r(l =6) - Ao ‘then Z i P(lo)-
In the present case for a NB(x,p) where p = n/(m + n) , with proba-
bility one x> since x/n > A, »but x(1-p)= xm/(m + n) >mA .
The same is true for a NB(x + 1,p).

Thus the Bayesian predictive distributions under priors 1/} and 1

also converge to the true distribution of Y almost surely.

Uniform convergence of fgy;x).

Let us show that the a.s. convergence of f(y;x) is uniform in vy.

Recall from theorem (2.9) that the convergence will be uniform in y
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on a bounded interval if f(y;lo) is continuous at 'Ao uniformly
in y on that interval. This is obviously true for an interval
IK = {0,1,2,...,K} where K is arbitrary, i.e., for any given n

and € one can find NI(K) such that for all y £ K

N > N, =5 Pr{ Sup £ (y3x) - £(y3A )| < €/2} >1 - n.
z n o
n> N
Let us choose K such that f(K;AO) < €/2 . The fact that fn(y;x)
lies within /2 of f(y;Ao) implies, for € chosen small enough,
that for y = K we are to the right of the maximum of En(y;x) and
then En(y;x) is decreasing in Y , i.e., fn(y;x) < fn(K;x) < €

for all y > K. Thus
Ifn(Y§X) - f(y;lo)i < g/2 ‘for y € Ik:} [fn(y;x) —vf(y;Ao)l < e
for all y .

Consequently

Pr{ Sup lfn(y;x) - f(y;Ao)l <e} > 1-qn for N 3_N1 s

n >N
where N1 is independent of y and €,n can be chosen arbitrarily
small,
This proof applies more generally to any distribution as long as
the density of y 1is continuous at the frue value of the parameter
uniformly in y on any bounded intef?al, and the density of the MLPD

tends to zero in a monotone way when y tends to infinity.
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I111.6.2 Limits when m and n > * ,m/n remaining constant.

Let us recall first (see Johnson and Kotz (1969).) that if Z
is distributed NB(r,6) , when r > ® Z tends to follow a Normal

distribution with mean and standard deviation

CE(Z) = r(1-8)/6 o(z) = JE(I-J6/6 .

Thus for a Bayes 1/A prior with probability 1 (since x » = with

prob. 1) Y|x tends to be Normal with mean

E(Y|x) = x(1 - p)/p

mx/n

and standard deviation
G(Y]x)

VX(l -p) /p

Vﬁx(m + n)/n2

]

1
+ n) .

]
8
=l
~~
g |-

This is equivalent to the result one would obtéin by using the normal
approximation for the distributions of the sample sums.

For the Bayes uniform prior, x is replaced by x + 1 which leads
to the same limiting form. The MLPD is between these two Bayesian
predictive distributions and thus has the same asymptotic behavior.

We show now that Fisher's likelihood can be standardized to a

density whose limit is the same as above.
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Recall that

— +
L(y;x) « (x + fx Iy for y=0,1,2,...

Consider the function defined as

0 for y=20
h(y;x) «
1,2,...

x+ XYY/ -1t for

Since (y - 1)!'/y’ 1is non-increasing, L(y;x)/h(y;x) is non-increasing
as well, so we are done with the proof if we can show that y;Oh(y;x)

is convergent.

It is easily seen that the series

N .
ug = +* T Iy - D y=1,2,...

is convergent for all x because uy.= Vi o where

v = x+lrfT LT qu +1

X k! k=20,1,2,...

and Vi is proportional to %(k; x+ 1) .

Thus h(y;x) can be defined as a density function and
h(y;x) = £Cy - 13 x + 1) for y>1.

Consequently a density can be derived from Fisher's approach which we

denote E(y;x) , and we have

y-1
F(y;x) = (Lof(k;x) > kzgh(y;X) = kZof(k;x +1) =F(@y -1 x+1)
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i.e.: _ %(y;x) z_%(y;x + 1) - E(y;x + i)
But since for all y,’f(y;x + 1) tends to zero when X > 'wé have
Fysx) > ?(y;x +1) - ¢

where € can be chosen as small as we desire,

Consider now the ratio.

F(ysx)/E,(y]%) = Kx+y)* 1y ULx+ 9t o /y]

X +
e AT Tt
x+y!y Y
The difference 1ogw& Y1 1ogw& = (x + y)log(l + 1/ (x+y))

-y log (1+1/y)

is always non-negative because the function u log(l + 1/u) 1is
increasing for u positive. Thus the above ratio is a non-increasing
function of y and ﬁ(y;x) is always below Fz(ylx)'.

Finally we have

~

F(y;x + 1) = € < F(y3x) < Fz(YlX)

When x - « s ﬁ(y;x + 1) and Fz(ylx) have the same limiting form
as ﬁ(y;x) , and so does ﬁ(y;k) since € goes to zero. We summa-

rize these results in the following theorem,

Theorem 3.6: For n,m -+ o , m/n remaining constant, the
predictive CDF's of Y: F (y|x) , Fy(y[x) , F(ysx) and F(y;x)

tend to be such that
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X./ﬂ.-_x g N(0,1)
§-%4n% '

with probability one.

ITI.6.3 Limits when m > » , n remaining finite.

One can imagine situations where the future sample to be predicted
would have a large size m . This for instance would be the case for
the type of inference discussed in section III.l when sampling from a
finite but "1arge" population, i.e., in fact the sampling fraction
n/(n + m) has to be small. It might be of interesf then to study the
limiting form of the distribution of Y 4in order to approximate it.
Also the prediction intervals obtained from a limiting predictive
distribution of Y/m can be seen as confidence intervals on the true

parameter Ao .

i) Limit of £(y;x)

e

2 m+n

When m -+ «» then E(Y;x) » o ; thus we can use Stirling's approxi-

mation for y! and obtain

E(ysx) « y° 1/2(1 + x0T YA Y

Let us look rather at the distribution of Y = Y/m because E(?;x)

is finite. Then
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A =1 bl . _—
£Gix) = 5 f(l*%ﬁ**“u+nm>”

When m - < we obtain
A~ _1 —
f(y;x) > k(x) ?x e « §
so that . f(¥;x) - GAMMA(x - % , 1/n) .

Thus for m '"large" we can approximate E(y;x) by a GAMMA(x - * , m/n)

distribution

ii) Limit of f(y;X)

+
x+p*TIY

xxyy

£(y;x) =

+ -
* Yx(l + x/y)x y(1 + n/m) y o
In the same way as in i) we find that

£(3;x) > GAMMA(x,1/n)

iii) Limit of the Bayesian predictions

For Fl(ylx) as well as Fz(ylx) , m > o corresponds to having

the parameter © of the Negative Binomial distribution tending to O .

Lemmma 3.7: Let Z be a random variable distributed NB(r,8).
When 6 > 0 the random variable ©Z tends in distribution to a

GAMMA(r - 1,1) distribution.
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Proof: The characteristic function of Z 1is (see section IIIL.2)

tr r

b, (e) = T /1= (- 0eTT

otr
e

then for 6z, v Lt) = 6%/[1 - (1-0)e” T

When 6+ 0 the denominator is equivalent to

[1- (1-8)(1+ 6t + o(62)T = [8¢1 - t) +o0(8%)F
or

0" (1 - )"
Thus L g (e) > - t) T when 6 + 0

which is characteristic function of a GAMMA(r - 1,1) .
Applying this result to the Bayesian case with 1/A prior, we
have

Y - NB(x,n/(n + m))
nY/(m + n) i. GAMMA(x - 1,1) when m >

or equivalently

nY/m 3 GAMMA(x - 1,1)
For a uniform prior we obtain
d
nY/m . GAMMA(x,1)

These results are equivalent to the posterior densities of the unknown

parameter A for the same corresponding priors.
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We summarize the results for m "large" in the table below. Recall
that m "large" means in fact m/n large since all predictive densities

considered‘depend solely on this ratio.

Approximation for m 1large

Type of ’ Limiting Limiting

Approach Notation Distribution Expectation
Bayesian 1/X fl(y]x) T(x -1 ; m/n) %x
Bayésian 1 f2(ylx) I'(x ; m/n) -:l—l(x + 1)
MLPD £(y3%) r(x - % ; m/n) T(x+ )
FISHER %(y;x) I'(x ; m/n) %:‘(X‘i; 1)
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ITI.7 Examples:

Several éxamples in the nexf pages illustrate the preceding results.

For a given value of x and p = n/(n + m) the predictive
density functions and cumulative distribution functions are plotted.
These correspond respectively, from the left to the right, to the
NB(x,p), the MLPD, the NB(x + 1,p) and the distribution derived from
Fisher's approach. |

Six examples have been chosen, i.e., x =5 and 10 for the
vélues of p: .25, .50, .75 which corfespond to n/m equal to 1/3,

l and 3 .
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I111.8 Conclusions

Becéuse it falls between a conservétive and an anticonservative
predictive distribution the MLPD is expected to yield prediction
intervals whose exact probabilities of coverage B(}) are close to the
nominal level of confidence for any given A. One could in fact
compute B(A) and compare it to the nominal level; this has been done
for the binomial case (see section V.7). |

Since the MLPD is approximately a NB[x + %,n/(m + n)] distribution
it can be said to lie between the comservative and the anticonservative
distributions, which are NB(x,n/(n + m)) and NB(x + l,n/(n + m)).

It is noticeable that the three corresponding Bayes priors are the
priors most frequently encountered in the literature around the classi-

Al

cal theories, i.e., the and uniform priors.

s
The asymptotic resﬁlts that have been estéblished guarantee for
the three distributions the convergence towards the true distribution
of the sum Y, for =n ktending to infinity. As for Fishe;'s approach
it tends very rapidly towards.the NB(X + 1,p) distribution when
mx/n (i.e., roughly the expectation of Y) increases. All approaches
tend to be equivalent to the usual normal approximation approach when
both n and m > ~ .
Another importaﬁt result is that the predictions depend on n
and m only through their ratio or equivalently through p = n/(n + m).
The larger the value of p the closer will be the MLPD, the NB(x,p)
and the NB(x + 1,p) distributions. Note that in the finite popu-

lation framework described in section III.1 , p is the fraction of the

of the population that has been sampled.
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IV STRATIFIED RANDOM SAMPLING FROM A POISSON POPULATION

In this chapter the méthods exposed earlier are applied to the
prediction of the grand sum of future random samples drawn from Poisson
strata. When‘the ratio of the observed sample size to the future sample
size is constant over the strata the problem is the same as in chapter
IIT. The results given for the MLPD approach illustrate how helpful

this approach might become in some rather complex situatiomns.

IV.1 Problem and notations

Suppose we have a population composed of k strata, each stratum
having a Poisson distribution with parameter Ai . We sample at

random from each stratum; n, and X, respectively denote the
sample size and the sample sum for stratum i. We are interested in
making predictions on the grand total Y of a future sample of size
k
izlmi s Where m, elements are to be sampled from stratum i.
We introduce further the following notations:
ﬁ.

T = 1%

»
|

%

Y
12174

v
]

where Yi is the sum of the "future" sample from stratum i ,
T=X+Y

Pi = ni/(mi + ni) q. =1~ p, .
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It is to be noted that the Yi's and. the Xi's are sufficient

~

. . = T
statistics for A= (AI,AZ,...,Ak) .

IV.2 Frequentist approach

Let us consider the joint distribution of (Y,Xl,Xz,...Xk)
k. :
+ k ok (@)%
f(y,x ,x ) = L eizl(mi ni)Ai ' Lom, A 53———1——
VoRpaFysee X ) = G 1217717 i=1 x !
In the general case the frequentist conditional method fails to apply
because there is no tractable function w(y,xl,xz,...,xk) such that

's .

conditioning Y on ¥ 1leads to the elimination of the Ai
However ia the following special case where the mi's are proportional

to the ni's ,» there is an easy solution.

Special case: pi = constant p

We investigate the joint distribution of X and Y . We have

k
X ~ P(B) where B = LM
k
Y ~ P(a) where a = izlmiki
: -8 x -a
£ (x,y) = & 8 e o
XY\’ x!

Thus for T =X+ Y we have

_ [t t-vyy v
fYIT_(y)B 2 .

(o + B)t
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We see that in order to get for YIT a distribution independent of the

Ai's we need

k
o - i=1miAi independent of Ai .
o+ 8 E
+
i=§mi Ay

That is, mi/(mi + ni) = q _conétant. Then
Y|Y +X ~ B(Y + X,q) ,

which in turn means that when the ratio of the size of the observed
sample to the size of the future sample is constant for each stratum,
the problem can be viewed as simple random sampling as far as the
frequentist approach is concerned.

Consequently the results established in section III.2 are appli-
cable here and in particuiar the prediction limits are to be read
from a NB(x,é) for the lower limit and a NB(x + 1,p) for the upper

limit.

IV.3 Bayesian approach

IV.3.1 Preliminary remark

Suppose X and Y are discrete random vectors with mass
probability functions fx(xle) and fY(yIG) respectively} 3 - being
a comﬁon k*dimeﬁsional unknown parameter belonging to ©.

Let us observe an outcome x of X and derive from it, by a

Bayesian argument, a predictive distribution for a function 2Z = Y(Y) .
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Let us denote by ﬂ(elx) the posterior density of 6. Then

fZ|X(z|x) = effz(z!e)'rr(elx)de

fZ|X(z|x) = Jif £,(v|0)} m(o)de (b.1)

°vY,
with ‘\’z = {y: ¢(y) = z}

But since we deal with probabilities the properties of absolute
convergences required to interchange the summation and integral signs

are verified so that equivalent to (4.1) we have .

lex(zlx) = 7 eij(yle) n(glx)de (4.2)

Z

Applying this to the stratified sampling problem it implies that we

are allowed to get the prédictive distribution for each Yi separately
first, and then by means of convolutions to derive the predictive
distribution for their sum Y. This will be much easier than going

the direct way according to (4.1).

IV.3.2 Uniform and 1/>\i priors.

Each stratum being regarded as a population we obtain
Yilxi ~ NB(xi + lgpi) for a uniform prior,

Y.IXi ~ NB(xi;pi) fo; a 1/>\i prior .
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But the distribution of the sum of random variables having negative
binomial distributions with different parameters P; does not take
a familiar form. Thus we have to‘rely on a computational device to
produce the results ofbthe convolutions. For example, with two

strata if we denote

Pri{y, 1[x1} =a

and Pr{Y2 J]xz} =b, ,

we compute for each value of s

S

Priy = s[xl,xz} = iZOaibs _i

Such computations are reasonable for a small number of strata and a

k .
small value for iZl(miXi/ni) which indicates the central location of
the distribution of Y , but they become rapidly prohiﬁitive when these

increase.

IV.3.3 Special case p, = constant p

Suppose Zi ~ NB(i,e) , 1i=1,2,...,k. Then

i )
12125 " NB(ET;30)
. . ) L 8 \r.
This is easily seen from the moment generating functions tj
1 - (1 -)e

Consequently in this special case we have

i .
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Y|x ~ NB(x + k,p) ‘ - for uniferm priors,

le ~ NB(x,p) : for llxi priors, for all
and

Y{x ~ NB(x + s,p) when choosing a uniform

prior for any s or the Xi's and a 1/)\i prior for the k - s
remaining Ai's.

Thus the lower prediction limit in the frequentist approach is the
same as for the Bayesian approach.with priors 1/>\i for all i and
the upper frequentist limit is the samevas for the Bayesian
approach with priors 1/>\i for all but one stratum for which a uni-

form prior is chosen.

IV.4 Likelihood prediction

IV.4.1 General formulation

We have to maximize over g(xi,...,xk)' the quantity
-Ym, A e X
1 2“‘i i y e (m.A)°1
. . = = A I
fy(rslmgd g Gsd) = e (fm )7 I i
i

Taking the logarithms, we obtain for this expression
k

- - ! - + A - !

igl( ni)\i+ X, lOg(ni)\i) log X, . mi)\i) y logQ m, i) logy

and taking the derivative with respect to Ai we have

i,

s



73

h, bE - m+y—E = i=1,...,k .
1 1

Thus the maximum‘likelihood estimators Ai , (1 =1,2,...,k) satisfy

k

<o, = m, A (1 - y/ Zl 5 J i=1,...,k

By summing over i we get the relationship:

k
» _ 2 4.3
Xx+y izl(ni + mi)Ai > (4.3)
and we have
k (n A.)xi
_1 -(x+y) y g i1
f (y,zm >‘ )f (%3 >‘) y! € 1§1m1 1) i=1 Xi!

Finally the prediction likelihood of Y is obtained by solving the

system

k

. Y dmip? Ok
L(y;x) <« 1_ (A )¥1 (4.4a)
T'(y + 1)
~ ~ k ~
- = ‘ - . b
x, - n A =mA y/jzlmj}\j) (4.4b)

IV.4.2 Existence of a MLPD.

Theorem 4.1: The maximum likelihood prediction method applied

to stratified random sampling from a Poisson population always allows

to define a Maximum Likelihood Prediction Distribution.
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v k
Proof: We want to show that y;OL(y;g) < o for all
X, e I=1{0,1,2,...} , with

k
k
S _ 1l -y YOI (5 Xy
Lysx) = e 3, e (Lma)Y LA™

From (4.3) we have

k

)

~ - + .
i=1mi)\i(l + ni/mi) x+y

Let § = Min[ni/mi] ,- then

k .
(1 +9 .Z mi, <x+y
i=1"1 1 (4.5)
k . : .
A : = (1 +¢~ 8<1
izlmixi <0(x+y) where 6= (1L +) , 0 < ,
and also X, < x+y . (4.6)
; =

Using (4.5) and (4.6) we obtain

. - k
L(y;x) < ¢;(®) %3 e Vlox + 7T g ™1

, 1 - X +
Lo <@ 2y e 4y 0

The function of y on the right side decreases faster than a NB(x+1,0)

density so that by theorem 3.4 there exists a MLPD.

IV.4.3 A proposed general solution.

In order to determine the MLPD, ¥(y;x), we need to solve the system

(4.4a), (4.4b) where we simply disregard the normalization constant for

(4.4a) .
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Let us set k =1 - y/'leij . Then (4.4b) gives
J:

~ Xi

)\’ = = .

i n, + m.k
1 1

We note that k can range from —Min[ni/mi] to 1 , the corresponding
variation for y being as illustrated below.
k -Min(n,/m.) 0 1
i i

k
® 0
y + i;I(mixi/ni)

Thus we solve (4.4a),(4.4b) by a two stage procedure:

i) pick a value k in the interval [-Min(ni/mi),lj
ii) compute A, = x_./(n, + m_k) for i=1,2,...,k
i i i i ,

iii)  compute y = (1 - k),

121™5%

iv) - compute ﬁ(y;g) from (4.4a) .

The main disadvantage of the procedure is that the likelihood is
evaluated at arbitrary values of y. We need to interpolate for the
integer values in order to derive the probability mass function.

Nevertheless contrary to the computations involved. for the
Bayesian prediction this procedure does not become more tedious when

the number of strata increases.

IV.4.4 Special case: Py = constant p

From (4.3) we obtain



o

Lo (n, + m,)i, = x +
j=1"] i3 7

]. I p/ .Z In.)\- X I
Z - I'
. ]m.;\, X

so that we are able now to solve (4.4b)

A my -
X +n, - — | =
iEni B Sy era Xy

\ S AN
Ai(ni + mi)(l Tty ) = x;

Iy *5 x+y

i n, +mn, X
i i .

Finally, substituting in (4.4a) we have

- x +
e’ (x+y) e

f(y;x) « g! . ,

which is the same result as for simple random sampling.

IV.5 Conclusions

In the case where the sampling ratios (ni/mi) are the same
for all strata the same conclusions_as in simple random sampling can
be drawn.

However for the Bayesian prediction we then have to chose a
uniform prior for any one of the Ai's and 1/)\i priors for the

(k - 1) remaining strata in order to obtain the upper frequentist

76
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limits. In fact it would be equivalent but less convenient to choose

a (l/Ai)(k'_ D7k

prior for each stratum. This becomes necessary
when we extend the Bayesian prediction to the general case where ni/mi
are no longer constant since it matters then which Ai is chosen to

be given the uniform prior, and the (1/)\i)(k - Wk

prior avoids
having to discriminate among strata.
In this general case we expect the MLPD will still be located

(k - 1)/k for

between the two Bayesian distributions 1/)\i and (l/ki)
all i ©because of the smooth variation of these functions with respect
to ni/mi , as illustrated by the example below.

-1
We note that for k = 2 the (1/>\i)(k D /% priors are Ai 2

priors and the corresponding Bayesian predicfion is very close to the
prediction obtained by convoluting the individual MLPD's of each
strafum, a method that will be considered in the binomial case.

-As far as the computations are concerned for the general case
they will be tedious and time—consuminﬁ for the Bayesian approach with
more than 2 or 3 strata and a large izlmixi/ni' . For the MLPD the
computations as proposed in IV.4.3 are not as simple but do not increase

Kk
121 (m;x,;/n)

with the number of strata and increase little with larger

The following example exhibits for 2 strata the predictions for the
4 possible combinations of uniform and 1/XA priors, fof the MLPD and
for the distribution resulting from the convolution of the MLPD of each
stratum, i.e., approximately the Bayesian prediction for priors

1
-

(l/Ai) , 1 =1,2...
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V. SIMPLE RANDOM SAMPLING FROM A BINOMIAL POPULATION

The developments for the binomial population follow the same
pattern as these in chapter I11 concerning the Poisson population.

Thé MLPD compares to the frequentist éonditional and the Bayesian
approaches in very much the same way. The study of asymptotic
behavioré leads also to similar results. More studies have been
devoted to the binomiai problem and we will refer mainly to the works

of Fisher (1959), Thatcher (1964) and Olsen (1974).

V.1 Problem

We assume that we have an infinite (or finite, see section 111.1)
population in which each unit presents a charaéteristic A (referred to
as "success") with probability p and presents not-A with probability
q .

We sample n units at random from this population and observe
x successes among them. What is then the probability of observing
Y successes in m future trials?

The number of successes can be readily vieWed as a sample sum by

introducing for each trial the Bernoulli random variable.

V.2 Frequentist approach

Olsen (1974) shows that, x and Y being the variables defined

above, one can write

Pri{Y < k|T = x + k} = Pr{z < k} ' (5.1)
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where Z has a NH(x,n,m) distribution as defined below.

Definition 5.1: A random variable Z is said to have a Negative

Hypergeometric distribution with parameters (x,n,m) , noted NH(x,n,m) ,

when its probability mass function is:

(xl-1 1) (I;)(n—x+1)

(332 fen-nmaen)

fz(z) = for z = 0,1,...,m

Some properties of this distribution are given in Section V.6.2.
Applying to (5.1) corollaries (2.3) and (2.5) the next theorem follows

immediately.

Théorem 5.2: The d-upper prediction limit given by the frequentist
conditional approach for the number of successes among m items sampled
at random from a binomial population, givem X successes out of n
items; is the a-upper fractile of the NH(x + 1l,n,m) distribution
(except for x = n). The B-lower prediction limit is the p-fractile

of the NH(x,n,m) distribution (except for x = 0) .

V.3 Bayesian approach.

We show now the result corresponding to theorem (3.2) of Section

II1.3 for the Poisson case.

Theorem 5.3: The frequentist conditional lower and upper prediction

limits coincide respectively with the Bayes lower prediction limit under

1/(1 - p) prior.
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Proof: We have

fx(xsP) g (sp) = (2) (;l] Xt Ya -t Xy

For a Bayesian‘ 1/p prior we get, assuming x>1,

n m 1 x +.y -1 h - x - ;
fl/p(y lX) = (X) (y) j;) P (1 - p) dp
(2) L} p 1(1 -t " %ap

m v ‘
fl/p(ylx) _—__LYJ (x+vy - 1)! (m+n—x_y)!/(m+n)-

(x-~- 1! (n~-x)! /n!
which is the probability mass function of a NH(x,n,m) distribution.
For a 1/(1 - p) prior we have, assuming x <n - 1,

+

G (I;) fortla-pt T xTY g

flll_p(yfx) =
(2) 4} px(1 _ p)n - X - 1dp
m .
£ (y x) = ‘(Y) (x+y)! m+n-x~-y=-1)! /(m+n):
1/1-p7 * = '

x! m-x-1!/n!

which is a NH(x + 1,n,m) distribution.

These priors are the same as the priors used to obtain the usual
upper and lower confidence limits for the parameter of a binomial
distribution in the classical theory of coﬁfidence intervals (see
Pratt (1965).) Thaﬁcher (1964) showed that there is no prior that gives

limits coinciding with the frequentist limits.
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In the following we denote fl/p(ylx) by fl(ylx) and

i ‘ d F X

fl/l _ p(y]x) by fz(y]x) and correspondingly Fl(y|x) an 2(y] )
for the CDF's.

More generally, for a BETA(ac,B) prior, i.e.

1

wp) = pt i -pf Tl

we have

1 x+y+a-1 m+n-x-y+p8~1
£(ylx) = (I;) [T (1-9p) dp

* (;) T(x+y+a) Tm+n-x-y+B)

which, by extending the definition of section V.2 to non-integer
values of the first and second parameter, is a NH(x+oa,n+ca+E- 1, m)
distribution. This is a special class of the Beta-Binomial family
where the parameter p of a B(m,p) distribution is taken to have

a BETA(x + o0, n - x + B) distribution.

V.4 Likelihood approaches.

V.4.1 Fisher's likelihood.

The expression given by Fisher (1959) is

+ N-x -
ﬁ( ‘x) = nm (x + y)x y(N - X =-v) x-
s N Xy n - Xx m-y
N Xy’ (n - x) (m - y)

where N=m+n .

The maximum, 1, is attained as in the Poisson case for y = mx/n .
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V.4.2 Prediction Likelihood approach

The MLE of p based on x and y is ﬁxy = (x + y)/(@+n),

so that
- . _ [nym) x+y x+y,, _Xtymtn-x-Yy
£ xip, I (e, ) = () (y) o 1- 222y
_ ~N n m x+ty o N-x~-vy
=N (x) (y) x + y) (N=-x~-7) .
~ + N - x-
or L(y;x) « (3) (x + y)x y(N - X - v) =y .

Since y takes only a finite number of values, from 0 to m , it is
always possible to define a Maximum Likelihood Prediction Distribution

(MLPD).

V.4.3 Comparison of the two Likelihoods

Comparing the ratio of Fisher's expression to the Prediction

Likelihood Function, as a function of y we have

L(y;x) /T (ysx) & Y@= ) ,

Y @m-ypt "7

or, approximately, using Stirling's formula,

. . N
L(y;x)/L(y;x) o [y@m -y .
The ratio is no longer monotone as in the Poisson case, so that nothing
can be said about the relative locations of the two likelihoods.
By taking the logarithm of ﬁ(y;x) and its derivative with

respect to y , it is easily established that the maximum of the
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prediction likelihood is attained for § such that

{x + y)(mA— %)» = exp{1/§ - 1/(m -b§)} .
N-x-y)y ‘

For large values of ; and m - § the right hand side is approximately
equal to one and ; = mx/n . That is to say that the two maxima §
and ; will tend to be the same only when: § and (m - §) are large

which occurs when m and n are large.

V.5 Comparison between the MLPD and the Bayesian predictions

In order to establish the main‘theorem of this section we need

the following lemma.

Lemma 5.4: The finite sequences {ut; t=20,1,...,N -1} and

{v.; £t =1,2,...,N} are increasing, where

t
(N -t - 1)}
Ye T Tt N-t
t (N - t)
and
. - tt(N _ t)N -t
t (t - DWW - t)!

Proof: First note that since v, = 1/uN e it suffices to

show that u, is increasing. Let us look at the difference
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log U1 log ut=log‘(t+1) - log(N-t-1)-(t+1)log(t+1)+t log t

- (N-t-1)log (N-t-1)+ (N-t)log (N-t)

- +
(N-—t)log—N—t— -tlogt 1

N-t-1 t

]

(5.2)

N-t-1 t

But since log(l + x) < x for all x, we have
t log(l + 1/t) <1 for t=0,1,...,N -2

Also we have seen in Section II.5 that for x > 0
(x+1) log (1 +1/x) > 1 ,

so that

1

(N - t) log (l+m) > 1

Thus from (5.2) the desired result follows:
. log U log u, > 0 for t=0,1,..., -2 ,

Theorem 5.5: When sampling from a Binomial distribution the

following inequalities hold between the CDF's of the MLPD and the

Bayesian predictive distributions with priors 1/p and 1/(1 - p):
Fo(y|%) < Flysx) < Fi(y]x)

for all values of x,m,n for which F1 and F2 exist.

(N-1t) log (14 — )= tlog (1 +3), £=0,1,2 ..

.N-2,
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Proof: Consider first the ratio:

fz(y‘x) x+y) W-x-y-1)!
O B O LRI S R
with 0<x<n-1 and O0<y<m . Setting

t=x+y, we have 0 <t <N -1, and the ratio is proportional to
u, and thus is an increasing function of y for any fixed x. This

proves the left inequality by Theorem 3.4 . We now turn to
a + N - -
£(y;%) . xrFT YN -x-ym TETY
£, (]%) x+y-D. N-x-y)l

with 0<x<n-1 and O<y<m .

By recognizing for the right hand side the sequence Ve oo where
t =x+y , we see that the ratio of probability mass functions is

increasing and thus the right inequality holds.

Existence of a Bayes prior yielding the MLPD

The probiem of finding a Bayes prior yielding £(y;x) reduces

to finding a non-negative function g such that

fofa - o " Semap = ket - o T,

u

or equivalently, by setting p/(1 - p) = e , to finding a positive

function h(u,N) such that

_£+:_Uth(u,N)du =t - N T
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As in the Poisson case it is difficult to obtain the exact solution
and we work out an approximation.
Recalling from (3.3) that:

7 1

: _ -t t 1 — —
P +3) = @M%t expl-g77 + gr3e03) * 020 -3

we derive the following relationship:

(5.4)
N -t 1 1
T(t +)I(N-t+%) =21e NPy - t)N, expl- 55— = ACEE et
i.e., approximately
, . - - 1
Pt + )TN -t +%) =21 e Nefaw-p)Y ~ ¢ 1 (5.5)

A - 5 -~ wEw-0)
1 ~
so that prior [p(l - p)J* comes fairly close to £(y;x) since

1
—2

F(e+3)T(N - £ +%) / T + 1)

1 N
Fota - ¥ - pl

-N

~ e t t _ 1 ~ 1

As was seen in Section V.3 this prior yields a NH(x + %,n,m) predictive

distribution.

Determination of the normalization constant for f(y;x)

We first establish the expression of the probability mass function
-y
of a NH(x + %,n,m) distribution. For a prior ﬂo(p) = [p(1-p)] i}

we have
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1 {n m 1 : 1
+y-% N-=x-y-=-%
fo(x) (y) pr Y *(1-p) 77 Zap
3 (vlx) = -
o fl (n) x -1 n-x-1
o ‘\X/ P (1 - p) dp
()
n!l\y/ Tx+y+L% T(N-x-7vy+7%)
N! T(x + 5)T(n - x+ %)
Thus
' f§ o
n
: r +L)T(N-x~-y+%) = 1 .
NIT(x + 5)T(n-x+%) y=0 (y) (x+y+i)T(N-x-y+%)

Now using approximation (5.5) we obtain

-N .
2me  n. ) (m) x+y _oZN-x-y
NI T(x+%5)T(n-x+%) y=0 \y (x+y) (N-x-y)"

1 1 )

- =1,
24(x+y) 2(N-x-y

¥ (1 -

or approximately

Zﬂe-Nh!

NIlT(x+%)T(n-x+%)

e

1 1 1
- .6
L+ E[x+y+N_x_y] (5.6)

where the expectation is the expectation of the given function of vy

with respect to the MLPD. We work out for it the following approximations.

1
x+y

First we compute E ] for y having a NH(x + 1,n,m) distri-

bution.
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m .
EI;—c—L-]‘. If (Y) +y-Dim+n-x-y-1)!/(m+n)!
tyo o y0 x! (n-x-1)! /n!

Z (y) (x+y—1)(m+n—1—x y)/(m+n~ly
<@+ yho (=Dl 1-0!/ (- D)

[

The right hand side is the summation of the terms of a NH(x,n - 1,m)

distribution so that

1 n
E[:x+y]=x(m-i-n)

Then E[m ¥ nl— — yj , for y having a NH(x,n,m) distribution is

SN S (y (x+y-1)i(m+n-x-y-1): /(m+n)'
E[:m-l-n x yj - yzo (x-1)!(n-x)Yn!
L) ;
_ n y/ (x+y-1)!(m+n-1-%x)!/(m+n-1).
" (m+n)(n-x) y=0 -D!n-1-x)!/(n-1)!
n

(m +n)(n - x)

Thus the right member of equation (5.6) is approximately equal to

n 1 1
‘ L+ 2w v(x T oA -x )

and an approximate normalizing constant for the MLPD is exhibited by

the relationship:
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mo W <x+y) .ym-x y Y

2ﬂe—Nn.
N T(x+%)Mn-x+k) y"
(5.7)

n 1 )
24N *x n- -

13
[y
.

[1-

Using (3.2a) to get an exact expression for the two gamma-functions leads

to the alternate relationship

2n+1 -N xi(nex)' )Z'o( )(x+y) YN - x.y)\I X-y

n 1 1 2
CL- 24N ; )] N! (2x) ! (2n -2x)!
= 1 (5.8)

Finally a simpler expression is obtained by substituting for the gamma

functions in (5.7) the approximation (5.5)
. : - m oo
AP TETE TR i PP SN T
l:1+24N (x-i'n-x):I X (n- x)n x y=0V (x+y) " (N-x-y)
(5.9)

3
[

=0

Tables III and IV give the exact value of the left hand side of (5.8)
and (5.9) respectively, and this for various values of x,m and n
X .

Note that these developments do not apply for the case
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=0.004
=0.002
~0.003
-8.002
~P.262
-J. 028
-0.009

e 634
«306
180
«138
«106
«0E&3
« 055
056
« A&7
«317
« 041
031
~0.9013
« 03¢
e 022
0320
-0.0237
«021
« 537
« 014
-0e0%7
« 015
«013
2010
«00¢
=0.074
«01C
«01C
« 08
«0C7
-0.,0¢83
.0C5
«0C7
«0C6
« 065
<008
-0.1¢2
«Otle
+00E
«005
11
«003
“0.113
~0.002
304
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«0C3
«062
«0C2
=0.123
~0.005
«0C2
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740
406
. 282
.184
. 208
«119
154
. 08¢
370
112
«370
<050
073
. 058
.028
<633
«350
2048
$ 031
024
. 026
2 040
. 026
«019
.018
<305
.033
22
<316
. 013
-0.013
.028
$ 619
2013
L 011
. 310
-0.029
023
$ 018
<011
. 009
-G08
“0.043

« 029

vl
«010
«008
«J0E
«006
-Qd. 3E6
«015
«i12
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766
452
e 341
«203
273
1430
222
<109
« 085
189
«G90
062
146
« 077
e 049
Y4
116
067
ol
« (32
« 031
« 053
« 035
o626
«023
58
e G52
« 031
o022
«013
«04L8
« L5
« 627
«019
«015
5 &
« 030
oGy
«025
«017
«C13
«011
«014
« 835
«022
«015
o011
« 0106
«509
3.7
« 031
«C20
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759
71
374
«219
e 314
0152
«268
«122
« 094
«230
«104
o £6¢
197
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«G57
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168
081
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« 37
o142
073
«0bC
« 031
«028
«11¢
CEE
«038
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e 034
019
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080
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031
«021
«U1E
«L1il
«(63
+ 049
l2¢
«019
o014
o012
«011
«Gu7
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«02€
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«739
476
392
«223
e 241
159
«301
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+099
«CEB
«113
«075
«235
«101
«0€2
«052
«208
«092
L
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«182
084
«048
«G3S
«031
2160
«077
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«030
«025
o140
«071
« 0640
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«121
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«837
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«016
«104
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«014
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088
«056
« 032
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«401
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«358
«1€1
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- 2€5
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«0ES
«055
«239
0069
«G57
o« D4
e C16
. 092
« 052
« 037
+033
«1S4
«085
e 047
« 033
« 027
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+ 080
o« 0U4
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« 023
«G22
. 156
« 074
« 041
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«021
«018
«138
« 070
.38
« 025
«019
« 016
«015
123
« 065
«036
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+ €85
P HEL
«404
«220
«3E8
«1€2
¢339
127
«103

«312

«123
«080
«287
«113
«0E8
«057
o ZEN
«1385
«UED
« 046
0242
«098
2055
.039
«035
«222
«092
«0580
«035
«029
«203
<087
e 047
.031
«025
023
«185
<082
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+029
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019
+1%8
«077
« 042
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«020
«017
«016
«152
«073
«029
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+ €58
« 454
«402
«21E
« 374
161
» 306G
o138
«103
«J2E
«126
.081
« 305
0117
«06¢
.058
+284
«109
062
04?7
«2EL
103
057
«C0ul
»03€
« 245
+098
«053
«03€
«030
«227
«0913
«050
«0323
«92€
«024
« 210
.088
o 0u7
«031
022
«02C
«193
« 084
« 045
«029
«021
«018
« 017
«178
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ILLYA
+399
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«1569
«356
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«337
«127
«081
«318
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«070
«059
« 299
«112
063
«048
o281
-107
+058
2001
£ 037
o264
«102
«055%
«037
«021
247
«097
<052
«034
«027
«32%
«230
«033

«0438

«032
024
«021
215
0389
0h?
030
«022
«013
018
«20C
«08E
L}
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«E05
« 430
3%
«206
«376
«156
«JED
«137
«101
«J44
«127
021
«328
«120
«070
«0859
«311
o114
«OEL
Q48
«295
»109
«059
042
«038
«279
«1735
«056
«338
«031
0263
«101
853
038
.028
21025
LY
«097
«051
033
«025
w022
e 234
. 093
«849
.031
«023
019
«018
«220
«089
o047

582
418
288
«200
374
«153
v 362
<328
2100
345
127
<080
«335
o121
G780
.05¢
221
116
0EL
048
<3CE
o111
«CED
2042
.028
.292
107
<057
o028
.032
277
o1l
054
. 036
0026
«0E6
$ZE3
«300
052
034
025
N ¥
<250
.07
058
22
0L
.gz0
.019
eZ2€
o082
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«5€9
406
«381
«195
«373
<150
«JE2
o 134h
«038
« 352
«126
«078
«340
’121
«370
«£58
~328
+116
«GE4
053
«315
«113
+0€0
o043
<028
«302
«109
w057
«0139
«032
s268
«106
«055
2036
«028
<026
«276
«103
«053
«0 3L
o026
023
«2€3
«100
«051
«033
«024

«020

«019
2251
096
#0593
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«539
« 345
«374
«189
«367
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«361
«132
0497
«353
«125
«078
L1}
«120
2069
«058
« 334
«117
« 064
«048
«323
+114
« 060
«043
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« 311
«111
«0558
«033
« 032
«299
«103
« 056
«038
+029
825
287
« 105
« 054
» 035
«026
«023
«275
«102
«052
«033

. s024

«020
«019
«263
«099
051

1%

«519
« 383
«JE7
«184
eJE3
R
359
1238
~ 095
o364
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W77
2347
«120
+ 068
o357
« 138
.il’
«0E&
«0u8
e 228
o311k
+0€ED
o DL?
2328
«318
o111
«353
« 038
«032
« 307
«30¢
+ 058
<537
«329
«026
«2%6
106
o054
» 035
« 026
«023
‘ags
+ 1G4
«8513
«023
«025
.028
«038
o274
«102

052
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«ib9
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« 095
«195
«e 072
« 054
« 169
« (58
« 037
«149
« 0150
« 029
«025
«133
o« Qly
« 024
«018
e121
«039
« 021
« 015
313
116
« 035
«018
« 013
« 0130
e102
0632
« 017
« (12
«C09
008
« (94
« 029
«315
«010
« 307
«006
« 288
« 027
« 014

. 009

«GJE
« 025
« 005
«082
« 026

013

1.032
571
« 437
«224
«3E5
«146
«317
0113
-
« 281
« 095
« 060
«253
«0E3
«068
369
«230
« 074
LS}
«021
«211
«367
«335
«025
«223
165
«061
«032
-e022
«J18
«182
« 057
«029
«019
«015
«014
«170
«352
327
«017
«013
»011
«160
« 049
« (25

.18

«011
«010
<009
«150
«346
«023

TABLE 1V.
3 4
1,068 1.048
632 « 8650
«510 «547
« 254 «263
e b42 «488
«172 «135
« 394 « 445
«138 «151
«101 «110
« 357 - 410
«118 «132
«074 082
«327 381
«105 120
« 060 «068
«050 «057 -
«302 « 355
« 095 «1110
« 052 «059
«029 2045
« 280 «333
«Q87 «192
« 346 « 053
el32 «037
«029 «033
« 262 «314
«G81 « (96
ell2 « 009
«028 «033
«023 «027
.« 245 «296
«075 «090
«0238 « 045
«025 «029
«02¢0 «023
18 «C21
«231 281
«071 «085
«035 e 042
«023 027
«017 «020
«415 «018
«218 «267
«0€7 «081
033 « 0430
o021 «025
«315 «018
#3013 « 015
eil2 «014
0267 «254
« 063 « 077
«031 «038

APPROXIMATION (5.9)
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1.00¢
«649
«563
«267
«515
«130
W78
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«115
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LY
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420
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«£73
«061
«33€
«121
« 064
«Gag
«374
«113
« 059
eCl1
«036
«355
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«054
« (36
«036
«337
«101
« 050
«033
«$26
o020
«321

+096 .

«048
«03¢C
«023
«02G
«307
«£32
« 045

o028 .

«221
«017
016
«294
«088
«043

6

+9ES
«€37
«567
«263

529
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s 499
«163
«116
472
«147

“.089

LY
«136
«076
«063
«426
«128
«068
<080
406
121
«0€2
043
«038
«288
«115
«058
« (38
«022
«371
«110
U5y
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«027

. «025

«355
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052
«033
«024
«021
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«i01
«049
«031
«g22
«019
«017
327
097
«d47
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7

«920
t21
«5€S
257
«536
«189
«512
«1€4
«116
« 480
+ 150
« 090
«4EQ
o140
«078
«0€4
« 450
«133
« 070
«(E2
e 431
«127
« 0ES
e Gh5
« 040
«b1b
«122
«CEL
« 040
«033
«398
117
«057
«027
«0239
«026
283
«112
« 055
« 034
«026
022
«3€8
«108
« 052
«032
e024
«020
<018
«35€
«104
«050

]

«877
«602
«558
«249
+537
«185%
«519
«1€3
«115
«502
»«151
«090
484
«143
«078
« 065
hE7
«137
«071
«0Z3
«451
«131
«0€B
«04E
«04D
«4 35
«126
«0€3
«0b1
e 034
«420
0122
060
«038
«030
«027
405
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« 357
«036
e027
«0223
«392
«114
«055
« 030
«025%
020
«019
«379
110
053
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«837
<583
«55C
« 240
«535
«181
«522
o161
«113
«50¢
«151
069
« 455
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«J64
«480
«139
«072
«052
Y13
«134
«067
«04E
« 041
452
«130
2064
042
«034
<438
«12€
«0€1
«039
«030
<028
e 424
e12¢
«05¢
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024
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«057
«Q35
«025
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320
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« Q56
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«564
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«531
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«031%
«028
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«020
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«028
024
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«020
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12
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«517
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«519
«1€6
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1ULE
« 085
«5C9
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«07E
€2
«502
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«0E2
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«0E8
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040
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«12%
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YLy

020
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046
021
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UEL
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«0€2
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.028
N
«4Sh
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<0E0
+0237
026
022
021
NTY
o125
«059

13

’707
«512
«506
«207
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«161
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«149
«302
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«051
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«137
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«028
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2037
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«021
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«496
«435
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«504
«156
«510
[ £33
+ 039
«512
elbl
«081
«5119
«133
«073
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«507
«138
«069
050
«501
«137
067
b5

$039

495
«135
«0E5
« 062
«034
«488

o134

«06%
Y
«030
«028
« 480
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2062

« 038

«028
e 024
LA
-131
Q6%
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027
<022
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.15
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g
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2496
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504
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«026
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«133
« 079
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« 504
«136
»GEE
LY
«039
« 498
+135
«HEL
o041
<033
2892
«13h
«D63
«0139
«230
«0E8
o485
133
«0E2
038
«028
«024

478

«121
«06¢
437
+027
e022
«020
2?1
430
Y139

[49)



93

V.6. Asymptotic properties

V.6.1 Limits when m/n >0

The number of:observed items becomes infinite, but m is finite.
Then it is known that x/na;sbo ’, the trué value of the parameter
p; consequently if wé assume that P, is neither. O nor 1, x > =
and n - x > « with probability one. The limiting forms of the MLPD

and Fisher's likelihood have been given in Section II1.3.1. We recall

these results:

a D m m-
f(y;x) 238 () pqu Y

ym-y
and ind d.S. quO
L(y;x) > y m-y
(y/m)7 (1 -y/m)

" We now show that the Bayesian predictive distributions for 1/p
and 1/(1 - p) priors have the same limiting form as the MLPD, i.e.,
tend towards the true distribution of Y, almost surely.

For a 1/p prior we have

fl(y{x)oC (?) x+y-DD! mn-x+m=-y)!
Since @ith probability 1) x and n - x become infinite we can replace

the factorials by Stirling's expression and obtain

lim £, (y[x)= (f;‘) SOy o xty =k (e xmy)

n-x+m-y+%
# (n-x+m-y) yTz
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7 - -1 - - - i
x (m) x(1+l—}-{—'_1-) x+y 2|:(n—x)(1+'rr%—_-‘:£ )]n xtm-nt
y

Finally
AG ALY N (m) qum R for y=0,l,...,m .
y

The proof for a 1/(l1 - p) prior is similar.

V.6.2 Limits when m and n~> = , m/n remaining constant

We first look at the limiting distribution for Y , where Y has
a Negative Hypergeometric distribution with parameters (x,n,m) .
The probability Pr{Y = y} can be seen as the probability of obtaining
y white Balls up until x black balls are drawn from a finite
population containing n black balls and m white balls. The
NH distribution is more frequently defined for Z =Y + x , fhe total
number of balls to be drawn before obtaining x black balls.
Matuzewski (1961) gives the expectation and variance of this
distribution and shows that when m and n tend to infinity, m/n
- remaining constant, it tends to a NB[x,n/(n + m) ] distribution.
However in the present case x > o and Y tends to have a Normal
distribution (see L. N. Bol'shev (1964).) for which we now derive the

expectation and variance. For any x,n and m we have
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E(Y) = nixl
V() = m_x(n—x+1)(m+n+1)

2
(n+2)(n+1)
For m and n - large these reduce to

mx /n

1K

E(Y)

IR

V(Y)' m(m + n)x(n - x)/n3

i

mz(x/n)(l - x/n)(1/m + 1/n)
That is, Y has a limiting distribution such that

Y/m - x

Vra-nd+l)

~ N(0,1)

Obviously this is also true for Y héving a NH(x + 1,n,m) distribution
and consequently also for Y being distributed according to the MLPD
by theorem 5.5 .
We show now that the same applies for the distribution derived
from Fisher's Likelihood, with density %(y;x,n,m) .
From Lémma 5.4 the function of y ,

yi(m -y - 1)°
v (m - y)m R4

is an increasing sequence when y = o0,1,...,m - 1 , so that

£(y;x,n,m)

f(y;x,n+1, m~-1)
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is also ‘increasing for y = 0,1,...,m - 1 . By defining
f(y;x,n + 1,m - 1) equal to zero for y = m , one can apply theorem
3.4, i.e.,

y y :
F(y;x,n,m)‘ =k;0§(k_;x,n,m)jkgof(y;x,n+ l,m-1) =F(y;x,n+1,m-1) (5.10)

Consider now

~ m- v
f(y -1l x-1l,n, m-1) yy(m - v) iy

E(y;x,n,m) (y - Di(m=-y)!

From lemma 5.4 this ratio is increasing for y = 1,2,...,m, so that

chosing E(y - 1;x - l,n,m - 1) ‘equal to zero when y = 0 , we have

>

~ p Y
F(ysx,n,m) = Lof(kix,n,m) > L f(ksx-1,n,m=1)

F(y;x,n,m) > F(y;x-1,n,m-1) - f(y;x-1,n,m-1)

F(y;x,n,m) > F(y;x- L,n,m=1) - ¢ (5.11)
where e >0 when x >
Finally from (5.10) and (5.11),

F(y;x-l,n,m-1) - € < F(y;x,n,m) < F(y;x,n+1,m-1)

and the limit is obviously the same for these three CDF's when x,n,m
tend to infinity. We formalize the former results in the following

theoren.

Theorem 5.6: For n,m > ® but m/n constant the predictive CDF's



'Fl(ylx),Fz(y]x),f(y;x) and ﬁ(y;x) tend to be such that

Y/m - x

——1 [ — — NOo,.
VEa-0 G

m

with probability one.

V.6.3 Limits when m > ® , n finite

i) limit for f(y;x)

When m > » we also have y *» and m -y > < assuming that

p, is not equal to zero or one . Then

+ ' m+n-x -
(x + pF y(m +n-x-17Y) noxTy

f(y;x) =
(m-y). y.

and

A -1 -x -1 -x, m-y+n-x
limf(ysx) = y° 7 31+ HF T V(@ oyt T F T g 4 22X 7Y
y m-=y
x-% x n-x-% n-x
« y e (m - y) e
x -4 n-x-%
<y *(m - y) :

Thus the limit in terms of y = y/m is ,
EGio) > BEIAG - on-x-%)

so that for m 1large we can approximately predict Y from a BETA

distribution.

97
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ii) Limit for f(y;x)

+ -.N_ -
G+ TV w-ox-y " F"Y

m -
vy (m - y) y

f(y;x) «

- - —v4n-
A R A O A

'X. n-x
« y (m - y)

i.e.,

f(y;x) -+ BETA(x,n - X)

iii) Limit for the Bayesian predictions

Let us consider the limiting form of a NH(x,n,m) when only

m > o
m
£, (2z) « () (m+n-x-y)l (x+y-1):
Z y .
- X - 1 +z-%
lim f_(z) « (m+n—x—z)m+n X Z+/§(x+z—1)x z=-%
Z z+ % m-z+%
z (m - 2z)

: X m-z+n-x+)% z+x-1 x-1 z+x-1
[m-z) (L4220 BT 2778722 TR 20+ 22

o
zz+1/2 m-z+5%

(m - z)

X n—x)rn—z+n—x+1/2x—1
P 2

-lz+x-%
a+2 2y :

n—
« (m - z) -

(1+



« (m_z)n—xzx-—l .

So that the limiting distribution for a NH(x,n,m) when m > «
is a BETA(x -~ 1, n - x) distribution. By replacing x by x + 1
for a NH(x + 1l,n,m) we get a BETA(x,n - x - 1) distribution.

We summarize the results in the table below.

Approximations for m large (y = y/m)

Type of Limiting Limiting

Approach Notation Distribution Expectation
. - X
Bayesian 1/p £,.G BETA(x - 1,n - x) —
Bayesian 1/1 - £.(y [x) BETA(x n-x-1) x + 1
Y Poh ’ n + 1
R P ) + 1
MLPD f(y;x) BETA(x-%,n-x-%) X 2
n+1
~ - + 1
FISHER £(3;%) BETA(x,n - x) =

=
+
N
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V.7 Exact probabilities of coverage associated with the MLPD.

For any family of prediction intervals [L(X),U(X)] the

confidence leﬁel B has been defined such that

Pr {L(X) <Y <UX} = 8,

8

where this probability is independent of the parameter 6. When
the prediction intervals dare obtained from the MLPD, the probability
above will usually depend on the value of the parameter. In this
section.we‘propose to show the variation of the exact probability of
coverage as a function of the parameter p for the binomial
distribution when inferences are made from the MLPD.

Once a nominal level of confidence‘(say .90) has been chosen
and X = x has been observed the MLPD is used as an ordinary distri-
bution to compute a lower limit L.95(x) _and an upper limit' U.95(x)
for a prediction interval. Actually, since‘we are dealing with a
discrete distribution, these‘limits are randomized in the usual way.
We proceed now to the computation of the probability‘of coverage for

a given value P, of the pafametef p . We have

Blp) = Prpo{L.95(x) <Y < U 4 (X))
n .
= xgo Prpo{L.gs(x) <Y< U.95(x) [X=x}Prpo{X = x}
n

= X‘ZOPIPO{LJS(X) Y 2T g5 P, (X = x)
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Figures 5.1,5.2, aﬁd 5.3 show how the fﬁnction B(p) deviates
from the nominal value for 0 < p <1 . The cbmputations are only
for upper one-sided intervals because curves for the corresponding
lower one-sided intervals can be obtained by symmetry around p = % .

For instance

Prp{Y < U.95(X)} =Pr, _ p{L.gs(X) <Y}

Figqres 5.1 and 5.3 exhibit the improvement occurring when the
size, ﬁ, of the observed sample increases for nominal levels .95 and
.99 respectively. Theorem 2.9 guarantees tﬁat these curvés will tend
to the horizontal line at the nominal vélue when n tends to infinity.
In comparing figures 5.1 and 5.3 we also notice that the higher the
nominal confidence level. is, the smaller are the deviations from that
level. In other words the prediction wiil be more reliable for higher
nominal levels.

Figure 5.2 shows the changes induced by the increase of the size
of the future sample; for large m the curve has lower minima.

Overall we can see that the procedure tends to be anti-conservative
for all values of p except around 0. Because of the symmetry
property for lower limits, the underestimation of the true level takes
place for p around 1 . Consequently‘for a two-sided interval the
curve will be symmetric with respect to p =’ with a flat relative

maximum around p = % located below the nominal value.
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V.8 Examples

The eight following examples are exhibited:

Because of the symmetry in x,n - x along with y,m -y

n=5 m=5 x=1,2

i
[
o

i

b4

[=]
"
—
o
8
It
w
|

= 2,4
m=10 x= 2,4 .

only small values of x are considered.

For each example four predictive CDF's are plotted:

i)
ii)
iii)

iv)

Bayesian with 1/p prior (marked %)
MLPD (marked &)
Bayesian with 1/(1 - p) prior (no marks)

Fisher's approach (marked &)
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and p,1 -p
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Binomial prediction
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Binomial prediction
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V.9 Conclusions.

As in Poisson sampling the MLPD lies betwéen a conservative and
an anticonservative distribution. Thus the true probability of
coverage for a prediction interval is deviating little from the
nominal value of the confidence level. For example, the déviation is
no larger than one percent for a one-sided 997 interval,

The three distributions of interest are NH(x + %*,n,m) (approx-
imately), NH(x,n,m) and NH(x + l,n,m). These correspond to the

1
-1

familiar p(l - p) s p_lvand (1 -~ p)_1 Bayes priors respectively.
It is no surprise that the results for.the Poisson and the
Binomial sampling have so many similarities, since the first is a
limitihg form of the second. In faét the prediction préBlems for
these two cases éan be related in the following way.
Suppose X ~ B(n,p) and Y ~ B(m,p), and let n and m tend

to infinity with n/m remaining constant. Let also p tend to zero

in such a manner that np - X ,then:

g pony

Y 2 P(Am/n) ,

i.e., X and Y can be seen as the sample sums of two samples from
the same Poisson population with sample sizes having the ratio n/m
(recall that the Poisson prediction problem depends on the sample

sizes only through their ratio).

Then a NH(x,n,m) distribution becomes a NB(x,n/(m + n)) distri-
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bution, which is a result given by Matuzewski (1962). The Bayesian
priors '1/p , or equivalently 1/(np), and 1/(1 - p) become 1/Xx

and uniform priors respectively.
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VI STRATIFIED RANDOM SAMPLING FROM BINOMIAL POPULATIONS.

We turn now to the same problem as in chapter IV excépt that
we are dealing here with binomial populations instead of Poisson
populations. Because the variablé to be predicted, i.e., the grand
sum of k samples, has no explicit density function no prediction
can be made without carrying out numerical computations of the

convolution type.

VI.1 Problem and solutions.

We assume that we are sampling n, items from stratum i
and we observe xi’ successes. Let 1 be‘the unknownvprobability of
success for stratum 1.

The binomial problem is more complex than the Poisson problem
because the sum of binomial random variables with distinct pi's
does not have an explicit mass probability function.

Therefore in the frequentist framework we are not able to
exhibit a function w(y,xl,xz,...,xk) such that the distribution of

Y given ¢ would be independent of the pi's .

In the Bayesian approach when the priors are of the form

o B

Py i(l = pi) 1 we have to sum negative hypergeometric random variables.
There is also no explicit form of the distribution of such a sum but
there is no obstacle to derive it in a computational manner.

By analogy with the Poisson case one might feel that choosing a

prior I/pi for each stratum (resp. 1/(1 - pi)) might be too
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extreme, so that one would thinkx)fuéing more moderate priors such as

1 ' 1
or
pi)(k - 1D/k > (k - D/k

(6.1)
(1-7p)

pi(l - i

that correspond to the 1/)\i and (1/>\i)(k - D/k priors for the
Poisson problem.

Unfortunately there is no special case like in Poisson sampling
to‘justify from a frequentist point of view the choice of certain
priors. However some justification may be found in the choice of (6.1)
by showing that, when the strata tend to be identical, these priors
yield predictive distributions that tend to agree respectively with
the 1/p and 1/(1 - p) priors of simple random sampling.

If the strata were identical then inferences would be made from
a NH(x,Xmi,Xii) and a NH(x + 1,Xmi,2ni) distribution respectively,

where x = izlxi . The expectation of the grand total Y would be

Xmi -
S in ~ and E;;—:_T (Xxi + 1) (6.2)

Now suppose we pick for each stratum i a prior of the type

pz(l - pi)8 . Then the posterior distribution for Yi would be
NH(Xi + a + l,ni +a+ B + l,mi) (see section V.3) whose expectation
is

m,(x, +a+ 1)
i*71

ni + a4+ B+ 2
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Thus the expectation of Y would be

k L :
I s aersrs ptoe+Dd . , (6.3)
i=1 i _ :

In order to compare this value to the values in (6.2) we need to
restrict the special case further to m, =m and n, =n for all 1i .

Then (6.2) becomes

m

m
. 171 (zxi) and m

n + 1/k (zxi Do

The only way in (6.3) to chose & and B in order to have the same

expectations for both approaches is in fact as exhibited in (6.1).
Note that when the number of strata k increases the two classes

of priors of (6.1) tend to be confounded and equal to .[pi(l - Pi)]—l,

for which
B(Y) = Lymxi/ny

Because of the absence of an explicit density function for Y ,
the prediction likelihood approaches also fail to apply. However
one can think of obtaining a predictive distribution by convoluting

the predictive distributions of each stratum, i.e.,'
f(y;xl’xz""ka) = Zy%___.y f(yi;xi) .

The expectation for this distribution is
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ko
E(Y) = iZlmi(xi +3%)/n,

It can be seen in the following examples how this result compares

with some Bayesian predictive distributions.

VI.2 Examples

In the next pages two predictive densities and CDF's are given for
the following approaches:
i) Bayesian under priors 1/p; , l/p2 (marked %)
ii) Bayesian under 1/(1 - pl) s 1‘/p2 (marked &)
iid) Cbnvolution (MLPD)1 * (MLPD)2 or approximately
Bayesian [pl(l - pi)]_% y [pz(l - pz)]f% (no marks)
iv) Bayesian under 1/p1 , 1/(1 - p2) v(marked Q)
v) Bayesian under 1/(1 - pl)v, /(1 - pz) (marked f)

vi) Bayesian under [pl(l - pl)]—1 R [pz(l - pz)j_1 (dashes)
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VII GENERAL CONCLUSIONS AND COMMENTS

It has been shown in this thesis that the Maximum Likelihood
Predictive Distribution behaves quite satisfactorily for binomial
and Poisson predictioﬁs (and fo a lesser extent for the Normal predic-
tion).

For the Bayesian statistician who wquld compare prospective values
of y on the basis of some "weighted integration" of the likelihood
function, L(e;yfg) » over 6 for each vy, the question will be how
well the maximum value of this likelihood function can stand for the
whole function. For instance when the likelihoods reméin identical for
all y values except for a proportionaiity constant on the abcissa
(which occurs in the normal prediction éf a sample mean when the vari-
ance is known), then comparing the likelihoods through their maxima is
equivalent to coméaring them through their area, that is, the MLPD is
the Bayesian distribution under uniform prior. In any case one would
like the likelihood function to shift enbloc along the 6 axis when
y &aries, whiéh analytically is somewhat expressed by the monotone
likelihood ratio condition for the density family of y.

In the binomial and Poisson cases these requirements are fulfilled
and from the Bayesian point of view it is reassuring that the MLPD's are
close approximations to the Bayesian predictive distributions obtained

1

- -3 .
and A respectively. 1In fact the

by using priors [p(l - p)J]
MLPD would be the first approximation of these Bayesian predictions if

an expression were derived that would be easy to manage analytically
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or compﬁtationally.

We have been able to show the strong consistency of the MLPD,
which incidentally is uniform in y for common cases. One.can feel
intuitively that Bayesian predictive distributions will have the
same properties, but as far as I know this has not been proven yet,
and I suspect a general proof to be a rather sophisticated task.

Note that the consistency by itself is a weak trequirement although
a necessary one. In fact if we simply choose as a predictive distri-
bution the member of the parametric family of distributions for y
which corresponds to a value of the parameter equal to the maximum
likelihood estimator based on the observations, we see that by
continuity this predictor is also consistent. However, one does not
expect it to perform well, at least as far as prediction limits on y
are concerned, since it entails only one source of unéertainty.v There-
fore other criteria should be taken into account such as expected loss
under some standard loss functions, or expected bias.

In this thesis there has not been any consideration of optimality
for the choice of a family of prediction intervals among others. The
choice between Bayesian and non-Bayesian is a conceptual one whereas
the choice among non-Bayesian procedures would be based on criteria
such as minimal intérval length or uniform most accuracy.

The intervals inferred from the MLPD are not truly predictidn
intervals in the sense that there is no a-priori guarantee that the
probability of coverage will be at least as large as the given level.

Nevertheless we saw for the binomial case in section V.7 that starting
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with a nominal level of 99%; for instance, we obtained a procedure
guaranteeing a true level of confidence of at least 98% (fecali figuré
V.3). Also some prior knowledge about the unknown parameter will make
results of the type of those in section V.7 more useful. At any rate
further developments of this type of study would shed more light on the
comparison of different methods; in particular the results of section
V.7 should be extended to the Bayesian predictions under priors 41/p
and 1/(1 - p) in order to see how conservative or anticonservative
these really are. The deficiencies of Normal approximations could

also be evaluated in this way.

Finally the author feels that the MLPD is a useful outsider in
prediction theory just as the maximum likelihood estimator in estimation
theory, performing quite satisfactorily in some instances, poorly in
others and turning up as the most tractable solution to some complex

cases.
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