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A MAXIMUM LIKELIHOOD APPROACH TO PREDICTION WITH APPLICATIONS

TO BINOMIAL AND POISSON POPULATIONS

I. INTRODUCTION

The information contained in a sample drawn from a population whose

distribution is known up to some parameter value is used in classical

statistical theories to make inferences about this unknown parameter.

Prediction theory, however, is concerned about inferences on a future

sample to be drawn from the same population, where two sources of un-

certainty are combined; one is the uncertainty about the true value of

the parameter, the other is due to the randomness of the variables to

be "predicted".

A prediction statement well known to statisticians is found in

regression theory where one seeks an interval that will contain an

outcome of the dependent variable at a given value of the independent

variable with some given probability. Another familiar problem of the

predictive type is the so-called "rule of succession" which Laplace was

concerned with. (see Fisher (1959).).

In this thesis we restrict our interest to inferences on a one-

dimensional statistic of a future sample, typically the sample sum.

The basic type of prediction that will be considered is in the form of

a "prediction interval" defined as follows:

Definition: Let X = (x x
2' '

x
n
) be a random sample from a

population with distribution F
X
(x;e) where e e 0 is unknown. Denote

"future" outcomes from the 'same population andy = (y1,y2,...,ym)



let Z'= h(Y) be a. one-dimensional function of these outcomes.

Suppose we find two functions L (X) and U (X) such that:
a

Pr
e {La

(X) < Z < U
a-

for all 0 e 0 and with a independent of 0. Then the intervals

[L(X),U(X)] are said to be a family of prediction intervals on Z

given X of confidence level a.

For an outcome x of X the values L(x) and U(x) are

respectively, the a-lower and upper prediction limits of Z given x.

A favorable situation occurs when there exists a function f(X,Z)

whose distribution is independent of 0 and which is monotone and

continuous in z . A case of this type is the prediciton of the mean

of a future sample of size m from a Normal population. Since

Y - 2
t 1) , where s

Xsx
n m

n- 1

a prediction interval follows immediately. Moreover for an observed

X = x the determination of a prediction interval at any confidence level

reduces to the computation of fractiles for the random variable with

distribution

x + t (n- 1) s 1 +
x n m



Consequently we call this distribution a "predictive distribution" of

Y given x.

As another example, Fisher (1959), who devoted much attention to

the prediction problem, shows that the ratio of the sample sums X and

Y is independent of 8 when sampling from an exponential distribution.

A more general type of situation is when the distribution function

of X , Fx(x0) yields a pivotal quantity. In this case the fiducial

argument as introduced by Fisher (1959) may be applied. According to

this argument the "logical status" of the parameter is changed from

"one in which nothing is known to the status of a random variable having

a well-defined distribution". Let G(Ojx) be this distribution, then

a predictive distribution on Y is defined as

yie (1703)dG(01x) .

A quite illustrative example is given by Kalbfleisch and Sprott (1969)

for a life testing problem.

In many situations however there is no fiducial argument available

and some alternative general method must be used.

A first class of methods are the "frequentist methods", i.e.,

methods where the probability statement 1.1 of the definition is

derived in classical ways from the probability distributions. Faulken-

berry (1972) gives a "frequentist conditional" approach which is fairly

general. Nelson (1970) has shown a hypothesis testing approach in some

special cases. The Bayesian approach is certainly the most general in



the sense that it can be used in most situations; Aitchison and

Sculthorpe (1965) give the Bayesian formulation as well as a decision

theoretic formulation for the prediction problem. A quite different

class of approaches is based on likelihood statements as was first

suggested by Fisher (1959) and further emphasized by Sprott and

Kalbfleisch (1969,1971). It is to be noted that the concept of likeli-

hood is controversial (see Kempthorne (1969) and Barnard (1969).).

On the basis of its asymptotic properties a "Maximum Likelihood

Predictive Distribution" (MLPD) which is available and easy to derive

in regular cases is proposed in this thesis. Comparisons of the

frequentist conditional, Bayesian and likelihood approaches are

conducted in the special cases of binomial and Poisson populations for

which special problems arise from the discreteness. In both cases it

is seen that the MLPD is very much in agreement with predictions avail-

able from other approaches.



II. PREDICTION METHODS

In this chapter the frequentist conditional and the Bayesian ap-

proaches are presented. Some results specific to discrete random vari-

ables are derived for the frequentist conditional method. The emphasis

is put on likelihood approaches. A close examination of the likelihood

proposed by Fisher leads to the definition of another type of likelihood

called the "Prediction Likelihood Function". It is shown that under

certain regularity conditions this PLF converges in probability to the

true density of the predicted variables up to a proportionality constant

when the observed sample size tends to infinity. This asymptotic prop-

perty leads to the introduction of the "Maximum Likelihood Predictive

Distribution" (MLPD) whose density is defined to be proportional to

the PLF whenever the latter is integrable.

II.1 Frequentist conditional approach

II.1.1 General formulation

Let us formulate the solution given by Faulkenberry (1973) in a

slightly different way.

Let X be a random vector with distribution F
X
(x18) and Z a

(one-dimensional) random variable independent of X with distribution

F (z18), where 8 is the same for both distributions. Suppose T is

a sufficient statistic for the joint distribution of (X,Z) and there

1
exists a region le(t) in R such that
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I dF,1 (

z c R'(t)

Suppose further that there exists an interval R(x) in such that

Then

z c R(x) < r z z Rv(t)

Pr c R(X)1 = a for all e c

That is, for any outcome x of X,R(x) is an a-confidence prediction

interval.

Note that the only theoretical restriction is the existence of R(x)

as an interval on R1.

Olsen (1974) gave various conditions under which this method has

an easy solution, especially for problems where the sample sums X and

Z are sufficient statistics for the observed and the future sample

respectively, and where T is chosen to be X + Z. Olsen defines

further a predictive distribution for Z, but as will be seen in the next

section some problems arise when dealing with discrete distributions.

Note: One may also think of conditioning the observed variable X

(or a function of ZE) on a sufficient statistic T(X,Z). T can now be

seen as a parameter and be given a confidence interval in the classical

manner, hoping that this interval can be translated into an interval on

Z. In the case of sample sums the solution for ZIX + Z is equivalent

to the solution for XIX + Z .
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11.1.2 Discrete case

In the discrete case we face the same difficulty in prediction as

for confidence limits for the parameter of a discrete distribution (see

Stevens (1950) and Pratt (1965).). This has been described for the

binomial prediction by Thatcher (1964) and in this section we will

generalize some of his results.

Let us first give a definition that will be convenient when

stating results concerning discrete distributions.

Definition 2.1: The "S-upper fractile" of a distribution is the

smallest real number u such that for a random variable X having

this distribution

Pr{X < u} > S.

The "f3-lower fractile" is the largest real number such that

Pr{X > S.

To simplify the following developments assume that the discrete

random variables X,Y take values on I_ = {0,1,2,...,n } and

1 = {0,1,2,...,n y} respectively where n and n can be infinite.
x y

The sample sums are X and Y , and T = X + Y is sufficient; we are

looking first for an upper prediciton limit on Y.

Once a confidence level a has been chosen, the determination of

an upper limit in the conditional problem. YIT cannot be accomplished



at the exact confidence level. in fact for T t we can only choose

an integer-valued function h(t) such that

and

Pr{Y < ha (t)IT = a (2.1)

PrtY > ha(t) IT = tl > 1 - a (2.2)

As this is done for all t, the (x,y) plane is partitioned into two

sets of points R and R , Where

R = {(x,y): y < ha(x + y)1

By taking the expectations over the density of T of both sides of

(2.1) and (2.2) for some 6 we find that for the unconditional problem

we have

Pre{Y < ha(T)} > a and Pr > h
a
(T)1 > T - a for all 0.

The first relationship can be written as

Pr {(X,Y) e R} > a

Suppose now that it is possible to define R as

R = {(x,y): y < u(x)}



then Pr {Y < u(X)) > a for all (2.3)

and thus u(X) defines a family of "conservative" a-upper prediction

limits.

We show now that with some rather standard assumptions on h(t)

the function u(x) exists and can be determined in a convenient way.

Theorem 2..2: Assume that the functions ha(t) and t-ha(t) are

non-decreasing for any a. Then the a-upper prediction limit of Y

given x is the unique value U such that

Pr{Y < UIT = U + x + 1)

and Pr{Y < U - 11T = U + x

Proof: From the assumptions we have

and

ha(t) < ha(t + 1)

t ha(t) < t 1 - ha(t + 1)

or ha(t + 1) < ha(t) + 1

(2.4)

Thus h
a
(t) is incremented by either 0 or 1. Let us see what this

means for the boundary of the region R (see figure 2.1). Since

the points x + y = constant are located on a left diagonal, the

previous results mean that, going away from the origin along the

boundary of R, each point is followed by a point located either to its

right or just above. Obviously for this to happen the assumptions are

necessary.

Then for a given x, we look for the highest point in R on the



vertical x, i.e., we look for U such that (x,U) e R and

(x,U + 1) 0 R, or equivalently

and

Pr{Y > UIU + x} > 1 - a

PrIY > U+ 11U + x + 11 < 1 - a

which can be readily written in the form (2.4).

Corollary 2.3: Suppose that for all keKCI there exists a

discrete distribution P over such that for a r.v. Z having

10

this distribution:

Pr{Z < y ;k} = Pr{Y < yIT = y +

Then if x + 1 e K the (conservative) a-upper prediction limit is the

a-upper fractile of the distribution Pic

This result is immediate since (2.4) is equivalent to

Pr{Z < U; x + 1} > a

Pr-CZ < U - 1; x + 1

Note that F (y) = Pr{Y < ylY + k} is always non-decreasing in y.

Suppose that Pr {Y < y + lly + 1 + < Pr {Y < yly + k} = a, then

for an a-upper prediction the points (k,y) and (k,y + 1) would

be respectively a boundary and an interior point of R, which contradicts

the assumptions in theorem 2.1. Moreover for the finite discrete case

F
k
(y) attains the value l for all k e I , namely when y = n
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For the infinite case it will be generally true that Fk(y) when

y -4- co (or equivalently Pr {X < x1T) 0, when T -4- = ).

that in most situations the distribution P exists for all x E Ix

For an a-lower prediction limit we define the set of points R'

In the (x,y)-plane R' =f(x,y): y > h(x Y)) , where the functionha (x

h is such that

and

Pr{Y > hi(t)IT = > a

Pr {Y < hl(t)IT = > 1 - a.

We establish now the result for a lower prediction limit corresponding

to theorem 2.2.

Theorem 2.4: Assume that h
1
(0 and t - h

a
ha(t) are non-decreasing

a

for all a. Then the a-lower prediction limit of Y given x is the

unique value L such that

Pr {Y < LIT = L X) > 1 - a

PriY < L - 11T = L + 1 - a

(2.5)

Proof: The boundary of RI has the same shape as for R, (see

figure 2.1) and thus we have to find the lowest value L for which

(L,x) is in R' which readily leads to (2.5).

Corollary 2.5: With the same assumptions as in corollary 2.3

L is the a-lower fractile for the distribution P
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In conclusion we see that we had to define limits in a conserva-

tive way. For example if we were to choose for upper limit the lowest

points vertically on the upper boundary of R then statement (2.3)

would no longer be true. It is to be noted that what is described

as a conservative procedure for the upper limit is an anti-conservative

procedure when applied to the lower limit, and vice-versa.

3

2

\
5 6

FIGURE 2.1
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11.2 Bayesian approach

Suppose a prior ff(0) is given for the parameter 0 6 0 C Rk

which has here the status of a random variable. Then x being an

observation of a random variable (or vector) X, we define the posterior

density of 0 given x as

whenever

ff(01x)

Ifx(x10
0

f
X
(x10)ff(0)

0

ffx(x10)7,-(0)d0

(e)de exists.

The Bayesian predictive density of Z gtven x is

h (zix) = jf

o
ff

(z10)ff(01x)d0

( le)fx(xle)n(e)de

0
(x10)n(0)de

This density h (zlx) can be viewed as the density of the conditional

distribution zlx, where the numerator is the joint distribution of

Z and X, and the denominator is the marginal distribution of X .

The a-upper (resp. lower) fractile of this distribution is called

the "a-Bayes upper (resp. lower) prediction limit for Z given X = x

under prior n ".

Case of uniform prior: Assuming that the integral ffx(x10)d0
0

exists, one can choose 71-(0) = 1 for all 0 e 0, and



hz(zI ) 10)f
X
(x10)d0 .

14

One should note that to integrate out the unknown parameter 8 in

this way corresponds to mixing the density of Z, fz(zI0), with a density

for 0 proportional to its likelihood function inferred from the

observation.
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11.3 Likelihood approaches

11.3.1 Fisher's Likelihood

This method was first introduced by Fisher (1959) on a 2 x 2

contingency table and extended by Kalbfleisch and Sprott (1969) to the

general prediction problem.

Definition 2.6: Suppose X and Z are independent random vectors

with densities f
X
(x;0) and f (z;0) respectively where 0 c 0 is

known to have the same value for both densities (By "density" it is

meant a probability density function of either the continuous or the

discrete type). We define R
X
(0;x) as the relative likelihood of

based on the outcome x of X , where

Rx(000 = fX(x0)/Sup
f
X
(x;0

0 c 0

and in the same way we define R (0;z).

If X is observed and Z is to be predicted, then "Fisher's

likelihood" of Z given X = x is defined by

L(z;x) = Sup Rx(0;x) 0;z) .

Ace

Fisher's reasoning for the use of this measure is that the likeli-

hood function of the "aggregate" of two independent sets of data is the

product of the likelihood of the two sets; here the unknown parameter

0 is taken to be the "most plausible value" for each given conjecture

(x,z). Fisher emphasizes the symmetry in x and z and the fact that
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"the same measure may be taken to be the likelihood of the hypothesis"

that 6 is the same for the distribution of X and Z.

Kalbfleisch and Sprott (1969) in their extension of the method

tried to justify Fisher's choice. But only ulteriorally Kalbfleisch

(1971) gave a theoretical foundation for this likelihood. Doing this

he brings up the fact that it is essentially a measure of the plausibility

of the hypothesis that X and Z come from members of their respective

parametric families of distributions with the same value for e.

Then following an argument used by Nelson (1970) in his hypothesis

testing approach, Kalbfleisch states that since e is known to be the

same the likelihood has to measure the plausibility of a value z of Z.

The latter statement is not entirely convincing and rather vague.

Nevertheless this likelihood would certainly be appropriate to test

whether a given value of Z, were it observed subsequently to an outcome

x of X, would support the hypothesis that

the symmetry in x and

= In this case

(say when X and Z are identical

statistics) is necessary. But for our prediction problem the difference

in status of X and Z, known and unknown, should induce an asymmetry

in the likelihood of Z since such a measure is relative and compares

all possible values of Z $ with x being fixed.

Let us now turn to some properties of Fisher's Likelihood. In

the following we assume that there exists

such that

XZ
(x,z) or briefly

eX

R
x

(
xz'x)R

( ;z) = Sup Rx(6;x)Rz(0;z)
8 e 0



Property 1:
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x,z) as defined above is the maximum likelihood
XZ

estimator based on X and Z jointly, since

Rx(6;x)Rz(61z) = k(x)h(z) f (x;6) z;0) .

Property 2: Assume further that for almost every x
1

there

exists a MLE for 6 denoted
X
(x), i.e. 6

X
(x) satisfies

Rx(0x(x);x) = Sup Rx(6;x) = 1

Assume the same for Z and denote the MLE of 6 based on Z by

6 (z) Let 0
X

be the set image of the function
X
(x) for the set

of x's such that f
X
(x;6

0
) > 0 for some 6

o

Then a necessary and sufficient condition for L(z;x) to attain

for a.e. x a maximum (equal to 1) for a value of z in the sample

space Z of Z is that for all 6 E
X

there exists a z e , such

that

6 = (z) or [0]

Then the value of z yielding the maximum is z = [ 0(x)]

Proof: (necessary) Since Rx(6;x) and R (6;x) are at most equal

to 1 for all x,y,6 the only way to get L(z;x) = 1 is to have both

above terms equal to 1. Because x is fixed we have to take

6xz 6x(x) in order to get Rx(16E.7,;i) = 1 and then we must find z

such that R
Z x(6 (x);z) = 1, i.e. there must exists a

1

such that

(A condition on a family of distributions {P (x) , 0 c 01 is said to
hold "for almost every x" when it holds for all x except for a set
A such that P

6
(A) = 0 for all 6 c 0).
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2.6)

and this for a.e. x . It is obvious that the condition is sufficient.

this property makes it easy to find the maximum z . In fact

even when z is not in the sample space it can be obtained by

solving (2.6) . For example for a Poisson distribution with unknown

parameter A and x = Ix. and z = Yz z is such that A(x) = A(z),

i=1i=1
i '

i.e. x/n = 2/m or z = mx /n

In general Z will be fractional.

Property 3: Asymptotic behavior when the observed sample size

n

Let us first show what happens when the observed sample size n

becomes large and the future sample size m remains finite for the

binomial case studied by Fisher (1959).

We denote by x the number of observed successes, y the number

of predicted successes and p the unknown proportion of successes.

Then

R (NY) =

x n - x
p q

(x/n)x(1 - x/n)

P
Y m Y

(y/m)Y( Y / m)

-y

and L(y;x) = Rx(Pxy;x)Ry(Pxy;y) with Pxy = (x + y)/(m + n) .

From the consistency property of the MLE we know that x/n..-)po
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almost surely, where p
o

is the true proportion. We will see in section

11.3.2 that Pxy tends also almost surely to pc. . Thus the maximum

y = mx/n tends to mp
o

, and since we are interested in values of y

around the maximum, we look at L(y;x) for y finite

Writing

and

we get

= (x/n)(1 + y/x)/(1 + m/h)
XY

= (1 - x/n)C1 + (m - y) /(n - X)1 /(1 m/n)

R..(P ;x
XY

(1 + y/x)x

(1 + m/h)x

[1 + (m - y) /(n x)in-x

(1 + m/n)n x

Noting that n - x + w when n + c°, since n - x = n(1 - x/n), we

obtain

thus

lim
n4.0.

R ( ;x
X

lim
n

L(y;x) =

eYem Y

e

Y m Y
Pogo

(Y/m)Y(1 Yi
-y

This shows the deceiving behavior of this measure, because one would

expect an appropriate measure to tend to be proportional to the density

of Y , fy(y;p0)

We will see in section 11.3.2 that under certain regularity

conditions Fisher's likelihood will tend to

z;00)/ Sup fz(z0)
0
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However it will be seen for the special cases studied subsequently

that when both m and n become large Fisher's Likelihood yields the

same kind of inference as the usual normal approximation.

We now introduce another "likelihood" that will have the required

asymptotic properties so that more emphasis will be given to it.

11.3.2 The prediction likelihood function

Definition 2.7: Let X be a random vector with density

X
(x;e) , e 6 0 and Z a random vector with density f (z;0) , where

e is known to be the same for both densities. Then we define as the

"prediction likelihood function (PLF) of Z having observed X = x"

the function

L(z;x) = k(x) Sup f (x;e)f
z
(z;e)

e 0

where k(x) is a normalizing constant chosen such that

Sup L(z;x) = 1 and Z= {z:f (z;0) > 0 for some 0}.
Z

Note that the value of e that yields the supremum is the MLE based

on x and z as in Fisher's method.

Interpretation: The likelihood thus defined has a direct inter-

pretation in the discrete case. The likelihood ratio of two values

of Z , z1 and z2 , is equal to the ratio of the highest probability

of occurrence of (x,z1) and (x,z
2

) for all possible states of nature.

In other words the prospective values of Z are compared according

and proportionally to the highest probability of observing them in
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combination with the event X =

For the continuous case "probability" has to be replaced by

"probability density".

Assuming that Z is one-dimensional we can give a geometric

representation of the PLF. Since x is fixed, k(x)fx(x;Ofz(z:0)

is a parametric family of curves, P
0
(z) , whose envelope is the PLF.

If we were to look at likelihood intervals by cutting the PLF by

horizontal lines (see for example Hudson(1971).), we would include

the set of values of, z such that the combined observation (x,z) has

a probability (resp. probability density) larger than a chosen level

for at least one 0. Or, equivalently, we exclude those values that

give to the event (x,z) a probability below the chosen level what-

ever the state of nature is.

Example: We want to make predictions from a normal population

with unknown mean and unknown variance.

Let x = (x
1
,x

2
,x

3
) denote the observed sample, X the

sample sum and S
2

the sum of squares. We want to predict the sum, Y ,

of a sample of size m . We have

and

f
X -'
(p

'

a
2

= (2Tr62 - 2
) expi-

n

2
(x. p)2} ,

a 1=1

f Y;p,a 2) = (21rm62 exp
1

2 (Y P )

2

Zma

2 2
f (x;p,a )f Yp a = m

%
-2(2Tro

2
)
- (n+ 1)/2 (2.7)

X Y "
1

2

[
2

2

exp { - L x. + - 2p(X + Y) + (n+m)P I
20
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Taking the logarithm of this expression and differentiating with respect

to U and a2 , we obtain

and

U = (X + Y)/(m + n)

^2 1 2 Y
2

(X + Y)
2

a = Ey

1

x.

111

m + n 3
i=

[S
n + 1 x m m + n)

Noting that the exponential term in (2.7) is a constant for p = p

-
and a

2
= 02 , the PLF is

-(n + 1)/2
L (Y;x) -n X + S

x

2
]

m(m1-1+ n)
-

n

+ n)S2 (Y X)2

-(n + 1)/2
t2

LT, + 1]

+ 1

where

,2 1 n - 2
and defining s'2 x (x. - x) , then

i=1

n (Y - mx)

+ n)s
x
2

or t

-(n + 1)/2

2

m(m+ n)Sx
2 (Y -

n
X)

(Y -x)

s
1 1

x n m

Thus the PLF is proportional to a central t-distribution with

degrees of freedom if we rescale Y in
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This is the standard result inferred from the fiducial argument

except for the degrees of freedom n instead of n 1 and s' with

a divisor n instead of n 1 .

Note that we can't define Fisher's likelihood for Y alone. We

cannotdisassociateinferenceonYandS2 hecause of the factor

f (y;6(y)) for which 0 is a function of both Y and S
2

.

When the variance is known (and equal to 1) we have

f (x;p)f (Y;p) cc expl-1/2[
(X - np)

2
(Y

X Y n m
mil)

2

1}

L(Y;x) a exp{-1/2
kc,m + n) (Y - ILI X)21} , since u = (X+Y)/(m+n)

- -
L(Y;x) exp 71/2 (Y x)

2
1

1 1 '

which is equivalent to the frequentist result. For Fisher's method

we get the same result since we have to divide by

f
Y

Y;p
Y

) cc exp{ -1/2(Y mii ) } = constant .
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Properties and theorems for the PLF:

Property 1: The PLF, L(z,x), depends on x only through its suffi-

cient statistic with respect to e. This follows immediately from the

definition.

Property 2: The following theorems show that in regular cases the PLF

tends to be proportional to the true density function of the random

variable to be predicted, when the observed sample size increases.

Theorem 2.8: Let {f(x;e), e c e} and {g(y;0), 0 c 0} be

two parametric families of probability density functions with 0 CR
I

Let X1,X2,...,Xn be a random sample from f(x00) and assume the

following conditions of regularity:

i) E0 fl(a/ae) log f(x,e)I} <
0

I

ii) E
e

fl(a
2
/ae

2
) log f(x,e)I} <

e c 0

V0 c 0

iii) HA = {y c RP: g(y;0) > 0} = H independent of

iv) (B/B0) log g(y;0) is continuous in G, vy e H

v) For all n and all y c H there exists an unique e c 0

noted such that Kn en) = 0 , where

1
K (e) =

n 1 1
(ape) log f(X.0)+

n
(a/ae) log g (y;19)

= 1

then 0
n almost surely when n

(2.8)



Proof: For any 0 (D/De) log g(y;0) is finite because of iv)

so that K (0) converges almost surely to the same expression as the

likelihood equation based on the Xi's

theorem:
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, i.e., by i) and Kolmogorov's

{(3/30) log f(X;0)} = S(0) (2.9)

0

Assumptions i) and ii) imply that S(00) = 0 and, for any c small

enough, S(00 - c) > 0 and S(0
0 t

e) 0. Thus for almost all

sequences Kn(0) there exists N such that for n > N

K
n o

e) > 0 and K (0 +
n o

Because of the continuity of K
n
(0) with respect to

root
n

is in the interval (00 - E, 00 e) and since

chosen arbitrarily small 8
n

0
o

, with probability one.

its unique

can be

Theorem 2.9: Under the assumptions of theorem (2.8) and the

additional assumption that (3/30) log f(x;0) is amonotone function

of 0 in some neighborhood of 0 for any y1,y2 e H we have when

n -* CO

;e1)

g(y ;0
n

)

1

in 1
f(X '0 )

n

= n

2

i1 i
f(X ;0

n
)

=

a. s.

1 ^
where 0

n
and 6

2
are the roots of K

n
(6) with

respectively.

=Y and y = y2



Proof: If we can prove that the right ratio of the right hand

side of the above equality tends a.s. to one or equivalently Z

tends a.s. to zero, the theorem is proven since d
1

and 8
2

tend to 0 a.s. and g is a continuous function of 0, where

Z
n

log f (X.; 6 ) - log f(X.0 )} .
n n

We show that whenever the sequences {0
n
} and

it implies that Z
n

tends to zero, and thus

1 2
Pr{Z

n
> Pr 6

n'
6
n

i.e , Z
n

tends to zero almost surely.

Using a Taylor expansion we can write

^2

Zn
(61

n
)

62.

1
(D/D6) log f(X.; *) .

n =

converge to

^ ^ ^

where 0
1 2 1

is between 8 and 0
n

. By definition 8 and 6
n n

satisfy
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0

(2.10)

il(a /ae) log f (X. es) = -(9/9O) log g(y
k' n

-61( k= 1,2 (2.11)
n

We can choose n large enough so that B1
-2

n
and On be in a neighbor-

hood of 6
o

where (a /D6) log f(x;0) is monotone in O. From iv)

(a P0) log g(yk;8) , k = 1,2 , are bounded in this neighborhood and

therefore the left hand sides of the equations (2.11) are also bounded.

^1 ^2
Since 0* lies between 0

n
and 0

n
it follows from the monotonicity



27

that
1
(D/ DO) log f (X..0*) is bound6d and thus from (2.10) 61 - 62

=

tends to zero implies Z tends to zero, which completes the proof.
n

Remarks 2.10

Because of the assumption of unicity in v) the maximum likelihood

estimator based on XI,X2,...,Xn and y , when it exists, has to be

0
n

. Its existence, however, is required in the definition of the PLF.

b) By picking up a fixed value for y2 and setting y = yl a variation

of theorem 2.9 is that there exists a function k such that

k(X)L(y;X) + g(y;00) almost surely.

c) All previous results are true for the regular class of exponential

families as defined by Zacks (1971), theorem 5.1.2.

d) Note also that if (D/ DO) log g(y;O) is a bounded function of y

for any fixed 0 e 0 , then from equality (2,8) the convergence of

K
n
(0) , and consequently that of 0n , is uniform in y. Furthermore

the summation in Taylor's expansion (2.10) is bounded and thus the

convergence of Z is uniform in y as well. If additionally g(y; )

n

is continuous in 0 uniformly in y, then the convergence of the PLF

is uniform in y.

e) For the regular class of exponential families, h(y)exp{ey + k(e)},

the two conditions above are satisfied for y on any bounded interval

which generally will be sufficient to have a uniform convergence
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for all y because density functions have to vanish at infinity (see

proof in section 111.6.1).

f) It seems that the previous results could be generalized to the

case where e is k-dimensional by taking assumptions similar to those

for the classical proof of the consistency of the MLE (see Zacks (1971)).

Corollary 2.11: Under the assumptions of theorem (2.9 ), Fisher's

likelihood tends to g(y;00)/g(y;e(y)) a.s. when n 00 , where

6(y) is the MLE based on y

Then

Proof: Consider the ratio L (y;X)/t(y2;X) for yi,y2

- -
R(e

n

1
;X) * R(Or1oyi)

^ ^

R(en2 OS) * R(On2 ;Y2)

1
where 0

n
and en are the same as previously. Therefore

R. f(x -)
L(Yl;X) 1=1

en

L(y2;19 R f(x ;62)
J.' i

^1

g(Y ;611)/g(Y1;e(Y1))
-2

g(Y2;8n)/g(Y2;e(Y2))

which shows the relationship between Fisher's likelihood and the PLF.

That is

L(Y1;4)

f.,(Y200

L(Y OS)

L(Y2OD

g(Y2;6(Y2))

g(Y1;e(Y1))

2.12)
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But by theorem (2.8) the first, ratio on the right hand side tends to

g(y1,00) /g(y2,00) a.s., so that

a.s. g(Yl'eo)/g(371; (Y

g(372;eo)/g(Y ;e(Y

))

))

and the result stated follows from the normalization of L (y;X) .

Remark 1: Suppose y is the sample mean (or total) of a sample

of size m from the same population as x1,x2,...,xn . If for

all 0 the density functions satisfy the assumptions of the central

limit theorem, then the density of y tends to be normal when m

Thus when both m and n tend to infinity we expect the PLF to

tend to have a normal shape.

Remark 2: One may ask about the behavior of 1:(y;x) when

CO

and n remains finite. As will be shown in special cases ulteriorally,

the limiting form depends on the distribution of the population.

Remark 3: Another question of interest is the existence of a

Bayes prior yielding a Bayesian predictive density proportional to

the PLF. We restrict our investigation to y being the sum of

a future sample from the exponential family

f(x;e) = h(x) expfex + ge) }

i.e. the subclass of the exponential family for which the sample sum

is a sufficient statistic.
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Then denoting by x and y the sample sums, we have

L(y;x) = k(x,n,m) exp{(x + y)6 + (n + m)11)(6)1 (2.13)

where 0 satisfies

or

x + y + (n + m)(a/a00(e) = 0

alp

ae E-(X y) /(m n)]

For a prior 1r(6) we obtain the density of y

f7r(371x) = h(x,m,n) f exp{(x + y)0 + (n+m)11)(8)} ir(e)cle
0

Thus we are looking for a solution 7r for the integral equation

fexp{t6 + Nip(6)}Tr(6)d6 = q(x,m,n) exp{t6 + NCO)} vt,

0

where t = x + y and N = n + m

only, the previous equation becomes

0

But since 0 is a function of t

fexp{t6 + N4)(6)} 7r(6)d6 = c(N) exp{t6 + N*(6)} Vt .

If 0 is the whole real line (resp. half real line) we see by setting

t = -s that a necessary and sufficient condition for to exist is

that the right hand side, as a function of t, be a bilateral (resp.

one-sided) Laplace-Transform of a positive function, i.e. 9
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11-(0) = c(N) exp { -tO - N11)(0)} t-l[exp{tA + Nip(e)}1 .

Generally the right hand side will be a rather complex function and no

explicit solution will be available. The existence of an inverse will

be easy to verify, but the conditions for it to be positive as

given by Widder (1971) or Doetsch (1950) are hard to verify.

For the Poisson and Binomial cases we will exhibit, however,

Bayesian predictive density that is very close to the PLF.

11.4 Likelihood function and probability distribution.

In the classical likelihood terminology the likelihood ratio for

two values of an unknown parameter is the ratio of the probabilities

of observing the data x under both states of nature. The type

of likelihoods we defined previously is conceptually different. A

likelihood ratio for two values y
1

and y
2

is related to the ratio

of the highest probabilities of observing yl and y2 themselves,

although in combination with the observed data x.

As for the parameter in the classical approach,the probability

distribution of y cannot be recovered from its likelihood since we

compare probabilities of events under different states of nature

with 0 a function of y.

Whereas in the classical case a bridge from likelihood to

probability distribution of an unknown parameter is provided by the

Bayesian argument, in prediction theory a bridge can be provided

by the asymptotic property in theorem 2.9. Just as not any prior
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is valid for the Bayesian argument, here the PLF is not necessarily

integrable; but the fact that it is integrable asymptotically indicates

that it might very well be so for n finite, and in such a case the

density function obtained by proportionality to the PLF defines a

distribution that we name the "Maximum Likelihood Predictive

Distribution" or briefly MLPD.
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III SIMPLE RANDOM SAMPLING FROM A POISSON DISTRIBUTION

The methods presented in the preceding chapter are now applied

to the Poisson distribution. The MLPD exists and it is shown how its

CDF
la

is located with respect to the CDF's derived from the other methods.

The asymptotic behaviors are emphasized for n and/or m tending to

infinity. An explicit expression of the density of the MLPD is not

available but a quite accurate approximation is developed.

III.1 Problem and application.

Suppose we observe a sample of size n , x1,x2,x3,...,x , from

a Poisson distribution with unknown parameter A. What prediction

interval can we give at a chosen confidence level for the sum of a

future sample drawn from the same population?

We assume that we are sampling from an infinite population. How-

ever the case of a finite population can be brought into the same

framework if we assume that this finite population has originated from

a "superpopulation" with a Poisson distribution. Then we make the

prediction on the total of the whole finite population in the following

way:

We sample n items out of the N items constituting the whole

population and thereby observe a total x for the sample. We now

consider the remaining N - n items with sum y as our future sample.

After computing a prediction interval on y ,

la

Pr
X
{L(x) < < U(x)1 = a VX,y

CDF = Cumulative Distribution Function



we derive a prediction interval for the total

Pr 11,(x) + x < t < U(x) +

111.2 Frequentist conditional approach.

= a VA
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A sufficient (and complete) statistic for the joint distribution

of X and Y is T = X + Y . It can easily be shown that the

distribution of Y given T is Binomial with parameters T and

q = m/(m + n 5

-
=f =IT(y1t) (

t)
q
y
p
t y

-y 0,1 2 5t

Then from theorem 2.2 the conservative a-upper limit U is defined by

the following inequalities:

U
y B(k; V + x + 1,q) > a

k=0

and
1J-1

y B(k; x,q) < a

k=0

But it can be shown (see Olsen (1970.) that

S

y B(k; s + r,0) = Pr-CZ < s}
k=0

where Z is a random variable having a NB(r,e) distribution.

2Z is said to have a Negative Binomial distribution with parameters
(r,e) when

Pr{Z = z}
(z + r - 1) r

0 (1 - e) Z e I =

Then E(Z) = (1-0r/0 and

(1957).).

0

(1 e

(see Feller
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Consequently U is the a-upper fractile of a NB(x + 1,p) distribution

(see also corollary 2.3.).

For a 0-lower limit we have from theorem 2.4

/
0

B(k; L+ x,q) > 1 - 0
k=

L-1
B(k; L + x -

k=0

,q) < 1 -

That is L is the 0-lower fractile of a NB(x,p) distribution (see

corollary 2.5), except for x = 0 where L = 0 .

We summarize the previous results in the following theorem.

Theorem 3.1: The a-upper prediction limit given by the frequentist

conditional approach for the sum of a random sample of size m from

a Poisson distribution, given the sum x of a sample of size n ,

is the a-upper fractile of the NB[x + 1, n/(n + m)] distribution.

The 0-lower prediction limit is the 0-lower fractile of the

NB[x,n/(n + m)] distribution (except for x = 0).

111.3 Bayesian approach

In the second chapter we have seen that the Bayesian predictive

density of Y is defined by

f (y x) =
of (Y0)fx(x0)7r(A)dA

1' (c;A)ff(x)dx

Consider priors of the form A . Then we have



:v: 0

CO

e
mX

(mX) e
-nX x -a

nX dX

-
(x., )

-1 fm
e
nX

(nX)
-a

dX

where in order for both integrals to be convergent, for a given x,

we must have a < x + 1

Then introducing the Gamma function we can write

f (Y]x)
m3' r(

r(

+ y + 1 - a)/(m + n

+ 1 - a) /n
x + 1 - a

x + y + 1 - a

and further by setting p = /(n + m) and q = m/(
'

f (ylx)
r(x +y+1- a x +1-ay

= r(x + 1 - a)Y!

for y£ = {0,1,2,}
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In particular for a uniform prior, i.e. a = 0 , we have

Ylx NB(x + 1,p)

For a 1/X prior (assuming x # 0) we have

Y!x NB(x,p)

The next theorem follows immediately.

Theorem 3.2: The frequentist lower and upper prediction limits

as described in the theorem of section 111.2 coincide respectively

with the Bayes lower prediction limit under prior 1/X (when it exists,
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i.e., x # 0) and the Bayes upper prediction limit under uniform

prior.

Using an argument similar to the one given by Thatcher (1964) for

the binomial prediction one could show that no prior will yield the

same limits as the frequentist approach.

111.4 Likelihood approaches

111.4.1 Fisher's likelihood

Applying Fisher's likelihood approach to the Poisson problem

gives

y;x) = R(x;X) R(y;;:)

e A
-nX-x

e-x(x/n)x

with X = + y)/ (m + n) , or

(Y;10 =

e (A)
y

eY(y/m)Y

x +yxy x
+ Y) P q gx Y

y
)

with p = n/ (m + n) , q = /(m +

The maximum 1 is obtained for y = x , i.e. y = mx/n .

111.4.2 Prediction likelihood approach (PLF)

The predictive likelihood approach yields

L(y;x)
X
(x;;t)f

Y
(y;X) with A = (x + y)/(m + n)

e
-(n + m)cxmY(a)x Y/(x!y!)
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or

L(y;x) e Y +
x + y y

y q /y!

We now look for the value y of y that maximizes L(y;x).

order to do this we have to make certain approximations. First using

Stirling's formula,

we obtain

Y! = VT; a yY

1L(y;x) = (x + y) YqY /yY 1/2

Taking the logarithm of the right side we have

+ y) log

and by differentiation

+ y) + y log q - (y + 1/2) log y ,

log (x + y ) + log q - log y 1/2y = 0

A A

or (x + y)q/y = el
y = 1 + 31:

i.e. for y not small: (x +yq:_y+ 1/2

or
m

y - n (x 11) - 1/2

We see that y is less than y = mx/n of Fisher's approach.

111.4.3 Comparison of the two likelihoods

Let us look at the ratio of Fisher's likelihood to the PLF as a

function of y, that is



L(y;x) /L(y;x) YY

e Y qY
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By Stirling's formula which is fairly accurate even for small values of

y , the right hand side is approximately equal to F. Thus the above

ratio is an increasing function of y ; it could be shown by using a

theorem analogous to theorem 3.4 for likelihood functions,that Fisher's

likelihood is always located to the right of the PLF. This is confirmed

by the fact that 5r is larger than y .

More will be said about the two likelihoods when we study their

asymptotic, behavior. However we can already note that the maxima will

tend to be the same only when x 00 , m/n not going to 0 .

111.5 Comparison between the MLPD and the Bayesian predictive distri-
butions.

We first need to establish theorem 3.3 and theorem 3.4. (see also

Pratt (1965).).

Theorem 3.3: Let g(x) be a density function strictly positive

on the interval La.,+00) where a is finite. If f(x) is a function

positive on the same interval and such that f(x)/g(x) is non-

increasing for x > M , then f(x) can be normalized to a density
+00

function, i.e. of f(t)dt <

Proof:
+.0

f f(t)dt = ff(t)dt + f f(t)dt
a a-
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+00

= K + I actvg(t)] g(t)dt

K + [f(M)/g(M)] mf g(t)dt

K + Cf(tO/g(M)] - G(M)] <

This theorem holds as well in the discrete case, if f(x) and g(x)

are strictly positive on the same discrete set of values of x. The

integral is then replaced by a summation sign. For convenience the

interval of definition has been chosen as [a,+co). For an interval

(-°°,1)1 the convergence is insured when f(x)/g(x) is non-decreasing.

Theorem 3.4: If f(x) and g(x) are density functions strictly

positive on the same interval (a,b) and f(x)/g(x) is a non-

decreasing function on (a,b) then for their corresponding CDF's we

have F(x) < G(x) .

Proof: For x < a , F(x) = G(x) = 0

For x > b F(x) = G(x) = 1

For a < x < b,

X
F(x) = of Ef(t)/g(t)Jg(t)dt < [f(x)/g(x)1 of g(t)dt

= [f( )/g(x)1G(x)

1 - F(x) = xfba(t)/g(t)1g(t)dt > f(x)/g(x) j g(t)dt

= [f(x)/g(x)1[1 G(x)1



then:

F(x) G(x)

1 - F(x) 1 - G(x)

The proof holds for the discrete case when the integral sign is

replaced by a summation sign.

We now come to the main statement of this section:

Theorem 3.5: When random sampling from a Poisson distribution

there exists a Maximum Likelihood Predictive Distribution, noted

F(y;x), for the sum, Y, of a future sample. Moreover if we denote

by F1(y1x) and F2(y1x) the Bayesian predictive CDF's for a 1/A

and a uniform prior respectively the following inequalities hold:

F (ylx) < F(y;x) < Fl(ylx)

Proof: Let i(y;x) be the PLF and fl(ylx) and f
2
(yi )

41

the probability mass functions for the Bayesian 1/A and uniform

priors. We are going to show that:

i) 1:(37;x)/f2(YI ) is a non-increasing function of y for all

x e {I = 0 . Then by theorem 3.3 the existence of F(y ;x) is

proven and by theorem 3.4 the left inequality holds.

ii) L(y;x) /f1(yjx) is non-decreasing in y and by theorem 3.4

the right inequality holds.

Recall that

L(y;x) = x n
'

m) e

= ki(x,n,m) (x + y)! e/y!
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and f
1
(y1x = k "(x,n,m) (x + y - 1

For i) we look at the ratio

L (y;x)/f2(y1x) = h(x,m,n

and have to show equivalently that

qy /y:

+ y)x Y/(x + y

u = e-nnn/n:
n

is a non-increasing sequence. Let
vn

= log u . Then

vv

n I
= - (n + 1) log (n + 1) log (n + 1): + n - n log n + log n:

= -1 + n log (1+1/n) (n # 0)

But since log (1+x) < x for all x # 0 we have

v
n + 1

-v
n

v
+ 1

-v
n

<< -1 + n(l/n) or for n = 1,2,...
n

Consequently u < u
n

for n = 1,2,... and this holds also for
n + 1

n = 0 since u0 = 1 and u1 = 1/

For ii) we consider:

1, (y;x)/f1(yix ) = hi (x,m,n) e
-(x + y)

(x+y)x Y/(x+y-1

i.e. we have to show that w = e
-n

n
n
/(n - 1):

in a non-decreasing sequence. Note that the sequence is not defined

for n = 0 which corresponds to the fact that the prior 1/A does not

apply when x = 0 .

= log w = - n + n log n - log (n - 1)



+ 1-
(n + 1) log (1+ 1 / )

43

But since log x > 1 - 1/x for x > 1 , taking x = 1 + l/n we find

- >
sn + 1

s
n

We will see in section 11.6.2 that L(y;x) can also be normAlized

to a density and that the corresponding CDF is always below F2(371x) .

Existence of a Bayes prior yielding the MLPD:

At this point we may ask if there is a Bayes prior ir(A,n,m) that

A

leads to f(y;x) , i.e. that satisfies

, -1 + )X
) j X)x(mX)Y (X,n,m)dX (3.1)

k(x,n,m

for x,y e I = {0,1,2,-1

(x y) (x y)x Y Y/y.

By setting t = x + y and N = m + n , 3.1) can be rewritten

equivalently as

r t

of e NSA A,m,n)dA = k(x,m,n) N
t

-t t
e t

for all t, x e I

This equality shows that k does not depend on x , and further,

depends only on N and A. Then,

c* X

o
j e-N (NA) t 71-(A,N)dA = e-ttt for all t c I

By setting u = NA one sees that ff(A;N) has to be of the form



N- *(NA) and an equivalent condition for the existence of a Bayes

prior is the existence of a non-negative function p such that

fe
uutp(u)

du = e
-t

t
t

0
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t C I (3.2)

The conditions for e
t
t
t

to be a bilateral Laplace transform (see

section 11.3.2) are fulfilled and thus there exists a unique function

P(u) verifying (3.2). However p(u) is not a classical function and

we are unable to verify its positiveness.

Instead of this we exhibit a prior that leads to a predictive

distribution that is very close to the MLPD. The prior we chose is

p(u) = u

Using the formulae (see for example Widder (1961).)

and

we get

with

r(t + 1/2) = fr (2012-2t/t! (3.2a)

tt 1/2e-texpi-1/120 1/(360t3) + o (t )

r(t + 1/2) = ViTe-ttt

R(t) = -1(24t) + 7/(8 x 360t3) + (t
-5

(3.3)

r(t + 1/2) gives a good a good approximation for e
-t

t
t

and consequently

-4
so does the Bayesian distribution with prior A for the MLPD. The

larger t = x + y the better the approximation. The posterior
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distribution for this prior is a NB(x + 1/2,p) distribution.

Determination of the normalization constant for f(roc)

Our purpose is now to find the function K(x,p) such that

000

Y)3c Ye/Y! =K(x,p) y eY
y =o

Consider the expression Q , where

Q

x +
P y

X
x y=0

+ y)
x + Yq y

Y!

-(x + y)(x
y

y=0 e
-x
x
x

-
We substitute for e

(x + y)
(x + y

obtain

Q=
r(x + y + 1/2)

L n r(x 11)

Y=

or equivalently Q = ELexp{R(

X + y

x + y

x + 1/2 y

Y!

expressions from (3.3) and

x + y
p

Y!
exp{R( - R

- R(x + y)}] where the expectation

is to be taken with respect to a NB(x + 1/2,p) distribution. But

since

3We can extend the definition of a NB(r,O) of section 111.2 to non-

integer values of r as follows:

r(z + r) r
PriZ = z} (1 - z e I



exp {R(x) R(x + Y)).

1 1 vr 1

24x 24 + y

1 1

24x 24(x + y)

As a second order approximation we may compute the expectation with

respect to a NB(x + 1,p) distribution:

Thus

E 3
1 (x + y) x+1g y1

X -I- y
Y=0

x:y: x+y

/ 11 v (x + y 1) : x x

Y =0
x L 1): P q

1 .2.Q +
24x x

_
24x

Going back to the definition of Q we establish formula (3.4):

(1 +

46

x 1- 11 co

L L e
Y + y)

YqY/y. = 1 (3.4)

x
x

y=0

Note 1: Had we used for exp{R(x)} its exact value (see (3.3))

explit(x)1 = r(x + 1/2)/( 2ir e xxx) = (2x)!/(2 x., e
-x
x
x
),

we would have obtained (3.5) alternately to (3.4):

2x+1/2 x+1/2
x. p

24x' (2x):

C e-(x+y)

y=0

(3.5)

x+y)x+YqY/ - 1
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The difference between the two approximations is negligible.

Tables I and II give the exact value of the left hand side of (3.4)

and (3.5) respectively for various values of x and p

Note: Formulae (3.4) and (3.5) do not apply when x = 0

We will develop a solution which has been inspired by an article of

Haight and Breuer (1960) on the Borel-Tanner distribution. This

solution for x = 0 leads eventually to the general solution for

the sum

S
x

=
y/0

(y + x)Y xe-YqY/y!
=

Borel (1942) has shown that defining 0 = ae
-a

we have the relation-

ship

y-1 ,

'Y'

which by taking 0 = q/e and a = 1 - u can be written as

00

1 - u = yX
1

_y-leycly/y!
with q = - u)e

u

/

Let us differentiate this equality with respect to q , then

-du/dq = (1/q) I y3reYe/y:
y=1

and by replacing dq/du = - ueu=-uq/(1 - u) ,

yYly3reYqY/y! = (1 - u)/u .



Finally we obtain

00

= yX0
yYe-Ye/y! = 1/u .

=

Furthermore by differentiating

ylvYeYclY /(3, 1

S
1
= (dS

o
/dq)

with respect to

= dSo/dq

= e(du/dq)(dSoidu)

= (e/q) (1 - 1 /u) (dSo/du)

and in the same way

Sk + 1
= (e/q) (1 - 1/u) (dS

or by setting t = 1/u

du

with

Sk 1= (e/q)(t
3
- t

2
) (dS /dt)

we have

, with S = 1/u
0

S
o

= t and q - 1/0e
1/t

The relationship (3.6) allows us to obtain the expression of

recurrence, e.g.

S
1

= (e/q) (t - t
2
)
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(3.6)

by



P

TABLE I. Approximation (3.4)

3 4

- (Value of left hand side)

5 6 8 9 10X= 1 2

.99 .99731 .99954 .99964 .99992 .91995 .99997 .99998 .99558 .99999 .99999

.35 .99790 .99971 .9932 .59997 .53959 .99999 1.01000 1.00600 1.00060 1.00060

.30 .99659 .9.392 1.06091 1.60002 1.61302 1.00642 1.00001 1.00001 1.00001 1,00001

.5J .99988 1.06628 1.00616 1.60612 1.01008 1.06606 1.00005 1,40664 1.00013 1.00062
1,1'0 1.00100 /.00098 1,J0(32 1.00620 1.0)013 1.00009 1.00007 1.00665 1.00004 1000004
.60 1.00193 1.00081 1.60642 1.00025 1.01017 1.00012 1.00009 1.00007 1.00005 1.00004
.50 1.03269 1.00097 1.4itt4e 1.60028 1.0/018 1.06013 1.00010 1.00007 1.00006 1.00005.40 1.00212 1.66163 1.00049 1.03629 1.6/019 1.06613 1.00010 1.00607 1.00006 1.00065
.30 1.0026 1.00100 1.00646 1.03326 1.0)017 1.00012 1.00068 1.00066 1.00005 1.00604
.272 1.33298 1.06084 1.36637 1.00021 14)61013 1.00009 1.00006 1.00005 1.00004 1.00003
.1) 1.00210 .1,30352 1.30022 1.00012 1.01007 1.00004 1.00003 1.00662 1.00001 1.00001
.05 1.06136 1.00030 1.06012 1.60007 1.0)004 1.00003 1,00002 1.00601 1.00001 1.30001

TAR" TT, Approximation (3.S) - (Value of left hand side)

1 2 3 10

.39 1.30013 1.30304 1.00062 1.60601 1.0)301 1.60001 1.00000 1.00000 1.00000 1.00000
6'45 1.03654 1.00319 1.00609 1.60665 1.0)304 1.00063 1,00002 1.00661 1.00001 1.00001

1.30125 1.66038 1.30(18 1.00010 1.61007 1.66005 1.00004 1.00003 1.60002 1.00002
.56 1.00236 1.06069 1.30633 1.00019 1.0 012 1.06009 1.06006 1.00005 1.00004 1.00603
.70 1. 3 0331 1 0( 095 ( 4 1.06025 1.61016 1.06012 1.00009 1.00067 1 . 0 0 005 1. 0 0 004
.63 1.001.37 1.30114 1.00652 1.30630 1.6)019 1.00613 1.00010 1.00068 1.00006 1.00005
.51 1.30461 1.06125 1.0665t 1.00032 1.31020 1.00014 1.00010 1.00008 1.00006 1.00005
.03 1.00490 1.30128 1.16656 1.00631 1.31620 1.00014 1.00010 1.06008 1.00006 1.00005

1.j)487 1.63120 1.33(51 1.606628 1.6)018 1.06012 1.00069 1.00007 1.00005 1.00004
.21 1.00443 1.03160 1.30601 1.00622 1.6)613 1:00009 1.00006 1.00005 1.00004 1.00003
.10 1.30338 1.00;0604 1.00024 1.00012 1.01307 1.00005 1.00003 1.00002 1.00002 1.00001
.35 1.13249 1.010039 1.00013 1.00006 1.0)003 1.00002 1.00001 1.00001 1.00000 1.00000
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111.6 Asymptotic properties

111.6.1 Limits when m/n + 0

This means that n 3 co and m remains finite, i.e., the observed

sample size alone becomes large. The behavior of L(y;x) and L(y;x)

has been studied from a general point of view in chapter II. If

s.
is the true value of the parameter then x/n

a.
A
o a

nd further

a.s. -mAo(mx )Y
f(y;x) f

Y
(rA ) =

Y:

e
-mA

°(mA )
y

a.s.
L(y;x)

e-Y yY

for y = 0,1,2,...

which exhibits for the Poisson case the deceiving behavior of Fisher's

likelihood.

As for the Bayesian predictions we know (see Feller (1957).) that

if Z ~ NB(r,0) and r + c° but r(1 -0) + A then
o
).

In the present case for a NB(x,p) where p = n/(m + n) , with proba-

bility one x4-c,, since x/n Ao , but x(1 - p) = xm/(m + n) mA0

The same is true for a NB(x + 1,p).

Thus the Bayesian predictive distributions under priors 1/), and 1

also converge to the true distribution o1 Y almost surely.

Uniform convergence of f y;x .

Let us show that the a.s. convergence of f(y;x) is uniform in y.

Recall from theorem (2.9) that the convergence will be uniform in
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on a bounded interval if f(y;x0) is continuous at A uniformly

in y on that interval. This is obviously true for an interval

IK = {0,1,2,...,K} where K is arbitrary, i.e., for any given n

and 6 one can find N (K) such that for all y.6 K

N > N
1
-.2.;. Pr{ Sup If n(y

;

x) - f(y;A
I

< 6/2} >

n > N

Let us choose K such that f(K;Ao) < 6/2 . The fact that f
n
(y;x)

lies within 6/2 of f(y;A0) implies, for 6 chosen small enough,

that for y = K we are to the right of the maximum of f
n
(y;x) and

then f
n
(y;x) is decreasing in Y , i.e., fn(y;x) < f

n
(K;x) < 6

for all y > K. Thus

If (y;x) - f(y;A0)1 < 6/2 for y e Ikr4 Ifn(y;x) - f(y;A0)1 < 6

Consequently

Pr{ Sup
n > N

k Or; c) f(y;x0) < E}

for all y .

1 n for N > Ni

where N
1

is independent of y and 6,11 can be choSen arbitrarily

small.

This proof applies more generally to any distribution as long as

the density of y is continuous at the true value of the parameter

uniformly in y on any bounded interval, and the density of the MLPD

tends to zero in a monotone way when y tends to infinity.
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111.6.2 Limits when m and n c° ,m/n remaining constant.

Let us recall first (see Johnson and Kotz (1969).) that if Z

is distributed NB(r,O) , when 00 Z tends to follow a Normal

distribution with mean and standard deviation

E(Z) = r(1 0/e a(Z) = 1A(1 - )8/8

Thus for a Bayes 1/A prior with probability 1 (since x with

prob. 1) Y lx tends to be Normal with mean

E(Yix) = x(1 - p)/p

= mx/n

and standard deviation

a(Y1x) = 1/x(1 - p) /P

Vrax(in + n)/n2

= m (1.4. I.
n 'm n

This is equivalent to the result one would obtain by using the normal

approximation for the distributions of the sample sums.

For the Bayes uniform prior, x is replaced by x + 1 which leads

to the same limiting form. The MLPD is between these two Bayesian

predictive distributions and thus has the same asymptotic behavior.

We show now that Fisher's likelihood can be standardized to a

density whose limit is the same as above.



Recall that

L (y;x) cc (x + YqY/yY for y = 0,1,2,...

Consider the function defined as

h(y;x) m

0 for y = 0

(x + y)x + YqY/(y - 1): for y = 1,2,...

Since (Y 1):/yy is non-increasing, L(y;x)/h(y;x) is non-increasing

53

as well, so we are done with the proof if we can show that yy0
h(y;x)

=

is convergent.

It is easily seen that the series

= (x + y)x Ye/(y - 1): y = 1,2,...

is convergent for all x because u = vk , where
y k

(x k)x + 1 + k k + 1/k1
= 0,1,2,...

and v
k

is proportional to f(k; x + 1)

Thus h(y;x) can be defined as a density function and

h(y ;x) = f( y 1; x + 1) for

Consequently a density can be derived from Fisher's approach which we

denote f(y;x) , and we have

Y-1

f(k;x) > kfoh(y;x) = k/d(k;x + 1) = F(y - 1; x + 1)
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i.e.: F(y;x) > F(y;x + 1) - f(y;x + 1

But since for all y, f(y;x + 1) tends to zero when x = we have

F(y;x) > F(y;x + 1) - e

where E can be chosen as small as we desire.

Consider now the ratio.

(y;x)/f2(ylx ) = ax+y)x+Ye/yYl/L(x+y): /y: 7

(K Y)Ic Y Y!

(x + y)! yY

The difference log w
y + 1

- log w
y

= (x + y)log(1 + 1/(x+Y))

- y log (1 + 1 /y )

is always non-negative because the function u log(1 + 1/u) is

increasing for u positive. Thus the above ratio is a non-increasing

function of y and F(y;x) is always below F
2
(ylx)

Finally we have

F(y ;x + 1) - c < F(y ;x) < F (ylx)

When x = , F(y;x + 1) and F
2
(y1x) have the same limiting form

as F(y;x) , and so does F(y;x) since a goes to zero. We summa-

rize these results in the following theorem.

Theorem 3.6: For n,m = , m/n remaining constant, the

predictive CDF's of Y: F
1
(y1x) , F

2
(y1x) , F(y;x) and F(y;x)

tend to be such that
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with probability one.

N(0,1)

111.6.3 Limits when m + c , n remaining finite.

One can imagine situations where the future sample to be predicted

would have a large size m . This for instance would be the case for

the type of inference discussed in section III .1 when sampling from a

finite but "large" population, i.e., in fact the sampling fraction

n/(n + m) has to be small. It might be of interest then to study the

limiting form of the distribution of Y in order to approximate it.

Also the prediction intervals obtained from a limiting predictive

distribution of Y/m can be seen as confidence intervals on the true

parameter A
o

.

Limit o f(y;x)

(37;20
eY(x

y)x + y

Y! m

When m -4- ... then E(Y;x)

mation for y! and obtain

thus we can use Stirling's approxi-

f(y ;x)
%x 2(1 x/y)X Y(1 + n/m)Y

Let us look rather at the distribution of i = Y/m because E(Y ;x)

is finite. Then
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_x - 1/2 x x + mY

When m 4 co we obtain

1 + n/m)-my

f(y;x) 4 k(x) yx -x e -nYa y-

so that f(y;x)--)GAMMA(x - 1/2 , 1 /n)

Thus for m "large" we can approximate f(y ;x) by a GAMMA(x , min)

distribution

ii) Limit of f (y;x)

fy;x)
(x + y)

x + y
q
y

x
x
y
y

y (1 + x/y)
x + y

In the same way as in i) we find that

i(i;x) 4 GAMMA(x,l/n)

iii) Limit of the Bayesian predictions

1 + n/m)-Y

For F
1
(ylx) as well as F

2
(ylx) , m oo corresponds to having

the parameter 0 of the Negative Binomial distribution tending to 0 .

Lemmma 3.7: Let Z be a random variable distributed NB(r,8).

When 0 4 0 the random variable AZ tends in distribution to a

GAMMA(r - 1,1) distribution.
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Proof: The characteristic function of Z is (see section 111.2)

then for ez,

'Pz(t)

tr r
e e /D. e

ti r

OZ

eftrerri _e)eOtir

When e÷ 0 the denominator is equivalent to

[1

or

Thus

- r)r

+ et + O(02)1r = [0(1 - t) + 0

0.-r when 0 -4- 0

which is characteristic function of a GAMMA( - 1,1) .

have

or

Applying this result to the Bayesian case with 1/X prior we

Y NB(x,n/( + m))

nY/(m + n) 4- GAMMA(x - 1,1) when

or equivalently

nY/m GAMMA(x - 1,1) .

m ÷ CO

For a uniform prior we obtain

nY/m GAMMA (x,1)

These results are equivalent to the posterior densities of the unknown

parameter A for the same corresponding priors.
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We summarize the results for m "large" in the table below. Recall

that m "large" means 1,n fact min large since all predictive densities

considered depend solely on this ratio.

Approximation for m large

Type of Limiting Limiting
Approach Notation Distribution Expectation

m
1

x
n

Bayesian 1/A f (Ylx) r(x - 1 ; m/n)

mBayesian 1 f 2( ylx) r(x ; m / n)
n
-- (x + I)

MUD f (y; x) r(x - ; m/n) .12 (x + 1/2)
n

FISHER f(y;x) r(x ; m/n) --(x + 1)
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111.7 Examples:

Several examples in the next pages illustrate the preceding results.

For a given value of x and p = n/(n + m) the predictive

density functions and cumulative distribution functions are plotted.

These correspond respectively, from the left to the right, to the

NB(x,p), the MLPD, the NB(x + lip) and the distribution derived from

Fisher's approach.

Six examples have been chosen, i.e., x = 5 and 10 for the

values of p: .25, .50, .75 which correspond to n/m equal to 1/3 ,

1 and 3 .
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P-.-2-
PFY=Y1

Poisson prediction

x=5

11 1:7
AI

, y

p=.25

.3

10 20 30 40 50

.44-4E4

4-""-

/
/

.2
/

4

4-4, 4 44;4 -44- -4-1- 4 -4-44 , 4 -4-4'4-4-4-4-4-4-4-4 4-4'
1 0 z 0 50

Poisson prediction

x=5
p=.25



Poisson prediction n

x=10
p=,25

1E-2 t-

25 56

/

t/

/ 7 4

/741)4
71,

25

poi sson prediction n

X=10
p=.25

y

50 75
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PEY=y]
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Poisson prediction

X=5

V. 5

,

P [

j 1-- 4- -- -1- 1 i-

5 1ro 15

y

20

Poisson prediction

X=5

V- -5

y
+

5 10 15 20
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P[Y-y]

E 2

/ /
/

I

// /I
I I

I I I
I/11

111/1

114
el

1

-.--- 4,'r' --;-- --1- -I- --i- --i-- -i-- 1-- 1.- 4- ; 1 -1 =I-
l 0 15

± ____ b
25

Poisson prediction

x=10
p-.5

Poisson prediction
4 x=10



Poisson prediction

-41-PEY4y]

4-

x=5
p=.75

5 10

Poisson prediction

x=5
p=.75

y

10

64
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Poisson prediction

p=.75

p '1,4y

\:\

i 4- F j 4- 4-- I 4--

2 3 4 5 6 7 8 9 y

Poisson prediction

x,,10
p

y
+ _4_ 4. 1- I-

2 3 4 5 6 7 8 9 10
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111.8 Conclusions

Because it falls between a conservative and an anticonservative

predictive distribution the MLPD is expected to yield prediction

intervals whose exact probabilities of coverage 8(X) are close to the

nominal level of confidence for any given X. One could in fact

compute 13(X) and compare it to the nominal level; this has been done

for the binomial case (see section V.7).

Since the MLPD is approximately a NB[x + 11,n/(m + n)] distribution

it can be said to lie between the conservative and the anticonservative

distributions, which are NB(x,n/(n + m)) and NB(x + 1,n/(n + m)).

It is noticeable that the three corresponding Bayes priors are the

priors most frequently encountered in the literature around the classi-

cal theories, i.e., the a -1, X
-1/2

and uniform priors.

The asymptotic results that have been established guarantee for

the three distributions the convergence towards the true distribution

of the sum Y, for n tending to infinity. As for Fisher's approach

it tends very rapidly towards the NB(X + 1,p) distribution when

mx/n (i.e., roughly the expectation of Y) increases. All approaches

tend to be equivalent to the usual normal approximation approach when

both n and m co

Another important result is that the predictions depend on n

and m only through their ratio or equivalently through p = n/(n + m).

The larger the value of p the closer will be the MUD, the NB(x,p)

and the NB(x + 1,p) distributions. Note that in the finite popu-

lation framework described in section III.1 , p is the fraction of the

of the population that has been sampled.
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IV STRATIFIED RANDOM SAMPLING FROM A POISSON POPULATION

In this chapter the methods exposed earlier are applied to the

prediction of the grand sum of future random samples drawn from Poisson

strata. When the ratio of the observed sample size to the future sample

size is constant over the strata the problem is the same as in chapter

III. The results given for the MLPD approach illustrate how helpful

this approach might become in some rather complex situations.

IV.1 Problem and notations

Suppose we have a population composed of k strata, each stratum

having a Poisson distribution with parameter Ai . We sample at

random from each stratum; nl and x respectively denote the

sample size and the sample sum for stratum i. We are interested in

making predictions on the grand total Y of a future sample of size
k

JImi,wherem.1 elements are to be sampled from stratum i.

We introduce further the following notations:

i=1
X
1

Y = Y.i=1 1

where Y. is the sum of the "future" sample from stratum i ,

T = X + Y

P. = n./(m
i
+ n )

'11

n. := 1
pi



It is to be noted that the Y 's and the are sufficient

statistics for A =
"."Ak)?

IV.2 Fre uentist approach

Let us consider the joint distribution of CY,X

kcc

+n
i =1 1 if(y,x1,x2,...,xk) = e

k
y

x.
k (n.X.) 1

(iY1miA i=1 x

1 1
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In the general case the frequentist conditional method fails to apply

because there is no tractable function 11)(y,x1,x2,...,xk) such that

conditioning Y on
111 leads to the aimination of the As

However in the following special case where the mi are proportional

to the n.1 's , there is an easy solution.

Special case: pi = constant p

We investigate the joint distribution of X and Y . We have

x- P($)

Y P(a)

f
X,Y

(x
'

y)

where

where

e Sax e lay
x. y!

Thus for T = X + Y we have

St

t y
a
y

fYT (y)
=

(a + 13)t

a = .Y n.A.
1=1 1

a = .y m.x.11
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We see that in order to get for Y T a distribution independent of the

A.'s we need
1

k

m
a i=1 i

A
1 independent of a.

a+
(m. + n.)A.

1 1 1
i=1

That is, m./(m. + n.1) = q constant. Then

Y1Y + X B(Y+ X,q

which in turn means that when the ratio of the size of the observed

sample to the size of the future sample is constant for each stratum,

the problem can be viewed as simple random sampling as far as the

frequentist approach is concerned.

Consequently the results established in section 111.2 are appli-

cable here and in particular the prediction limits are to be read

from a NB(x,p) for the lower limit and a NB(x + 1,p) for the upper

limit.

IV.3 Bayesian approach

IV.3.1 Preliminary remark

Suppose X and Y are discrete random vectors with mass

probability functions f
X
(x(6) and

fY
(Yle) respectively, being

a common k-dimensional unknown parameter belonging to 0.

Let us observe an outcome x of X and derive from it, by a

Bayesian argument, a predictive distribution for a function Z = i(Y) .



Let us denote by Tr(0Ix ) the posterior density of 8. Then

with

fZ

fZI

1

(zix) = if (z10) it (01x)de

1
= fy(yle)} Tr(e)de

z

1V (y) = z}
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(4.1)

But since we deal with probabilities the properties of absolute

convergences required to interchange the summation and integral signs

are verified so that equivalent to (4.1) we have

fz (1) "Xly(Y10) Tr(01x)de (4.2)

Applying this to the stratified sampling problem it implies that we

are allowed to get the predictive distribution for each Y
i

separately

first, and then by means of convolutions to derive the predictive

distribution for their sum Y. This will be much easier than going

the direct way according to (4.1).

1V.3.2 Uniform and 1/A
i
priors.

Each stratum being regarded as a population we obtain

Y.1 IX.
1

NB(x. + 1;pi) for a uniform prior,

Yi1Xi NB(xi;pi) for a 1/X. prior
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But the distribution of the sum of random variables having negative

binomial distributions with different parameters p
i

does not take

a familiar form. Thus we have to rely on a computational device to

produce the results of the convolutions. For example, with two

strata if we denote

and

Pr {Y1 = llx
1
} = a.

Pr {Y2 = jlx } = b
2 2 j

we compute for each value of s

Pr {Y = six1,x2} = joaibs

Such computations are reasonable for a small number of strata and a

small value for X (m x /n ) which indicates the central location of
i=1 i i i

the distribution of Y , but they become rapidly prohibitive when these

increase.

IV.3.3 Special case pi = constant p

Suppose :Z1 . NB(.,0) , i = 1,2,...,k. Then

k k

Y
1
z. NB(.Y

i
r.0) .

= 1 1=1 1

This is easily seen from the moment generating functions

Consequently in this special case we have

t



and

YIx NB(x -I- k,p) for uniform priors,

Yix NB(x,P)
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for 1/X priors, for all

NB(x + s,p) when choosing a uniform

prior for any s or the and a 1/X
i

prior for the k s

remaining Xi .

Thus the lower prediction limit in the frequentist approach is the

same as for the Bayesian approach with priors 1/Xi for all i and

the upper frequentist limit is the same as for the Bayesian

approach with priors 1/X for all but one stratum for which a uni-
i

form prior is chosen.

IV.4 Likelihood prediction

IV.4.1 General formulation

We have to maximize over X(Xi,...,X the quantity

f
Y
(y- m.X )

k
m X.) n
i i=1

-niA.

e (n.X
i

Taking the logarithms, we obtain for this expression

kC

1
( - n . X + x. log(n X . ) - m.X.) + y log (Y miXj) - log y:

1

and taking the derivative with respect to a, we have



xi

-n. + m. + y
X
i

1
Ym,A

Thus the maximum likelihood estimators

niAi =
miXi

y/J./im.A )
rz-

By summing over i we get the relationship:

x + y X
i1(ni m )Ai

and we have

f
Y
(y;Ym

i
A.)f

X
(x;i) =

,
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9

= 1,2,...,k) satisfy

i = 1,...,k

k n X.)
(/ m )Y 11

i(x+y)
e

1=1 i i i=1

(4.3)

Finally the prediction likelihood of Y is obtained by solving the

system

L(y;x) cc

(iYlmji)Y

r(y + 1)

k

6x.) i
i=1 1'

x. = (1 - y/.X m.X.)
1 1 1 i 3=1 3

IV.4.2 Existence of a MLPD.

(4.4a)

(4.4b)

Theorem 4.1: The maximum likelihood prediction method applied

to stratified random sampling from a Poisson population always allows

to define a Maximum Likelihood Prediction Distribution.



Proof: We want to show that I L(y;x) < for all
y=0

= i0,1,2,...1 , with

1
L(y:x = c(x) ye.

From (4.3) we have

k

.X
1=1 1 1

k
II

i=1

i1Y 1 1i
+ n./m. = x + y

=

Let 4 = Min[ n , theni]

and also

< x + y

A.)
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(4.5)

0(x + y) where 0 = (1 +4)-1, 0 < A < 1

(4.6)

Using (4.5) and (4.6) we obtain

k
L(y;x) < c1 (x)(x) , e

i 1
[0(x + y)ji (x + y)xi-1.

=

YPS) < c 05) -1 e-Y (x + y)X YOY
1 y!

The function of y on the right side decreases faster than a NB(x+1,e)

density so that by theorem 3.4 there exists a MLPD.

IV.4.3 A proposed general solution.

In order to determine the MLPD, F(y ;x), we need to solve the system

(4.4a),(4.4b) where we simply disregard the normalization constant for

(4.4a) .



Let us set k = 1 - y/ m.. . Then (4.4b) gives
j =1 j j

x.

n. + m.k

We note that k can range from -Min[n./m.]

variation for y being as illustrated below.

k

y

-Min(n.1 im.)
1
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to 1 , the corresponding

k

(m x /
i=1 i i

Thus we solve (4.4a),(4.4b) by a two stage procedure:

i) pick a value k in the interval E-Min(n./m.),I]

ii) compute A. = x./(n. + m.k) for = 1,2,...,k
1 1

iii) compute y = (1 - k)_ m.X
i i

iv) compute L(y ;x) from (4.4a)

The main disadVantage of the procedure is that the likelihood is

evaluated at arbitrary values of y. We need to interpolate for the

integer values in order to derive the probability mass function.

Nevertheless contrary to the computations involved, for the

Bayesian prediction this procedure does not become more tedious when

the number of strata increases.

IV.4.4 Special case: 1) = constant p

From (4.3) we obtain
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kCC

+ m.
j=1 J J J

= x+ y

(1 + p/q) JX
1 J

= x + y
=

J1mj j
q(x + y)

so that we are able now to solve (4.4b)

m.
q

m.v

x + y)]
x.

1

A.(n. + m.)(1 Y = x.1 1 1 x + y

x.
1 x + y

i + m.
1 1

Finally, substituting in (4.4a) we have

Y x + y y
e (x + y)

f(y;x) cc

Y

which is the same result as for simple random sampling.

IV.5 Conclusions

In the case where the sampling ratios (n./m.) are the same

for all strata the same conclusions as in simple random sampling can

be drawn.

However for the Bayesian prediction we then have to chose a

uniforrnpriorforanyoneoftheA:s and 1/X. priors for the

(k - 1) remaining strata in order to obtain the upper frequentist
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limits. In fact it would be equivalent but less convenient to choose

(
a (1/A

i
)
k 1) /k

prior for each stratum. This becomes necessary

when we extend the Bayesian prediction to the general case where n./mi

are no longer constant since it matters then which X. is chosen to

be given the uniform prior, and the (1/X )
(k 1)/k

prior avoids

having to discriminate among strata.

In this general case we expect the MLPD will still be located

betweenthetwoBayesiandistributions1/A.and(1/X.)
(k - 1)/ k

for

all i because of the smooth variation of these functions with respect

to n./m. , as illustrated by the example below.

We note that for k = 2 the (1/A
)(k - 1) /k

priors are X,
2

priors and the corresponding Bayesian prediction is very close to the

prediction obtained by convoluting the individual MLPD's of each

stratum, a method that will be considered in the binomial case.

.As far as the computations are concerned for the general case

they will be tedious and time-consuming for the Bayesian approach with
k

more than 2 or 3 strata and a large
1
y m.x./n. For the MLPD the
=1 1 1 1

computations as proposed in IV.4.3 are not as simple but do not increase
kcc

with the number of strata and increase little with larger (m.x
i=1 1 i 1

The following example exhibits for 2 strata the predictions for the

4 possible combinations of uniform and 1/A priors, for the MLPD and

for the distribution resulting from the convolution of the MLPD of each

stratum, i.e., approximately the Bayesian prediction for priors

-%
(1/Xi) 2 = 1,2...
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V. SIMPLE RANDOM SAMPLING FROM A BINOMIAL POPULATION

The developments for the binomial population follow the same

pattern as these in chapter III concerning the Poisson population.

The MLPD compares to the frequentist conditional and the Bayesian

approaches in very much the same way. The study of asymptotic

behaviors leads also to similar results. More studies have been

devoted to the binomial problem and we will refer mainly to the works

of Fisher (1959), Thatcher (1964) and Olsen (1974).

V.1 Problem

We assume that we have an infinite (or finite, see section III.1)

population in which each unit presents a characteristic A (referred to

as "success") with probability p and presents not-A with probability

We sample n units at random from this population and observe

x successes among them. What is then the probability of observing

Y successes in m future trials?

The number of successes can be readily viewed as a sample sum by

introducing for each trial the Bernoulli random variable.

V.2 Frequentist approach

Olsen (1974) shows that, x and Y being the variables defined

above, one can write

Pr(Y <k = x + k = Pr{Z < (5.1)
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Where Z has a NH(x,n,m ) distribution as defined below.

Definition 5.1: A random variable Z is said to have a Negative

Hypergeometric distribution with parameters (x,n,m) , noted NH(x,n,m) ,

when its probability mass function is:

(z) =
! 1) ()(n -

Z
m + n

z + y - 1

+ 1) for z = 0,1,...,m

Some properties of this distribution are given in Section V.6.2.

Applying to (5.1) corollaries (2.3) and (2.5) the next theorem follows

immediately.

Theorem 5.2: The a-upperprediction limit given by the frequentist

conditional approach for the number of successes among m items sampled

at random from a binomial population, given x successes out of n

items, is the a-upper fractile of the NH(x + 1,n,m) distribution

(except for x = n). The ..-lower prediction limit is the (3-fractile

of the NH(x,n,m) distribution (except for x = 0) .

V.3 Bayesian approach.

We show now the result corresponding to theorem (3.2) of Section

111.3 for the Poisson case.

Theorem 5.3: The frequentist conditional lower and upper prediction

limits coincide respectively with the Bayes lower prediction limit under

1/(1 - p) prior.



Proof: We have

X
(x;13)fY (37;13) =

px +

Y1
(1 - p

For a Bayesian I/p prior we get, assuming x >

f (y =
11p

+ n - x - y

fl px + y - 1(1 p)m + n - x y
dp

p
x - 1

(1 P)n xdP

Xf
1/p

(y
(;) (x + y - 1): (m + n - x - y)!/(m + n )'

(x - 1) : (n - x)! /n!

which is the probability mass function of a NH(x,n,m) distribution.

Fora 1/(1 - p) prior we have, assuming x < n - 1 ,

f
1/1 - p (Y
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x
(;) x + y(1 p)m + n - x - y - ldp

px(1 n x -
p

(x + y)! + n - x - y - 1 ! /(m +

x! (n - x 1): / n.

which is a NH(x + 1,n,m) distribution.

These priors are the same as the priors used to obtain the usual

upper and lOwer confidence limits for the parameter of a binomial

distribution in the classical theory of confidence intervals (see

Pratt (1965).) Thatcher (1964) showed that there is no prior that gives

limits coinciding with the frequentist limits.



In the following we denote f
1/P

(ylx) by f
1 (Y 1

f
1/1 - p

(yix) by f
2
(ylx) and correspondingly F

1
(y1 ) and F (y1x)

for the CDF's.

More generally, for a BETA(a,0 prior, i.e.

) and
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(p)

we have

1
(1 - p)

- 1

f(Yix)
(;) f(

px + y + - 1(1 p)m + n - x - y + - 1
dP

+ y + a) r(m + n - x - y.+

which, by extending the definition of section V.2 to non-integer

values of the first and second parameter, is a NH(x+a,n+ct+ 1 ,m)

distribution. This is a special class of the Beta-Binomial family

where the parameter p of a B(m,p) distribution is taken to have

a BETA(x + a, n - x + 0 distribution.

V.4 Likelihood approaches.

V.4.1 Fisher's likelihood.

The expression given by Fisher (1959) is

n m x + N x-

N.

n m (x + y) (N - - y)
L(y;x)

xxyy(n - x)n x(m - y)m

where N = m +

y

The maximum, 1, is attained as in the Poisson case for y = mx/n .



V.4.2 Prediction Likelihood approach

The MLE of` p based on x and y is p = + y)/( + n
xy

so that
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f
X xy y

(Yap (n(x;p (vio = ) (m) x+y x + y

x y m+ n (1
x+ 37 + n x- y
m+ n

NN in) 3)x+y
Ix/ ky/

or i
(Y)

+ y)
x + y

(N - x - y)N x- Y(y;x)

N - x y
(N- x- y)

Since y takes only a finite number of values, from 0 to m , it is

always possible to define a Maximum Likelihood Prediction Distribution

(MLPD).

V.4.3 Comparison of the two Likelihoods

Comparing the ratio of Fisher's expression to the Prediction

Likelihood Function, as a function of y we have

1,(Y;x)/L(y;x) Y1 (m Y):

Yy (m - y)m Y

or, approximately, using Stirling's formula,

L(y;x)//,(Y;x) a EY(m Y)32

The ratio is no longer monotone as in the Poisson case, so that nothing

can be said about the relative locations of the two likelihoods.

By taking the logarithm of L(y;x) and its derivative with

respect to y , it is easily established that the maximum of the
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prediction likelihood is attained for y such that

(x + i)(m i) _ exp {1 /y - 1/(m i7)}

(N - x cr)

For large values of y and m - y the right hand side is approximately

equal to one and y = Mxin . That is to say that the two maxima

and y will tend to be the same only when y and ( are large

which occurs when m and n are large.

V.5 Comparison between the MLPD and the Bayesian predictions

In order to establish the main theorem of this section we need

the following lemma.

Lemma 5.4: The finite sequences -Cut: t = 0,1,..., - 11 and

{v
t'

t = 1,2,...,N} are increasing, where

and

t: (N - t -

t, N - t
t kN - t)

t
t
(N -

N - t
vt

(t - 1):(N - 0!

Proof: First note that since v
t
= 1/uN , it suffices to

show that u is increasing. Let us look at the difference
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log ut +1- log ut = log (t + 1) - log(N- t- 1) - (t +1) log (t +1) +t log t

- (N - t - 1) log (N - t - 1) + (N- t) log (N- t)

= (N- t) log
N - t

N- t- 1
- t log

t + 1

(5.2)

(N- t) log (1+ 1 ) - t log (1 + t = 0,1,2 ...N-2.

N- t - 1

But since log(1 + x) < x for all x, we have

t log(1 + lit) < 1 for t = 0,1,...,N - 2

Also we have seen in Section 11.5 that for x > 0

+ 1) log (1 + 1/x) >

so that

(N - t) log (1 +
-

1) > 1 for t = 0,1,...,N - 2 .

Thus from (5.2) the desired result follows:

log ut+1- log ut > 0 for t = 0,1,..., - 2 .

Theorem 5.5: When sampling from a Binomial distribution the

following inequalities hold between the CDF's of the MLPD and the

Bayesian predictive distributions with priors 14 and 1/(1 - p):

F2(ylx) < F(37;30 < F1( lx)

for all values of x,m,n for which F
1

and F
2

exist.



Proof: Consider first the ratio:

f
2
(ylx)

(x + y)! x - y - 1):

f(y;x) (x + y)x Y(N - x - Y)N
-y
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with 0 < x < n - 1 and 0 <'y < m . Setting

t = x + y, we have 0 < t < N - 1 , and the ratio is proportional to

u
t

and thus is an increasing function of y for any fixed x. This

proves the left inequality by Theorem 3.4 . We now turn to

with

i(Y;x)
f
1
(ylx)

CC
+ y)

x + y
(N - x- y)

N - x - y

(x + y - 1): - x - y

0 < x < n - 1 and 0 < y < m

By recognizing for the right hand side the sequence vt , where

t = x + y , we see that the ratio of probability mass functions is

increasing and thus the right inequality holds.

Existence of a Bayes prior yielding the MLPD

The problem of finding a Bayes prior yielding f(y;x) reduces

to finding a non-negative function g such that

epto
g(p,N)dp = k(N)t

t
(N - t)

N t

or equivalently, by setting p/(1 - , to finding a positive

function h(u,N) such that

03

ut
h(u,N)du = t (N - t

N - t
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As in the. Poisson case it is difficult to obtain the exact solution

and we work out an approximation.

Recalling from (3.3) that:

1
7

1
r(t + 1/2) = (2R) e

-t
t
t

exp{
24f

+
8(360t3)

+ 0( t5 ) 1 (5.3)

we derive the following relationship:

r I 1
r(t 1/2)F(N - t + 1/2) =

-N
e t

t
(N - t)

N- t
expt-

24t 24 (N - t

i.e., approximately

r(t + 1/2)r(N - t + % ) = 2R e
-N

t
t
(N - t

- t
(1

1 1

+

24t 24(N- t

(5.4)

) (5.5)

so that prior [p.(1 p)]2 comes fairly close to f(y;x) since

'
1Pt(1 P)

N - t
[P(1-13)] = r(t

0
+1/2)r(N - t + 1/2) / + 1)

e t , t
= 2R t t) exp

1 1

24t 24(N- t)

As was seen in Section V.3 this prior yields a NH(x + 1/2,n,m) predictive

distribution.

Determination of the normalization constant for f(y;x)

We first establish the expression of the probability mass function

of a NH(x + 1/2,n,m) distribution. For a prior

we have

Tr Cp(1-p)]



Thus

f, (y1
0

e (:) (;
-

dp)
y 1/2

(1 - p)
x+ N - x -

P

11
n-x-

dpo i

Cnn! y) r(x + y + r(N

N! r(x + 2)r(n x + 1/2)

m
n!

X mi r(x+y+1/2)r(N-x-y+1/2) =
N! r (x + 1/2) r (n - x + 1/2) y=0 k

Now using approximation (5.5) we obtain

2Tre-Nn!

1"(x+1/2)r(n-x+1/2)

or approximately

imi x + y

y=0 y/ 37)
- x y

N- x- y
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1 1

24 (x + y) 24 (N - x - y )

2Tre
-N

y=o (m) (x+y)x+y(N-x-y
N!r(x+1/2-)r(n-x+1/2)

N- x- y

1 1 1

24 E x+y N-x-y (5.6)

where the expectation is the expectation of the given function of y

with respect to the MLPD. We work out for it the following approximations.

First we compute EL 1 ] for y having a NH(x + 1,n,m) distri-
x + y

bution.
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m
1yJ (x+y 1):(m+n- x- y- 1):/(m+n

y=0
x. (n - x - /

n
x (m+n) y-O

- 1):(m+n- 1- - )1,/(rn+n- 1

(x 1) (n - 1 - x) :/(n- 1):

The right hand side is the summation of the terms of a NH(x,n 1,

distribution so that

+1

1

- x
Then F

nm +
, for y having a NH x,n,m distribution isE[m

E[m
1 m (111)

I = y Y
(x+y-1):(m+n-x-y-1):/(m+n):

+n-x-y y=0 (x- 1) : (n -

m
n y) (x+y-1):(m+n-1-x):/(m+n-1):

(m + n) (n - x) y=0 (x - 1) : (n - 1 - x) / (n 1) :

(m + n) (n - x)

Thus the right member of equation (5.6) is approximately equal to

1 11+
24N )24N n - x

and an approximate normalizing constant for the MLPD is exhibited by

the relationship:
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1 21re
-N

n:

24N x n- x"N:r(x+1/2)r(n- x+1/2) Y=0
Y

Y
+ y) N x 37)N

Y

(5.7)

Using (3.2a) to get an exact expression for the two gamma - functions leads

to the alternate relationship

-
n 1 2

2n+ 1 N
e n:x:(n-x):

Iml24N x n - x N: (2x) : (2n- 2x) : y=0 Y

1

+ y
- x-

y)N- x- y

(5.8)

Finally a simpler expression is obtained by substituting for the gamma

functions in (5.7) the approximation (5.5):

111

e n.
-m m

(x+y)x+Y - x- y
ix +24N C-x X j x x y=0

N.x (n- x)

-y

(5.9)

Tables III and IV give the exact value of the left hand side of (5.8)

and (5.9) respectively, and this for various values of x,m and n

Note that these developments do not apply for the case x = 0 .



N X
1 2

TABLE III. APPROXIMATION (5.8)

5 E

-

7

DEVIATION FROM 10

6 9

(*102)

10 11 12 13 14 153 4

2 1 .312 .634 .740 .765 .759 .739 .713 .685 .658 .631 .606 .582 .560 .539 .519
3 1 .087 .366 .406 .452 .471 .476 .472 .4E4 .454 .442 .430 .418 .406 .395 .383
4 1 -'3.006 .160 .202 .341 .374 .392 .401 .404 .403 .399 .394 .388 .381 .374 .367
4 2 .045 .138 .184 .203 .219 .223 .223 .220 .216 .211 .206 .200 .195 .189 .184
5 1 .0.059 .166 .218 .273 .314 .341 .358 .3E8 .374 .376 .376 .374 .371 .367 .363
5 2 .018 .063 .119 .140 .152 .159 .1E1 .162 .161 .159 .156 .153 .150 .147 .144
6 1 -0.1.93 .055 .154 .222 .268 .301 .323 .339 .349 .356 .3E0 .162 .3E2 .361 .359
6 2 .604 .056 .089 .109 .122 .130 .135 .137 .138 .138 .137 .126 .124 .132 .110
6 3 .008 .147 .070 .085 .094 .099 .102 .103 .103 .102 .101 .100 .098 .097 .095
7 1 ^0.118 .017 .112 .180 .230 .2E6 .203 .112 .326 .337 .344 .340 .352 .353 .354
7 2 .0.004 .041 .370 .090 .104 .113 .119 .123 .126 .127 .127 .127 .125 .125 .124
7 3 .003 .031 .050 .062 .C69 .075 .078 .080 .081 .081 .081 .080 .079 .078 .077
8 1 -0.137 '0.013 .078 .146 .197 .235 .265 .267 .305 .318 .328 .335 .340 .244 0347
8 2 -0.110 .030 .058 .677 .091 .101 .10e .113 .117 .419 .120 .121 .121 .120 .120
8 3 0.001 .022 .038 .049 .657 .062 .065 .068 .069 .070 .070 .070 .370 .069 .068
8 4 .000 .020 .033 .042 .046 .052 .055 .057 .058 .059 .059 .059 .C58 .058 .857
9 1 0.152 -0.037 .350 .116 .168 .208 .239 .264 .284 .299 .311 .321 .328 .334 .338
9 2 .021 .048 .057 .C81 .092 .099 .105 .109 .112 .114 .116 .116 .117 .117
5 3 -0.602 .317 .031 .041 .048 .054 .057 .0E0 .052 .063 .0E4 .064 .064 .064 .064
3 4 "0.001 .014 .024 .632 .037 .041 .044 .046 .047 .048 .048 .048 .04e .048 .048

13 1 0.164 0.057 .026 onl .142 .1e3 .216 .242 .264 .281 .295 .306 .315 .323 .228
10 2 .'.0.018 .015 .040 o053 .073 .C84 .092 .098 .102 .107 .109 .111 .113 .114 .114
10 3 '..0.005 .013 .026 .035 .042 .048 .052 .055 .057 .058 .059 .060 .0E0 .060 .0E010 4 s0.002 .010 .019 .026 .531 .035 .037 .039 .040 .041 .042 .042 .043 .043 .042
10 5 -0.602 .009 .018 .023 .128 .031 .033 .035 .036 .037 .038 .038 .038 4438 .038
11 1 '0,174 -.0.074 .305 s6-68 .119 .160 .194 .222 .245 .264 .279 .292 .302 .311 .318
11 2 -1.021 .010 .333 .052 .C66 .077 .0e5 .092 .098 .102 .105 .107 .109 .111 .181
01 3 -0.006 .010 .022 .031 .038 .043 .047 .050 .053 .055 .056 .057 .057 .058 .053
11 4 -3.003 .668 .016 .022 .027 .030 .633 .025 .03E .037 .038 .038 .039 .033 .039
11 5 -0.002 .067 .013 .018 .022 .025 .027 .029 .030 .031 .031 .032 .032 .032 .032
12 1 0.183 -0.069 -0.013 .048 .C98 .140 .174 .203 .227 .247 .263 .277 .269 .293 .307
12 2 -0.023 .065 .028 .045 .C60 .071 .080 .0e7 .093 .097 .101 .104 .106 .103 .109
12 3 0.007 .167 .019 .C27 .034 .040 .044 .047 .050 .052 .053 .054 .055 .056 .056
12 4 -0.004 .066 .013 .019 .023 .027 .029 .031 .033 .034 .035 .036 .036 .036 .037
12 5 -0.003 .065 .011 .015 .619 .021 .623 .025 .026 .027 .028 .028 .028 .029 .029
12 6 -0.002 1.065 .010 .014 .017 .020 .022 .023 .024 .025 .025 .026 .026 .026 .026
13 1 0.190 -0.162 -0.329 .038 .080 .121 .156 .105 210 .230 .248 .263 .276 .287 .29613 2 -0.025 .312 .523 .64. 054 sCE5 .074 .062 .088 .093 .097 100 .103 .105 .106
13 3 066 .016 .025 .031 .037 041 .044 047 .049 .051 .052 .053 .054 .054
13 4 -0.004 005 .011 .017 .021 .024 .027 .029 .031 .032 .033 .034 .034 .035 .035
13 5 0.303 .164 .009 .013 .016 .019 .021 .022 .023 .024 .025 .025 .026 .026 .026
13 E "0.003 .063 .608 .011 .614 .016 .018 .019 .020 .021 .022 .022 .023 .023 .023
14 0.113 -0.043 .014 .063 .104 .138 .168 .193 .215 .234 .250 .263 .275 .285
14 2 -0.002 .019 .035 .049 .060 .070 .077 .004 .089 .093 .097 .100 .102 .104
14 3 0.009 .004 .114 .022 .029, .034 .038 .042 .045 .047 .049 .050 .051 .052 .053
14 4 -0.004 .0(4 .010 .015 .019 o022 .025 .027 .029 .030 .031 .032 .033 .033 .033
14 5 0.002 .003 .009 .011 .014 .C17 .019 .02G .021 .022 .023 .004 .024 .024 .025
14 E -0.003 .002 .006 .010 .012 .014 .016 .017 .018 .019 .019 .020 .020 .020 .020
14 7 - 0.002 .062 .006 .009 .011 .013 .015 .016 .017 .018 .018 .019 .019 .019 .019
15 1 - 0.123 61.056 .047 .088 .123 .152 .178 .200 .220 .206 .251 .263 .274
15 2 7.628 -0.065 .015 .631 .645 .056 .065 .073 .079 .085 .089 .053 .096 .099 .101
15 3 .0.009 .062 .012 .620 .026 .032 .036 .039 .042 .045 .047 .046 .050 .051 .052



N X
1 = 1 2

TABLE IV. APPROXIMATION (5.9)

5 6

- DEVIATION FROM 1.0

7 8 9

(*102)

10 11 12 13 14 153 4

2 1 .826 1.032 1.068 1.048 1.109 .965 .920 .877 .837 .801 .767 .736 .707 .681 .656
3 1 .412 .571 .632 .650 .649 .637 .621 .602 .583 .564 .546 .529 .512 .496 .481
4 1 .293 .437 .510 .547 .563 .567 .565 .558 .550 .539 .529 .517 .506 .495 .484
4 2 .155 .224 .254 .265 .267 .263 .257 .249 .240 .232 .223 .215 .207 .199 .191
5 1 .233 .3E5 .442 .488 .515 .529 .536 .537 .535 .531 .526 .519 .512 .504 .496
5 2 .295 .146 .172 .185 .190 .191 .189 .185 .181 .176 .171 .166 .161 .156 .152.
6 1 .195 .317 .394 .445 .478 .499 .512 .519 .523 .523 .522 .519 .515 .510 .504
6 2 .072 .113 .138 .151 .159 .163 .164 .163 .161 .158 .155 .152 .149 .145 .141
6 3 .054 .064 .101 .110 .115 .116 .116 .115 .113 .110 .108 .105 .102 .099 .096
7 1 .169 .281 .357 .410 .447 .472 .490 .502 .509 .513 .515 .515 .514 .512 .509
7 2 .058 .095 .118 .133 .142 .147 .150 .151 .151 .150 .148 .146 .144 .141 .139
7 3 .037 .060 .014 .082 .087 ..089 .090 .090 .069 .088 .087 .085 .093 .081 .079
8 1 .149 .253 .327 .381 .420 .448 .469 .484 .495 .502 .507 .509 .511 .511 .529
8 2 .650 .083 .105 .120 .130 .136 .140 .143 .144 .144 .144 .142 .141 .139 .138
8 3 .029 .348 .060 .068 .073 .076 .078 .078 .078 .078 .077 .076 .074 .073 .072
8 4 .025 .31.0 .050 .057 .061 .063 .064 .065 .064 .064 .063 .062 .061 .059 .0589 1 .133 .230 .302 .355 .396 .426 .450 .467 .480 .490 .497 .502 .505 .507 .507
9 2 .044 .074 .095 .110 .121 .128 .133 .137 .139 .140 .140 .140 .139 .138 .117
9 3 .024 .041 .052 .059 .064 .068 .070 .071 .072 .072 .071 .071 .070 .069 .068
9 4 ale .031 .039 045 .048 .050 052 .053 .053 053 .052 052 .051 .050 .04910 1 .121 .211 .280 .333 .374 .406 .431 .451 .466 .478 .486 .493 .498 .501 .504

10 2 .039 .067 .087 .102 .113 .121 .127 .131 .134 .136 .137 .137 .137 .137 .136
10 3 .021 .035 .046 .053 .059 .062 .065 .0E6 .067 .068 .068 .068 .067 .067 .066
10 4 .015 .025 .032 .137 .041 .043 .045 .046 .048 .046 .046 .046 .045 .045 .044
10 5 .013 .023 .029 .033 .036 .038 .040 .040 .041 .041 .041 .040 .040 .039 .039
11 1 .110 .195 .262 .314 .355 .388 .414 .435 .452 .465 .475 .484 .490 .495 .498
11 2 .035 .061 .081 .096 .107 .115 .122 .126 .130 .132 .134 .135 .135 .135 .135
11 3 .018 .032 .042 .049 .054 .258 .061 .063 .064 .065 .065 .085 .0E5 .065 .0E4
11 4 .013 .022 .028 .033 .036 .038 .040 .041 .042 .042 .042 ..142 .042 .042 .041
11 5 .010 .018 .023 .027 .030 .032 .033 .034 .034 .034 .025 .034 .034 .034 .033
12 1 .102 .182 .245 .296 .337 .371 .398 .420 .438 .452 .464 .474 .481 .488 .492
12 2 .032 .057 .075 .090 .101 .110 .117 .122 .126 .129 .131 .132 .133 .134 .134
12 3 .017 .029 .038 .045, .050 .954 .057 .060 .061 .062 .063 .0E3 .064 .064 .063
12 4 .C11 .019 .020 .029 .033 .035 .037 .038 .039 .040 .040 .040 .040 .040 .039
12 5 .009 .015 .020 .023 .026 .027 .029 .030 .030 .031 .031 .031 .031 .030 .030
12 6 .008 .014 .018 .021 .024 .025 .026 .027 .028 .028 .028 .028 .028 .028 .018
13 1 .094 .170 .231 .281 .321 .355 .383 .405 .424 .440 .453 .464 .472 .480 .485
12 2 .030 .053 .071 .085 .096. .105 .112 .118 .122 .125 .128 .130 .131 .132 .133
13 3 .015 .027 .035 .042 .048 .052 .055 .057 .059 .060 .061 .062 .062 .062 .062
13 4 .010 .017 .023 .027 .03C o233 .014 .036 .037 .037 .038 .038 .038 .038 .038
13 5 .007 .013 .017 .020 .023 .124 .026 .027 .027 .028 .028 .028 .028 .028 .028
13 6 .606 .011 .015 .018 .C20 .021 0222 .023 .024 .024 .024 .024 .024 .024 .024
14 1 .088 .160 .218 .267 .307 .340 .368 .392 .411 .428 .442 .454 .463 .471 .478
14 2 .C27 .149 .067 .081 .092 .101 .108 .114 .110 .122 .125 .128 .129 .131 .131
14 3 .014 .025 .033 .040 .045 .049 .052 .055 .057 .058 .060 .060 .061 .061 .061
14 4 .009 .016 .021 .025 .028 .031 .032 .034 .035 .036 .036 .017 .03? .037 .03714 5 .006 .011 .015 .018 .021 .022 .024 .025 .025 .026 .026 .026 .027 .027 .027
14 6 .005 .010 .013 .015 .017 .019 .020 .022 .021 .021 .022 .022 .022 .022 .022
14 7 .005 .0C9 .012 .014 .016 .017 .018 .019 .020 .020 .020 .021 .021 .021 .020
15 1 .082 .150 .207 .254 .294 .327 .355 .379 .399 .416 .431 .443 .454 .463 .471
15 2 .026 .046 .063 .077 .088 .097 .104 .110 .115 .119 .122 .125 .027 .129 .130
15 3 .013 .023 .031 .038 .043 .047 .050 .053 .055 .007 .050 .000 .050 .060 .061
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V.6. Asymptotic properties

V.6.1 Limits when min 0

The number of observed items becomes infinite, but m is finite.

Then it is known that x/n
a.s.

p
o

, the true value of the parameter

p; consequently if we assume that p
o

is neither 0 nor 1, x

and n - x co with probability one. The limiting forms of the MLPD

and Fisher's likelihood have been given in Section 11.3.1. We recall

these results:

and

i(37;x) ads. 1ml
o

Y
o

Y.

ly/

a.s.
Y;x)

m - ypYq
o o

(y/m)Y( y/m)m-

for y = 0,1,..,m

We now show that the Bayesian predictive distributions for 1/p

and 1/(1 - p) priors have the same limiting form as the MLPD, i.e.,

tend towards the true distribution of Y, almost surely.

For a 1/p prior we have

f1(Y1x)m (m) (x + y - 1): (n - x + m - y):

Since (with probability 1) x and n - x become infinite we can replace

the factorials by Stirling's expression and obtain

limf
1
(y1x)m (m) e-(x+Y- 1 )(x±y_ ox+Y 1/2

x- y)

(n- x+m- y)n
- x+m-
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Finally

x(1 +
l

)

I(y1 n

f1( y lx)

x+y-1/2L

m Yem

a.s. y m - y
pogoo

n- )(1+21-7-Z
n -x.

in- x+m- n +1/2

for y = 0,1,...,m

proof for a 1/(1 - p) prior is similar.

V.6.2 Limits when m and n + « , min remaining constant

We first look at the limiting distribution for Y , where Y has

a Negative Hypergeometric distribution with parameters (x,n,m) .

The probability Pr {Y = y} can be seen as the probability of obtaining

y white balls up until x black balls are drawn from a finite

population containing n black balls and m white balls. The

NH distribution is more frequently defined for Z = Y + x , the total

number of balls to be drawn before obtaining x black balls.

Matuzewski (1961) gives the expectation and variance of this

distribution and shows

remaining constant, it

However in the present

that when m and n tend to infinity, m/n

tends to a NB[x,n /(n + m)] distribution.

case x and Y tends to have a Normal

distribution (see L. N. Bol'shev (1964).) for which we now derive the

expectation and variance. For any x,n and m we have



E(Y) = mx
n + 1

V(Y)
mx(n - x + 1) (m + n + 1)

(n+2)(n+1)2

For m and n large these reduce to

E(Y) ;mx n

V(Y) = m(m + n)x(n - x)/n3

= m
2
(x/n)(1 - x/n)(1/m + 1/

That is, Y has a limiting distribution such that

Y/m-

V;i(i -
n

N(0,1)

95

Obviously this is also true for Y having a NH( + 1,n,m) distribution

and consequently also for Y being distributed according to the MLPD

by theorem 5.5 .

We show now that the same applies for the distribution derived

from Fisher's Likelihood, with density f(y;x,n,m) .

From Lemma 5.4 the function of y ,

y:(m - y -
-

Y (m y)
m y

is an increasing sequence when y = o,1,... - 1 , so that

f(y;x,n,m)

i(y;x,n+1, m-1)
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is also increasing for y = 0,1,... . By defining

f(y;x,n + 1,m - 1) equal to zero for y = m , one can apply theorem

3.4, i.e.,

y y
F(y;x,n,m ) =

k 0
k;x9n,m) < k=y

0
y;x,n+1,m- =F(y;x,n4-1,m-1) (5.10)

=

Consider now

f(y - 1; x - 1,n, m 1) YY(m 37)m

f(y;x,n,m)
Q

(y (m- y):

From lemma 5.4 this ratio is increasing for y = 1,2,. rn so that

chosing f(y 1;x - 1,n,m - 1) equal to zero when y = 0 , we have

F(y;x,n,m) = joi(k;x,n,m) > kLd ;x 1,n,m- 1)

F(y;x,n,m) > F(y;x- ,n,m- 1) - y;x- 1,n,m-

F(y;x,n,m) > F(y;x - 1,n, - 1) - e (5.11)

where a -+ 0 when x 4 co

Finally from (5.10) and (5.11),

F(y;x- 1,n,m- 1) - e < F(y;x,n,m) < F (y;x,n+ 1,m- 1)

and the limit is obviously the same for these three CDF's when x,n,m

tend to infinity. We formalize the former results in the following

theorem.

Theorem 5.6: For n,m 4 co but mmn constant the predictive CDF's
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F1(yjx),F2(yjx),F(y;x) and F (y;x) tend to be such that

Y/m - X

\ITc (1 7c) (1+1)m n

with probability one.

V.6.3 Limits when m + finite

i) limit for f(y;x)

When m °3

N(0,1)

we also have y + co and m - y + co assuming that

p
o

is not equal to zero or one . Then

f (y; x)

and

(x +
x +

limf(y;x) = 2(1 (1 +
x + y y

m +n-x- y

(m Y): Y.

m + n Y

x
(1 +

n x m y+n x
m y

yx
x y)n -x- 2en x

n x 1/2

Y
x 1/2

37)

Thus the limit in terms of y = y/m is ,

f(Y;x) BETA(x 1/2; n x 1/2)

so that for m large we can approximately predict Y from a BETA

distribution.



Limit for f(y;x)

i(y;x)
(x + y)x "N-x- y )11 x - y

M - y
Y37(111 Y)

Xy

y

1
x + y

y

y)n - x

f(y;x) BETA(x,n - x)

iii) Limit for the Bayesian predictions

M

n x

98

+n-x )m-y+n- x
M y

Let us consider the limiting form of a N11(x,n,m) when only

f
z
(z)m ( ) (m + n - x -

lim f (z) z+
(m - z)

m - z+
z

+ y - 1)'

(m+n- x- z)m+n- x- 2+ 1/2(x
+ z - 1)X

-1- Z z.

+n- x +1/2 z+x- -[ - ) (1 + M
2 ( X- 1 -7 + -

m-z
z + m - z +

z (m - z

CC (m n - x
(1 +

n-x) ,m- z+n- x-1-1/2
z
x- 1

(1+
x- 1

)

z+x-
z
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m - z)
n x x - 1

So that the limiting distribution for a NH(x,n,m) when m

is a BETA(x - 1, n - x) distribution. By replacing x by x + 1

for a NH(x + 1,n,m) we get a BETA(x,n - x 1) distribution.

We summarize the results in the table below.

Approximations for m large (y = y/m)

Type of
Approach Notation

Limiting
Distribution

Limiting
Expectation

Bayesian 1/p

Bayesian 1/1-p

MLPD

FISHER

1
(y lx)

f
2
(i ix)

f(y;x)

f(y;x)

BETA(x - 1,n -

BETA(x,n - x - 1)

BETA(x- 1/2,n- x- 1/2)

BETA(x,n -

x
n + 1

x + 1
n + 1

x + 1/2

n + 1

x + 1
n + 2
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V.7 Exact probabilities of coverage associated with the MLPD.

For any family of prediction intervals EL(X),U(X)1 the

confidence level R has been defined such that

Pr {L(X) < Y < U(X)1 = a ,

e

where this probability is independent of the parameter 6. When

the prediction intervals are obtained from the MLPD, the probability

above will usually depend on the value of the parameter. In this

section we propose to show the variation of the exact probability of

coverage as a function of the parameter p for the binomial

distribution when inferences are made from the MLPD.

Once a nominal level of confidence (say .90) has been chosen

and X = x has been observed the MLPD is used as an ordinary distri-

bution to compute a lower limit L.95(x) and an upper limit U.95(x)

for a prediction interval. Actually, since we are dealing with a

discrete distribution, these limits are randomized in the usual way.

We proceed now to the computation of the probability of coverage for

a given value p of the parameter p . We have

p = Pr
p

IL (X) < Y < (X)}
o

.95

= Y Pr L (x) < Y <
.

(x) IX= x}Pr {X = x}x0 p
o

.95 5 P
o

xGOPr {L (x) < Y < (x)}Pr {X = x}x0 p
o

. 5 .95 p
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Figures 5.1,5.2, and 5.3 show how the function 1(p) deviates

from the nominal value for 0 < p < 1 . The computations are only

for upper one-sided intervals because curves for the corresponding

lower onesided intervals can be obtained by symmetry around p = 1/2

FOr instance

Pr
P 5

(X)}
p

{Y < = Pr L
.95

(X)

Figures 5.1 and 5.3 exhibit the improvement occurring when the

size, n, of the observed sample increases for nominal levels .95 and

.99 respectively. Theorem 2.9 guarantees that these curves will tend

to the horizontal line at the nominal value when n tends to infinity.

In comparing figures 5.1 and 5.3 we also notice that the higher the

nominal confidence level is,the smaller are the deviations from that

level. In other words the prediction will be more reliable for higher

nominal levels.

Figure 5.2 shows the changes induced by the increase of the size

of the future sample; for large m the curve has lower minima.

Overall we can see that the procedure tends to be anti-conservative

for all values of p except around O. Because of the symmetry

property for lower limits, the underestimation of the true level takes

place for p around 1 . Consequently for a two-sided interval the

curve will be symmetric with respect to p = with a flat relative

maximum around p = 11 located below the nominal value.
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The eight following examples are exhibited:

n = 5 m = 5 x = 1,2

m = 10 x = 1,2

n= 10 m= 5 x= 2,4

m= 10 x= 2,4

Because of the symmetry in x,n - x along with y,m - y and p,1 - p

only small values of x are considered.

For each example four predictive CDF's are plotted:

i) Bayesian with l/p prior (marked *)

ii) MLPD (marked 0)

iii) Bayesian with 1/(1 - p) prior (no marks)

iv) Fisher's approach (marked gl)
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V.9 Conclusions.

As in Poisson sampling the MLPD lies between a conservative and

an anticonservative distribution. Thus the true probability of

coverage for a prediction interval is deviating little from the

nominal value of the confidence level. For example, the deviation is

no larger than one percent for a one-sided 99% interval.

The three distributions of interest are NH(x + 1/2,n,m) (approx-

imately), NH(x,n,m) and NH(x + 1,n,m). These correspond to the

familiar p(1 - p)
-1/2

, p
-1

and (1 - p)
-1

Bayes priors respectively.

It is no surprise that the results for the Poisson and the

Binomial sampling have so many similarities, since the first is a

limiting form of the second. In fact the prediction problems for

these two cases can be related in the following way.

Suppose X - B(n,p) and Y B(m,p), and let n and m tend

to infinity with n/m remaining constant. Let also

in such a manner that np A ,then:

tend to zero

X => P(A)

Y P(Am/n) ,

i.e., X and Y can be seen as the sample sums of two samples from

the same Poisson population with sample sizes having the ratio n/m

(recall that the Poisson prediction problem depends on the sample

sizes only through their ratio).

Then a NH(x,n,m) distribution becomes a NB(x,n/(m + n)) distri-



bution, which is a result given by Matuzewski (1962). The Bayesian

priors 1/p , or equivalently 1 /(np), and 1/(1 p)

and uniform priors respectively.

become 1/X

109
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VI STRATIFIED RANDOM SAMPLING FROM BINOMIAL POPULATIONS.

We turn now to the same problem as in chapter IV except that

we are dealing here with binomial populations instead of Poisson

populations. Because the variable to be predicted, i.e., the grand

sum of k samples, has no explicit density function no prediction

can be made without carrying out numerical computations of the

convolution type.

VI.I Problem and solutions.

We assume that we are sampling n. items from stratum

and we observe x. successes. Let p
i

be the unknown probability of

success for stratum i.

The binomial problem is more coMplex than the Poisson problem

becausetheamofbitiondalrandonivariablesviithdistinct's
pi

does not have an explicit mass probability function.

Therefore in the frequentist framework we are not able to

exhibit a function 11)(y,x1,x2,...,xk) such that the distribution of

Y given 11) would be independent of the p.'s .

In the Bayesian approach when the priors are of the form

a. R.

P i (1 p ) we have to sum negative hypergeometric random variables.

There is also no explicit form of the distribution of such a sum but

there is no obstacle to derive it in a computational manner.

By analogy with the Poisson case one might feel that choosing a

prior 1/p
i

for each stratum (resp. 1/(1 - p.)) might be too
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extreme, so that one would think of using more moderate priors such as

1 1
Or

1 - p.)
(k - 1)/k

Pi
(k 1)/k

(6.1)

-
that correspond to the 1 /A, and (1/X

1) /k
priors for the

Poisson problem.

Unfortunately there is no special case like in Poisson sampling

to justify from a frequentist point of view the choice of certain

priors. However some justification may be found in the choice of (6.1)

by showing that, when the strata tend to be identical, these priors

yield predictive distributions that tend to agree respectively with

the 1/p and 1/(1 - p) priors of simple random sampling.

If the strata were identical then inferences would be made from

a NH(x,Ym.,Yn.) and a NH(x + 1,Ym.,Yn.) distribution respectively,
1 1

where x =
i-1

x. . The expectation of the grand total Y would be

Xm.

Vn
i
+ 1

L

and
X m.

Xn. + 1 ( xi 4- 1)
(6.2)

Now suppose we pick for each stratum i a prior of the type

pc.t(1 PY Then the posterior distribution for Y. would be

NH(xi + a + 1,ni + a + R + 1,mi) (see section V.3) whose expectation

is

m.(x. + a + 1)
1 1

n. -F S +2i



Thus the expectation of Y would be

m.

(x. + a + 1)
n. + a + +2
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(6.3)

In order to compare this value to the values in (6.2) we need to

restrict the special case further to m. = m and n. = n for all i .

Then (6.2) becomes

r
) and(Lx.

n + 1/k n + 1/k
(Gxi + 1)

The only way in (6.3) to chose a and 13 in order to have the same

expectations for both approaches is in fact as exhibited in (6.1).

Note that when the number of strata k increases the two classes

,-1
of priors of (6.1) tend to be confounded and equal to 531(1 pdi

for which

E(Y) = .2 m.x./n.
3.- 1 1 1

Because of the absence of an explicit density function for Y ,

the prediction likelihood approaches also fail to apply. However

one can think of obtaining a predictive distribution by convoluting

the predictive distributions of each stratum, i.e.,

y;x ,x ) y.;x.)
.=2 k Eyy

The expectation for this distribution is
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k

E(Y) .1 m (x + 1/2)/
1-1 i i

It can be seen in the following examples how this result compares

with some Bayesian predictive distributions.

VI.2 Examples

In the next pages two predictive densities and CDF's are given for

the following approaches:

i) Bayesian under priors
1/P1

,

1/P2
(marked *)

ii) Bayesian under 1/(1 p1)
,

1 /p2 (marked A)

iii) Convolution (MLPD)1 * (MLPD)2 or approximately

Bayesian [p1(1 - p1)] 1/2

, [p2(1 - p2)].2 (no marks)

iv) Bayesian under 1/pi , 1/(1 - p2) (marked 0)

v) Bayesian under 1/(1 - pl) , 1/(1 - p2) (marked t)

1

vi) Bayesian under [p
1
(1 p

1
)]

-1
[p

2
(1 - 2)] (dashes)
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Binomial prediction

2 Strata

x1=3 n1=10

x2=3 n2=5

-Os

N \ \

5 10

m1=5
m2=10

15

/
r

///i'/

1,0 15



.2
PLY 'Y] Binomial prediction

2 Strata

x1=8 n1=10 m1=5

x2=2 n2=-5 m2=10

-
5 10

,

//
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l.5

10 15
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VII GENERAL CONCLUSIONS AND COMMENTS

It has been shown in this thesis that the Maximum Likelihood

Predictive Distribution behaves quite satisfactorily for binomial

and Poisson predictions (and to a lesser extent for the Normal predic-

tion).

For the Bayesian statistician who would compare prospective values

of y on the basis of some "weighted integration" of the likelihood

function, L(0;y1x) over 0 for each y, the question will be how

well the maximum value of this likelihood function can stand for the

whole function. For instance when the likelihoods remain identical for

all y values except for a proportionality constant on the abcissa

(which occurs in the normal prediction of a sample mean when the vari-

ance is known),. then comparing the likelihoods through their maxima is

equivalent to comparing them through their area, that is, the MLPD is

the Bayesian distribution under uniform prior. In any case one would

like the likelihood function to shift enbloc along the 0 axis when

y varies, which analytically is somewhat expressed by the monotone

likelihood ratio condition for the density family of y.

In the binomial and Poisson cases these requirements are fulfilled

and from the Bayesian point of view it is reassuring that the MLPD's are

close approximations to the Bayesian predictive distributions obtained

by using priors Ep(1 p)i 2 and A 2 respectively. In fact the

MLPD would be the first approximation of these Bayesian predictions if

an expression were derived that would be easy to manage analytically
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or computationally.

We have been able to show the strong consistency of the MLPD,

which incidentally is uniform in y for common cases. One can feel

intuitively that Bayesian predictive distributions will have the

same properties, but as far as I know this has not been proven yet,

and I suspect a general proof to be a rather sophisticated task.

Note that the consistency by itself is a weak requirement although

a necessary one. In fact if we simply choose as a predictive distri-

bution the member of the parametric family of distributions for y

which corresponds to a value of the parameter equal to the maximum

likelihood estimator based on the observations, we see that by

continuity this predictor is also consistent. However, one does not

expect it to perform well, at least as far as prediction limits on y

are concerned, since it entails only one source of uncertainty. There-

fore other criteria should be taken into account such as expected loss

under some standard loss functions, or expected bias.

In this thesis there has not been any consideration of optimality

for the choice of a family of prediction intervals among others. The

choice between Bayesian and non-Bayesian is a conceptual one whereas

the choice among non-Bayesian procedures would be based on criteria

such as minimal interval length or uniform most accuracy.

The intervals inferred from the MLPD are not truly prediction

intervals in the sense that there is no a-priori guarantee that the

probability of coverage will be at least as large as the given level.

Nevertheless we saw for the binomial case in section V.7 that starting
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with a nominal level of 99%, for instance, we obtained a procedure

guaranteeing a true level of confidence of at least 98% (recall figure

V.3). Also some prior knowledge about the unknown parameter will make

results of the type of those in section V.7 more useful. At any rate

further developments of this type of study would shed more light on the

comparison of different methods; in particular the results of section

V.7 should be extended to the Bayesian predictions under priors 1/p

and 1/(1 - p) in order to see how conservative or anticonservative

these really area The deficiencies of Normal approximations could

also be evaluated in this way.

Finally the author feels that the MLPD is a useful outsider in

prediction theory just as the maximum likelihood estimator in estimation

theory, performing quite satisfactorily in some instances, poorly in

others and turning up as the most tractable solution to some complex

cases.
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