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response of the structure in the flow field, iterative procedures are developed.

The numerical model is verified and validated through comparisons with

several different types of experiments.

The numerical model is then applied to examine the runup and

rundown of the submarine landslide generated waves with various

configurations. The functional relationships between the maximum

runup/rundown and the geometric and material properties of landslides are

obtained.

The numerical model is also applied to predict the experimental

moored response of a structure subjected to periodic waves. The linear and

nonlinear waves, as well as the structural response, are modeled accurately.

The dynamic response of the moored structure, which is modeled with

nonlinear restoring forces, shows the characteristic behaviors such as sub-

harmonic/super-harmonic responses. General application procedures for the

fluid-structure interaction model are presented. The subaerial and aerial drop of

a rigid body and the influence of impact on the fluid body are examined.
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CHAPTER 1

General Introduction

Interactions of structure with fluid have been a phenomenon of great

interest to engineers and scientists due to the wide range of practical

applications, including ocean and coastal engineering, biomechanics,

aerodynamics, hydrodynamics, oceanography, etc. A great deal of theoretical

and experimental research effort has been made by structure engineers, ocean

engineers and hydro-dynamicists to investigate the wave forces on coastal and

offshore structures. As a result, several methodologies for estimating wave

forces on fixed structures have been developed and validated through

laboratory tests (Hammack, 1973; Sarpkaya, 1986; Obasaju, 1988; Justesen,

1991; Heinrich, 1991). Depending on the point of view or the problem of

interest, the influence of fixed body on fluid flow and vice verse can be

considered as fluid-structure interaction. In this study, however, fluid-structure

interaction refers to the fully coupled interaction between a moving body (or
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bodies) in the fluid. Thus, in general, the physical phenomenon becomes more

complex due to the strong coupling between the moving body and the fluid

compared to the fluid interacting with a fixed body.

Literature Review

Several numerical models have been developed to describe the waves

generated by submerged or aerial mass movements. With the common

assumption that the geometry and the time history of the mass movement can

be prescribed, these models adopt various additional approximations in

hydrodynamics. For instance, Lynett & Liu (2002) presented a model based on

the depth-integrated nonlinear wave equations, which include the frequency

dispersion effects. Therefore, their model can simulate relatively short waves

that might be generated by a submarine mass movement. Grilli & Watts (1999)

adopted a Boundary Integral Equation Method (BIEM), based on the potential

flow theory, and developed a filly nonlinear free-surface flow model for mass
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movement-generated waves. The approach, however, does not take into

account wave breaking, which could be important in the vicinity of the

generation region as well as the runup region. The depth-integrated model

suffers the same drawback as the BIEM model in terms of the inability to

model breaking waves without further approximation. The depth-integrated

model is much more computationally efficient than the BIEM because it

reduces the 3D problem to a 2D problem in the horizontal space. Heinrich

(1991) modified the NASA-VOF2D model, which is a 2D (vertical plane)

nonlinear free surface model based on the Navier-Stokes equations, to study

the generation, propagation and runup of tsunamis created by landslides.

Breaking waves were modeled by the volume of fluid method proposed by Hirt

and Nichols (1981). The effects of turbulence are not considered. Heinrich

compared his numerical results for both submarine and aerial mass movements

with his own experiments. The agreement is reasonable, except in the regions

where wave-breaking induced turbulence is important.

In 1991, Kothe et al. developed a numerical model known as
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"RIPPLE" for transient, two-dimensional, incompressible fluid flows with

surface tension on free surfaces of general topology. In RIPPLE, the modeling

of wave generation and turbulence was not incorporated. The RIPPLE code

was modified to model the waves and fixed rigid structure interaction by Lin

(1998) at Cornell University and the modified code was named COrnell

BReAking wave and Structure (COBRAS), which includes the turbulence

effects and has the capability of modeling breaking waves, interactions

between waves and fixed coastal structures. In this study, modifications of

COBRAS are made and additional algorithms are developed to predict and

analyze the dynamic responses of structures interacting with exciting waves.

Objective and Brief Summary

The general objective of the study presented herein is to obtain a better

understanding of the strong influence of rigid structure motion on fluid body

for the preservation of human lives and coastal infrastructures, and for the
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deployment and operation of special structural and mechanical systems in

coastal areas. The specific objective of this study is to develop a numerical

model for fluid-structure interaction and validate the accuracy and capability of

the model in predicting structural dynamics behavior and associated flow fields.

A brief summary of this thesis is presented in this section. In Chapter 2,

the strong influence of rigid structure motion on a fluid body is examined

through landslide generated waves and associated runup/rundown.

Relationships between maximum runup and maximum rundown as functions

of the specific density, the initial submergence level, the angle of the moving

mass as well as the slope angle are identified by using the numerical model

developed in this study. The development of a model with iterative procedures

based on dynamic equilibrium and validation through comparisons with

experimental data is presented in Chapter 3. In Chapter 4, the numerical model

for fluid-structure interaction is applied to analyze the motions of a moored

structure. General application procedures of the fluid-structure interaction

model for the moored structure analysis will be presented. Comparisons



between simulations and laboratory test results will be made to validate the

capability and accuracy in prediction of the moored sphere responses under

hydrodynamic excitation forces. Limitations and capabilities of the numerical

model observed in the modeling of experimental moored structure response

will be also discussed. In Chapter 5, the numerical model is utilized to analyze

the impact of a rigid body dropping on an initially still fluid. The influence of

subaerial and aerial drop on the flow field of the generation and propagation

regions is examined. A summary of the results, concluding remarks and

recommended future studies are provided in Chapter 6.
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Abstract

In this paper a numerical model for predicting waves generated by

nearshore submarine mass-movements is described. The model is based on the

Reynolds Averaged Navier-Stokes (RANS) equations with the k e

turbulence model. The volume of fluid (VOF) method is employed to track the

free surface. Numerical results obtained from the present model are validated

with laboratory experiments and analytical solutions. Very good agreements

are observed for both submarine and aerial mass movements. Numerical

experiments are performed to obtain the empirical formula for the maximum

runup and rundown as functions of slide properties.

Keyword: Submarine mass movement, numerical model, turbulence, breaking

waves

Introduction

Motivated by the needs for preservation of human lives and coastal

infrastructure, and for the deployment and operation of special structural and

mechanical systems in coastal areas, the study of nearshore wave motions and
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wave-structure interaction has been of interest to coastal scientists and

engineers for many years.

Coastal wave generation due to submarine mass movement is a

complex process. While the length-scale of a submarine mass movement is

usually smaller than that of a seafloor displacement created by a fault rupture,

the time-scale is usually longer. Therefore, the concept of "initial free surface

displacement" in the wave generation region becomes a critical issue. Hence

the evolution of the free surface displacement in the source region of mass

movement needs to be modeled entirely. Furthermore, the characteristics of a

submarine mass movement, including the soil properties, volume and area of

the mass movement, also require a post-event bathymetry survey.

Several numerical models have been developed to describe the waves

generated by submerged or aerial mass movements. With the common

assumption that the geometry and the time history of the mass movement can

be prescribed, these models adopt various additional approximations in

hydrodynamics. For instance, Lynett & Liu (2002) presented a model based on

the depth-integrated nonlinear wave equations, which include the frequency

dispersion effects. Therefore, their model can simulate relatively short waves

that might be generated by a submarine mass movement. Grilli & Watts (1999)

adopted a Boundary Integral Equation Method (BIEM), based on the potential

flow theory, and developed a fully nonlinear model for mass movement-
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generated waves. However, the approach does not take into account wave

breaking, which could be important in the vicinity of the generation region as

well as the runup region. The depth-averaged model suffers the same drawback

as the BIEM model in terms of the inability to model breaking waves.

However, it is much more computationally efficient for it has reduced the 3D

problem to a 2D problem in the horizontal space. Heinrich (1992) modified the

NASA-VOF2D model, which is a 2D (vertical plane) nonlinear free surface

model based on the Navier-Stokes equations, to study the generation,

propagation and runup of tsunamis created by landslides. The effects of

turbulence are not considered. Heinrich compared his numerical results for

both submarine and aerial mass movements with his own experiments. The

agreement is reasonable, except in the regions where wave-breaking induced

turbulence is important.

In recent years, significant advancement in modeling wave-breaking

processes and interactions between breaking waves and coastal structures has

been made. For example, COBRAS (Cornell Breaking waves and Structures

model) is based on the Reynolds Averaged Navier-Stokes (RANS) equations

with a k e turbulence closure model. While a nonlinear Reynolds stress

model is employed to allow anisotropic turbulence, the Volume of Fluid

(VOF) method is used to track the free surface movements. COBRAS has been

verified and validated by comparing numerical results with experimental data



13

for runup and rundown of breaking waves on a uniform beach (Lin & Liu 1998

a, b, Lin et al. 1999). It also has the ability to simulate wave-structure

interactions, where the structures are rigid, stationary, fully submerged or

surface piercing (Hsu et al. 2002).

The primary goal of the research surmarized in this chapter is to modify

COBRAS to allow time-dependent moving solid boundaries such that mass

movement-created waves can be simulated. Since COBRAS is capable of

calculating turbulence, the modified model will be able to simulate breaking

waves, runup and rundown. Here, we shall first present briefly the theoretical

background of COBRAS and discuss the necessary modification to simulate

the mass movement. 2D numerical results are then compared with

experimental data. Some discussions on the future extensions are given at the

end of the paper.

Description of the Model

In this section the mathematical formulation and the associated

numerical algorithm of COBRAS are discussed briefly. More detailed

discussions can be found in Lin and Liu (1998 a, b). The model is based on the

Reynolds Averaged Navier-Stokes (RANS) equations. For a turbulent flow, the

velocity field and pressure field can be decomposed into two parts: the mean
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(ensemble average) velocity and pressure <u1> and <p>. and the deviatoric

(or turbulent) velocity and pressure u: and p' . Thus, u. =< u. > +u, and

p =< p > +p' in which i = 1,2,3 for a three-dimensional flow. If the fluid is

assumed incompressible, the mean flow field is governed by the Reynolds

Averaged Navier-Stokes equations:

8(u.)
=0

Ox,
(1)

8(u1) 1 8(p) 1 0(uu)
(2)

p 8x p Ox1 Ox1

in which p is the density of the fluid, g. the I -th component of the

gravitational acceleration, and the mean molecular stress tensor

>= 2p <cr> with p being the molecular viscosity and <o > , the rate of

strain tensor of the mean flow. In the momentum equation (2), the influence of

the turbulent fluctuations on the mean flow field is represented by the

Reynolds stress tensor, -p <u'u > . Many second-order turbulence closure

models have been developed for different applications. In the present model,

the Reynolds stress is approximated by a nonlinear algebraic stress model:
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k2 (a/u\ a(u1)
p(u;u;) Cd I " " I

eax3 ax,)

1(')
a(u1) a(u) a(u1) 2 a(u1) a(Uk)

ox1 Ox Ox1 Ox 3 8X, OX1

(3)

OX,, OX 3 ax,, OX

+
3(u,,) i a() 0(u1)8

I Ox ax1 3 OX,, OX,,

in which
Cd,

c , ç and c, are empirical coefficients, S is the Kronecker delta,

k =< u'u' > /2 is the turbulent kinetic energy, and e = v < (au' / 3x is the

dissipation rate of turbulent kinetic energy, where v = p / p is the molecular

kinematic viscosity. It is noted that for the conventional eddy viscosity model

c1 = c2 = C3 = 0 in equation (3) and the eddy viscosity is then expressed

as = Cdk2 / e . Compared with the conventional eddy viscosity model, the

nonlinear Reynolds stress model (3) can be applied to general anisotropic

turbulent flows.

The governing equations for k and c are modeled as (Lin and Liu,

1998 a, b),

Ok Ok
+/ \

1Ox1

0 "+vIIOk
1

\
0(u,)

(4)u
(

'at ) Ox j
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/ ae a[(v, "ae+(uJ---=--Ii +V I
at

' 'a ax L ° ) dxi]
()

+
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s(a(u1)
a(u) a(u1)

26

i
ax

)
a1

in which CCC1 and c2 are empirical coefficients. The coefficients in

equation (3) to (5) have been determined by performing many simple

experiments and enforcing the physical realizability; the recommended values

for these coefficients can be found in Lin and Liu (1998 a, b).

Appropriate boundary conditions need to be specified. For the mean

flow field, both the no-slip and the free-slip boundary condition can be

imposed on the solid boundary. Along the mass surface, the velocity of the

moving boundary is either prescribed or determined by dynamic equilibrium of

the mass. The zero-stress condition is required on the mean free surface by

neglecting the effect of airflow. For the turbulent field, near the solid

boundary, the log-law distribution of mean tangential velocity in the turbulent

boundary layer is applied so the values of k and can be expressed as

functions of distance from the boundary and the mean tangential velocity

outside of the viscous sub-layer. On the free surface, the zero-gradient

boundary conditions are imposed for both k and e, i.e., k I an & i an = 0. A

low level of k for the initial and inflow boundary conditions is assumed.
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In the numerical model, the RANS equations are solved by a finite

difference two-step projection method. The forward time difference method is

used to discretize the time derivative. The advection terms are discretized by

the combination of the central difference and upwind methods. The central

difference method is employed to discretize the pressure gradient terms as well

as stress gradient terms. The VOF method is used to track the free surface. The

transport equations for k and e are solved with the similar method used in

solving the momentum equations (Lin and Liu 1998 a, b).

Numerical Results and Discussions

To validate the numerical model, numerical simulations of several

laboratory experiments have been carried out for waves generated by vertical

bottom movements (Hammack, 1973) and by a sliding triangular block on a

uniform beach (Heinrich, 1992). In Hammack's experiments waves do not

break in the generation region and the present numerical results agree with

Hammack's data very well. In this paper we shall focus our discussion on

Heinrich's experiments in which the generated waves break.

The computational domain is 12 m in the x-direction and 2 m in the y-

direction. A variable grid size system is used in the x-direction with minimum

grid size of 0.01 m and a fixed grid size of 0.01 m is employed in the y-
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direction. To satisfy all stability conditions and restrictions of the incorporated

methods, a fixed time step of 5x1Os is used. Numerical results in generation

(i.e., near moving mass) and propagation regions are compared with

experimental data as shown in Figure 1 and 2. The submarine mass movement

is modeled by a triangular shaped moving boundary that is initially located at

O.Olm below the free surface as in Heinrich (1992). The measured

displacement time history from the Heinrich experiment is used as prescribed

motion of the triangular mass. Since the grid size is not small enough to

resolve the boundary layer, the free-slip boundary condition is applied on all

the solid boundaries including sliding body, slopes, and channel bottom. As

shown in Figures 1 and 2, wave profiles in the generation region and the

propagation region are in good agreement with experimental data. Some

deviations are observed, however, in the wave profile at t = 1.5 s when the

reflected wave starts to break. It is surmised that the disagreement in wave

profile is caused by the random nature of turbulence near wave breaking where

the "exact" measured value is difficult to determine.
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Free surface at t=0.5 sec Free surface att=l.0 sec

x(m)

Free surface atfl .5 sec Free surface att 2.0 sec

34
x(m)

Free surface at P2.5 sec Free surface atf=3,0 Sec

Fig 1. Free surface comparisons between simulation and experimental data at
0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 s in wave generation region. First panel shows
portion of triangular shape moving boundary.

A convergence test using minimum grid sizes of 0.005, 0.01, 0.02, and

0.04m has been performed. A fine grid of 30 cells is used to resolve maximum

wave height. It is observed that convergence is achieved with a grid size 0.Olm.

This value (or smaller) is employed throughout the study.
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Fig 2. Free surface comparisons between simulation and experimental data at x
= 4, 8, and 12 m in propagation region.

Turbulence generation by the submarine mass movement on a beach

and its evolution are examined. Figure 3 shows the contours of turbulence

intensity at t = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 seconds. It is observed that when

the mass is in motion turbulence is generated around the upper right corner

because of flow separation. Once the waves generated by the moving mass

reach shore, waves are reflected. After the mass movement stops, turbulence is
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generated by the breaking of the reflected wave near the free surface and

turbulence intensity decreases gradually. The maximum turbulence intensity

can reach 0.83 mlsec, which is almost 50% of the mean velocity.

The influence of the submarine mass movement velocity is examined

by varying the displacement time history. Denoting aO as the initial

acceleration of the mass movement measured in the experiment, we have

calculated three additional cases with accelerations that are 0.5a0, 0.75a0 and

1.25a0, respectively. In these simulations the total displacement and the

volume of mass movement remain constant so that only one parameter, i.e.,

velocity of the moving mass, is varied. The effects of mass movement velocity

on maximum wave heights, runup and rundown are shown in Figures 4 and 5,

respectively. As expected, the magnitudes of the wave height, runup and

rundown increase with increasing acceleration.
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Fig 3. Turbulence intensity around moving body at t = 0.5, 1.0, 1.5, 2.0, 2.5,
and 3.0 seconds.

Wave profle at x=3.5m
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Fig 4. Influence of sliding mass velocity on wave height: (a) Time series of free
surface at x = 3.5 m, (b) Maximum wave height.
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Another case examined is an aerial slide in which a part of the moving

body is initially located above the free surface and slides down along a uniform

slope. Therefore, the moving solid boundary intersects the free surface until the

moving body is completely submerged. During this period of time, a special

treatment in the VOF function is required to satisfy the law of mass

conservation. This is necessary because the pressure in the free surface cell is

not calculated from the Poisson pressure equation, and is specified by the free

surface boundary condition. Thus, a source/sink term cannot be used in the free

surface and the moving boundary interface cell to generate an equal amount of

fluid corresponding to the volume change due to the moving boundary. An

algorithm to treat the free surface and moving-boundary interface cell is

developed and incorporated in the code.

Numerical simulations are performed and compared with the

experimental data obtained by Heinrich (1992) to validate the predictive
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capability of the numerical model for an aerial sliding. The problem setup is

exactly the same as that for the submarine slide except that the moving body is

located initially just above the free surface. Wave profiles in the generation

region at t = 0.6, 1.0, and 1.5 sec are compared with experimental data as

shown in Figure 6. From the wave profile at t = 0.6 sec, we observe that the

wave starts to break and becomes highly random. The discrepancy of wave

profiles at t = 1.5 sec might be attributed to turbulence.

The numerical model developed in this study is utilized to investigate

the functional relationship between both the runup and rundown of submarine

slide generated waves and the geometric parameters of the sliding body and

slope. From the previous work by Chen (2002), the following form of the

functional relation is employed.

/ \c2

I A1 1 c3
= cOr' (sin o) (sin i) (6)

/ \d2

dOYd' 4 1 d3 d4
(sin o) (sinfl) (7)

In the above equation, cO, ci, c2, c3, c4, dO, di, d2, d3, and d4 are

constants to be determined, 7rd is the maximum rundown, 17z, is the maximum

runup, b is the base length of triangular sliding body, 0 is the slope angle, ' is

the specific weight of sliding body, fi is the angle of top face of sliding body,

A1 is the area of sliding body, and A is the area of fluid above the sliding body.
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A series of numerical experiments is conducted to examine the functional

relations.
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Fig 6. Free surface comparisons between simulation and experimental data at
0.5, 1.0, and 1.5 s in wave generation region. Solid rectangles shows upper
right corner of triangular shape moving boundary.

In previous studies (Chen 2002, Grilli and Watts 1999) of functional

relations between submarine slide and runup/rundown, the motion of a sliding

body is determined by solving the differential equation obtained by balancing

inertial, added mass, gravitational, buoyancy, and fluid dynamic drag forces. In



this study, the sliding body movement is not predetermined but obtained by

considering the instantaneous dynamic equilibrium of the moving body

including the coupled fluid-structure interaction. An iterative procedure is

introduced to compute the sliding body movement.

For the numerical experiments for runup and rundown, the

computational domain is discretized by 410 x 280 grids points in horizontal

and vertical direction, respectively, and variable time step is used to advance

solutions in time so that stability conditions are satisfied. The slope where

landslides occur and runup/rundown is measured is located on the left end of

computational domain. In addition to specifying the domain boundary at the

right edge as "open", a sponge layer of sufficient width is placed on the right

side to prevent reflections of waves at the domain boundary and ensure full

energy absorption (see Figure 7).

Fig 7. Computational domain and numerical experiment setup
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Four sets of numerical experiments are conducted. In each set, only

one parameter is varied with all others being fixed so that the effects of varying

the particular parameter can be examined. The parameter space used in this

study is shown in Table 1. The range of parameter variation is determined by

considering the possibility of physical realization. For example, the specific

density of landslides can be less than 1.0, but physically it may not be

realizable because of the buoyant force.

To measure the runup and rundown, numerical wave gauges are placed

along the slope. However, maximum and minimum vertical elevations of the

free surface on the slope are recorded as runup and rundown, respectively. The

distance that waves move along the slope can also be calculated using the

maximum and minimum values in the vertical direction and the slope angle.

Figures 8 and 9 show the effects of parameters considered in this study

on rundownlrunup and the results of regression analysis. The power curves

used to fit the data ensure that runup and rundown do not occur when any of

parameters are zero. In determining the final formula for runup and rundown,

the power curves are used again and the exponents from the curve fit are

multiplied to obtain the coefficients for the final runup and rundown formula.



Test sinO y 8 A, A A,/A sin/3

1 0.707 1.4 1.0 0.250 0.240 1.0399 0.707

2 0.707 1.8 1.0 0.250 0.240 1.0399 0.707

3 0.707 2.0 1.0 0.250 0.240 1.0399 0.707

4 0.707 2.4 1.0 0.250 0.240 1.0399 0.707

5 0.707 2.8 1.0 0.250 0.240 1.0399 0.707

6 0.707 2.12 0.707 0.125 0.071 1.768 0.707

7 0.707 2.12 0.707 0.125 0.115 1.083 0.707

8 0.707 2.12 0.707 0.125 0.145 0.865 0.707

9 0.707 2.12 0.707 0.125 0.180 0.695 0.707

10 0.707 2.12 0.707 0.125 0.212 0.589 0.707

11 0.707 2.12 0.707 0.125 0.248 0.505 0.707

12 0.707 2.0 1.0 0.25 0.311 2.24 0.985

13 0.707 2.0 1.0 0.25 0.311 2.24 0.966

14 0.707 2.0 1.0 0.25 0.311 2.24 0.940

15 0.707 2.0 1.0 0.25 0.311 2.24 0.866

16 0.707 2.0 1.0 0.25 0.24 1.040 0.707

17 0.643 2.0 1.0 0.25 0.24 1.040 0.707

18 0.574 2.0 1.0 0.25 0.24 1.040 0.707

19 0.500 2.0 1.0 0.25 0.24 1.040 0.707

20 0.423 2.0 1.0 0.25 0.24 1.040 0.707

21 0.342 2.0 1.0 0.25 0.24 1.040 0.707

Table 1 .Parameters used for runup and rundown simulations.
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Based on the numerical results shown in Figures 8 and 9, the functional

relationships between runup/rundown and the parameters are found to be

- ' 0.2803

O.4178y"'' A1
)

1.4395(sin/3) 0.5086
(sin 0) (8)

b

/

'I

0.1889

= 1 .0593702078t'
A1 3.6134(sinfl) 1.6566(sin0) (9)

b

Note that larger runup and rundown are observed as expected for increasing

mass density, face angle, slope angle, and decreasing initial submergence of

the landslide.
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Fig 8. Least square fit of rundown to numerical simulation data.
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Concluding Remarks

The capability and accuracy of the present numerical model in

predicting wave generation by submarine and aerial mass movements and

propagation has been validated. In addition, the influence of a moving body

velocity on runup and rundown has been examined. For the higher sliding body

velocity, maximum runup and rundown are increased as expected.

Turbulence generation by triangular shape moving body occurs around

its upper right corner due to flow separation and near the free surface where

waves break. Careful experiments measuring the velocity field are desirable to

validate the prediction of the turbulence intensity.
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Relationships between maximum runup and maximum rundown as

functions of the specify density, the initial submergence level, the angle of the

moving mass as well as the slope angle are identified. The runup and rundown

formulae show good agreement with physical intuitions.

Finally we should remark that the present results are limited to two-

dimensional slides, which are uniform along the shoreline. In reality slides are

three dimensional. The predicted maximum runup based on the present two-

dimensional slides might not be conservative. In the case of a three-

dimensional slide, additional lateral (in the alongshore direction) as well as on-

offshore waves can be generated due to the free surface drawdown and

rebound above the moving slide. This feature requires further study.
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Nomenclature

A1 area of sliding body

A area of fluid above sliding body

b base length of triangular body

Cj, C2,, C3,, Cd,, o, a, Cj, C2- empirical coefficients

g1 i-th component of gravitational acceleration, rn/s2

k turbulence kinetic energy

p hydrodynamic pressure

u i-th component of velocity vector

<> ensemble average

/3 angle of top face of sliding body

Ax, zly grid size in x and y direction

b, Kronecker delta

turbulence kinetic energy dissipation rate

1lrd maximum rundown

maximum runup

p dynamic viscosity, kg m s

Vt eddy viscosity

0 slope angle

p density of fluid, kg/m3
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a strain rate tensor

m
Dli

molecular viscous stress tensor

4 maximum displacement of moving chaimel bottom
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CHAPTER 3

Analysis of Fluid-Structure Interaction Using RANS Equations, Part I:
Model Development and Validation

Yuk, D., Yim, S.C. and Liu, P. L.-F.
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Abstract

The numerical model (Lin, 1998) for wave hydrodynamics based on

Reynolds Averaged Navier-Stokes (RANS) equations with a k-c turbulence

closure model and Volume of Fluid (VOF) method is modified to simulate the

interactions between moving rigid body and surrounding fluid. The finite-

difference method with a combination of forward and backward difference

scheme is employed for the numerical approximations of the velocity of fluid

fields with respect to time and space. The volumetric change in a control

volume due to rigid-body movement is taken into consideration by modifying

the continuity equation. Depending on the movement direction and the

orientation of rigid body boundaries, a source/sink term is added in the Poisson

Pressure equation that appears in the second step of the two-step projection

method employed. Hydrodynamic excitation forces on the structure are

determined by integrating the stress (or pressure) components acting normal to

the rigid-body surface and the response of the rigid body is computed based on

equilibrium of the dynamic forces. An iterative procedure is introduced to

satisfy the equilibrium between structural dynamics and hydrodynamic forces

at the fluid-structure interface. The equation of motion for structural dynamics

is solved using the predictor-corrector method. The numerical model is
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validated through comparisons with existing experimental data and analytical

solutions from Hammack (1973) and Heinrich (1992).

Introduction

Interactions between fluid and structure have been a phenomenon of

great interest to many engineers and scientists due to the wide range of

practical applications in aero and hydrodynamics. A great deal of research

effort has been made by ocean engineers and hydro-dynamicists to investigate

the wave forces on coastal and offshore structures, both theoretically and

experimentally. As a result, wave forces on fixed structures have been

developed and validated thoroughly through numerous laboratory tests.

Depending on the point of view or the problem of interest, the influence of

fixed body on fluid and fluid on fixed body can be considered a fluid-structure

interaction. In this study, however, fluid-structure interaction refers to the

interaction between a moving body (or bodies) and the fluid. Thus, in general,

the physical phenomenon becomes more complex due to the strong coupling

between the moving body and the fluid compared to the fluid interacting with a

fixed body.

In 1991, a numerical model called RIPPLE was developed for transient,

two-dimensional, incompressible fluid flows with surface tension on free



surfaces of general (Kothe and et al, 1991). In RIPPLE, modeling of wave

generation and turbulence was not incorporated, and these components are

investigated in the current study. Lin (1998) modified RIPPLE to model the

waves and fixed structure including turbulence and named it COrnell

BReAking wave and Structure (COBRAS) model. COBRAS has the ability to

model breaking waves and interactions between waves and fixed coastal

structures. In this Chapter, the modification of COBRAS and the development

of an algorithm for the dynamic response of structures to waves and their

influence on the fluid are described. To verify and validate the developed

model, comparisons are made using numerical results and various

experimental data.

Numerical Model for Waves and Stationary Structures

For an incompressible Newtonian fluid, the dynamics of the fluid can

be described by the well-known Reynolds Averaged Navier-Stokes (RANS)

equations which consist of the continuity equation (1) and the momentum

equation (2).

a/u.
(1)

ax,
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where subscripts i, j denote the Cartesian component taking 1, 2, 3 for three

dimensional flows and ( ) the ensemble average of different solutions of the

Navier-Stokes equations (NSE). However, the numerical model developed for

this study is 2D only. Thus the range of subscripts i, j is limited to 1 and 2. In

equations (1) and (2), u, denotes the i-th component of the velocity vector, p

the density of fluid, p the pressure, g, the i-th component of the gravitational

m

acceleration, and the molecular viscous stress tensor. Under the Newtonian

fluid assumption, can be expressed by
r = 2iio, with p being the dynamic

a -
viscosity (whose unit is kg m1 1) and 2 / the strain rate tensor.

In the fifth term of the right hand side of equation (2), there is a

correlation between density fluctuations and the gradient of pressure

fluctuations. The correlation between density fluctuations and the gradient of

viscous stress fluctuations are also included in the sixth term of right hand side

of equation (2). Since these correlations are not clearly known up to today and

the constant density within the fluid is assumed, the last two terms in equation

(2) are neglected in this study. The only additional term when compared to
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general NSE is the fourth term of the right hand side of equation (2), i.e.,

The ensemble average of the product of two different velocity fluctuation

components in that term is used for the definition of Reynolds stress tensor.

The Reynolds stress tensor is defined as

R.1 = _(p)(uu) (3)

In the previous research, many second-order turbulence closure models

have been developed for different applications. In this study, the so-called k-s

model, where the Reynolds stress is approximated by a nonlinear algebraic

stress model, is employed as the turbulence closure model (Shih et al., 1996).

(p)(uu) = pk81 Cd sôx 8x,
J

,

ax1 ax ax, ax, 3 ôxk ax,

_! a(u1)a(u)ia(u,)a(u1)8

S 5Xk aX,, 3 ox,, OX,,

+c31a(uk)
O(u,,) 10(u,) 3(u,)

L
Ox1 Ox3 3 OX,, OX,,

(4)

where C1, C2 and C3 are empirical coefficients, bj, is the Kronecker delta,

k =-(uu) is the turbulence kinetic energy and e =v((0u/ax,,)2) is the

dissipation rate of turbulence kinetic energy with v = ,u/p the kinematic



41

viscosity. When compared with the classical linear isotropic eddy viscosity

closure model, equation (4) returns to the classical model with Cj=C2=C3=0 as

shown below.

(u:u;) = 2v,(o,) + k8.. (5)3Y

where v, = Cd is the eddy viscosity and Cd is another empirical coefficient.

The weakness of the linear isotropic eddy viscosity model is that equation (5)

may not represent accurately the physics of anisotropic turbulence in complex

turbulent flows. The turbulence closure model given in equation (4), however,

can be applied to general anisotropic turbulent flows. The governing equation

for k and s (Rodi, 1980) are modeled as

ak ak

i

[(v "akl a/u',
(6)

ax3 cyk ) j

as asa_[Ix "os- + +v I-
" Ox Ox

[L °- ) Ox1 j

a(ua(.) e2

+C1v
+

J i

where ak, a, C1 and C2 are empirical coefficients. The coefficients in

equations (4), (6) and (7) have been determined by performing many simple

experiments and enforcing the physical realizability; the values for these
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coefficients suggested by Lin and Liu (1998) and used in this study are

Cj=O.0054, C2=-O.0171, C3=O.0027, Cjz=1.44, C2=1.9, o=1.3 and o=1.O.

Applying the appropriate boundary conditions, and approximating the

derivatives in Navier-Stokes equations using a finite-difference scheme with a

combination of backward and forward difference methods, a numerical

solution of the Navier-Stokes equations is obtained. Detailed descriptions of

the assumptions for the turbulence closure model and the boundary conditions

imposed on the computational domain boundaries and internal rigid-body

boundaries can be found in a previous study by Lin (1998).

Development of numerical model for Waves and Moving Structures

The continuity equation in the RANS equations is valid for the

incompressible fluid with fixed solid boundary. In the presence of a moving

boundary, the conventional continuity equation needs to be modified to take

the fluid volume change in a cell into consideration. In Figure 1, the initial

location of the solid boundary at time t is denoted by AB. At the next time step,

t+zlt, the location of the moving solid boundary is moved to A 'B' and the

volume change of the solid boundary is denoted by dV0b. For an

incompressible fluid, the fluid volume change within a computational cell
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during ut should be the same as that of the moving solid boundary. The

volume change in a cell can be expressed as

JJü.ñds JJ'"obs .ñds (8)
S1, S0,,

where ü and V0b5 denote the velocity vectors of the fluid and the moving

boundary, respectively. The vector ñ is defined as the unit outward normal to

cell boundaries. The double integral with the intervals Sceji, Sobs represents the

surface integration over the whole computational cell and over the surface

occupied by moving solid boundary, respectively. The right hand side of

equation (8) can be considered as the rate of the volume change of the moving

boundary over dt. Thus the fluid volume change in a cell can be expressed as

JJü.ñds dVObS
(9)

dt

and the modified continuity equation for the volume V can be expressed as

ô(u1) ldVObS
(10)

ax1 V dt

The location of the solid boundary is identified by using a partial flow

flag. For the more detailed identification of the solid boundary location,

additional variables are used. To identif' the openness of the cell faces, the

variables ar1 and at are defined as the fractional area open to flow on the

right and the top face of the cell (i,j). The fractional volume open to flow at the

center of cell (i,j) is denoted by ac(i,j).
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Figure 2 shows a typical cell blocked partially by the solid boundary.

The shaded area represents the area blocked by the solid boundary and is

denoted by (A0b5,),1. The partial cell variables are computed by

d. d. (A)..
ar. = ---, at, . = ac. . = 1

obs i,j
(11)

'

Ax, " AxAy

Then d V0b5 at the (n+1)-th time level can be calculated by

dVbS (AObS).' (AObSr. = (ac' ac,")Ax1Ay (12)

Since the conservation of mass condition is used to derive the Poisson pressure

equation (PPE) in the second step of the two step projection method, PPE

needs to be modified accordingly. Imposing the modified continuity condition

given by equation (10) yields

o i Op 1
n+I (ac';'ac1)

Ox, JAt 5.
(13)

The last term in equation (13) functions as a source or sink numerically

depending on d V0b5. The boundary condition for the Poisson pressure equation

imposed on the moving rigid boundary is a Neumann boundary condition.

Theoretically, the velocity of the moving rigid boundary should be the

same as the velocity of the fluid on the moving boundary. Due to the finite

difference scheme and the partial cell technique employed in this model,

however, the moving rigid boundary is not always exactly aligned with the

grids. This makes it impossible to specify the velocity boundary condition



precisely on the moving boundary. In addition, when the moving boundary is

somewhere between the cell faces, the velocity at the cell face is unknown.

Thus, it is impossible to interpolate the velocity at the cell face from the

velocity of the moving boundary. Therefore a sink/source term is used to

implement moving boundaries instead of specifying velocity boundary

conditions.

The pressure and velocity fields are determined from the numerical

solution of Navier-Stokes equations. Then the hydrodynamic forces along the

surface of moving rigid body are decomposed into the nonnal and tangential

components based on the orientation of rigid boundaries in each computational

cell. In the hydrodynamic force computations, it is noticed in Lin (1998) that

the grid size is not small enough to resolve boundary layer on solid boundaries

and "free-slip" boundary conditions are recommended. Thus it is assumed that

tangential velocities around moving rigid body do not change and the shear

stress due to the change of tangential velocities on the rigid boundaries is

negligible. More detailed discussions about the shear stress will be presented in

concluding remarks.

Development of Numerical Model for Dynamic Equilibrium
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The displacement of fully or partially submerged rigid body is

determined by solving the equation of motion. To describe the motion of the

rigid body, local reference system with the origin fixed at the center of rigid

body is used. The equation of motion for the rigid body can be expressed as

(14)

where, m, c, k(X), and X denote mass, damping coefficient, restoring force,

external excitation and local reference system with the origin on the center of

gravity of rigid body at initial location, respectively. Depending on the

problems of interests and assumptions, damping, restoring and excitation

forces should be derived appropriately. Derivation of the case-dependent

governing equation for structural dynamics will be discussed later in this

Chapter.

One of the key issues in modeling fluid-structure interaction is the

interdependency between fluid and structural displacements. In other words,

the fluid surrounding the moving rigid body accelerate or decelerate the rigid

body and the rigid body response also influence the fluid nearby. This

interactive influence is modeled by an iterative procedure developed in this

study. The basic idea is that dynamic equilibria for both the structure side and

the fluid side have to be always satisfied simultaneously. Let t,, and t+j denote

two consecutive time steps. The information about fluid and structure, i.e.,

displacement, acceleration, velocity of rigid body and pressure, velocity field
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of fluid, at the current time level t, is known from the previous computation

cycle. As the rigid body moves during the differential time period dt, the

external excitation, which is the integration of pressure along the rigid body

surface, will change and the location of rigid boundary, which is determined by

the response of the rigid body to external excitation, will also change. At the

next time step t+j, however, dynamic equilibria should be satisfied for both

the fluid and the structure. The iterative procedure to satisfy the

hydrodynamics and structural dynamics begins with an estimated external

excitation force f,1. The subscript n +1 and superscript 1 in f,1 represent the

time step and the number of iteration, respectively. The excitation at the

current time step f, is used as the first estimate of the excitation at the next

time f+1

The first estimated structural displacement is calculated and denoted by

x1. Then the location of rigid boundary in the computational domain is reset

and the governing equation for fluid is solved. Once the pressure and the

velocity field of fluid are computed, the excitation force is computed again

with respect to the updated location of the rigid boundary and is denoted f1.

This excitation force is then used to determine the displacement of

structure x1. By repeating this iteration procedure until f, converges to

or the difference between f,' and f,+1 becomes smaller than a predetermined



tolerance, the response of structure and the pressure and velocity field of fluid

at the next time step t,,j are computed. A flow chart of the iterative procedure

is shown in Figure 3.

Integration of the second order linear ordinary differential equations

(ODE) for structural dynamics is done by the Euler method. The order of

accuracy of the Euler method employed in this model is known to be O(At).

There exist other numerical methods with higher order of accuracy for the

integration of ODE, e.g., the Runge-Kutta 4' order method. However, the

higher order method requires the exact excitation force at the next time step.

When the excitation force can be calculated or determined exactly at any time

level, other existing higher order method can be employed in the numerical

model to improve the accuracy in predicting the structure responses. As

described earlier, since the excitation force at the next time level is unknown

and estimated at the current time level, the effect of implementation of higher

order method like Runge-Kutta 4th order method on improving the accuracy of

structural response prediction is expected to be negligible.

Alternatively, when structural dynamic equilibrium can be expressed in

the form of linear ordinary differential equations, other numerical methods can

be used for the time integration of equations of motions. For example, the

dynamic equilibrium of sliding block on a slope can be expressed by second

order linear ordinary differential equation. In this case, other methods, such as
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the Newmark integration method, can be employed. It is assumed in the

Newmark integration method that variation of acceleration during an

incremental time it is linear.

Special Treatment for Free Surface Piercing

An algorithm is developed and incorporated in the numerical code to

model free surface piercing motion of rigid boundary where a part of the

moving rigid body interacts with the free surface. A special treatment in the

VOF function is required to conserve the total volume of fluid in the

computational domain. This is necessary because the pressure in the free

surface cell is not calculated from the Poisson pressure equation, and is

specified by the free surface boundary condition. Thus, in a cell where the free

surface and moving boundary coexist, a source/sink term cannot be used to

generate the same amount of fluid as the volume change due to the moving

boundary.

In the entire free surface cell including the cell with moving-boundary,

advection of VOF function are computed using standard procedures, which can

be found in previous studies (Lin 1998). The volume of fluid, which is pushed

by the boundary movement, is added in the adjacent cell as described in figure

13. When there are not enough space to add the volume change due to the rigid
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boundary motions in the cell (i, J)' the fluid volume left after filling the cell is

distributed in the next neighboring cell (i+1, j).

Validation of Numerical Model

Several different fluid structure interaction problems are simulated and

compared with laboratory test results to validate the accuracy and capability of

the numerical model developed in this study.

Moving Channel Bottom and Wave Generation

A series of laboratory tests had been performed on wave generation due

to channel bottom movement and its propagation by Hammack (1973).

Experiments were conducted in a flume with movable flat bottom. A part of

the bottom was raised or dropped with different characteristic displacement

time histories. Complete descriptions of the experimental setup and additional

theoretical works can be found in Hammack (1973). In this study, only the

wave profiles measured in the generation region is compared with simulation

results. The experiment model setup is shown in Figure 4.

The time histories used for the displacement of channel bottom are

referred to as the exponential and the half-sine bed movements, with both bed
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movements asymptotically approach to a maximum displacement o These

displacements are given by

ç(x,t)=ç0(1_eat)ff(b2 _x2) (15)

ç5(x,t)= [--i _cos!-JH(T t)+H(t _T)]H(b2 _x2) (16)

where H is the Heaviside step function. One of the parameters that characterize

the bed movements is the characteristic time t. As shown in Figure 5, the

characteristic time for the exponential bed movement is chosen such that t=t

when cco=213 and for the half-sine bed movement the total time of movement

T is defined as t.

These two different bed movements are subdivided into three

categories depending on the time-size ratio. It is defined as t fi / b and used

to characterize the bed movement in more details. When t <<1, the

bed movement is referred to as impulsive motion and when t ./ b >> 1, it

is called creeping motion. For the time-size ratio t
..f

/ b of order 1, it is

called transitional motion.

A series of experiments was conducted in a wave tank 103.8 ft long, 2

ft deep and 15.5 in wide. Since the moving channel bottom is symmetric about

x=0, the origin of the theoretical model was represented in the experiment by

the vertical wall at the upstream end of the wave tank. Thus only half of the



52

deformation and fluid domain was modeled experimentally. The free surface

elevation was measured at the center line of the bed deformation x/h = 0 (i.e.,

the upstream end wall in the wave tank) and at the downstream edge of the bed

deformationx/h = b/h.

The time history of the free-surface elevation of waves generated by

both positive and negative bed motions were measured in the experiment.

However, the experiments with positive bed motion are examined in this study.

Moreover, the other parts of this model which are responsible for wave

propagation and free surface tracking are already validated in previous

research (Lin, 1998). Thus, the experimental results in the generation region

obtained from the positive channel bottom motions are used here to validate

the numerical model with the moving boundary.

h the numerical simulation, the computational domain of 4.5 m long in

x-direction and 0.12 m deep y direction is discretized by variable grid size with

minimum grid sizes Ax =0.5 cm and Ay =0.05 cm. Considering the maximum

amplitude of wave generated by the bottom movement in the experiment is in

the range of 1-4.5 cm, 20-25 grids which are estimated to be fine enough to

resolve the measured wave height accurately are used in the numerical

modeling. The detailed parameters of the numerical model are given in Table 1.
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Table 1 Parameters of numerical model for various bed movements

b(cm) h(cm) o(cm) t(sec)

Impulse 61 10 1.0 0.080

Half-sine
bed motions

Transition 61 50 0.5 0.248 .

Creeping 30.5 50 5.0 4.326

Impulse 61 5 1.0 0.060 18.271

Exponential
bed motions

Transition 61 5 0.5 0.340 3.232

Creeping 61 5 1.5 7.581 0.145

In the numerical modeling, the time history of the bed movement is

given by equations (15) and (16). Thus the iterative procedure for the

interaction between the moving bottom and the fluid is not employed in this

particular case. Numerical experiments are performed just for the verification

and validation purpose. The nondimensional wave profiles measured at two

different locations within the generation region are compared and shown in

Figures 6 and 7.

As shown in these figures, the numerical results are in good agreements

with the experimental data for both the half-sine and the exponential bed

movements. However, some discrepancies are observed in Figure 6(a) where

the half-sine displacement time history is used with the impulsive

characteristic time. It is noticed that the maximum wave height measured from

the experiment is greater than the maximum displacement of the bed. In the
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numerical model developed here, as discussed earlier, it is assumed that the

volume change due to the moving boundary be the same as the volume change

of the fluid within a computational cell. Thus, cavity between the moving

boundary and the fluid is not allowed to occur. However, for the maximum

wave height at the center of the moving bed to be greater than the maximum

bed displacement, there should be some void between the fluid and the moving

bed. It is not possible to determine if there were cavities during the

experiments based on the results presented in the paper. In most of the other

cases, the numerical results clearly demonstrated the accuracy and capability of

the numerical model for the vertically moving channel bottom and wave

generation.

Submerged Sliding Block

Sliding of a triangular-shape rigid body on a slope and the resulting

wave generation have been examined experimentally and numerically by

Heinrich (1992). On a 1:1 slope, the triangular shape block was placed at 0.05

m below the free surface initially. The triangle block was released and slid

down the slope due to gravitational force. At the end of the slope a small block

is placed to stop the sliding body. The configuration of the experiment is

shown in Figure 8.
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For the numerical modeling of sliding block and wave generation

experiments, the computational domain of size 12 m in the x-direction by 2 m

in the y-direction is discretized. Variable grid size is used for horizontal axis

with a minimum grid size of 0.01 m and a fixed grid size of 0.01 m is used for

vertical axis. To satisfy all the stability conditions of the incorporated method,

fixed time step At of 5x 1 0 seconds is used. Numerical results in generation

(i.e., near sliding block) and propagation regions are compared with

experimental data are shown in Figures 8 and 9. The measured displacement

time history from Heinrich's experiment is used as prescribed motion of the

triangular block. Since the grid size is not small enough to resolve boundary

layer as discussed in the previous study by Lin (1998), the free-slip boundary

condition is applied on all the solid boundaries including sliding body, slopes,

and channel bottom.

For dynamic equilibrium of sliding block in fluid, wave force, gravity

and frictional force between the sliding block and the slope are considered as

external forces. In deriving the governing equation for the sliding block motion,

each force is decomposed into x and y component according to the local

coordinate system as shown in Figure 9.

The gravitational force Fg and its local x and y components Fgx, Fgy are

shown In Figure 9(a). The hydrodynamic forces acting normal to the horizontal

and vertical faces of the sliding block are obtained by integration of normal
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pressure on the faces and denoted as shown in Figure 9(b). Then the

resultant force is decomposed into F, F, which are the tangential and normal

forces, respectively, acting on the slope. The total normal force on the slope,

i.e. F+F, is used to compute the frictional force between the sliding block

and the slope. Mathematical expressions for the conversion of the forces

between the sliding block and the slope are given as

Jig =mg, Fgx =Fg5fl45° F, =Fgcos45° (17a)

FIF,2+F,2 (17b)

=F+Fcos9 (17c)

Ø=tan'-,O=45°Ø (17d)

P = ml = gravity force + wave force frictional force

=F-1c (F+P)

Fg Sm 450 _jFx,2 +F2 sinO

c1 (cos450+JFx,2+F.2 cosO) (17e)

= mg sin 45° jFx,2 sinO

c1 (mgcos4s0+ijF,2 +F.2 cosO)

ml = mg sin 45° Fr2 sin9

c1 (mgcos450+F.2 +F.2 cosO)
(170
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The resulting governing equation for sliding block motion is given by

equation (170 where cj denote the friction coefficient and 0 the slope angle.

The friction coefficient is estimated to be 0.9. This value is obtained by testing

several different friction coefficients and applying curve fitting technique. As a

numerical method to solve the second order ordinary differential equation, the

Newmark method discussed previously is employed in this case.

The displacement time history of the sliding block computed by the

fluid-structure interaction model is also compared with experimental data. In

the study by Heinrich, the displacement of the moving body could not be

computed because of some unidentified numerical instabilities in his numerical

model which was developed based on the 2D SOLA VOF model. However,

the current model presented in this study shows successfully its capability and

accuracy of predicting the displacement of the block as shown in Figure 10.

Two distinct parts of the numerical model are validated though the

same set of experimental data. Implementation of the moving boundary

algorithm using modified continuity equation is validated by comparing the

simulation results with the prescribed motions. The measured time history of

the sliding block from the experiment is used as input prescribed motion for

the model. Snap shots of wave profiles at 0.5, 1.0, 1.5, and 2.0 seconds from

numerical model with the prescribed motions and experimental data are

compared and shown in the first column of Figure 11. The iterative procedure



for dynamic equilibrium and its associated solution algorithm are also

validated. In the fluid-structure interaction simulation, the displacements is not

predetermined or given but computed by the numerical model. The second

colunm of Figure 11 shows the comparisons between experimental data and

fluid-structure interaction model results. In the legend, simulation represents

the prescribed motion results and interaction represents fluid-structure

interaction model results.

In both simulations with prescribed motion and with fluid-structure

interaction, a negative wave is generated above the horizontal face of sliding

block at 0.5 second. Free surface elevation above the sliding block is decreased

until the moving block is stopped by a stopper placed at the bottom of the slope.

Afier the trough is generated, the free surface bounced back along the slope.

Runup on the slope and breaking of reflected wave are observed. Part of the

fluid was reflected from the slope and the top part of the reflected wave with

very steep profile plunged. In the region of breaking waves, it may be difficult

to measure the exact free surface elevation with a wave gauge due to the

possibility of multiple-valued free surface elevations. Thus, only simulation

results are shown in the free surface at 1.5 sec near x = 2 m where multiple

values of the free-surface elevations were observed. As shown in Figures 11

and 12, it is noticed that the predicted wave profiles in the generation region

and the propagation region show good agreement with experimental data.
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Aerial Landslide

To verify and validate the algorithm for surface piercing motion of

rigid boundary, laboratory test results of aerial landslides where the

experimental setup is exactly same as the submerged sliding block except the

initial location of block are used. The computational domain, grids and time

step used for aerial slide is exactly same as those for the submerged sliding.

The same triangular block is located initially just above free surface and then

released. The wave profiles in generation region measured at 0.6, 1.0 and 1.5 s

are compared with numerical results and shown in Figure 14. From the wave

profile at t = 0.6 sec, it is observe that the wave starts to break and becomes

highly nonlinear. The discrepancy of wave profiles at t = 1.5 sec may be

attributed to turbulence.

The numerical results are in good agreement with experimental data as

shown in Figure 14. The good agreements in comparisons with experimental

data indicate that the interactions between moving structure/free surface and

structure/fluid are modeled accurately in general. As shown in the wave profile

at 0.6 sec, experimental data is not available in the region where multiple

values of free surface elevation exist. The continuous free surface profile from

the contact point of the free surface on moving body surface to the domain

boundary would be very useful to examine and validate the structure/free

surface interactions in more detail.



Concluding Remarks

A numerical model for the fluid-structure interaction phenomenon is

developed in this study. The dynamics of fully submerged and aero structures

are modeled as moving rigid boundaries with the surrounding fluid. The

volume change due to the moving boundary in a computational cell is

implemented by modifying the discrete continuity equation. An iterative

procedure is developed to model the coupled structural dynamics and

hydrodynamics. Numerical model is validated through three laboratory tests as

discussed earlier.

In the moving channel bottom simulations, the free-surface profiles in

the generation region are in excellent agreement with experimental data. Also,

as shown previously, the capability and accuracy of numerical model are

validated with different displacement time histories. Stability and robustness of

numerical code is validated through the displacement computation in sliding

block comparisons.

To assess the validity of the assumption that the shear stress on the

moving boundaries is negligible in the problems examined in this study,

tangential and normal components of wave force are computed using friction

velocities and pressures. As shown in Figure 14, it is noted that the tangential
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forces are less than 2.1 % and 0.07 % of the normal forces on the top and front

faces of the sliding body, thus justifying the assumption of negligible shear

stress for the particular cases presented in this study.

Additional challenging fluid structure interaction problems will be

examined as an application of the numerical model. It is expected that the

validated numerical model can be utilized to understand and analyze the

complex physical phenomena associated with fluid-structure interaction in near

future.
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Fig. 5 Time histories of exponential and half-sine bed movements
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Fig. 8 Experimental setup for sliding block generated waves
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Fig. 12 Free surface comparisons between simulation and experimental data at
x =4, 8, and 12 m in propagation region.
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Nomenclature

ac(i,j) fractional volume open to flow in cell (i, j)

b width of moving channel bottom

c damping coefficient

friction coefficient

Cj, C2, C3,, Cd,, o o, C1, C2T empirical coefficients

fe external excitation

Fg gravitational force

Fgx, F,,local x and y components of Fg

g, i-th component of gravitational acceleration, rn/s2

h water depth

H Heaviside step function

k(x) restoring force

k turbulence kinetic energy

m structure mass

unit normal vector

characteristic time

u, i-th component of velocity vector

ü fluid velocity vector

V0b5 moving boundary velocity vector



V volume of a computational cell

<> ensemble average

Ax, Ay grid size in x and y direction

e turbulence kinetic energy dissipation rate

dynamic viscosity, kg m1 s

eddy viscosity

0 slope angle

p density of fluid, kg/rn3

strain rate tensor

molecular viscous stress tensor

maximum displacement of moving channel bottom
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CHAPTER 4

Analysis of Fluid-Structure Interaction Using RANS Equations, Part II:
Application to an Experimental Moored Structure

Yuk, D., Yim, S.C. and Liu, P. L.-F.
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Abstract

Dynamic responses of a moored structure subjected to periodic wave

excitations are predicted by a 2-dimensional numerical fluid-structure

interaction model. For the numerical modeling of fluid, Reynolds Averaged

Navier-Stokes equations (RANSE) with the k-s turbulence closure model is

employed. Free surface of waves is tracked by the Volume of Fluid (VOF)

method and a piecewise constant scheme is used to reconstruct the free surface.

An experimental moored structure approximated as a rigid body in the

numerical modeling and the nonlinear equation of motion with polynomial

nonlinear restoring force is solved to determine the structural dynamic

responses. For the analysis of moored structure dynamics, the Lagrangian

formulation is used. Iterative procedures are developed to model fully coupled

interactions of the moving rigid body with the surrounding fluid. Moored

structures approximated by single degree-of-freedom (SDOF) and multi

degree-of-freedom (MDOF) systems are modeled and analyzed. Reasonably

good agreements are observed for both the SDOF and the MDOF systems

between the structural dynamic response predictions by the numerical model

and the laboratory test results. Characteristic behaviors of nonlinear dynamic

system such as sub-harmonic, super-harmonic responses are also identified by

the numerical model. The time histories of the free surface elevation near



moored structure are also predicted by the current numerical model and

compared with experimental data. In general, comparisons of wave profiles

near the structure region show good agreements for most of waves tested in the

laboratory with various characteristics. The capability and accuracy of the

numerical model developed in this study is validated through comparisons with

experimental data.

Introduction

The dynamic interaction between fluid and structure has been the

subject of great interest to many scientists and engineers for several decays.

Many theories and methods have been developed analytically and numerically

for the analysis of fluid and structural dynamics and applied to fields of marine

structures, naval architectures, tsunami hazard mitigation, etc. Among

numerous applications of fluid-structure interaction models, interactions

between a moored structure and ocean waves are examined in this study.

To predict wave forces on submerged structures, several theories such

as small body, large body and Froude-Krylov have been developed. Although

some general criteria about the applicable conditions for each theory have been

proposed previously, it is often not clear which theory can predict the wave

forces on a structure better than other for the specific conditions at hand. A
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numerical model which can be used to predict the wave force accurately under

most conditions could provid better understanding of the physics of moored

structural dynamics under hydrodynamic excitations. In this study,

comparisons with experimental data are made as a mean of assessing the

accuracy of the present numerical models. In addition to predicting of wave

force, the moored structure under periodic and random waves also features

nonlinear behaviors such as amplitude jump phenomena, coexisting attractors

and bifurcation, which also make the response behavior and hence the analysis

even more complex.

In this study, the numerical model is developed to predict the dynamic

responses of moored structure subjected to the periodic wave force excitations.

General application procedures of the fully coupled fluid-structure interaction

model for the moored structure analysis will be discussed. Comparisons

between simulations and laboratory test results are made to validate the

capability and accuracy in prediction of the moored sphere responses under

hydrodynamic excitation forces. Limitations and capabilities of the numerical

model observed in the modeling of experimental moored structure will also be

discussed.

In order to apply the fluid-structure interaction model to analyze an

experiment, a numerical model need to consider the experimental setup, the

dimensions, material properties and input parameters used in the laboratory



experiments. Then the equation of motion (EOM) for structures need to be

derived based on a Lagrangian formulation. Derivation of the EOM starts with

the analysis of internal and external forces associated with the structural

system and hydrodynamic environment. All the coefficients that appear in the

EOM should be determined based on the experimental configuration, material

properties and appropriate system identification techniques.

Once the EOM for moored structural system is formulated, the

numerical method to solve the EOM should be determined. Depending on the

structural system and types of EOM, different numerical techniques might be

required.

Appropriate boundary conditions for rigid moving boundaries and

computational domain boundaries should be determined. In addition, the

appropriate grid size in horizontal and vertical directions also need to be

considered based on the given wave conditions and the region of interest. In

general, finer grids are needed near moving boundaries to ensure accurate

modeling of interactions between structural system and surrounding fluid.

Since the boundary conditions and grid size are among the most important

factors which can affect the stability and accuracy of the numerical modeling,

careful consideration is required in applying boundary conditions and

determining grid size.
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The analysis procedure adopted in this study may be summarized in the

following steps:

1. Development of numerical model based on experiment setup

2. Consideration of forces associated with structure and fluid

3. Derivation of EOM for structure system

4. Identification of coefficients in EOM

5. Determination of boundary conditions and grid size

Description of Laboratory Tests

A series of laboratory tests has been conducted to examine the

nonlinear behavior of moored structure under wave excitation at Wave

Research Laboratory at Oregon State University. The profile view of the 2-

dimensional large wave flume and the location of the moored structure and the

wave generator are shown in Figure 1. The test results have been investigated

and analyzed using a small body theory, independent flow field theory and

fully nonlinear potential flow model by Lin et a! (2002, 2004).

Experiments consist of a sphere with 0.45 7 m diameter made of PVC

and strings attached to the sphere. Hinged wave maker placed at the left end is

used to generate periodic waves in the 2 dimensional flume which is 104 m

long, 3.7 m wide and 4.6 m deep with an artificial beach placed at the other



end of flume to absorb the wave energy. The sphere is filled with water and is

neutrally buoyant when fully submerged. In a previous study (Gottlieb et a!,

1997), it is shown that the restoring force from the mooring lines attached to

the sphere is nonlinear and can be approximated by a third order polynomial.

For the single degree of freedom (SDOF) model, a steel rod is placed through

the center of the sphere to restrict the motion to surge direction only. To

minimize the friction between the sphere and the rod, steel bearings were

inserted. In the multi degree of freedom (MDOF) tests, the steel rod is removed

so that the sphere can move or rotate in surge, heave and roll directions.

However, in modeling the moored sphere as MDOF system, only surge and

heave motions are considered because the experimental data show that the roll

motion of sphere is negligible.

Development of Numerical Model

Development of Numerical Model based on Experimental Configuration

The sphere of known radius which was used in the laboratory test is

converted to an "equivalent" cylinder of undetermined diameter as in the

previous study by Lin et al (2002). A target circle radius is chosen as the most

likely to match based on the assumption that the hydrodynamic forces on a

circle of unit width will match the hydrodynamic forces on the average radius



of the sphere. Accordingly, Figure 2 shows the geometric basis for the choice

of circle diameter, and equation (1) shows how the target radius is selected.

R ir 2!olTR
(1)b=-1 cos

2° 4

Waves are generated by the wave board hinged at the bottom driven

hydraulically by a piston that is digital controlled. In the numerical model,

waves are generated at the left boundary of computational domain by

specifying the velocities and free surface elevations based on linear wave

theory, stokes 4th1, 5th order wave theory, and cnoidal wave theory. On the right

side of the computational domain, artificial damping zone is placed to prevent

wave reflection from the boundary.

Modeling of Forces Associated with Structure and Fluid

The following forces associated with the experimental moored structure

system are taken into consideration, the hydrodynamic forces from the fluid;

structural and hydrodynamic damping forces; restoring forces from the

mooring lines and inertia force from the structure mass. The hydrodynamic

forces are obtained by integrating the dynamic pressure from the fluid over the

surface of moving structure which can be expressed as

f1(t) = if ñ.p(t)dxdy (2)
A



where p(t) is the hydrodynamic pressure obtained by solving the RANS

equations, iI is the unit normal vector to the material body surface. The details

of external force computations will be discussed later in this paper.

The hydrodynamic force component, which is tangential to the material

body surface, is neglected due to the boundary conditions imposed on the

moving solid boundaries, i.e., "free-slip" boundary condition.

Equation of Motion for the Structural System

The experimental moored system is modeled as a mass, spring and

dashpot system with nonlinear restoring force due to the geometric

configuration of mooring lines. The schematic diagram of the numerical model

for the EOM derivation is shown in Figure 3. It is known from the previous

study by Yim et al (1991) that the restoring forces provided by the mooring

lines can be approximated by the third order polynomials shown in equation

(3a). The EOM for the MDOF system has also been extensively examined and

expressed by Yim et a! (2000) as in equation (3b).

SDOF: m11 + ci + kx + k2x2 + k3x3 = (3a)

m1i +ci +k11x1 +k12x1 +k13x3 +k14xjx =f,1
MDOF: (3b)

m212 + c212 + k21x2 + k22x + k23x + k24x12x2 = ft2



where xj, x2 are displacements of material body in surge and heave direction,

respectively, m is the mass, c is the damping coefficient, k1, k2, k3 are the

restoring force coefficients and fexti, ft2 are the external forces on rigid

structure from hydrodynamic pressures in the surge and heave directions. In

equation (3), the dot and double dot on the displacements represent the first

and second derivatives of x with respect to time and the time variable, i.e., t, is

suppressed for simplicity. The last terms on the left hand side of equation (3b)

show the coupling effect of surge and heave motions on the structural dynamic

responses.

The structural damping force(s) is (are) assumed to be linear,

proportional to the velocity of material body, i.e., cx1 or c11, c25c2.

Identification of Coefficients in the EOM

In the EOM for the SDOF and MDOF systems as given in equation (3),

various coefficients are determined directly from the material properties andlor

by applying system identification techniques. For the mass of the moored

structure in the numerical model, the measured weight of the structure is

converted based on the "equivalent" cylinder conversion described earlier in

this paper. For the coefficients of the restoring forces, the restoring force,

f5(Axj), is defined based on the geometry of the system as



I si

JKJAx1 (4)
si2+&12

where F, si, Ax1 and K denote initial spring tension, initial spring length,

structure displacement in the surge direction and the linear spring constant,

respectively. Figure 4 shows the variations of restoring forces as a function of

the structure displacement. The coefficients of restoring forces are determined

such that the approximated restoring force with a third order polynomial can

best approximate the restoring forces i.e., f5(Axj) in equation (4). The restoring

force coefficients for MDOF system are determined similarly.

For the damping coefficients, it is found in the previous study by Yim

et al (1999) that 3 % of the critical damping for SDOF system and 1 % for

MDOF system can be used to approximate the damping force of the

experimental moored structure based on the small body approximation. The

damping coefficients are calculated as shown in equation (5).

C=Ccr=(2m(0) (5)

where m is the mass of the moored structure and w is the natural frequency

of the structural system in radian. A set of coefficients used in the numerical

simulations is adopted from the previous study by Narayanan and Yim (2004).



Determination of Boundary Conditions and Grid Size

Appropriate boundary conditions need to be specified in the modeling

of experimental moored structure. In the current numerical model, it is possible

to impose the no-slip boundary condition or the free-slip boundary condition

on the solid boundary. However, since the grid size is not sufficiently fine to

resolve the boundary layer on the material body surface, the free-slip boundary

condition is used as suggested by Lin (1998). At the left boundary of the

computational domain, the velocities and free surface elevation are specified to

generate the trains of waves based on the various linear and nonlinear wave

theories such as Stoke's 4thi, 5th order waves and cnoidal waves. At the other

boundary of the computational domain, the so-called "open" (or radiation)

boundary condition is imposed so that the waves can propagate through the

domain boundary without reflections. To prevent possible reflection from the

right domain boundary, an artificial sponge layer is also used to damp out the

waves.

For mesh generation, the grid size in horizontal and vertical directions,

i.e., & and ', need to be determined. Ideally, the same order of magnitude in

grid sizes, i.e., & cy, is recommended to avoid any possible numerical errors.

However, in the case of moored structure experiments, relatively large size of

Sx compared to bji are used to resolve the waves with long wave lengths. Using



non-uniform grid sizes, fine grids are generated near moving rigid body region

and less fine grids are used in the other region.

Iterative Procedure for Dynamic Equilibrium

To advance the predicted response motion of the submerged rigid body

under hydrodynamic excitations, external forces acting on the rigid body at

(n+ 1 )-th time level are required. However, the displacement of the moored

structure between n-th and (n+1)-th time step is unknown. Since the

hydrodynamic excitation forces at (n+ 1 )-th time step depends partially on the

structural displacement, the forces acting on the structure are also unknown at

(n+ 1 )-th time step. Thus an iterative procedure is introduced to estimate the

displacement and forces at (n+l)-th time step. The iterative procedure begins

with the estimated force, J" which is obtained by integrating the pressure

along the structure boundary at t'1. The subscript and superscript of P denote

the number of iterations and the time level, respectively. Then the equation of

motion for the structure with J' is solved to determine the displacement of

moving boundary, '. The pressure is then integrated along the boundary

again to compute the total force on the structure after boundary moved to ''

Then the resulting force obtained with updated boundary location at ' is set



to be and used as an updated estimate of the external force at time (1 By

repeating this procedure until the estimated force at (1 converges to F and

satisfies a preset convergence criteria, the final external force F' and

boundary location x1 at are resolved. A flow chart of the iterative

procedure is shown in Figure 5.

Integration of the second order nonlinear ordinary differential equations

(ODE) is performed using the Euler method. The accuracy of Euler method is

known to be O(i\t). Higher order numerical methods for integration of ODE,

(e.g., Runge-Kutta 4th order method) had been considered. However, the higher

order method requires the exact excitation force at the next time step. When

excitation force can be calculated or determined exactly at any time step,

higher order methods can be employed in the numerical model to improve the

accuracy in predicting the structural responses. Because the excitation force at

the next time step is not known and estimated at the current time step, the

effect of implementing higher order method such as Runge-Kutta 4' order

method to improve the accuracy of structural response prediction is expected to

be negligible.



Numerical Results and Discussions

The numerical model developed in this study is applied to predict and

analyze 12 laboratory tests with various wave periods and wave heights. The

wave periods and heights are varied from 1.33 sec to 12 sec and from 0.1 m to

0.8 m, respectively as shown in table 1 and 2. Wave numbers and wave lengths

are computed using the dispersion equation and the series of laboratory tests

are categorized into deep, intermediate and shallow water conditions based on

the criteria proposed by Chakrabarti (1987). Among several wave gauge data,

the time series of free surface elevation measured by the wave gauge at the

location of 0.46 m ahead of the sphere are examined. The displacements of

rigid body in surge and heave direction are recorded based on the variation of

the string attached to the sphere. More detailed and complete descriptions

regarding the physical configuration and analysis of the laboratory tests can be

found in the report by Yim et a! (1993).

The computational domain is discretized with non-uniform structured

grids and numerical wave gauges are placed at exactly same locations as in the

laboratory tests to record free surface elevation and to compare the numerical

results with the experimental data. Relatively smaller grid sizes are used near

the moving rigid body region for better resolution of solid structure boundary.
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Table 1 Wave parameters used in experiments of SDOF system

Test H (m) T (sec) L (m) hlL Remarks

Dl 0.20 1.3 2.64 1.04 Deep water

D2 0.76 2.0 6.19 0.44 Intennediate water

D3 0.61 6.5 32.23 0.08 Intermediate water

D9 0.55 2.0 6.19 0.44 Intermediate water

D14 0.10 3.7 16.60 0.17 Intermediate water

Table 2 Wave parameters used in experiments of MDOF system

Test H (m) T (sec) L (m) hlL Remarks
E2 0.34 1.43 3.19 0.86 Deep water
E3 0.22 1.25 2.44 1.13 Deep water
E4 0.41 10.0 50.89 0.05 Intermediate water
ES 0.37 6.67 33.15 0.08 Intermediate water
E6 0.49 2.22 7.53 0.36 Intermediate water
E7 0.30 12.0 61.42 0.04 Shallow water

E13 0.34 2.22 7.53 0.36 Intermediate water

In the numerical tests, the wave number and corresponding wave length

are determined based on the dispersion equation for the given conditions, i.e.,

wave height, wave period and water depth. Depending on the wave length of

each test, the horizontal length of computation domains and grid sizes are

varied to make computation more efficient and stable. The length of the

damping zone is also increased in the tests with longer wave length.

The damping coefficient and restoring force coefficients used in the

equation of motion for structural dynamics are adopted from the previous study

of system identification method by Narayanan (1999) and adjusted slightly for
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the best fit in the current model. Once those coefficients are fine tuned, the set

of coefficients for structural dynamics are held constant throughout each set of

experimental data to check the robustness and consistency of current numerical

model. The coefficients of EOM used in modeling of the experimental moored

structure are shown in Table 3.

Table 3 Coefficients of EOM for SDOF and MDOF system

[m] [ci [k]

SDOF [105] [0.03] [412.24 558.25 1832.18]

[1051 rO.031 [412.24 558.25 1832.18 4580.45

[105] [o.oij [412.24 558.25 1832.18 5038.5

The effect of steel rod which is installed in the laboratory tests to

restrict the moored structure motion to surge direction only for SDOF system

is assumed to be negligible and is ignored in the numerical modeling. It is

assumed that friction between steel rod and sphere is negligible due to bearings.

In wave force computation, only the normal force to rigid body surface is

considered and the tangential component of wave force is neglected in the

current model, i.e., free-slip condition is applied on the moving rigid body

boundaries. Normal component of wave forces along the rigid body surface is

integrated to compute the total wave force acting on the rigid body.



Numerical results are generally in good agreements with experimental

data for both SDOF and MDOF systems as shown in Figures 6-17. Nonlinear

response characteristics such as hannonic response, sub-harmonic response

and super-harmonic response are successfully identified by the current fluid-

structure interaction model. However, some disagreements are observed in

those cases with long wave periods, i.e., Test E4, E5, E7. In numerical tests

with wave periods of 6.67 sec, 10 sec and 12 see, it is noticed that numerical

model tends to overestimate the amplitude of structure response in heave

motion and the high frequency components of structure responses are more

prominent in the numerical results than the experimental data. Those

disagreements between the numerical results and the experimental data may be

caused by the strong nonlinearity in waves and the energy accumulation in the

flume.

Even though 2-dimensional numerical model is utilized to describe 3-

dimensional sphere motions, numerical results are generally in very good

agreements with the measured data as shown in the comparisons. Considering

the current computing resources available and computation intensity required

for 3-dimensional model in general, current 2-dimensional numerical model

might be chosen as an alternative way to analyze 3-dimensional fluid-structure

interaction problems more efficiently in terms of computational efforts.
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To assess the validity of assumption that tangential force is negligible,

normal and shear force components are computed by integrating stresses along

the surface of rigid body. It is observed in MDOF system test (Test E3) as

shown in Figure 18 that the ratios of tangential force to normal force are 0.23%

(=0.104N/45.ON) and 0.072% (0.0234N/32.5N) in horizontal and vertical

directions respectively. It is concluded that the effect of tangential stress on

rigid body motion is negligible.

Concluding Remarks

The fluid-structure interaction model with RANS equations is applied

to analyze the nonlinear dynamic response of moored structure under periodic

waves. The dynamic structural systems are modeled by SDOF and MDOF

system. The nonlinearities in waves and associated effects on structural

systems are examined.

Numerical simulations are conducted for 12 tests with various water

depths, wave heights and wave periods. The characteristic behaviors of the

nonlinear dynamic structure (i.e., sub-harmonic and super-harmonic responses)

are observed in numerical simulations. The numerical results are compared

with experimental data and reasonably good agreements are observed in

general.



95

Acknowledgements

Partial support from the National Science Foundation Grants CMS-

9908392 and CMS-0217744, and the US Office of Naval Research Grants

N00014-92-1221 and N00014-04-10008 are gratefully acknowledged.

References

Chakrabarti, S.K. 1987. Hydrodynamics of Offshore Structures. Springer-
Verlag.

Chang, K. 1999. Experimental study of wave breaking and wave-structure
interaction. Ph.D. Thesis. Cornell University.

Lin, H. and Yim, S. C. S. 2004. Stochastic analysis of a single-degree-of-
freedom nonlinear experimental moored system using an independent-flow-
field model. J. Engineering Mechanics, 13012, 16 1-170

Lin, P. 1998. Numerical modeling of breaking waves. Ph.D. Thesis. Cornell
University.

Lin, P. and Liu, P.L.-F. 1998a A numerical study of breaking waves in the surf
zone. J. Fluid Mech., 359, 239-264.

Lin, P. and Liu, P.L.-F. 1998b Turbulence transport, vorticity dynamics, and
solute mixing under plunging breaking waves in surf zone. I Geophys. Res.,
103, 15677-15694.

Lin, P., and Liu, P.L.-F. 1999 Internal wave-maker for Navier-Stokes equation
models. .1 Waterway, Port, Coastal and Ocean Engr., ASCE, 125 (4), 207-2 15.

Lin, P., Chang, K.-A., and Liu, P.L.-F. 1999 Runup and rundown of solitary
waves on sloping beaches. J. Waterway, Port, Coastal and Ocean Engr.,
ASCE, 125 (5), 247-25 5.



Liu, P.L.F. and Lin, P. 1997. A numerical model for breaking waves: The
volume of fluid method. Report No. CACR-97-02. Center for Applied Coastal
Research.

Lynett, P.J. and Liu, P.L.-F. 2002 A numerical study of submerged landslide
generated waves and runup. Proc. Royal Soc., A. 458, 2885-29 10.

Mei, C.C. 1989. The applied dynamics of ocean surface waves. World
Scientific.

Narayanan, S. and Yim, S.C.S. 2004. Modeling and identification of a
nonlinear SDOF moored structure, Part 1Hydrodynamic models and
algorithms. J. of Offshore Mechanics & Arctic Engineering. 126 12, 175

Narayanan, S. and Yim, S.C.S. 2004. Modeling and identification of a
nonlinear SDOF moored structure, Part 2Comparisons and sensitivity study.
.1 of Offshore Mechanics & Arctic Engineering. 126 12, 175

Lin, H., Robinson, D., Yim, S.C.S., and Tanizawa, K. 2002. Prediction of
Surge Motions of a Submerged Body Using a Fully Nonlinear Wave-Structure-
Interaction Model. Proceedings of the Eleventh International Offshore and
Polar Engineering Conference, Kitakyushu, Japan, 263-270.

Yim, S.C.S., Myrum, M.A., Gottlieb, 0., Lin, H. and Shih, 1-Ming. 1993.
Summary and preliminary analysis of nonlinear oscillations in a submerged
mooring system experiment. Report No. OE-93-03. Office of Naval Research.



Location of Model

Wave

97

4__..+J L1 IPIlI

']' "iI I I 12.19m1
5.79m 9.14m

Fig. 1 Profile view of the experimental model in a 2-D wave flume

Fig. 2 Sphere of radius R with average disk of radius b



X2

xl

xt

Fig. 3 Schematic diagram of mass, spring and dash-pot system with external
force

40

30

20

10

0

-10

-20

fl
''5 -4 -3 -2 -1 0 1 2 3 4 5

xl

Fig. 4 Restoring force from mooring lines



I Integrate pressure F'1 I

I Compute displacement, I

I
Move boundary to x'7

Solve RANS equations
(two-step projection method)

Integrate pressure F

Update force
IF'741-F'7I tolLiiYy
Continue

Fig. 5 Flow chart of iteration procedure for dynamic equilibrium

S

0'

Dl 000F. ° Isrge sphere conbgsrstron

- sim
eep

\ /\ \\

-bib
- I I I I I I I I

520 521 522 523 524 525 525 577 570 c70 c

002

0.01

I
0.01 rr

I I I

520 527 522 523 521 575

lime (sec)
527 528 529 53]

Fig.6 Time series of free surface elevation and surge response of structure
(Test Dl)



100

02. 000F. 92° large sphere esriSguralion

170 175 101) 165 19) 195 201]

time (see)

Fig.7 Time series of free surface elevation and surge response of structure
(Test D2)

03, SDOF, 90° large sphere configuration

S

35 I I I I

150 155 150 156 170 175 1101 166 155 196

ISO 166 ISO 165 170 175 101) 166 19) 195 210)

time (see)

Fig.8 Time series of free surface elevation and surge response of structure
(Test D3)



101

D9, SDOF. 9J degree large sphere. Subhernionic response

A
!/\

A
A A

\

/

\j1
\j I\ '' ' 'I\A/ \I \

170 175 105 105 193 ISO 2(J)

3

.2

0

Fig.9 Time series of free surface elevation and surge response of structure
(Test D9)

014, 000F,93° large sphere conOguralion

S 9

150 155 150 165 170 175 193

05

time (set)

Fig. 10 Time series of free surface elevation and surge response of structure
(Test D14)



102

E2. MDOF, 92° large sphere configoralion

0.2 / (\ ,'\ (\ /Je
\J j

I I I I I

105 109 107 109 109 110 III 112 113 114 115

/\ \// \i
105 192 107 192 109 110 III 112 113 114 115

005 I I

0 i\ /\ /\ r\ /k /T"\

/ \./ \ ', \/
lOS 109 107 192 103 110 111 112 113 114 115

Fig. 11 Time series of free surface elevation, surge and heave responses of
moored structure (Test E2)

53, Periodic excitation on large sphere. 920 conhguralion

i

110 111 112 113 114 115 115 117 119 119 120

002

:
1 0 111 112 113 114 115 115 117 119 119 125

002
F

cOtl
.,,,..,.-.. /'\

I4 * k

110 111 112 113 114 115 116 117 118 119 120
time

Fig. 12 Time series of free surface elevation, surge and heave responses of
moored structure (Test E3)



103

Ed, Periodic excitation on large sphere, %O configuration

/ /
70 75 ES 85 9) 95 110

02

0.2

I

Fig. 13 Time series of free surface elevation, surge and heave responses of
moored structure (Test E4)

ES, MDOF, 90° large sphere cottguratron

I

I
'02

I I

Ssx_.cz7i

2 0 212 214 216 218 220 222 224 226 226 220

02 ""
----c-/:a. ....

0 / / 1 '\
210 212 214 216 216 220 222 224 226 226 220

:

210 212 214 216 218 220 222 224 226 226 23)
trifle

Fig. 14 Time series of free surface elevation, surge and heave responses of
moored structure (Test E5)



104

ES. MOOF. 60° large sphere configurafion

i :

04

04

02

Fig. 15 Time series of free surface elevation, surge and heave responses of
moored structure (Test E6)

57-25. MOOr. 60° large sphere configuration fi4=0 2Orn, ncenlem24

p

420 426 435 436 440 446 454] 465 4643

02

424] 426 420 425 4.40 4.46 460 455 460

420 425 435 435 4.40 4.45 460 455 464]

lime

Fig. 16 Time series of free surface elevation, surge and heave responses of
moored structure (Test E7)



105

E13. MDOF Irg p1,e 80° con OrhOfl

I______

\,/ \i' \.8 -c I ..°..c*.

....>, n./
-0.2

I I I I

6 8 10 12 14 16 18

UI

:"\ /°\
\.' \J

l8

Fig. 17 Time series of free surface elevation, surge and heave responses of
moored structure (Test El 3)

3

2.8

2.6

2.4

2.2

1.8

MOOF. E3t= 18.4 sec

1 \ \ .--c fi -0

t
\

\ \ \ "c N ---- , /

\ '.

: 7
./

I

orc in 'O7
;

¶

= 011J44

DO18flo3 f*nc in.y =- -3.5 -N - -
-

1.5 2 2.5 3

x (m)

Fig. 18 Snapshot of velocity field and turbulence intensity and normal/shear
force components on rigid body at t1 8.4 sec (Test E3)



106

Nomenclature

b radius of equivalent 2D circle

c damping coefficient

Ccr critical damping coefficient

F0 initial spring tension

fexi external excitation

restoring force from mooring lines

h water depth

H wave height

[kJ restoring force coefficient matrix

K linear spring constant

L wave length

m structure mass

R radius of sphere

si initial spring length

T wave period

x1 structure displacement in surge direction

structural damping ratio

natural frequency of structural system, radian
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CHAPTER 5

Numerical Modeling of Submerged and Aerial Drop
of Rigid Body and Wave Generation

Yuk, D., Yim, S.C., Liu, P.L.-F., Panizzo, A. and Risio, M.



Abstract

Interactions of freely falling rigid body with fluid flow is examined in

this paper. A two dimensional numerical model, based on Reynolds Averaged

Navier Stokes equations, has been utilized to calculate the free surface

deformation and the displacement of a rectangular shape rigid body in time

domain. The k-E closure model is employed to compute the turbulence

associated with wave breaking. Numerical simulations with several different

initial locations of rigid body have been performed and the influence of

moving rigid body on incompressible Newtonian fluid flow is examined. As a

solution method for complex fluid-structure interactions, an iterative procedure

in which the displacement of moving rigid body is determined by balancing the

hydrodynamic force and structural dynamic force is employed. Numerical

results are compared with experimental data, which has been performed in a

two-dimensional flume. Images of free surface profile and falling rigid body

recorded from the laboratory tests by high speed camera are compared with

numerical results. The velocity field, pressure distribution, and turbulence

intensities in fluid are also predicted and presented in this paper. The capability

and accuracy of present numerical model is verified and validated through the

comparisons of numerical prediction with experimental data.
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Introduction

Recently, significant progresses have been made in the field of

numerical analysis of multi-physics problems with the aids of advanced

computing technology. One of the inter-disciplinary problems with a wide

range of application area is the fluid-structure interaction. Numerical tools for

the analysis of fluid flow and structural mechanics have been developed

separately using different mathematical approaches. Conventionally, Eulerian

formulation is widely used to describe fluid flow because it is relatively easier

to implement the conservation law of fluid. On the other hand, Lagrangian

formulation has been a dominant approach in developments of numerical tools

for structural dynamics because it is more convenient to describe the material

surface displacement or the dynamic response of structural system. Recently

mixed Eulerian-Lagrangian formulation has been used widely in developing

numerical model for fluid-structure interaction.

In fluid-structure interaction problems, it is required to describe two

physical phenomena with different characteristics, especially the "fully"

coupled interactions between fluid flow and structure. By "fully" coupled

interactions, it is referred that structural dynamic responses affect the fluid and

vice versa.
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In the previous study by Yuk et al (2004), the numerical model for

fluid-structure interaction has been developed. In the model, the dynamics

responses of structure are detennined using Lagrangian approach and the fluid

dynamics are modeled using Eulerian formulation. Exchanges of information

between moving rigid body and fluid flow based on different formulations are

made possible by introducing an iterative procedure with the partial cell

technique. The iterative procedure is developed based on the dynamic

equilibrium. The displacement of dynamic structure is determined in such a

way that the equilibrium on the interface between fluid and rigid body can be

satisfied simultaneously at each time steps.

The numerical model developed previously is applied to predict the

aerial and submerged drop of rigid body and generationlpropagation of waves

due to the rigid body motion. To demonstrate the accuracy and capability,

comparisons of numerical results with experimental data will be presented.

Observations and interpretations of numerical results will be discussed.

Model Description

The mean flow field are solved using Reynolds Averaged Navier

Stokes (RANS) equations which is given as
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ax,
(1)

a/u.) a(u1) i a(p) 1 (T,7) a(u;u')

+/u )
at

'
ax1 () ax, (p) ax3

(2)
1 ,a'\i/,ar;'\

() K ax/ () \ )

where subscripts i, j denote the Cartesian component taking 1, 2 for two

dimensional flows and ( ) the ensemble average of different solutions of the

Navier-Stokes equations (NSE). In equations (1) and (2), u, denotes the i-th

component of the velocity vector, p the density of fluid, p the pressure, gi the i-

th component of the gravitational acceleration, and ' the molecular viscous

stress tensor. Under the Newtonian fluid assumption, ' can be expressed by

= 2uo
with p being the dynamic viscosity (whose unit is kg m1 s') and

'(au

8ui)

2
+

the strain rate tensor.

In the fifth tenn of the right hand side of equation (2), there is a

correlation between density fluctuations and the gradient of pressure

fluctuations. The correlation between density fluctuations and the gradient of

viscous stress fluctuations are also included in the sixth term of right hand side

of equation (2). However, since these correlations are not clearly known up to

today and the constant density within the fluid is assumed, the last two terms in
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equation (2) are neglected in this study. The only additional term when

compared to general NSE is the fourth term of the right hand side of equation

(2), i.e., The ensemble average of product of two different velocity

fluctuation components in that term is used for the definition of Reynolds

stress tensor. The Reynolds stress tensor is defined as

R (3)

In previous research work, many second-order turbulence closure

models have been developed for different applications. In this study, the so-

called k-s model where the Reynolds stress is approximated by nonlinear

algebraic stress model is employed as the turbulence closure model (Shih et

al., 1996).

p(u;u) = pk81 C'd

ax1 J

a(u1) ô(u1) ___1) a(u1) 2 8(u,) a(Uk)

rc{ ox1 Ox Ox, Ox, 3 Ox, OX,
J

pr- +c2 O(uj)O(uj)1O(u,)O(ui)

OXk OXk 3 Ox, k

+c310(uk) O(Uk)iO(U,) 0(u,)8
t\OX, Ox1 3Oxk 0;

(4)

where C1, C2 and C3 are empirical coefficients, j Kronecker delta,

k = --(uu) the turbulence kinetic energy and s = v((au;/axk
)2) the
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dissipation rate of turbulence kinetic energy with v = p/p the kinematic

viscosity. When compared with the classical closure model which is called

linear isotropic eddy viscosity model, equation (4) returns to classical model

with C1C2=C3=0 as shown below.

(u:u) = 2v(cr.) + k8.. (5)
3 ii

where v = Cd is the eddy viscosity and Cd is another empirical coefficient.

The weakness of the linear isotropic eddy viscosity model is that equation (5)

may not accurately represent the physics of anisotropic turbulence in complex

turbulent flows. However, the turbulence closure model given in equation (4)

can be applied to general anisotropic turbulent flows. The governing equation

for k and s (Rodi, 1980) are modeled as

' /

a [(V, ak1
+ v I I

a(u.)(u'u) _ ' (6)
at ax, ) ar]

as as __[1xL a- + +V I
at

" ' ôx
ox3 [ o ) j

1°(")
O(u)ô(u.)

C2g_+ C1g V
8x + ax J

where o, O, C1 and C2 are empirical coefficients. The coefficients in

equations (4), (6) and (7) have been determined by performing many simple

experiments and enforcing the physical realizability; the values for these
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coefficients suggested by Lin and Liu (1998) and used in this study are

C1O.0054, C2-O.0171, C30.0027, C11.44, C25=l.9, o=1.3 and o=1.O.

Applying appropriate boundary conditions, and approximating the

derivatives in Navier-Stokes equations using a finite-difference scheme with a

combination of backward and forward difference methods, numerical solution

of Navier-Stokes equations are obtained. Detailed descriptions of assumptions

for the turbulence closure model and the boundary conditions imposed on the

computational domain boundaries and internal rigid-body boundaries can be

found in a previous study by Lin (1998).

Experimental Setup

21 Experiments are done at LIAM laboratory, L'Aquila University,

Italy by Panizzo and Marcello with various configurations as shown in Table 1.

Among 21 tests, 3 representative cases will be presented in this paper and the

results of the rest can be found in the Appendix B of Yuk's Ph.D dissertation

(2004).

A box is placed in a two-dimensional flume of 12 m length, 0.45 m

depth and 0.3 m width. The box of 0.3 m width is placed in the flume and the

space between box and vertical wall of flume is less than 1 mm. The specific

weight of box is 1.33 tonlm3. The lengths of rectangular rigid body are varied
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from 0.05 m, 0.1 m and 0.15 m, while the width and height of 0.1 m are not

changed.

Table 1 Experiments configurations

Initial box
location

Box
length

Water
depth Test

+3cm

5 cm
6 cm L5H6P3

10cm L5H10P3

10cm

6cm LIOH6P3

10cm L10H10P3

18cm L1OH18P3

23 cm L10H23P3

15cm 6cm L15H6P3

-3cm

5 cm 6 cm L5H6M3

10cm

6cm L1OH6M3

10cm LIOHIOM3

18cm L1OH18M3

23 cm L10H23M3

15cm 6cm L15H6M3

Initial box
location

Box
length

Water
depth

Test

0 cm

5 cm 6 cm L5H6PMO

10cm L5H1OPMO

18cm L5H18PMO

10 cm 6 cm L1OH6PMO

10cm L1OH1OPMO

18cm LIOH18PMO

23 cm L1OH23PMO

15 cm 6 cm L15H6PMO

The box is initially located partially submerged 3 cm below the still water level,

on still water lever and 3 cm above still water level, respectively. Water depth

is also varied from 6 cm, 10 cm, 18 cm, and 23 cm. Five wave gauges are

installed along the flume to measure the free surface elevation and digital

video camera (Canon XM 1) with resolution of 25 frames/sec is also used to

record the wave profile in generation region. The profile view and plane view

of the two-dimensional flume and locations of wave gauges are shown in

Figure 1.
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Numerical Modeling

The freefalling rigid body and wave generationlpropagation is modeled

in two-dimensional vertical plane. The computational domain of 1 .4m x 0.4 m

is discretized with uniform grid size of 0.5 cm in horizontal direction and 0.25

cm in vertical direction. The rectangular shape rigid body is placed at the left

end of the domain and free-slip boundary conditions are applied on all the

boundaries except the right end of computational domain. The radiation

boundary condition is imposed on the right end of domain to ensure continuous

outflow through the boundary.

In the numerical modeling, it is assumed that there is no space between

moving rigid boundary and the left boundary of computational domain and the

motion of falling body is always in perfectly vertical direction without rotation.

Frictional forces acting on the surface of that box that is in contact with the

vertical wall of the flume is assumed to be proportional to the contact area of

wall. i.e. larger frictional forces are used for the box with a larger dimension.

In computing wave force on rigid body, shear stress which is applied in

tangential direction to moving boundary is assumed to negligible. Thus only

normal forces obtained by integrating pressures along the moving boundaries

are considered in this study. More detailed discussions will be presented in

concluding remarks.
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Although experiments are done in a two-dimensional flume, the box

and flume have width of 0.3 m. In numerical model, the width in z-direction is

assumed to be unit length which is 1 m in this case. To take this three-

dimensional width into account, the hydrodynamic force which is obtained by

integrating pressure along the moving rigid body is multiplied by 0.3 which is

the ratio of the width of flume to theoretical domain width, i.e., 0.3 m / 1.0 m.

In the first representative case which is referred to L1OH1OM3, the box

with dimension of 0.1 m x 0.3 m x 0.1 m (lengthxwidthxheight) is located

initially 3 cm below the still water level (SWL) and released into the 0.1 m

deep water. The time history of box displacement computed based on the

dynamic equilibrium by using iterative procedure is compared with

experimental data in Figure 3. Tn the snapshot of Figure 3, the rigid body

boundaries and the free surfaces in thick solid lines, which are obtained from

the numerical model, is scaled and overlapped on the experimental images for

direct comparisons. The Snapshot of rigid body and free surface at t=+0.32 sec

in Figure 3 shows that the predicted location of rigid body and free surface

profile are in good agreements with experimental data. Notice that the

displacement of moving body in numerical simulation does not reach the

bottom boundary. In numerical modeling, the rigid body movement is limited

and controlled not to drop below the computational cell height above the
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bottom boundary due to the instability and limitation of the present numerical

model. The instability and limitation will be discussed later in this paper.

While the rigid body is falling, the higher pressure is observed at the

bottom left corner of flume and flow separation occurs at the bottom right

corner of moving body as shown in the first plots of Figure 5 and 6. In the first

plot of Figure 7, the vortex generation in the front of moving body is shown.

After rigid body rests on the bottom, the vortex, which is rotating

counterclockwise, is detached from the front face of rigid body and propagates

in the positive x direction as shown in Figure 7. It is also observed that the

pressure near the vortex center is less than hydrostatic pressure. The maximum

wave height recorded at x = 0.4 m shows good agreement with experimental

data. However, a phase difference is observed. The phase lag is considered to

be caused by the different reference time used in the experiment measurement.

In the second case (L1OH1OP3), the box size and water depth are the

same as in the previous case with different initial location of the box, which is

3 cm above SWL. The movement of rigid body and a wave with nonlinear free

surfaces at t=+0.32 sec are predicted accurately and the cavitations near the

front face of the rigid body clearly shown in the snapshot of Figure 8. Good

agreements of rigid body displacement and free surface elevation time histories

recorded at x = 0.4m and 0.8m with experiment measurements are observed as

shown in Figures 8 and 9. As shown in Figures 10 to 12, the influence of
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moving rigid body on fluid is much stronger than in the test with submerged

initial location. The free surface in front face of the moving body is separated

due to the impact and turbulence with maximum intensity of 0.04 m/s is

observed along the steep free surface as shown in the first plot of Figure 12.

Higher pressures near bottom left corner of the flume is observed as in the

previous test. The maximum pressure and turbulence intensity obtained in this

case was higher than the initially submerged box drop test as anticipated. Good

agreements of rigid body displacement and free surface elevation time histories

recorded at x = 0.4m and 0.8m with experiment measurements are observed as

shown in Figures 8 and 9.

In the last case (L1OH18P3), the same size of box is initially located 3

cm above the SWL and is released to 0.18 m deep water. The snapshot in

Figure 13 shows the location of moving rigid boundaries and the nonlinear

wave generation due to the rigid body motions at t=+0.32 sec. The numerical

results are in good agreements with experimental data. Up to the point where

the moving rigid body is completely submerged, the velocity, pressure and

turbulence fields show similar behavior as in the second case. However, it is

noticed that the negative wave propagates toward the left end of flume and

reflected. As a result, the vortex near the front face of rigid body is not

detached and intense turbulence is generated in the region above the rigid body

by the reflected wave. Disagreements are noticed in comparisons of free
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surface elevation time series after t 1 .5 seconds as shown in Figure 14. It is

noticed that the random nature of the splashed water particles and three-

dimensional air bubbles observed in laboratory tests might cause those

disagreements.

Concluding Remarks

In general, numerical results are in good agreement with experimental

data as shown in displacement time history and free surface elevation time

series comparisons. The capability and accuracy of the numerical model is

verified and validated through the comparisons with various experimental data

including submerged and aerial drop of rigid body.

To validate the assumption that shear stress from fluid flow is

negligible, shear stress and nonnal stress are computed using pressure field,

turbulence intensity and velocity field of fluid in Test L1OH18P3 at t = 0.4

seconds. Tangential forces on top, front and bottom face of moving rigid body

are 0.21%, 0.71% and 0.25% of corresponding normal forces as shown in

Figure 18. Thus it is concluded that the shear stress is negligible in rigid body

drop tests examined in this study.

It is noticed that numerical instability occurs as the moving rigid

boundary approaches to the bottom boundary of computational domain. When
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the distance from moving boundary and bottom boundary is less than one

vertical grid size, the solution of Poisson Pressure equation did not converged

after predetermined iteration limit. This instability might be attributed to the

limited capability of general finite difference scheme in resolution issue and

partial cell treatment since it is impossible to define two different rigid

boundaries in one cell by the nature of finite difference scheme.
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Fig 5. Contour plot of pressure field computed by numerical model at t=0.2,
0.4, 0.6, and 0.8 seconds (Test L10H10M3)
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CHAPTER 6

Concluding Remarks

A numerical model for fully-coupled interactions of incompressible

fluid with a non-stationary rigid structure is developed in this thesis using

modified continuity equations. Dynamic equilibrium between the structure and

the fluid is satisfied at each time step through the iterative procedure developed

in the previous chapters. Comparisons of numerical results with various

experimental data are performed to verify and validate the accuracy,

applicability and capability of the numerical model in predicting the

hydrodynamic and structural dynamic behaviors. Good agreements are

observed in the comparisons and the current model is verified and validated.

The free surface of plunging waves generated by a sliding rigid body

on the slope is predicted accurately by the current model. It is often difficult to

measure the exact free surface elevation of breaking wave because of the

multiple values of free surface elevation. The numerical model can be used to
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estimate or predict the free surface elevation of plunging waves.

Utilizing the numerical model developed in this study, the functional

relationships between the maximum runup/rundown and the specific density,

the initial submergence level, the angle of the moving mass, and the slope

angle are identified. The maximum runup and rundown formulae derived based

on the numerical results provide useful information for tsunami mitigations.

The capability of the present model to predict accurately the dynamic

response of a nonlinear structural system as well as nonlinear waves is shown

in the comparisons of numerical results with data from the experimental

moored structure tests. Characteristic behaviors of the nonlinear structural

system are successfully identified.

Although a great deal of advances have been accomplished in

computing technologies, the numerical modeling of fluid-structure interaction

using RANS equations demands high computing power. The iterative

procedure presented in this study for dynamic equilibrium requires 3 to 5 times

more computation time on average when compared with the corresponding
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numerical modeling without the iterative procedure. Supercomputer and

parallel processing are recommended for future use of the present numerical

model.

Recommended Future Study

Depending on the structural properties such as Young's modulus, aspect

ratio or external excitation conditions, structural systems of interest might need

to be considered as flexible bodies. A numerical model for a flexible structure

interacting with fluid flow will provide a wider range of application, as well as

the basis for a better understanding of the physics associated with fluid-

structure interaction.

Two dimensional (vertical plane) models have a limitation in describing

motions in a horizontal plane for both the structure and the flow field. In

general, structural systems are three dimensional and often not symmetric with

respect to the vertical plane. Three dimensional models will be very useful
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tools to examine the influence of asymmetric structures on the flow field and

vice versa.
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A. Numerical method for the RANS equations and structural dynamics

Numerical method for RANS equations

ac(u.)

=0
axi

(1)

a1u. a(u.\ 1 a(p) 1 a(r;) a(u,u;)
(2)

at (p) a, (p) a

Two-step projection method

The momentum equation is divided into two equations by introducing the

intermediate velocity ii, as

I I

=u-----'-+g1+---- (3)
ax1

n+1
, Ui iap"'

(4)
At p'1 ax,

where the superscripts n and n + 1 represent two consecutive time steps, i.e.,

= t + zlt. Taking the divergence and applying the continuity condition to

the resulting equation yields

ap
) =

lou,
(5)

axp" a ) At ax1
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Numerical evaluation of the variables

The linear interpolation is used to evaluate the variables at locations where

those variables are not defined originally, e.g., the vertical velocity v at the

horizontal cell face. Note that the bracket for the Reynolds average of the

variables is dropped in the following equations for the convenience.

11 1

" 2 'T' ''-i (6)

u1Ay1 + u1Ay1
Ày1 +

(7)

i(v..=v 1+v." 2 "' (8)

vAx + v11Àx11

Ax1 +
(9)

Numerical evaluation of spatial derivatives

ui+i,j _u_
(10)

Ax1

ui+j u+1
(11)

ax)+ Ax11

U+LJ+1 U+!]
(12)

Ay

UI+!J _Ui+i,J_I
(13)
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vi
(14)

Ay

v1
(15)

Ay11

The advection terms in the x-momentum equation

0uJu+v--=u +v I I (16)i+,J tx "L 3y)1+,1

+ a sgn(u.t. )j±i j
+{1_as(u )(au

(u i+i,j *Ji+1,jj
+asgn(u )AX+1 Axe)

(17)
i+1 + i

[ôu

j+ a s(v1 )+

+ [1_a sgn(v )}L\y [J'J,
(18)

Ay. +Ay1 +asv+!JAyJ+l Ay

The pressure term

o (1 opn+ia(iop1 1 (O E3i'\
(19)

Ox ) Oy(p" Oy J&(Ox Oy)



/ n+1a1lap _1
a

_1 1

Axi p+,1

n+1
1 (ôp'

P1
n+1 n+1

pi1,j
Ax

i+

7 \fl+I
1 (api

n+1 n+1
P,1 P1-i,1

Ax.

a (i ap' 1 J 1 (apr' 1

ayp aj; Ay ay)111

1 p1p1 1 pPi
Ay p,1 P AYJ

(r- -\ i7.1.-.I.
+ I

'-'
+

i,J+ I,J-

öx Ax1 Ay1

pAx1 +
Pi+fj

Ax1 +

The stress term in the x-momentum equation

_:L + =
a ar,,
ax ay Ô),

(v )i+1,j ( )i,f +
(r )+_

Ay

I_\ u.i.u.i.Uu '+-,J l-,J
-xx i,j

Ax1

( '\ U.!. -U.1.
( \ vu I !+,Jry

(20)

(21)

(22)

(23)

(24)

(25)

(26)
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The VOF method

The kinematic boundary condition for the free surface can be expressed as the

total derivative of p(x,y,t). This implies that the total derivative of the surface

with respect to time would be zero on the surface if the surface varies with

time.

Op+u+v
Dt Ot Ox Oy

(27)

Defining p(x,y,t)F(x,y,t)pj and substituting this definition into the equation

above yields

OF OF OF
0

Ot Ox 0))

(28)

For a computational cell (i, j), the above equation is written in the following

finite difference form.

z\t (uF;
uIj.' )- _L (viF; v IF":'' =F1,

B /
(29)

Ax

Where F ,F ,F and F denote the F values on the right, left, top and

bottom face of the cell, respectively. Depending on the configuration of the

free surface, a different value is assigned to the F at the faces. The algorithm

proposed by Hirt and Nichols (1981) where the free surface is reconstructed
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either horizontal or vertically in the free surface cells based on the F values at

the time step t. Based on the spatial derivatives of F, the free surface is

reconstructed as following.

8F aF aF->-- and <0
a) ax ax

ÔF aF aF->-- and >0
ax ay ax

3F aF->-- and <0
ay ax ay

aF a? a?->-- and>0
ay ax ay

vertical free surface on the left side

-* vertical free surface on the right side

-+ horizontal free surface on the bottom side

horizontal free surface on the top side

The derivatives of F are evaluated by using the central difference scheme.

The derivative of F with respect to x is evaluated as

(aF' (aFII Ax.1+I1 Ax.

=
ax ax

ax)..
i,J I-- 7+-

lAx.,
2 2

1

(30)

Ax., , ( _-1j)
I+

Ax. +Ax.
,-- l+i

where is the average of the F values in the three vertical neighboring

cells, i.e.,



1+1y1+1 +FzXy +PAy4

+ Ay1 +
(31)
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Once the free surface configuration is reconstructed, the donor-acceptor

method is used to advect the VOF function. For the demonstration purpose, the

advection in the x direction is discussed here. When > 0, the (i,J) cell

becomes the donor cell and the (i+1,j) cell is the acceptor cell. If u1 <0,

the role of the donor and acceptor cells are switched.

When the free surface in the donor cell is horizontal, F is assigned to be the

F value in the donor cell, i.e.,

F; = = (32)

If the free surface in the donor cell is vertical, the advection of the VOF

function should be more strongly influenced by the F value in the acceptor cell.

Therefore, F is assigned to be the F value in the acceptor cell.

F; =F =; (33)

Under certain conditions, over-filling problems are observed. In other words,

the Fvalues become larger than 1.0 in a free surface cell. To prevent this over-
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filling problem, a corrector term is used in the acceptor method.

F &id
(F _F.n)}0lF = F +max[{(max(;;mk) ja / n+i dmR ia

(34)

where k is a factor introduced to prevent spurious advection of a small amount

of fluid and often set to be 0.1.

The k-e equation.

5k 5k 5 [(vi 5k1 5(u)
+(u ) I- I-(uu;) ' -e (35)
St SXJ ) Sxj 5x1

Sc i ses[Ix 5e+(u\ +V I-
St ' "Sx 5x1 [ o ) ]

(36)

15(ui)
5(u)(1)

C2e+ '
k

Vt
Sx Sx ) 5x1

The advection term

='(
3x) "

(5k[i + ysgn(u;1 )}i+ij
=u;';'

where

(37)
+ [i ysgn(u;' )IJAx

t\SXJi+J

i\x. +L\X. +ysgn(u'&.
&.l

i+ l-

(skyII = ,J (38)
Ax.1

2'
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ax Ax.1

(39)
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and y is the weighting factor between the central difference and the upwind

scheme. In the computation, ' of 1.0 is used which makes the advection terms

discretized by the upwind scheme. Such scheme ensures the stable solution for

the k equation under any conditions.

5k ( skY +1(akY
= = vii

(5k
[i + )]Ay1

j-J
+ [i

(40)

i,i-
Ji,j+

Ay +Ay.1 +ys(v'Ay Ay)
i+ i+i

where

(ak k.k7._1

Ay.

5k
'

kI.+1kI.

The diffusion term

a [( 5k1 a[(, "5k1 a v,
+vII+ +vII (43)

5xJ[k )Sxj]5x[ )Sx]
J---+vI--I

The first and second terms on the right hand side of the above equation is
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approximated as

(ak'\
'

(ak"
I--+vI I

1a[( kll k j+,j ak )1xJ
+vII =

1
ax[a )axjJ

i,j

Ax, (44)

1 V k k /
i+1,j i,j I V 1 k k 1

I_J1+V1 _+V I& [cr Ax
i+- k )-, Ax

I

2 'T )

f

v ) (ak"" (,II I+vl
I I I-s I

1a[( kII k i. iyY). ICT.
\ I \. /c J,+vI1 =

1
)JI

J i,j

1, '" k k /
1 I ( V

i,j+I V 1__I_L+vI _IL+vl
Ay Lk ),J+! Ay

I

2
I

/cfl

i,j i,j-I

Ay.1

(a/c

(45)

The evaluation of + v at the cell faces is done by using the linear
k )

interpolations as given by

'11 /

(v
/

AxjIYL+v) +&1+vI
V k )j+, \ k Jj,jIi-+vI = (46)

k /Sx +

The product term
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1

n

a/u.) I

u'u'\ ' +(uu)1 I

ji _[{( ji

j 3x1 J
]

v)+(vu)_+\vv 1 1 (47)(UIUPaU+UPIoU ,,av ,,,v
)i I

(vu)+(vv 1,,2l[(\(,?)
ax ay ax axj I

i,j J

The correlations of velocity fluctuations are determined by the nonlinear

algebraic Reynolds stress model with the given k, sand strain rates of the mean

flow. The evaluations of spatial derivatives of velocities are referred to

Equations (10-15) in the Appendix A.

Numerical method for structural dynamics

The Newmark integration method

Under the assumption of the linear acceleration, average acceleration from t to

t+Llt is expressed as

{1}avg = ({I(t)} + {I(t + (48)

Thus the velocity and the displacement vectors at t+zit can be expressed as

{(t + At)} = {±(t)} + = {(t)} + ({i(t)} + {i(t + At )}) (49)
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{x(t + At)} = {x(t)} + At{±}avg = {x(t)} + ({.(t)} + {.i(t + At )})

At!'. At
+ ({I(t)} + {i(t + At )})J (50)= {x(t)}+{x(t)}+{i(t)}

2

= {x(t)} + At{(t)}
(At)2

[{i(t)} + {i(t + At )}]
4

The general Newmark integration may be expressed as

{i(t + At)} = {±(t)}+ At[(1 ö){I(t)}+ S{I(t + At)}J (51)

{x(t + At)} = {x(t)}+ At{(t)}+ (At)2[! aJ{i(t)}+ a{i(t + At)}] (52)

where a and 6 are parameters that can be determined to obtain integration

accuracy and stability. Note that the equations above recover the average

acceleration method for a=1/4 and 6=1/2. For a=1/6 and 6=1/2, the method is

called the linear acceleration method.

The general form of linear equation of motion for multi-degree-of-freedom

system can be expressed by

[lt1]{i(t)} + [C]{±(t)} + [K]{x(t)} = {F(t)} (53)

where [lvi], [C], [K] and {F} denote mass matrix, structural damping matrix,

stiffness matrix and forcing vector, respectively.

Substituting and collecting appropriate terms yields
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(a0[M]+ a1[C]+[KD{x(t + At)}

{F(t + At)} + [Ma0 {x(t)} + a {i(t)} + a {I(t)}) (54)

+ [Ca1 {x(t)} + a4 {i(t)} + a5 {I(t)})

1 8 1 1 8where a0 = 2
a1 = , a2 = , a3 1, a4 = 1 and

t 2a aaAt

t (s
2\a

Therefore, the displacement at t+zlt can be determined from

[flx(t + = {} (55)

where

[k]= a0[M]+a1[C]+[K] (56)

{} = {F(t + At)} + [Ma {x(t)} + a2 {(t)} + a {1(t)})

+ [CIkai {x(t)} + a4 {x(t)} + a {x(t)})

Then the acceleration and velocity at t+zlt can be obtained from

{i(t + = a [{x(t + {x(t)}] a2 {±(t)} a3 {I(t)} (58)

+ At)} = {1(t)} + a6 {I(t)}+ a {I(t + (59)

It is known that the average acceleration method (i.e., a=1/4 and 6=1/2) is

unconditionally stable and the linear acceleration method (i.e., a=1/6 and

6=1/2) becomes unstable when zlt/T 0.55. T is the total time length of the

integration.
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B. Numerical modeling of the box-drop and experimental data

Snapshots of the freefalling rigid body and wave generation in the near

field region described in Chapter 5 are shown here. The graphic images of

numerical results are scaled such that the size and initial location of the rigid

body are exactly the same as those in the digital images from the experiments.

Transparency of the scaled plots is changed to 60% and the plots are

overlapped on the experiment images so that free surface and moving

boundary locations may be compared directly. The free surfaces and moving

rigid boundaries of numerical model are shown in thick solid lines. Time

increments of consecutive snapshots shown in figures are 0.08 second.

Numbers in the vertical and horizontal axes represent length in meters.
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Fig 14. Snapshots of rigid body drop and wave generation, Test L15H6PMO
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