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Because riparian canopy controls most energy inputs to stream 

ecosystems, it directly affects the structure of aquatic food webs and the 

ecological processes that govern interactions among trophic levels. This 

study addresses the interdependence among riparian canopy, benthic 

community structure, and the carrying capacity of high desert streams for 

salmonid fishes. In streams in the lower John Day River Basin in eastern 

Oregon, algal, invertebrate, and fish communities were compared in reaches 

with varying densities of riparian canopy. Water temperatures varied with 

the density and upstream extent of canopy. Densely canopied sites were 

cool, while sites with high irradiances had temperatures exceeding the upper 

lethal limit for salmonids. Periphyton and grazer biomasses were greater in 

well-lighted sites, but 90% of grazer biomass consisted of Dicosmoecus 

ailvioes, a large caddisfly inedible by juvenile trout. Warmer water 

increased metabolic demands for salmonids, while the overwhelming 

dominance of Dicosmoecus in open sites shifted energy flow away from 

trout and shrunk their food base. High water temperatures, however, 

provided suitable habitat for many warmwater fishes which would otherwise 

not enter tributaries of this size. At higher elevation study sites in Camp 
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Creek, light levels were higher and less variable than at the lower sites. 

Periphyton and invertebrate abundances were not correlated with irradiance. 

Rather, periphyton was maintained at low levels by grazers, particularly 

Dicosmoecus and snails. Manipulations of fish densities in enclosures 

showed that trout and dace had no negative impacts on numbers of 

invertebrate prey, and that grazers played a larger role in regulating lower 

trophic levels than did fish. Dicosmoecus acted as a keystone species in 

the benthic food web of Camp Creek by simultaneously influencing the 

trophic level both below and above its own. When irradiance was 

experimentally reduced under artificial canopies, periphyton standing crops 

were not different from those in open control pools after 4 wks. However, 

grazers were more abundant in open pools. The cropping of periphyton to 

uniform levels in both sunlight and shade indicated that mobile grazers 

targeted sites of varying productivities. Comparisons between benthic 

communities in Camp Creek and in a densely canopied reference stream 

suggested that benthic community structure shifted to accommodate 

changes in energy resources that occur when canopy density is altered. 
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INFLUENCES OF RIPARIAN CANOPY ON AQUATIC COMMUNITIES IN HIGH  
DESERT STREAMS OF EASTERN OREGON 

INTRODUCTION 

Riparian vegetation is critical to the health and function of streams. 

Because riparian canopy controls most energy and nutrient inputs to stream 

communities (Gregory et al. 1991), it directly affects the structure of 

aquatic food webs and the ecological processes that govern interactions 

among multiple trophic levels. The relative importance of top-down 

(consumers) or bottom-up (resources) forces on stream community 

dynamics has been debated by ecologists for decades. Recently, Hunter 

and Price (1992) argued that ecosystems are patterned upon the influences 

of resource heterogeneity that permeate throughout the food web. Plants, 

by their productivity, control the number of trophic levels possible and 

ultimately constrain the top-down forces that, in turn, regulate their 

standing crops (Fretwell 1987; Power 1992b). Depending on its density, 

riparian canopy admits varying amounts of photosynthetically active 

radiation (Hill 1996) and nutritive organic matter, and thereby shifts benthic 

communities between autotrophic and heterotrophic resource bases over 

space and time (Vannote et al. 1980). This variation in plant productivity 

imposed by canopy provides the "bottom-up template" for stream trophic 

dynamics. 

By reducing insolation, riparian canopy also modulates water 

temperature regimes and lowers maximum stream temperatures, especially 

in aridland systems (Plans and Nelson 1989; Beschta 1997). High water 

temperatures benefit some algal, invertebrate, and fish species (Lamberti 

and Resh 1983; Moyle and Cech 1988; De Nicola 1996) but are deleterious 
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to native salmonids (e.g., Bisson and Davis 1976; Barton et al. 1985; 

Reeves et al. 1987; Platts and Nelson 1989; Li et al. 1994). With changes 

in riparian canopy, fish assemblages experience not only alterations to their 

food base but also changes in their physical environment that constrain their 

ability to process available energy resources. 

In the following studies, I examined the effects of different densities 

of riparian canopy on trophic processes in small, aridland streams of the 

John Day River Basin of Oregon. In Chapter 1, seven study reaches were 

selected from lower basin streams that included riparian areas ranging from 

denuded by grazing to intact conifer forest. Water temperatures, and the 

structure of algal, macroinvertebrate, and fish communities, were compared 

among reaches. In Chapter 2, the study stream, Camp Creek, was located 

at a higher elevation than the first study area, and all Camp Creek sites 

were sparsely canopied and well-lighted. Fish enclosures, manipulations of 

herbivores, and abundances of organisms at each trophic level were used to 

determine the relative strengths of top-down or bottom-up forces in a 

stream with high solar inputs. The study described in Chapter 3, also on 

Camp Creek, examined the effects of artificial shade on the benthic 

communities observed in Chapter 2. Tents over the streambed were 

installed for 4 weeks, and changes in community structure caused by 

shading were measured. In addition, unshaded Camp Creek benthic 

communities were contrasted with benthic communities in a densely 

canopied reference stream in order to predict potential food web changes 

that may occur on Camp Creek if riparian canopy is restored. 
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Chapter 1 

Relationships Between Riparian Cover And The Community Structure Of 
High Desert Streams  

Cynthia K. Tait, Judith L. Li, Gary A. Lamberti,  
Todd N. Pearsons, and Hiram W. Li  

Published in Journal of the North American  
Benthological Society 13:45-56 (1994)  
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Abstract 

Many studies in cool, forested streams have shown that removal of 

riparian canopy leads to higher incident radiation, blooms in algal and 

macroinvertebrate populations, and concomitant increases in salmonid 

abundance. In warm, high-elevation desert streams, however, an open 

canopy may not increase salmonid density. Our seven study reaches on 3rd 

order tributaries of the John Day River in eastern Oregon included riparian 

areas ranging from denuded, heavily grazed streambanks to intact conifer 

forest. Average summer solar inputs to these sites varied from 165 to 2230 

megajoules/m2 and stream temperatures were influenced by the density and 

extent of canopy. Densities of steelhead trout (Oncorhynchus mykiss) and 

sculpin (Cottus spp.) decreased significantly with increased incident 

radiation and higher stream temperatures, although many warmwater 

cyprinids increased in abundance in unshaded sites. Periphyton standing 

crops (g ash-free dry mass/m2) closely tracked solar inputs and were, in 

turn, strongly positively correlated with biomasses of total invertebrates and 

of grazers. Collector, shredder, and predator biomasses, and numerical 

abundances of all invertebrate groups, did not change with canopy density. 

The abundances of chironomids and baetids were unrelated to increases in 

light or algal resources, in contrast to studies in Cascades and Coast Range 

streams where irruptions of these taxa occurred in canopy openings. In our 

streams the large-bodied caddisfly Dicosmoecus accounted for the increase 

in total invertebrate biomass observed in exposed sites. These insects 

composed 55-96% of the total biomass in open reaches but only 0-1.4% in 

the three most shaded sites. Increases in total invertebrate biomass with 

light levels or periphyton were not observed when Dicosmoecus were 
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removed from the analysis. Dicosmoecus are consumed infrequently by 

juvenile trout or other small fish species common in John Day tributaries; 

consequently, extensive canopy openings appear to produce few 

advantages to upper trophic levels in these streams. 
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Introduction 

Riparian vegetation plays a crucial role in the productivity and trophic 

relationships of stream ecosystems (Cummins et al. 1989). Overhanging 

vegetation (i.e., canopy) filters and absorbs incident radiation, affecting 

periphyton primary productivity by altering solar inputs and water 

temperatures (Lyford and Gregory 1975; Towns 1981; Bott 1983). Riparian 

vegetation also supplies nutritional resources through terrestrial litterfall. 

Fallen woody debris enhances the retention of organic matter and inorganic 

sediment by forming debris dams (Speaker et al. 1984; Bisson et al. 1987). 

These retained materials become sources of habitat and nutrients for the 

aquatic biota (Benke et al. 1985; Gregory et al. 1991; Prochazka et al. 

1991). Variation in the density and extent of the riparian canopy may affect 

benthic invertebrate production, as well as the abundance and distribution 

of stream fishes, by modifying nutrient and energy inputs and stream 

retention (Tschaplinski and Hartman 1983; Gregory et al. 1991; Bilby and 

Bisson 1992). 

For periphyton communities in streams in the Cascade Range 

(Oregon), Lyford and Gregory (1975) found that increased shade 

significantly reduced algal standing crops and also lowered their 

photosynthetic efficiency. Simultaneous studies at these sites indicated that 

total insect emergence was four times higher in unshaded than in shaded 

reaches, whereas emergence of shredders was greater under canopy where 

allochthonous inputs were higher (Grafius 1976). Trout (Oncorhynchus 

clarki) biomass was greater in unshaded stream sections (Aho 1976). 

Many additional studies in the Cascade and Coast Ranges of the 

Pacific Northwest have documented a stimulation of periphyton growth by 
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canopy removal and a concomitant increase in macroinvertebrate and 

salmonid abundance (Newbold et al. 1980; Murphy et al. 1981; Murphy and 

Hall 1981; Hawkins et al. 1982, 1983). Stream temperatures, however, 

have not been a significant factor in these studies, i.e., thermal regimes 

remained within the tolerance ranges of salmonids. Research efforts have 

focused largely on cool, high-elevation or maritime sites where canopy cover 

had little effect on water temperatures. In contrast, stream warming is 

important in reaches lacking canopy in streams flowing through arid or 

intermountain regions of the western United States (Platts and Nelson 

1989). 

In warmer climates, riparian vegetation can profoundly influence 

aquatic communities by altering stream temperature. The presence of 

canopy can lower water temperatures during summer and reduce heat loss 

and ice scour in winter (Platts and Nelson 1989). Barton et al. (1985) 

reported that temperature in southern Ontario streams was inversely related 

to the fraction of upstream banks covered by forest. The warmer, less 

forested streams, where mean weekly temperature maxima exceeded 22° C, 

had few or no trout. Platts and Nelson (1989) proposed that the increase in 

summer water temperatures in open stream reaches of the Great Basin was 

more likely to limit salmonid populations than the decline in 

macroinvertebrate prey associated with closed canopy. Li et al. (1994) 

found a decline in eastern Oregon trout at high temperatures and linked local 

thermal conditions to the extent of upstream riparian vegetation. 

Although cold stenothermal fishes such as salmonids can be 

deleteriously affected by the loss of canopy cover in arid systems, less is 

known about the responses of lower trophic levels to changes in canopy 

and temperature in these streams. In this paper we describe the 
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relationships between riparian cover and the community structure of 

streams in the arid John Day River Basin, Oregon. We examined 

relationships among periphyton standing crops, macroinvertebrate 

community structure, fish assemblages and canopy density. 

Study Area 

The research was conducted on streams in the John Day Basin, 

Oregon (Fig. 1.1). This semi-arid region encompasses about 120,720 km2 

in northeastern Oregon and is situated primarily on Columbia River basalt 

overlain with recent alluvium. The study area lies at about 600 m elevation 

and receives an average of 50 cm of precipitation annually, mostly falling 

from November to May. Summer low flows occur in August and 

September, and are usually exacerbated by diversion for agricultural 

irrigation. Intense livestock grazing has occurred throughout the basin. 

Typical streamside vegetation, where present, includes grasses (Phalaris 

spp.), sedges (Carex spp.), willows (Salix spp.), white alder (Alnus 

rhombifolia), and black cottonwood (Populus trichocarpa). Sagebrush 

(Artemisia tridentata) and western juniper (Juniperus occidentalis) dominate 

the uplands, and ponderosa pine (Pinus ponderosa) and Douglas-fir 

(Pseudotsuga menziesii) occur at higher elevations. 

Four similar 3rd-order streams were chosen for study: Rock Creek, 

Mountain Creek, Fields Creek, and Murderers Creek. These streams were 

similar physically but differed in density and extent of riparian cover (Table 

1.1). Four reaches on Rock Creek (RC1, RC2, RC3, and RC4) and one 

reach on each of the other three creeks (MTC, FDC, and MUR 
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Fig. 1.1 Location of study sites within the John Day Basin, OR. 



Table 1.1 Physical characteristics of the seven study reaches. Solar radiation is the cumulative summer average
(June, July, and August); discharge, mean daily temperatures, and maximum temperatures are for July 1988. 

Sites RC1 RC2 RC3 RC4 MTC MUR FDC 

Elevation (m) 658 690 730 761 770 927 910 

Discharge (m3/s) 0.28 0.28 0.21 0.21 0.03 0.33 0.03 

Reach length (m) 70 182 246 116 220 128 42 

Mean reach width (m) 6 7.5 6.5 6 4.5 7 3 

Canopy closed open partial closed open open closed 

Solar radiation 165 2230 985 308 1709 1994 300 
(Mj/m2) 

Temperature (°C) 

Mean daily 20.6 23.3 21.5 18.5 23.0 20.5 12.0 

Maximum 25.5 30.5 27.2 23;2 28.0 25.0 16.0 
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respectively) were delineated as research sites (Fig. 1.1). These sites were 

situated at the lower margin of shaded or unshaded patches of stream and 

thus were influenced by the full expression of cumulative effects of riparian 

cover upstream. The upper portion of Rock Creek, including RC4 and 

extending for 26.8 km upstream, was completely shaded with overhanging 

alder, pine, and cottonwood canopy and flowed mainly through a high-

walled canyon marginally accessible to livestock. Lower reaches of Rock 

Creek either flowed through open agricultural land or were less extensively 

canopied. RC3 was located at the lower end of a 1.3 km reach 

intermittently shaded by alders and with a narrow riparian area subject to 

grazing by cattle. RC2 was situated below a heavily grazed 3.4 km section 

of Rock Creek that flowed through open pasture and lacked riparian 

vegetation. The lowest Rock Creek reach, RC1, occupied the downstream 

end of a 2.25 km basalt canyon that was heavily shaded by alder. No 

grazing occurred here. The MTC reach, located immediately upstream from 

the confluence of Mountain Creek with Rock Creek, had no canopy due to 

livestock grazing and was denuded of streambank vegetation for 27.5 km 

upstream. In contrast, Fields Creek (FDC) was densely shaded with 

Douglas-fir from the study reach to its source, 12 km upstream. Murderers 

Creek (MUR) was unshaded over most of its length, but owing to good 

livestock management had intact bank vegetation of grasses, sedges, and 

shrubs, a condition that extended 5 km upstream. All reaches but Fields 

Creek were subject to decreases in summer discharge due to irrigation. 
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Methods 

On 12-18 July 1988, standard physical inventories of stream 

characteristics (Plans et al. 1983), including discharge, area, and volume of 

stream units, were conducted in each study reach. In addition, mean 

accumulated solar input (Megajoules/ m2) for June, July, and August was 

measured for each site with a Solar PathfinderTM (Platts et al. 1987). This 

device measures the proportion of solar radiation reaching the stream 

surface by recording the vegetation or topographic features that cast shade, 

thus quantifying relative density of riparian cover. Because it integrates the 

effects of azimuth, topographic altitude, height of vegetation, aspect, 

latitude, hour angle, and time of year, the Solar PathfinderTM gives a 

realistic estimate of solar energy inputs to the water surface of a given 

stream. Readings were taken by placing the instrument in the center of the 

stream on a tripod and tracing the outline of shading objects impinging on a 

transparent dome. Measurements were made at a number of sites per reach 

and averaged. Turbidity, which would influence the amount of light 

reaching the substrate, was not a factor; it varied little between reaches and 

streams were shallow. Weekly maximum-minimum temperatures were 

recorded with maximum-minimum thermometers placed in each study site 

(Table 1.1). 

Biological variables measured at all study sites included periphyton 

biomass, macroinvertebrate species composition, numbers, and biomass, 

and fish numbers. To assess periphyton standing crops, five flat, 

symmetrical rocks were removed from riffle habitats in mid-July. Periphyton 

was removed from each rock with a stiff brush and diluted to a 1-L slurry. 

Subsamples of the slurry were filtered onto glass fiber filters (Whatman 
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GF/C; .45 pm pore size) and frozen in the field. To determine total 

periphyton biomass as ash-free dry mass (AFDM), the filters were dried at 

55° C for 24 h, weighed, then combusted at 500° C for 16 h and 

reweighed. AFDM was the difference between the two weights. Surface 

area for the sampled rocks was estimated by molding aluminium foil around 

each rock, weighing the foil, and converting foil weight to surface area 

using a known foil weight/area ratio. Estimated surface areas were halved 

to represent the upper portion of the rocks where most periphyton growth 

occurs. Because AFDM is a combination of nonphotosynthetic components 

of the periphyton (bacteria, fungi, detritus) as well as living algae, it is the 

actual diet of most grazers and is a good measure of resources available to 

consumers (Lamberti and Moore 1984). 

Abundances of invertebrates were measured in mid-July by taking 

five 0.1 m2 Hess samples (250 pm mesh) from riffle habitats randomly 

selected in each study reach. Sampling sites were all approximately 0.3 m 

deep with rubble substrates. Invertebrates were preserved in 95% ethanol, 

identified to genus (except Chironomidae), and enumerated. Taxa were 

later assigned to functional feeding groups (Merritt and Cummins 1984). 

Scrapers and other invertebrates that commonly feed on living algal cells 

were together designated grazers. These included the mayflies Baetis and 

Ameletus which are known to forage on the algal components of periphyton 

(Dudley et al. 1986; Hill and Knight 1987; Richards and Minshall 1988). 

Collector-gatherers and filterers were combined and designated collectors. 

Shredders and predators were also recognized. Site-specific biomasses of 

individual taxa were determined by drying and weighing the preserved 

specimens in each sample. No corrections were made for weight loss in 
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preservative, but all specimens were preserved for the same length of time 
before processing. 

Fishes at each site were inventoried in mid-July by snorkelling 

(Pearsons et al. 1992; Li et al. 1994); divers counted fishes by species and 

made age/size class distinctions for some species. Three to 15 habitat units 

(e.g. riffles, pools) representative of the stream reach were snorkelled at 

each study site, and all counts were conducted between 1000 and 1600 h. 

Two divers entered the sampling site from the lower end and moved in 

parallel lanes upstream, recording fish counts on plexiglass slates. Although 

snorkelling may not be as accurate as electrofishing for estimating fish 

densities in small streams (Rodgers et al. 1992), it is nevertheless an 

effective census technique for relative fish counts in streams with high 

water clarity and moderate velocity (Griffith 1981). Precision of the 

snorkelling technique was determined by repeated counts in some reaches. 

Numbers of fish estimated in the second pass ranged between 91-99% of 

the original counts. Fish densities were calculated as numbers/m2 of stream 

reach. Biomass estimates were not possible due to lack of length/weight 

data for some species. 

Data were analyzed with Pearson's product-moment correlations with 

t-tests for significance. Possible confounding effects of autocorrelated 

variables were examined with partial correlation analysis. Log10(x + 1) 

transformations were used to control non-normality and heteroscedastisity 

in the data. 
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Results 

Physical characteristics 

The upstream extent and density of riparian canopy had a profound 

influence on water temperatures in the study reaches (Table 1.1). Sites 

with considerable upstream vegetative cover, such as RC4 and Fields Creek, 

maintained cooler summer temperatures than unshaded reaches (MTC, RC2) 

or canopied sites with limited extent of upstream riparian vegetation (RC1). 

Elevation also influenced temperature: Murderers Creek, at 927 m, had 

cooler mean July temperatures than lower elevation sites with more canopy 

(RC1, RC3, MTC). Because water temperatures were influenced by the 

longitudinal extent of upstream cover and elevation as well as overhead 

canopy density, temperature and site-specific solar input were positively but 

not significantly correlated (r =0.64; 2=0.13). 

Relationship between canopy and periphyton abundance 

Canopy density and the consequent amount of solar input reaching 

the streambed strongly influenced periphyton abundance. Thick growths of 

a filamentous green alga, Cladophora, encrusted with epiphytic diatoms 

(principally Cocconeis, Gomphonema, and Eoithemia) occurred in open 

areas, whereas low amounts of epilithic diatoms and cyanobacteria 

dominated shaded sites. Periphyton biomass increased with site-specific 

incident light (r =0.89; Q = .007). Mean biomass ranged from 9.2 g 

AFDM/m2 at FDC (solar input =300 Mj/m2) to 57.9 g AFDM/m2 at MUR 

(solar input =1994 Mj/m2). Although periphyton biomass closely tracked 

solar input, other factors probably also influenced biomass. For example, 
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periphyton standing crop at the site with the highest level of insolation, RC2 

(solar input =2230 Mj/m2), was 35% lower than at the more shaded MUR. 

Relationship between canopy and macroinvertebrate community structure 

Macroinvertebrate assemblages at all sites were dominated by three 

insect families. On average, more than half of the invertebrates at the 

seven study sites were chironomid midge larvae (26%) and larval and adult 

elmid beetles (27%). Baetid mayflies accounted for about 10% of the 

community. No distinct patterns in absolute abundance of these groups 

occurred over the gradient in solar input or periphyton standing crop. Other 

taxa usually made up <10% of all invertebrates at any site with the 

exceptions of the caddisflies Hydropsyche (29% at shaded RC1) and 

Dicosmoecus (19% at open MTC). 

Macroinvertebrate densities for total invertebrates (Table 1.2) were 

not related statistically to light level or quantity of periphyton (Table 1.3). 

Neither density nor biomass of total invertebrates was related to light levels, 

although invertebrate biomass was positively correlated with quantity of 

periphyton (Fig 1.2a). In contrast, grazer biomass increased significantly 

with both solar input and periphyton AFDM (Table 1.3; Fig. 1.2b). 

However, when the effect of AFDM was removed through partial 

correlation, the relationship between grazer biomass and solar input was 

insignificant (r =0.15). 

Shredder numbers decreased significantly with solar input and AFDM 

(Table 1.3). However, collector and predator densities and biomasses were 

not correlated with solar input, AFDM, or abundances of other functional 

groups. 



Table 1.2. Mean (±1 SE) abundance and biomass (as dry weight) of invertebrates from John Day Basin tributaries. 

Total Invertebrates 

Number/m2 

Biomass 
(g/m2) 

Grazers 

Number/m2 

Biomass 
(g/m2) 

Collectors 

Number/m2 

Biomass 
(g/m2) 

RC1 

16744 
±4261 

3.796 
-11.24 

4742 
±752 

0.830 
±0.09 

10892 
±3334 

2.422 
±0.88 

RC2 

14357 
±3702 

7.489 
±2.61 

6146 
± 1245 

5.380 
±2.29 

6975 
±2100 

1.972 
±0.38 

RC3 

14715 
±4361 

6.377 
±1.46 

2884 
±750 

2.902 
±1.37 

9686 
±2869 

2.878 
±1.10 

RC4 

10335 
±1673 

6.561 
±1.99 

2607 
±452 

0.690 
±0.12 

6500 
±1067 

0.793 
±0.08 

MTC 

4021 
±1406 

29.29 
±5.67 

1683 
±460 

28.749 
±5.51 

2019 
±858 

0.330 
±0.12 

MUR 

11338 
±3508 

17.68 
±4.78 

4090 
±746 

13.200 
±4.75 

5453 
±2064 

2.220 
±1.23 

FDC 

9619 
±3187 

3.364 
±1.12 

3108 
±991 

0.451 
±0.19 

5154 
±1754 

2.439 
±0.91 



Table 1.2 (Continued) 

Shredders 

Number/m2 

Biomass 
(g/m2) 

Predators 

Number/m2 

Biomass 
(g/m2) 

RC1 

53 
±48 

0.265 
±0.24 

573 
±153 

0.258 
±0.11 

RC2 

4 
±4 

0.001 
±0.001 

1022 
±428 

0.136 
±0.04 

RC3 

20 
±16 

0.120 
±0.15 

1941 
±815 

0.313 
±0.10 

RC4 

94 
±31 

4.671 
±2.03 

918 
±243 

0.300 
±0.15 

MTC 

8 
±8 

0.003 
±0.003 

228 
±86 

0.171 
±0.12 

MUR 

12 
±8 

0.421 
±0.28 

1233 
±446 

1.845 
±1.02 

FDC 

240 
±235 

0.022 
0.020 

1051 
±427 

0.448 
±0.14 

Eol 



Table 1.3. Correlation matiix of invertebrate densities (LOG number/m2) and invertebrate biomasses (LOG g 
DW/m2) vs solar radiation and periphyton biomass (AFDM); values are Pearson correlation coefficients;
**=2<0.01, *=2<0.05. 

All invertebrates 

Grazers 

Collectors 

Shredders 

Predators 

Dicosmoecus 

All invertebrates 
without Dicosmoecus 

Invertebrate Density 

Solar radiation AFDM 

-0.22 -0.26 

0.18 0.05 

-0.39 -0.40 

-0.91** -0.83* 

-0.06 -0.14 

0.90** 0.914* 

-0.24 -0.29 

Invertebrate Biomass 

Solar radiation AFDM 

0.73 0.83* 

0.87** 0.94** 

-0.16 -0.16 

-0.56 -0.33 

0.03 0.31 

0.85* 0.92** 

-0.31 -0.30  

Grazers 
without Dicosmoecus 0.02 -0.11 0.71 0.60 

Ca 



20 

a 

1004 

10: 

2. 

IIN 

1: 

b 

0.1 
0 

100: 

10 io 30 40 
g AFDM/ m2 

50 60 

10: 

al 

1: 
on 

0.1 
0 10 20 30 40 50 60 

g AFDM/ m2 

Fig. 1.2. Correlations of log-transformed invertebrate biomasses with 
periphyton biomass for all study reaches: (a) total invertebrate biomass vs 
periphyton biomass; (b) grazer biomass vs periphyton biomass. 
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Differences in relative abundances and biomasses of invertebrate 

functional feeding groups were detectable with changing riparian cover 

(Table 1.4). Although grazer density did not vary significantly with solar 

input, the relative abundance of grazers increased from about 25% at 

shaded sites to 45% at open sites. In shadier reaches, collectors and 

shredders made up a greater proportion of the fauna. The relative 

abundance of predators (about 10%) was unaffected by the amount of 

canopy. 

The relative biomasses of these feeding groups followed similar 

patterns. Grazer relative biomass increased markedly with insolation, 

primarily because of higher numbers of large-bodied Dicosmoecus caddisfly 

larvae (Fig. 1.3; Table 1.4). Collectors and shredders were negatively but 

not significantly correlated with solar input and predator relative biomass did 

not vary with light regimes. 

The presence of the large-bodied algivore Dicosmoecus gilvioes at 

open sites accounted for much of the increase in total invertebrate biomass 

observed at unshaded sites. The biomass of Dicosmoecus increased with 

both periphyton biomass and solar input (Table 1.3), though partial 

correlation of Dicosmoecus biomass with AFDM and solar input indicates 

only a weak association (r =0.17) with solar input. Dicosmoecus composed 

55-96% of the total invertebrate biomass in open reaches but only 0-1.35% 

in the three most shaded sites (Fig. 1.3). When Dicosmoecus was excluded 

from the analyses, weak correlations occurred between the remaining 

invertebrates and solar input or AFDM (Table 1.3). No relationship was 

evident between the biomass of other grazers and Dicosmoecus biomass 

(r=0.45; 2=0.31). 
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Table 1.4. Correlation matrix of relative abundances (individuals/m2) and 
biomasses (g DW/m2) of invertebrate guilds vs solar radiation; values are
Pearson correlation coefficients; **=11<0.01, * = g <0.05. 

Relative abundance Relative biomass 

Grazers 0.71 0.90** 
Collectors -0.78* -0.62 

Shredders -0.83* -0.70 

Predators 0.14 -0.49 
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Fig. 1.3. Dicosmoecus biomass as a proportion of total invertebrate and
grazer biomasses. Dicosmoecus biomass is shown as a subset of grazer 
biomass. 
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Relationship between canopy and fish communities 

Total fish density, including both cool stenothermal and eurythermal 

species, showed a positive but insignificant correlation with solar input and 

temperature. When warm-adapted species (redside shiners (Richardsonius 

balteatus), bridgelip suckers (Catostomus columbianus), northern squawfish 

(Ptychocheilus oregonensis), and chiselmouth chub (Acrocheilus alutaceus)) 

were considered separately, this group was positively related to solar input 

(r =0.82; 2 = .025; Fig. 1.4) but unrelated to temperature (r =0.63; 

2=0.13). In contrast, cool-adapted rainbow trout (Oncorhynchus mykiss) 

and Paiute sculpin (Cottus beldingi) showed a strong negative correlation 

(r =-0.97; 2=0.0004) with temperature (Fig. 1.5) and a negative but 

insignificant correlation (r =-0.47; 2=0.29) with incident light. 

Discussion 

Relationship between canopy and macroinvertebrate structure 

In John Day Basin tributaries, macroinvertebrate densities (numbers/ 

m2) generally did not change with greater light levels or increases in 

periphyton, although invertebrate biomass did increase. These results 

contrasted with many studies in coolwater streams (Towns 1979; Newbold 

et al. 1980; Murphy et al. 1981; Murphy & Hall 1981; Hawkins et al. 1982; 

Triska et al. 1983; Carlson et al. 1990; Weatherley and Ormerod 1990) and 

in one warmwater Arizona stream (Bruns and Minckley 1980), which 

reported increases in total invertebrate and herbivore densities, as well as 

their biomasses, with declining canopy cover. Much of this increase was 
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Fig. 1.4. Correlation between warmwater fish density and solar radiation at
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Fig. 1.5. Correlation of cold stenothermal fish densities (rainbow trout and 
Paiute sculpin) and mean daily temperature for July 1988 in all study sites.  
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attributable to increases in chironomids and baetids in open riffles (Newbold 

et al. 1980; Hawkins et al. 1982, 1983). This is consistent with studies 

that show that chironomid and baetid abundance generally increases with 

intensity of incident radiation and concomitant algal growth (Triska et al. 

1983; Behmer and Hawkins 1986; Dudley et al. 1986; Hawkins and Furnish 

1987; Richards and Minshall 1988). Although chironomids and baetids 

were dominant taxa in our study streams in mid-July, we detected no 

change in their abundances either with increasing light levels or periphyton 

resources. 

In our study, the increase in invertebrate biomass observed at higher 

light levels was not due to increased biomasses of chironomids, baetids, 

elmids, or other small drifting prey, but rather to increased biomass of 

Dicosmoecus larvae. The large size, robust mandibles and curved tarsal 

claws of these larvae enable them to exploit thick growths of filamentous 

algae (Li 1990) which are used less by smaller scraping taxa (Hawkins et al. 

1982). The large size and mineral case of Dicosmoecus may allow it to 

escape predation by many of the fishes found in the study reaches, 

especially warmwater species (Johansson 1991). Young trout have been 

shown to prefer drifting insects, such as mayflies, and rarely consume 

cased trichopterans which rarely drift (Elliot 1973; Allan 1981; Moore and 

Gregory 1988). Tippets and Moyle (1978) reported a preferential selection 

of Dicosmoecus by McCloud River (California) rainbow trout, but their fish 

were much larger than those found in our study reaches and drift feeding 

was reduced by high water turbidity. Dicosmoecus larvae that occurred at 

high densities were absent from stomachs of juvenile trout and adult and 

juvenile speckled dace (Rhinichthys osculus) sampled from a nearby 

drainage (see Chapter 2). Most other species at these sites were probably 
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too small (redside shiners, juvenile squawfish, suckers) or lacked appropriate 

mouthparts (chiselmouth, suckers) to ingest Dicosmoecus. 

Dicosmoecus larvae can reduce algal abundance, both in coolwater 

stream systems (Hart 1981; Lamberti et al. 1992) and in artificial streams 

(Lamberti et al. 1987; De Nicola et al. 1990). Through competitive 

exploitation of food resources Dicosmoecus may exert negative indirect 

effects on other benthic herbivores (Lamberti et al. 1992). Because of their 

large size and mobility, Dicosmoecus probably are able to track food 

resources in unshaded stream patches in a manner similar to the caddisfly 

Gumaga in California (Feminella et al. 1989). Competition from 

Dicosmoecus may in part regulate numbers of baetids and chironomid 

midges in uncanopied study reaches. However, no negative relationships 

occurred between abundance of other grazers and Dicosmoecus and algal 

resources did not appear to be limiting at any open site. 

Dicosmoecus may, however, indirectly affect higher trophic levels by 

sequestering a significant portion of the energy entering the stream that 

would otherwise be transferred to predators. Because large-bodied 

Dicosmoecus can escape predation from the fishes present in small John 

Day tributaries, these caddisflies may function as a trophic "shunt", 

diverting energy from direct transfer to higher consumers in the aquatic food 

chain. Hawkins and Furnish (1987) found that the large snail Juga, 

dominated the invertebrate biomass (up to 97%) of an Oregon stream and 

expropriated energy potentially available to higher trophic levels. Efficient 

herbivores that are well-defended from their predators, such as armored 

catfish of small Panamanian streams, may sustain aquatic communities as 

two-trophic level systems (Power 1984, 1992). Opening the canopy and 
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stimulating autotrophic production increases the food resource base for 

herbivores, but the benefits to higher trophic levels may be limited. 

Relationship between canopy and fish assemblages 

Canopy removal in coolwater streams often has been associated with 

increased salmonid abundance or biomass (Aho 1976; Murphy and Hall 

1981; Murphy et al. 1981; Hawkins et al. 1983; Weather ley and Ormero'd 

1990). Increased fish numbers are usually attributed to higher autotrophic 

production and consequent greater densities of invertebrate prey. Aho 

(1976) associated a doubling of trout numbers in unshaded reaches to 

increases in insect biomass at open vs. shaded sites. Hawkins et al. (1983) 

reported that canopy removal increased riffle-dwelling chironomids and 

baetids which constituted important food items for drift-feeding fish. 

Stream temperatures in these studies remained well below incipient lethal 

limits for salmonids, even in unshaded sites. For three studies in western 

Oregon, maximum stream temperature ranged between 20° and 22° 

(Murphy et al. 1981; Hawkins et al. 1982, 1983). In contrast, maximum 

stream temperatures at open reaches in our research area commonly 

exceeded 30°, well beyond the normal range of tolerance for most trout 

(Bidgood and Berst 1969; Carlander 1969). As a consequence, trout 

numbers declined with reduction in stream canopy and increases in 

temperature, a phenomenon previously noted by Barton et al. (1985) in 

Ontario, Canada, Platts and Nelson (1989) in the Great Basin, and Li et al. 

(1994) in many of the same sites as this study. 

In our study streams, reaches with open canopies not only had high 

periphyton standing crops and biomasses of some macroinvertebrate taxa, 
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but also had high abundances of eurythermal fish. Substantial numbers of 

warm-adapted bridgelip suckers, northern squawfish, redside shiners, and 

chiselmouth, not present in coolwater streams (Newbold et al. 1980; 

Murphy et al. 1981; Hawkins et al. 1983) were most numerous at open 

sites. Speckled dace, a temperature generalist, was abundant in all but our 

coldest reach. Redside shiner, speckled dace, and juvenile squawfish feed 

on small aquatic insects from either the drift or the benthos (Wydoski and 

Whitney 1979; Reeves et al. 1987). Herbivorous suckers and chiselmouths 

also consume a large proportion of animal prey as juveniles (Moodie and 

Lindsey 1972; Wydoski and Whitney 1979) and certainly are able to disrupt 

or dislodge small invertebrate grazers in the periphyton. We speculate that 

disruption or predation by eurythermal fishes on small-bodied invertebrates 

such as chironomids and baetids may explain the low population densities of 

these taxa in open reaches. Schlosser and Ebel (1989) observed that 

cyprinid predators were able to reduce invertebrate abundance in stream 

pools, but not in riffles, and other workers (Gilliam et al. 1989; Power 1990) 

have reported that non-salmonid fishes can reduce abundances of benthic 

invertebrates in streams. 

Implications for high desert streams 

It is probable that before European settlement many small streams of 

the John Day basin were canopied, cool, and inhabited primarily by cold 

stenothermic salmonids and sculpins. If this was the case, extensive 

destruction of riparian stream cover by human activity has dramatically 

affected the structure of these ecosystems by increasing incident radiation 

and altering water temperature regimes. Open areas supported greater 
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periphyton abundance and increased macroinvertebrate standing crops, but 

in our study streams a large proportion of this energy was sequestered as 

herbivore biomass (Dicosmoecus) unavailable to higher trophic levels. 

Water temperatures often exceeded the upper lethal limits for salmonids and 

cottids, but provided suitable conditions for many eurythermic species 

which would otherwise not enter tributaries of this size. 
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Abstract 

The relative importance of predation and resource availability to benthic 

community structure is one of the fundamental issues of community 

ecology. In some ecosystems, multiple controlling factors may influence 

trophic processes. The objective of this study was to determine the impacts 

of a stream fish assemblage and dominant invertebrate grazers on benthic 

communities in a stream where irradiance levels were high. The study was 

conducted in Camp Creek, a productive high desert stream in the John Day 

Basin, Oregon. Plastic mesh was used to completely enclose 18 replicate 

log weir pools, which were stocked with varying densities of native fishes 

(rainbow trout, speckled dace, largescale suckers, and torrent sculpin) for 

32 days in mid-summer. During this interval, periphyton biomass and 

invertebrate densities and biomasses were periodically measured. Fish 

density had no negative effects on densities of total invertebrates and was 

unrelated to the abundance of mayflies, a highly selected prey. Although 

top-down impacts of fish predators on invertebrates were not detected, the 

grazing caddisfly Dicosmoecus gilvipes exerted direct downward control on 

periphyton standing crops and, indirectly, on invertebrate densities and 

biomasses. Because Dicosmoecus' large case protected them from 

consumption by resident fishes, their presence limited energy available for 

top trophic levels. Dicosmoecus acted as a keystone species and an 

"intermediate regulator" in the benthic food web of Camp Creek by 

simultaneously influencing trophic levels both below and above its own. 
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Introduction 

The relative importance of abiotic and biotic influences on community 

structure and function is one of the fundamental issues of community 

ecology. Several syntheses have addressed the effects of multiple 

controlling factors on trophic processes in both terrestrial and aquatic 

systems (Menge and Sutherland 1976, 1987; Fretwell 1987; Oksanen 

1988; Hunter and Price 1992; Power 1992b; Strong 1992; Lamberti 1996), 

with much debate on the relative roles of predation and competition 

(initiated by Hairston et al. 1960). In lakes, researchers have established 

fairly repeatable and predictable patterns of trophic regulation (Brett and 

Goldman 1996), but a consistent and unifying mechanism for benthic 

community regulation in streams has been elusive. Primary productivity is 

fundamental to all ecosystems, and provides a "bottom-up template" that 

dictates the number of trophic levels in a food web and thereby constrains 

the intensity of top-down predator control (Hunter and Price 1992). But 

whether the community is ultimately regulated by top-down predator 

limitation, by bottom-up resource limitation at every level, or both, depends 

on many biotic and abiotic factors (Power 1992b). Lotic environments are 

notoriously heterogeneous both within and between streams (Hynes 1970; 

Pringle et al. 1988), so that identifying the factors that affect the relative 

strengths of predation and resource limitation is daunting. 

In community ecology, predation has long been considered an 

important regulator of lower trophic levels (Paine 1966; Carpenter et al. 

1985; Sih et al. 1985; Menge and Sutherland 1987), but stream 

ecosystems do not clearly follow this pattern. Fish are top consumers in 

most streams, but studies show variable impacts of fish predation. No prey 

response has been observed to predation by brook trout (Allan 1982; Reice 
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and Edwards 1986), coho (Culp 1986), steelhead and roach (on gravel 

substrates, Power 1992a) and sunfishes (Holomuzki and Stevenson 1992). 

Some studies have reported significant predator effects, usually for specific 

prey taxa or habitats, with trout (Hemphill and Cooper 1984; Bowlby and 

Roff 1986; Bechara et al. 1992; Power 1992a; Forrester 1994), minnows 

(Gilliam et al. 1989; Schlosser and Ebel 1989), and sunfishes (Crowder and 

Cooper 1982; Power et al. 1985). Factors that influence the strength of 

fish predation effects include the experimental design (Cooper et al. 1990; 

Wooster 1994), feeding strategies of the fishes (Gerking 1994), habitat 

structural complexity (Gilinsky 1984), and productivity of the community 

(McQueen et al. 1989). Trophic cascades, which are seldom documented in 

streams (but see Power 1984, 1992a; Power et al. 1985; Lamberti 1996 for 

review), are well known in lakes with homogeneous pelagic habitats and 

clearly defined plankivorous and piscivorous feeding guilds (Carpenter et al. 

1985). Trophic cascades are more frequently observed in oligotrophic 

lakes, as fish predation appears less effective at regulating lower trophic 

levels when productivity is high (McQueen et al. 1989). 

Resource limitation, or bottom-up community regulation, is often 

documented for lotic systems. In many stream studies, grazer abundance 

and growth were strongly affected by periphyton abundance (reviewed by 

Feminella and Hawkins 1995). Benthic fauna respond not only to increased 

food resources but also to greater structural complexity for retreats, 

attachment sites, and refuges (Dudley et al. 1986; Lamberti 1996). Mobile 

grazers have the ability to track rich food patches and numerical responses 

can be rapid (Kohler 1985; Lamberti and Resh 1983; Richards and Minshall 

1988; Feminella et al. 1989). In lower John Day Basin tributaries (Chapter 

1), grazers were regulated by algal standing crops which were, in turn, 
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limited by irradiance. In some communities, higher herbivore and fish 

densities have been documented in nutrient-enriched or high-light 

environments, suggesting bottom-up control of all trophic levels (Aho 1976; 

Hawkins et al. 1983; Bisson and Sedell 1984; Peterson et al. 1993). 

However, most studies that demonstrate upward control reaching to the 

level of fish predators take place in cool-water, resource-limited streams 

where productivity is low. 

Bottom-up and top-down regulation of aquatic communities may 

occur simultaneously and be dynamically linked. With higher primary 

productivity, consumer biomasses may increase so that impacts on lower 

trophic levels can become more intense (Menge 1992). McQueen et al. 

(1989) suggested that control of biomass at a particular trophic level is 

determined by the combined impacts of predation and energy availability, 

and that in lakes these two influences often commingle at the plant-

herbivore interface. In stream studies where both nutrient/light levels and 

grazing intensity were manipulated, upward control of herbivore populations 

by periphyton production had primacy but occurred in conjunction with 

strong downward control of periphyton by herbivores (Steinman 1992; 

Rosemond et al. 1993; Hill et al. 1992, 1995). Benthic community 

dynamics are frequently dominated by robust midlevel consumers such as 

Juga (Hawkins and Furnish 1987; Lamberti et al. 1989), Elimia (Hill et al. 

1995), cased caddisflies (Lamberti and Resh 1983; McAuliffe 1984; 

Lamberti et al. 1987) or Camoostoma (Power et al. 1985). Lamberti (1996) 

suggested the designation "intermediate regulators" for those species 

whose influences can extend laterally and upward as well as to lower 

trophic levels. These dominant consumers with an intermediate position in 
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the trophic community can exert substantial control over the entire food 

web. 

Light was limiting in stream reaches of the John Day Basin 

investigated in Chapter 1, and both periphyton and grazers increased in 

uncanopied sites with higher irradiance. No top-down effects were apparent 

at any trophic level. Potential trout predation was confounded, however, by 

near-lethal water temperatures in the most productive, unshaded sites (Li et 

al. 1994). In this study we selected a tributary higher in the basin that, 

although warm, had less extreme temperature regimes. This stream had 

little canopy, with higher mean summer irradiance than the lower John Day 

basin sites, and therefore we could contrast community regulation in a well-

illuminated system with one constrained by low light. The purpose of the 

study was to evaluate the importance of top-down regulation of benthic 

communities in a productive system where light was not limiting. Our 

specific objectives were to determine the influences of a stream fish 

assemblage (secondary or tertiary consumers) as well as those of dominant 

herbivores (primary consumers) on the abundances and species composition 

of the benthic community. 

Study Area 

The study was conducted in Camp Creek (44°39' latitude; 118°49' 

longitude), a third-order stream within the John Day River Basin in 

northcentral Oregon. Camp Creek flows northwest and ranges in elevation 

from 1719 m to 1055 m. The study area receives about 60 cm of 

precipitation annually, mostly falling from November to May. Summer low 

flows occur in August and September and summer water temperatures are 
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warm due to lack of overhanging canopy. Although no irrigation diversions 

or other agricultural uses are present at or above the research area, intense 

livestock grazing occurs throughout the watershed and limits canopy 

development. Typical streamside vegetation includes grasses (Phalaris 

spp.), sedges (Carex spp.), white alder (Alnus rhombifolia), and black 

cottonwood (Poou lus trichocaroa). Willows (Salix spp.) are rare. Ponderosa 

pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) dominate 

the hillslopes, but most riparian conifers were logged in the 1920's. 

Historically, Camp Creek provided spawning habitat for steelhead and 

resident rainbow trout (Oncorhynchus mvkiss) and for spring chinook 

(Oncorhynchus tschawytsha). While both species still occur in the stream, 

conditions are no longer favorable for chinook spawning. Other fishes 

frequently observed in Camp Creek include speckled dace (Rhinichthys 

osculus), redside shiners (Richardsonius balteatus), largescale suckers 

(Catostomus macrocheilus), torrent sculpin (Cottus rhotheus), and Paiute 

sculpin (Cottus beldingi). Juvenile rainbow trout and juvenile and adult 

speckled dace were numerically dominant. In an effort to increase pool:riffle 

ratios and improve fish habitat in Camp Creek, the Bonneville Power 

Administration installed 256 log weirs along 19 km of stream in the 1970's. 

The log weirs formed pools of fairly uniform size and morphology which 

were used as experimental units. 

The log weir experimental pools were located within a mid-basin 

reach of Camp Creek and varied little in elevation, solar input, stream 

temperature, or volume (Table 2.1). Average summer solar input in the 

pools ranged from 950 to 2174 Mj/m2 and was comparable to unshaded 

reaches of the lower John Day Basin study sites (Table 1.1). Mean 
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Table 2.1. Physical characteristics of 3.3 km Camp Creek reach where 18
experimental pools were located. Solar radiation is the cumulative summer
average (June, July, and August); discharge and stream temperatures are 
for July-August 1990; standard errors are in parentheses. 

Elevation (m) 1253-1318  

Discharge (m3/s) 0.11  

Mean solar radiation (Mj/m2) 1491 (±83.6)  

Mean stream width (m) 7.2 (±0.5)  

Mean pool volume (m3) 9.9 (±0.9)  

Stream temperature (°C)  

Mean daily 20.3  
Mean maximum 28.1  
Mean minimum 13.0  
Maximum 29.5  
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daily summer stream temperatures (20.3° C) in Camp Creek in 1990 were 

lower than the unshaded John Day Basin sites in 1988, probably due to 

higher elevation rather than climatic differences between years. Maximum 

Camp Creek temperatures (29.5° C) were comparable to temperature 

maxima recorded at the uncanopied John Day sites, despite elevational 

differences. 

Methods 

Field experiments were conducted July-August 1990 along a 3.3 km 

reach of lower Camp Creek to determine possible effects of varying 

densities of fishes on the abundance and species composition of lower 

trophic levels. We selected 18 log weir pools that were separated by at 

least 2 channel units (approximately 50 m). Mean accumulated solar input 

(Megajoules/m2) for June, July, and August was determined for each pool 

with a Solar Pathfinder (see Chapter 1). Turbidity that could affect the 

amount of light reaching the substrate was low. Pools were ranked from 

lowest to highest in solar input and were assigned to three irradiance 

groups: low (950-1332 Mj/m2), intermediate (1355-1671 Mj/m2), and high 

(1672-2174 Mj/m2). Pools from each group were randomly assigned to the 

6 experimental treatments to provide a range of light intensities per 

treatment. Pool volumes were determined at the beginning and end of the 

experiment. Weekly maximum and minimum stream temperatures were 

recorded mid-reach with maximum-minimum thermometers. 

Six treatments of varying fish densities and species assemblages were 

used: (1) no fish; (2) low fish density (insectivores); (3) high fish density 

(insectivores); (4) high fish density (insectivores) plus piscivorous fish; (5) 
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low fish density (insectivores) plus piscivorous fish; and (6) low fish density 

(insectivores) plus herbivorous fish. Fishes were removed from each 

experimental pool with 8 passes of an electroshocker over a period of 4 

days. Fishes were held in net pens and used to stock the experimental 

pools at appropriate densities. Whereas numbers of fishes captured in each 

pool prior to the experiment were recorded, only fish to be stocked were 

weighed and measured. The fish species stocked were the following: 

rainbow trout juveniles (age 1 + and young-of-the-year (YOY); insectivores), 

speckled dace juveniles and adults (insectivores), largescale sucker juveniles 

(herbivore), and torrent sculpin (piscivore). Stocking levels were based on 

the range of natural fish densities observed during field sampling in previous 

years (T. Pearsons, unpubl. data). High fish treatments all received 10 

fish/m3 divided among four species/age groups: YOY rainbow trout, 1 + 

rainbow trout, juvenile speckled dace, and adult speckled dace. Low fish 

treatments all received 1 fish/m3 divided equally among the same four 

species/age groups. Piscivores and herbivores were stocked at 1 sculpin/m3 

and 3.33 suckers/m3, respectively. 

The experimental log weir pools were enclosed with plastic mesh (4 

mm X 16 mm apertures) that would confine fishes but permit flow through 

of invertebrate drift. The screening was installed at the upper and lower 

pool margins, buried in the substrate and tied to rebar for support. A 

minnow emigration trap was spliced into the rear barrier in order to capture 

fish attempting to swim downstream. Emigration traps were checked and 

screens were cleaned daily. Fish in the traps were released back into the 

pool, and any dead fish were recorded and replaced by live fish in order to 

maintain target densities. Wandering garter snakes (Thamnophis elegans 
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vagrans), belted kingfishers (Megaceryle alcyon), and dippers (Cinclus 

mexicanus) observed near the pools were counted. 

The fishes were confined for 32 days (14 July-14 August). However, 

because the enclosures proved to be imperfect barriers to fish movement 

we were not able to control the absolute fish densities within the pools. 

Nevertheless, the relative densities of fishes at the end of the experiment 

were in accord with our desired treatments such that the 18 pools 

represented a gradient of fish densities. The "no fish" pools were ultimately 

regarded as "low fish density" pools (Table 2.2). 

Sampling of benthic communities in each pool occurred prior to fish 

stocking, and at days 10, 17, and 32. For qualitative identification of 

epilithic algal taxa present, rock surfaces were scraped with a scalpel and 

the algae obtained preserved in Lugol's solution. Algal standing crops were 

estimated visually by recording the relative cover of prominent algal growth 

forms (filamentous algae, diatom mats, and cyanobacteria) within six, 0.25 

m2 quadrats in each experimental pool. Quadrats were delimited by a 0.5 m 

x 0.5 m metal frame placed in a regular pattern throughout the pool. A 

glass-bottomed viewing scope was used to scan the substrate. In addition, 

periphyton biomass (g ash-free dry mass/ m2 (AFDM)) and chlorophyll a 

concentration (mg/m2) were determined using methods described in Chapter 

1 for other John Day Basin sites. Although both chlorophyll a and AFDM 

are useful measures of periphyton abundance, AFDM may be a more 

accurate and less variable estimator of food resources available for 

consumers than chlorophyll g (Feminella and Hawkins 1995). Consequently, 

AFDM was primarily used in the analysis. In order to assess the potential 

impact of macroinvertebrate grazing on periphyton abundance in 

experimental pools, nine rocks were selected at random from the 
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Table 2.2. Mean total fish densities (number/m3) and mean relative
proportion of each species at the end of the experiment in Camp Creek; 
infrequently occurring species are not included; standard errors are in 
parentheses. n = number of pools per treatment, SPD = speckled dace, 
RBT= rainbow trout, TSC =torrent sculpin, LSS =largescale sucker. 

Relative density of each species 
Total 

Treatment Density SPD RBT TSC LSS 

Low fish 
(n =5) 

6.8 0.77 0.16 0.05 0 
(±0.5) (±0.08) (±0.11) (±0.02) 

Low fish with 
piscivore (n = 3) 

8.3 0.68 0.23 0.09 0 
(±1.1) (±0.10) (±0.09) (±0.01) 

High fish 
(n = 4) 

24.0 0.78 0.17 0 0.01 
(±3.1) (±0.04) (±0.03) (±0.01) 

High fish with 
piscivores (n = 3) 

19.6 0.79 0.14 0.08 0 
(±2.0) (±0.06) (±0.06) (±0.01) 

Largescale suckers 
(n =3) 

11.3 0.58 0.13 0.10 0.18  
(±0.6) (±0.17) (±0.05) (±0.07) (±0.05)  
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substrate and were protected from invertebrate grazing by placement on 

platforms suspended over, but not touching, the pool bottom (as aef 

Lamberti and Resh 1983). While platforms excluded most heavy-bodied, 

crawling grazers such as caddisflies and snails, they were easily colonized 

by drifting mayflies and midges, and therefore grazing was decreased but 

not completely eliminated. These reduced grazing treatments were assigned 

to the three "no fish" experimental pools where herbivorous fishes were 

absent. At each sampling period, periphyton from three platform rocks was 

removed, pooled, and measured with the same methods used to obtain 

substrate AFDM and chlorophyll a. 

Macroinvertebrate abundances were estimated in each pool by 

scooping 5 nonembedded, cobble-sized rocks from the substrate into a 

250pm mesh net, removing all invertebrates, and pooling the organisms into 

one sample (Wrona et al. 1986). Rock surface area was estimated by 

molding the rocks with aluminum foil, weighing the foil, and converting foil 

weight to surface area using a known surface area/weight ratio. All 

invertebrates retained by a 250pm sieve were preserved in 95% ethanol, 

identified to genus (except chironomids to family), enumerated, and 

measured. Taxa were later assigned to functional feeding groups (Merritt 

and Cummins 1984). Scrapers and other invertebrates that commonly feed 

on living algal cells were together designated grazers (see Chapter 1). 

Collector-gatherers, filterers, shredders, and predators were also recognized. 

Biomasses were estimated by using known length-weight relationships for 

preserved material (Smock 1980). Snails were removed from shells, dried at 

55°C for 24 h, and weighed. In addition, population estimates were made 

of the large caddisfly Dicosmoecus oilvioes visible with a viewing scope on 

substrate surfaces within the 6 sample quadrats where algal cover was also 
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estimated. There was a close correlation between destructive samples and 

visual counts for Dicosmoecus in July, but by mid-August destructive 

sampling tended to overestimate the number of caddisflies capable of 

feeding by incorporating recently diapaused animals. Visual counts of 

Dicosmoecus were used for these later population estimates. 

On 3 August, unusual densities of Dicosmoecus gilvioes were 

discovered in two adjacent, non-experimental log weir pools. Movement of 

caddisflies from the lower to the upper pool was restricted by lack of stream 

flow over the log dividing the pools, and Dicosmoecus could not traverse 

the dry wood. Consequently, Dicosmoecus were aggregated in the lower 

pool and occurred at normal densities in the upper pool. This "natural" but 

unreplicated experiment was an opportunity to compare intra- and 

interspecific effects of two Dicosmoecus densities under unmanipulated 

conditions. 

Physical and biological measurements similar to those used to assess 

experimental pools were made for the two adjacent pools. Pool volumes, 

solar inputs, and temperatures were recorded. Fish densities and species 

composition were determined by snorkeling the pools. Periphyton AFDM, 

chlorophyll a, and filamentous algal cover were measured to estimate algal 

abundance. Dicosmoecus larvae were counted with a viewing scope on 

substrate surfaces within the 6 sample quadrats where algal cover was also 

estimated. To assess the possiblility of intraspecific competition, 25 

Dicosmoecus were collected from each pool and mean individual masses 

determined from dry weights obtained after preservation. 

To determine if herbivorous largescale suckers affected periphyton, 

observations on sucker microhabitat use and feeding behavior were made in 

the 3 herbivorous fish treatment pools. Diurnal and nocturnal behaviors 
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were recorded during 5 observation sessions over 4 days. Substrate 

composition, aquatic vegetation, and depths were mapped for each pool. 

Observations were made either from the bank or by snorkeling. The 

observer selected individuals and followed each for 3 min, noting activity 

(e.g. resting, swimming, feeding) and location in pool. A total of 21 fish 

were observed. If feeding occurred, the foraging methods and browsing 

locations were recorded. On two occasions, rock surfaces where feeding 

was concentrated were scraped with a scalpel and the algae obtained 

preserved in Lugol's solution for later identification. 

After 32 days, the experiment was terminated. On 14-16 August 

1990, final periphyton and macroinvertebrate sampling was performed and 

fishes were removed from each of the 18 pools using 6-pass 

electroshocking. Fishes were counted, weighed, and measured. In order to 

determine feeding preferences of the numerically dominant fishes in Camp 

Creek, rainbow trout and speckled dace were collected from 6 experimental 

pools for gut contents analysis. Thirty-six juvenile rainbow trout and 31 

juvenile and adult speckled dace were preserved in formalin. Stomachs 

were dissected and food items were identified to genus when possible and 

enumerated. Food selection was quantified using Jacob's (1974) electivity 

index which compares the proportional use and availability of a food item, 

but is independent of the relative abundance of that food item. The 

electivity (D) is 

D = (r-p)/(r+p)-2rp 

where r is the proportion of the food item used by a species and p, is the 

proportion available in the environment. The index varies continuously 

between -1 (strong avoidance) and + 1 (strong selection), and was 

interpreted using Moyle and Baltz's (1985) range of selection intensities. 
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Data were analyzed with linear regression and Pearson's product-

moment correlations, with t-tests for significance. Logi 0 (x 1- 1) and arcsine 

square-root transformations were used to control for non-normality and 

heteroscedastisity in the data. 

Results 

Benthic community structure at Day 0 (14 July 1990) 

Periphyton 

In Camp Creek logweir pools in July, periphyton was dominated by 

the filamentous green alga Cladophora that, in some pools, overgrew other 

algal forms to completely blanket the substrate. During midsummer 

Cladophora hosted dense epiphytic diatom growth (principally Cocconeis, 

Gornohonema, and Epithemia), which is readily consumed by herbivorous 

invertebrates (Gregory 1983). Cladophora filaments were short (1-5 cm) 

relative to growth forms observed in other warm streams (e.g. Power 

1990). Mean algal standing crop for the 18 experimental pools was 11.5 g 

AFDM/m2 (SE =1.07), with means of 9.8 g AFDM/m2 (SE = 2.0) for the low 

irradiance pools, 12.8 g AFDM/m2 (SE =1.8) for intermediate irradiance 

pools, and 11.8 g AFDM/m2 (SE =1.9) for high irradiance pools. 

Chlorophyll a concentrations averaged 30.1 mg/m2 (SE =3.1) and were 

highly correlated (r =0.92; p<0.001) with periphyton biomass. Neither 

chlorophyll a, periphyton AFDM, nor filamentous algal cover were correlated 

with solar input, suggesting that irradiance was not the limiting factor for 

algal standing crops in the study pools. Other algae present in pools 

included the green alga Chaetophora, cyanobacteria (Oscillatoria and 
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Nostoc), and epilithic diatoms such as Eoithemia, Cymbella, Synedra, and 

Navicula. 

Macroinvertebrates 

Macroinvertebrate assemblages at Day 0 were dominated by grazers, 

collectors, and predators (Fig. 2.1; Table 2.3). Shredders and filterers 

together made up less than 4% of the community by either abundance or 

biomass. Grazers that were prominent numerically included heptageniid 

mayflies (12.1%), pulmonate snails (16.5%), and chironomids (13.8%) 

(Table 2.4). Although the caddisfly Dicosmoecus divines occurred at 

relatively low densities (0.4% of total invertebrate abundance), this grazer 

comprised 37.5% of benthic invertebrate biomass. The most numerous 

collectors were the mayflies Tricorythodes and Paraleotophlebia (25.6% 

together) and chironomids (17%), but collectors only accounted for 14% of 

total invertebrate biomass. Predators contributed significantly to both total 

invertebrate number and biomass. Although the perlid stoneflies 

Hesperooerla and Calineuria occurred at low densities, they made up almost 

15% of benthic community biomass. Over half of predator numbers 

consisted of Hydracarina, but mites accounted for little biomass. 

Relationships between solar input, periohyton, macroinvertebrates, 
and fish 

At the onset of the experiment, solar input appeared to have no 

impact on most invertebrate groups although grazer biomass was positively 

but non-significantly correlated with light levels (r =0.41; p =0.10). Among 
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Fig. 2.1. Relative densities and biomasses of invertebrate feeding guilds in 
mid-July and mid-August for 18 experimental pools in Camp Creek. 



Table 2.3. Mean (± 1 SE) density (number/m2) and biomass (g dry weight/m2) of invertebrate guilds in Camp
Creek study pools at onset and at termination of fish enclosure experiment. Probability values are based on pairedt-tests on log-transformed data. 

Day 0 (14 July) 

Total 
invertebrates 

Grazers 

Collectors 

Shredders 

Predators 

Density 

2382 
(±469) 

1040 
(±221) 

1067 
(±238) 

9 
(±3) 

265 
(±37) 

Biomass 

0.75 
(±0.09) 

0.47 
(±0.09) 

0.10 
(±0.02) 

0.03 
(±0.01) 

0.14 
(±0.03) 

Day 32 (14 Aug) 
Density 

3602 
(±605) 

2040 
(±342) 

928 
(±217) 

31 
(±16) 

590 
(±95) 

Biomass 

1.35 
(±0.13) 

0.94 
(±0.14) 

0.18 
(±0.05) 

0.01 
(±0.01) 

0.22 
(±0.04) 

p-value 
Density Biomass 

0.07 0.001 

0.003 0.001 

0.19 0.16 

0.46 0.18 

0.001 0.10 
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Table 2.4. Average relative densities and biomasses of dominant 
invertebrate taxa in study pools at onset and at termination of fish enclosure
experiment. Standard errors are in parentheses. 

14 July 14 August 

Density Biomass Density Biomass 

Baetis 0.04 0.01 0.02 0.01 
(±0.01) (±0.003) (±0.003) (±0.002) 

Heptageniidae 0.12 
(±0.02) 

0.10 
(±0.02) 

0.03 
(±0.001) 

0.06 
(±0.01) 

Tricorythodes 0.23 
(±0.07) 

0.03 
(±0.01) 

0.08 
(±0.03) 

0.03 
(±0.01) 

Perlidae 0.005 0.15 0.004 0.14 
(±0.002) (±0.04) (±0.001) (±0.04) 

Dicosmoecus 0.004 0.38 0.003 0.24 
(±0.001) (±0.10) (±0.001) (±0.08) 

Helicopsyche 0.02 
(±0.005) 

0.03 
(±0.01) 

0.13 
(±0.05) 

0.002 
(±0.001) 

Chironomidae 0.35 0.13 0.21 0.06 
(±0.08) (±0.03) (±0.05) (±0.01) 

Physa 0.005 
(±0.002) 

0.02 
(±0.001) 

0.007 
(±0.002) 

0.12 
( ± 0.03) 

Fossaria 0.005 0.01 0.05 0.13 
(±0.001) (±0.001) (±0.01) (±0.04) 

Gvraulus 0.16 0.04 0.20 0.08 
(±0.03) (±0.01) (±0.05) (±0.02) 

Hydracarina 0.07 
(±0.01) 

0.01 
(±0.002) 

0.12 
(±0.01) 

0.02 
(±0.001) 
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individual grazer taxa, only Helicopsvche biomass was significantly. 

correlated with light (r =0.54; 2=0.03) although Helicopsyche comprised a 

minor proportion of the benthic community. Dicosmoecus, which dominated 

grazer biomass, demonstrated a weak positive association with solar input 

(r =0.32; 2=0.21). However, 14 days later, Dicosmoecus densities were 

significantly associated with solar input (r =0.57; 2=0.01). 

Densities of total invertebrates and all invertebrate guilds except 

shredders were positively correlated with percent filamentous algal cover 

(Table 2.5). However, invertebrate biomasses varied in their relation to algal 

cover. Predator and total invertebrate biomasses were not correlated with 

filamentous algal cover. Collector biomass increased and grazer biomass 

decreased with algal cover. This inverse relationship of grazers and algal 

cover was linked to a strong negative correlation between larval 

Dicosmoecus, which made up two-thirds of grazer biomass, and filamentous 

algal cover (Fig. 2.2). In contrast to algal cover, periphyton AFDM was not 

significantly correlated with invertebrate densities or biomasses. This may 

be because AFDM was not correlated with algal cover (r =0.07; 2=0.79). 

Before experimental pools were stocked with fishes at treatment 

densities, all fishes were counted, weighed, and removed. No significant 

correlations were found between original fish densities or biomasses and 

algal or invertebrate communities (Table 2.5; Table 2.6). 
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Table 2.5. (a) Correlation matrix of log-transformed invertebrate densities 
(number/m2) and invertebrate biomasses (g DW/m2) vs. periphyton biomass 
(g AFDM/m2) and percent filamentous algal cover; (b) correlation matrix of 
of log-transformed fish densities (number/m3) and biomasses (g/m3) vs. 
periphyton biomass (g AFDM/m2) and percent filamentous algal cover. Day 
0 fish densities and biomasses are those that were present in pools before 
fish were removed and restocked. Values are Pearson correlation 
coefficients; ** = g<0.01, *= p<0.05. 

(a) 
Periphvton % Algal Cover 

Invert Invert Invert Invert 
Density Biomass Density Biomass 

Day 0 (14 July) 

Total invertebrates 0.23 -0.23 0.61** -0.26 

Grazers 0.14 -0.33 0.48* -0.50* 

Collectors 0.34 0.24 0.57* 0.54* 

Shredders -0.22 -0.09 0.24 0.22 

Predators 0.05 -0.26 0.56* 0.04 

Day 32 (14 Aug) 

Total invertebrates 0.81** 0.23 0.69** -0.27 

Grazers 0.73** 0.04 0.51* -0.55* 

Collectors 0.75** 0.57* 0.73** 0.75** 
Shredders 0.53* -0.04 0.60* -0.01 

Predators 0.68** -0.15 0.75** 0.14 
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Table 2.5 (Continued) 

(b) 

Periphyton % Algal Cover 

Fish Fish Fish Fish  
Density Biomass Density Biomass  

Day 0 (14 July) 

Fishes 0.11 0.23 -0.13 0.21 

Day 32 (14 Aug) 

Fishes 0.55* 0.21 0.40 0.04 
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Fig. 2.2. Correlation of % filamentous algal cover (arcsine square-root 
transformed) and log-transformed Dicosmoecus densities in mid-July 
(r=-0.72; n<0.001, n=18). 
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Table 2.6. Correlation matrix of invertebrate densities (number/m2) and 
invertebrate biomasses (g DW/m2) vs. fish density (number/m3) for 
experimental pools. Values are Pearson correlation coefficients; *=
p.< 0.05. 

Day 0 (14 July) 

Total invertebrates 

Grazers 

Collectors 

Shredders 

Predators 

Day 32 (14 Aug) 

Total invertebrates 

Grazers 

Collectors 

Shredders 

Predators 

All mayflies 

Pulmonate snails 

Chironomidae 

Fish density 

Invertebrate Invertebrate 
Density Biomass 

0.32 0.03 

0.20 0.13 

0.41 0.14 

-0.35 -0.17 

0.31 -0.40 

Fish density 

Invertebrate Invertebrate 
Density Biomass 

0.41 -0.10 

0.27 -0.21 

0.46 -0.29 

0.35 0.27 

0.50* 0.17 

-0.12 -0.19 

-0.18 -0.29 

0.60* 0.56* 
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Benthic community structure at Day 32 (14 August 1990) 

Periphyton 

Mean periphyton biomass increased during the experiment but had 

decreased in a few pools by Day 32, probably due to senescence and 

sloughing (Fig. 2.3). Nevertheless, final algal standing crops averaged 19.0 

g AFDM/m2 (SE =1.9) and were significantly higher (g<0.001) than Day 0 

levels (11.5 g/m2; SE =1.1). AFDM was highly correlated (r =0.94; 

Q<0.001) with chlorophyll g concentrations (mean =47.9 mg/m2; SE= 6.2). 

Because percent filamentous algal cover correlated significantly (r =0.64; 

p<0.01) with total algal biomass measured concurrently, percent 

Cladophora cover was deemed a reasonable estimator of algal standing 

crops by Day 32 in experimental pools. Filamentous algal cover averaged 

43% (SE =6.5) and ranged from 12 to 88%. Mean filamentous algal cover 

for all pools did not change between Day 17 (mean =40%; SE =5.4) and the 

end of the experiment. 

Macroinvertebrates 

Mean densities and biomasses of benthic invertebrates across all 

pools increased by about 50% during the experiment (Table 2.3). Relative 

abundances of most functional groups remained fairly constant, although 

relative density of collectors declined from 45% to 26% (Table 2.4; Fig. 

2.1). Among the grazers, heptageniid mayflies and Dicosmoecus were 

relatively less important components of the community than on Day 0, while 

pulmonate snails increased in dominance, accounting for 25% of the 

numbers and 32% of the biomass of all macroinvertebrates (Table 2.4). The 
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Fig. 2.3. Average algal biomass accrual in 18 log weir pools during the 
experimental period in Camp Creek. Bars represent ± 1 standard error. 
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grazing caddisfly Helicopsyche borealis also increased in relative abundance, 

contributing 10.3% to total invertebrate density by Day 32 but <1% to 

biomass. The collector mayflies Paraleotophlebia and Tricorythodes declined 

by 50% in relative density but increased in relative biomass. The relative 

abundance of shredders remained low, comprised primarily of the caddisflies 

Lepidostoma and Psychoglyoha. The relative abundance of the predator 

guild, principally perlid stoneflies, was fairly constant during the experiment, 

although relative density of Hydracarina increased. 

Significant changes in absolute abundances of some taxa occurred 

during the experimental period. Mean densities of active Dicosmoecus were 

lower in August (4.1/m2) than in July (10/m2; p<0.001) due to the onset of 

diapause and pupation. Fifty percent of Dicosmoecus collected at this time 

were in diapause. Pulmonate snails proliferated, however, with densities 

two-fold greater and biomasses ten-fold greater in August than in July. 

Helicoosvche larval densities increased 8X but with a proportional decrease 

in biomass caused by Helicopsyche emergence during the experimental 

period. Consequently, Day 0 Helicoosyche populations consisted of 

relatively few, large larvae and many pupae, whereas by Day 32 numerous 

young larvae and no pupae were present. Among the mayflies, densities of 

heptageniids, Paraleptophlebia, and Tricorythodes all declined by half, while 

biomasses increased, indicating cycles of growth and emergence. 

In experimental pools with high Dicosmoecus numbers, abundances 

of total benthic invertebrates were relatively low (Table 2.7; Fig. 2.4), with 

particularly strong declines in collectors (r =-0.67 and -0.65 in July and 

August, respectively; p<0.01). Chironomids appeared to be particularly 

affected by Dicosmoecus presence in July (r =-0.75; p<0.001). 
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Table 2.7. Correlation matrix of densities (number/m2) of two dominant 
Camp Creek grazers vs. total invertebrate density. Snails include the genera
Gyraulus, Fossaria, and Physa. Values are Pearson correlation coefficients;
*.p<0.05. 

Total Invertebrates 

Day 0 (14 July) 

Dicosmoecus -0.55* 

Pulmonate snails 0.08 

Day 32 (14 August) 

Dicosmoecus -0.57* 

Pulinonate snails -0.09 
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Fig. 2.4. Correlation of log-transformed total invertebrate density with 
Dicosmoecus density in mid-August pools (r =-0.57; p<0.05, n =18). 
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The lepidopteran Petrophila and hydroptilid caddisflies, sessile taxa that 

colonize bare rock surfaces and would be expected to benefit from algal 

removal, were not significantly correlated with Dicosmoecus abundance. 

Although pulmonate snails also reduced algal biomass in experimental pools 

(see below), their abundance showed no relationship to abundances of other 

invertebrates (Table 2.7). 

Relationship between macroinvertebrates and periphyton 

Grazer exclusion 

Platforms installed in three of the experimental pools isolated the 

impacts of grazers and collectors on periphyton by generally reducing 

invertebrate densities relative to densities on surrounding substrates. 

Primarily mayflies (baetids, heptageniids, leptophlebiids, and Tricorythodes) 

and chironomids occurred on platform rocks. Baetids and leptophlebiids 

appeared to colonize platform rocks at higher than ambient densities, 

whereas heptageniids occurred at densities similar to those on the 

streambed. Snails were found on platform rocks at about 10% and 

chironomids at 50% of their streambed abundances. No caddisflies were 

found on platforms. 

Algae accrued at a higher rate on platforms than on grazed substrates 

(Fig 2.5). At Day 10, platform periphyton biomass averaged 3X greater 

than biomass on control substrates. By Day 32 variability in periphyton 

abundance had increased, but platform AFDM (mean =32.6 g/m2; SE = 9.7) 

was still significantly greater (p.<0.01) than substrate AFDM (mean =14.1 

g/m2; SE =3.4). 



50 

69 

45-

40-

35-

30-

25-

20-

15-

10-

5-

I O I 

0 5 10 15 20 25 30 35 
Days 

Streambed Rocks --s-- Platform Rocks 

Fig. 2.5. Comparison of mean algal biomass accrual between two grazing 
treatments in three log weir pools. Grazing is reduced on platform 
treatments; streambed rocks are controls. Bars represent ± 1 standard 
error. 
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Because algivorous mayflies and chironomids had access to 

periphyton both on platforms and surrounding substrates, differences in 

algal biomass between grazed and grazing-reduced surfaces were not likely 

attributable to these organisms. However, the platforms completely 

excluded Dicosmoecus and reduced snail densities by 90%. These two 

grazers accounted for 39% and 34%, respectively, of total invertebrate 

biomass in the three platform pools, and one or both could potentially 

reduce algal standing crops (Jacoby 1987; Lamberti et al. 1989; Barnese et 

al. 1990). In the three platform pools, the largest grazing effect (D), 

calculated as the simple absolute difference between AFDM on grazed and 

ungrazed surfaces (Feminella and Hawkins 1995), occurred where 

Dicosmoecus biomass was high (Fig 2.6), suggesting that high biomasses of 

this caddisfly reduced periphyton to levels significantly below its potential 

abundance. In a Cascade Range stream, densities of Dicosmoecus were 

higher and stream temperatures, elevations, and probably irradiance were 

lower than Camp Creek, but grazed and ungrazed periphyton AFDM (5 and 

25 g AFDM/m2, respectively) were remarkably similar to mid-July levels in 

our study (Jacoby 1987). In contrast, the grazing effect decreased in the 

Camp Creek pools where snail biomasses were relatively higher than 

Dicosmoecus biomasses (Fig. 2.6), suggesting that snails were not as 

effective as Dicosmoecus in reducing periphyton. The inverse relationship 

between these two grazer abundances may suggest interspecific 

competition or exclusion, but there were no significant relationships 

between Dicosmoecus and snail densities or biomasses among the 

experimental pools. 
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Impacts of Dicosmoecus densities in nonexperimental pools 

In the two adjacent, unmanipulated log weir pools, caddisfly and 

periphyton abundances differed sharply (Table 2.8). In the lower pool 

where upstream movement of larvae was blocked by an exposed log weir, 

Dicosmoecus reached densities of 78.5/m2. Density of Dicosmoecus in the 

upper pool was 3.5/m2 and comparable to average August densities in the 

18 experimental pools nearby. Upper pool periphyton biomass was 2X 

higher and filamentous algal cover 20X greater than in the lower pool where 

Dicosmoecus were abundant. Dicosmoecus grazing appeared to have a 

disproportionately greater effect on surface area coverage than on mass per 

unit area for periphyton. 

Competition for limited food resources was suggested in the lower 

pool, where average individual masses for caddisfly larvae were significantly 

lower (p<0.001) than in the pool above. When a Cladophora-covered rock 

(44 cm X 22 cm) from the upper pool was placed in the lower pool, 65 

Dicosmoecus larvae were grazing its surface within 24 h. Algal filaments 

30 mm in length were cropped to <5 mm or removed entirely, and 20% of 

the rock surface was bare after 42 h. 

Macroinvertebrate abundance and periphyton 

In the experimental pools, by Day 32 filamentous algal cover and 

periphyton AFDM were positively and significantly correlated with total 

invertebrate density as well as densities of all individual invertebrate guilds 

(Table 2.5). As on Day 0, invertebrate biomasses varied in their 

associations with algae. Total invertebrate, shredder, and predator 

biomasses did not correlate with either measure of algal abundance. 
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Table 2.8. Comparison of two adjacent log weir pools with differing 
densities of larval Dicosmoecus ailvipes. Pools were not among the 18
experimental pools. Sampling occurred 3 August 1990. Standard errors are 
in parentheses. 

Lower pool Upper pool 

Dicosmoecus density 
(number/m2) 78.5 3.5 

(±18.4) (±0.4) 

Mean individual mass 35.8 56.7 
(mg DW/Dicosmoecus) (±0.2) (±0.4) 

% Filamentous algae 3.0 57.0 
(±0.7) (±7.2) 

Periphyton biomass 6.8 15.2 
(g AFDM/m2) 

Fish density 3.0 5.8 
(number/m3) 

Pool volume (m3) 11.7 5.4 

Solar input (Mj/m2) 1725 1437 
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Collector biomass (predominantly mayflies and chironomids) was positively 

associated with both filamentous algal cover and periphyton AFDM. Grazer 

biomass was not related to AFDM but was negatively correlated to 

filamentous algal cover. This inverse relationship was driven by the 

dominance of Dicosmoecus and pulmonate snails (Table 2.9; Fig. 2.2). 

Where filamentous algal cover was low, both taxa were more abundant, but 

AFDM did not appear to be related to these grazers. Biomasses of other 

individual grazers, such as heptageniid mayflies and Helicopsyche, were 

positively correlated (12= <0.01) with both measures of algal standing crop. 

Relationship between fish density and benthic communities 

Fish diet analysis 

Analysis of stomach contents from speckled dace and rainbow trout 

collected from six experimental pools on Day 32 (Fig. 2.7) indicated that 

grazers and collectors made up the majority of their diet by number. The 

only filterer present in stomachs was the caddisfly Hydropsyche, which 

rarely occurred in benthic samples. Apparently fishes foraged for 

Hydropsyche at the head of pools on weir logs which were not sampled for 

invertebrates. Predators consumed were primarily water striders, mites, and 

the caddisfly Oecetis. 

The diets of both fish species were dominated by mayflies, primarily 

baetids, heptageniids, Paraleptophlebia, and Tricorythodes. Among 

mayflies, electivity indices showed strong election of Baetis, a frequent 

drifter (Waters 1972), and Tricorythodes over their availability, whereas 

election for heptageniids, a group less likely to drift, was weak (Table 2.10). 
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Table 2.9. Correlation matrix of densities (number/m2), and biomasses (mg
DW/m2) of two dominant Camp Creek grazers vs. periphyton biomass (g 
AFDM/m2) and percent filamentous algal cover. Snails include the genera 
Gyraulus, Fossaria, and Physa. Values are Pearson correlation coefficients;
**= p<0.01, *= p<0.05. 

Periphyton % Algal Cover 

Density Biomass Density Biomass 

Day 0 (14 July) 

Dicosmoecus -0.54* -0.59* -0.72** -0.57* 

Pulmonate snails -0.19 -0.35 -0.16 -0.31 

Day 32 (14 Aug) 

Dicosmoecus -0.09 -0.24 -0.70** -0.48*  

Pulmonate snails -0.06 -0.07 -0.47 -0.50*  
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RAINBOW TROUT 
(juveniles) 

Terrestrials (7.0%) 
Filterers (5.5%) 

Predators (8.2%) 

Other (4.9%) 

Grazers (40.0%) 

Collectors (34.4%) 

SPECKLED DACE 
(adults and juveniles) 

Filterers (6.0%) 
Predators (5.0%) 
Other (2.5%) 

Grazers (40.0%) 

Collectors (46.5%) 

Fig. 2.7. Fish diets based on percent composition of invertebrate functional
feeding groups. Juvenile rainbow trout (n =36) and juvenile and adult 
speckled dace (n =31) were collected at the end of the experiment. 
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Table 2.10. Percent composition (%) of fish stomach contents by number
of most common prey taxa. D = Electivity Index; D values of -1.00 to
-0.50 indicate strong avoidance of that prey; -0.49 to -0.26, moderate
avoidance; -0.25 to +0.25, neutral selection; +0.26 to +0.49, moderate 
selection; and +0.50 to +1.00, strong selection (Moyle and Baltz 1985).
SPD = speckled dace; RBT = rainbow trout; juv = juvenile; yoy = young-
of-the-year. 

Mayflies Helicopsyche Chironomids Snails 
(all taxa) 
% D % D % D 

SPD adult 46.3 0.66 2.6 -0.66 17.0 -0.13 22.0 -0.08 

SPD juv 66.6 0.84 0 -1.00 3.5 -0.73 0 -1.00 

RBT juv 46.8 0.67 1.8 -0.76 5.7 -0.61 2.7 -0.85 

RBT yoy 73.5 0.88 3.5 -0.56 0 -1.00 3.6 -0.80 
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Pulmonate snails, although comprising 22% of adult speckled dace diets and 
about 3% of trout diets, were only neutrally or negatively selected relative 

to abundance. Chironomids also had low electivities despite their high 

densities in pools, probably because foraging for them was difficult where 
algal growth was thick. 

Torrent sculpins generally occurred at lower densities than speckled 

dace or trout (Table 2.2) and were primarily piscivorous. Out of seven 

stomachs analyzed, 3 had one mayfly, 1 had 2 mayflies, and five had fish. 

Largescale suckers 

Largescale suckers were stocked in three experimental pools at 

densities of 3.33 fish/m3. No other fishes were placed in these pools, but 

by Day 32 combined densities of speckled dace, rainbow trout, and torrent 

sculpin exceeded sucker numbers. In addition, some suckers disappeared 

from pools during the experiment (one pool lost 75% of its fish), either 

through escapement or predation by kingfishers or other terrestrial 

predators. Consequently, any potential benthic responses to sucker 

presence were confounded by decreases in sucker density and invasion by 

other fish species. Not unexpectedly, by Day 32 sucker pools did not differ 

in macroinvertebrate or periphyton abundances from other experimental 

pools with similar total fish densities. Observations of foraging behavior of 
largescale suckers indicated that feeding time was equally split between 

hovering over epilithic biofilms (consisting of Cladophora basal cells, 

Oscillatoria, and the diatoms Epithemia, Cocconeis, Cymbella, Synedra, and 

Navicula) and picking at algal filaments. 
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Fish density and macroinvertebrates 

The presence of varying densities of rainbow trout, speckled dace, 

and torrent sculpin had no significant negative effects on numbers or 

biomasses of macroinvertebrate guilds in the experimental pools (Table 2.6). 

The abundances of mayflies, a highly preferred prey, and snails, a non-

preferred prey, were unrelated to fish density, with the probability of Type II 

error less than 0.10. A positive correlation between fish density and 

predator and chironomid densities, and the positive, nearly significant 

relation of fish with collector and total invertebrate densities, were linked to 

partial correlations of these groups with periphyton AFDM (Table 2.11). 

Fish density and periphyton 

Fish densities at the end of the experiment were positively correlated 

with periphyton biomass and filamentous algal cover (Table 2.5; Fig. 2.8), 

though the association with algal cover was not significant. Because no 

negative effects of fish on any invertebrate guild were detected, higher algal 

abundance with higher densities of fish was not attributable to a reduction 

of herbivorous invertebrates and subsequent increase in algal production. 

No associations were apparent (r =0.17; 2=0.52) between periphyton 

biomass and the natural fish densities present in study pools before the start 

of the experiment. 
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Table 2.11. Partial correlations of selected invertebrate densities 
(number/m2) vs. fish density (number/m3), with the variable periphyton (g
AFDM/m2) held constant. None were significant. 

Day 32 (14 Aug) 
Fish Density 

Total invertebrates 0.13 

Collectors 0.21 

Predators 0.27 

Chironomidae 0.42 
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Fig. 2.8. Regression of fish density vs. periphyton biomass in mid-August
experimental pools. Best fit to line is login y = 0.45 logio x + 0.76; 
R2=0.30; n<.05. 



82 

Discussion 

Effects of fish on benthic communities 

The presence of predaceous fishes had no detectable negative effects 

on densities or biomasses of invertebrate guilds in the Camp Creek 

experimental pools. Although both speckled dace and rainbow trout fed 

heavily on mayflies and snails, neither of these invertebrate groups were 

significantly impacted. Whereas some studies in streams have 

demonstrated that vertebrate predators have significant top-down effects on 

their prey (Crowder and Cooper 1982; Gilliam et al. 1989; Powers 1990), 

other studies in freshwater habitats have shown predaceous vertebrates to 

have little or no effect on other trophic levels (Allan 1982; Reice and 

Edwards 1986; Culp 1986). The lack of a measurable decline in prey 

abundance in this study may be attributable to several factors, including 

prey exchange, habitat complexity, and abundance of algal resources. 

The magnitude of prey exchange (immigration/recruitment or 

emigration) between habitat patches has a strong influence on the 

detectable effects of predators on prey in stream studies (Cooper et al. 

1990). Predator impacts are governed by the rates of prey depletion 

relative to prey immigration through drift or recruitment, and by factors such 

as sufficient upstream habitat to provide a continuous supply of prey (Power 

1992a). Large mesh sizes on enclosure cages and high flow rates also 

facilitate movement of prey. A recent meta-analysis of predator impact 

studies on stream benthic prey (Cooper et al. 1990) indicated that large-

meshed cages (>4mm), which freely allow prey drift and recolonization, 

may show fewer predator effects than small-meshed cages, especially when 

placed in habitats with fast flow. Camp Creek enclosure meshes of 4mm X 
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16mm were large and should not have impeded prey immigration or 

emigration. Although velocities in the pools were relatively slow, drift rates 

of incoming mayfly nymphs from continuous riffle habitat upstream were 

high (J. Li, unpublished data) and may have swamped prey reductions by 

fish. Power (1992a) found fish predator impacts to be strong in Cladophora 

on bedrock "islands" isolated from potential sources of invertebrate drift, 

whereas impacts were weak in enclosures set up on long gravel bars where 

invertebrate production constantly replenished the prey. 

Fish may also be less effective in structuring lower trophic levels in 

ecosystems where primary production is high. Power et al. (1996) 

postulated that in mesotrophic systems, rapid growth of aquatic vegetation 

allows faster recruitment and more refuges for prey than oligotrophic 

systems, and fish predation is unable to deplete prey. Because Camp Creek 

pools were warm and unshaded, algal standing crop was high and may have 

weakened top-down consumer impacts on lower trophic levels. 

Although fish in Camp Creek did not reduce prey abundance in 

experimental pools, there was significantly more periphyton in pools with 

higher fish densities (Fig. 2.8). Increases in periphyton could occur if fish 

predation reduced the abundance of herbivores (Bechara et al. 1992), but 

there was no evidence of this in our study. Alternatively, predators can 

indirectly increase algal abundance by altering herbivore behavior without 

reducing their numbers. In an Oklahoma stream, the presence of tethered 

smallmouth bass restricted foraging by algivorous chubs and caused 

localized algal blooms (Power et al. 1985). In a tropical stream, avoidance 

of avian predators by herbivorous armored catfish allowed algae to grow 

uncropped in nearshore shallows (Power 1984). Foraging behaviors of 

macroinvertebrate grazers are also affected by the presence of predators. 
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Peckarsky et al. (1993) reported that for Baetis, mayflies, algal consumption 

rates and, consequently, Baetis growth and fecundity, were reduced in the 

presence of predaceous stoneflies. In another study, the presence of 

sculpin similarly reduced Baetis foraging; the mayflies were restricted to 

suboptimal algal patches in unexposed crevices (Kohler and Mc Peek 1989). 

A direct link between fish-induced reduction in macroinvertebrate grazing 

and increased algal biomass was demonstrated in a New Zealand stream 

(McIntosh and Townsend 1996). In enclosures with brown trout, a visual 

feeder, and tactile-foraging common river galaxias, foraging times of a 

dominant leptophlebiid mayfly on rock surfaces were greatly reduced, 

though mayfly densities were unaffected. In treatments with fish, algal 

AFDM was 2X greater than in treatments without fish where mayflies could 

feed freely. This suggests that the presence of trout produced a trophic 

cascade driven by changes in the behavior of the primary consumer rather 

than by its removal. In Camp Creek pools, both visual (trout) and tactile 

foragers (dace) were present at high densities and their combined activities 

may have reduced feeding rates of small invertebrate grazers, especially 

mayflies, causing a subsequent increase in periphyton levels. 

Another explanation for higher periphyton AFDM in high density fish 

treatments may be nutrient enhancement in the enclosures. An increase in 

nutrient availability due to nitrogenous waste from fish concentrated in 

pools can stimulate algal growth (Threlkeld 1987). Because cage screens 

were cleaned daily and mesh sizes were large enough to permit nearly 

natural flows, the probability of nutrient accumulations was reduced. 

However, no water chemistry data that compare nutrient concentrations 

inside and outside enclosures were obtained. 
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Lack of predator impacts can occur when prey increase as predators 

increase. These "unexpected results" often arise through higher-order 

interactions where predators reduce the densities of the enemies 

(competitors or intermediate predators) of their prey (Sih and Wooster 

1994). In Camp Creek, negative predator effects occurred with chironomids 

and invertebrate predators. Density of invertebrate predators and density 

and biomass of chironomids were positively correlated with fish density. 

Although increases in chironomid abundance were observed in studies 

where fish predation depleted numbers of intermediate invertebrate 

predators (Crowder and Cooper 1982; Power 1990; Bechara et al. 1992; 

Diehl 1992), there was no evidence in this study, either correlative or 

dietary, that fish predation impacted abundance of invertebrate predators. 

A more likely mechanism for lack of predator effects is that benefits to 

invertebrates caused by the periphyton increase associated with higher fish 

densities outweighed the deleterious effects of predation. With higher algal 

resources, not only is the food base greater for herbivores but more detritus 

and prey are available for collectors and predators (Dudley et al. 1986). In 

addition, thicker growths of periphyton provide more complex and 

heterogeneous spatial refuges for invertebrates, and decrease foraging 

efficiencies of fish (Crowder and Cooper 1982; Gilinsky 1984; Sih et al. 

1985). 

The role of Dicosmoecus oilvioes in the regulation of benthic communities 

The caddisfly Dicosmoecus oilvioes was a dominant and effective 

herbivore in Camp Creek. Although frequently consumed by terrestrial 

vertebrates such as dippers (Teague et al. 1985), late-instar Dicosmoecus 
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larvae escaped predation by speckled dace and juvenile trout because of 

their large size and heavy case. Dicosmoecus played a key role in the 

regulation of benthic algal abundance and composition in Camp Creek, 

especially during late-instar stages in mid-summer. Fifth instars, which were 

most abundant in late July, have much higher nutritional demands and 

foraging rates than younger instars, resulting in intense algal consumption 

(Li and Gregory 1989; Lamberti et al. 1992). In artificial stream studies, 

fifth-instar Dicosmoecus at natural densities reduced periphyton to lower 

levels than did Baetis or Juga by removing filamentous overstory algae and 

thick understory mats of diatoms (Lamberti et al. 1987; De Nicola et al. 

1990). Jacoby (1987) observed in situ that Dicosmoecus removed almost 

all overstory and filamentous algal species from cobbles, leaving only 

smaller adnate cells. 

Although late-instar Dicosmoecus larvae are capable of rapid depletion 

of periphyton, their window of peak consumptive demand is narrow. In 

mid-July on Camp Creek, 60% of Dicosmoecus were fourth instars and 5% 

were fifth instars. By the first week of August, 98% were fifth instars, but 

half the population had entered diapause, sealing their cases to the 

underside of cobbles. By September all larvae were in diapause. John Day 

Basin streams that are exposed to high daily solar input lack a diversity of 

benthic grazers able to restrict periphyton abundance. When diapause is 

complete and fifth-instar Dicosmoecus are no longer feeding, periphyton is 

released from grazer control despite a high relative biomass of herbivorous 

snails in late summer. Although September periphyton abundance was not 

measured in Camp Creek, comparisons were possible between mid-July and 

September algal biomasses at stream sites in lower John Day Basin. In four 

low canopy or partially canopied stream reaches (Chapter 1, Table 1.1), 
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algal AFDM levels were 1.5 to 2.5 times higher in mid-September (after 

Dicosmoecus diapause) than in mid-July (when Dicosmoecus were active) 

(Table 2.12). 

Although Jacoby (1987) reported that the period of highest nutritional 

needs for fifth-instar larvae coincided with peak periphyton production in a 

western Washington stream, Dicosmoecus appeared to be decoupled from 

temporal cycles of food availability in unshaded eastern Oregon streams. In 

John Day Basin streams the period of high algal abundance extends into 

autumn, and algal standing crops are reduced, but not eliminated, by 

Dicosmoecus for only a few weeks. 

The potential for exploitative competition is high with an organism 

that can rapidly deplete algal resources. Intraspecific exploitative 

competition was suggested in the non-experimental log weir pool where 

Dicosmoecus density was high. Because filamentous algae provide food, 

cover, and structure for many invertebrates (Dudley et al. 1986; Power 

1990; Hart 1992), grazing by Dicosmoecus can also have deleterious 

effects on other benthic species. Densities of other benthic invertebrates 

were negatively correlated with Dicosmoecus abundance on Camp Creek as 

well as in a Cascade Range stream with low canopy cover (Lamberti et al. 

1992). At both sites, small invertebrates may be subject to direct 

interference by Dicosmoecus through bulldozing or predation. Small 

invertebrates may also be responding to periphyton abundance and thus 

indirectly to algal removal by Dicosmoecus. Algal overstory removal can 

benefit some benthic invertebrates by providing specific epilithic habitats 

unavailable with dense algal growth. Where crayfish consumption 

eliminated Cladophora from pools of a Michigan stream, density of sessile 

grazers such as Leucotrichia and Psychomyia increased (Creed 1994). 
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Table 2.12. Comparison of periphyton biomasses (g AFDM/m2) measured in 
lower John Day Basin study reaches in mid-July and mid-September, 1988.
See Table 1.1 for reach physical characteristics. 

Site July September Sept/July 

RC2 29.1 57.9 2.0 

MUR 43.3 106.1 2.5 

MTC 27.2 39.2 1.4 

RC3 23.4 35.1 1.5 
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In this study, the silk cases of hydroptilid caddisflies and Petrophila were 

more apparent on cobbles where filamentous algal cover was low, but there 

were no positive associations between Dicosmoecus numbers and these 

species. It may be that the interval for active feeding and control of algal 

cover by the caddisfly is too brief, whereas crayfish influence lasts several 

months in Michigan and allows considerable time for colonization and 

completion of sessile invertebrate life cycles. 

Dicosmoecus not only impacts its immediate community by depleting 

periphyton, but may also influence downstream communities by dislodging 

algal material and possibly small invertebrates (Lamberti et al. 1992). In 

artificial streams, Dicosmoecus hastened export of undigested algae 

downstream by dislodging filaments with their tarsal claws and heavy 

mineral cases (Lamberti et al. 1987; De Nicola et al. 1990). Algal food 

resources entrained in the current would benefit collectors, filterers, and, 

indirectly, predators downstream from the site of entrainment. 

Because of its ability to regulate algal abundance and composition, 

and to influence benthic community structure through direct and indirect 

effects on algae and invertebrates, Dicosmoecus acts as a keystone species 

in this stream. Elaborating from Paine (1969), Power et al. (1996) defined a 

keystone species as one whose impact on its community is 

disproportionately large relative to its abundance. To quantify this impact, 

Power et al. (1996) suggested estimating "community importance" (CI), a 

measure similar to interaction strength (Paine 1992), where a species' 

impact on a community is estimated by removing that species and 

comparing a particular community trait, such as diversity or nutrient 

availability, with and without the species. CI is calculated as 

CI = [(tN-tD)/tN](1/pi) 
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where tN is the quantitative measure of a trait in the intact community and 

tD is the trait without species i. In our study, Dicosmoecus was species i 

and the community trait was periphyton AFDM on stream substrates (tN) 

and on Dicosmoecus-excluded platforms (tD) of three experimental pools. Pi 

is the proportional abundance of species i, in this case Dicosmoecus 

biomass (g/m2) on pool substrates. A CI with an absolute value much 

greater than 1 indicates that species i is a keystone organism. Average CI 

for Dicosmoecus was -52, which suggests keystone status for this species 

in Camp Creek. 

Many keystone species are context dependent, and are not 

necessarily controlling agents in all parts of their range or at all times 

(Menge et al. 1994; Power et al. 1996). The impacts Dicosmoecus has on 

algal community structure changes seasonally in tandem with ontogenetic 

development (Li and Gregory 1989), and were at maximal strength in Camp 

Creek for only one month in mid-summer. Periphyton in uncanopied 

streams recovers quickly when released from intense herbivory, but long-

term indirect effects of Dicosmoecus on other benthic organisms are 

unknown. Although the interval of peak feeding activity of Dicosmoecus is 

brief, even a temporary depletion of algae that provide food and cover may 

negatively affect multivoltine invertebrates with life cycles of days or weeks. 

Conclusions 

In Camp Creek, experimental pools with high fish densities had more 

periphyton than pools with less fish, and invertebrate abundances closely 

tracked algal standing crops. An increase in invertebrate abundance with 

increasing periphyton indicates a community structure controlled from the 
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bottom up by resource availability. Although top-down impacts of fish 

predation were not detected, a direct downward control was exerted by the 

primary consumer Dicosmoecus on algal standing crops and, indirectly, on 

invertebrate densities and biomasses. 

Plants, through their productivity, provide fundamental control of food 

webs by determining the number of trophic levels possible. Ultimately, 

plants influence the top-down forces that, in turn, regulate their standing 

crops (Fretwell 1987; Oksanen et al. 1981; Power 1992b). A keystone 

herbivore can alter composition and abundance of plant communities in the 

trophic level below, and these changes can transfer up the food web 

beyond the herbivore level (Hunter and Price 1992). Dicosmoecus appears 

to act as an "intermediate regulator" (sensu Lamberti 1996) in the benthic 

food web of Camp Creek by simultaneously influencing trophic levels both 

below and above its own. Like the prosobranch snail Juga, an intermediate 

regulator in northwest streams (Hawkins and Furnish 1987; Lamberti et al. 

1989; Lamberti 1996), Dicosmoecus directly reduces periphyton and 

indirectly reduces abundance of other invertebrates. At the same time, 

Dicosmoecus may limit top trophic levels. Because its large size and heavy 

case precludes consumption by the small predaceous fish inhabiting Camp 

Creek, high abundances of the caddisfly may inhibit fish growth and 

viability. 
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Abstract 

In temperate streams, the effects of canopy removal on benthic community 

processes are well known but the potential effects of canopy restoration on 

streams that have lacked natural canopy for decades have not been 

addressed. Our study examined the effects of artificial shade on a stream 

system that has experienced 100 years of high light and water temperature 

regimes. In Camp Creek, a third-order tributary of the John Day River in 

eastern Oregon, riparian canopy had been removed by logging and heavy 

grazing. Summer solar inputs for the study sites were high, averaging 1572 

Megajoules/m2. We artificially shaded 3 randomly selected pools with 

plastic tarps for 4 wks and compared periphyton biomasses, invertebrate 

densities and biomasses, and fish densities between these shaded pools and 

3 open control pools. Although the tarps reduced irradiance on treatment 

pools to. 5% of original light levels, periphyton biomasses did not vary 

between shaded and open pools, averaging 10 g AFDM/m2 in both 

treatments. However, densities of total invertebrates in open pools were 2X 

and biomasses were 3X those in shaded pools. Specific taxa more 

abundant in open pools were pulmonate snails, chironomids, stoneflies, and 

the predaceous caddisfly Oecetis. Mayflies, such as Baetis and 

heptageniids, and the algivorous caddisflies Helicoosvche and Dicosmoecus 

ailvioes, did not differ between canopy treatments. Canopy had no effect 

on fish abundances. In many streams, increased light is associated with 

higher photosynthetic rates and algal growth, and light-stimulated primary 

production in open pools of Camp Creek apparently was converted to grazer 

biomass rather than periphyton standing crop. This study demonstrated 

top-down regulation of periphyton by herbivory and concurrent bottom-up 

control imposed by reduction in incident radiation. Shading altered the 
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productive capacity of periphyton and subsequently reduced the density and 

biomass of invertebrates the periphyton could support, but shading had little 

influence on periphyton standing crop, which was maintained at uniformly 

low levels by grazers. 

Introduction 

In many temperate streams, much research has focused on the 

effects of deforestation on benthic community processes. Removal of 

riparian vegetation increases the amount of incident solar radiation reaching 

stream substrates, triggering biotic responses at all trophic levels. Several 

studies in the Cascade and Coast Ranges of the Pacific Northwest have 

documented that canopy removal stimulates periphyton growth and accrual 

and, subsequently, increases in macroinvertebrate and salmon abundances 

occur (Aho 1976; Newbold et al. 1980; Murphy et al. 1981; Murphy and 

Hall 1981; Hawkins et al. 1982,1983; Bi lby and Bisson 1992). In other 

studies, increases in incident radiation did not enhance periphyton accrual 

because heavy invertebrate grazing cropped algae to low and uniform levels 

regardless of canopy density (Hawkins and Furnish 1987; Feminella et al. 

1989; Steinman 1992; Hill et al. 1995). In streams, especially those in 

lower elevation rangeland, where canopy removal caused both higher 

irradiance and marked increases in water temperature, periphyton and 

invertebrate abundances increased. However, the higher water 

temperatures proved deleterious to salmonids (Barton et al. 1985; Platts and 

Nelson 1989; Tait et al. 1994). High stream temperatures induce greater 

metabolic demands in trout than can be offset by increased food supply, 

exacerbated by an inhibition of feeding behavior at high temperatures (Li et 
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al. 1994). Increases in water temperature can also disrupt timing of salmon 

life history patterns that leads to reduced population viability (Holtby 1988). 

It is likely that before European settlement, many small streams in the 

high desert region of the intermontane west were canopied, cool, and 

inhabited primarily by cold stenothermic salmonids and sculpins. However, 

livestock grazing, logging, and agricultural development during the last 150 

years have removed extensive tracts of riparian vegetation from many 

streams (Kauffman and Krueger 1984; Meehan 1991). In Chapter 2, we 

examined trophic interactions on Camp Creek, a third-order rangeland 

stream whose sparsely canopied streambanks allowed high solar inputs and 

elevated summer temperatures. Periphyton accrual was not limited by 

irradiance but was controlled primarily by Dicosmoecus ailvioes, a robust, 

grazing caddisfly that acted, in mid-summer, as an intermediate regulator 

influencing multiple trophic levels. Speckled dace, a generalist species 

tolerant of warm water, was 6X more abundant than rainbow trout and 

sculpins in Camp Creek. The fish community as a whole appeared to have 

minimal impact on lower trophic levels. 

It is unlikely that streams such as Camp Creek will return to a pristine 

state with fully restored riparian canopy and cold groundwater recharge. 

However, current land management philosophies support careful riparian 

stewardship to increase streamside vegetation (Interior Columbia Basin 

Ecosystem Management Project 1997). If riparian management is improved, 

eventually heavier canopy cover should exist on Camp Creek. In this study 

we examined the influence of canopy restoration, rather than canopy 

removal, on a stream system that has experienced decades of high light and 

temperature conditions. We artificially shaded randomly selected pools and 

compared periphyton biomasses, invertebrate densities and biomasses, and 



103 

fish densities between these shaded pools and open control pools. In 

addition, we compared Camp Creek to a heavily-canopied, relatively pristine 

reference stream, Deardorff Creek, with regard to benthic community 

structure and processes in the two systems. 

Study Areas 

Camp Creek 

The study was conducted in Camp Creek (44°39' latitude; 118°49' 

longitude) within the John Day River Basin of northcentral Oregon. Camp 

Creek is a third-order stream that flows northwest and ranges in elevation 

from 1719 m to 1055 m. The study area receives about 60 cm of 

precipitation annually, mostly falling from November to May. Summer low 

flows (0.11 m3/s in 1991) occur mid-July through September and summer 

stream temperatures are warm due to lack of overhanging canopy. Intense 

livestock grazing occurs throughout the watershed. Typical streamside 

vegetation includes grasses (Phalaris spp.), sedges (Carex spp.), white alder 

(Alnus rhombifolia), and black cottonwood (Populus trichocarpa). Willows 

(Salix spp.) are rare. Ponderosa pine (Pinus ponderosa) and Douglas-fir 

(Pseudotsuga menziesii) dominate the hillslopes, but most riparian conifers 

were logged in the 1920's. 

Historically, Camp Creek provided spawning habitat for steelhead and 

resident rainbow trout (Oncorhynchus mykiss) and spring chinook 

(Oncorhvnchus tschawytsha). While both species presently occur in the 

stream, conditions are no longer favorable for chinook to spawn. Presently 

juvenile rainbow trout and juvenile and adult speckled dace (Rhinichthys 

osculus) are numerically dominant, although redside shiners (Richardsonius 
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balteatus), largescale suckers (Catostomus macrocheilus), and sculpins 

(Cottus spp.) also occur. In an effort to improve fish habitat in Camp Creek, 

the Bonneville Power Administration installed 256 log weirs along 19 km of 

stream in the 1970's. The log weirs formed pools of fairly uniform size and 

morphology which were used for experimental units. 

The log weir experimental pools were located within a mid-basin 

reach of Camp Creek (length =3.3 km) and varied little in elevation (1253-

1318 m), solar input, stream temperature, or volume. The six study pools 

received similar levels of solar input prior to installation of artificial canopies, 

averaging 1572 Mj/m2 (CV =15.6%). The canopies reduced irradiance on 

treatment pools to 5% of original light levels on average (mean =84 Mj/m2 

± 4.5). Daily summer stream temperatures averaged 20° C, with mean 

maximum and mean minimum temperatures of 24.5° C and 12.3° C, 

respectively. Maximum summer water temperature was 26° C. Because of 

cooler, wetter weather in summer 1991, average daily summer stream 

temperatures and maximum temperatures were lower and August stream 

flows higher than the previous year. 

Deardorff Creek 

Deardorff Creek was selected as a reference stream for this study 

based on cluster analysis of 26 John Day Basin watersheds (Li et al. 1994). 

Watersheds were analyzed based on physical characteristics, such as mean 

annual precipitation, watershed area, compass aspect, elevation, and mean 
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Table 3.1. Some physical characteristics of paired Camp Creek and 
Deardorff Creek watersheds in the John Day Basin, OR. 

Watershed Area 
(km2) 

Cumulative 
Mean 

Annual 
Precip 
(cm) 

Compass 
Aspect 

High 
Elev 

Low 
Elev 

Camp Creek 

Deardorff Creek 

168 

53 

63.5 

69.9 

1.75 

2.75 

1719 

2030 

1055 

1213 
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annual runoff, and Deardorff Creek was most closely associated with Camp 

Creek (Table 3.1). Deardorff Creek (44°23' latitude; 118°37' longitude) is a 

forested, third-order stream that flows northwest from the Blue Mountains. 

Summer low flows (0.03 m3/s in 1991) occur in August and September. 

Deardorff Creek is cold (average daily =12.0° C; average summer 

maximum =13.5° C; average minimum =7.0° C) and densely canopied 

through much of its length with mixed conifers (Douglas-fir and ponderosa 

pine) and herbaceous shrubs. Although the Deardorff Creek watershed is 

grazed periodically, the effects of livestock on riparian canopy have been 

minor. 

Deardorff Creek provides spawning habitat for steelhead and resident 

rainbow trout, cutthroat trout (Oncorhynchuq clarki), and bull trout 

(Salvelinus confluentus). As in Camp Creek, log weir structures were 

installed at frequent intervals in an effort to improve fish habitat. Six log 

weir pools along a 2 km reach (elev. 1320-1345 m) were chosen as 

sampling sites and were similar in volume (mean =12.4 m3; SE =1.2 ). 

Average summer solar input in the pools ranged from 273 to 980 Mj/m2 

(mean = 605 Mj/m2; SE =162). 

Methods 

Camp Creek artificial canopy experiment 

Field experiments were conducted in mid-summer 1991 along a 3.3 

km reach of lower Camp Creek in order to determine the impacts of artificial 

shading on the abundance and species composition of benthic communities. 

For study units, we reused six of the 18 log weir pools selected the 

previous year for a fish enclosure experiment (see Chapter 2). The six pools 
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were chosen at random. Mean accumulated solar input (Megajoules/m2) for 

June, July, and August was measured in each pool using a Solar Pathfinder 

(see Chapter 1). Because of high water clarity, turbidity did not affect the 

amount of light reaching the substrate. Pool volumes were determined at 

the beginning and end of the experiment. Weekly maximum and minimum 

water temperatures were recorded with maximum-minimum thermometers. 

Three of the six pools were selected at random to be canopied. Each 

pool was covered on 15 July with an opaque plastic tent fly (2.5 m X 4 m) 

suspended 1 m over the water surface. The tents may have interfered with 

some terrestrial inputs of leafy debris and insects, but lack of overhanging 

vegetation in these pools made a significant decrease in allochthonous input 

unlikely. Solar Pathfinder readings under the canopies showed a 95% 

reduction in solar input, and only angled light from near the horizon reached 

the streambed. The tent flies were left in place for 4 wks, whereas the 

remaining three pools were not covered and served as controls. Sampling 

of benthic communities in each pool occurred prior to canopy installation 

and again at the end of the experiment. Algal standing crops were 

estimated visually by recording relative cover of prominent algal growth 

forms (see Chapter 2), and by direct sampling of periphyton biomass (g/m2 

ash-free dry mass (AFDM)) and chlorophyll a concentration (mg/m2) using 

methods described in Chapter 1 for other John Day Basin sites. In addition, 

allochthonous debris, such as leaf and woody litter, was collected from the 

streambed of each pool by vacuuming the substrate surface inside a Hess 

sampler with a backpack pump. Debris was separated from mineral 

material, dried at 55° C for 24h, and weighed. 

In order to assess the potential impact of macroinvertebrate grazing 

on periphyton abundance in experimental pools, three rocks with typical 
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accumulations of periphyton were selected from the substrate and were 

protected from invertebrate grazing by placement on platforms suspended 

over, but not touching, the pool substrate. While platforms excluded most 

large, crawling grazers such as caddisflies and snails, they were easily 

colonized by drifting mayflies and midges, and therefore grazing was 

decreased but not completely eliminated. After 4 wks, periphyton from the 

three platform rocks and from three control rocks was removed, pooled, and 

measured using the same methods as for substrate AFDM and chlorophyll A. 

Invertebrates were collected in each pool by scooping 5 

nonembedded, cobble-sized rocks from the substrate into a net, removing all 

invertebrates, and pooling the organisms into a single sample (Wrona et al. 

1986). Total rock surface area was estimated by wrapping with aluminum 

foil. All organisms retained by a 250pm mesh sieve were preserved in 95% 

ethanol, identified to genus, enumerated, and measured. Taxa were later 

assigned to functional feeding groups sensu Merritt and Cummings (1984). 

Scrapers and other invertebrates that commonly feed on living algal cells 

were designated grazers. Gatherers and filterers were combined into 

collectors. Shredders and predators also were recognized. Biomasses were 

estimated by using known length-weight relationships for preserved material 

(Smock 1980). Snails were removed from shells, dried at 55° C for 24 h, 

and weighed. In addition, population estimates were made of the large 

caddisfly Dicosmoecus gilvipes visible with a viewing scope on substrate 

surfaces within the 6 sample quadrats where algal cover was also 

estimated. 

Fishes in each pool and in the adjacent upstream riffle were 

inventoried before and after the experiment by snorkeling; divers counted 

fishes by species and age class. Methods were similar to snorkeling counts 
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described in Chapter 1, except that three divers were used instead of two. 

Fish densities were calculated as numbers/m3. 

Differences between treatments were analyzed with t-tests; data 

were transformed with logio(x +1) or squareroot arcsine when necessary to 

control heteroscedastisity and nonnormality. Percent change in invertebrate 

densities and biomasses, calculated as the density or biomass of an 

invertebrate group on Day 30 divided by the same parameter on Day 0, was 

used to compare the magnitude of changes in invertebrates over time for 

each treatment. 

Deardorff Creek sampling 

No experiments were conducted on Deardorff Creek, but most of the 

physical and biological measurements and analysis done in Camp Creek 

were repeated in Deardorff Creek. Sampling units were six, nonadjacent log 

weir pools of similar size and volume. Maximum and minimum stream 

temperatures were monitored from mid-July to mid-August. Sampling of 

periphyton, allochthonous debris, macroinvertebrates, and fish occurred 12-

13 August 1991 immediately after the termination of the Camp Creek 

experiment. 
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Results 

Camp Creek artificial canopy experiment 

Periphyton Abundance 

No differences in periphyton biomass (g AFDM/m2) between July and 

Aug Ust (2 =0.35 for open pools; 2=0.78 for shaded pools) or between 

open and shaded treatments (2=0.71) were found (Fig. 3.1). Although 

algal accrual would be expected in control pools during the period of peak 

summer growth, only a modest, nonsignificant increase occurred. AFDM for 

different times and treatments was remarkably consistent, with values 

similar (-10 g/m2) to those found in other grazed streams under diverse 

nutrient and irradiance regimes (Feminella and Hawkins 1995). Percent 

filamentous algal cover ranged from 0% to 70% among experimental pools 

in August, but no significant differences were detected among treatments. 

Ratios of g algal biomass to mg chlorophyll a were marginally lower in 

shaded pools (mean =0.23 ± 0.05) than open pools (mean =0.52 ± 0.38; 

2 =0.08). Lamberti et al. (1989) observed similar trends in artificial streams 

where biomass/chlorophyll of periphyton decreased with decreasing light 

intensities. Shade-adapted plants commonly have higher photosynthetic 

pigment concentrations (McIntire and Phinney 1965; Hill 1996) in order to 

capture light more efficiently. 

Effects of experimentally reduced grazing on periphyton accrual were 

ambiguous. Although no heavy grazers such as snails or Dicosmoecus were 

found on platforms, these platforms in both open and shaded pools were 

colonized by large numbers of heptageniid, baetid, and leptophlebiid 
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Fig. 3.1. Average algal biomasses in Camp Creek pools at onset and end of 
artificial canopy experiment. Bars represent ± 1 standard error. 
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mayflies, frequently at greater than ambient densities. Periphyton biomass 

accumulations did not differ between platforms and substrates for either 

canopy treatment. Small sample sizes (the platform in one pool was lost 

during a spate) and low frequency of sampling considerably reduced the 

probability of detecting effects of grazing if they were present. 

Benthic Invertebrates 

By the end of the 4 wk experiment, total densities of invertebrates in 

open pools were about 2X those of shaded pool densities (Table 3.2; Fig. 

3.2). Densities of all guilds except shredders were higher in open pools, 

although grazer densities were not significantly so. Shredder densities 

increased by 100X in both treatments, primarily due to recruitment of the 

caddisfly Lepidostoma. Total invertebrate biomass was 3X higher in open 

pools, with especially large differences in predator biomasses between open 

and shaded sites (Table 3.2). Biomasses of collectors and grazers were also 

higher in open pools, though grazer biomass was not significant. Specific 

invertebrates that were more abundant in open pools included pulmonate 

snails (Physa, Fossaria, and Gyraulus); the collectors Tricorythodes, elmid 

larvae, and annelids; and the predators Calineuria and Oecetis. Chironomids 

also occurred in greater numbers in open sites. Some grazer taxa that 

showed no response to the treatment included the mayflies Baetis, 

Paraleptoplebia, and Leucrocuta, and the caddisflies Helicopsyche and 

Dicosmoecus. The dipterans Atherix and Antocha occurred in low numbers 

and only in shaded pools. 

Percent change in densities and biomasses of invertebrate groups 

during the 4 wk experiment showed few significant differences between 



Table 3.2. Mean densities (number/m2) and biomasses (g dry weight/m2) of benthic invertebrates in artificially 
shaded and open pools of Camp Creek. standard errors are in parentheses; P-values were calculated using two-
sample t-test on log transformed means. 

Open Pools Shaded Pools	 P-Value 

Density Biomass Density Biomass Density Biomass 

Total	 3870 0.89 1915 0.29 .004 .001 
Invertebrates (±405) (±0.70) (±102) (±0.03) 
Grazers	 1320 0.43 920 0.20 .071 .081 

(±93) (±0.16) (±116) (±0.09) 
Collectors 1574 0.30 560 0.07 .047 .019 

(±444) (±0.08) (±106) (±0.01) 
Shredders 246 0.001 133 0.002 .45 .92 

(±120) (±0.001) (±81) (±.002) 
Predators 719 0.17 290 0.02 .009 .001 

(±117) (±0.02) (±28) (±0.003) 
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Fig. 3.2. Average total invertebrate density in Camp Creek pools at onset 
and end of artificial canopy experiment. Bars represent ± 1 standard error. 
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open and shaded treatments (Table 3.3). Percent changes between July 

and August in densities and biomasses of total invertebrates, collectors, 

grazers, and predators in open pools were greater than in shaded pools, but 

were not significant because of high variability. Changes in shredder 

density and biomass were greater in shaded pools, but were also not 

significant. 

For two specific taxa, percent change in density or biomass was 

significantly greater in the open than in the shaded treatment. Increase in 

pulmonate snail biomass in open pools was 4.2X greater than the increase 

in shaded pools. Although percent change in snail density in open pools 

was 2X that in shaded pools, large sample variances precluded significance 

(2=0.18). Change in density of the predaceous caddisfly Oecetis was 

significantly greater (by 4.8X) in open treatments. 

Changes of abundances for other taxa revealed no canopy effects. 

Baetis densities increased similarly in both treatments over time, although 

Baetis biomasses appeared to increase more in open pools than in shaded 

pools (but not significantly so). No significant changes occurred in 

Paraleotophlebia and Leucrocuta densities, but Helicoosyche numbers 

decreased by 30% in both treatments, probably due to emergence. 

Dicosmoecus densities and biomasses also declined in both open and 

shaded pools as larvae entered diapause and ceased feeding. 

The relative abundances (for densities and biomasses) of invertebrates 

at the onset and termination of the experiment were compared between 

open and shaded pools (Fig. 3.3). For most guilds, changes in relative 

abundances were similar in both treatments, and appeared related to 

ontogeny rather than canopy effects. Grazers, the dominant guild in both 
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Table 3.3. Percent change in invertebrate densities and biomasses after 4
wks in open pools and pools under artificial canopy in Camp Creek.
Standard errors are in parentheses. No differences between treatments
were significant. 

Total invertebrates 
Density 

Biomass 

Grazers 
Density 

Biomass 

Collectors 
Density 

Biomass 

Shredders 
Density 

Biomass 

Predators 
Density 

Biomass 

Open Pools 

402  
(±103)  

382  
(±198)  

288 
(±61) 

408  
(±171)  

385  
(±107)  

761  
(±353)  

3830 
(±1294) 

59 
(±37) 

943  
(±331)  

279  
(±167)  

Shaded Pools 

279 
(±63) 

92 
(±41) 

243 
(±69) 

99 
(±21) 

223 
(±19) 

242 
(±39) 

9933  
(±7583)  

116 
(±63) 

531  
(±206)  

148  
(±138)  
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Fig. 3.3. (a) Relative densities and (b) relative biomasses of invertebrate 
functional feeding groups in open pools and pools with artificial canopy in 
Camp Creek. Initial and final values were measured before start of 
experiment in mid-July and at experiment end in mid-August, respectively. 
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open and shaded sites, declined in relative density but did not change 

appreciably in relative biomass. Relative densities of collectors remained 

similar over time while biomasses increased with time. Shredder relative 

abundance increased in both treatments because of greater numbers of 

hatching and developing Lepidostoma. Predators increased in relative 

density in both treatments as population size of the small-bodied Oecetis 

grew, and decreased in relative biomass with the emergence of Calineuria 

and the dragonfly Ophiogomohus. 

Relative abundances of some dominant invertebrate taxa also 

changed between experiment onset and termination (Table 3.4). Pulmonate 

snails (both density and biomass) comprised less than 9% of the 

invertebrate community in all pools initially. After 4 wks, snail relative 

abundance in shaded pools was unchanged, but snails accounted for 33% 

of the biomass and 13% of total invertebrate density in open treatments. 

Baetis relative densities were also similar in all pools initially (5%), but 

tripled in shaded pools by the end of the experiment. Dicosmoecus biomass 

was relatively more important at the outset in pools to be canopied (32%) 

than pools to be left open (15%) but had declined by 10% in both 

treatments after 4 wks. 

Fish Abundance 

The canopy treatment had no apparent effect on densities of juvenile 

and adult speckled dace or rainbow trout (Table 3.5). Although fish 

densities (except young-of-the-year) generally decreased in all pools over 

time, there were no significant differences in fish numbers or in 
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Table 3.4. Average relative densities (number/m2) and biomasses (g dry
weight/m2) of invertebrates in study pools at onset and at end of canopy 
treatment. Snails are pooled abundances of Gyraulus, Fossaria, and Physa.
Standard errors are in parentheses. 

Open pools Shaded pools 

Initial Final Initial Final 

Snails 

Density 0.03 0.13 0.05 0.06  
(±0.01) (±0.04) (±0.03) (±0.02)  

Biomass 0.02 0.32 0.09 0.09  
(±0.01) (±0.24) (±0.08) (±0.03)  

Baetis 

Density 0.04 0.07 0.05 0.16  
(±0.02) (±0.01) (±0.02) (±0.04)  

Biomass 0.01 0.02 0.03 0.05  
(±0.01) (±0.001) (±0.02) (±0.02)  

Dicosmoecus 

Density 0.02 0.0004 0.01 0.001  
(±0.01) (±0.0004) (±0.003) (±0.001)  

Biomass 0.13 0.05 0.32 0.21  
(±0.06) (±0.05) (±0.10) (±0.20)  
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Table 3.5. Fish densities (number/m3) at onset and end of canopy
experiment. Standard errors are in parentheses. Differences in final
densities between treatments are not significant. 

Open pools Shaded pools 

Initial Final Initial Final 

Rainbow trout 0.23 0.05 0.56 0.26 
(age 1+ to 3+) (±0.06) (±0.03) (±0.18) (±0.12) 

Speckled dace 5.7 3.1 8.6 5.1 
(juveniles, adults) (±1.8) (±1.2) (±3.5) (±2.9) 

Young-of-the-year 2.8 8.0 2.3 6.5 
(all species) (±1.6) (±0.5) (±2.2) (±1.7) 
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the rate of population decline between open and shaded pools after 4 wks. 

Young-of-the-year fish increased throughout the experiment because of 

summer recruitment, but no canopy effects were detectable. 

In adjacent upstream riffles, none of which were artificially shaded, 

rainbow trout densities were lower (mean = 0.03 trout/m3; SE =0.01) than 

densities in log weir pools, but the difference was not significant (2=0.11). 

Speckled dace densities in riffles (mean =6.17 fish/m3; SE = 2.21) were 

similar to those in log weir pools. 

Deardorff Creek--physical and biological characteristics 

Periohyton Abundance 

Periphyton in Deardorff Creek consisted mainly of thin biofilms, and 

most substrate surfaces appeared bare or covered with diatom mats. 

Filamentous green algae occurred along pool margins, covering about 15% 

of the streambed. Mean algal standing crop for the six pools was 8.9 g 

AFDM/m2 (SE =2.5). Chlorophyll a concentrations averaged 31.6 mg/m2 

(SE = 2.5) and were correlated with periphyton biomass (r =0.73; 2= .01). 

Allochthonous debris consisted principally of fir needles and small wood, 

and averaged 18.6 g/m2 (SE =7.5). 

Benthic Invertebrates 

Average densities and biomasses of invertebrate functional feeding 

groups in Deardorff Creek are shown in Table 3.6. Invertebrate densities 

were dominated by grazers and collectors (Fig. 3.4), with most of these 
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Table 3.6. Mean densities (number/m2) and biomasses (g dry weight/m2) of 
benthic invertebrates in 6 logweir pools of Deardorff Creek, John Day Basin,
Oregon, in August 1991. Standard errors are in parentheses. 

Density Biomass 

Total invertebrates 1557 
(±380) 

0.80 
(±0.27) 

Grazers 711 
(±193) 

0.17 
(±0.5) 

Collectors 574 
(±150) 

0.14 
(±0.05) 

Shredders 18 
(±9) 

0.18 
(±0.06) 

Predators 235 0.30 
(±58) (±0.17) 
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Predators 

Shredders 

Collectors 

Grazers 

Density Biomass 

Fig. 3.4. Relative densities and biomasses of invertebrate functional feeding 
groups in Deardorff Creek pools in mid-August. 
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being small taxa such as Baetis, Cinygmula, chironomids, and the elmids 

Ootioservus and Zaitzevia. The larger grazer Glossosoma accounted for 6% 

of total invertebrate density and 1% of invertebrate biomass. Shredders, 

which comprised <2% of invertebrate density, were 22.5% of invertebrate 

biomass. The limnephilid caddisfly Dicosmoecus atripes, a congener of the 

keystone grazer D. gilvipes found in Camp Creek, was the dominant 

shredder, contributing over 95% to shredder biomass and making up 23% 

of total invertebrate biomass. D. atripes is also predaceous, with 30% of its 

diet consisting of animal prey (Gotceitas and Clifford 1983), and so is not 

readily assigned to a single functional feeding group. Predator biomass 

(38%), which was almost entirely comprised of the perlid stonefly 

Doroneuria, dominated the invertebrate assemblage. 

Fish Abundance 

Snorkeling surveys in the Deardorff Creek log weir pools recorded 

only 2 fish species, rainbow and cutthroat trout, at average densities of 

0.19 trout/m3 (SE =0.09). Trout were more abundant in adjacent riffles 

(mean =0.27 trout/m3; SE =0.10) than in log weir pools, but the difference 

was not significant (2=0.54.). 

Discussion 

Use of artificial canopy to simulate natural riparian cover is unrealistic 

in some respects, but instructive in others. The canopies in this study were 

in place for only 1 month beginning mid-summer, and were installed over 

pools with benthic communities already established under full light regimes. 

Only mobile species or species with short developmental times could 
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demonstrate detectable responses to canopy within that brief period. 

Nevertheless, some community responses occurred that provide insight to 

the nature of community regulation in Camp Creek and augment conclusions 

drawn from previous studies (Chapter 2). 

Despite a 20-fold difference in light intensity between open and 

shaded pools, periphyton abundances did not vary with canopy treatment in 

Camp Creek (Fig. 3.1), averaging about 10 g AFDM/m2 in both treatments 

and not differing significantly from pre-experiment AFDM levels. By 

contrast, many stream studies show that sites with high irradiance 

frequently develop high periphyton standing crops. Periphyton is often 

positively correlated with irradiance, and AFDM can be 4-5 times higher in 

open than in shaded sites (Lowe et al. 1986; Hill and Knight 1988; Tait et 

al. 1994). However, these high periphyton biomasses are usually found in 

streams where grazing pressure is low relative to primary production. In 

studies such as this one, where periphyton biomass was not correlated with 

light, high grazing pressure may be a factor (Hill et al. 1995; Hill 1996). 

Grazing pressure was significant in Camp Creek (see Chapter 2) as 

demonstrated by 55% higher periphyton biomass in reduced-grazing 

treatments compared with controls. In a California stream with varying 

irradiance levels, Feminella et al. (1989) attributed uniformly low substrate 

periphyton (10 g AFDM/m2) to differential grazing by caddisflies and 

mayflies. Although light is associated with faster algal growth and 

photosynthetic rates (Jasper and Bothwell 1986; Lamberti et al. 1989; Hill 

1996), light-stimulated primary production can be converted to grazer 

biomass rather than periphyton standing crop (Behmer and Hawkins 1986; 

Lamberti et al. 1989; Hill et al. 1995). Standing crops of food resources in 

Camp Creek were similar between canopy treatments, but open pools 
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supported 3X the invertebrate biomass of shaded pools. Apparently, higher 

primary production in open pools was subsequently converted to higher 

secondary production rather than algal standing crop. 

For specific invertebrates in Camp Creek, absolute abundances 

(densities and biomasses) and percent increases in abundance were 

significantly greater in open pools than in shaded pools. Pulmonate snail 

biomass was 10X greater and density was 4X greater in open pools after 4 

wks. Snails became the dominant grazer in these pools, comprising 32% of 

the invertebrate biomass, compared with 9% of the biomass in shaded 

pools. Many studies demonstrate that prosobranch snails are able to track 

algal abundance and are capable of regulating algal communities. In 

western Oregon, Hawkins and Furnish (1987) found that Juga, maintained 

low AFDM levels under a variety of canopy densities because snail numbers 

paralleled algal biomass. In Tennessee streams, Elimia grazed periphyton 

standing crops to low biomasses regardless of irradiance, and algal 

abundance increased with light only when snails were removed (Steinman 

1992). Pulmonate snails are also capable of reducing algal standing crops, 

especially stalked diatom and filamentous overstories (Bronmark et al. 

1992). In the pools used for this study, Dicosmoecus occurred in low 

numbers, and snails were likely the principle regulator of algal standing 

crops in open pools. The lower abundance of snails in shaded pools was 

probably due to avoidance of shaded sites or to reduced recruitment in 

shade. 

Several mobile grazers that were expected to avoid shaded patches 

with lowered primary productivity demonstrated no changes in distribution 

with canopy treatment. Among the mayflies, Baetis, Paraleptoohlebia, and 

Leucrocuta showed no significant differences in abundance between shaded 
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and open pools. By contrast, in a comparison of riffle sites in a Utah 

stream, Behmer and Hawkins (1986) reported that biomasses of two Baetis 

species were 5.7X and 2.3X higher, and biomass of Cinygmula was 1.6X 

higher, in open sites than in shaded sites. Fuller et al. (1986) reported a 

reduction of Baetis tricaudatus densities along with periphyton under 

artificial canopies. Others have documented that abundance of grazing 

mayflies generally increases with intensity of incident radiation and 

concomitant algal growth (Bruns and Minckley 1980; Newbold et al. 1980; 

Hawkins et al. 1982; Dudley et al. 1986; Richards and Minshall 1988). In 

all of these studies, shading was of long duration, in contrast to the short-

term shading of the Camp Creek streambed. However, baetid drift rates 

increase when food is lacking (Kohler 1985) and Baetis is capable of rapid 

response to food abundance levels, colonizing rich patches or abandoning 

poor ones within hours (Richards and Minshall 1988). Periphyton biomass 

in Camp Creek was grazed to uniform levels in both canopy treatments, and 

baetids and other mayflies did not gather in pools with higher light levels. 

Another mobile grazer that showed no difference in abundance with 

treatments was Helicoosyche, which at high densities can significantly 

affect periphyton abundance and spatial distribution. Lamberti and Resh 

(1983) found that Helicopsvche borealis in a northern California stream 

aggregated on rich periphyton patches but became randomly distributed 

once they reduced periphyton to background levels. Furthermore, 

Helicopsyche larvae competed intraspecifically for limited algal resources 

(Lamberti et al. 1987). Feminella et al. (1989) reported Helicoosyche 

numbers in the same stream to be unrelated to riparian canopy. Canopy 

had little influence on periphyton standing crop so that distribution of food-

rich patches that could attract the caddisflies was not determined by 
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incident light levels. In Camp Creek, the algivore Dicosmoecus also 

appeared to be uninfluenced by canopy, occurring initially in moderate 

densities in open and shaded pools but decreasing by 80% in both 

treatments by the end of the experiment. Because Dicosmoecus was 

entering diapause during the experiment rather than actively dispersing, its 

life history stage may have had a greater effect on its distribution than 

canopy. However, late-instar Dicosmoecus spend 90% of their time 

foraging (Hart 1981), and concentrate their efforts on rich food patches in a 

manner reminiscent of Helicopsyche (Lambert and Resh 1983). 

Dicosmoecus, then, were likely important grazers for part of the study and 

may have contributed significantly to the reduction of periphyton biomass to 

uniformly low levels. 

Conclusions 

The scarcity of riparian canopy on lower Camp Creek is not a natural 

condition and was caused by past logging and overgrazing by livestock. 

Improved land management practices may eventually restore some riparian 

canopy, and the benthic community should adjust to reduced irradiance. If 

canopy is restored to near complete closure, accompanied by a significant 

decrease in maximum stream temperature, an alteration in benthic species 

composition would be expected. 

It is instructive to examine benthic community structure and 

processes on a relatively pristine reference stream, Deardorff Creek, in order 

to visualize the endpoint of complete canopy restoration on Camp Creek. 

Deardorff Creek is similar to Camp Creek in many physical respects (e.g., 

elevation, aspect, stream order) but the undisturbed riparian forest on 
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Deardorff Creek transmitted 50% less light than was measured on Camp 

Creek. In Deardorff Creek log weir pools, average maximum temperatures 

(13.5° C) were lower than in Camp Creek (24.5° C), but mean periphyton 

biomass (8.9 g AFDM/m2) and total invertebrate biomass (0.80 g dry 

weight/m2) were not significantly different than in open Camp Creek pools 

(9.8 g AFDM/m2, 2=0.75; 0.89 g dry weight/m2, 2=0.92). However, total 

invertebrate density in open Camp Creek pools (3870/m2) was significantly 

greater than in Deardorff Creek pools (1557/m2; 2= <0.05), suggesting a 

greater abundance of small prey for fishes. 

Relative abundances and composition of benthic invertebrates should 

shift to accommodate the changes in energy resources that occur when 

canopy density is altered. In Camp Creek, where higher overall light and 

temperature regimes likely stimulated photosynthetic rates, dominant 

grazers were large; snails and Dicosmoecus made up 75% of grazer biomass 

(Fig. 3.5a). In Deardorff Creek, with lower potential photosynthetic 

capacity but higher allochthonous inputs, the majority of grazer biomass 

(77%) was comprised of small baetid and heptageniid mayflies (Fig. 3.5b) 

that are adapted to harvest the thin biofilms that proliferate in shaded 

streams (De Nicola et al. 1990). Dicosmoecus gilvipes and snails, common 

in Camp Creek, were absent. 

Along with reduced solar energy input, restored canopy on Camp 

Creek should increase allochthonous inputs from leaf litter and woody 

debris. Deardorff Creek displays the trophic characteristics expected of a 

low-order stream under the river continuum concept (Vannote et al. 1980), 

where inputs of coarse particulate organic matter provide a critical resource 

base for consumers. Mean dry weight of streambed litter from Deardorff 

Creek pools (18.6 g/m2) was 2X the amount measured in Camp Creek 
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a) Camp Creek 

Chironomidae (3.5%) 

mayflies (21.4%) Dicosmoecus (28.8%) 

Helicopsyche (0.3%) 

snails (45.9%) 

b) 
Deardorff Creek 

other (5.9%) Glossosoma (5.3%) 

Chironomidae (11.8%) 
Heptageniidae (19.5%) 

Baetis (57.4%) 

Fig. 3.5. Density of specific grazer taxa relative to total grazer density in (a) 
Camp Creek control pools and (b) Deardorff Creek pools. 
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(7.9 g/m2). Consequently, shredders were large and dominant in Deardorff 

Creek, accounting for 22% of invertebrate biomass compared to <1% in 

Camp Creek (Figs. 3.3, 3.4). Although Camp Creek lies at about the same 

elevation as Deardorff Creek (study areas on both streams were at approx. 

1300 m), canopy removal effectively displaces Camp Creek downstream in 

the river continuum, where ample sunlight reaches the streambed to support 

significant periphyton productivity, and heterotrophy declines. 

The dominant shredder in Deardorff Creek was Dicosmoecus atripes, 

a large caddisfly closely related to D. ailvioes, the keystone grazer of Camp 

Creek (Chapter 2). Although the two species have broadly differing diets 

and life histories, they rarely coexist (Gotceitas and Clifford 1983; Wiggins 

and Richardson 1982). D. atripes' 2-year life cycle and extended diapauses 

enable it to inhabit cold, high elevation streams, whereas D. ailvioes 

requires warmer water to complete its 1-year developmental period. If 

canopy restoration on Camp Creek is sufficient to significantly lower water 

temperatures and increase allochthonous inputs, significant changes may 

occur in benthic species composition and processes. These changes may 

include the replacement of D. ailvioes with D. atripes, its locally abundant 

congener, and a shift from grazer-dominated to shredder-dominated benthic 

communities. 

Along with the greater density of invertebrates in Camp Creek, total 

fish densities were 20X higher there than in Deardorff Creek. Trout 

densities in Camp Creek pools (0.15 trout/m3) were not significantly 

different than densities in Deardorff Creek pools (0.19 trout/m3; 2=0.77), 

despite greater food availability in Camp Creek. However, Deardorff Creek 

trout appear to underutilize log weir pools relative to other habitats, such as 

natural pools and riffles (Adams et al. 1990), and therefore trout densities 
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for log weir pools likely underestimate salmonid standing crop in Deardorff 

Creek. Only 3.5% of Camp Creek fishes were salmonids, whereas all fishes 

observed in cooler Deardorff Creek were salmonids (rainbow and cutthroat 

trout). Higher metabolic demands of trout at warmer water temperatures 

have been shown to negate the potential benefits of increased food supply 

(Li et al. 1994). 

A more likely riparian restoration scenario on Camp Creek than 

complete canopy would be a mosaic of canopy densities, from heavy to 

completely open. Dominant benthic taxa likely would not change under this 

regime, but their local distributions may shift with the amount of light in 

their habitat. A biofilm similar to that described by Feminella et al. (1989) 

may occur, where periphyton is cropped to low and uniform levels 

regardless of irradiance by the combined action of grazers targeting different 

primary productivities. The impacts of fish predation on lower trophic levels 

should be minor. Lowered stream temperatures and improved bank 

conditions should increase the density of salmonids (Li et al. 1994; Platts 

and Nelson 1989; Hicks et al. 1991), but because salmonids have only 

infrequently been shown to impact lower trophic levels (Thorp 1986; 

Bechara et al. 1993; Sih and Wooster 1994), invertebrate grazers will likely 

remain the primary control agents of benthic community structure. 
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CONCLUSION  

Summary of the three riparian studies 

Riparian vegetation plays a crucial role in the productivity and trophic 

relationships of stream ecosystems, ultimately regulating physical stability 

and energy inputs, and affecting food web interactions of aquatic 

communities (Gregory et al. 1991). The preceding studies have addressed 

the influences of riparian canopy on benthic communities in streams that 

sustain beleaguered populations of anadromous salmonids. Because these 

streams were located in arid rangeland, the thermal loading and alterations 

of trophic relationships caused by canopy disturbance were potentially more 

severe than would be the case in streams of more mesic climates (Beschta 

1997). The results of each study contribute to an assessment of the 

interdependence between riparian canopy, benthic community structure, 

and the carrying capacity of high desert streams for salmonid fishes. 

In Chapter 1, benthic and fish communities were compared in stream 

reaches varying in density of riparian canopy. These lower John Day Basin 

sites received summer solar inputs ranging from dim (165 Mj/m2) to bright 

(2230 Mj/m2). Water temperatures varied with the density and upstream 

extent of canopy. Densely canopied sites were cool, but water 

temperatures increased as canopy decreased, and the sites with the highest 

irradiances had water temperatures that exceeded the upper lethal limit for 

salmonids. Periphyton standing crops and, concomitantly, biomasses of 

grazer invertebrates were greater in these well-lighted sites, but 90% of the 

biomass of these grazers consisted of Dicosmoecus gilvipes, a large, stone-

cased caddisfly rarely consumed by juvenile trout and other resident fishes. 
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Increases in water temperature with the reduction of riparian canopy likely 

resulted in higher metabolic demands for salmonids, but the overwhelming 

dominance of Dicosmoecus in open sites and scarcity of edible mayflies 

shifted energy flow away from trout, shrinking their food base. High water 

temperatures in well-lighted sites eliminated salmonids and cottids, but 

provided suitable habitat for many warmwater fishes that would otherwise 

not enter tributaries of this size. 

In Camp Creek, study sites were located at a higher elevation 

(approx. 1300 m), and light levels were high and less variable (mean =1491 

± 83.6 Mj/m2) than at the lower John Day Basin sites. Neither periphyton 

abundance nor invertebrate abundance was correlated with irradiance. 

Rather, periphyton standing crops were maintained at low, uniform levels by 

grazers, particularly Dicosmoecus and snails. In contrast, periphyton 

standing crops in well-lighted lower John Day basin sites (Chapter 1) were 

3-4X higher than in Camp Creek, despite higher densities of Dicosmoecus 

(mean =190 Dicosmoecus/m2 in lower basin sites vs. 10 Dicosmoecus/m2 

in Camp Creek) and other invertebrates. The lower elevation, warmer water 

temperatures, and longer growing period in the lower John Day Basin 

streams may contribute to higher primary production and may account for 

the higher periphyton and invertebrate standing crops found there. In 

Chapter 2, manipulations of fish densities in enclosures showed that trout 

and speckled dace had no apparent negative effects on population sizes of 

invertebrate prey. On the contrary, periphyton and, subsequently, 

invertebrate abundances increased as fish densities increased. High fish 

numbers may have disturbed grazers and reduced their foraging rates, 

thereby increasing algal accrual. Regardless, grazers played a more 

prominent role in regulating lower trophic levels than did fish. Dicosmoecus, 
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in particular, appeared to act as an intermediate regulator in the benthic 

food web of Camp Creek by simultaneously influencing trophic levels both 

below and above its own. Dicosmoecus directly reduced periphyton and 

indirectly reduced abundances of other invertebrates. At the same time, 

Dicosmoecus' unavailability as a food resource for small predaceous fish 

may inhibit fish growth and viability. 

When incident radiation was severely reduced on Camp Creek under 

artificial canopies (Chapter 3), periphyton standing crops were not different 

from those in open control pools after 4 wks. However, total invertebrate 

densities and abundances of specific taxa, such as snails, were greater in 

unshaded pools. The cropping of periphyton to low, uniform levels, despite 

a presumed disparity in the amount of primary production occurring in open 

sunlight and deep shade, suggests that mobile grazers targeted sites of 

varying productivities, as they may do in a naturally vegetated stream with a 

range of canopy densities. Comparisons of benthic communities in less 

canopied Camp Creek with densely canopied Deardorff Creek suggested 

that relative abundances and species compositions of benthic invertebrates 

shifted to accommodate changes in energy resources that occurred when 

canopy density was altered. 

Implications for riparian management 

The John Day River Basin has one of the few remaining wild 

anadromous fish runs in the Columbia River Basin (Oregon Water Resources 

Department [OWRD] 1986). Historically, the John Day Basin provided 

spawning and rearing habitat for fall and spring chinook, summer steelhead, 

and resident species such as bull trout. However, due to human 
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disturbance and activities, anadromous fish populations have declined by 

over 50% in the Columbia and John Day basins over the last 40 years 

(OWRD 1986), and fragmented bull trout populations are restricted to 

headwater refugia (Ratliff and Howell 1992). Some populations face 

extinction, leading to current or proposed listing of several salmon, 

steelhead, and bull trout stocks under the Endangered Species Act. 

The most ubiquitous human disturbance in the John Day Basin is 

livestock grazing (OWRD 1986). Overgrazing impacts riparian environments 

by reducing vegetation, and may impact fish habitat through channel 

widening, channel aggradation, or lowering of the water table (Platts 1991). 

Removal of streambank vegetation reduces periodic inputs of organic matter 

(leaf and woody litter) and terrestrial insects, which represent important 

food resources for benthic organisms (Gregory et al. 1991). Elimination of 

riparian cover also leads to higher water temperatures that can negatively 

affect salmonids and change fundamental attributes of the aquatic 

ecosystem (Johnson et al. 1977; Kauffman and Krueger 1984; Platts and 

Nelson 1989; Beschta 1997). Overgrazing leading to stream canopy 

removal has been suggested as one of the principal factors contributing to 

the decline of native trout in the West (Behnke and Zarn 1976). 

Restoration of riparian canopy, either in the lower John Day Basin 

streams or in Camp Creek, should alter the community structure and 

ecosystem processes that developed under disturbed conditions. If restored 

canopy is maintained as a mosaic of densities, and decreases in water 

temperatures are moderate, the existing invertebrate assemblage should not 

change significantly, but species compositions and distributions may adjust 

locally to the amount of light reaching the streambed. For example, mobile 

grazers, such as Dicosmoecus oilviDes or snails, should track areas with 
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higher irradiance and primary production, whereas other taxa, such as 

mayflies, may prefer less productive sites with thin biofilms. Periphyton 

would be cropped to low, uniform levels regardless of irradiance by the 

combined action of these grazers targeting different primary productivities. 

Under canopy, the relative abundance of Dicosmoecus would be reduced, 

and consequently the proportion of energy available to fishes would 

increase. Streamside vegetation would also increase numbers of terrestrial 

insects to augment benthic food resources for fishes (Gerking 1994). With 

higher allochthonous inputs, the shredder component of the benthic 

community would increase. Salmonids, then, would benefit from cooler 

water temperatures and higher prey availability, whereas warmwater fishes 

would encounter less optimal water temperatures and increased competition 

from salmonids (Reeves et al. 1987; Moyle and Cech 1988). 

At higher elevations, as in Camp Creek, canopy restoration may lower 

water temperatures sufficiently to produce significant changes in benthic 

communities by affecting timing of life cycles, growth rates, and metabolism 

(Vannote and Sweeney 1980; De Nicola 1996). With low solar input and 

dense canopy, stream temperature fluctuations often are narrow, and 

species diversity may be low because only those species that function 

within a narrow temperature range would persist (Vannote et al. 1980). 

The warm water component of the fish community would thus be 

eliminated, and habitat would be optimal for cool stenothermic species that 

historically occupied these streams. 
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