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High Speed Digital FIR Filter Design 

Chapter 1. Introduction 

In the last two decades, Digital Signal Processing (DSP) has made enormous 

progress both in theory and practice. With the advancement of Very Large Scale 

Integrated Circuit (VLSI) technology, more and more applications are using DSP as the 

primary solution due to the reliability, reproducibility, compactness and efficiency of the 

digital technology. The objective of this thesis is to design a high speed digital Finite 

Impulse Response (FIR) filter, which is part of a Delta-Sigma Analog to Digital 

Converter. This filter will be part of a digital decimator which is used to convert the high-

speed bit-stream output of the Delta-Sigma modulator into Nyquist-rate PCM data. 

Conceptually, this operation consists of two parts: lowpass filtering and down-sampling. 

For the sake of economy, the over-sampling ratio can be reduced in stages. Since a single-

stage filtering down-sampling block requires more than 10,000 taps to achieve our 

specification requirement, we employed the design of a multiple-stage decimator. This 

work describes the design and implementation of the first-stage decimator. The inputs of 

the system come from a Delta-Sigma modulator. This Finite Impulse Response filter 

takes 1024 inputs, multiplies them with their coefficients and adds the results. The main 

design task is to take the input data, which is unweighted single bit binary numbers at 

156MHz, multiply each bit with the corresponding coefficient and add them to get a 

weighted multibit output at 20MHz. 

1.1. FIR Filter System 

The so-called FIR filter is a widely used filter in DSP. Mathematically, a sampled 

data FIR filter is represented by: 
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m-1
 
y(n) = I c.1 x(n- 0
 

i = 0 

Where 

y(n) = the output of the filter 

x(i) = the input signal stream 

ci = the ith coefficient of the filter 

m-1 = the order or length of the filter 

In general, we can view the equation as a computational procedure (an algorithm) 

for determining the output sequence y(n) of the system from the input sequence x(n). 

There are a number of well-known forms for the sampled data FIR filter. One 

form is shown in Figure 1.1. It is the so called Direct-Form Structure FIR. 

The system of a FIR filter is mainly composed of registers, adders and multipliers 

when implemented with hardware. The precision of the adder and multiplier depend on 

the precision of the coefficient, the length of the filter, and the desired precision or result. 

The multipliers can be a costly component. If the filter response is fixed and the 

coefficients are therefore fixed, the multipliers may be simplified to contain only the 

product terms required. 

In fixed FIR filters, a great deal of signal-processing expertise goes into designing 

the coefficients that reduce the number of additions efficiently. 
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OUT 

Figure 1.1 Direct-Form Realization of FIR Filter Structure 

1.2 Linear Phase FIR 

An FIR filter has linear phase if its unit sample response satisfies the condition 

c(n) = ±c(M n) n = 0, 1, M 11 

The system we are dealing with is a linear phase FIR filter, so we can use this 

symmetry or antisymmetry characteristic to simplified the system. So the structure 

shown in Figure 1.2 is used for the design. 
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x(n) 
Delay Delay Delay Delay 

2*C0 2*C2 2*C3 

Delay Delay Delay Delay 

410
 
y(n) 

Figure 1.2 Direct-Form Realization of Linear-Phase FIR System 

1.3 System Outline 

The oversampled bit-stream is clocked at 10 GHz. An intermediate multiplexer 

reduces the one-bit-stream at 10 GHz into 64-bit parallel data at 156 MHz. The final 

output of the FIR filter will be clocked at 20MHz. As a result the system will have to 

work at a high speed. 

There are two main obstacles for the design. One is to finish the large amount of 

multiplication and addition within a relatively short period of time, the other is managing 

the large amount of data flow. Several main design methods are taken here to achieve the 

above mentioned goals. They are: 

1. XOR reduces the number of additions at the first step. 
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2. AND gates implement the multiplications. 

3. Wallace Tree structure reduces the large number of additions. 

4. Combination of carry select and carry lookahead does the final addition. 

5. Pipelined structure manages the data flows. 

There are three basic circuit elements used in the design. They are: D flip-flop, 

XOR, and full adder. Besides these three repeatedly used elements, there are some other 

circuit macros, such as the carry lookahead and carryselect macro, which are also used 

in the implementation of the filter. In this design, since the whole circuit consists 

numerous number of repeating macros, the optimally of each basic cell can contribute 

greatly to the overall performance of the circuit. Using the minimum number of 

transistors for the basic macros can reduce the parasitic capacitance for the circuit, which 

will contribute not only to lower power consumption, but also benefit the delay. Spice 

simulation and first step layout have been done for the basic elements of the circuit in 

order to estimate the overall chip area and circuit performance. Powerview was used to 

set up the schematic structure for the design. Logic simulation has been done for the 

macros of the system. 

1.4 Organization of the Document 

Chapter 2 presents the overall structure of the system. Chapter 3 explains the 

design of the D flip-flop and shows the simulation results of its main characteristics. 

Chapter 4 explains the design of Full Adder and discusses the affect of temperature 

variation, power supply variation and transistor size optimization on its delay. Chapter 

5 presents all the function blocks of the system and discusses the different structures of 

Wallace Tree. Chapter 6, gives the conclusion of the design and some suggestions about 

the future work. 



6 

Chapter 2. Overall Structure of the System 

A general electronic system is a black box that performs a desired input/output 

transformation. A digital system has its input and output coded in binary format. Like 

any other digital system, our design accepts certain binary inputs and produces certain 

outputs. The inputs for the system are 64 unweighted bits in parallel at 156MHz. The 

output for the system is one multi-bit word at 20MHz. The transformation of this system 

(156M)involves taking these 64 
20M 

= 1024 inputs, multiplying them with the 

corresponding 20-bit 1024 coefficients, and adding the results together. The final output 

is a 30 bit words. Many times digital systems are advantageous because they can be 

partitioned into modules. Each module can be built with cells which act as the building 

blocks. The main modules of the system are: the input part, including the shift register 

block and the latch register block; the pre-processor part, including the XOR block and 

the AND block; and the addition part, including Wallace Tree and carry-look-ahead & 

carry-select block. 

Ilr 64 in parallel @ 156 MHz 

1024 Shift Register @ 156 MHz 

+ 
1024 Latch Register @ 20 MHz 

+ 1024 unweighted bit stream 

MUX and AND Matrix 
I 

+ 512 21-bit words 
positive Wallace Tree & Negative Wallace Tree 

wo negative 28-bit words i two positive 28-bit words 

carry-look-ahead & carry-select adder 

i30 bit @ 20 MHz 

Figure 2.1 Overall Structure for the System 
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Figure 2.1 is the block diagram for the overall structure of the system. These blocks can 

be divided into three parts: the inputs part, the pre-processing part, the processing part. 

This chapter will describe the blocks in each part individually. 

2.1 Input Part 

The input part reads in the input data and converts them to certain data form that 

is appropriate for the data-processor of the system to deal with. Shift register block and 

latch register block are used in this part to achieve the goal. 

2.1.1 Shift Register. 

The inputs of the system are 64 unweighted bits at 156MHz in parallel. The 

system needs to take in 1024 input data, then do the data processing every 5Ons 

(@20MHz). The shift register block reads in the 64 parallel inputs every 6.4ns 

(@156MHz), shifts them down and stores them in 64 register levels. So the shift register 

block is composed of 64 levels of register cells. Each cell contains 64 DFF's in parallel. 

All the registers in this block work at 156MHz. 

2.1.2 Latch Register 

Since the clock for the output is 20MHz, the 1024 156MHz input needs to be 

latched at 20MHz and sent to the next stage in parallel. The latch register reads the 

outputs of the 64 x 64 matrix shift register every 5Ons, and sends them to the next stage 

in parallel. 



8 

2.2 Pre-Processor Part 

The large number of data is a big obstacle for the design. Pre-processor makes 

use of the characteristic of the system and reduces the number of inputs before the main 

data-processor. By this, the size of the addition part can be reduced dramatically. The 

blocks in this part are the XOR block and the AND block. The XOR block reduces the 

number of input data entering the filter, the AND block does the multiplication for the 

filter. 

2.2.1 XOR 

The coefficients of FIR filter are symmetric, i.e. C(i) = C(n i) or 

antisymmetric, i.e. C(i) = C(n i) . We can use this characteristic to try to reduce the 

number of data that the processing part. If the inputs are symmetric, i.e. 

!NW@ IN (n i) = 0, the multiplications and the addition of the two multiplications 

will give 2 x C(i) or 2 x C(n i). If they are anti-symmetric, i.e. 

IN (i) IN (n i) = 1 , the addition of the two multiplications will produce a zero. 

Based on this, we add a XOR block before the filter itself to find if the coefficient 

is symmetric or anti-symmetric. This XOR block compares coefficients in parallel and 

drives the AND block. 

2.2.2 AND 

The multiplication is done by bit to bit AND-gates, which are equivalent to 2­

to-1 muxes. The input of the mux are individual bits of the coefficience x 2, whichare 

ready for the chip and the outputs of the XOR' s. 
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2.3 Data Processor Part 

The Data Processor Part is the main part of the FIR filter. It contains the addition 

of all the outputs from the multiplications. It begins with the Wallace Tree structure, and 

uses the carry-look-ahead and carry-select adder to do the final addition of the output 

from the Wallace Tree. 

2.3.1 Wallace Tree 

Wallace Tree structure provides the structure for additions. Based on the 

manageability and speed trade-off, two basic counters (15,4) [15-to-4] and (3,2) [3-to­

2] are used. It is assumed that the coefficient of the filter are evenly distributed positive 

and negative numbers. 

Wallace Tree can not deal with the sign-bit. So the data is grouped into positive 

and negative group numbers, the sign bit information will be kept for the final addition. 

But practically, the sign of the coefficient of the filter is random. Duplicatation of this 

design and some minor changes can be done to achieve this. Section 5.4 discusses this 

in detail. 

The Wallace Tree compose several levels that can convert 1024 20-bit number 

to 4 28-bit numbers gradually. 

2.3.2 Carry-Select and Carry-Look-Ahead Adder 

The Carry-Select and Carry-Look-Ahead Adder takes four 28-bit output from 

Wallace Tree, along with the sign bits, and calculates the sum of these four 29-bit 
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numbers. Carry-select and carry-look-ahead are used in this block to achieve higher 

speed. 

2.4 Summary 

The chapter briefly describes the overall structure of the digital filter. The 

detail functionary and performance will be described in later chapters. 
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Chapter 3. Full Adder 

3.1 Full Adder 

A full adder is a combinational circuit that forms the arithmetic sum of three input 

bits. It consists of three inputs and two outputs. Two of the input variables are the two 

bits needed to be added. The third input is the carry out from the previous lower weighted 

addition. These three inputs are equally weighted. Because the arithmetic sum of the 

three binary digits ranges in value from 0 to 3, two binary bits are needed for the outputs. 

One output has the same weigh as that of the three input bits, the other has a higher 

weight than that of the inputs. The truth table of the full adder is shown in Table 3.1. 

Table 3.1 Truth Table for Full Adder 

Inputs Outputs 

A B C S COUT 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

The eight rows under the input variables designate all possible combinations of 

1's and 0's that these variables may have. The 1's and 0's for the output variables are 

determined from the arithmetic sum of the input bits. When all input bits are 0's, the 
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C 

output is 0. The S output is equal to 1 when only one input is equal to 1 or when all three 

inputs are equal to 1. The C output has a carry of 1 if two or three inputs are equal to 1. 

So the truth table gives one simple definition about full adder: a full adder finds 

the number of ones in the inputs, and gives that number in binary form. Thus, it is 

actually a 3-to-2 counter. The schematic of a full adder using static CMOS 

complementary gate is given in Figure 3.1 

_J Ac 

1 1 
Cci 

CARRYX SUMX 

B
 
BH 

1 

Figure 3.1 Complementary CMOS Full Adder 
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3.2 The Comparison of Static CMOS Adder and Transmission Gate Adder 

Besides the static CMOS full adder, a different implementation of adder uses a 

novel exclusive-or (XOR) gate. The schematic for this XOR gate is shown in Figure 3.2. 

L B 

A EB B 

Figure 3.2 Transmission Gate XOR 

With XOR, inverters and transmission gate, a full adder may be implemented as 

the Figure 3.3. The SUM (A Gs B C) is formed by a multiplexer controlled by A ED B . 

If a second thought is given to the truth table of full adder, it can be found that Carry=Cin 

when A ED B = 1, and Carry=A (or B) when A ei B = 0 . 

This adder has 24 transistors, the same as the complementary one, but the Carry 

and Sum have the same delay. In addition, the Sum and Carry signals are noninverted. 

The disadvantage of this structure is that the delay is much worse than the static CMOS 

design according to 10. 
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SUM
I. I

H 
L 

-C 
CARRYJL 0

I L
.--4.-­--1 

7 1 

0 
L 

Figure 3.3 Transmission Gate Full Adder 

3.3 Static CMOS Full Adder Simulation 

There are several factors that affect the circuit performance. Simulations are done 

with regard to the effect of temperature, transistor size and power supply variations. 

3.3.1 The Affect of Temperature on Circuit Performance 

The circuit performance is largely decided by the I-V characteristic of the 

transistors used in the circuit. The delay, for instance, is decided by the charging or 
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2 

discharging current of the output node and the parasitic or real capacitance of that node. 

For the MOSFET used in this design, the I-V characteristic is: 

w 1 2/d = K[(V -V ) V V ds]L gs t ci_, s0 <Vds<Vgs-Vt 
Vgs> Vt 

Id , = K-1-1-7(17 V )22 L gs t Vds> Vgs-Vt Vgs> Vt 

Id = 0 V ds?-° Vgs< Vt 

In the above equations, K = ii,Cox, where ti is the mobility of the carrier of the 

MOSFET, CCox is the capacitance density (capacitance per unit area). Both 1.t. and Vt 

are heavily temperature dependent, while they have opposite affect on the I-V 

characteristic. i.t is the mobility of the channel. There are two collision or scattering 

mechanisms that dominate in a semiconductor and affect the carrier mobility: lattice 

scattering and ionized impurity scattering. For the channel mobility of MOSFET, lattice 

scattering is the main mechanism because of the low impurity concentration. The lattice 

scattering is related to the thermal motion of atoms. 

To the first order approximation, 

gaTED 

So the temperature coefficient for the channel mobility 1.t is negative, i.e. the 

mobility increases as the temperature decreases. 
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On the other hand, the threshold voltage is a function of temperature too. The 

absolute value of the threshold voltage decreases with an increase in temperature. This 

variation is approximately -4mv/°C for high substrate doping levels, and -2mv/°C for 

low doping levels. 

So the affect of temperature on the circuit depends on the combination of the 

two factors. In oder to get a rough feeling about the affect of these two factors, the fol­

lowing calculation is done to compare the time for a inverter's output node drop from 

5v to 4v under 25°C and -220°C .When the output of a inverter drops from 5v to 4v, 

the pmos is in cutoff region while the nmos is in its saturation region. The saturation 

current of the nmos provides the discharge current for the node. 

Isat = (1 / 2) (W /L) K (V V t)2 

Where: W/L = 3/2 

K = it Cox = 84(11/V2) 

(V V t) = 5 0.7 = 4.3 

So the /sat = 1200p.. 

For discharge current, At = (AQ)/I = (AV C)// , if the load capacitance is 

50fF (a typical gate capacitance for a inverter), the discharge time is approximately 0.04 

ns under room temperature. If the temperature is -220°C , according to the above 

discussion of temperature affect on Vt and , the Vt will be approximately 1.5v, while 
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84 (-3/2)the K will be 53 = 1234(µ/V2), so the resulting /sat = 11000µ,(-3 /2)
300

which will result in a decrease in discharging time about 10 times. 

From the above discussion, it is obvious that the temperature drop will speed up 

the circuit. Simulations use the following stimulus under different temperatures to verify 

the effect. 

Table 3.2 Stimulus to Simulate the Affect of Temperature on FA Delay 

ain bin cin time point sum cout 

0 0 0 10 ns 0 0 

1 0 0 20 ns 1 0 

1 1 0 30 ns 0 1 

1 1 1 40 ns 1 1 

1 1 0 50 ns 0 1 

0 1 0 60 ns 1 0 

0 1 1 70 ns 0 1 

0 1 0 80 ns 1 0 

Table 3.3 Delay of FA with Minimized Transistor Sizes 

T=25 C T=-220 C 

a (b) cin a (b) cin 

up edge 0.97 ns 0.80 ns 0.68 ns 0.80 ns 
sumb 

down edge 0.21 ns 0.28 ns 0.11 ns 0.09 ns 
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Table 3.3 Delay of FA with Minimized Transistor Sizes 

T=25 C T=-220 C 

coutb 
up edge 1.38 ns 1.56 ns 1.40 ns 1.60 ns 

down edge 0.29 ns 0.35 ns 0.16 ns 0.18 ns 

From Table 3.3, the delay of the circuit does decrease while the temperature 

goes down. 

3.3.2 The Affect of Transistor Size on Circuit Performance 

The sizes of the transistors in the circuit affect the circuit performance because 

they affect the I-V characteristic of the MOSFET. Generally speaking, the large size 

gives larger current under the same nodes' voltages, which means a stronger driving 

ability. But a larger size transistor means a larger load for the stages that drive it. So the 

affect of the sizes for the transistors on the circuit performance is not a straight forward 

relation. 

Table 3.4 Delay of FA with Optimum Transistor Sizes 

T=25 C T=-220 C 

a (b) cin a (b) cin 

up edge 0.76 ns 0.65ns 0.68 ns 0.60 ns 
sumb 

down edge 0.14 ns 0.25 ns 0.10 ns 0.09 ns 

up edge 1.12 ns 1.22 ns 1.08 ns 1.30 ns 
coutb 

down edge 0.29 ns 0.25 ns 0.16 ns 0.11 ns 
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The simulation results show that the speed of the full adder relies on the sizes of 

the transistors in the circuit. The "optimum size" taken here is from 1. The optimum may 

not be suitable for the circuit, but it does give some idea that the size of the transistor 

affects the circuit performance. A variety of software packages have been developed to 

aid in the optimization of transistor sizes. 

3.3.3 The Effect of Power Supply Variation on Circuit Performance 

In an IC chip, the variation of power supply is very normal and usually within 
the range of 10%. 

Generally speaking, the increase of power supply means large current for the 

same transistor, so that will make the circuit faster. Simulation is done using the same 

stimulus shown in Table 3.2 on page 17 while the VDD is changed from 4.5 to 5.5v. 

The simulation results are shown in Table 3.5. 

Table 3.5 The Delay of FA with Vdd Variation 

Out­
put 

Edge Input A or B Carry Input 

4.5 V 5.0 V 5.5 V 4.5 V 5.0 V 5.5 V 

Sb Up 1.13 ns 0.98 ns 0.85 ns 0.98 ns 0.80 ns 0.65 ns 

Down 0.24 ns 0.22 ns 0.17 ns 0.29 ns 0.28 ns 0.27 ns 

Cb 
Up 1.75 ns 1.39 ns 1.13 ns 1.95 ns 1.58 ns 1.30 ns 

Down 0.30 ns 0.29 ns 0.27 ns 0.28 ns 0.35 ns 0.30 ns 

Simulation results verify that the delay of the circuit decreases as the power 

supply goes up. 
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3.4 Summary 

From the simulation and discussions in this chapter, the complementary CMOS 

full adder is the choice for the design. The average for this full adder is approximately 

0.8 ns using 0.8 um CK processing in SSI. The delay of the circuit decreases as the 

temperature goes down. The optimization of the sizes for the transistors in the circuit 

will increase the performance of the circuit, which can be achieved by some software 

simulation. The power supply variation affects the circuit performance: as the power 

supply goes up, the delay of the circuit drops. But with all the variations, the full adder 

used in the design can have a delay less than 1.2 ns, which is equivalent to 800 MHz. 
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Chapter 4. Design and Simulation of D Flip Flop 

4.1 Sequential Circuits 

Sequential circuits have memories so that the output signals can be function not 

only of the present input signals but also of past ones. Often, in sequential circuits, 

output signals are fed back. Thus, an output signal can be a function, not only of past 

input signals, but also of the past output signals. So a sequential circuit can be 

considered to consist of the interconnection of a combinational circuit and a memory. 

Sequential circuits are so named because they allow operations to be performed 

in sequence. Sequential circuits are usually slower than combinational circuits because 

the operations have to be performed in sequence. However, the modem large digital 

computer, or even most small computer applications must have memories to function 

properly. Thus, sequential circuits are of prime importance in modem digital devices. 

Sequential circuits are classified into two types, synchronous and asynchronous. 

In synchronous sequential circuits, the signals only change their values at discrete 

times, that is, they all change in synchronism. Pulses are generated by a device called a 

master clock. The master clock pulses synchronize the operation of all the devices 

within the digital device. In general, different types of digital circuits respond at 

different rates. The rate at which the master clock generates pulses must be slow enough 

to permit the slower circuit to respond. This then limits the speed of all circuits. 
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In an asynchronous sequential circuit, each device responds at its own states. 

Therefore, in general, asynchronous circuits are considerably faster than sequential ones. 

The system designed here is a synchronous sequential circuit with the input speed 

at 156MHz, while the speed for the overall circuit is 20 MHz. 

4.2 Flip-Flops 

A very basic sequential circuit is called a flip-flop or latch. This is a digital device 

whose output remains constant (i.e., either a 0 or 1) until it is switched in response to its 

input signal. This accounts for its name: that is, it flips or flops from one possible output 

to the other and remains there until flipped back, or, equivalently, latches at one output 

until changed by the input. 

There are different kinds of flip-flops. A general block diagram representation is 

shown in Figure 4.1. 

OutputsOne or more
 
inputs
 

QQ 

QBQB 

Figure 4.1 Block Diagram for a Flip-Flop. 

The value of the output marked Q is called the state of the flip-flop. That is, when 

Q=1, then the state is 1 and when Q=0, the state is 0. Flip-flops usually have two outputs, 

one equals the state and the other equals its complement. The complement output is 

marked as QB. 
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Once the state of a flip-flop is set, it remains this way until changed by the input. 

Thus, a flip-flop "remembers" its inputs. 

4.3 D Flip-Flop 

The D (delay) flip-flop has only one input. The levels of a clock, CLK, are used 

to drive the D flip-flop (DFF) to either the storage state or the input state. If D is the input 

signal, Q and Q' are the CLK and CLK , the state equations for positive and negative 

level-sensitive latch can be expressed as 

Q' = D CLK + Q CLK 

and Q' = D CLK + Q CLK 

The first equation describes a latch which passes the input data when CLK = 1 

and stores it when CLK = 0. Inversely, the second equation describes a 

complementary latch, which receives input data at CLK = 0 and stores it at 

CLK = 1 . 

If two complementary latches are connected in series, one will be in the storage 

state while other is in the input state and a 'non-transparent' edge triggered flip-flop is 

formed. One well-known structure is called the master-slave D flip flop. The master 

stage reads in the input state when the clock is low (high), while the slave stage passes 

the input state to the output when the clock is high (low). 

One structure that makes use of the transmission gate is shown in Figure 4.2. As 

can be seen from the circuit, the master and slave stage will remain isolated as long as 
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the clk 1 and clk2 are not high simultaneously. The negative feedback loop keeps the 

state of the master and slave stage latched as long as the clock does not have another up-

edge or down-edge. At the up-edge of the clock, the master stage reads the input, while 

the slave stage passes the input state to the output at the down-edge of the clock. So this 

kind of flip-flop is called edge-trigger DFF. 

clacl clk2 
OUT 

clk2 clklx 

Figure 4.2 Static CMOS D FLIP FLOP 

4.4 CMOS Static DFF Simulation 

4.4.1 The Comparison of Three Kinds of Transmission Gate DFF 

The transmission gate in the above structure can be a single NMOS or single 

PMOS transistor or CMOS transmission gate. Due to the working characteristics of 

these three kinds of gates, the working performance and the highest working frequency 

for them will be very different. 
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In order to find out the working characteristics for NMOS, PMOS and CMOS 

transmission, the following setups are used. 

CLK 

CILK(1) 

VINP Ir_40UTP
 
VIN
 

CLK
 

VINN HVOUTN
 

Figure 4.3 Test Circuit for Different Kinds of Transmission Gates 

For NMOS transmission gate, when the CLK = 0 , the gate is open, the 

VOUTN keeps its old state. When CLK = VDD , the gate is closed, the stable voltage 

for VOUTN depends on the voltage level of VINN. If VINN = 0, the resulting 

VOUTN = 0 ; if VINN = VDD , the resulting VOUTN = VDD VT. Most of the 

processing are n-well processing, so the bulk node for NMOS can only tied to Ov, which 

means the VBS = VDD V = 4.3v this VBS will form a negative feedback on the 

j ..Ts) , where vto = 0.7v ,VINN (body-effect). vt = vg) + 1/2 G 27
/Vbs + 2 

= 0.3v . So the resulting Vt = 1.5v , this will pull the VINN =3.5v. So the NMOS 

transmission gate can only transfer voltage between 0 to 3.5v. If this kind of 

transmission gate is used in the circuit, the noise margin for the next stage will be 

largely reduced. An even worse thing is that if these kinds of transmission gates were 



26 

used in series, this body-effect would become worse and worse along the transmission 

gate chain, and ultimately kill the initial signal. 

For PMOS transmission gate, this body-effect can be eliminated by connecting 

the bulk node of PMOS with its source node. This is because most of the processing are 

n-well process, so the bulk node for each PMOS can be tied to its own voltage instead 

of tied together to certain voltage. So the PMOS transmission gate has better voltage 

performance than NMOS. 

The second factor that must be taken into consideration when choosing the 

transmission gate is to find out the highest working frequencies for them. In order to do 

this, different kinds of clocks are put into the DFF's composed by each of these three 

kinds of transmission gates, increase the clock frequency gradually until it fails, while 

the frequency ratio of the clock to input signal is kept at 2:1. 

The result of simulation is summarized in Table 4.1 

Table 4.1 Speeds of DFF With Different Transmission Gate 

Gate Type CMOS NMOS PMOS 

Highest 
358M 357M 100MFrequency 

The simuation shows that only the CMOS and NMOS transmission gates have 

the required working frequency. Considering the voltage level problem of the NMOS 

transmission gate, the CMOS transmission gate is the best choice for the design. 
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I 

4.4.2 Working Performances with Different Sizes of Transistors 

The working performance of the circuit is largely affected by the sizes of the 

transistors. In CMOS static circuits, a larger size transistor gives a larger current under the 

same gate voltages, which means stronger driving ability. But a large size transistor also 

means large load capacitance for the previous gate. Simulation is done with the design 

using minimized size transistors. Based on the waveform of the internal nodes, we 

increase the sizes of the driver transistors for the slower nodes, while keeping the faster 

node driver transistor at the minimum size. The optimum sized DFF can work up to 

516MHz, while the minimum sized DFF can work up to 356 MHz. 

VCLK 

-C 6/2	 C 
J 8/2 L	 10/2
 

8/2
>.710/21
VIN 

4/20 

VCLKB 

J LD- 10/2 6/2 
8/2 

4/2 

Figure 4.4 CMOS Static DFF with Improved Size Transistors 
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4.4.3 Timing Simulation About DFF 

When using DFF, it is necessary to understand the timing of the various signals 

used in DFF. This is especially true when different components are interconnected. 

If gates are to function properly, then the clock signal must meet certain 

requirements. There are two such important specs about DFF, the setup time and the hold 

time. 

The setup and hold time of a register are the deviation from an ideal register 

caused by finite circuit delay. 

The setup time is the delay between the 50% whole voltage point of the incoming 

signal and the 50% whole voltage point of reading edge of the clock, i.e. the input must 

be set up at the 'setup time' before the reading clock edge. 

The hold time is the delay between the 50% whole voltage point of the reading 

edge of the clock and the 50% voltage point of the changing edge of the input, in order 

to get the input read in the DFF correctly. 

From the view of charge and discharge, setup time is the time to chargeup (or 

discharge) the input node to the right input state. If the input driver is an ideal voltage 

source, there should be no time needed to charge (or discharge) that node up. But in real 

circuits, this is the time for the driver which drives the DFF to charge (or discharge) it 

output node to the right state before the reading edge of the clock for the DFF. Hold time 

is the time to charge (or discharge) the internal node of the DFF to the right state, so it is 
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determined by the charge (or discharge) current and the parasitic capacitance of the 

internal nodes within the DFF. 

If the data of a register does not obey the setup and hold time constraints, a 

potential clock race problem may occur. This race results in erroneous data being stored 

in the register. 

In order to simulate the setup time for the DFF, the input and clock in Figure 4.5 

are used: 

Input _______I 

Clock 

Figure 4.5 DFF Clock & Input Relation 

The simulation is done by moving the up-edge of the input step-by-step towards 

the up-edge of the clock, until the operation fails. 

The simulation shows the setup time for the circuit is Ons for both T=25° C and 

T.-220°C , assuming that the node capacitance at the input point is 50 fF. 

In order to get the hold time for the circuit, the down-edge of the input is pushed 

backwards to the up-edge until the circuit fails to read in the right input. 
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Simulation gives a hold time to be 2.3ns for T=25° C and 2.4ns for T.-220 ° C , 

assuming the output node load is 50 fF. 

4.5 Summary 

This design uses CMOS static DFF. It has Ons setup time and 2.3ns hold time. The 

DFF with PMOS transmission gate has a much lower speed than that with NMOS or 

CMOS transmission gate. The DFF with NMOS and CMOS can work up to 350MHz 

using 1.1 micro CMOS process, but the NMOS transmission gate has a very serious body-

effect that can't be eliminated in n-well processing. So the CMOS transmission gate is 

chosen for the design. The size of the transistors in the DFF affects the performance of 

the circuit. But the optimum size isn't available due the limitation of tools. 

Consider a digital system containing many master-slave flip-flops, with the 

outputs of some flip-flops going to the inputs of other flip-flops. Assume that the clock 

pulse inputs to all flip-flops at the same time. At the beginning of each clock pulse, some 

of the master elements change states, but all the flip-flop outputs remain at their previous 

values. After the clock pulse returns to 0, some of the outputs change state, but none of 

these new states has any affect on any of the master elements until the next clock pulse. 

Thus the states of flip-flops in the system can be changed simultaneously during the same 

clock pulse, even though outputs of flip-flops are connected to the inputs of flip-flops. 

This is possible because the new states appear at the output terminals only after the clock 

pulse has returned to 0. Therefore, the binary content of the second is transferred to the 

first, and both transfers can occur during the same clock pulse. 
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Chapter 5. Function Blocks 

The system is composed of the following function blocks: Shift Register, Latch 

Register, Wallace Tree and Carry-look-ahead & Carry-select Adder. 

5.1 Shift Register and Latch Register 

The first block for the system is 1024 shift registers. This block latches the 64 

unweighted bits in parallel for 8 times. So it comes as the matrix of 64 x 8 form. The 

inputs of the DFF work at 156MHz. 

The block that follows the shift register block is the latch register block. This 

block takes the 8 rows of 64 register output, converts them to 1024 bits in parallel. The 

input frequency for this block is 20MHz. 

The schematic of this block is shown on Figure 5.1. 

5.2 Wallace Tree 

When three or more operands are to be added together, the speed of the 

traditional carry-ripple adder is restricted by the carry ripples between bits. When the 

number of bits is large, the traditional carry-ripple adder becomes so slow that it can not 

be used in a speed sensitive system. Several techniques for these kinds of multiple 

operand addition that attempt to lower the carry-propagation penalty have been 

proposed and implemented. The technique that is most commonly used is carry-save 

addition. In a carry-save adder (CSA), the carry propagation is only allowed in the last 

step, while in all the other steps a partial sum and a sequence of carries are generated. 
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Therefore, a CSA is capable of reducing the number of operands to be added from 3 to 

2, without any carry propagation. 

input 
644/ 

Shift 

> Shift 

. > Shift 

> Shift 

64 
Latch 

Register 
1024 bit stream 

@ 20 MHz 

--> Shift 

> Shift 

Clock --> Shift 

156Mhz 
Shift 

64 

20 MHz 

Figure 5.1 Shift Register and Latch Register Block 
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5.2.1 Carry-Save Adders 

A carry-save adder can be implemented in several different ways. In the 

simplest implementation, the basic element of the carry-save adder is a full adder with 

three inputs, x, y, and z, whose arithmetic operation can be described by: 

x2i+y2i+z2i = c2i+1+s2i 

where 

x, y and z are the inputs of CSA with 2i weight 

c and s are the outputs of CSA with 2i + 1 and 2i weight 

It is obvious that the full adder is a (3,2) CSA or counter. Besides (3,2) counter, 

there are (7,3) and (15,4),... counters. CSA can also be put in another way, that is CSA 

counts the number of ones in the same weighted multi input and output the counted 

number in binary data form. 

Figure 5.2 gives some real number examples for these kinds of CSA. 
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1 

1 

0 
1 

1 0 

0 1 0 

1 
0 0 
1 1 

1 
0 1 

1 0 
0 
1 

1 

0 

1 0 0 1 

1 

(3,2) (7,3) 
1 

1 

(15,4) 

0 1 1 0 

Figure 5.2 Examples of Single Bit CSA 

The structures for these basic counters are shown in Figure 5.3. The real 

implementations for these counters are shown in Figure 5.4 and Figure 5.5. 

I 

OEM 

(3,2) counter (7,3) counter (15,4) counter 

Figure 5.3 Counters 
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Figure 5.4 (3,2) and (7,3) Counter Structures 
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IN [0 14] 

\+/ 

1 

1 c2 
C i: ith weight 
Delay: Five FA Delays 

Figure 5.5 (15,4) Counter Structure 
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5.2.2 Wallace Tree 

If the operands for the CSA or counters are multi-bit words, a way to organize 

the operations is a tree commonly called Wallace Tree. Similar to the single bit CSA, the 

multibit CSA counts the number of ones in the same weight bits separately without 

caring about the carry ripple from the lower weighted bits. Figure 5.6 is an example of 

Wallace Tree dealing with real multi-bit numbers. 

1 61 0 9 
0 :1 1 

I I 7 
I
 

1 al 0 8 
11111
 

D. rl 101 24 
1 o 
1 1 o o o 

Real Number FormBinary Form 

Figure 5.6 Example of Multi-Bit Wallace Tree 

Figure 5.7 gives a three 20-bit Wallace Tree, three 20-bit number can be reduced 

to two 21-bit numbers in one full-adder delay. Figure 5.8 shows a 20-bit (7,3) Wallace 

Tree, seven 20-bit numbers can be reduced to two 22-bit numbers in four full-adder 

delays, Figure 5.9 shows a 20-bit (15,4) Wallace Tree, fifteen 20-bit numbers can be 

reduced to two 22-bit numbers in seven full-adder delays. 

41 40 40 40 41 41 41 40 40 41 40 2) C) 41 10 C) 40
 

41 41 IP II II 40 40 41 41 41 41 41 2) 0 40 10 C) 41
eoso 
41 41 41 41 41 41 41 41 41 40 41 41 C) 0 0 41 40
 

41 41 4, 40 40 40 41 40 41 0 2) II 41 0 ()
 

Three 20-bit words IN.-Two 20-bit words 

Figure 5.7 Three 20_bit Wallace Tree Structure 
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Figure 5.9 Fifteen 20-bit Wallace Tree Structure 
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In Wallace Tree, the number of operands is reduced by a factor of 2/3 at each 

level if the basic (3,2) counter is used. Consequently, 

log ( k/ 2)Number of levels 
log(3/2) 

This equation only provides an estimation of the number of levels. If different 

kind of basic counters is used, the level number may vary. 

5.2.3 Sign-Bit in Wallace Tree 

Wallace Tree is very efficient to reduce the number of additions. The basic 

element for this structure is the counter, which causes some problems. As indicated by 

the name, counters only count the number of ones in the inputs, so they won't take care 

of the sign bits. 

So if the counters are used to deal with signed numbers, some pre-separation 

has to be done to separate the positive and negative numbers. Then the counter can be 

used to deal with each group separately. 

The results are four numbers, two of them are positive, two of them are negative. 

These numbers should be reunited with their sign bit information to recover the right 

numbers. 

For this design, the inputs of the Wallace Tree are signed binary numbers. For 

simplicity, it is assumed that the inputs are evenly positive and negative. So the Wallace 

Tree is divided evenly into two parts, positive part and negative part. But this is seldom 

the case. The worst case is all the numbers are positive or all are negative. 
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The following adjustments can be done in order to make the circuit work in that 

case: 

1.	 Use XOR at each of the inputs to decide which block, positive or negative block, the 

input should be sent to. Meanwhile send a zeros to the non-chosen block. 

2.	 Duplicate the structure in both positive and negative blocks to make sure the circuit 

in each block can deal with 512 numbers instead of 256 ones. 

Due to the duplication, the Wallace Tree will need two more three 20-bit to two 

21-bit layers at the end of the positive and negative blocks. 

So Wallace Tree can be used for the addition of signed numbers at the price of 

larger hardware implementation. 

5.2.4 Structure Trade-Off for Wallace Tree 

When parallel additions are done, there are several basic circuit elements to 

choose from, (3,2), (7,3), (15,4), etc. How to choose the basic element is a trade-off 

between the simplicity of the circuit and the total time required to finish the calculation. 

As shown in Figure 5.10, if the (3,2) counter is used instead of the (15,4) counter as the 

basic element, the total delay is only 6 full adder delays instead of 7 full adder delays. 

But as also seen from the two structures, using (15,4) as the basic element makes the 

structure simpler and easier to manage. 

In this design, two kinds of basic elements are used. (15,4) is used in the top level 

of the Wallace Tree to reduce the large number of inputs, while (3,2) is used for the 

following levels when the number of additions is reduced to amore manageable number. 
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5.3 Carry-Look-Ahead and Carry-Select Adder 

The outputs of the Wallace Tree are two positive 28-bit numbers and two 

negative 28-bit numbers. In order to add them to one 30-bit number, a 4-bit carry look-

ahead and carry-select adder is used. 

c(n-1)=0 

Four bits 
Carry-look-ahead 

C (n) 

Four bits 
carry-select 

S (n) 
I. 

Carry-look-ahead 
tc(n-1)=1 

Figure 5.11 Carry-Look-Ahead & Carry-Select Adder 

In Figure 5.11, one of the 'Four bits Carry_look_ahead' does the addition 

assuming the carry input from the previous bit is 0, the other one does the addition 

assuming the carry input from the previous bit is 1, then the carry-select selects the right 

output when the previous carry reaches this block. 

5.4 Summary 

The input part of the system: shift-register and the latch-register blocks, converts 

the inputs to the data form that can be dealt by the system. Wallace Tree does the large 

amount of additions for the system, with the help of the pre-processing part to deal with 

the sign bit. The cost of this may be twice the hardwares for the realization. Traditional 

adder is still needed at the end of the Wallace Tree to get the final single multi-bit word. 
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Chapter 6. Conclusion 

6.1 Conclusion 

From the design and the simulation, 1024 data points enter the designed FIR filter 

in the form of 64 bits in parallel at 156 MHz, and the system transfers the information 

into one single 30-bit word at 20MHz. 

Since the data flow for the system is all pipelined, the highest speed the system 

can attain is 1/(one FA delay), which is about 300MHz. 

There are about 2100 DFF, 1024 XOR, 1024 AND, 13000 FA and 32 4-bit carry-

look-ahead adder. The estimated area for the gate layout is about 65 mm2. If considering 

the pads and the routing area to be twice the area of the transistor area, the total die size 

will be around 100 mm2. 

6.2 Future Work 

This design is based on the assumption that all the coefficients are un-signed, if 

the coefficients are signed binary numbers, the whole structure can be duplicated to do 

that. 

This design uses some (7,3) (15,4) to do the Wallace Tree; the speed can be 

further increased by using (3,2) to do the Wallace Tree. This will require more detailed 

design of more circuit levels. 



46 

Based on the tree structure of Wallace Tree, the basic floorplan can take the square 

form, with the input at the outerside of the chip and have the output generated at the center 

of the chip. The chip area for the successive levels shrink in accordance with the shrinkage 

in the amount of data or adding for each levels. 
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Appendix A Hspice Simulation Results 
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Figure B.1 MAC 01 
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Figure B.3 MAC 03 
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Figure B.6 MAC 12 
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Figure B.7 MAC 21 
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Figure B.10 MACRO 41 
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Figure B.16 MAC 8 
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Appendix C Schematics of the Wallace Trees 
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Figure C.11 FA 24 or Counter (3,2) 
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