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Abstract. Time series of maps of monthly tropical Pacific dynamic topography 
anomalies from 1979 through 1985 were constructed by means of assimilation of tide 
gauge and expendable bathythermograph (XBT) data into a linear model driven by 
observed winds. Estimates of error statistics were calculated and compared to actual 
differences between hindcasts and observations. Four experiments were performed 
as follows: one with no assimilation, one with assimiation of sea level anomaly data 
from eight selected island tide gauge stations, one with assimilation of dynamic 
height anomalies derived from XBT data, and one with both XBT and tide gauge 
data assimilated. Data from seven additional tide gauge stations were withheld from 
the assimilation process and used for verification in all four experiments. Statistical 
objective maps based on data alone were also constructed for comparison purposes. 
The dynamic response of the model without assimilation was, in general, weaker 
than the observed response. Assimilation resulted in enhanced signal amplitude in 
all three assimilation experiments. RMS amplitudes of statistical objective maps 
were only strong near observing points. In large data-void regions these maps show 
amplitudes even weaker than the wind-driven model without assimilation. With 
few exceptions the error estimates generated by the Kalman filter appeared quite 
reasonable. Since the error processes cannot be assumed to be white or stationary, 
we could find no straightforward way to test the formal statistical hypothesis that 
the time series of differences between the filter output and the actual observations 
were drawn from a population with statistics given by the Kalman filter estimates. 
The autocovariance of the innovation sequence, i.e., the sequence of differences 
between forecasts before assimilation and observations, has long been used as an 
indicator of how close a filter is to optimality. We found that the best filter we 
could devise was still short of the goal of producing a white innovation sequence. 
In this and earlier studies, little sensitivity has been found to the parameters under 
our direct control. Extensive changes in the assumed error statistics make only 
marginal differences. The same is true for long time and space scale behavior of 
different models with richer physics and finer resolution. Better data assimilation 
results will probably require relaxation of the assumptions of stationarity and serial 
independence of the errors. Formulation of such detailed noise models will require 
longer time series, with the attendant problems of matching very different data sets. 

1. Introduction 

In an earlier study, Miller a.•d Cane [1989] (here- 
inafter referred to as MC) produced maps of sea level 
height in the Pacific from 1979 to 1983 based on tide 
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gauge data and a simple dynamical model driven by an- 
alyzed monthly mean wind fields derived from merchant 
ship observations [$tricherz et al., 1992]. In that study, 
coastal and near-equatorial tide gauge data were assimi- 
lated by the Kalman filter [e.g., Miller, 1986; Ghil et al., 
1981]. The maps revealed richer structure than could 
have been inferred from the model output or the data 
alone. The error estimates derived from that study can 
be considered reliable (see, especially, Miller [1990]), 
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which leads us to conclude that the structure observed 

in the Kalman filter analysis is probably present in na- 
ture. 

MC was based on assimilation of data at only six 
tide gauge stations, with records from four additional 
tide gauge stations held back from the assimilation pro- 
cess for verification. The simple wave model used in 
that study was designed with economical implementa- 
tion of the Kalman filter as a goal. With only 384 state 
variables it was practical to perform a large number of 
experiments (recall that the high computational over- 
head associated with the Kalman filter stems from cal- 

culation of the covariance evolution, which involves an 
amount of work proportional to the square of the di- 
mension of the state vector). This model was limited in 
scope, based as it was on a slowly converging expansion 
in Hermite functions in the meridional direction. Five 

Rossby modes were used in that model, which implies, 
in turn, that the meridional structure was defined in 
terms of the Hermite functions of degrees up to 6. Rel- 
ative to the equatorial deformation radius for the first 
baroclinic mode, the most poleward root of the Hermite 
function of degree 6 is approximately 6 ø, which means 
that the model is only to be trusted in a narrow band 
of latitudes near the equator. 

In the present study we use the Kalman filter im- 
plemented with the grid point model of Cane and Pat- 
ton [1984] (hereinafter referred to as CP). In the CP 
model the Hermite expansion is replaced by a finite dif- 
ference approximation throughout the domain, which 
is a more accurate representation of the dynamics pole- 
ward of about 4 ø , even for very coarse grids. Effects of 
the artificial solid boundaries at 29øN and 29øS limit 

the reliability of this model poleward of about 15 ø, but 
comparisons to dynamic height observations show some 
skill as far poleward as 20 ø. Tests of the model over 
a wide range of computational parameters show these 
effects, which consist mainly of trapped waves near the 
artificial boundaries, to be highly dependent on resolu- 
tion. This enlarged region of validity of the CP model 
over the MC model allows us to assimilate the entire 

set of dynamic height data derived from the Tropical 
Oceans and Global Atmosphere (TOGA) expendable 
bathythermograph (XBT)sections [Picaut et al., 1991], 
in addition to the tide gauge data. 

It is one of our major purposes to explore the prac- 
tical details of assimilation of different types of data 
to guide us toward use of data from arrays of moored 
instruments such as the Tropical Atmosphere Ocean 
(TAO) array [see Hayes et al., 1991] and satellite al- 
timetric data. This is a necessary step on the way to 
providing analyses of all fields of interest based on all 
available data. 

Another major goal of this study is to explore the lim- 
its of the simple models of error statistics used in pre- 
vious studies. Most data assimilation studies we know 

of include, implicitly or explicitly, the assumption of 
stationary homogeneous white additive noise (but see 
Budgell [1987] and Daley [1992a]). It is, in practice, 
further assumed that the noise is independent of the 

model state itself. We know all of these hypotheses to 
be false to some degree. It should be noted here that 
statistical error models are contained explicitly in the 
formulation of adjoint and optimal interpolation meth- 
ods, as well as the Kalman filter. Here we discard the 
assumption of homogeneity of the wind error bovariance 
field and construct a statistical error model which is in- 
homogeneous in space. 

Section 2 contains a brief description of the model 
and the data assimilation scheme; section 3 contains a 
description of the data sets used. Details of the error 
model are discussed in section 4. Results are presented 
in section 5, and section 6 contains discussion and sum- 
mary. 

2. The Model and the Data Assimilation 
Scheme 

2.1. The Model 

The model described in CP is a finite difference model 
of the linear shallow water equations on an equatorial 
beta plane. The equations for each baroclinic mode, 
further simplified by a long wave approximation, are 
given by 

ut - yv + hx - F 

yu -]- hy - G 
ht -]- Ux -]- vy - Q 

where x and y are distances in the zonal and merid- 
ional directions, u and v are the zonal and meridional 
velocity components, h is the sea level height increment, 
and t is time. Lengths have been scaled by the equato- 
rial deformation radius (C/•) 1/2, and times by (C/•) --1/2, 
where ½ is the Kelvin wave speed for the vertical mode 
in question and • is the rate of change of the Corio- 
lis acceleration with latitude. The Kelvin wave speed 
c is assumed constant in time and space. The external 
forcings F, G, and Q include zonal wind stress, merid- 
ional wind stress, and buoyancy flux, respectively. They 
also include parameterized diffusion of momentum and 
buoyancy. In this study, buoyancy flux and meridional 
wind stress are neglected. This assumption is supported 
by dimensional arguments and by earlier studies [e.g., 
MC, Miller, 1990] which showed that errors in the zonal 
wind stress could account for all of the errors in previ- 
ous models. This assumption results in considerable 
simplification of the error model. The most obvious 
cost is the loss of accuracy along the eastern and west- 
ern boundaries. In the absence of meridional winds the 

height anomaly along the eastern boundary is constant. 
This follows from the meridional momentum equation. 
In reality, there are local variations along the coast of 
south and central America due to a balance between 

local meridional winds and the slope of the sea level 
height. This is not significant at Callao, but it is quite 
significant at several other sea level stations. 

In order to keep the dimension of the state space as 
small as possible, a very coarse grid is used. The model 
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used here has zonal resolution of 5 ø and meridional res- 

olution of 2 ø . The time step was 10 days. We com- 
pared this coarse resolution model to a test run with 
grid spacing halved in both directions. The RMS dif- 
ference in the height anomaly fields between the coarse 
and fine resolution runs was less than 2 cm from 10øS 

to 10øN over most of the basin, reaching 3 cm only in 
small regions north of 15øN and west of 170øE and south 
of 17øS and west of 160øW. Further comparisons with 
a nonlinear primitive equation model with grid spac- 
ing of 1/3 ø x 1/3 ø showed similarly small differences 
with similar spatial distribution. Two vertical modes 
are considered, with speeds derived from Eriksen et al. 
[1983]. The Kelvin wave speeds for the first and second 
modes were 2.91 and 1.78 m/s, respectively. The result- 
ing time and space scales are 1.42 days and 3.22 ø for the 
first mode and 1.82 days and 2.52 ø for the second. Lin- 
ear damping was added in the form of Rayleigh friction, 
with decay times of 30.0 months and 11.0 months for 
the first and second baroclinic modes, respectively. A 
series of comparison runs showed little sensitivity to de- 
cay times greater then 6.0 months. The model domain 
was a rectangular box, extending from 125øE to 80øW 
and from 29øS to 29øN. Further details of the model are 

given by CP. 
Dissipation is added in the form of a Shapiro filter 

[Shapiro, 1971] in order to suppress grid scale noise 
which is continually excited during the assimilation pro- 
cess. The assimilation process introduces data on scales 
which are comparable to the grid spacing in this coarse 
model, and the small scale waves which are excited 
would persist if they were not explicitly suppressed. 
This effect is especially pronounced near boundaries, 
where waves are excited which propagate as trapped 
waves near the artificial northern and southern bound- 

aries. This could be ameliorated considerably by using 
open boundary conditions [e.g., Busalacchi and Blanc, 
1989], but the mass fluxes so generated would affect the 
total mass balances over several years of model time. 
It would then become necessary to formulate some re- 
alistic method for keeping track of the mass balance. 
This would add considerably to the complexity of the 
model and add little to the usefulness of the results. 

The Shapiro filter is applied to the entire state vector, 
thus functioning as a high-order diffusivity of mass and 
momentum. The effect of the Shapiro filter on model 
sea level is negligible. The large-scale structure of the 
model fields within 15 ø of the equator is not sensitive 
to the filter. 

2.2. The Data Assimilation Scheme 

The data assimilation method used here is the Kal- 

man filter, which has been described in detail in many 
places [e.g., Gelb, 1974]. The Kalman filter was first 
formulated in the meteorological context by Ghil et al. 
[1981] and later applied to ocean modeling by a num- 
ber of investigators [e.g., Bennett and Budgell, 1989; 
Miller, 1986; Gaspar and Wunsch, 1989; Miller and 
Cane, 1989; Miller, 1990]. The Kalman filter is a fil- 
ter in the sense used conventionally in the time series 

literature, i.e., a method for finding the optimal esti- 
mate of the state of a system at a designated time 
(the "present"), given a set of prior (i.e., "past") ob- 
servations. Methods which make use of all data, in- 
cluding observations at times beyond the designated 
time (the "future") are known as "smoothers." Prac- 
tical smoothers are constructed by minimizing some 
positive definite functional (the "cost function") of the 
history of the state vector [e.g., Bennett and Budgell, 
1989; Bennett, 1990, 1992]. The minimization process 
is conveniently formulated in terms of the adjoint of 
the evolution operator. For this reason, these meth- 
ods are often referred to as "adjoint methods" in the 
literature [e.g., Ghil and Malanotte-Rizzoli, 1991]. A 
derivation of the precise relation between the Kalman 
filter and variational smoothing methods is given by 
Bennett and Budgell [1989], who applied it to a lin- 
earized quasi-geostrophic model. Fu et al. [1993] used 
a variational smoother to assimilate Geosat altimeter 

data into the simple model presented in MC and found 
that the results differed little from those obtained from 

the Kalman filter. Since the Kalman filter and Kalman 

smoother gave similar results in that study, we chose to 
use the Kalman filter here because of its lower compu- 
tational complexity and resource demands. 

The Kalman filter, as implemented here, is described 
as follows: let w be the state vector, which completely 
specifies the model. The numerical model can be writ- 
ten as 

- + 

where subscripts denote time step, superscript f de- 
notes "forecast," and superscript a denotes "analysis," 
the best available estimate of the state vector at time 

•. The vector •-• is the forcing at time •. The transi- 
tion matrix L represents the numerical scheme for the 
state evolution. 

The model is assumed to differ from the true system 
by random noise, i.e., the underlying dynamics obey 

w•+• - Lw• + •-• + b• 

where the quantities with the superscript t represent 
the true system. Here b• is a white sequence with co- 
variance given by 

{bjb•) -- Q(•jk 

where angle brackets denote expected value and Q is 
a positive definite matrix known as the "system noise 
covariance." The superscript T denotes transpose. 

The observations o wk+ x are related to the true state 
vector w•+ • by 

w•+ x - H•+xw•+ x + 

where b•+• is the observation error, which is assumed 
to be a white sequence with zero mean and covariance 
given by {b;+•b;•l> - R•+•. H•, the observation 
matrix, is linear transformation which relates the state 
variables to the observed quantities. The forecast error 
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covariance P• is defined by 

P•-/(w•-w•) (w• 
The analysis error P• is defined similarly. The evolution 
of the forecast error covariance is given by 

aLT P•+i -- LPk + Q (2) 
The updated state vector is given by 

W•+ 1 -- Wkf+l q- Kk+l (W•+ 1 -- nk+lW•+ 1) 
where K•+i is the Kalman gain matrix 

(3) 

= 1Hk+l gk+l Pk+xH•+x + Rk+l) 
-1 

(4) 

The error covariance of the updated field is given by 

a pf P•+• = (I- K•+iHk+i) k+l (5) 

Equations (1)-(5) define explicitly the process by which 
the evolution of the model state w and its error covari- 

ance P are calculated, with updating when observations 
are available. Note that in the absence of updating, the 
system noise covariance matrix Q is the only forcing 
term in the evolution of P and that the dependence of 
P on Q in that case is linear. 

Reliable error estimates are a major objective of the 
present study, as they were in the work of Gaspar and 
Wunsch [1989]. It is important to note that similar er- 
ror estimates would result from other data assimilation 

methods if the same statistical noise model were used. 

3. The Data 

3.1. Wind Data 

The wind data used here come from a monthly pseu- 
dostress analysis from merchant ship observations 
[Stricherz et al., 1992] provided by Florida State Uni- 
versity. Hereafter, this data set will be referred to as 
FSU. The FSU data set was further processed as fol- 
lows [see Zebiak, 1989]: a 4-year running monthly mean 
was removed from the raw wind analysis; so, for exam- 
ple, in order to produce the pseudostress anomaly data 
for a given January, the average of the data from the 
current January plus the January data from the three 
previous years is subtracted. This is done to remove a 
long-term trend which is known to appear in the data 
over a time span longer than the period of interest [cf. 
Zebiak, 1989]. The resulting anomaly data set was then 
filtered with a 1-2-1 filter in latitude, longitude, and 
time. 

Little is known about the error characteristics of 

the FSU analysis. Chelton and O'Brien [1982] com- 
pared Seasat scatterometer winds with this analysis. 
Their work suggests highly spatially inhomogeneous 
wind stress analysis error with magnitude (about 2 m/s 
RMS), consistent with Halpern and Harrison's [1982] 

study comparing a number of different wind products 
for a single month and with the later study of Reynolds 
et al. [1989]. Data coverage for the FSU wind analysis 
is concentrated along major shipping routes; examples 
of an observing pattern for the FSU analysis are given 
by Reynolds et al. [1989] and Legler and O'Brien [1985]. 
One naturally expects the analysis to be most accurate 
in these regions. 

Difference fields between the FSU analysis and anal- 
yses derived from remote sensing corroborate this view 
outside of a few small regions. Busalacchi et al. [1989] 
show a comparison of the FSU data set with SAWIN, an 
analysis based on cloud motion vectors east of the date 
line and surface data elsewhere [Sadler and Kilonsky, 
1985; $adler et al., 1987]. One expects the differences 
between these two wind data sets to be small west of the 

date line, where they are based on similar data. How- 
ever, a similar pattern appears in comparisons of the 
FSU data set with SAWIN east of the date line. This 

pattern also agrees with comparison to a wind data set 
based on the special sensor microwave/imager (SSM/I) 
data, courteously provided by R. Atlas. In regions of 
sparse surface data coverage, the RMS differences can 
be as high as 0.35 dyn/cm 2, comparable to the signal 
amplitude. The construction of a statistical model of 
the wind errors is described in section 4. 

3.2. Sea Level Data 

Data were taken from tide gauges at various loca- 
tions in the Pacific [Wyrtki et al., 1988]. Unlike previ- 
ous work [MC; Miller, 1990], tide gauge data are not 
restricted to a narrow band of latitudes, but in this 
case, with this more flexible model, data from a num- 
ber of off-equatorial stations are chosen. The locations 
of the islands are shown in Figure 1. The raw data con- 
sist of monthly means with tides removed. The average 
for each month is removed to yield the monthly mean 
anomalies. 

The tide gauge data can be considered accurate with- 
in 3 cm (K. Wyrtki, personal communication, 1986). 
A number of factors contribute to this error, including 
local hydraulics and effects of waves from local winds. 
These effects dominate the inaccuracy in the instrument 
itself. 

3.3. Hydrography 

The hydrographic data consist of surface dynamic 
height relative to 400 dbar, processed from XBT casts, 
through the use of the mean T-S relation from Levi- 
tus [1982]. These data were gathered into the three 
tracks shown in Figure 1. Each track represents a gen- 
eral region in which data were grouped into 1-month by 
1 ø latitude bins from 20øS to 20øN with varying zonal 
width of as much as 24 ø . The tracks themselves rep- 
resent the major shipping routes in the region, along 
which data are concentrated. Details of the processing 
and aggregation of data are given by Picaut et al. [1991] 
and Picaut and Tournier [1991]. As with the sea level 
data, the average for each month was removed to yield 
the monthly anomaly data. 
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Figure 1. The model domain, showing locations of tide gauges and approximate mean positions 
of expendable bathythermograph (XBT) distributions in the eastern, central, and western Pacific. 
Solid circles represent assimilation stations, and open circles depict stations held back from the 
assimilation process for validation. 
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Errors were assumed to arise from aliasing of internal 
waves [Chereskin et al., 1986], the use of the mean T-S 
relation, and the aggregation of casts from wide ranges 
of longitudes in each bin [McPhaden et al., 1988]. Er- 
rors from each source were assumed to have variance 

of 4 cm 2. Errors from different sources were further 

assumed to be independent. Errors in individual casts 
from aliasing of internal waves and from the use of the 
mean T-S relation were also assumed to be indepen- 
dent, and thus the variances of the contributed errors 
were reduced by factors of the mean number of casts 
per bin, three in the western section, four in the cen- 
tral section, and two in the eastern section. The error 
variances in each 1 ø longitude bin were thus assumed 
to be 6.7, 6.0, and 8.0 cm 2 in the western, central, and 
eastern sections, respectively. 

Rebert et al. [1985] compared sea level data with 400- 
m dynamic height data derived from XBT casts, pro- 
cessed in similar fashion to the data used here. They 
concluded that sea level data on these timescales essen- 

tially reflected 400-m dynamic height increments. The 
tide gauges in our data set which are closest to the 
XBT tracks are Fanning and Honiara. Figure 2 shows 
comparisons of sea level data at these two islands, with 
dynamic height data from the nearest points on the cen- 
tral and eastern tracks, respectively. The correlations 
between sea level anomaly and 400-m dynamic height 
at the nearest data point are 0.90 and 0.80 at Fanning 
and Honiara, respectively; both these figures are sig- 
nificant at the 99% level. Rebert et al. [1985] found 

a correlation of 0.80 at Honiara; they did not exam- 
ine data at Fanning. The RMS differences between the 
400-m dynamic height observations and the sea level 
observations are 4.4 cm and 6.5 cm at Fanning and Ho- 
niara, respectively. These numbers are greater than the 
estimated RMS instrument errors, so measurements at 
tide gauge stations and dynamic height measurements 
probably carry some independent information. 

Direct assimilation of the raw data, while practical, 
would be cumbersome due to the sheer number of ob- 

servations, namely, 41 per track for the western and 
central tracks and 28 for the eastern track each month. 

While our experiments show that the condition num- 

ber of Hk+•Pk+•Hk+• + Rk+• , the denominator 
of the Kalman gain matrix, is only a few hundred, there 
are, in fact, only a few independent degrees of freedom 
in each track. This results from the strong meridional 
correlation of the errors in the model forecasts, which, 
in turn, reflects the large-scale structure of the error 
covariance field. We therefore calculated the empirical 
orthogonal functions (EOFs) of the deviations of the dy- 
namic heights from the monthly mean dynamic heights 
along each track (see Figure 3). Our EOFs in the cen- 
tral section differ from those shown by Kessler and Taft 
[1987], which are calculated from the deviations from 
the along-track climatological means and contain the 
seasonal cycle. 

In our experiments we retain the four leading EOFs 
in each track. The RMS differences between the raw 
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Figure 2. Comparison of dynamic height data with sea level stations at nearby locations for 
stations (a) Fanning and (b) Honiara. 

data and the dynamic heights reconstructed from four 
EOFs were 2.0 dynamic centimeters (dyn. cm) in the 
western and central sections and 1.0 dyn. cm in the 
eastern section. The error variances of the EOF ampli- 
tudes were estimated by assuming that the along-track 
correlation of errors was Gaussian with 4 ø decorrelation 
scale. Error variances of the EOF amplitudes for each 
of the three tracks are shown in Table 1. 

4. The Model Error 

Equation (2) shows that in the case without updat- 
ing, the error covariance P is determined entirely by the 
matrices L and Q which determine the evolution of the 
state according to the dynamical model and the system 
noise covariance, respectively. Q must be estimated 

from assumptions about the statistics of the model er- 
ror. Here, as in MC, we assume that the system noise 
is dominated by errors in the forcing field. Two sta- 
tistical models of the wind stress error are formulated. 
In the first the errors are assumed to be white in time 
and to have homogeneous anisotropic Gaussian covari- 
ance structure; that is, if the forcing error is given by 
e(x, y, t), then the forcing error covariance is assumed 
to have the form 

{½(X0, Y0, t0)½(Xl, Yl, tl)) ---- cr 2 
ß exp[--(Xl -- xo)2/L2 x - (Yl - yo)2/L2y]t•(tl - to) (6) 

where or, Lx, and Ly are constants. In the second we 
assume that the forcing error variance cr 2 is a noncon- 
stant function of x and y. The covariance of the forcing 
errors at the points x0, Y0 and x l, yl then has the form 
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Figure 3. Empirical orthogonal functions (EOFs) of interannual dynamic height variability 
along the three tracks shown in Figure 1. Percentage of total variance accounted for by each 
EOF is shown in the bottom right. (a)-(c) Leading EOFs for the western track. (d)-(f) Leading 
EOFs for the central track. (g)-(i) Leading EOFs for the eastern track. 

(½(Xo, YO, tO)½(Xl, Yl, tl )) -- cr(Xo, yo)cr(Xl, Yl) 
2 2 2 2 

ß exp[-(xx - xo) /Lx - (yl - Yo) /Ly]5(tx - to). (7) 

In the experiments shown here we set Lx = 10 ø and 
Ly = 4 ø. This differs from the value Ly = 2 ø used in 
MC. In dissipative systems such as this one, the filter 
can be iterated according to (2) without updating un- 
til P reaches a steady state. This calculated P can be 
used to form an a priori estimate of the forecast errors 
of the model without assimilation, which may then be 
compared to statistics calculated from the actual dif- 
ferences between the forecast and observed sea levels. 

When this is done with Q determined from (6) with 

Ly = 2 ø as in MC, the result is a serious overestimate of 
the variances of the error at Yap, Truk, and Kwajalein 
in the northwest part of the domain. This can be un- 
derstood in terms of the dynamical model. Away from 
the equator, a significant portion of the sea level height 
anomaly is due to the local effect of wind stress curl. 
This is not well represented by the truncated expansion 
in wave modes used in the earlier model. A simple cal- 
culation shows that the expected variance of -ry (x) is 
inversely proportional to the square of the meridional 
decorrelation length. Table 1 of MC shows that wind 
stress error distributions with 3 and 4 ø meridional cor- 

relation lengths fit the observed error covariances nearly 
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Table 1. Error Variances of Observed Dynamic Height 
Empirical Orthogonal Functions 

EOF West, Center, East, 
cm 2 cm 2 cm 2 

i 43.9 38.1 50.5 
2 39.2 31.5 49.6 
3 30.8 29.7 31.4 
4 23.5 23.3 21.6 

Observational errors are assumed to be white in time 

and to have variances of 6.7, 6, and 8 cm 2 for the west- 
ern, central, and eastern tracks, respectively. Observation 
error covariances were assumed homogeneous in latitude, 
with Gaussian shape and width of 4 ø. Errors in observa- 
tions from different tracks were assumed to be independent. 
Numbering from top to bottom proceeds in descending order 
of proportion of total variance. 

as well as the chosen distribution with a 2 ø decorrela- 

tion length. 
In the earlier work with the simple model, the choices 

of Lx and Ly were based on comparison between the es- 
timated forecast error covariance matrix and the sample 
covariance matrix, i.e., the covariance matrix calculated 
directly from the differences between forecast and ob- 
served sea level height. The criterion for comparison 
between the two matrices was a weighted sum of the 
squared differences between the lead EOFs. In the ear- 
lier work, with the wave model and data confined to 
near-equatorial tide gauge stations, the EOFs of the 
sample covariance matrix were consistent with those of 
the estimated error covariance matrix. This was not 

the case in the experiments with the CP model. Given 
this discrepancy with the results from MC, we set out 
to investigate whether a reasonable estimate of the ob- 
servation error covariance matrix could be constructed 

with 8-year time series. A given covariance matrix was 
used to generate white time series of limited length, 
in our case, 8 years of artificial data at 1-month inter- 
vals. We then used the resulting time series to attempt 
to reconstruct the covariance matrix used in its genera- 
tion. The result was that an 8-year, 15-channel monthly 
white time series is not long enough to reconstruct faith- 
fully the covariance matrix used to generate it. 

From repeated experiments following this procedure, 
with different prior covariance matrices and different 
seeds in our random number generator, we learned that 
different realizations of stationary white sequences with 
the same covariance matrices can be very different from 
one another, and simply summing squares and cross 
products yielded a very poor approximation of the un- 
derlying covariance matrix. Comparing a matrix of 
sums of squares and cross products of an 8-year, 15- 
channel time series to a set of theoretically derived al- 
ternatives is therefore not fruitful. 

Because of the greater applicability of the CP model, 
there were more stations available for comparison in 
the present work than in the previous. Unlike the ear- 
lier work, a reasonable picture of the model error char- 
acteristics could be deduced from the error variances. 

The matrix Q for the homogeneous model was cal- 
culated from a Monte Carlo simulation based on ho- 

mogeneous Gaussian error covariance, with zonal and 
meridional scales of 10 ø and 4 ø, respectively, and an 
initial value for the total wind stress error variance of 

(pa/Pw)2CD 2 X 434(m2s-2) 2 (where CD is the drag coef- 
ficient, here taken to be 1.5, Pa is the density of air, and 
Pw is the density of water), 75% of the value used in MC. 
In our first rough comparisons this value gave rise to 
better error estimates than the original MC value. We 
attribute the better fit with the smaller error variance to 

the more efficient quadrature scheme in CP. As in MC, 
the drag coefficient was given by paCD = 1.95 X 10 -3. 

For each trial of our Monte Carlo procedure we gen- 
erated a Gaussian random wind field with covariance 

given by (6). This random field was used to drive the 
model for a single time step, given zero initial condi- 
tions. The covariance of the collection of single-step 
model outputs from trials conducted this way was taken 
as our value of Q. 

Our inhomogeneous error model was constructed by 
a Monte Carlo procedure similar to the one used to 
construct the homogeneous error model. We assumed a 
covariance function of the form given by (7), with the 
function cr2(x, y) calculated from the variance, point by 
point, of the fields of differences between the FSU and 
SAWIN cloud track wind analysis for the period 1979- 
1983. 

The field of mean square differences between FSU 
and SAWIN was smoothed three times with a five-point 
smoother and normalized by 0.77 times the largest value 
of the resulting field. We arrived at the normaliza- 
tion factor of 0.77 through statistical comparisons, per- 
formed as follows: variances of differences between the 

output of the CP model, driven by FSU winds follow- 
ing a year of spin-up time, and observations of sea level 
and dynamic height anomalies were calculated. Prior 
estimates of these variances based on the steady state 
value of the model error covariance P were also calcu- 

lated. Since the evolution of P is a linear function of Q, 
multiplication of Q by a scalar would have the ultimate 
effect of multiplication of the prior estimates of the vari- 
ances by that same scalar. We found that multiplying 
Q by a factor of 0.77 gave the best agreement between 
the prior estimates of the variances and the variances 
themselves. 

The result, shown in original normalized form in Fig- 
ure 4 (i.e., prior to multiplication by 0.77), was then 
multiplied, point by point, by each randomly chosen 
wind error field in the Monte Carlo simulation. The 

major effect of this scaling operation is to reduce the 
estimated system noise variance to as little as 30% of 
its original value (i.e., the homogeneous value) at points 
where the FSU analysis and the cloud track winds are 
in close agreement and raise it as much as 25% where 
the two differ. It is not surprising that the smallest val- 
ues for this field (i.e., regions where FSU and SAWIN 
agree most closely) are located along major ship tracks 
since the major source of data for the FSU analyses are 
ship winds collected along these routes. The values of 
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Figure 4. Normalized variance of the difference between the SAWIN and Florida State University 
(FSU) monthly mean windstress anomaly products. Abbreviations of island station names are 
YAP, Yap; TRU, Truk; KAP, Kapingamarangi; RAB, Rabaul; HON, Honiara; NAU, Nauru; 
KWA, Kwajalein; TAR, Tarawa; CAN, Canton; FAN, Fanning; CHR, Christmas; JAR, Jarvis; 
PEN, Penrhyn; SAN, Santa Cruz; and CAL, Callao. 
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Lx and Ly were the same as those used in the homoge- 
neous model. 

The results of our Monte Carlo calculations of the 

system noise variance Q, transformed to units of sea 
level height are shown in Figure 5. The quantities dis- 
played as a contour map in Figure 5 are the square roots 
of the diagonal elements of the matrix HQH T where 
H is the matrix which transforms a model state vector 

into the corresponding map of sea level height anoma- 
lies. The homogeneous error model was multiplied by a 
factor of 0.84, determined by the same process used to 
normalize the inhomogeneous model. 

The map of the inhomogeneous model system noise 
variance (Figure 5b) reflects the fact that regions where 
FSU winds differ from other wind products (SAWIN, 
in this case) are assumed to be regions in which the 
FSU product is less reliable, and therefore our estimate 
of the error is greater than regions in which different 
wind products agree. Comparison of Figures 5a and 5b 
shows that the inhomogeneous model has greater error 
assigned to regions away from the ship tracks, especially 
in areas east of Kwajalein, east of the Line Islands, and 
northeast of Penrhyn (see Figure 5c). Reduced error es- 
timates correspond to areas where the FSU wind prod- 
uct is well sampled along ship tracks, namely, west of 
the western XBT track, east of 115øW, and near the 
Line Islands. With the factors for each type of model 
chosen as they were to minimize the differences between 

the statistics of the (model output minus observation) 
time series and the prior estimate of that quantity, the 
mean difference between the two fields is close to zero. 

The estimated variances of the differences between 
the predictions of the model without data assimilation 
and the observed tide gauge and XBT data are de- 
picted in Figure 6 as a scatterplot against the actual 
variances of the differences between model output and 
observed tide gauge and XBT data. In a properly tuned 
model the points on the scatterplot should cluster about 
the line with unit slope. Since the scaling factors for 
both the inhomogeneous and homogeneous error mod- 
els were calibrated beforehand to fit the best estimate 
of the model error, the points from both error models 
(plus symbols for homogeneous and asterisk symbols 
for inhomogeneous in Figure 6) straddle the line with 
unit slope. However, in every instance, errors derived 
from both models tend to underestimate the value of 
the error when the variance is large and overestimate it 
when it is small. Examples in which both error models 
do especially poorly include the tide gauge stations at 
Rabaul, Nauru, Fanning, and Callao, the northern and 
southern points along the XBT tracks, and the first two 
EOFs along the western track. For the homogeneous 
error model (plus signs in Figure 6) the model forecast 
error variance is usually greater than the corresponding 
forecast error variance for the inhomogeneous model. 
Exceptions occur in a band west of and including Pen- 
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Figure ,5. Root-mean-square (RMS) system noise variance, plotted as contribution to error in 
sea level height, in units of centimeters. This can be viewed as the square roots of the diagonal 
elements of the matrix HQH T, where Q is the system noise covariance (see section 2.2) and H 
is the matrix which maps the state vector into the gridded map of sea level height anomalies. (a) 
RMS system noise amplitude for the model with statistically homogeneous error variance. (b) 
Similar to Figure 5a, but with the noise variance distributed in space according to the distribution 
shown in Figure 4. (c) Difference field for inhomogeneous (Figure 5b) minus homogeneous (Figure 
•). 

rhyn and north and west of Kwajalein. Visual inspec- 
tion of these results alone yield no clear decision as to 
which model is better. 

To quantify the comparison between the two models, 
the distance to the line with unit slope was calculated 
for each data point in Figure 6. The statistics for the 
mean and standard deviation of these distances are tab- 

ulated for each panel in Figure 6. For each type of data 
except the EOFs (Figure 6c), mean (labeled MEAN) 
and the scatter (labeled STD) are greater for the ho- 
mogeneous than for the inhomogeneous error model. 
This result indicates to us that the inhomogeneous error 
model does slightly better than the homogeneous error 
model in estimating the actual model errors, taken as a 
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whole. It is our opinion that the improvement of the er- 
ror estimate near the eastern boundary (especially the 
tide gauge station at Callao) makes the inhomogeneous 
error model a better choice for further investigation. 

Figure 7 shows maps of estimated RMS errors for the 
model, without updating, based on calculation of the 
steady state value of P by integration of (2) to equilib- 
rium with Q derived from the homogeneous and inho- 
mogeneous wind error models. While the maps shown 
in Figure 5 represent the errors assumed to be intro- 
duced into the model analysis at each step, the maps 
shown in Figure 7 represent the cumulative effect of 
these errors on the model output. 

The structure of the two fields represented in Figures 
7a and 7b exhibit differences which might have been 
expected. The greatest differences are in the north- 
west, where wind observations are fairly dense and the 

model is expected to be fairly good, and in the eastern 
part of the basin off the equator, where the observa- 
tions are sparse. The magnitudes of the differences, 
however, are small; the RMS error maps differ by less 
than 1.0 cm throughout the model region. The mean 
difference between inhomogeneous and homogeneous er- 
ror model results is approximately-0.4 cm (see Figure 
7c), well within the error tolerance for the observations 
themselves. It is surprising, but apparently true, that 
the equilibrium value of P calculated from (2) is not 
very sensitive to spatial inhomogeneities in the statis- 
tical model of forcing errors. For the present purpose, 
the choice between the system noise covariance matrices 
derived from inhomogeneous and homogeneous forcing 
error models is a matter of indifference. For the remain- 

der of this study we use the inhomogeneous model. The 
error estimates are more reliable near boundaries, and 
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Figure •. Maps of estimated RMS error in sea level height anomaly for model without •simila- 
tion. These maps are b•ed on the evolution of the error covariance according to the dynamical 
model a•er 8 years of integration. The model is closest to dynamical equilibrium at the equator 
and is still evolving significantly poleward of about 15 ø. Contours are in centimeters. (a) RMS 
sea level height error b•ed on homogeneous wind error model. (b) RMS sea level height error 
b•ed on inhomogeneous wind error model. (c) Difference field for inhomogeneous (Figure 7b) 
minus homogeneous (Figure 7a). 

we believe it to be a more faithful representation of real- 
ity, even though the large-scale effect on the estimated 
errors in sea level variation at most stations is small. 

5. Results 

5.1. Baseline Comparisons 

This is an application in which we expect data assim- 
ilation to be useful for both descriptive and analytical 

purposes. The data themselves are too sparse to pro- 
vide comprehensive analysis on their own, and simple 
objective analysis schemes are not constrained to pro- 
duce physically consistent results. Simple models cap- 
ture many of the important dynamical features of the 
physical system, but the data are too sparse to provide 
them with adequate forcing and initialization fields. 

With the available forcing fields for this period the 
model by itself does not capture the observed signal 
variance. Of course, the total signal variance could be 
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increased by artificially increasing the drag coefficient. 
Sheinbaum and Anderson [1990] found that by increas- 
ing the drag coefficient, they improved the comparison 
of XBT data to a model similar to ours driven by FSU 
winds for 6 months in 1980. Their results, unfortu- 
nately, are not directly comparable to ours since they 
did not remove the seasonal cycle as we did. They found 
that the major effect of increasing CD was to increase 
the thermocline slope; a similar effect was obtained by 
decreasing the stratification, as expected from dynami- 
cal considerations. It is possible that the apparent bias 
in the direction of weaker winds in the FSU data set is 

due to the smoothing applied to the data in the con- 
struction of the data set and the processing of the FSU 
wind fields for this study. 

It would be difficult to justify an increase of more 
than about 50% in CD on physical grounds. The im- 
provement would be greatest east of about 160øW, but 
the amplitude would still be deficient, judging by the 
results of the experiment without assimilation. The 
results at Kapingamarangi and Tarawa in the western 
equatorial region, where the E1 Nifio-Southern Oscilla- 
tion (ENSO) response is of the proper amplitude, would 
be worse. 

As a first step in the assessment of the impact of 
data assimilation on the model output, we compare the 

variability of the model sea level anomaly with an ob- 
jective analysis formed from in situ observations. Fig- 
ure 8 shows the RMS sea level height anomaly for the 
model run with no data assimilation and for a time 

series of maps generated by statistical objective anal- 
ysis based on all of the available data. The sea level 
height anomaly was mapped by standard objective anal- 
ysis techniques, with zonal and meridional decorrelation 
lengths of 15 ø and 3 ø , respectively, as described by Mey- 
ers et al. [1991]. XBT data were treated as being iden- 
tical to tide gauge data for the purpose of this analysis. 
Meyers et al. [1991] showed that the mapping is not 
very sensitive to the particular parameter choice. Fig- 
ures 8a and 8b exhibit similar general patterns. The 
model output is too weak in data-dense regions, espe- 
cially in the east and southwest portions of the domain. 

The sparseness of the data prevents us from seeing 
a uniformly accurate picture of the signal amplitude 
in the objective analysis. In data-poor regions the ob- 
jective analysis is no stronger than the model output. 
Figures 8a and 8b also differ in the eastern part of the 
basin, where the structure of the waveguide and the 
broadening of the contours toward the east due to the 
meridional scale of the reflected Rossby waves are ap- 
parent in the model output but not in the objective 
analysis. 
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Figure 8. Maps of RMS sea level height anomaly in centimeters, based on (a) 8 years of wind- 
driven model output, with no data assimilation and (b) objective mapping of all available data 
for that period. 
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Figure 9. Spatial structure and time series of EOFs of the sea surface height anomaly produced 
by the wind-driven model without data assimilation. (a) Contour map of leading spatial mode, 
accounting for 40% of the total signal variance. (b) Model time series of amplitudes of the mode 
shown in Figure 9a. (c) Same as Figure 9a, but for second leading spatial mode, accounting for 
20% of the total signal variance. (d) Same as Figure 9b, but for second leading spatial mode. 
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In order to examine the large-scale spatial struc- 
ture of the dynamic topography anomaly field, EOFs 
were calculated from the model output and correspond- 
ing EOFs were calculated from the XBT data, with 
dynamic height anomaly considered identical to sur- 
face height anomaly, and from surface height anomaly 
data from Rabaul, Truk, Kwajalein, Penrhyn, Fanning, 
Christmas, Santa Cruz, Kapingamarangi, Tarawa, and 
Canton. The island stations were selected for relative 
freedom from temporal gaps. Figure 9 shows the first 
two spatial EOFs of the model output, along with the 
time series of their amplitude. These EOFs together 
account for 60% of the variance of the model output 
field. The time series of amplitudes (Figures 9b and 
9d) indicate that these EOFs carry the ENSO signal. 

Figure 10 shows a mapped representation of the EOFs 
of the selection of data used to generate Figure 8b. 
These EOFs taken together account for 74% of the vari- 
ance of the data selected. The spatial pattern of the 
lead EOF is qualitatively similar to the leading model 
EOF. Detailed differences may well reflect the spatial 

sampling of the data which participate in the calcula- 
tion. This EOF contains a greater proportion of the 
total variance than does its counterpart in the model 
output, but some of this may be due to the restricted 
number of degrees of freedom. The time series of am- 
plitudes is dominated by the large ENSO event to an 
even greater extent than the model EOF amplitude. 

The second data EOF is also similar in general pat- 
tern to the model EOF. The data and model EOFs 

represent about equal proportions of the total variance. 
It is therefore interesting that the data EOF amplitude 
exhibits a stronger response during the ENSO event of 
1982-1983 than does the model EOF. 

The reader should bear in mind that the maps shown 
in Figure 10 actually represent EOFs of data at irregu- 
larly spaced points. An objective mapping routine was 
used to generate the gridded fields from which Figures 
10a and 10c were contoured. Details of the mapped 
structure in data voids are therefore to be viewed with 

suspicion; see, especially, the sign change in the region 
between the Galapagos (•90øW) and the Line Islands 

20N 

1ON 

EQ 

lOS 

20S 

0.3 

0.2 

0.1 

-0.1 

1979 

.• OYAP •T.-b,•-OKW: • I x 

140E 160E 180W 160W 140W 120W 100W 80W 

Longitude 
(a) 

I I I I 

1980 1981 1982 1983 1984 1985 1986 

Time 
(b) 

Figure 10. Same as Figure 9, but for time series of objective maps based on XBT data and tide 
gauge data at Rabaul, Truk, Kwajalein, Penrhyn, Fanning, Christmas, Santa Cruz, Kapingama- 
rangi, and Tarawa. (a) Contour map of leading spatial mode, accounting for 52% of the signal 
variance. (b) Time series of amplitudes of the mode shown in Figure 10a. (c) Same as Figure 
10a, but for second leading spatial mode, accounting for 22% of the total signal variance. (d) 
Similar to Figure 10b, but for second leading spatial mode. 
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(• 160 ø W) in Figure 10a and the difference between Fig- 
ures 9c and 10c in the northeast. The ENSO signal is 
more conspicuous in the second EOF than in the first. 

5.2. Data Assimilation Experiments 

Three data assimilation experiments were performed, 
all using the inhomogeneous form of Q, as follows: one 
in which data from a selection of tide gauges were assim- 
ilated (denoted as "ISL"), one in which the four lead- 
ing EOFs of the XBT data were assimilated (denoted 
"XBT"), and, finally, one in which both tide gauge data 
and XBT data were assimilated (denoted "ISL+XBT"), 
respectively. We refer to the run without data assimi- 
lation as "NODA." 

In all three assimilation runs the total variance of 

the height field was enhanced significantly as compared 
to NODA, approaching the total variance of the data. 
Maps of RMS amplitudes of the output of the data as- 
similarion experiments are shown in Figure 11. Dif- 
ferences between the RMS amplitudes of the sea level 
height fields from the runs with data assimilation and 
the one without are shown in Figure 12. The overall 
patterns of the variance maps change very little. The 
greatest change is in the amplitude. It is noteworthy 
that all of the assimilation experiments had greater vari- 
ance at every point than the experiment without assim- 
ilation. 

EOFs of the sea surface height variability for the 
three assimilation runs are shown in Figure 13. The 
greatest effect of the assimilation process on the lead 
EOF is in the northwestern part of the basin, where the 
assimilation process has smoothed out the strong merid- 
ional gradient near 7øN which extends from the west- 
ern boundary nearly halfway across the basin in Figure 
9a, the corresponding EOF for experiment NODA. In 
this respect the maps shown in Figures 13a, 13e, and 
13i more closely resemble the corresponding data EOF 
(Figure 10a) than they do the model EOF without as- 
similation (Figure 9a). The corresponding gradient in 
the southwest remains strong in the assimilation runs 
as in NODA, though it is weakened slightly in XBT and 
XBT+ISL, where data from the western XBT track are 
influential. East of the date line, the leading EOFs from 
the assimilation runs resemble that from NODA, shown 
in Figure 9a, more closely than they do the leading data 
EOF shown in Figure 10a. The impact on the second 
EOF is not so obvious. 

Variances of differences between estimated and ob- 

served quantities, along with estimates of these statis- 
tics based on covariance calculations performed in the 
filtering process are shown in Table 2. Estimates of ob- 
servation error variances (i.e., the diagonal of R from 
the Kalman filter formulation; see section 2.2) were 
added to the estimated error variances of the observed 
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Figure 11. RMS signal amplitudes (in centimeters) for the three data assimilation runs. Solid 
circles denote tide gauge stations at which data were assimilated. Open circles denote tide gauge 
stations at which data were available but were not assimilated. (a) Experiment ISL, in which data 
are assimilated from tide gauges at Rabaul, Jarvis, Christmas, Santa Cruz, Tarawa, Kwajalein, 
Penrhyn, and Callao. (b) Experiment XBT, in which data are assimilated from the leading four 
EOFs of the XBT data in all three XBT lines. (c) Experiment XBTq-ISL, in which data are 
assimilated from both tide gauges and EOFs of XBT data. 

quantities in order to form estimates of comparable 
quantities, so the estimated variances of the differences 
between model output and observations for stations at 
which data were not assimilated are given by the diag- 
onal elements of MPM T + R, where M is the matrix 
which maps the state vector into the vector of sea level 
heights, dynamic heights, and EOF amplitudes. The 
estimated error variances at stations from which data 

were assimilated are given by the corresponding diago- 
nal elements of R- MPM •', as shown by Miller [1990]. 
These error estimates are based on the value of the state 

error covariance matrix P after 8 years of evolution, 
with initial condition spun up for 6 years from the equi- 
librium P from MC. This is very nearly at equilibrium 
near the equator; the departure from equilibrium in- 
creases in the poleward direction. This reflects the ex- 
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Figure 12. Differences between RMS signal amplitudes (in centimeters) for the assimilation 
runs and the run with no assimilation (NODA). Solid circles denote assimilation stations. Open 
circles denote stations at which data were available but were not assimilated. (a) ISL minus 
NODA, RMS amplitude of the tide gauge assimilation minus RMS amplitude of the model run 
without assimilation. (b) XBT minus NODA, same as Figure 12a, but for the XBT assimilation 
experiment. (c) XBT+ISL minus NODA, same as Figure 12a, but for the experiment in which 
both XBTs and tide gauges were assimilated. 

tremely slow propagation of the high meridional mode 
Rossby waves which determine the state of the system 
away from the equator. 

Most of the assimilation error estimates shown in Ta- 
ble 2 appear at least in the proper range. The major 
exceptions are the two lead EOFs in the western track. 
The error estimates for these quantities are distinctly 
overoptimistic. The consequence of this for the assim- 

ilation process is that the model value will be given 
greater weight than it should have, while the data will 
be given correspondingly less. It is therefore surprising 
that the error estimates at the individual XBT locations 

are reasonably good, even in the west. 
Errors are consistently overestimated at Rabaul, 

while they are consistently underestimated at Nauru, 
Fanning, Yap, and Honiara. The result at Fanning is 
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Figure 13. Empirical orthogonal functions of variability of sea level height for the three data 
assimilation experiments. (a) Lead spatial mode for experiment ISL. (b) Time series of amplitudes 
of the mode shown in Figure 13a. (c) Same as Figure 13a, but for second leading mode. (d) 
Same as Figure 13b, but for second leading mode. (e)-(h) Same as Figures 13a-13d, but for 
experiment XBT. (i)-(1) Same as Figures 13a-13d, but for experiment XBT+ISL. 
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Table 2. Variances of Time Series of Differences Between Observations and Filter Output, Along With Estimates 
of These Quantities Generated by the Kalman Filter 

NODA ISL XBT ISL + XBT 

Error Esti- Error Esti- Error Esti- Error Esti- 
Variance mate Variance a mate a Variance mate a Variance mate a 

Sea Level Height Anomaly 
Station 

Rabaul 15.9 41.4 (0.8) (2.5) 12.9 27.9 (1.5) (3.3) 
Nauru 56.8 26.5 30.6 17.5 37.9 18.7 30.4 14.7 
Jarvis 20.0 30.8 (2.4) (0.4) •4.0 •8.9 (3.6) (3.2) 
Christmas 38.4 30.6 (5.8) (3.1) 24.9 20.1 (6.6) (4.3) 
Santa Cruz 41.5 31.1 (3.7) (4.4) 25.7 16.7 (8.0) (5.7) 
Callao 32.8 42.0 (1.8) (3.2) 16.5 24.8 (1.9) (3.8) 
Kapingamarangi 26.5 29.2 13.2 19.8 10.9 20.1 10.7 16.6 
Tarawa 30.1 28.3 (3.0) (3.5) 17.6 22.6 (3.2) (3.9) 
Canton 33.1 32.2 16.0 25.7 8.4 21.3 8.9 19.7 
Fanning 59.2 37.9 28.2 23.1 39.3 23.9 24.0 19.0 
Truk 40.6 41.2 29.1 26.4 26.6 29.9 21.7 23.8 
Kwajalein 34.9 38.9 (1.6) (2.6) 31.8 32.2 (2.3) (2.8) 
Yap 51.5 35.7 39.4 26.3 39.2 29.0 38.7 25.1 
Honiara 51.8 36.9 41.3 28.4 42.1 22.7 48.0 20.7 
Penrhyn 34.4 37.8 (2.0) (2.8) 36.0 32.6 (2.6) (3.0) 

EOFs of Dynamic Height 
Track, EOF b 

West, 1 349.6 226.7 135.2 158.8 58.4 14.9 55.8 16.2 
West, 2 358.9 141.3 351.6 103.4 234.5 15.5 244.1 17.9 
West, 3 181.7 155.9 141.0 116.4 53.7 11.4 57.8 12.1 
West, 4 85.1 101.8 85.0 89.5 12.7 8.3 12.0 8.7 
Central, I 279.9 202.4 127.6 143.6 22.0 11.6 15.9 13.2 
Central, 2 214.7 194.8 151.0 125.2 16.9 7.7 19.6 10.0 
Central, 3 183.0 115.5 174.8 106.0 75.4 10.7 73.8 10.9 
Central, 4 100.6 99.6 109.3 92.1 38.8 7.1 39.3 7.3 
East, i 285.8 238.4 193.3 109.1 12.4 17.1 34.7 25.9 
East, 2 108.4 111.1 98.1 102.0 19.5 28.5 19.2 29.2 
East, 3 27.3 87.5 23.1 79.6 3.8 14.4 4.5 14.9 
East, 4 56.0 79.2 56.6 64.4 4.2 7.8 5.8 8.6 

curious since the dynamic height error estimates on the 
central XBT track at the equator and at 5øN are much 
closer to the observed variances of the forecast-observed 

time series. Error estimates at Christmas, Tarawa, 
Truk, Kwajalein, and Penrhyn are consistently reliable. 

One important test of a data assimilation system is 
the comparison of output of that system with data 
which do not participate in the assimilation process. 
There were data from seven such tide gauge stations 
which were withheld from the assimilation process in 
all three experiments. Model estimates of the sea level 
height anomaly at those stations for all three experi- 
ments are plotted along with the observations in Figure 
14. 

Of the examples shown in Figure 14, assimilation 
seems least effective at Nauru (Figure 14a). Table 2 
shows that the RMS errors are reduced by nearly 50%, 
but the model's weak response during ENSO is not 
much improved by assimilation. The ENSO response 
at Truk (Figure 14e), Yap (Figure 14f), and Honiara 
(Figure 14g) is greatly enhanced by assimilation. At 
Honiara, assimilation of XBT data appears to be a bit 
more effective than tide gauge data alone in producing 

a faithful representation of the ENSO signal because of 
the proximity of the western XBT line to the island. 
Error statistics shown in Table 2 do not reflect this for 
the entire record at Honiara, but the error estimates 
are reliable for the nearby XBT record at 10øS on the 
western track. Improvement is also considerable at Yap 
and Truk, though the estimates of the error variances 
are not so good at Yap. The main effect at Kapinga- 
marangi (Figure 14b), where the error estimates are 
pessimistic, is in the post-ENSO period from mid-1983 
through most of 1984. This is also apparent to a lesser 
degree in the records at Canton (Figure 14c) and Fan- 
ning (Figure 14d). 

The assimilation results at the near-equatorial sta- 
tions Kapingamarangi, Nauru, Canton, and Fanning 
exhibit strong oscillations. These oscillations are most 
pronounced at Fanning, where the peak-to-peak ampli- 
tude exceeds 5 cm over an assimilation cycle during the 
ENSO event. This is consistent with the explanation 
suggested by Moore and Anderson [1989] for similar os- 
cillations in their assimilation experiment, which was 
performed with a similar, if simpler assimilation system. 
Assimilation of data results in the creation of a pressure 
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Table 2. (continued) 

NODA ISL XBT ISL + XBT 

Error Esti- Error Esti- Error Esti- Error Esti- 

Variance mate Variance a mate a Variance matea Variance mate a 

Dynamic Height Anomalies 
Track c 

West, -20 12.3 53.6 12.9 48.5 11.5 35.9 11.3 34.7 
West, -15 17.1 21.1 17.5 20.3 12.3 16.9 13.4 16.3 
West, -10 31.5 29.1 25.2 25.5 14.4 18.4 17.9 17.5 
West, -5 53.1 38.7 37.9 26.6 17.4 15.8 17.5 14.4 
West, 0 28.6 28.9 14.3 21.7 16.3 13.5 14.9 12.6 
West, 5 31.1 43.4 31.0 36.6 21.1 25.5 21.4 24.4 
West, 10 31.7 40.5 8.8 28.2 16.4 28.7 9.2 23.8 
West, 15 24.0 25.1 29.1 23.9 19.3 20.9 21.3 19.6 
West, 20 53.8 21.0 55.3 20.6 62.2 18.9 58.1 18.6 
Central, -20 24.7 59.5 25.8 51.6 25.8 34.6 25.7 33.1 
Central, - 15 21.0 23.9 16.3 22.8 12.4 19.3 10.7 18.8 
Central, - 10 51.4 33.9 40.8 23.9 18.6 21.1 23.6 18.8 
Central, -5 46.5 42.5 39.5 37.4 21.4 22.6 22.4 21.5 
Central, 0 15.5 36.2 11.5 25.3 12.0 14.3 11.3 13.4 
Central, 5 42.4 34.7 35.2 27.2 23.1 17.3 19.3 16.5 
Central, 10 23.8 25.5 21.3 24.8 15.2 20.4 13.6 20.0 
Central, 15 12.6 16.8 13.1 16.5 11.5 13.8 10.5 13.7 
Central, 20 48.9 15.4 50.6 14.9 50.4 13.7 50.3 13.6 
East, -20 15.3 24.7 15.3 24.0 13.1 21.9 12.6 21.8 
East, - 15 15.7 40.8 16.8 37.7 11.1 25.5 11.2 24.9 
East, - 10 11.5 28.5 9.9 27.6 6.9 20.3 7.0 20.1 
East, -5 18.9 22.0 17.3 19.1 10.2 14.7 11.2 14.4 
East, 0 31.1 42.3 19.8 25.4 14.3 17.8 16.0 16.4 
East, 5 31.4 44.9 21.5 31.0 5.6 21.8 8.1 21.0 
East, 6 35.5 37.9 23.9 20.8 10.5 16.5 11.8 14.6 
East, 7 47.0 63.9 33.2 31.4 20.8 31.8 21.7 24.0 

Statistics are given for time series of sea level height anomalies at tide gauge stations, amplitudes of EOFs of XBT-derivcd 
dynamic height anomalies, and dynamic height anomalies at selected locations. 

NODA is the run without data assimilation. ISL is the run in which data from a selection of tide guages were assimilated. 
XBT is the run in which the four leading empirical orthogonal functions (EOFs) of the XBT data were assimilated. 
ISL+XBT is the run in which both tide gauge and SBT data were assimilated. 

aNumbers in parentheses refer to Stations from which data were assimilated. 
bNumbers refer to the four EOFs used. 
CNumber are degrees latitude. 

gradient which is not balanced by the wind. Between 
updates, this pressure gradient relaxes by the genera- 
tion of equatorially trapped waves. These oscillations 
are stronger at Canton and Fanning than at Kapinga- 
marangi and Nauru. This is consistent with Moore and 
Anderson's general finding that this phenomenon was 
more pronounced in the eastern half of the basin. 

Sea level height anomaly is contoured on the x-t plane 
along the equator in Plate I for the experiment with 
no data, all three assimilation experiments, and for the 
objective map of the data. Moore and Anderson [1989] 
presented their results on a single-layer reduced gravity 
model driven by the FSU wind stress data set, with 
XBT data assimilated along sections similar to those 
we consider here. Direct comparison of their results to 
ours is difiqcult, but the variation in their experiments 
is comparable in magnitude to ours. 

The lack of temporal smoothness in the output of the 
filter is readily apparent in these x-t plots. Note also 
the prominence of the ENSO event and the changes 

from one run to the next. From the center of the basin 

eastward, sea level anomalies associated with the 1982- 
1983 ENSO event appear in the assimilation runs, with 
amplitudes nearly double those of the runs without as- 
similation. Later on in the simulation, the positive 
anomalies which appear in the western part of the basin 
beginning in late 1983 in the run without assimilation 
do not appear in the assimilation runs until mid-1984, 
and then they are weaker and more confined near the 
western boundary, as in the objective maps of the ob- 
servations. Fairly strong negative anomalies appear in 
the eastern half of the basin in 1985. They are strongest 
in the simulation with no assimilation. All of the assim- 

ilation runs appear more like the data (Plate le) near 
the eastern boundary during this period, as would be 
expected. The maps from the ISL and ISL+XBT ex- 
periments extend these anomalies westward, nearly to 
140øW. 

Maps of estimated RMS sea level error are shown in 
Figure 15. These should be compared with that shown 
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in Figure 7b of the model without assimilation. In Fig- 
ures 15a-15c the characteristic pattern appears. Errors 
are fairly homogeneous in the zonal direction near the 
equator, with strong meridional gradients at about 4øN 
and 4øS, west of about 160øW. A characteristic pattern 
also appears east of about 110øW in Figures 15a-15c 
and in Figure 7b. Assimilation in all three experiments 
results in accuracy near the 3-cm RMS instrument er- 
ror over most of the basin between 4øN and 4øS, with 
a wider meridional range east of 110øW. 

Figure 15a shows the effect of updating at the island 
tide gauge stations alone. Near the equator, the pattern 
is similar to the one obtained without updating (Figure 
7b), but the errors are quite a bit smaller. Updating 
at the off-equatorial stations at Kwajalein and Penrhyn 
has an effect that is limited in the meridional direction 

but extends tens of degrees westward, indicating prop- 
agation of information by Rossby waves. 

Figure 15b shows the effect of assimilating the EOF 
amplitudes of the dynamic heights. The appearance of 
the typical pattern indicates the introduction of Kelvin 
and low meridional mode Rossby waves into the analysis 
through the XBT information. Along the eastern track 
the assimilation has little effect west of the track itself. 

$heinbaum and Anderson [1990] found assimilation of 
XBT data in the eastern part of the basin similarly in- 
effective in influencing the analysis in the western por- 
tion of the domain. Information from the western track 

does, however, seem to propagate westward. This effect 
is more pronounced south of the equator, where the cen- 
tral and western tracks converge. Careful examination 
of this map along the western track shows the character- 
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Figure 14. Time series of sea level height anomaly at withheld tide gauge stations (a) Nauru, 
(b) Kapingamarangi, (c) Canton, (d) Fanning, (e) Truk, (f) Yap, and (g) Honiara. 
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Figure 14. (continued) 

istic strong meridional gradient near 4øN nearly intact, 
while the corresponding structure near 4øS is consider- 
ably weakened, with enhanced accuracy extending west 
of Honiara. 

Figure 15c shows the combined effect of assimilat- 
ing XBT sections and tide gauge stations. It shows a 
region of enhanced accuracy near 150øE, 10øS, owing, 
evidently, to the combined effects of assimilation of data 
at Rabaul and along the western XBT track. Assimi- 
lation of data along the central track seems to comple- 
ment the effect of data at Penrhyn, producing a region 
of enhanced accuracy that extends west from Penrhyn 
almost to the western boundary. In the northwest and 
in the east, as expected, the result of assimilating the 
two data types retains the enhanced accuracy of both 
of them. 

These effects are shown clearly in Figure 16, in which 
differences between the estimated error variance maps 
from the assimilation runs and the run without assim- 
ilation are shown. In Figure 16a the shape of the in- 
fluence of the data at Rabaul, Kwajalein, and Penrhyn 
is clearly apparent. We also have yet another view of 
the relative lack of influence of stations in the eastern 
part of the basin on the analysis much to the west of 
the data sites. 

Examination of Figures 16a and 16c and comparison 
of them with Figure 16b show that the major effect 
of assimilation of data at Santa Cruz and Callao is to 
establish the general pattern near the eastern boundary. 
Influence of data from these two stations is trapped near 
the boundary for the most part, spreading westward no 
farther than 100øW along the equator. It is also clear 



MILLER ET AL.: SEA SURFACE TOPOGRAPHY OF THE TROPICAL PACIFIC 13,417 

1986 

1985 

1984 

1983,• 

1982 

1981 

1980 

1979 
140E 160E 180W 160W 140W 120W 100W 80W 

Longitude 
(a) 

1986 

1985 

1984 

1983 

1982 

1981 

1980 

1979 
140E 160E 180W 160W 140W 120W 100W 80W 

Longitude 
(b) 

Plate 1. x-t plots along the equator for all experiments and for objective analysis of the data 
without reference to the model for (a) NODA, (b) ISL, (c) XBT, (d) ISL+XBT, and (e) objective 
map of data alone. 

30 

25 

20 

15 

10 

-5 

-10 

-15 

-20 

30 

25 

20 

15 

10 

-5 

-10 

-15 

-20 



13,418 MILLER ET AL.- SEA SURFACE TOPOGRAPHY OF THE TROPICAL PACIFIC 

1986 
30 

1985 25 

1984 

20 

15 

1983 

1982 

10 

1981 -5 

1980 

-10 

-15 

1979 

1986 

140E 160E 180W 160W 140W 120W 100W 80W 
Longitude 

(•) 

-20 

30 

1985 25 

1984 

20 

15 

1983 

1982 

10 

1981 -5 

1980 

-10 

-15 

1979 
140E 160E 180W 160W 140W 120W 100W 80W 

Longitude 
(d) 

-20 

Plate 1. (continued) 



MILLER ET AL.: SEA SURFACE TOPOGRAPHY OF THE TROPICAL PACIFIC 13,419 

that the assimilation process does not fill the data void 
from about 120øW to 150øW along the equator. This 
emphasizes the importance of the TOGA-TAO lines in 
this region, which were not present during this time 
period. 

Figure 16b shows that the impact of the central and 
western XBT tracks is widespread but fairly weak. The 
difference in the estimated RMS errors between XBT 

and NODA is rarely more than 1.5 cm, but the range of 
this influence spreads westward from the central track 
to the western boundary in a band of latitudes from 
10øS to 10øN. When the island tide gauge stations are 
added, the total influence is extended eastward from 
the central track, owing to the addition of assimilation 
stations at Penrhyn, Jarvis, and Christmas. Just east 
of the central track, Figure 16c resembles Figure 16a. 
The combined effect of the XBT and island station data 

is most evident west of the western track, where the 
combination of data from the western XBT track and 

the tide gauge station at Rabaul gives rise to enhanced 
accuracy south of the equator from 160øE nearly to the 
western boundary. 

Figure 16b shows another view of the difference in ef- 
fectiveness of assimilation of data from the eastern and 

western tracks. In particular, the meridional asymme- 
try of the influence of the western track is apparent. 

The relatively poor quality of the error estimate at 
Yap might be ascribed to its poleward position near the 
western boundary. At that location it may be affected 
by the artificial meridional boundary at 125øE. It is also 
worth noting that the differences between this model 
and the more detailed model of Gent and Cane [1989] 
occur in the northwestern and southwestern parts of the 
model domain. 

It would be desirable to know how much the variances 

of the residual (i.e., model minus observed) time series 
change from one realization to another. The strong se- 
rial correlation in those time series casts severe doubt 

on the use of the bootstrap to estimate this quantity, so 
we cannot assign confidence intervals to the hypothesis 
that the difference between our error estimates and the 

residual time series can be explained in terms of differ- 
ences between samples drawn from the same underlying 
population. 

6. Discussion and Summary 

The clearest effect of data assimilation in this system 
is to restore the signal amplitude to the analysis which 
is lacking in NODA, the model run without assimila- 
tion. From this consideration alone the analysis result- 
ing from the assimilation scheme should be considered a 
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Figure 15. Model-generated estimates of RMS sea level height errors for each of the three 
assimilation runs, (a) ISL, (b) XBT, and (c) ISL•-XBT. 

more faithful representation of the true large-scale, slow 
timescale variation of dynamic topography of the trop- 
ical Pacific than either the model output, which is too 
weak, or the statistical objective analysis of the data, 
which, reflecting the sparseness of the data and lack 
of dynamics, is no stronger than NODA in data-void 
regions. 

Practical benefits of these improvements from the 
data assimilation remain uncertain at this point. How- 
ever, coupled atmosphere-ocean studies of the ENSO 
phenomenon suggest that the lead time in ENSO pre- 
dictions may be due to the inertia of the subsurface 

thermal field in the tropical Pacific Ocean. If so, one 
might expect that it would be important to initialize 
coupled prediction models with the correct amplitude 
of the deviations in the subsurface thermal structure or 

the vertical integral thereof, i.e., dynamic topography. 
For example, if off-equatorial wave processes are impor- 
tant to the evolution of the ENSO cycle, then the ampli- 
tude improvements seen at the off-equatorial locations 
of Figures 14e, 14f, and 14g in late 1982 and early 1983 
may be significant in initializing westward propagating 
upwelling Rossby waves and the subsequent termination 
of the warm phase of ENSO. 
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Figure 16. Difference between model-generated estimates of RMS errors for assimilation runs 
and the run in which no data were assimilated, i.e., the difference fields between Figure 15 and 
Figure 7. (a) ISL minus NODA, (b) XBT minus NODA, and (c) ISL+XBT minus NODA. 

The basis of any data assimilation scheme lies in the 
error models, which determine the weights to be placed 
on model output and observations. Impact of any ob- 
servation on the analysis necessarily depends on the 
estimates of the errors in the model. Practical error 
models must be determined by a manageable number 
of parameters. Of the parameters in our Kalman filter, 
the meridional decorrelation length of the system noise 
has the greatest effect on the analysis. This quantity 
is related to the error in the wind stress curl. If it is 
set too small, the result •vill be a drastic overestimate 

of the error in the sea level outside of a narrow band of 
latitudes near the equator. 

One obvious weakness of most error models associ- 
ated with published data assimilation schemes is the as- 
sumption of statistical homogeneity of the system noise. 
We constructed an inhomogeneous noise model based 
on the difference field between two wind products but 
did not find great improvement over the simple homo- 
geneous one. 

Various other schemes for estimating inhomogeneous 
error covariance fields were considered. One could, for 
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example, assume that the homogeneous Q is a first 
guess and then use the formula from the Kalman fil- 
ter for calculating the forecast error covariance to cal- 
culate an "updated" Q, based on the assumption that 
the error field is updated where the observations are 
most dense. Given the large range of error variances, it 
would be difficult to distinguish between the results of 
experiments with different parameter values. 

There is every reason to expect the zonal and merid- 
ional model error decorrelation lengths Lx and Ly (see 
(7)) to be nonconstant functions of space. We there- 
fore attempted to estimate spatial variations of these 
quantities directly from differences between the FSU 
wind product and the SSM/I product. We expect these 
statistics to reflect the inhomogeneity of the errors in 
the FSU wind field because of the relative uniformity 
of the SSM/I data coverage. The errors in the SSM/I 
winds are not exactly homogeneous because they con- 
tain the statistical properties of the analysis used to 
determine the wind direction. Busaiacchi et al. [1993] 
calculated the variance field of the differences between 

these two products. Halpern and Wentz [1994] com- 
pared the wind time series for the interval from Decem- 
ber 1990 to November 1991 from two simultaneously or- 
biting SSM/I instruments. They found that the RMS 
difference of the monthly mean wind speed from the 
two instruments to be about 1.5 m/s over the tropical 
ocean, with relatively small temporal variation. This 
can be taken as a rough estimate of the magnitude of 
the wind speed errors in the SSM/I data, which are thus 
comparable to those found in the FSU data set. 

We attempted to evaluate the spatial variation of Lx 
and Ly by performing the following set of calculations: 
let eij (tk) be the difference between the SSM/I and FSU 
data sets at x- xi, y- yj, and t- tk. We chose a 
set of fixed coordinates (x•, y j) and calculated the sam- 
ple correlations R(x•, yj, xi, yj) of the difference fields 
relative to (x•,y•) according to the formula 

R(x•,y•,xi,y•) 

-- [(N- 1)/N] •=leij(t•)eij(t•) 

ß 
(1/2) 

for (xi,Yj) near (x•,y•). Systematic variation in the 
maps of R for different points (x•,y•) could be taken 
as evidence of systematic variation of error correlation 
scales. These calculations did not yield clear evidence 
of inhomogeneity of spatial correlation scales. This may 
be due, at least in part, to the small number of degrees 
of freedom in the data used to calculate the statistics. 
When the homogeneity assumption is discarded, each 
correlation value is the result of a small number of sam- 
ples. It is therefore not surprising that the results were 
quite noisy, and this noise may have hidden large-scale 
features of the error field. 

Our model of errors in the hydrographic data is 
certainly oversimplified. Taft and Kessler [1991] con- 

structed a detailed error model based on comparisons 
with conductivity-temperature-depth (CTD) data. 
Their model included a contribution from random in- 
strument errors of 1.69 dyn. cm. They also found that 
errors due to use of the climatological T-S relation were 
well correlated over times of several months and there- 
fore could not be assumed to be diminished by repeated 
sampling, as we assumed. Their model included an ex- 
plicit calculation of the meridional correlation of dy- 
namic height errors which would be better fitted by 
an exponential than by a Gaussian. This presents a 
technical problem since the derivatives of the correla- 
tion function at Ay -- 0 are physically meaningful, and 
therefore smooth functions should be chosen to model 
them. 

For all of the defects in our error model for the hydro- 
graphic data, a more sophisticated model such as that 
of Taft and Kessler [1991] would make little difference 
in an assimilation scheme such as this one. According 
to the Taft and Kessler model, the dynamic height er- 
rors in the western, eastern and central tracks are 11.3, 
10.8, and 12.3 cm 2, respectively. Use of these numbers 
instead of the ones we used would have made no dis- 

cernible difference in Figure 6 and would have changed 
the figures in the NODA columns of Table 2 by 0.1 cm 
or less. 

We also recalculated the estimated error variances of 

the EOF amplitudes based on Taft and Kessler's [1991] 
model, with the spatial correlation function for the er- 
rors due to use of the mean T-S dependence shown by 
Taft and Kessler's [1991, Figure 13b] fitted roughly by 
exp(-IAyl/4ø)cos(•y/10ø). Other error sources were 
assumed to be uncorrelated with those in other latitude 
bins. The resulting figures were slightly smaller than 
those shown in Table 1. If anything, this would have 
made the comparisons in Table 2 a bit worse, but the 
effect would have been small in any case. 

In an attempt to determine the extent to which we 
have realized the optimal filter, we examined the inno- 
vation sequences. These are the vectors multiplied in 
(3) by the Kalman gain Kk+ 1 to form the correction 
to the forecast. 

They take the form (w•_l - Hk+lWkf+l). It was first 
shown by Kailath [1968] that in an optimal linear fil- 
tering system the innovation sequence is not serially 
correlated. Intuitively, if the filter is extracting all pos- 
sible information from the data, then the innovation 
sequence should be white. Color in the innovation se- 
quence indicates that there is information still to be 
extracted. 

Daley [1992b], in a series of experiments on a sim- 
plified system, showed how the autocovariance of the 
innovation sequence can be used as a performance di- 
agnostic in a data assimilation system and applied his 
results to forecasts for central North America produced 
by the Canadian Meteorological Centre data assimila- 
tion system. In that case, distinctive patterns appeared 
in the plots of the lagged innovation correlations rela- 
tive to Omaha, Nebraska. In the present case, the data 
are too sparse to determine phase relations of the au- 
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Table 3. Autocorrelations of Innovation Sequences 

Autocorrelations By Track 

Island Autocorrelation EOF West Central East 

Rabaul 0.63 
Jarvis 0.68 

Christmas 0.70 
Santa Cruz 0.73 
Callao 0.65 
Tarawa 0.65 

Kwajalein 0.48 
Penrhyn 0.20 

I a 0.87 0.90 0.74 
2 0.83 0.89 0.67 

3 0.79 0.86 0.68 

4 0.68 0.76 0.73 

Correlation statistics were calculated for stations participating in the assimilation. Statistics for island stations are for 
experiment ISL, in which data from a selection of tide gauges were assimilated. Statistics for EOFs are for experiment 
XBT, in which the four leading EOFs of the XOT data were assimilated. 

a EOF i is most significant. 

tocorrelation statistics, and no clear conclusions can be 
drawn. 

Dee et al. [1985] devised a method for determining 
Q and R adaptively by minimizing the lagged autocor- 
relation of the innovation sequence. That method has 
the advantage of being able to deal with nonstationar- 
ity, but is quite cumbersome in application, and would 
not be practical for a problem of this size. 

The autocorrelations of the innovation sequences for 
assimilation of island tide gauges and of EOFs of XBT 
dynamic height sections at 1-month lag are shown in 
Table 3. Lagged autocorrelations at 2-month lags and 
beyond are quite a bit smaller, for the most part, though 
some are significantly different from zero. Similar cal- 
culations were performed for the experiment in which 
data from both sources were assimilated, and the results 
were essentially identical. These results are disappoint- 
ing, indicating as they do that the filter is operating 
far from optimally. The only exception is at Penrhyn. 
Referring to Table 2, the error variance estimates at 
Penrhyn are among the most reliable in our series of 
experiments. 

Despite the fact that our filter is far from optimal, 
we believe that only marginal improvement is available 
within the current framework. In our experiments we 
have found very little sensitivity to parameters which 
determine the system and observation noise matrices. 
Our analysis is probably the best available for this time 
period, given the assumption that the difference be- 
tween the model and reality is well described by ad- 
ditive white noise. The vast majority of published data 
assimilation schemes contain either this assumption or 
the simpler assumption that the model and forcing data 
are exact representations of nature. 

It may well be possible to achieve better results by 
dropping the hypotheses that the forecast and observa- 
tion errors are stationary, white, and uncorrelated with 
the signal amplitudes. Taft and Kessler [1991] calcu- 
lated the temporal autocorrelation structure of the dy- 
namic height error explicitly and found significant auto- 
correlation out to several months. Similarly autocorre- 
lated errors have been noted in the tide gauge data also 
(G. Mitchurn, personal communication, 1994). Finally, 

the errors are almost certainly nonstationary, owing to 
the influence of the ENSO cycle. It will be necessary 
to take these factors into account in the construction of 

better filters, even for linear models. 
Moore and Anderson [1989], who used a single-layer 

reduced gravity model, and Kawabe [1994], who used a 
model similar to the MC model, also found that model 
sea level response to the FSU winds was too weak dur- 
ing the 1982-1983 ENSO event. It is likely that the 
forcing contains systematic errors which are not well 
described by stationary white noise. If there are, e.g., 
systematic biases in the forcing data, we would expect 
the innovation sequence to be highly temporally corre- 
lated. Even in this case, Hao and Chil [1994] showed in 
a series of simulation experiments that the CP model 
with section data similar to our XBT lines assimilated 

by optimal interpolation would perform well. 
In future studies our focus will be directed toward 

the observations taken during the TOGA decade (1985- 
1994). In addition to the tide gauge and XBT obser- 
vations used here, we will also incorporate the ther- 
mal field measurements from the TOGA-TAO array and 
radar altimeter measurements from the Geosat, ERS 1, 
and TOPEX missions. Of particular interest will be a 
determination of the value added by the various data 
types for both the monitoring and prediction of ENSO 
variability. 
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