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The maximum principle developed by the Russian mathemati- 

cian, L.S. Pontryagin is considered to be one of the most significant 

contributions to the recent advances in mathematical optimization 

techniques. 

Unfortunately, most of the published literature on the applica- 

tion of the maximum principle is in the field of control system design, 

and very little has been published on the application of this principle 

to industrial engineering problems. 

The purpose of this thesis is to apply the maximum principle to 

practical problems in industry and business. Examples from inven- 

tory control, production planning and investment problems are pre- 

sented. 

This thesis is also intended to critically compare the discrete 

version of Pontryagin's principle with other traditional optimization 



techniques and to present an alternate derivation of the algorithm of 

the discrete maximum principle. 

The dissertation is composed of two parts. Part I introduces 

briefly the basic theory of Pontryagin's maximum principle for time - 

optimizing continuous processes. It contains the algorithm, the deri- 

vation of the algorithm and the application to the inventory control 

problem. Part II discusses the discrete version of the maximum 

principle. It presents the statement of the algorithm, its derivation, 

the applications to the production planning and investment problems, 

and the analysis of the algorithm. Concluding remarks are presented 

in the last section of Part II. 

A tabulating programming technique based on the maximum 

principle has been developed for industrial and business application. 

Its procedure and an example are also included in Part II. 
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THE MAXIMUM PRINCIPLE AND ITS APPLICATION 
TO INDUSTRIAL ENGINEERING PROBLEMS 

I. INTRODUCTION 

There are many techniques of searching for the optimal value 

of a function. Some of the most frequently used techniques for solv- 

ing problems of optimization are: 

Direct method of calculation 

Classical differential calculus method 

Lagrange multiplier method 

The calculus of variations 

Experimental search method 

Linear and nonlinear programming 

Dynamic programming 

The maximum principle. 

Among the numerous attempts to find new mathematical meth- 

ods, dynamic programming developed by Bellman (1957) and the max- 

imum principle derived by a Russian mathematician, Pontryaginl, 

are perhaps the most successful. The maximum principle was first 

proposed in 1956 by Pontryagin and his associates for individual types 

1Pontryagin, L.S. Some mathematical problems arising in con- 
nection with the theory of optimum automatic control system. Ses- 
sion of the Academic of Science of the USSR on Scientific Problems of 
Automating Industry, October: 15 -20. 1956. (In Russian) 
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of time -optimizing continuous processes2. 

Gamkrelidze (1958) extended the principle to a general case in 

which an arbitrary functional of an integral function is to be optimized. 

The first attempt to extend the maximum principle to the optimization 

of stage -wise processes was made by Rozonoer3 for the processes 

with linear state variables. 

Chang (1960) presented the discrete version of the maximum 

principle for non -linear, simple processes. An algorithm essentially 

identical to Chang's version, but different in notations, was independ- 

ently obtained by Katz (1962). Following the procedure used by Katz 

in the derivation of the discrete maximum principle, Fan and Wang 

(1964) have extended the same algorithm with some modifications to 

solve optimization problems of a complex process. 

2Less known perhaps is an independent development of a similar 
arinciple by M.R. Hestenes at the University of California, Los 
Angeles in 1958. 

3Rozonoer, L. I. The maximum principle of L.S. Pontryagin 
in optimal system theory. Autmat, Telemech., Moscow, 20: 1320, 
1441.. 1561. 1960. 
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II. CONTINUOUS MAXIMUM PRINCIPLE 

In this section, only the basic algorithm of the original version 

of Pontryagin's maximum principle is introduced. Its derivation is 

described from a dynamic programming point of view, and the con- 

tinuous maximum principle is applied to an inventory control prob- 

lem. 

A. Continuous Processes 

The maximum principle was originally presented by Pontryagin 

as a set of necessary conditions for the optimization of continuous 

simple processes. A simple process is defined as a process dynam- 

ically following a simple path as illustrated in Figure 1. Many other 

types of processes are found in actual industrial situations. Those 

are composed of several inter- connected branches, and are called 

continuous complex processes (see Figure 2). However, such a com- 

plex process can usually be solved by decomposing it into several 

simple processes and by exercising addito.nal special care in handling 

the state vector variables at the junction point of the sub -processes. 

This work extending simple process concept to complex processes 

has recently been published by Fan and his associates (1966). Only 

simple processes will be described here. 
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input 
X(t0) 

U(t) 

1lLll output 
> X(T) 

Figure 1. Simple process. 

B. Algorithm for Simple Processes 

A process refers to the dynamical change of a system. A pro- 

cess can be classified either as a time or a space process, depending 

on whether the change of the state is a function of a time or a space 

variable. Since these two types of processes are mathematically 

similar, the variable t will be used to denote either its time or 

space variable in the following discussion. 

For a deterministic simple process, the state of a system at a 

certain time or position, t, is completely described by the state 

vector, X(t). The change of the state is a result of the action of the 

decision vector, U(t), which can be manipulated independently. 

In a simple continuous process (see Figure 1), the change of the state 

can be described by the following differential equations: 

dx 

dtl fi[xl(t), x2(t), . . . xs(t); ui (t), . . . ur(t)1 , (la) 

r 

I 
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Figure 2. Complex processes with: (a) separating point, (b) com- 
bining point, (c) crossing point. 
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('t 
xi(t) = ` fi[xl(t), .. . , xs(t); ul(t), .. . , ur(t)ldt 

t 

0 

i=1, 2,..., s. t0<t<T 

In its vector form, we may write (la) as 

dX(t) - f(X(t), U(t)) dt 

6 

(lb) 

(1c) 

s and r are the dimensions of X and U respectively. The 

length of the process is denoted by (T -t0) which is the distance be- 

tween two end -points, t0 and T, in the t- coordinate. 

A basic optimization problem associated with such a process is 

to choose a piecewise continuous decision vector function, U(t), 

subject to the constraints 

gi[ul(t), . . . , ur (t)I < 0 i = 1, 2, . . . , p (2) 

so as to maximize (or minimize) a linear function of the final values 

of the state 

J = 

s 

i=l 

cixi(T); c. = constant 

with the given initial condition X(t0) = K. 

(3) 

The decision vector function so chosen is called an optimal de- 

cisirn function and denoted by U (t). 
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Additional state variables may be added to Equations (1) in or- 

der to include non -linear and integral relationships in the return (or 

payoff) function J. For example, if the integral- square value of one 

of the state variables, x is to be maximized, then a new variable m 

may be defined as 

or, 

dx 
s+1 dt- xm' xs+1(t0) = O. 

_ Ctx2 
x 

dt 
s+1(t) t m 

0 

The return function J under these conditions is 

J - xs+l(T). 

We will assume in the development which follows that Equations (1) 

include any additional state variables required to specify the return 

function. 

There are three different types of problems: 

1. Fixed time problems with free right end; 

no given final conditions, 

known time interval. 

2. Fixed time problems with fixed right end; 

given final conditions, 

known time interval. 
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3. Final time open problems; 

unspecified final time. 

Only the fixed time problem with free right end will be presented in 

this thesis. The other two types of problems and their conditions are 

discussed by Pontryagin et al. (1962), Kopp (1962), and Fan et al. 

(1966). 

To solve this problem, we shall introduce an s- dimensional co- 

variant vector function Z(t) and a Hamiltonian function H satis- 

fying the following recurrence relationships: 

H[Z(t), X(t), U(t)] = z.f.[X(t), U(t)] (4) 

i=1 

dzi(t) 
8H(Z, X, U) 

1 = 1, 2, . . . , s (5) dt 8xi(t) 

z.(T) = c. i = 1, 2, . . . , s (6) 

it can be seen that once the decision vector function U(t) is chosen, 

the covariant vector Z(t) is uniquely determined by Equations (5) 

and (6) and the initial condition X(t0) = K. It may also be noted that 

the performance Equations (1) may be rewritten in terms of the Ham- 

iltonian function as 

dxi(t) 
8H(Z, X, U) 

dt = az. (t) 
i = 1, 2, . . . , s (7) 

i 

' 
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The optimal decision vector function U (t) which makes the objec 

tive function J a maximum (or minimum), is the decision vector 

function U(t) which renders the Hamiltonian function H a maxi- 

mum for every t, < t < T. If the optimal decision vector is in- 

terior to the constraint set given by Equation (2), a necessary condi- 

tion for J to be a maximum with respect to U(t) is 

aH 
au (8) 

If U(t) is restricted, the optimal decision vector function U(t) 

is determined either by solving Equation (8) for U(t) or by seeking 

the boundary of the constraint set. 

Thus, Pontryagin maximum principle can be summarized in the 

following theorem: 

Theorem: Let U(t), t0 < t < T be a piecewise continuous 

vector function satisfying the constraints given Equation (2). In order 

that the linear function J, (Equation 3), may be maximum (or mini- 

mum) for a process described by Equation (1) or (7), with initial con- 

dition X(t0) = K given, it is necessary that there exists a non -zero 

continuous vector function Z(t) satisfying Equation (5) and (6), and 

that the decision vector function U(t) be so chosen that 

H[Z(t), X(t), U(t)] = Maximum (or minimum) 

t0 



for every t, t0 < t < T, 

where the equations are identified by: 

dX(t) f[X(t), U(t)] (1) dt 

gi[ul . . (t), . , ur(t)] < 0; i = 1, 2, . . . , P 

J = 

s 

i=1 

c.x.(T); c. = constant 11 1 

H(Z, X, U) _ 

s 

i=1 

(2) 

(3) 

zifi[X(t), U(t)] (4) 

dzi(t) 
aH(Z, X, U) 

i = 1,2,...,s dt = - axi(t) 

zi(T) = c. ; i = 1, 2, . . . , s 

dxi 
aH 

= 1,2,...,s dt az. i 

C. Derivation of the Algorithm 

10 

Originally, the continuous maximum principle was developed by 

Pontryagin, but the derivation by Pontryagin is unnecessarily cumber- 

some. Alternate derivations of the maximum principle have recently 

been presented by Kopp (1962) . 
and Nemhauser (1966). In this thesis, 

a much simpler alternate derivation from a dynamic programming 

i 
' = 
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point of view will be presented. 

In his original derivation, Pontryagin (1962) started with a min- 

imization problem, demonstrating that the Hamiltonian must be max- 

imized, named his finding "Maximum Principle. " Kopp and Nemhaus- 

er, on the other hand, used a maximizing problem and concluded that 

the Hamiltonian should be minimized. 

Our approach in this chapter, will be to examine a maximizing 

problem and to yield a maximizing Hamiltonian as the result. This 

technique was made possible by our judicial choice of multipliers in 

the definition of the Hamiltonian function. 

We wish to find the decision vector function, U that max- 

imizes the objective function, J, Equation (3): 

Maximum 

i=1 

subject to 

c.x.(T) = J 

dx. 
dt fi[X(t), U(t)] t0 < t < T 

x.(t ) = k. i = 1,2,...,s 

Under the assumption that Equations (1) include any state variables 

required to specify the return (or payoff) function, J, this problem 

has already been transformed into a terminal optimization problem 

(i. e. a fixed final time problem). 

(t) 

i 

= 
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The otpimum return function denoted by F is implicitly a 

function of initial state vector X(t0) and to. Then we can define 

s 

F[to, X(to)] = max >cixi(T). 
U(t) iL =J1 

[to,T] 

Since initial time point, t0, could occur at any time t, to < t < T, 

the subscript of to in the above equation can be dropped. Hence, 

F[t, x(t)] = max c.x.(T) (9a) 

t(t,T]i=1 

Let us now apply the principle of optimality4 (Bellman, 1957). We 

can first rewrite Equaton (9a) as: 

Noting that 

s 

F[t, X(t)] = max max c.x.(T) 
U(t) U(t) 1 1 

1 

[t, t +o][t +o,Tt 

s 

F[t+A, X(t+G)] = max >cixi(T), 
U(t) 

1 1 

i=1 
[t+o, T] 

(9b) 

lAn optimal set of decisions has the property that whatever the 
First decision is, the remaining must be optimal with respect to the 

etc t :rne which results from the first decision. 

s 

1 1 



We obtain the functional equation 

F[t, X(t)] = max F[t+e, X(t+o)] 
U(t) 
[t, t+o] 
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(10) 

Expanding F[t + &, X(t +t)] in a Taylor series about F(t, X(t)) and 

neglecting second -order and higher terms yields 

s 

F[t+e, X(t+a)] = F[t, X(t)] + o(F+ >Fx fi) 

i=1 

By substituting Equation (11) into Equation (10), 

where, 

F [t, X(t)] = max {F[t, X(t)] + 0(F 
U(t) 
[t, t+o] 

8F aF 
t at and F - 

8x, 
. 

s 

F f.)} (12a) 
X. 1 

1 
i=1 

Subtracting F from both sides of Equation (12a) and then dividing 

by o yields in the limit as A-)-0, 

s 

0- max (F+>F f.). 
U(t) t L xi 

i=1 

(12b) 

x, 

= x, 
i 

i 

(1 L) 
LL=1 i 
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Since Ft is not a function of U, the objective is to maximize 

We now define the covariant vector function as auxiliary variables 

which may be recognized as time dependent Lagrange multipliers: 

zi(t) = Fx (t) 

From Equation (9a), F (T) = c., and the end condition becomes 

z.(T) = c.. 

Letting the Hamiltonian function be zi(t)fi, that is, 

i =1 

s 

H[Z(t), X(t), U(t)] = i(t)fi, 
i =1 

then, the objective can be restated as 

Max. H(Z, X, U). 

-,, 

Let be the values of f. evaluated at the optimum value of u., 

From Equation (12b), 

X. 
i 

1 1 1 

F 

i=1 

xi 
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0 =F 
s 

i=1 

z.f. 11 

s 

F = z.f,m t 1 1 

i=1 

Partially differentiating the above equation with respect to x we 

obtain 
dz. s az.f 

1 

Ftx, Fxt dt ax. i= 1, 2 s 
1 1 1 

j=1 

Summarizing the above results, 

subject to 

Max. H(Z, X, U) = 
1 

z.f.1 [X(t), U(t)] 

i=1 

dz. 
8H(Z, X, U) 

dt ax. 
1 

zi(T) = ci 

dz. 

dtl fi[X(t), U(t)]. 

xi(t0) = k. 

i = 1,2,...,s 

t0< t< T 

These are the same conditions given by the maximum principle, and 

the derivation is therefore completed. 

- 

= 

= 

= _ 
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D. Application to Inventory Problem 

An application of the continuous maximum principle to a prob- 

lem of optimum production or purchasing planning under certainty 

will now be illustrated. The objective is to minimize the sum of the 

cost of holding inventories and stockout, and the cost of manufactur- 

ing or ordering. Pontryagin's maximum principle is employed to ob- 

tain an optimal production or procurement policy and the correspond- 

ing trajectory of the inventory for the manufacturing warehouse. 

Description of the Problem 

The total cost to be minimized is approximated by a quadratic 

form. The optimal control (decision) action and the corresponding 

trajectory of the state variables are respectively the optimal produc- 

tion plan and its inventory. 

in a manufacturing company,forecasting is used in designing 

,reduction rules which anticipate and prepare for sales fluctuations, 

and a buffer inventory is maintained so that errors in sales forecasts 

will not cause runouts or will not force rapid changes in the rate of 

slant operation. 

Let I(t), P(t) and S(t) be defined respectively as the inventory 

', production rate and sales rate at time t. The functions I 

P satisfy, in general, the condition that the rate of change in 

1.. 

nd 



finished -good inventory is equal to the difference between the pro- 

duction and sales rates, that is, 

where 

17 

I(t) = P(t) - S(t) (13) 

I(t) ddtt) 

Although the dynamic characteristics of an inventory system depend 

upon the relation between sales forecasts and actual sales, we as- 

sume in the present example that the sales are known with certainty, 

i. e. S(t) is a known prescribed function of time (or constant). 

The total cost of operation under these conditions may be com- 

posed of two parts, inventory costs and manufacturing cost. They are 

derived from three factors: holding inventories, stockouts, and the 

derivation of the production rate from that which is considered opti- 

mal for the plant. Let us define that I and P present the desired 

inventory and the desired production level of the plant, and that CI 

and C are cost coefficients. The rate at which the holding cost 

or stockout cost is incurred at time t can be approximated by a 

quadratic function CI[I(t) -I ]2. The rate at which the manufacturing 

cost is incurred can be approximated by another quadratic function 

[P(t) -P]2 so that the marginal cost function is linear and the unit 

5 cost function is U-shaped. Sometimes T and P can be known 

5Assuming, of course, that C1 > 0; CIS > 

- 

O. 
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functions of time t, but both of them are assumed to be constant in 

our example. 

Therefore, the total cost incurred between time t0 and T 

is the integral: 
('T 

C,, = 
T J 

[CI(I(t)-I )2 + C(P(t)-_ P)2]dt (14) 

Here, T represents some future point of time, and (T -t0) is not 

necessarily the length of a season. 

Now, the problem is briefly described as follows: find the 

optimum production and the corresponding inventory at time t 

which minimizes the cost function represented by Equation (14), sub- 

ject to the constraint given by Equation (13). 

This inventory model was also used by Holt et al. (1960). 

2. Solution Procedure 

Let us define x1(t) = I(t), u(t) = P(t). Then, Equation (13) 

becomes 

dx 
1 

dt - u(t) - S(t) 

xl(t0) kl 

where S(t) is a known fixed function. 

(15) 

= 
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Introducing an additional state variable, x2(t) such that 

or 

t 
x2(t) = [C1(xi(t)-I )2 + C(u(t)-P_ )2]dt 

to 

dx 

dt2 CI[xi(t) I]2 + Cp[u(t) P]2, x2(t0) - 0 (16) 

the problem is thus transformed into: 

s 

Min. J = , c.x.(T) = x2(T) 

i =1 

subject to Equations (15) and (16). 

From Equations (3) and (6), 

cl = zl (T) = 0 c2 z2(T) = 1 

!according to Equations (4) and (5), we have 

H(Z, X, U) = z1 (u-S) + z2[C1(x1-I)2 + Cp(u-P)2] 

dz 

dt 8x - -2z2C1(x1 -I), z1(T) = 0 

1 

dz2 
8H 

_ 0, z2(T) = 1 dt óx2 

(17) 

(18) 

(19) 

- 

= 

l 8H 
- _ 



Solve Equation (19) for z2, 

z2(t) = constant 

z2(t) = z2(T) = 1 

The Hamiltonian function can now be written as 

H(Z, X, U) = zl (u-S) + CI(x1-I)2 + C(u-P)2 

20 

(20) 

In this problem no constraint is imposed on the decision variables, 

and we do not have to be concerned with the boundary of the constraint 

set. The optimal control action may be determined from Equation 

(8) as 

or 

óH -0=z + 
- 

óu 1 
(u ) 

zl (t) = - 

Combining Equation (18) with (21), 

z1(T) = 0 = -2C[u(T)-P] 

u(T) = P 

dz du 
dt - -2Cp 

dt 
= -2CI(xl-I) 

.. CI(xl -I) - CP 511-1 = 0 u(T) = 

(21) 

(22) 

1 

dt 
P 
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Equation (22) together with Equation (15) constitutes a pair of linear 

differential equations in the two unknown functions x 
1 

(t) and u(t). 

The solution of these two differential equations will yield the optimal 

functions of x 
1 

and u. 

Solution of Equations (15) and (22): 

We set a pair of differential equations as follows, 

dx 
1 

dt - u(t) _ -S(t) 

du Cx - CP - C Ii dt I 

differentiating Equation (23) with respect to t and (23) becomes 

2 
d xl du dS 

- 
dt 

2 P dt P dt P 

and taking the difference of Equation (24) from Equation (25), 

d2 dS 
(CP dt2 CI)x1 CP dt - CII 

The characteristic equation of Equation (26) is 

Cm2-CI=O 

CI 

m =± C 

(23) 

(24) 

(25) 

(26) 
- 

J 



The solution of the pair of linear differential equations (23) and (24) 

is, therefore, 

x 
Ale.t A2e-Xt (xl 

P 

22 

where (x1)p is the particular solution of the equation to be decided 

by the form of the function S(t) and by the value of I . The sub- 

stitution of Equation (27) into Equation (23) yields 

where X = 

P 
ditions xl (t0) = kl and x2 (t0) = 0. 

J` 

dx 
u(t) - dtl + S(t) 

dtAleXt+A2e + S(t) 

d(x 

l 

) 

= Ale`t-A2Xé-Xt+ dt p + S(t) 

and Al, A2 are obtained from the initial con- 

= 

1 

= 
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III. DISCRETE MAXIMUM PRINCIPLE 

The discrete version of the maximum principle is more useful 

for industrial and management systems than the continuous version 

of the maximum principle. 

In Section B, the basic algorithm of the discrete maximum 

principle and its derivation will be presented. In Section C, applica- 

tions to three problems in industry and business are illustrated: 

(1) production level planning, (2) capital allocation and (3) invest- 

ment problems ((2) and (3) are the same things in the sense of invest- 

ment, but different types of systems). In the section of the applica- 

tions, a table is presented which contains the results optimized by 

the technique of the maximum principle for a particular system. 

Computational procedures to solve the problems are also explained 

in the application. 

In Section D, the analysis of the principle algorithm will be 

presented by using other optimization techniques, and some criti- 

cisms of the discrete maximum principle are provided. 

A. Discrete Processes 

The discrete maximum principle is simply an extension of Pon - 

tragin's continuous maximum principle. This extension work has re- 

cently been achieved independently by Change (1960) and Katz (1962). 



24 

Their discrete version of the maximum principle is only for a simple 

process in which the output from one stage is the input to the next 

stage, as shown in Figure 3. Although other systems which may be 

more highly complex than the simple processes are employed in ac- 

tual industry and business, these complex processes (see Figure 4) 

can be handled by decomposing a complex process into several simple 

processes with some appropriate modifications. We will, therefore, 

introduce the algorithm of the discrete maximum principle for the 

simple process. Wang and Fan (1964a) extended Katz's algorithm of 

the discrete maximum principle, for complex processes. 

U1 

1 

U2 

I 

Un 

0 
X 

X: state 
U: decision 

stage 
1 

xi stage 
2 

XZ 
Xn-1 stage 

n 

n 
X` --- 

variable 
vector 

3. Simple 

-}. 

vector 
variable 

Figure process, 

The discrete processes are defined as follows: A stage -wise 

process is a process consisting of a finite number of interconnected 

stages. A stage may present any real or abstract entity (for exam- 

ple, a space unit, or a time period or an economic activity) in which 

a certain transformation takes place. Those variables which are 

transformed in each stage are called state variables. The desired 

transformation for the state variables is achieved through 

--} -. 
N 

U 

stage 
N 

XN --- 
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U 
N' 

U 
(m+1)" UN" 

stage 
X 
,,(m+1)" 

m +1)" - 
X(n-1)' 

(b) 

1 

stage 
n 

r i.. rc 4. Complex processes: (a) process with separating branch, (b) process with 
combining branch. 

--- 
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manipulation of control (or decision) variables which remain constant 

within each stage of the process. The transformation at each stage 

is completely described by a set of performance equations. 

Most processes in industry consist of one or more of the follow- 

ing three basic types of stages; 

(a) Linking stage 

(b) Separating stage 

(c) Combining stage (see Figure 5). 

(a) 

Figure 5. Three basic types of stages! (a) linking 
stage, (b) separating stage, (c) combining 
stage. 

Whether a process is complex or simple depends upon the types 

of stages which the process includes. If a process consists entirely 

of linking stages, it is called a simple process. A complex process 

is a process containing at least one separating or combining stage or 

a stage more complex than either of these. Figure 4 shows two such 

typical complex processes. 

A process can be further categorized either as a homogeneous 

x heterogeneous process, depending on the form of the 

Un 

stage 
n 

Xn -- 
(b) 
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performance equations. A homogeneous process is a process in 

which the state vector and the decision vector are inter- related by the 

same set of performance equations throughout the process. A pro- 

cess is called heterogeneous if it is not a homogeneous process. 

For a process with all the performance equations and the initial 

values of state variables given, a general optimization problem is to 

determine the decision variables at each stage, subject to certain 

constraints. 

B. Discrete Maximum Principle 

We will now present the discrete version of Pontryagin's maxi- 

mum principle derived by Katz (196Z) for simple homogeneous pro- 

cesses (see Figure 3). 

1. Statement of the Algorithm 

A N- multistage dynamic process is considered as an abstract 

notion by which a large number of human activities can be presented. 

A schematical representation of the simple multistage control process 

has been already illustrated in Figure 1. The process consists of 

N linking stages connected in series. The state of the process 

stream denoted by the s- dimensional vector, X = (x1, x2, ... , xs), 

is transformed by T(. ) at each stage according to an r- dimension- 

al decision vector, U = (u1, u2, ... ur), which represents the , 
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decisions made at that stage. 

Suppose the transformation of the state variables at the n 
th 

stage is described by a set of difference equations (discrete perfor- 

mance equations), 

n n 
, 

n-1 n-1 n-1 n n n 
x. = T. x ,x ...,x ; u1 , u , ...,u 

i i 1 2 s 1 2 r 

x.° = k.; i = 1 , 2, ..., s n = 1,2, ...,N, 

or in vector form, 

Xn T,n(Xn-1 Un) 
, 

X© _ K 6 (28) 

An optimization problem associated with such a process is to find a 

sequence of control actions, U , 

n 
n = 1, ... , N which makes one of 

the final state variables, x N, a maximum (or a minimum) when 

the initial condition X = K is given. 

Therefore, the function x N is the objective function of the 
m 

process. The procedure for solving such an optimization problem by 

the discrete maximum principle calls for the introduction of s new 

variables (s- dimensional vector), zl , zZ , ... , zZ , satisfying the 

following recurrence relations: 

6The superscript n indicates the stage number. 
nents are written with parentheses or brackets such as 
(Xn)2 or [Tn(Xn 

-1 Un)]2 

The expo- 

= 



s aT.n (Xn-1, un) 

zn ; i = 1, 2, ..., s 
axn-1 J 

j=1 

and the final conditions, 

n = 2, .. ,N 

29 

(29) 

N 1; i = m; 
z. = i = 1, 2, .. , s (30) i 

0; i m; 

To determine the optimal sequence of the decision, Un, the fol- 

lowing condition must be satisfied; 

s 

z TIT n(Xn-1, Un) = ; n=1,2,...,N (31) 
J 

j=1 

The Equations (28) to (31) thus appear as a two -point boundary value 

problem in the variables, Xn and Zn, whose solution carries 

with it the determination of best control action. 

lows, 

For the more general case, the problem can be stated as fol- 

Max. J = 

subject to the constraint, 

N 
C. x, (32) 

gn(ul, ..., u < 
n) 

0; n = 1, ...,N (33) 

i = 1, . . , p 

zi 
n-1 

J 

. 

) 

i 1 r = 

i=1 
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Equations (28) to (31) which derive the solution of this problem can be 

compactly written in terms of Pontryagin's Hamiltonian formalism. 

Let the Hamiltonian be 

Hn = 

s 

j=1 

zj Tj (Xn-1, Un); n = 1, . . . , N 

Equations (28) to (31) may be written as 

n 
xn - aH 

- T n(Xn-1, Un); x.0 = k. 
1 n i i 1 

az. 
1 

n-1 aHn N 
n= 2, ...,N 

z. _ ; z. = c. 
1 n-1 1 1 i = 1, . . . , s 

n = 1, .. ,N 

i = 1, . . , s 

n aHn H= max (or min), or - 0 n = 1, ... , N 
aun 

(34) 

(35) 

(36) 

(37) 

:f the optimal decision, U , is interior to the set of the constraints, 

aHn 
_ 0. If Ú a necessary condition for J to be maximized is 

aun 
is at a boundary of the constraint set, it can be determined from the 

condition that Hn maximum (or minimum). 

Derivation of the Algorithm 

A simplified derivation of the algorithm stated for maximizing 

the objective function in the simple multistage process will be 

n 

J J 

ax i 

_ 

2. 
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presented in this section. The algorithm for minimizing the objective 

function can be derived by reversing the direction of the inequality 

signs. 

To derive the optimization algorithm, we first assume that the 

difference equation, Tn(Xn -1, Un), is continuous in its arguments 

and that its first partial derivatives exist and are piecewise continu- 

ous in its arguments. Furthermore, we assume that a set of optimal 

decisions denoted by Un exists and can be found such that the ob- 

jective function J attains its maximum. Then the corresponding 

optimal state vector is 

Xn Tn(Xn-1, 
Un); n = 1, . . ., N (38) 

If the decision vector is perturbed arbitrarily but slightly from the 

optimal value at each stage of the process, that is, 

where n 
(i) 

IbUnI = IUn-UnI < on; n = 1, .. ,N 

is an r- dimensional vector. 

The resulting perturbation of the state vector function is 

n 
T 

n / 8 
n-1 n-1 n / 8 

n n 
SX = (8X )SX (8T + U )bU 

bX0 = 0 

(39) 

(40) 

(41) 

where 6Xn = Xn -Xn, n = 1, ...,N and E is a small positive number. 

= 



Because of the continuity assumption, all neglected terms are 

of the order 
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(E)2 or higher, and the signs of both sides of Equation 

(40) are the same if E is sufficiently small. The partial derivatives 

are evaluated at the upper barred quantities. 

Multiplication of Equation (40) by Zn, followed by a summa- 

tion of n from n = 1 to n = N, yields the following results by 

virtue of Equation (36), 

N 

(Zn)T6Xn = 

n=1 

N 

n=1 

N 

Zn)T(aTn/ aX11-1)6Xn-1 + (Zn)T(aTn/ aU.n)ó Un 

n=1 

N N 
n-1 T n-1 n T 

(aT n n )str n 
) 6x + (z ) / au 

n=1 n=1 

(42)7 

By making use of Equations (36) and (41), Equation (42) can be sim- 

plified to 

N 

(C ) TóXN = (Zn)T(aTn/ aUn)6Un 

n=1 

n s r 

z n (a T n/ 
aun)bun L J J 1 1 

n=1 j=1 i=1 

The variation of the objective function J from Equation (32) is 

The superscript T indicates a Transpose. 

(43) ) 



bJ = (C)TSXN = 

s 

i=l 

33 

(44) 

Since J is to be maximized, it is necessary that bJ be zero for 

all free variations bUn, and that 5J be negative for all one- 

sided variations when the optimal decisions are at the boundaries of 

constraints as expressed by Equation (33). 

Hence, it is necessary from Equations (43) and (44) that 

bJ = (C )TSXN < 0 

s r 
n 

z. (aT. n /au, )bu. 
n n 

< 0 
J J 1 1 - 

j=1i=1 

(45) 

From the definition of the Hamiltonian function given by Equation (34), 

the necessary condition given by (45) can be written as follows 

s 

Yzn(aTn/aun)bun < 0 i = 1, 2, . ..,r 
J J 1 1 = 

j=1 

or in short 

n= 1,2,...,N 

(aHn/ aun)bu n < 0 
1 1 = (46) 

because of the independence of the variation bUn. However, for 

free variations of Un a necessary and sufficient condition for J 

c.bxN 
1 1 



to be zero is given by 
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81-In/ 8Un = 0 (47) 

Since SJ = 0 is only a necessary condition for maximizing J, 

Equation (47) is a necessary but not a sufficient condition for maxi- 

mizing J for free variations of Un. 

When any of the Un, n = 1, 2, ... , N, lies at a boundary, it is 

necessary and sufficient that we have the following condition for all 

allowable variations in order to make SJ < 0, 

Win/ 8Un)SUn < O. 

This is equivalent to the condition that Hn be (locally) maximum at 

the boundary. 

Thus, we are led to the conclusion that in order for the objec- 

tive function J to attain its maximum (or minimum) value it is 

necessary to choose a set of decisions Un, n = 1, ... , N such that 

a) Hamiltonian H 
n is made stationary with respect to the op- 

timal decision Un; when it is not constrained (or it lies 

in the interior of the admissible domain of Un), that is, 

choose -U n such that 

s 

8Hn/ 8Un = zn(8Tn/ 8Un) = 0 n = 1, . . . , N 
J J 

j=1 
i - 1, . .., r 
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b) Hamiltonian Hn is made an extremum with respect to 

Un when it lies on a boundary of constraints, that is, 

choose Un -n such that Hn = maximum (or minimum). 

C. Application of Discrete Maximum Principle 

In the preceding section, a simple multistage process with 

fixed terminal point and with given initial state values has been dis- 

cussed. However, this basic algorithm presented can be extended to 

handle a variety of problems usually encountered in practice, for ex- 

ample, processes with fixed end point in state values, processes with 

choice of initial values, processes with different performance equa- 

tions at each stage, processes with feed -back and so on. 

Therefore, the discrete maximum principle presented in the 

previous section can now be applied to some more realistic problems 

of industry and business in this section.. Note that we are still con- 

sidering only the simple multistage process with given initial condi- 

tions. 

The problems which will be presented later can be classified by 

constraints depending on whether some constraints are imposed or 

not. They can also be classified by the Hamiltonian function depend- 

ing upon either where the stationary point of the Hamiltonian is locat- 

ed with respect to the constraints or whether the Hamiltonian function 

.s linear or non -linear with respect to the decision variables. Thus, 

-. 
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the classification of example problems may be summarized as follows: 

Case 1. There exists no constraint on decision variables (or the op- 

timal decisions are found to be interior to the set of con- 

straints if some constraints are imposed), and the Hamilton- 

ian function is non -linear. 

Case 2. The optimal decisions are found to be at the lower bound or 

the upper bound of the constraints when the stationary point 

of the Hamiltonian function lies outside the constraints, and 

the Hamiltonian is non -linear. 

Case 3. The optimal decisions are found to be at the boundary of the 

constraints when the Hamiltonian function is linear with re- 

spect to the decision variables. 

Case 4. The Hamiltonian function is non -linear and its stationary 

point may be infinite with respect to the decision variables, 

and each stage has a different transformation form. 

This classification is also illustrated in Figure 6. Each problem in 

the discrete maximum principle application will be identified by the 

above case number. 
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Figure 6. Classification of problems. 

1. Application to Production Level Optimization 

a. Case 1 (Optimal Decisions are Interior to the Set of Con- 

straints), Let us consider the production level of a particular per- 

ishable commodity. The following information is given: 

-The excess production over the sales forecast is wasted at a 

cost of $10 per unit. 

-The cost of changing the level is three times the square of the 

difference between two production levels. 

-r-- 

1 ii l 
MCI 
MMINIM 
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-The last quarter production level was 1362 units. 
3 

-The following sales forecast must be met (no shortage is al- 

lowed): 

Quarter (n) 1 2 3 4 

Sales forecast (Qn) 115 125 100 95 units 

The problem is to determine the production level at each period which 

minimizes the total cost subject to the sales forecast for all periods. 

We can define each quarter as a stage as shown in Figure 7. 

0 xl 

2 
u 

2 
x1 

3 
u 

x13 

3 x2 

4 
u 

1 
4 xl stage 1 

quarte r 
1 

1 
X1 stage 2 

quarter 
2 

stage 3 

quarte r 
3 

stage 4 

quarter 
4 

áquarter x2 
2 

-- 
1 

2 

2 x2 4 
x2 

Let 

Figure 7. Production planning process. 

xl = Production level at the nth stage, 

x2 = The sum of the cost up to and including the nth stage, 

un = The change in production level from the (n -1)th stage to 

the nth stage, 

Qn = The sales forecast for the nth stage, 

n n- 1 n th 
G (xl , u ) = The cost at the n stage. 

According to Equation (35), 

1 

r 

x2 



n n n-1 n n-1 n 
x1 = T1 (x1 , u ) = x1 + u n = 1,.. . , 4 

xn _ 
xn-1 Gn 

( 

xn-1 
' 
un 

) 2 2 1 

= x2 -1 + 3(un)2 + 10(xi -Qn) 

Substitution of Equation (48) into (49), 

where 

x2 = (xl 
-1, x2 -1, un) 

n-1 n 2 n-1 n n 
= x2 + 3(u ) + 10(x1 +u -Q ) 

x1 = 1363, x = O. 
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(48) 

(49) 

(50) 

The problem in which the objective function J to be minimized can 

be written as 

Minimum 

subject to 

4 

J // 
n-1 un) 

n=1 

n n-1 n 
x = x + u 

1 1 

2 

i=1 

4 4 c.x. =x 
2 

xn _ Gn 
( 1 

xn-1 
' 

un 
) 

xn-1 
2 2 

n Qn x > 
1 

(51) 
n( 

G xl ,u = 
i i 

+ 

. 

l 
+ 

n = 1, 2, 3,4 

1 



Let us start solving this problem by using the discrete maximum 

principle. As the first step, we obtain from Equation (51), 

c1=z1 =0 c2=z2 = 1 

According to the recurrence Equations (34), (36), (48) and (50); 

Hn = 

2 

z nT n(Xn-1 ' 
un) 

J J 

j=1 

40 

(52) 

n n-1 n 
+ zn[xn-1+3(un)2 + 10(xn-l+un-Qn)] (53) 

1 

(x 
1 2 2 1 

n 
n-1 óH n 

z2 
óxn-1 - z2 

2 

Ln-1 aHn zn + 
10z 

1 óxn-1 1 2 

1 

(54a) 

(54b) 

Equations (54a) and (52) show that z2 = z2 z2 = z2 = 1. By sub- 

stituting z2 = 0 and z2 = 1 into Equation (54b), z1 can be ob- 

tained, 

zl = 0 zl = 10 zl = 20 z 
11 

= 30. 

Now, we have all values of the multiplier vector Zn. We are 

therefore able to determine the sequence of optimal decisions from 

Equations (37) and (53), 

= 

Z. 
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8H1 a 1 0 1 1 0 1 2 0 +u 1 -Q1)1} 
aul au 

{zl (xl +u )+z2 [ x2 ) + 1 0 ( x 

al [30(x +u1)+x +3(ul)2+10(x +ul -Q1)] 

au 

= 30 + 6u1 + 10 = 0 u 
1 20 

3 

aH2 a 1 2 1 2 2 1 2 2 

aut [20(x1 +u ) +x2 
aut 

+3(u ) +10(x1 +u -Q )] 

= 20 + 6u2 + 10 = 0 . 
. 

. u2 = - 5 

aH3 a [10(x 2 ) +u +x2 +3(u) +10(x +u3 -Q3)] 
aua aua aua [10(x1 2 1 

= 10 + 6u3 + 10 = 0 .', u3 = 10 

4 

au 4 aá4 [0(x1 
+u4) +x2 +3(u) +10(x1 +u4 

-Q4)] 

= 6u4 +10 =0 .'. u4=-5 
3 

Then, the production level xi will be obtained by substituting 

these decisions into Equation (48), 

xl -: 1363 130 
20 xl = 130 - 5 = 125 

x1 = 125 - 10 = 121-2 xl = 121- -- = 120. 

Fortunately, any stationary point of Hn is interior to the cons 

straints. Hence, these results are the solution of the problem and 

,', 

1 1 

_ 

. 

. . - - 

8H 
2 

. 



summarized as 

Sales forecast 
Qn 

Production level 
n 

x 
1 

42 

Initial 1st 2nd 3rd 4th 
state quarter quarter quarter quarter 

115 125 100 95 

Change of level 
n 

u 

136-3- 30 125 121 3 120 

-20 10 -5 
3 3 3 

If one of the optimal decisions lies at the boundary of the constraints 

when the stationary point of its Hamiltonian function is outside the 

constraints, the solution is not so easy and much more complicated. 

In order to compare the discrete maximum principle with dynamic 

programming, this problem has also been solved by dynamic pro- 

gramming technique in Appendix I. 

b. Case 2 (One of the Optimal Decisions Lies at the Boundary). 

Let us now consider the application of the maximum principle in 

which one of the optimal decisions is at the boundary of the set of con- 

straints when the stationary point of the Hamiltonian function Hn 

lies outside the constraints. 

The same example is again considered. In order for the deri- 

vation of such a problem with an optimal decision at the boundary of 

the constraints, let us change one of the values of the preceding sales 

forecast in Section 1 -a, as follows 

-5 
- 
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Quarter 1 2 3 4 

Sales forecast 115 125 200 95 units . 

The estimated sales units of the third quarter has been changed from 

100 to 200 units. 

If we use the same procedure in the previous section, we can 

obtain the same sequence of the optimal decisions Un regardless 

of the change of the value in sales forecast: 

Quarter Decision State Sales forecast 
un n Qn xl 

1 -20/3 130 115 
2 -5 125 125 
3 -10/3 121-3 200 
4 -5/3 120 95 

Looking at the 3rd stage, we note: 

xi = 121-3 Q = 200. 

This does not satisfy the constraint that xl > Q3. Obviously, the 

stationary point of the Hamiltonian function H3 is outside the Con- 

óH 
n 

straint. Hence, the procedure in Section 1 -a that makes zero 
ôu 

n 

without consideration of the constraints is no longer applicable for 

this problem. 

New solution procedure: 

The problem is now solved by using the backward approach with 

explicit consideration of the constraints. 



Step 1 (Stage 4) 

Since J _ x2 , z 4 = 0 and z 2 = 1. 

H = z2x2 =x 3 
+ 3(u4)2 + 10(xi +u4-Q4) 

4 
6u4 + 10 = 0 . '. u4 = - 

5 

au4 

However, there exists a constraint at the 4th stage such that 

x4> Q4. 

According to Equation (48), 

4 4 3 u = x - x 
1 1 

x4 = (xl+u4) > Q4 = 95 

Substituting u4 = - 3 (55) into (56), 

xl?(Q4+3)=963 

Equation (57) is satisfied because 

l x > 200 = Q3 . 

Step 2 (Stage 3) 

z 3= óH4 
10 z 3= aH4 

1 
1 

axl ax Z 
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(55) 

(56) 

(57) 

- 

= 

= 



H3 = 10(x2 +u3) + x2 + 3(u3)2 + 10(x1 +u3-Q3) 

3 
ô 3- 10+6u3+10=0 
su 

u = - 10 if x1 > (Q3+-10 ) = 2033 

xl = Q3 = 200 if x2 < 203-3 

45 

(58) 

(59) 

To choose either Equation (58) or (59), we must consider Q2. Since 

Q2 is equal to 125 units, x2 will definitely be less than 203-1 3 . 

Hence Equation (59) is chosen: 

... xl = Q3 = 200 

Step 3 (Stage 2) 

From Equation (48), 

u3=x1 3 -x2=200-x1 

3 
By substitution of Equation (60) into H , 

H3 = x2 + 3(200-x2)2 + 2000 

then, 

(59) 

(60) 



3 

z 
2 ax2 6x1 1200 

8x1 

2 8H3 
z 

= 2 8x2 
= 1 

The Hamiltonian function at the Stage 2 is 

J 

H2 zl(x +u2) + z2 [x2+'3(u2)2+10(x1 +u2-Q2)]. 

Substituting Equation (61) into H2, 

H2 = (6x 
2 

1 
-1200)(x + x2 + 3(u2)2 + 10(x +u 

1 

1 -Q2) 

2 ax 6x1 - 1200 + 6u2 + 10 = 0 

8u 

2 1190 2 
u - 

6 
- xl . 

From Equation (48), we obtain u2 = x12 - x1 

Since 

2 1 1 595 
x + l = 2 xl 6 

2 1 1190 2 x - x = - x 6 

if x1 > 2(Q2-99 6 = 51-2 

x1 = Q2 = 125 if xi < 513 

46 

(61) 

- 
1 

- 

1 

= 

1' 

= 1- 

= 
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xi should be more than 51-2 because Ql equals to 115 units. 

So, we choose that 

Step 4 (Stage 1) 

2 1 1 595 xl = 
-2x1 

+ 

2 

z1 _ 
aHl 

_ 6x12 - 1200 + 10 
ax1 

1 
Substituting Equation (62) into the above equation, z1 , 

where 

z1 = 3x1 - 595 and z 1 = 
8H2 

1. 
2 ax2 

Hl (3x1-595)(x+ul) + x0 + 3(u1)2 + 10(x +ul-Q1) 

x = and x ° = 0 

1 
aHl -3x1- 595+6u1+10=0 
au 

(62) 

(63) 

By the substitution of x1 = x 
1 

+ ul into Equation (63), we obtain 

u1=19 (64) 

which satisfies the constraint at the first stage. Through the Equa- 

tions (48), (55), (59), (62) and (64), one can obtain the following re- 

sults: 

ax2 

= 

6 

1 
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Sales forecast 
Qn 

Initial 1st 2nd 3rd 4th 
state quarter quarter quarter quarter 

115 125 200 95 

Production level 
n 

x1 1363 1569 1779 200 1983 

Change of level 
n 

u 19 
9 

219 229 -1 3 

This model of the production level optimization was first pre- 

sented by Fan and Hwang (1966). 

The reader can recognize that this particular procedure of the 

discrete maximum principle is very similar to that of dynamic pro- 

gramming (Appendix II). 

c. Table of Optimal Decisions for Production Level Problem. 

Based on the foregoing discussions, a tabulating method has been de- 

vised to minimize computational difficulties for production level op- 

timization problems of type 1 -a. 

Following a simple step -by -step procedure, the table is aimed 

to give us the sequence of optimal decisions un with very little 

computational work. 

We assume, based on the production level problem given in the 

Section 1 -a, that the cost function in general takes the form: 

the cost of changing production level; 

A(xn-xn 1)m A(un)m 
1 1 

= 



where 

49 

the cost of over -production; 

B(xl-Qn) = 
B(xl_ 

1+un-Qn) 

A = the cost coefficient with respect to the change of production 

level, 

B = the cost of producing one excess unit, 

un = the change of production level from (n -1)th stage to nth 

stage, 

xi = production level at the nth stage, 

x2 = the cumulative cost up to and including nth stage, 

Qn = sales forecast at nth stage, 

m = the exponent of the changing level cost function. 

According to Equation (53), 

Hn = zn(xn-l+un) zn[xn 1+A 
(un )m+B(xn 1+un-Qn)] 

1 1 2 2 1 

From Equation (36), we obtain 

n-1 áHn n n zl = _ z1 + Bz2 

1 

(65) 

n-1 óHn n 

z2 óxn-1 - z2 
2 

2 
ax l 

+ 

- 



From the objective function J = x2 and Equation (36), we obtain 

z1 = 0, z2=1 

By combining Equation (65) and (66), 

zn-1_zn-1 
2 2 

z2 = 0 

z1 N 1=B 

zN-2 = 2B 

zl = (N-n)B 
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(66) 

(67) 

(68) 

(Note that N is the number of the final stage. ) 

We also assume that no constraint is imposed on the decision or 

state variables (or, if some constraints exist, we assume the station- 

ary point of Hn is interior to the constraints for all n). 

aHn 
Under the above assumption, the approach which sets 

óu 
n 

equal to zero is available to obtain an optimal policy of the problem. 

Hence, 



8Hn ô {zn(xn 1+un)+zn[xn-1+A(un)m+B(xn 1+un-Qn)]} 
n n 1 1 

)+z2 [x2 
1 

ôu 8u 

=z1 +z2mA(un)m -1 +B =0 

By substituting Equations (67) and (68) into (69), 

n 
óH (N-n)B + mA(un)m-1 B = 

aun 

1 

un_[(n 2Nn-Nm 1; n= 1,2,...,N 
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(69) 

(70) 

Thus, we have obtained the N- sequence of the optimal decisions of 

un from Equation (70) as a function of the number of stages (N), 

cost coefficients (A and B) and the exponent of changing level cost 

(m). 

For N, A, B and m, let us assume that 

N = 1, 2, . . . , 12. 

A= 1,2, ... ,10. 

B= 1,2, ... ,10. 

m = 2,4,6. 

Thus, 3600 (12 x 10 x 10 x 3) possible problems are presented here. 

It is almost impossible to solve all these problems by hand- calcula- 

tion. A FORTRAN II computer program shown below was used to 

m A 

+u 

0 



accomplish this calculation. 

DIMENSION U(10, 10, 6) 
N =1 

1 AN =N 
PUNCH 100, N 

100 FORMAT (3HAN =, I2) 
DO 4 I =1, N 

200 FORMAT (5H BN =, I2) 
PUNCH 200, I 
BN =I 
DO 4 IA=1, 10 
A =IA 
DO3 IB =1, 10 
B =IB 
DO 2 M =2, 6, 2 

XM =M 
2 U(IA, IB, M)= ((BN- AN -L) *B/ (XM*A)) * *(1. / (XM -1. )) 

300 FORMAT (2HA =, I3, 4H B =, 13, 5X, 3E14. 8) 
3 PUNCH 300, IA, IB, U(IA, IB, 2), U(IA, IB, 4), U(IA, IB, 6) 

4 CONTINUE 
N =N +1 
IF(N -12)1, 1, 5 

5 STOP 
END 

AN, BN and XM are respectively N, n and m of Equation (70). 

Table; For m = 2, following results were obtained: 

exponent m = 2 

parameters A, B, N varying as 

A = 1,2, ... ,5 

B = 5, 6,..., 10 

N= 1,2, ... ,6 

that is, cost of changing production level 

= A(un)2 for all n, n = 1, 2, ... , N 
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cost of over -production 

= B(xi -Qn) for all n, n = 1, 2, ... ,N 

Table 1. Table of decisions (un) for optimal policy. 

Number of stages, N 
1 2 3 4 5 6 

A =1 
B =5 B =6 B =7 B =8 B =9 

1 15 18 21 24 27 
1 2 12.5 15 17.5 20 22.5 

1 2 3 10 10 14 16 18 
1 2 3 4 7.5 9 10.5 12 . 13.5 

1 2 3 4 5 5 6 7 8 9 

1 2 3 4 5 6 2.5 3 3.5 4 4.5 
A =2 

1 7.5 9 10.5 12 13.5 
1 2 6.25 7.5 8.75 10 11. 25 

1 2 3 5 6 7 8 9 

1 2 3 4 3.75 4.5 5.25 6 6.75 
1 2 3 4 5 2.5 3 3.5 4 4.5 

1 2 3 4 5 6 1.25 1.5 1.75 2 2.25 
A =3 

1 5 6 7 8 9 

1 2 4.17 5 5.83 6.67 7.5 
1 2 3 3.33 4 4. 67 5.33 6 

1 2 3 4 2.5 3 3.5 4 4.5 
1 2 3 4 5 1.67 2 2.33 2.67 3 

1 2 3 4 5 6 0.83 1 1. 17 1.33 1.5 
A =4 

1 3.75 4.5 5.25 6 6.75 
1 2 3.13 3.75 4.38 5 5.63 

1 2 3 2.5 3 3.5 4 4.5 
1 2 3 4 1.88 2.25 2. 63 3 3.38 

1 2 3 4 5 1.25 1.5 1.75 2 2.25 
1 2 3 4 5 6 0.63 0.75 0.88 1 1.13 

A =5 
1 3 3.6 4.2 4.8 5.4 

1 2 2. 5 3 3. 5 4 4. 5 

1 2 3 2 2. 4 2. 8 3. 2 3. 6 

12 3 4 1.5 1.8 2.1 2.4 2.7 
1 2 3 4 5 1 1.2 1.4 1.6 1.8 

1 2 3 4 5 6 0. 5 0. 6 0. 7 0. 8 0. 9 

(Note: all values of un are negative) 
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B =10 

30 
25 
20 
15 
10 

5 

15 
12.5 
10 
7.5 
5 

2.5 

10 
8.33 

7667' 
/5//// 
73. 33/ 
/1:/67// 

7.5 
6.25 
5 

3.75 
2 5 

1.25 

6 

5 

4 
3 

2 

1 

- 
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The state variables with respect to its sequence of the optimal 

n decisions u can be easily obtained from the difference equations: 

n n-1 n 
x1 = x1 + u 

xZ = x2 1 + A(un)2 + B(xi 1+un-Qn) 

with initial conditions 

x=k1, x=0. 

As we can recognize from the table or from Equation (70), the value 

of the final decision, uN, 

the stage number, N. 8 

is fixed regardless of the variation of 

A numerical example of the production level problem which 

shows how to use this table is illustrated in the shaded area in Table 

1. 

We may reasonably respect that many authors who are working 

on the maximum principle may be currently preparing monographs or 

tables including results obtained by the discrete maximum principle 

such as our example. 

2. Application to Capital Allocation Problem (Case 3) 

Consider a five -stage allocation process for which each stage 

8The extension of this program to the case of the optimal deci- 
sions at the boundary is possible but rather tedious. 
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represents one year. The first state variable is the available capital 

in dollars to be invested. The decision variable is the amount of cap.. 

ital at each year that will be invested in stock A, with the remaining 

capital being invested in stock B. Let stock A be that of a growing 

company with respected stock appreciation of ten percent per year 

and dividend of ten percent per year, and stock B be that of a gold 

mining company whose mine is being depeleted and the stock is ex- 

pected to depreciate 20 percent, but whose dividend is 30 percent per 

year. 

The problem is to find the optimal policy that will maximize 

the total dividend for five years. We assume the initial capital to be 

$1, 000. 

Let us define: 

xl 1 
= amount of capital available for investment at the nth stage. 

x2 = sum of the dividend up to and including the nth stage. 

un = amount of capital invested in stock A at the nth stage. 

xl 1 -un = amount of capital invested in stock B at the nth stage. 

The difference equations can be written as: 

xn = Tn(xn 
' 

1 un) = (1+0. 1)un + (1-0. 2)(xn-1-un) 
1 1 1 1 

x = 1, 000 n = 1,2, ... ,5 

(71) 

n 



xn n-1 xn-1, un) xn xn-1 
O. lun + O. 3(xn 1-un) 

2 1 ' 2 2 1 

x=0 n=1,2,3,4,5 
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(72) 

where the dividend earned at the nth stage is [0. lun +0. 3(x1 1_ú )] 

and x2 is the total amount of dividend earned in five years. 

The objective function, J, is to maximize the total dividend 

x that is, 

Hence, 

2 

Max J = cixi = clxi + c2x = x2 

i =1 

cl =0 c2= 1 

According to Equations (34) and (36), 

(73) 

(74) 

Hn = zn[1. lun+0. 8(xn-1 -u n n 1+0. lun+0. 3(xn-l-un)] 
1 1 2 2 1 

n = 1,...,5 (75) 

n 
zl añ-1 

0. 8zi + 0. 3z 
n' zi = cl = 0; n = 2, . . . , 5 (76) 

ax1 

n 

zz n-1 an-1 z = c2 = 1; n = 2, . .. , 5 (77) 
ax2 

Hence the Hamiltonian function can be rewritten as 

= + 

)] + 

; 

_ 

= 

i 

= 
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Hn = zn[1. lun+0. 8(xl -ú )] + x2 1 + 0. lu + 0. 3(xl -u n 
1 2 1 

n n-1 n-1 n-1 n 
= (0. 8z1 x1 

+x2 +0. 3x1 ) + (0. 3zl -0. 2)u (78) 

Since the values of z1, x1 1, and x2 1 at the nth stage are 

considered as constants in extremizing the Hamiltonian function Hn, 

the variable portion of Hn as given by Equation (78) is 

Hv = (0. 3z -O. 
1 

(79) 

The function Hn obviously becomes a linear function of un. The 

optimal value of un that makes Hn maximum should, therefore, 

occur at a boundary of the admissible region of un, (0 < un < x, -1) 

The sign of qn, given by 

qn=0.3z1 -0.2 

decides in which one of the boundaries ún lies. For a positive 

value of qn, Un is n-1 
x1 (it is equivalent to investing all the 

money in stock A), and for a negative qn, u n 

lent to investing all the money in stock B). 

Summarizing the above description, 

(80) 

is zero (it is equiva- 

) 

2)un 

x s 

v 

v 



ñ n= 
x1 l if gn > 0 

ün 
= 0 if gn< 0 

0<ún< xi 1 if gn=0 
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(81) 

In order to solve the problem, we first calculate zl from Equa- 

tions (76) and (77), 

5 
z 

1 
= 0 

zl = 0. +0.3z2=0.3 

zl = 0. 8(0. 3) + 0. 3 = 0. 54 

zi = 0. 8(0. 54) + 0. 3 = 0. 732 

zl = 0. 8(0. 732) + 0. 3 = 0. 886 

According to Equations (80) and (81), 

q 
5 

= 0. 3zi - 0. 2 = - 0. 2< 0 ú 5= 0 

q4 = 0.3zi -0.2=(0.09-0.2)<0 ñ4=0 

q 3 = 0. 3zï - 0. 2 = [0. 3(0. 54)-0. 2] < 0 

q2 = 0. 3zi - 0. 2 = [0. 3(0. 732)-0. 2] > 0 

q1 = 0. 3zi - 0. 2 = [0. 3(0. 886)-0. 2] > 0 

ñ 3 = 0 

ú 2 = xi 

ú 1 = x 0 
= 1000 

We just obtained optimal investment policy, and substituting these 

values into Equations (71) and (72), 

u 

= 



1 
1. lui 1 

+ 0. 8(x0 -u1) = 1, 100 

xi = 1. lut + O. 8(x1 -u2) = 1. 1x1 = 1, 210 

1 = 1. lu3 + 0. 8(x2 -u3) = 0. 8x = 968 

xl = 1. lu4 + 0. 8(x3 -u4) = 0. 8x1 = 774 

xi = 1. lus + 0. 8(x4 -u5) = 0. 8x1 = 619 

xZ = x + 0. lul + 0. 3(x ó-ul ) = 0. lui = 100 

x2 = x2 O. lu2 + 0. 3(x -u 2) 
= x2 + lx1 = 210 

x2 = x2 + 0. 3x1 = 210 

x2 = x + 0. 3xi = 573 

xZ = x2 + 0. 3x1 = 863 

+ 0. 3(1210) = 573 

+ 0. 3(968) = 863 

+ 0. 3(774) = 1, 095 
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Hence, the total dividend for five years according to the optimal pol- 

icy (u1 = $1, 000, u2 = $1, 100, u = 0, u4 = 0, u5 = 0) is $1, 095. 

A similar model was used by Fan and Hwang (1967). 

3. Application to Investment Problem (Case 4) 

Let us now attempt to apply the discrete form of the maximum 

principle to an investment problem in which there are several alter- 

natives (three alternatives in our example). 

For the optimization problem, three methods will be used to 

demonstrate unique characteristics of each method and to find some 

0. 

- 

+ 
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correlations among these mathematical techniques. Let us assume 

the following investment problem is given to us. 

The management of a company is faced to decide a policy for 

investment. There are three items to be invested, and the expected 

returns for item 1, 2, and 3 are functions R1(x1), R2(x2) and R3(x3), 

respectively. However, the capital available is limited as 
3 

xi < $15M. Decide an optimal policy to maximize the total ex- 

i=1 
pected return, where 

R1 (x1) = 2x1 (82) 
1 

R2(x2) = 10(x2) 2 (83) 
1 

R3(x3) = 10(x 3)7 (84) 

and 

x, is integer. 

The graph of each function is shown in Figure 8. 

a. Solution by Dynamic Programming. We set the problem as 

Max [R1(x1) + R2 (x2) + R3(x3)] 

subject to 

0< 

Letting 

3 

i=1 

< 15M. . = 
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f 
n 

(X) = the return from the optimal investment of XM dollars divided 

between the first n investments. 

f (X) 
1 

= R1(X) = R1(x1) (85) 

f (X) = max [R (x )+f (X-x )] n = 2, 3 (86) 
n 0<x <X n n n-1 n 

= n= 

for all X, 0<X <15M. 

An optimal investment policy can be obtained by the above recurrence 

equations, and the solution procedure is as follows: 

a) From the Equations (82), (83) and (84), let us construct 

Table 2 which indicates the values of the expected return 

function, R n (x 
n 

). 

b) Find f 
n 

(X) from n = 1 to n = 3, in turn, by using 

Equations (85) and (86). Table 3 illustrates those results. 

Table 2. Expected return. 

(M dollars), 
2 10.0 10.0 

2 4 14.1 12. 6 

3 6 17.3 14. 4 
4 8 20.0 15. 9 

5 10 22.4 17.1 
6 12 24.5 18.2 
7 14 26.5 19.1 
8 16 28.3 20. 0 

9 18 30.0 20. 8 

10 20 31.6 21.5 
11 22 33.2 22. 2 

12 24 34.6 22.9 
13 26 36.1 23.5 
14 28 37.4 24. 1 

15 30 38.7 24. 7 

x 
n 

R1(xl) R2(x2) R3(x3) 

i 
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Table 3. Fn(X) and x 
n 

. 

X fl(X) xl f2(X) x2 f3(X) x3 

(M dollars) 
0 0 0 0 0 0 0 

1 2 1 10 1 10 0,1 
2 4 2 14.1 2 20 1 

3 6 3 17.3 3 24.4 1 

4 8 4 20.0 4 27.3 1 

5 10 5 22.4 5 30.0 1 

6 12 6 24.5 6 32.6 2 

7 14 7 26.5 6 35.0 2 

8 16 8 28.5 6 37.1 2 

9 18 9 30.5 6 . 

10 20 10 32.5 6 

11 22 11 34.5 6 

12 24 12 36.5 6 

13 26 13 38.5 6 . 

14 28 14 40.5 6 . 

15 30 15 42.5 6 51.1 2 

As we can see in Table 3, f3(15) is the maximum return of the 

total investment, $15M for investing to three items, and x3, the 

amount of investment to item 3 is $2M. Therefore we can obtain by 

Equations (85) and (86) that 

f3(15) = 51. 1M x3 = 2M 

f2(15-x3) = f(13) = 38.5M x2 = 6M 

f1(13-x2) = f1(7) = 14M xl=7M 

Hence, the optimal policy is (x1= 7M, x2= 6M, x3= 2M) and the 

maximum return is $51. 1M. 
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b. Solution by Lagrange Multiplier Method. To make use of 

"Kuhn= Tucker conditions" (Kuhn and Tucker, 1951), let us introduce 

a Lagrangian function in this section. 

subject to 

Max f(X) = R1(xi) + R2(x2) + R3(x3) 

g(X) = (15-x1-x2-x3) > 0 

is 

The investment problem can be formulated as above, and the Lag- 

rangian function corresponding to the above problem becomes 

1 1 

L(X, X.) = f(X) + Xg(X) = 2x1 
1 

+ 10(x2)2+ 10(x3)3+ A(15-x1-x2-x3) (87) 

Since the objective function f(X) and the constraint function g(X) 

are concave, the Kuhn -Tucker conditions 

aL(X, x.) 
< 0 if < holds, x. = 0 ax. = i 

aL(X ;) if > holds, k = 0 

are necessary and sufficient to maximize f(X). Let us solve the 

problem by using these conditions. 

From Equation (87), we obtain 

aX = 
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ôL 

< 

> 

0 

0 

(88) 

(89) 

(90) 

(91) 

- (2-k) < 
8x1 

0 

1 

8xL - [5(x2) < 
2 

2 

aL (x3) 3-A] 10 
âx - [ 

3 

8L (15-x1-x2-x3) 

We know that x, is not zero from the solution of dynamic program- 

ming in the previous section. 9 

Then, from Equation (88), X can be obtained as 

= 2. 

Substituting X = 2 into Equations (89) and (90), 

x2 = 6. 25 x3 = 2. 15. 

With these values we can obtain from Equation (91), x1 = 6. 60. 

According to the initial assumption, x. should be integer as 

x1 = 7 x2= 6 x3 = 2 (M dollars) 

This optimal policy is identical to the policy derived in Section 3 -a. 

91f we do not know whether X is zero or not, a value of k can 
be assumed. 

0 2-X] 

X 

= 

a1 - 
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c. Solution by the Discrete Maximum Principle. We define 

each investment as a stage, and the state variables, the decision var- 

iables as: 

un = amount of money invested at the nth stage. 

xl 1 = amount of money available for the investment at the nth 

stage. 

x2 = sum of the return up to and including the nth stage. 

The problem is, then, associated with three -stage discrete process. 

Difference equations of state variables can be written as 

xn _ Tn xn-1 un) xn-l-un 
1 1 ( 1 ' ) 1 

n 
x2 = T2 (x2 l, un) = xn-1 + Rn(un); n = 1, 2, 3 

where 

Solution: 

R1(ul) = 2u1 initial conditions 

1 

R2(u2) = 10(u2)2 x0 = 15 (M dollars) 

1 

R3(u3) = 10(u3)3 x = 0 

The objective function to be maximized is 

= 

n 

-u 



J=x3= 
2 

2 

i =1 

3 c.x. . 
1 1 

3 3 
z1 =c1=0 z2 =c2=1 

Formulate the Hamiltonian function, Hn, and z n: 

Hn = 

2 

j=1 

zj T. (Xn-1 n 

= z 1(x1 
- 

1_un) + z2 
(x2 

1+R(un)e n= 2, 

n n-1 aHn z. n-1 
ax. i 

n= 2,3 

By Equations (92) and (93), zn is calculated as 

n-1 aHn n 

z1 - n-1 - z1 = axl 

n-1 = aHn zn = 1 
2 n-1 2 

2 
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(92) 

(93) 

(94) 

(95) 

However, Equation (94) is not valid because the difference equation of 

x11 actually exists. Hence, at least one of zl and zl should 

have non -zero value. 

Let us begin from the last stage, 

J J 

- 
= 
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1 

Hn = zZ [x2+R3(u3)] = x2 + 10(u3)3 (96) 

According to Equation (96), the ordinary procedure which makes the 
3 

derivative of H3 zero (.aH3 --}0) is not applicable any more, 
au 

since the function H3 is strictly increasing. The stationary point 

of H3 lies at u3 = infinite, and the optimal decision, ú 3 

should be at a boundary of the admissible region of u3. 

The admissible region of u3 is, obviously, 0 < u3 < x1 . 

Since the function H3 is increasing with respect to u3, we can 

choose one of these boundaries in which IT 
3 exists, 

_3 2 
u = x1 

Then, substitute Equation (97) into Equation (96): 

1 

H3 = x2 + 10(xÌ)3 

2 

2 aH3 10 2 3 
z1 = - 3 (x1 ) 

1 

(97) 

(98) 

Going into the second stage, the function H2 is written from Equa- 

tions (95) and (98: 

. 

8x 

l - = 

1 



1 

H2 = z1 (x1 -u2) + x2 + 10(u2)2 

2 1 

= 10 3(xi_u2) + x2 + 10(u2)2 

69 

(99) 

Consider x1 , x1 and x2 as constants in H2 denoted by Equa- 

tion (99), the curve of H2 then seems to be Figure 9. The station- 

ary points of H2 may be within the constraint. 

Figure 9. Function H2. 

Therefore, we can obtain the stationary point of H2 with re- 

spect to u2 in this way: 

2 
8H 5 10 2 3 - 
2u2 4 u2 3 (x1 ) 

= 0 

2 
u _ 

5 

2 

10 (xi) 3 

2 

(100) 

(xi 

0 

admissible, 
region of u 

..,.,,..,..,.. 
2 1 

u =x 
1 

> u2 

- 

HZ 



Then, go to the first stage, 

where 

H1 = zi (x-ul) + z2 [3(2 

= x 15, xi = 0 (M dollars); z2 = 1 

. 
. H1 = zl(15-u1) + 2u1 = (2-zl)ul + 15z1 
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(101) 

Since the Hamiltonian function H1 is linear with respect to u1, 

the optimal decision 71_1 should be at a boundary of the admissible 

region which is 0 < ul < x, 

lows: 

Equation (101) can be analyzed as fol- 

a) If 

b) If 

c) If 

zl > 2, 

zl < 2, 

zl = 2, 

maximum 

maximum 

maximum 

H1 

H1 

H1 

occurs ar 

occurs at 

occurs at 

ul = 0. 

ul = x1 = 15. 

0 < ul < 15. 

We should follow the case c), because we know that u2 is neither 

zero nor 15. In other words, ul is between 0 and 15. Therefore, 

zl 1 
= 2 

According to the recurrence equation, 

2 

1 aH2 2 10 2 3 
z1 = - zl = 3 (x1 ) 

ax1 

0 

+R,(ul)] 

1 
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From Equation (97), 

2 

3 
( 1 } 3 - x 

xl = 2. 15 

u3=x=2.15 
2 

Substituting Substituting - 
3 

(x ) 
1 

2 3 
= 2 into Equation (11), we have 

2 
u - 5 

2 
= ()2 = 6.25 

2 

10 
3 ( 1 )- 3 

x 

ul is obtained easily from the constraint that 

3 

(15- un) > 0, and ul lies at this upper boundary. 

n=1 

u1=15-u2-u3=6.60 

From the initial assumption that un is integer, the optimal policy 

is (ul = $7M, u2 = $6M, u3 = $2M). 

The optimal policy given by the technique of the discrete maxi- 

mum principle is exactly the same as that given by the Langrange 

multiplier method and dynamic programming. 

The most interesting fact in the relation between the maximum 

principle and the Lagrange multiplier method is that the value of the 

10 3 
Z 

10 

. '. 

[. 
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Langrange multiplier X is identical to the values of z1 and z1 . 

Although the application of the discrete maximum principle to 

several problems have been discussed, we must realize that it is us- 

ually very difficult to find an extremum of the Hamiltonian function 

Hn when the optimal decision ún lies at a boundary of the con- 

straint. Fortunately we have found a unique procedure in each case. 

However, such a unique procedure does work only for that problem, 

and there is no generalized solution to all problems. An attempt will 

now be made to present one possible general procedure using the dis- 

crete maximum principle where the optimal decison lies at a boun- 

dary of the constraint which is imposed on the decision or state vari- 

ables, or where the stationary point of the Hamiltonian function is 

outside the constraint. 

General procedure: This general procedure is applicable only 

when all initial conditions x.0 are given. 

Step 1. Formulate difference equations for each stage. A pro- 

per choice of the state and decision variables is re- 

quired to formulate the difference equations. 

Step 2. Formulate the recurrence relation for the multiplier 

vector Zn, and the Hamiltonian function Hn. 

Step 3. Guess a sequence U of Un, n = 1, 2, ... , N. 

Step 4. Solve the difference equations for Xn, forward from 

n= 1 to n =N. 
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Step 5. With these Xn, obtain Zn, backward from n = N 

Step 6. 

to n = 1 by their recurrence equations. 

With those Xn and Zn, compute a new sequence 

Ul of Un from the condition, Hn 
n 

= extremum. 

Step 7. Return to step 4 until the new sequence U' is suffi- 

ciently close to the preceding sequence U. 

This seven -step procedure can also be represented by a flow diagram 

illustrated in Figure 10. 

(START) 

Y 

. Formulate 
difference 
equation, 

Xn 

. Formulate 
recurrence 
equation s 

for Hn. Zn 

. Guess a 
sequence U 

of Un 

Solve dif- 
ference equa- 
tion for 

Xn 

. Obtain Z 

with X 
n, 

n= N,..., 

1 
6. Compute a 

new sequence 

U'ofU n 

END 

U= Ul 

NO 

Figure 10. Flow diagram of general procedure. 

4. 

D 

, 
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D. Analysis of the Algorithm 

In Section B -2, the algorithm of the discrete maximum principle 

has already been derived in the sense of the "variational approach" 

which is to make arbitrary perturbations in the decision variables. 

However, this procedure to derive the algorithm is unnecessarily 

cumbersome, and it is desirable to have a more direct derivation 

with intuitively logical proof. 

To satisfy the above requirement we intend to analyze "why the 

maximum principle works" by studying its algorithm with the produc- 

tion level optimization problem presented in Section C -a. The dis- 

crete maximum principle is also developed from the view point of the 

Langrange multiplier method. 

1. Analysis of the Algorithm through Production Level Problem 

We consider the production level problem (Case 1). 
2 

Since the function J n cx. 
i 

is the objective function of the 

i =1 
problem, one of the state variables of the final stage should be the 

total cost of the production system. Therefore, the Hamiltonian 

function of the last stage, H4, corresponds to the total cost to be 

minimized. 

Let TC be the total cost, then 

= 



TC = H4 = x2 + 3(u4)2 + 10(xi +u4-Q4) 

3 
Since x2 is the sum of cost up to the 3 

rd stage, 

[3(u4)2 u4-Q4)] 

is the cost at the 4th stage. In general, if 

n n-1 n 
G (x1 , un) 

is the cost at the nth stage, 
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n n-1 n n-1 n n 
(102) G (xl , u ) = 3(un)2 + 10(x1 +u -Q ) ( 

J = TC 

4 

n=1 

n-1 
n ,u u) 

1 

By substituting Equation (102) into Equation (103), 

TC = 3(u1)2 + 10(x+u1-Q1) + 3(u2)2 + 10(x11. +u 
2-Q 2) 

+ 3(u3)2 

+ 10(x1 +u3 -Q3) + 3(u4)2 + 10(x1 +u4 -Q4) 

From the definition of the state variable xl 

ciple, xi can be represented in terms of un as follows: 

(103) 

(104) 

in the maximum prin- 

G .'. 
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where 

1 0 1 
x1 =xi + u 

z 0 1 2 x =x +u +u 

3 xi=x 1 
3 +u+u2+u 

0 xl = constant. 

By substitution of the above equations into Equation (104), the total 

cost is described in terms of only the decision variables. 

TC = 3(u1)2 + 10(x+ul-Q1) + 3(u2)2 + l0(x+ul+u2-Q2) + 3(u3)2 

+ 10(x +ul+u2+u3-Q3) + 3(u4)2 + 10(x +ul+u2+u3+u4-Q4) (105) 

Now, let us make an assumption that no constraint is imposed on the 

decision variables, or that the stationary point of the function TC 

with respect to un lies interior to the constraint if it is imposed. 

Then, the problem is to minimize the total cost function TC. 

One can solve this problem by using the classical differential calculus 

method as 

aTC - 0 

au 
n 

aTi _0=6u1+40 ul_ 30 au 



aT2 -0=6u2+30 
au 

8T3 - 0= 6u3+20 
au 

aT4 
0 = 6u4+ 10 

au 

u2 = 5 

3 10 
u = - 3 

4 5 u = - 3 
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We can now recognize that this result is exactly the same as the se- 

quence of u 
n solved in Section C -a. We can, therefore, say that 

the discrete maximum principle is identical to the classical differen- 

tial calculus method when no constraint is imposed. 

Let us next assume that the constraint is imposed on the deci- 

sion variable un or the state variable xl . 

duction level problem, 

According to the pro- 

xl must satisfy the condition: 

xn>Qn - 

Then, the problem can be stated as follows: 

subject to 

However the constraint, 

Min TC (un) 

xl > Qn; n = 1,2,3,4 

xl > Qn, can be represented in terms of 

un. Hence, the problem may be rewritten as 



subject to 
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Min TC(ul, u2, u3, u4) 

n 
(Qn 0-\' i 

-X1 
i=1 

<0; n = 1, 2, 3, 4 

This problem may be solved by introducing a Lagrangian function 

L(un, \n) with Kuhn -Tucker conditions, that is, 

L(un, \n) = TC(ul, u2, u3, u4) +1(Q1-x -u1) + A2(Q2-X -ul-u2) 

+A3(Q3-X -ul-u2-u3) + 
\4(Q4-X -ul-u2-u3-u4) 

aL aL 
< 0. 

aun 
- 

ax.n 
= 

With Equation (105), 

-(6u+40-1-`2-3-4) > 0 
a 

1 1 
au 

a 
- (6u2+30-X2-X3-X4) > 0 

au 

a 3 - (6u3+20-X3-X4) > 0 

au 

a 
4 - (6u4+10-\4) > 0 

au 

aL 
1 ax. (Q-x°-ul) 

< 0 

- 

X. 

> 0, 

- 
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DL 2 0 1 2 

ax 2 

- (Q -x1 -u -u ) < 0 

aL 3 0-u 1 2 3 
3 - (Q -xl -u -u ) < 0 

ax 

aL 4 0 1 2 3 4 
_ (Q -xl -u -u -u -u ) < 

ax 4 
0 

Then, guess An which minimizes the function TC, based on 

the conditions. 

For the production level problem in Section C -a, the optimal 

Xn 
X1 X2 X3 

= 
X4 0. For the production level problem in 

Section C -b, the optimal Xn is X1 = = X2 X4 
0, X3 = 156& 

2. The Maximum Principle from the Lagrange Multiplier Point of View 

It is possible to derive the algorithm of the discrete maximum 

principle by the Lagrange multiplier technique with some assump- 

tions. This application of the Lagrange multiplier approach to the 

maximum principle has also been developed by Thomas (1967), inde- 

pendently. However, the derivation from the Lagrange multiplier 

method is useful only if the difference equation of the state variable 

is non -linear. This is the main assumption on this approach. 

Following the original concept of the maximum principle that 

one of the state variables in the process represents the return func- 

tion, the problem can be, in general, stated as 

= = = 



subject to 

N 

Max 10 J= x N = Gn(xn-1, 
Un) m 

n=1 

XnTnXn 1 i ) n = 1 ( , , N 

XO=K 

where x 
rYa 
N is the mth state variable at the final stage and de- 

scribes the sum of the return functions up to the Nth stage, and 

Gn(Xn-1, Un) 
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is the return function at stage n resulting from the 

state variable Xn -1 and the decision variable Un. Initial condi- 

tion XO = K is given. 

Then, we assume that each of these functions, Gn () has 

continuous second partial derivatives with respect to each of its ar- 

guments. The Lagrangian multiplier technique requires the Lagrang- 

ian function, L(.). 

L(XO,...,XN; U1,..., UN; X.0,...,X N) 

N 
Gn (Xn 1 
Gn(Xn-1, 

un) 

n=1 

N 

n=1 

xnrXn-Tn(Xn 1, Unn x0(X0-K) 

(106) 

A necessary condition for a maximum of the objective, J, is that 

the partial derivative of the lagrangian function with respect to each 

10The superscript indicates the stage number, the subscript 
indicates the variable's dimension. If a variable has only the super- 
script, it is represented in vector form. 

= 

- > 

L - 



of its arguments vanishes. Hence, 

aL aGn(Xn-1, Un) n-1 n aTn(Xn Un) 

aXn-1 
0 - 

aXn-1 
- + aXn-1 ' 

8L N 
X 

ax N 0 
, 

i 

aN-0=1-X 
m 

ax m 

, . . . , s i m 

n= 1,Z,...,N 
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(107) 

aL aGn(Xn -1, Un) n aTn(X 
1, 

un) - 0 = + A n = 1, 2 ... , N (108) 
aun aun aun 

a0 - 0= -XO+K 
ax 

(109) 
aL n n n-1 n 

- o - +T (X X ,U ); n = 1,...,N 
a 

xn 

These are the same conditions we have obtained from the discrete 

maximum principle and XII is identical to Zn, the multiplier 

vector of the maximum principle. Thus, by application of the well - 

known Langrange multiplier method we obtain the necessary condi- 

tions for an optimal solution. However, we dispense with the suffi- 

11 
cient conditions because of the complexity. 

11The sufficiency conditions are described in references, 
(Thomas, 1967) and (Hancock, 1917). 

, 

} 
J 

# 
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Constraint: W.e have discussed the maximum principle 

from the point of view of the Lagrange multiplier technique with no 

constraints on the decision or state variables. We will outline, next, 

an alternate derivation of the Lagrange multiplier method under the 

assumption that some constraints are imposed on the state or deci- 

sion variables. It is easily handled by introducing an additional 

Lagrange multiplier for each constraint. No additional conceptual 

difficulties are encountered. 

Recall the definition of the state variables in the discrete max- 

imum principle, 

n n n-1 n-1 u n 
x. = T. (x ,...,x ; u . . .,u ) 
i 1 1 s 1 

, r 

n n n-1 n-1 n n xs+l 
T s+1 1 

(x ' 'xs+1' 
u1 , . . . , ur = ) 

x. = k 
i 1 

n= 1,...,N 

i = 1, .. ,:s 

i= 1,...,s 

where xn is the state variable at nth stage, and has s- dimension; 

n 
s+1 

(s +1)th similarly x is the state variable and represents the 

return functions up to and including nth stage. Then, the problem 

can be written with the objective function, as 

N 

Max J = xN y Gn(Xn -1 
' 

Un) 
s +l 

n=1 
L, 



subject to 
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n n n-1 n-1 n n 
x. = T. (x ,...,x ; u ,... , u ) 

i i r 

x = k. 
i 

bounded by the constraint 

i = 1, . . , s 

n = 1,...,N 

n n-1 n-1 n n 
gi (x1 ,...,xs ; u1..., u)< 0 i= 1,..., s 

n=1,.. ,N 

The Lagrangian function with respect to the above problem is 

N 

n=1 

0 N 1 N 0 N 1 N 
L(X ,.. ,X .0 ,.. :,U .A ,.. ,X :a ,.. ,a ) 

Gn(Xn-1, Un) An[Xn-,l,n(Xn 
1, 

Unil+angn(Xn 
1, 

Un)}+ 
x0(X0-K) 

Then, the necessary conditions become 

0 

n= 0,...,N 

n = 1, . . . ,N 

n= 0,...,N 

aL 

0 

n= 1,...,N 

n = 1, . . . ,N 

n= 1,...,N 

aXn 

aL 

< 0 

aun 

angn(.) = 

an> 0 

aun 

3L 

ax. 
n = 

We have seen that the discrete maximum principle may be ob- 

tained by application of t1:e Lagrange multiplier technique with 

s 1 

i 

0 

- 

aL 
0 - 

= 

= 
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assumption that the objective function has continuous second partial 

derivatives. The constraints imposed on the state or decision vari- 

ables bring additional multipliers into the Lagrangian function and in- 

troduce no new conceptual difficulty. 
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DISCUSSION AND CONCLUDING REMARKS 

The discrete maximum principle is applicable to the processes 

with well- defined performance equations which must be continuously 

differentiable with respect to the state variables. In other words, 

the maximum principle enables us to solve the problem whose pro- 

cess can be either linear or non -linear. However, this optimization 

technique may be most useful for the quadratic programming. 

There is no difficulty in obtaining a sequence of optimal deci- 

sions by the maximum principle, when no constraint is imposed on 

the state and/or decision variables, or when the optimal policy is 

interior to the admissible region of the constraint. But, if the con- 

straint is imposed, and at least one of the optimal decisions must lie 

at the boundary of its constraint, it is quite complicated and cumber- 

some in the computational procedure to obtain the solution. This is 

because it is not easy to calculate the multiplier, Zn, in the latter 

case, and we must guess a sequence of the decisions so as to obtain 

Zn. According to the characteristics of transformation function, we 

can compute Z 
n with special care even if the stationary point of 

the Hamiltonian function Hn lies outside the set of constraint. In 

such a case, the computational procedure by the discrete maximum 

principle is very similar to that of dynamic programming techniques. 

The discrete maximum principle may also be obtained by the 
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application of the Lagrange multiplier technique which has been found 

useful in non -linear programming problems. This derivation is more 

direct than that of the variational approach and it is useful regardless 

of whether or not there exists a constraint on decision or state vari- 

ables. Denn and Aris (1965) derived the algorithm of the discrete 

maximum principle through the "Green's Function. " 

Some doubts have been thrown on the correctness of the dis- 

crete maximum principle by Horn and Jackson (1965) using two sim- 

ple counter -examples. According to them, the discrete version of 

the maximum principle is invalid unless the objective function or one 

of the Hamiltonian functions takes the stationary value with respect 

to the decision variable. They have listed some circumstances in 

which each Hn should take the stationary point in order that the 

objective, J, has its stationary point. Horn and Jackson seem to 

be at least partly correct. However, if some constraints are imposed 

on the decision variables, it is not necessary that the objective func- 

tion or each of the Hamiltonian functions takes the stationary value. 

We have presented the discrete maximum principle for simple 

multistage processes with given initial conditions. However, this 

basic concept can be extended to handle a variety of problems in prac- 

tice. For example, complex multistage processes, processes with 

feed -back loop, processes with fixed -end point and so on can be 

solved by extending the basic concept. The problems solved in this 
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thesis are limited, but other applications to the problems in business 

and industry such as equipment replacement and transportation prob- 

lems have been developed by Fan and Wang (1964). 

Inasmuch as an optimization problem with a stagewise nature 

has only one global (or local) optimal policy, the maximum principle 

may be one of the most powerful techniques at present in solving such 

a problem. We may say that this is the greatest contribution made by 

the maximum principle. It is widely recognized that there is no single 

mathematical optimization technique superior to all other techniques 

in handling all types of problems. Each method has its own merits 

and shortcomings. It is well known that, among many optimization 

techniques, dynamic programming is also very powerful in solving 

problems of a discrete process. The numerical calculation involved 

in solving a problem by dynamic programming is usually carried out 

by a digital computer. The calculation of dynamic programming is 

limited by the memory capacity of a computer. However, it must be 

admitted that, in solving a problem by the maximum principle, the 

difficulty in storage is avoided by introducing the multiplier vector 

Zn. In this point, we can say that the maximum principle is a better 

technique than dynamic programming. The best way to solve a 

stagewise optimization problem may be that the method of dynamic 

programming be employed first to locate approximately the position 

of global maximum and then the maximum principle be applied to 
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pinpoint the maximum point. 

All the processes which we have discussed are deterministic, 

but many industrial and management systems are also stochastic in 

nature. The application to stochastic processes is now being devel- 

oped by industrial engineers. 
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APPENDIX I 

Solution for the Problem in Section C -1 -a 
(by Dynamic Programming) 

Problem: Determine the production level at each period, for a per- 

ishable commodity, under the following conditions. 

-The excess production over the sales forecast is wasted 

at a cost of $10 per unit. 

- The cost of changing the level is three times the square of 

the difference between two production levels. 

- The following sales forecast must be met. 

Quarter 1 2 3 4 

Sales forecast 115 125 100 95 units 

- The last quarter production level was 1367 units. 

Solution: Backward approach. 

Period 1 2 3 4 

Stage 4 3 2 1 

f4 f3 f2 fl 

Let 

where 

f (x ) = the cost of an optimal policy for the last n stages. 
n n +l 

xn +1 
is the production level at the previous stage. 

f0=0 

4 3 2 



f (x ) = min {3(x -x )2 + 10(xn-Qn) + f (x )} fn(xn+1) x> Q 
n n+1 n n n-1 n 

n= n 

n = 1, 2, 3, 4 Qn: sales forecast at the nth stage. 

. . f1(x2) = min {3x2 -6x1x2 +3x2 +10x1 -10Q1} 
xi > Q1 

By letting 
aft 

ax 
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be zero, we can find the absolute minimum of func- 

tion f1(x2). However, the stationary point (absolute min) may exist 

outside the constraint x 
1 

> Q1. If the absolute min lies outside the 

constraint, we must take thelocal min at the boundary. 

Stage 1. 

(1a1 

af 

ax - 6x1 - 6x2+10=0 
1 

= x2 - 3 if x2 > Q1 + 3 (since x 
1 

> 
Q1) 

(lb) x1 _ Q1 : 95 

We choose 

if x < Ql +3 963 

x1 = x2 - 
3, 

because x2 > 100. Then, substituting 

xl = x2 - 3 into fl(x2), 

fl(x2) 
1 

= 10x2 - C C 
1 

= constant 

x 

= 

3 
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Stage 2. 

f2(x3) = min {3(x2 -x3)2 + 10(x2 -Q2) + f1(x2)} 
x2> Q2 

af2(x3) 

= min {3(x2 -x3)2 + 10(x2 -Q2) + 10x2 - C1} 

ax - 6(x2-x3) + 20 = 0 

2 

x2 10 
3 

if x3 > (Q2+ 13 ) = 103- 

(2b) x2 = Q2 = 100 if x3 < 103- 

We choose x2 = x3 - 10 
, since x3 > 125. Then substituting 

x2 
10 into f2(x3), 

Stage 3. 

f2(x3) = 20x3 - C2 

f3(x4) = min {3(x3-x4)2 + 10(x3-Q3) + 20x3 - C2} 
x > Q 3= 3 

af3 

ax - 6(x3-x4) + 30 = 0 

3 

(3a) x3 = x4 - 5 if x4 > (Q3+5) = 130 

(3b) x3 = Q3 = 125 if x4 < 130 

We can choose either x3 = x4 - 5 or x3 = 125, since x4 > 1].5. 

= 

2 

03 

= x3 - 
3 
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For example if we take x3 = 125, then, substituting x3 = 125 into 

f3(x4), 

Stage 4. 

f3(x4) = 3(125-x4)2 + 10(125-Q3) + (20)(125) - C2 

= 3x4 - 750x4 + C3 

f4(x5) = min {3(x4 -x4)2+ 10(x4 -Q4) +3x4 - 750x4 +C3} 

x> Q 4 4 

af 

where x5 = initial value = 1363 

8x - 6 (x4-x5 ) + 6x4 - 740 = 0 

4 

... x4 = 130 It satisfies the constraint x4 
> Q4. 

Then, through Equations (3b), (2a) and (la) in this order, we can ob- 

tain 

x4=130 x3=125 x2=1213 x1=120 

If we indicate subscript in terms of periods, 

xl = 130 x2 = 125 x3 = 1213 x4 = 120 
3 
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APPENDIX II 

Solution for the Problem in Section C- 1 -b 
(by Dynamic Programming) 

Problem: Determine the production level, under the assumption that 

the sales forecast at 3rd quarter is changed from 100 to 

200 units. The other conditions remain the same. 

Quarter 1 2 3 4 

Sales forecast 115 125 200 95 units 

Let stage 4 3 2 1 

Solution: Backward approach. All notations are the same as those 

in Appendix I. 

Stage 1. 

fl(x2) = min {3(xl -x2)2 + 10(x1 -Q1) + f0(xl)} 
x1 >95 

8f 

ax 
_6x1-6x2+10=0 

1 

(la) xl = x2 - 3 if x2> 963 

(lb) x1 = Ql = 95 if x2 < 96 

We choose Equation (la), because of x2 > 200, 

tion (la) into fl(x2) to obtain 

f0= 0 

substituting Equa- 

= 

i 
1 2 



97 

Stage 2. 

fl (x2) = 10x2 - Cl C 1= constant 

f2(x3) = min {3(x2 -x )2 + 10(x2 -200) + 10x2 - C1) 
x2 > 200 3 

8f2 

óx - 6(x2-x3) + 20 = 0 

2 

= 
10 if x3 > (Q2+ 10) = 203-1 

(2b) x2 = Q2 = 200 if x3 < 2031 

We take Equation (2b), since x3 > 125. Substituting x2 = 200 into 

f2(x3), 

Stage 3. 

f2(x3) = 3x3 = 1200x3 + C2 

f3(x4) = min {3(x3 -x4)2 + 10(x3 -125) + 3x - 1200x3 +C2} 
x3 > 125 

3f3 

ôx 
-12x3-6x4-1190=0 

3 

(3a) x3 = 
Z 

x4 + 996 

(3b) x3 = Q3 = 125 

if x4 > 2(Q3-996) = 

if x4 < 256 

25-5 

We choose Equation (3a) because of x4 > 115. Substitute Equation 

2 = 

(2a) x2 x3 - 

3 

3 



98 

(3a) into f3(x4), 

f3(x4) = Zx4 - 595x4 + C3 

Stage 4. 

f4(x5) = min {3(x4 -1363)2 +10(x4- 115) +Zx4 - 595x4 +C3} 
x4 > 115 

ôf4 

where x5 = 1363 

âx -6x4-820+10+3x4-595=0 
4 

x4 = 1561 if x4 > Q4 = 115 

Then, substituting x4 = 156- into Equations (3a), (2b) and (la), 

one can obtain 

x4 = 156- x3 = 1773 x2 200 x1 = 1987 

In terms of period's subscripts, 

xl = 156- x2 = 1773 x = 200 x4 = 198- 

.'. 
4 

= 


