

AN ABSTRACT OF THE THESIS OF

Nitin Mohan for the degree of Master of Science in Computer Science presented on
March 9, 2012.

Title: Managing Bug Reports in Free/Open Source Software (FOSS) Communities.

Abstract approved:

__

Carlos Jensen

Free/Open Source Software (FOSS) communities often use open bug reporting to

allow users to participate by reporting bugs. This practice can lead to more duplicate

reports, as inexperienced users can be less rigorous about researching existing bug

reports. The purpose of this research is to determine the extent of this problem, and

how FOSS projects deal with duplicate bug reports. We examined 12 FOSS projects: 4

small, 4 medium and 4 large, where size was determined by number of code

contributors. First, we found that contrary to what has been reported from studies of

individual large projects like Mozilla and Eclipse, duplicate bug reports are a problem

for FOSS projects, especially medium-sized projects. These medium sized projects

struggle with a large number of submissions and duplicates without the resources large

projects use for dealing with these. Second, we found that the focus of a project does

not affect the number of duplicate bug reports. Our findings point to a need for

additional scaffolding and training for bug reporters of all types.

Finally, we examine the impact that automatic crash reporting has on these bug

repositories. These systems are quickly gaining in popularity and aim to help end-

users submit vital bug information to the developers. These tools generate stack traces

and memory dumps from software crashes and package these up so end-users can

submit them to the project with a single mouse-click. We examined Mozilla’s

automatic crash reporting systems, Breakpad and Socorro, to determine how these

integrate with the open bug reporting process, and whether they add to the confusion

of duplicate bug reports. We found that though initial adoption exhibited teething

troubles, these systems add significant value and knowledge, though the signal to

noise ratio is high and the number of bugs identified per thousand reports is low.

©Copyright by Nitin Mohan
March 9, 2012

All Rights Reserved

Managing Bug Reports in Free/Open Source Software (FOSS) Communities

by
Nitin Mohan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March 9, 2012
Commencement June 2012

Master of Science thesis of Nitin Mohan presented on March 9, 2012

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Nitin Mohan, Author

ACKNOWLEDGEMENTS

First and foremost, I thank the almighty for His blessings by surrounding me with

such wonderful people and providing me valuable experiences and memories to

cherish throughout my life.

I am really grateful to my advisor, Dr. Carlos Jensen, for his constant support and

patience throughout my time at Oregon State University. I appreciate his efforts in

advising me on my research by offering helpful suggestions and feedback.

I would like to thank my committee members Dr. Ronald Metoyer, Dr. Alex Groce

and Dr. Arijit Sinha for their valuable time in attending my defense and examining my

credentials. I wish to thank everyone from the FOSS communities for providing me

the data and help to finish this thesis. I would also like to thank the faculty and staff

from the EECS department and the Academic Programs, Assessment and

Accreditation (APAA) office for their help I received directly or indirectly throughout

my time at this university.

I thank my colleague Jennifer Davidson for her help in my research. I would also like

to thank my colleagues at Human Computer Interaction (HCI) group at Oregon State

for their valuable suggestions and advice and helping me draft this thesis.

There are no adjectives to portray the greatness of the family I belong to and the

support I receive from every one of them in my daily life. My parents, Mohan and

Jayalakshmi Mohan, my brothers and their families, Naren, Kavitha and Nivedha (my

little niece) and Navin and Kamini have offered me immeasurable love and affection

and been with me at every facet of my life. My special friend Nithya, who has been

my moral support, and her family, deserve mention for their constant encouragement

and motivation to realize my dreams. I pray for their well being and happiness

throughout their lives.

CONTRIBUTION OF AUTHORS

Jennifer Davidson is credited for drafting most of the contents in the first manuscript.

She wrote Perl scripts to download revision histories from Free/Open Source (FOSS)

projects’ bug database. She assisted in pre-processing the bug reports in the XML

format. She assisted in verifying statistical results.

I am the primary author for the second manuscript. I also assisted in drafting and

making edits in the first manuscript. I wrote Bash scripts to download bug repositories

from FOSS projects and pre-process bug reports in XML format. I did most of the

statistical analysis of data presented in the Results section in the first manuscript.

TABLE OF CONTENTS

 Page

1 Introduction .. 1

2 First Manuscript: Coping with Duplicate Bug Reports in Free/Open Source Software

(FOSS) Projects .. 5

2.1 Abstract ... 6

2.2 Introduction ... 6

2.3 Related Work ... 9

2.3.1 FOSS Workflow and Project Management ... 9

2.3.2 Bug Triaging in FOSS ... 9

2.4 Methodology ... 12

2.4.1 Analysis ... 14

2.5 Results ... 14

2.5.1 Descriptive Project Statistics ... 14

2.3.1 Bug Triaging Practices .. 17

2.6 Discussion ... 20

2.6.1 Threats to Validity ... 22

2.7 Conclusion and Future Work .. 24

2.8 Acknowledgements ... 25

2.9 References ... 25

TABLE OF CONTENTS (Continued)

 Page

3 Second Manuscript: The Impact of Automatic Crash Reports on Bug Triaging and

Development in Mozilla ... 28

3.1 Abstract ... 29

3.2 Introduction ... 29

3.3 Related Work ... 31

3.4 Methodology ... 33

3.4.1 The Breakpad/Socorro Crash Reporting System 34

3.4.2 Analysis ... 34

3.5 Results ... 35

3.5.1 Quantitative Results ... 35

3.5.2 Qualitative Results ... 41

3.6 Discussion ... 44

3.7 Conclusion ... 46

3.8 Acknowledgements ... 47

3.9 References ... 47

4 Conclusion .. 50

Bibliography ... 51

LIST OF FIGURES

Figure Page

1. General Structure of an OSS Community. .. 2

2. Time taken to associate crash reports with bug reports. ... 37

3. Crash signatures vs. software releases in Mozilla. .. 38

4. Temporal of view of bug activity in Mozilla. ... 39

5. Number of unique bug reporters and new contributors. ... 41

6. Interview Results. .. 42

LIST OF TABLES

Table Page

1. Project Selection.. 13

2. Descriptive Project Statistics... 15

3. Bugzilla Status And Resolution States .. 18

4. Bug Triaging Practices .. 29

5. Mozilla Crash Reports and Bug Reports ... 35

6. ANOVA Results ... 40

Managing Bug Reports in Free/Open Source Software (FOSS)
Communities

1. Introduction
Free/Open Source Software (FOSS) is an approach to software development where the

users are granted freedom to study, modify or redistribute the source code of any

project licensed under free software licenses. This open approach to software

development has gained in popularity and has been adopted by many corporations.

Software widely used in categories such as web browsers, operating systems, servers,

and databases are primarily open source (Ghosh et al., 2006).

Typical FOSS project are made u of like-minded people from different

organizations, cultures, geographic locations or ethnicities working together towards a

common goal. Participation in contributing to projects is usually voluntary and is

primarily motivated by altruism (“the gift culture”) (Raymond, 1998). He proposes

that developers gift their source code expecting reciprocation from other contributors.

Wu et al. (2007) surveyed 148 FOSS participants and found that the participants are

continually motivated by satisfaction through participation, enhancing personal skills

and capabilities, and career opportunities.

The software development model of open source projects is very different

compared to traditional closed source approach. Generally, open source projects tend

to be highly distributed while closed source developments are more often

geographically contained. FOSS developers collaborate using text-based channels

including forums, mailing lists, IRCs and bug repositories (Chung et al. 2010). Unlike

closed source projects, roles in FOSS projects are defined by the interests and skills of

individual contributors and their level of participation (by code contribution,

communication between other members, etc.) in the community (Jensen and Scacchi,

2007). A developer can assume multiple roles within the community. According to Ye

and Kishida (2003), every FOSS community can be visualized as a layered structure in

which the amount of participation increases towards the center. This structure is

referred to as “the onion model” and shown in figure 1.

2

Figure 1. General Structure of an FOSS Community (Ye and Kishida, 2003)

 Ye and Kishida identified eight major roles:

• Passive User: Only uses the software and does not participate in software

development

• Reader: Reads the source code to understand the software

• Bug Reporter: Report bugs/feature enhancements to the developers of the project

• Bug Fixer: Fixes bugs submitted by reporters

• Peripheral Developer: Contributes feature to the software

• Active Developer: Actively involves in contributing features and fixing bugs

• Core Member: Coordinates the direction of design for the software

• Project Leader: Owns the project and involves in project direction

Any newcomer, referred to as “newbies”, who wishes to contribute, goes through

“the joining process”. The newbies are required to have a good understanding of the

technical and social nature of the project before starting to contribute. They generally

“lurk” in the mailing lists, forums and IRCs to learn about the community and

understand the technical jargons used by the members in the community to discuss

3

about the issues. The lack of in-person meetings and the steep learning curve required

during the initial stages makes the joining process more intimidating and drives away

many people from contributing to open source.

Contributions to FOSS projects can be of any kind namely, giving feedback to

developers through bug reports and feature requests, writing technical documentation,

submitting bug fixes and code patches, managing the community, etc. FOSS

communities often rely on users to participate in Quality Assurance (QA) by

submitting bug reports and bug fixes and encourage future participation in the project.

This “more eyes, more shallow bugs” approach (Raymond, 2000) is hugely beneficial

to the projects since it provides a valuable mechanism for feedback from the users.

Bug tracking systems like Bugzilla, Trac, Jira, etc. are deployed by the projects to

manage the bug reporting process. These systems have in-built capabilities for

managing bug reports like assigning bug IDs, time stamping, identifying severity,

status and resolution of bugs and “triaging” the reports. Bug triaging is an important

phase in bug management and refers to the process from when a bug is reported to

when it is resolved, and the steps taken to manage that process. There has been quite a

lot of research on predicting suitable developers to get assigned to bugs. Anvik et al.

(2006) provided a semi-automated and a text classifier approach to build recommender

systems for assigning bugs to developers. Matter et al. (2009) provided a vocabulary

based approach to match bugs based on developer skills.

However, open bug reporting has its share of pitfalls. Allowing users to participate

in QA can potentially lead to high bug traffic and higher probability of bug duplication

(same bug reported by multiple users). Also, the reports from the users may be faulty,

incomplete or low in quality and correctness since the users cannot be expected to

have the knowledge and technical terms to describe bugs. Some FOSS projects deploy

automatic crash reporting tools to help users in the bug reporting process. The purpose

of these tools is to automatically gather important information from a software crash

and prompt the user to report the crash to the developers.

4

This thesis examines how FOSS communities manage the bug duplication problem

and how automatic crash reporting systems fit into this overall picture. To do this we

have the following research questions.

RQ1. How significant of a problem are duplicate bug reports for FOSS projects?

RQ2. How does project size and focus affect the number and impact of duplicate

bugs?

RQ3. What impact does automatic crash reporting systems have on FOSS projects?

RQ4. What overhead do automatic crash reporting systems add to the bug triaging

process?

RQ5. Do crash reporting systems discourage user participation in the bug reporting

process?

This thesis manuscript consists of two research papers. The first paper deals with

the bug duplication problem. We analyzed the bug repositories of 12 FOSS projects: 4

small, 4 medium and 4 large where size was determined by the number of code

contributors. We found that duplicate bug reports are a problem for FOSS projects,

especially medium-sized, which struggle with a large number of submissions without

enough resources of large projects. We also found that focus of the projects does not

affect the number of duplicate bug reports. Our findings indicate a need for additional

scaffolding for training bug reporters. The second paper deals with automatic crash

reporting in Mozilla project and how it affects their bug management process. We

performed quantitative analysis on the crash report dumps available publicly in

Mozilla website. We also interviewed 5 developers and QA members to gather

feedback about this system.

5

2 First manuscript: Coping with Duplicate Bug Reports in
Free/Open Source Software Projects

Jennifer Davidson, Nitin Mohan, Carlos Jensen

School of EECS
Oregon State University
Corvallis, Oregon, 97331, USA
{davidsje, mohanni, cjensen} @ eecs.oregonstate.edu

Proceedings of the 2011 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Pittsburgh, PA, USA
SESSION: Debugging and Program Understanding

6

2.1 Abstract
Free/Open Source Software (FOSS) communities often use open bug reporting to

allow users to participate by reporting bugs. This practice can lead to more duplicate

reports, as users can be less rigorous about researching existing bug reports. This

paper examines how FOSS projects deal with duplicate bug reports. We examined 12

FOSS projects: 4 small, 4 medium and 4 large, where size was determined by number

of code contributors. First, we found that contrary to what has been reported from

studies of individual large projects like Mozilla and Eclipse, duplicate bug reports are

a problem for FOSS projects, especially medium-sized, which struggle with a large

number of submissions without the resources of large projects. Second, we found that

the focus of a project does not affect the number of duplicate bug reports. Our findings

indicate a need for additional scaffolding and training for bug reporters.

2.2 Introduction

Free/Open Source Software (FOSS) projects have to deal with different

challenges, and consequently adopt different development practices than “traditional”

closed-source software groups. In the FOSS community, the majority of contributors

are volunteers, roles are less strictly defined, and most contributors assume multiple

roles within projects. The volunteer labor force is both the strength and the Achilles

heel of many FOSS projects. On one hand, volunteers allow projects to grow more

rapidly, and involve users more directly. On the other hand, FOSS projects often have

to deal with increased turnover, and occasional lack of training and coordination of

contributors and resources.

Users provide a major resource for Quality Assurance (QA) in FOSS projects by

submitting bug reports and code fixes. This is a role promoted by most FOSS projects,

which rely on users to help evolve the software and encourage future participation in

the project. This practice is at the heart of leveraging what has become known as

Linus’ Law; “Given a large enough beta-tester and co-developer base, almost every

problem will be characterized quickly and the fix will be obvious to someone”

7

(Raymond, 2000). Consequently, FOSS projects are heavy users of open bug

reporting, which enables anyone from the community to submit bug reports.

While open bug reporting is beneficial, allowing users to participate in QA

potentially means faulty, incomplete or duplicate bug reports. The quality and

correctness of reports is a major issue when this process is opened to those with

minimal QA experience. While the quality and correctness of reports is based on the

experience of the users, and whatever scaffolding or training the project makes

available, one expects duplicate bugs to be an increasing problem as project size and

participation grows. While it is easy to spot duplicates in a small bug database, this

gets harder as that database grows, meaning that both the rate of duplication and the

cost of detecting bugs increases. We expect the user population to affect the rate of

duplicate reports as well; if a project has a technical user base, there should be fewer

duplicate reports. This idea was touched upon by Calvacanti et al. (2010), where they

hypothesize that certain projects have fewer bug reports because they have fewer end-

users.

FOSS communities do not always see duplicate bug reports as a bad thing. Ko and

Chilana (2010) studied open bug reporting in the context of Mozilla. While duplicates

were not the main focus of their paper, they found that they were astonishingly

common, and in some cases developers find duplicate bug reports helpful. Duplicates,

when identified, often provide additional information useful to narrowing down the

source of a bug (especially if reports are incomplete). They also found that duplication

can be used to identify the most critical bugs. Out of 100 duplicate reports, they found

that 82 of them were identified as such the day they were reported, which means that

Mozilla has very effective strategies for identifying and dealing with duplicate reports.

This may, in part, explain why duplicates were not perceived as a major problem for

the project.

Similarly, Bettenburg et al. (2006) studied duplicate reports in the Eclipse project.

From a survey, they found that most developers did not consider duplicate bug reports

to be a serious problem. They ran an experiment to show how merging the duplicate

8

bug report with the “master” report improves the accuracy of a machine learning

algorithm that triages bugs. They did not study the time spent on duplicate detection,

but they did propose better search tools.

Mozilla and Eclipse are very atypical FOSS projects (Green et al., 2009 and

Krishnamurthy, 2002). We therefore chose to look at how a more representative set of

projects dealt with duplicate reports, whether these are considered helpful or

problematic, and what factors influence the impact and perception that duplicate bug

reports have on FOSS projects. To that end, our research questions were as follows:

RQ1. How significant of a problem are duplicate bug reports for FOSS projects?

RQ2. How does project size and focus affect the number and impact of duplicate

bugs?

While previous research has provided a solid basis for addressing problems of bug

management, most, if not all, focused on very large FOSS projects. Our contribution is

analyzing a larger, more varied dataset for bug reporting practices. As most FOSS

projects are small (Green et al., 2009 and Krishnamurthy, 2002), with large projects

being extreme outliers, it is important to span the size gamut – from small to large

projects. It is also important to examine technical- and consumer-oriented projects, as

these groups likely approach bug reporting differently. Our study represents the

diverse nature of the FOSS community by examining 12 projects that have from three

to thousands of contributors to determine how they deal with bug triaging and

duplicate bug reports.

The rest of the paper is organized as follows: Section 2 describes related work in

FOSS project management, current research related to bug triage and duplicate bug

reporting. Section 3 describes our methodology, including our project selection

process and classification methods. Section 4 describes the results of our analysis of

bug repositories. Section 5 continues with a discussion of our findings and possible

shortcomings, and Section 6 concludes the paper with insights into minimizing the

negative impacts of duplicate bugs.

9

2.3 Related Work

2.3.1 FOSS Workflow and Project Management

FOSS projects are volunteer-driven where people join to address common

needs, for skill development, and to gain experience (Hars et al., 2001 and Yunwen,

2008). Most communication and collaboration is done using text-based channels,

including IRC, wikis, forums, mailing lists and bug repositories (Chung et al., 2010

and Green et al., 2009). People who join projects often “lurk” on mailing lists before

contributing code, learning the culture, conventions, and how they can contribute

through observation and review of archived communication (von Krogh et al., 2003).

Because of the volunteer nature of FOSS communities, there are few incentives for the

community to engage in mentorship and training of newcomers until they prove

themselves, as they may disappear from one day to the next. This unstructured and

unsupervised joining process can be difficult to navigate.

Roles in FOSS projects are defined by the interests and skills of the individual

contributor, the needs of the project, and the amount of code a person contributes as

well as their level of participation in the community (Jensen and Scacchi, 2007). One

of the main transition points from observer to developer is the submission of a patch.

Submitting a patch means interacting with developers via a mailing list or a bug

repository – oftentimes posting questions to mailing lists or forums (Ducheneaut,

2005). In most FOSS projects, the bulk of the code is contributed by a small

percentage of the contributors (Ghosh et al., 2000 and Mockus et al., 2002).

2.3.2 Bug Triaging in FOSS

Bug triage is a commonly used term to refer to the process from when a bug is

reported to when it is resolved, and the steps taken to manage that process. The main

steps in bug triaging include determining whether reports are unique or duplicates,

determining the reproducibility of bugs, the priority of bugs, deciding which developer

should be assigned to a bug, and determining whether the issue has been resolved

10

before closing any tickets. Most FOSS projects rely on bug tracking systems to track

bugs and to manage the efforts to address the issues listed above.

Many FOSS projects engage in open bug reporting where anyone is able to submit

a bug report regardless of experience or prior participation. Project websites usually

provide guidelines to try and ensure bug reports meet minimum requirements in terms

of information and completeness. Often these guidelines include instructions for

searching to see if the bug already exists in the bug repository. This is done to reduce

the number of duplicate bug reports. Despite these efforts, there are documented issues

with duplicate reports and the quality of them.

Bettenburg et al. (2008) found a disconnect between the information users provide

in bug reports and the information developers found useful. They advocate tackling

poor quality bug reports through a scaffolding/mentoring process, in this case a plug-

in for Bugzilla named CUEZILLA, which provides feedback to the user as he/she

submits a bug report on how to provide more and better information about their issue.

Bettenburg et al. (2007) also proposed a version called quZilla that would provide

immediate feedback to the user about his/her bug report in the context of Eclipse

(Bettenburg et al., 2007).

Calvacanti et al. (2010) ran two statistical studies on eight projects to investigate

the duplicate bug reporting issue. The study combined private projects and FOSS

projects, which is interesting considering that these projects would operate differently.

All FOSS projects in their study fell into the “medium” or “large” category, leaving

out smaller projects. They rated how various factors affected the number of duplicate

bug reports and concluded:

• The number of Lines Of Code (LOC) is a weak/ moderate factor

• The size of the repository does not seem to be factor

• The project life-time does not seem to be a factor

• The amount of staff seems to be a moderate factor

• The amount of submitters does not seem to be a factor

11

While they base “size” on Lines of Code and number of bug reports, we instead

based size on the number of code contributors. Furthermore, they looked at profiles of

individual users to determine expertise level, while we looked at the project focus in a

holistic manner.

Ko and Chilana (2010) focused on the Mozilla bug repository, examining the value

of user-submitted bug reports. They also found the quality of bug reports lacking.

However, this was offset in the eyes of developers by the fact that bug reporting

served as a path for users to become more engaged, and possibly transition into

contributors. Anvik et al. studied duplicate bugs and bug triaging in the Firefox and

Eclipse projects. They found that detecting duplicate bugs was an issue: “It’s essential

that duplicates be marked without developers having to look at them, there are just so

many”. They concluded that there is a need for tools to help projects deal with

duplicates and bug triaging.

To address some of these problems, work has been done using machine learning to

automate duplicate detection (Wang et al., 2008) and automatic bug assignment

(Anvik et al., 2005 and 2006). Jalbert and Weimer provided a classifier to detect

duplicate bug reports as they were being reported (Jalbert and Weimer, 2008). While

automatic duplicate detection is a useful approach to dealing with duplicate bugs,

Bettenburg et al. (2008) point out that detection is not the last step in triaging

duplicates. When a duplicate bug is marked as such the bug’s information is discarded.

A study was conducted using the Eclipse bug repository that showed how duplicate

bug reports included additional information useful in tracking down the source of a

problem. Therefore, duplicates should not automatically be discarded, but rather new

information should be merged into other reports. They also suggested improvements

to bug tracking systems, including but not limited to better search tools for users,

encouraging users to update existing bug reports, and allowing users to renew old bug

reports. All of these suggestions might decrease the frequency of duplicates.

Another focus of study is bug triaging. Jeong et al (2009) created a visualization of

“bug tossing” that showed how bug ownership gets “tossed” from developer to

12

developer. The tool was created to shorten the time it takes for triagers to correctly

assign a bug to a developer. Weiss et al. (2007) and Panjer (2007) studied how long it

takes to fix bugs, or how long a bug stays open. They found that reducing the time it

takes to fix a bug also limits the window for duplicates, which increases productivity.

2.4 Methodology

Our research goal was to build a deeper understanding of duplicate bugs in FOSS

projects and the impact that these have on different types of FOSS projects. More

specifically, we wanted to test the following three hypotheses:

H1. The more active the bug repository (the more bugs submitted per month), the

more duplicates we see.

H2. Consumer-oriented projects will see a larger number of duplicates, as they have

more inexperienced contributors.

H3. The more bugs, the longer it takes people to find the duplicate bugs (time

needed to mark a bug as duplicate).

The method for sampling projects, as outlined in the Section 1, was based on

project size (number of code contributors), focus (consumer vs. technical), and name

recognition. As an example, some projects have an end-user focus, as with Mozilla,

whereas other projects have a developer/admin user base, as with the Linux Kernel.

We grouped these projects into one of two categories; “consumer” or “technical”

based on a review of their community and website. We chose name recognition

because it can be seen as a metric for projects that are mature in their development,

and therefore have a good amount of information in their bug repositories. This

diversity of projects allows for some generalizability of our results.

For our research we chose to focus on projects using the Bugzilla system because

a) it is widely used by FOSS projects, b) bug information is easily downloadable for

analysis, and c) it is the system that has been most widely studied in the past, which

provided us the opportunity to readily compare our results to those of others.

However, as discussed later, this may have skewed our selection of small projects

13

because they may not need something as complicated as Bugzilla to manage their

project.

Table 1. Project Selection. Data from Ohloh (ohloh.net) August 2010. Except Sudo,
Open Watcom, and Eclipse. LOC for Fedora is articially low because Ohloh only
counts RPM Spec files and patches.

 Contributors LOC Focus
Small
Sudo 5 70,929 Technical
ClamAV 10 818,077 Consumer
Open Watcom 30 2,443,522 Technical
Nouveau 70 87,144 Consumer
Medium
Apache httpd 102 686,316 Technical
Mandriva Linux 162 401,436 Consumer
Gcc 429 5,534,205 Technical
Fedora 677 66,963 Consumer
Large
Mozilla Core 1,010 11,719,679 Consumer
Wine 1,181 2,028,254 Consumer
Linux Kernel 2.6 6,758 8,935,959 Technical
Eclipse 1,336 12,484,977 Technical

Table 1 gives an overview of the projects selected, their relative sizes, and their

focus. With some exceptions detailed below, LOC and number of code contributors

(over the entire lifetime of the project) were gathered from Ohloh (www.ohloh.net).

For Sudo, we gathered the number of contributors from their webpage detailing

“authors” of the project. We used the information on Open Watcom’s webpage listing

“contributors”. Eclipse is a combination of many small projects. Ohloh separates each

of these projects, so the number of contributors is artificially low. Therefore, we used

the “total committers” column from the data table found on their website as the

number of contributors. Contributor data was gathered August 2010. Note that in

Table 1, we refer to contributor to mean code contributor. This metric was only used

to classify the size of the project.

14

We chose thresholds for Small, Medium and Large projects based primarily on the

number of code contributors. Small projects were defined as having less than 100 code

contributors. Medium projects have less than 1,000 code contributors. Large projects

have over 1,000 code contributors.

2.4.1 Analysis

For our analysis, XML files containing bug descriptions as well as HTML files

containing bug revision histories were examined. Information from XML files was

extracted using a script provided by Ko and Chilana (2010). To examine HTML files,

we created perl scripts. To run statistical analyses on these two datasets, we used R.

Most bug reports were publicly accessible. Some bug reports could not be examined

because of insufficient permissions, internal database errors in the repository, or

malformed content. Overall, these accounted for less than 5% of bugs in the

repositories. We use the terms developer and reporter in this paper. These differ from

the term code contributors. In this paper, developers have at least one bug assigned to

them in the repository, while reporters have only ever reported bugs. We used

ANOVA for all statistical inferences unless stated otherwise.

2.5 Results

2.5.1 Descriptive Project Statistics

The first step was to collect basic statistics about the size of the problem,

including the number of bugs reported per month, the number of reporters, the number

of developers, the percentage of duplicates (as marked by developers), and how these

bugs are dealt with for each project (see Table 2).

Many projects invest time in screening reports before they are assigned to

developers. In part, what they screen for are duplicates, but also whether the bug is for

an older release of the software and to determine the appropriate owner for the bug.

This process is more rigorous for some projects than others.

Table 2. Descriptive Project Statistics. Weighted Averages (Weighted With Total Number Of Bugs) Reported With (Std. Dev)
Where Appropriate. Averages For Project Groups (Small, Medium Large) Given In Bold. Consumer Oriented Projects Are
Shaded.

 C
od

e
C

on
tr

ib
ut

or
s

D
ev

el
op

er
s

R
ep

or
te

rs

D
ev

el
op

er
s/

R

ep
or

te
rs

B
ug

s/
m

on
th

B
ug

s/
D

ev

%
 D

up
lic

at
e

(t
ot

al
 d

up
lic

at
es

)

%
 o

f
du

pl
ic

at
es

ID

 b
ef

or
e

as
si

gn
m

en
t

T
im

e
to

 f
ir

st

as
si

gn
m

en
t

(D
ay

s)

A
ve

ra
ge

 t
im

e
to

cl

os
e

bu
g

A
vg

 t
im

e
to

 I
D

du

pl
ic

at
es

 o
nc

e
as

si
gn

ed
 (

D
ay

s)

Small 28.75 9 369.75 0.02 10.86 96.67 5.69 46.93 1.25 190.99 133.07

Sudo 5 3 329 0.01 3.59 135.33 4.68 (38) 0.00
0.00

(0.00)*
136.36

65.58
(192.27)

ClamAV 10 10 555 0.02 32.81 157.50 6.22 (180) 45.56
0.01

(0.17)
58.74

25.07
(61.69)

Open Watcom 30 19 338 0.06 8.47 51.32 6.05 (110) 46.36
0.25

(3.26)
469.86

356.44
(517.14)

Nouveau 70 4 257 0.02 11.90 122.00 4.09 (20) 100
8.30

(25.21)
106.11

67.45
(96.07)

Medium 342.5 434.75 11,559 0.04 427.51 169.29 14.15 19.02 1.66 320.92 218.75

Apache HTTP 102 15 3,447 0.004 51.85 352.60
12.45

(1,371)
51.93

81.63
(269)

421.31
370

(413.40)

Mandriva Linux 162 222 7,419 0.03 569.20 248.70
13.29

(9,765)
24.83

0.05
(2.51)

217.18
102.88

(190.84)

Gcc 429 304 12,267 0.02 335.59 142.40
13.74

(5,948)
89.36

1.25
(20.87)

240.42
10.29

(131.10)

Fedora 677 1,198 23,102 0.05 1,512.75 159.10
14.54

(28,172)
1.61

0.01
(0.68)

366.47
290.57

(430.28)
Large 2,571 1,630 37,598 0.04 1,889.43 140.25 19.57 25.06 0.18 332.55 518.98

Mozilla Core 1,010 3,413 110,201 0.03 3,361.15 162.49
24.70

(137,001)
31.61

0.16
(6.29)

638.32
629.25

(809.41)

Wine 1,181 132 8,908 0.01 195.34 177.58
12.51

(6,172)
52.50

3.05
(29.60)

497.68
330.61

(483.64)

Linux Kernel 2.6 6,758 665 7,487 0.09 176.43 24.67 6.51 (1,068) 0.93 0.01
(0.02)

207.49 107.58
(198.14)

Eclipse 1,336 2,310 26,495 0.09 3,019.3 138.55
11.86

(37,958)
0.00

0.0
(0.02)

264.87
147.12

(331.67)

15

16

In terms of our first hypothesis: “The more active the bug repository, the more

duplicates we see.” This does not seem to be true. Medium and large projects see a

statistically significant jump in duplicates compared to small projects (p=0.009,

F=10.37, df=1), but there was no statistically significant difference between medium

and large projects (p=0.92, F=0.01, df=1). This may indicate a threshold between

small and medium projects where reporters get overwhelmed. The Linux Kernel

project, an exception to this rule shows us that effective management practices can

significantly lower the rate of duplicates.

Some results were surprising. The rate of reporters to developers (people assigned

bugs) fell into a relatively narrow range. The size of the project did not seem to affect

this ratio (p=0.33, F=1.2485, df=2), nor did the consumer vs. technical focus of the

project.

One exception was the Linux Kernel project, which follows very rigorous

procedures for bug reporting and has the lowest reporter to developer ratio in our

study (10:1). Another exception was the Apache httpd project, with a reporter to

developer ratio in excess of 232:1. One thing that became apparent when looking at

the data was that project culture and project management practices had a strong effect

on how well projects deal with bugs and duplicates. One therefore should be careful

when examining statistics and observe the community before making assertions.

In terms of our second hypothesis: “Consumer-oriented projects will see a larger

number of duplicates, as they have more inexperienced contributors.” Surprisingly,

was not supported in the statistical analysis. The rate of duplicate bug reports does not

appear to be statistically linked with the focus of projects (consumer vs. technical)

(p=0.34, F=0.99, df=1). That is, projects with a large number of non-technical users

are no more likely to be burdened with more duplicate bugs than those with a large

number of technical users.

17

In terms of our third hypothesis: “The more bugs, the longer it takes people to find

the duplicate bugs (time needed to mark a bug as duplicate).” It was supported. The

projects that had less than 10% duplicate reports were those that spent the least

amount time closing duplicates that had slipped past the first screening, regardless of

how rigorous that screening had been. Screening in this case means marking bugs as

duplicates before they were assigned.

Excluding small projects, where the assignment of bugs to developers can be

trivial due to the small number of developers, we do not see a big difference in the

time spent before assigning bugs to developers and the success rate of screening

duplicates in projects of different sizes. The data are inconclusive about a link between

screening success and review time (correlation: p=0.4247, t=0.8322, df = 10,

coeff=0.2545). Screening time probably does not account for the large variance in

time used by some projects (such as Apache httpd) in assigning and resolving bugs.

This is where practices surrounding bug repositories for things like feature

requests can skew the data. Another issue to keep in mind is that duplicate bugs may

have been handled differently by projects. As previous research has shown, duplicate

reports may provide helpful information (Bettenburg et al., 2008).

2.5.2 Bug Triaging Practices

We found differences in how projects manage and triage bugs, as well as how

they use Bugzilla itself. For example, some projects log feature requests together with

bug reports in Bugzilla. The process of triaging bugs varied across projects as well.

Furthermore, because Bugzilla is FOSS (and therefore customizable), some projects

changed the “Status” and “Resolution” categories to better fit their needs (see Table

3). The ability to customize is a core advantage of FOSS, and allows projects to

support and define a custom processes. However, customization can make it difficult

for developers working across projects (a common practice) to adapt to the

idiosyncratic practices of a specific project.

18

Table 3. Bugzilla Status And Resolution States. Synonymous States Were Collapsed
For The Purpose Of Analysis. Consumer Oriented Project Titles Are Shaded.

Table 4 gives an overview of the dynamics of these projects. As we can see, there

are deep differences in terms of the relatively large number of reporters as seen in

Table 2, and that most reporting is done by a small group of people. The majority of

reporters post only one bug and a relatively small number of participants do the

majority of the work. This is consistent with what Calvacanti et al. (2010) found. This

held true across projects of all sizes.

 Small Medium Large

S
u

do

C
la

m
A

V

O
p

en
 W

at
co

m

N
o

uv
ea

u

A
p

ac
h

e
h

ttp
d

M
an

dr
iv

a

g
cc

F
ed

o
ra

M
oz

ill
a

 C
o

re

W
in

e

L
in

ux
 K

er
n

el

E
cl

ip
se

Status
Unconfirmed X X X X X X X X X X

New X X X X X X X X X X X X
Assigned X X X X X X X X X X X X
Reopened X X X X X X X X X X X X
Resolved X X X X X X X X X X X
Verified X X X X X X X X X X X X
Closed X X X X X X X X X X X
Needinfo X X X X X X
Resolution

Fixed X X X X X X X X X X

Invalid X X X X X X X X X X X
Wontfix X X X X X X X X X X X X
Later X X X X X X
Reminder X X X X
Duplicate X X X X X X X X X X X X
Worksforme X X X X X X X X X X X X
Moved X X X X X X X X X X X
Expired X X X X
Notabug X X
Notourbug X X X X

Table 4. Bug Triaging Practices. Breakdown Of How Many People Engage In Extended Bug Reporting, Assigning Of

Bugs To Developers, Reasigning Of Bugs To Developers, And Who Marks Bugs As Resolved (*Used “Closed” State For

Fedora). Consumer Oriented Projects Are Shaded.

Project
Name

From Table 2
Who Reported Bugs More
Than Once? Who Assigns Bugs? Who Reassigns Bugs? Who Marks Bugs As Resolved?*

 R

ep
or

te
rs

%
 D

up
lic

at
e

%
 o

f
du

ps
 I

D

be
fo

re
 a

ss
ig

n.

#
 P

eo
p

le

How Many Bugs
Reported?

#
 P

eo
p

le

How Many Times Per
Person?

#
 P

eo
p

le

How Many Times Per
Person?

#
 P

eo
p

le

How Many Times Per
Person?

M
ed

ia
n

M
ea

n

S
t.

D
ev

M
ed

ia
n

M
ea

n

S
t.

D
ev

.

M
ed

ia
n

M
ea

n

S
t.

D
ev

.

M
ed

ia
n

M
ea

n

S
t.

D
ev

.

Small

Sudo 329 4.68 0.00 32 2 3.31 3.03 324 1 1.21 0.99 1 4 4.00 0.00 2 194 194 272.94

ClamAV 555 6.22 45.56 120 3 4.85 6.78 320 1 5.35 30.03 21 1 4.62 6.38 6 1.5 283.67 691.41

Open Watcom 338 6.05 46.36 102 3 5.13 8.21 82 1 3.01 6.24 11 2 11.36 16.97 1 781 781 0.00
Nouveau 257 4.09 100 79 3 3.81 3.11 225 1 1.88 2.23 7 2 2.29 2.14 20 1 17.45 73.33
Medium

Apache httpd 3,447 12.45 51.93 688 2 2.72 2.17 56 1 1.43 0.93 35 1 1.17 0.45 23 2 212.91 1,008.90

Mandriva 7,419 13.29 24.83 3,266 3 10.89 33.28 6,343 1 8.79 58.07 988 2 18.97 146.72 90 1 588.69 5,546.10

Gcc 12,267 13.74 89.36 3,518 3 6.09 16.83 3,815 1 6.65 72.38 195 2 10.28 52.84 64 1 495.41 3,914.80

Fedora 23,102 14.54 1.61 10,652 4 9.52 28.03 23,979 1 7.70 39.80 3,948 2 12.47 91.58 760 1 224.97 6,085
Large
Mozilla Core 110,201 24.70 31.61 31,111 3 6.05 16.11 59,551 1 6.94 68.71 6,832 2 34.34 241.71 1,534 1 337.21 12980.8

Wine 8,908 12.51 52.50 2,645 3 5.11 9.62 597 1 2.84 8.28 115 1 6.18 16.93 94 1 212.5 2,028.7

Kernel 2.6 7,487 6.51 0.93 1,960 2 4.11 6.47 7,469 1 2.12 13.05 1,260 1 6.79 46.29 15 2 339.27 1,304.8

Eclipse 26,495 11.86 0.00 12,158 4 25.004 133.3 27,371 1 11.24 87.28 5,704 2 49.31 350.09 430 1 709.49 14,609.9

19

20

More surprising is that most projects allow reporters to assign bugs to developers.

However, appearances are sometimes deceiving. Many projects have dummy-accounts

for groups to hold bugs until someone has a chance to review these and assign them to

the right person. As we see, the group of people who reassigns bugs is much smaller

than the group of reporters, though it is larger than the group of developers for most of

the projects. The cause for this is twofold: Code contributors are not all part of the

developer group (someone who has a bug assigned to them) but can sometimes

reassign bugs to others. Furthermore, many projects have non-development users help

triage bugs, such as the bug wrangler group in Mozilla. Both of these reasons help to

inflate the number of people who reassign bugs.

One of the interesting findings is how much projects differ on core leadership

practices such as who is authorized to mark bugs as closed. We see great variety from

large projects like the Linux Kernel project, where 15 people close all bugs, to the

Mozilla project, where more than 1,500 people close bugs. For Mozilla, this represents

almost half the developer population compared to 2% of the Kernel developer

population performing this quality control.

2.6 Discussion

We gathered statistical data on bug reporting and triaging practices from a range of

FOSS projects. While not all of the statistics have been discussed in depth (we include

these for others seeking to explore these questions), we have been able to show that

this is a complex space worthy of further study and improvement.

Turning to the research questions, we have found strong evidence for RQ1;

duplicates are plentiful, though their impact, or perceived impact is not clear. For the

medium and large projects, save the Linux Kernel, the duplicate rate was over 10%.

That constitutes a potential waste of effort, both for developers and users. For Mozilla,

this constitutes over 494 reports per month that someone has to write, and someone

else has to identify and discard as duplicates.

21

An example of the range of approaches for management can be seen when

comparing Mozilla to the Linux Kernel, where the first seeks to widen participation,

but invests resources in managing the 25% duplicate rate, whereas the latter keeps

duplicates down through policy and training, in a smaller and more centralized

organization.

There are a number of reasons why duplicate reports are bad for both users and the

project community. Because duplicate reports are a product of a lack of knowledge of

the current state of the project, reporters are only adding additional information by

accident. The lack of details on an individual bug report, or the need to search through

and manually synthesize the information from multiple reports, may outweigh any

benefit from multiple reports, which is contrary to what Bettenburg et al. (2008)

propose.

One of the previous findings that inspired our study was that duplicate reports

were not a serious concern for projects, specifically for the Mozilla project. It is not

clear whether projects routinely reflect on duplicates, their impact on current

operations and how to reduce them, or whether reducing them is desirable. Our study

was quantitative so we cannot assess the true impact of these duplicates on project

members.

Despite these issues, FOSS projects use open bug reporting successfully to bring

in the user community and involving them in QA (reporter to developer ratios between

100:1 and 10:1). However, projects have a hard time sustaining participation, as most

users contribute only one bug report. While some of these users may transition to

developers (which is not captured in our data), we believe it to be highly unlikely that

such a transition would occur so rapidly.

The practice of open bug reporting carries a cost. In addition to potential problems

associated with duplicate reports, screening and bug triaging is required on behalf of

projects to manage the large amount of reports. We see that dealing with an avalanche

of untrained reporters may cause problems, especially for medium-sized projects.

22

These projects have the highest bug to developer ratios and virtually the same high

duplicate rates as large projects, without access to the resources larger projects have.

To answer RQ2, involving non-technical users did not result in a larger number of

duplicate bug reports, which is somewhat contrary to what was discussed by

Cavalcanti et al., which determined that the expertise of participants of certain project

was a factor in duplicate bug reporting. This was unexpected, as the prevailing theory

was that duplication is in part due to poor practices amongst end-users. As we did not

look at individual reporters, it is still possible that technically skilled users routinely

write higher quality bug reports than end-users.

As we expected, the final stages of bug triaging are typically tightly controlled;

closing bugs is handled by a small group of people in most projects. Because of the

high number of bug reports, it would be worthwhile to study how to make the final

steps of the bug triaging process more manageable.

Finally, our study shows some of the dangers associated with exclusively studying

large projects like Mozilla and the Linux Kernel, as there are dramatic differences in

terms of practices and resources. Looking at the data we gathered should convince the

reader that we must be very careful about generalizing from studies of large projects.

2.6.1 Threats to Validity

While we analyzed a broad range of projects, it is always difficult to make

generalizations about a diverse movement as FOSS. While we believe that our sample

is good in that it includes projects of different sizes, and that both consumer-oriented

and technical-oriented projects were represented, there were limitations to our

methodology and selection criteria.

For technical reasons we only sampled projects that used Bugzilla. We did this to

simplify and unify analysis, as we did not want to have to perform custom analysis for

a host of different types of repositories, and deal with the incompatibilities that might

emerge. This decision however may bias some of our findings, because many small

23

projects do not use a complicated tracking system such as Bugzilla. This may mean

projects that we did study could be different from other, more common small projects.

Furthermore, we found that projects used Bugzilla in different ways. Projects

triage bugs differently, and some allow feature requests and bug reports to be recorded

in the same Bugzilla instance. Our analysis of individual bug reports may have been

affected by this; the average response time to bugs may have been confounded by the

inclusion of more long-term feature requests. There is concern about the effect of

automated bug reporting on the bug reporting repository. Conversations with Fedora

developers shed light on the issue, and showed that Automated Bug Reporting Tools

(ABRT) do not artificially increase the number of duplicate bug reports. However,

there has not been a discussion about the possibility of ABRT possibly reducing the

number of duplicate bug reports, or of its possible merits in actively engaging end-

users. In future work, we plan to investigate the impact of ABRT on the bug

repository.

External to our analysis, the Bugzilla repositories may not accurately reflect the

true state and workflow of projects. For example, if the triager did not follow the

sequence of steps they claimed (i.e., not claiming bugs until they are addressed), the

bug history may be inaccurate. Additionally, these are live, active projects, and

therefore the numbers presented in this paper represent a snapshot in time. It is likely

that these numbers have already changed, and will continue to change.

Finally, we chose to classify projects as small, medium or large based on the

number of code contributors. This is only one of many possible ways of analyzing

projects, and though we believe this is a valid classification given that we were

interested in examining how projects were able to cope with the influx of new

contributors, others may be equally valid. Classifying these projects by the size of

their code-base for instance would have led to a different grouping of projects in our

sample.

24

2.7 Conclusion and Future Work

Open bug reporting has a positive effect on participation, engages users in QA, and

is fundamental to realizing Linus’ Law; “Given a large enough beta-tester and co-

developer base, almost every problem will be characterized quickly and the fix will be

obvious to someone” (Raymond, 2000). While open bug reporting does engage a large

group of users, most of their involvement is shallow, meaning that most only report

one or a handful of bugs. While this is better than no help, the FOSS community

would be richer if it managed to keep reporters involved.

Another important result is that consumer-oriented projects, which presumably

have a greater proportion of non-FOSS trained non-technical reporters, did not have a

significantly higher duplicate rate compared to technical projects. One would assume

projects with a technical focus (such as Apache) would have more technical users

familiar with good bug reporting practices. Although unexpected, this shows that there

is room for additional scaffolding and support for reporters of all types. While current

work on automatic duplicate detection and triaging is important, the Linux Kernel

project shows that through proper training and management, the rate of duplication

can be controlled. Therefore, it may be worth investing effort in more effective

training materials and interactive scaffolding.

Despite a surprisingly high duplicate rate for some medium and large-scale

projects, the communities seem able to deal with these with relative efficiency,

screening a large number of these before assignment. It therefore remains to be seen

how much of a burden these duplicates really pose to these communities.

In future work, we plan on interviewing and surveying developers,

maintainers, as well as first time reporters to see how we can help them avoid

duplicates where possible.

25

2.8 Acknowledgements

We thank all our participants and helpers at the projects studied for their time in

helping us with data collection, parsing and interpretation, especially John Poelstra

and Jiri Moskovcak from Fedora, and Andrew Ko from University of Washington. We

also thank the HCI group at Oregon State University for help in drafting and revising

this paper.

2.9 References

Anvik, J. “Automating bug report assignment.” In Proc. of the 28th Int. Conf. on
Software Engineering (Shanghai, China, May 20 - 28, 2006). ICSE '06. ACM, New
York, NY.

Anvik, J., Hiew, L., and Murphy, G. C. “Coping with an open bug repository.” In
Proc. of the 2005 OOPSLA Workshop on Eclipse Technology Exchange (San Diego,
California, October 16-17, 2005). ACM, NY NY, 35-39.

Anvik, J., Hiew, L., and Murphy, G. C. “Who should fix this bug?” In Proc. of the
28th international Conference on Software Engineering (Shanghai, China, May 20 -
28, 2006). ICSE '06. ACM, New York, NY, 361-370.

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R., and Zimmermann, T.
“What makes a good bug report?” In Proc. of the 16th ACM SIGSOFT Int. Symp. on
Foundations of Software Engineering (Atlanta, GA, November 09 - 14, 2008).
SIGSOFT '08/FSE-16. ACM, New York, NY.

Bettenburg, N., Just, S., Schröter, A., Weiß, C., Premraj, R., and Zimmermann, T.
“Quality of bug reports in Eclipse.” In Proc of the 2007 OOPSLA Workshop on
Eclipse Technology Exchange (Montreal, Canada, Oct. 21-25, 2007). ACM, NY.

Bettenburg, N., Premraj, R., Zimmermann, T., Kim, S.,"Duplicate bug reports
considered harmful … really?" IEEE International Conference on Software
Maintenance,. ICSM 2008, pp.337-345, Sept. 28-Oct. 4 2008.

Cavalcanti, Y.C., Anselmo, P.M.S.N., Almeida, E.S., Cunha, C.E.A, Lucredio, D.,
Meira, S.R.L . “One Step More to Understand the Bug Report Duplication Problem.”
In Proceedings of the 2010 Brazilian Symposium on Software Engineering (SBES
'10). Washington, DC, USA.

Cavalcanti, Y.C., Almeida, E.S., Cunha, C.E.A, Lucredio, D., Meira, S.R.L "An
Initial Study on the Bug Report Duplication Problem," 14th European Conference on
Software Maintenance and Reengineering, 15-18 Mar. 2010.

Chung, E., Jensen, C., Yatani, K., Kuechler, V., and Truong, K. N.. “Drawing and
sketching in Open Source design”, in IEEE Symposium on Visual Languages and
Human-Centric Computing, 2010. VL/HCC 2010.

26

Ducheneaut, N. “Socialization in an Open Source Software Community: A Socio-
Technical Analysis.” Computer Supported Coop. Work 14, 4 (Aug. 2005), 323-368.

Ghosh, R.A. and Prakash, V.V. “The Orbiten Free Software Survey.” First
Monday, 5(7), July 2000, http://www.firstmonday.org/issues/issue5_7/ghosh/

Green, C., Tollinger, I., Ratterman, C., Pyrzak, G., Eiser, A., Castro, L., and Vera,
A. “Leveraging open-source software in the design and development process.” In
Proc. of the 27th Int. Conf. on Human Factors in Computing Systems (Boston, MA,
Apr. 04 - 09, 2009). CHI '09. ACM, New York, NY.

Hars, A., Ou, S.., "Working for free? Motivations of participating in open source
projects," System Sciences, 2001. Proceedings of the 34th Annual Hawaii
International Conference on , vol., no., pp. 9 pp., 3-6 Jan. 2001.

Jalbert, N.; Weimer, W. "Automated duplicate detection for bug tracking systems,"
IEEE Int. Conf. on Dependable Sys. and Networks With FTCS and DCC, 24-27 June
2008

Jensen, C.; Scacchi, W. "Role Migration and Advancement Processes in OSSD
Projects: A Comparative Case Study," Int Conf. on Software Engineering, ICSE’07.
20-26 May 2007.

Jeong, G., Kim, S., and Zimmermann, T. “Improving bug triage with bug tossing
graphs.” In Proc. of the the 7th Joint Meeting of the European Software Engineering
Conf. and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (Amsterdam, The Netherlands, Aug. 24 - 28, 2009). ESEC/FSE '09.
ACM, New York, NY, 111-120.

Ko, A. J. and Chilana, P. K. 2010. “How power users help and hinder open bug
reporting.” In Proc. of the 28th Int. Conf on Human Factors in Computing Systems
(Atlanta, GA, April 10 - 15, 2010). CHI '10. ACM, New York, NY.

Krishnamurthy, S. “Cave or Community?: An Empirical Examination of 100
Mature Open Source Projects.” First Monday, 2002. URL:
http://ssrn.com/abstract=667402

Mockus, A., Fielding, R. T., and Herbsleb, J. D. “Two case studies of open source
software development: Apache and Mozilla.” ACM Transactions on Software
Engineering Methodology 11, 3 (Jul. 2002), 309-346.

Panjer, L. D. “Predicting Eclipse Bug Lifetimes.” In Proceedings of the 4th int.
Workshop on Mining Software Repositories. Int. Conference on Software
Engineering. IEEE Computer Society, Washington, DC, (May 20 - 26, 2007)

Park, Y. 2008. Supporting the Learning Process of Open Source Novices: An
Evaluation of Code and Project History Visualization Tools. Thesis.

Raymond, Eric S. "The Cathedral and the Bazaar." Computers & Mathematics
with Applications 39.3-4 (2000).

27

von Krogh, G.,Spaeth, S., Lakhani, K. R. “Community, joining, and specialization
in open source software innovation: a case study.” Research Policy, Volume 32, Issue
7, Open Source Software Development, July 2003,

Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun, J. “An approach to detecting
duplicate bug reports using natural language and execution information.” In Proc. of
the 30th Int Conf on Software Engineering (Leipzig, Germany, May 10 - 18, 2008).
ICSE '08. ACM, New York, NY.

Weiss, C.; Premraj, R.; Zimmermann, T.; Zeller, A."How Long Will It Take to Fix
This Bug?," 4th Int. Workshop on Mining Software Repositories, MSR '07, 20-26
May 2007

Yunwen, Y., Kishida, K. “Toward an understanding of the motivation of open
source software developers.” In Proc. of the 25th Int. Conf. on Software Engineering,
3-10 May 2003.

28

3 Second manuscript: The Impact of Automatic Crash Reports on
Bug Triaging and Development in Mozilla

Nitin Mohan, Carlos Jensen

School of EECS
Oregon State University
Corvallis, Oregon, 97331, USA
{mohanni, cjensen} @ eecs.oregonstate.edu

Proceedings of the 2012 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), Innsbruck, Austria.
(Submission in Process)

29

3.1 Abstract

Free/Open Source Software projects often rely on users submitting bug reports.

However, reports submitted by novice users may lack information critical to

developers, and the process may be intimidating and difficult. To gather more and

better data, projects can deploy automatic crash reporting tools, which generate stack

traces and memory dumps when a process crashes. These systems potentially generate

large volumes of data, which may overwhelm developers and discourage users from

submitting traditional bug reports. In this paper, we examine Mozilla’s automatic

crash reporting system and how it affects their bug triaging process. We find that of

all crash reports, less than 0.00009% end up in a bug report, but as many as 2.33% of

bug reports have data from crash reports added. Feedback from developers shows that

despite some problems, these systems are valuable. We conclude with a discussion of

the pros and cons of automatic crash reporting systems.

3.2 Introduction

Free/Open Source Software (FOSS) projects often adopt different development

practices to traditional closed source projects. Among the reasons for these differences

is that FOSS contributors are often volunteers working together across the world. The

lack of physical colocation, resources, and often ad-hoc project planning, calls for

different development and project management practices, including bug triaging.

Effective bug reporting and triaging is vital to any software project. The idea that

enough eyes make all bugs shallow (Raymond, 2000) drives FOSS projects to involve

everyone in bug triaging.

While there are advantages to involving users in bug triaging there are also

possible downsides. Reports submitted by less experienced users can be incomplete or

inaccurate (Bettenburg et al., 2008). Users may not use the right keywords to describe

a bug, which can make it harder for developers to find the bug. A study by Davidson

et al. (2011) also found that as the size of the reporting community grows, so does the

ratio of duplicate bugs. Though duplicate bug reports are not always problematic

30

(Bettenburg et al., 2008 and Ko et al., 2010) duplicates potentially represent a waste of

time and effort. Though projects publish guidelines for submitting bug reports,

training and coordinating contributors is often an overwhelming task.

There have been a number of studies examining the bug triaging processes of

FOSS projects. Bettenburg et al. (2008) surveyed 466 developers and users of the

Apache, Mozilla and Eclipse projects and found a mismatch between what users

reported and what developers found useful in bug reports. Breu et al. (2010) analyzed

questions posed in 600 bug reports in the Mozilla and Eclipse projects to understand

how developers and reporters collaborate. Both studies found a need for better ways to

handle bugs and enhancing the quality of bug reports.

To gather more data, some projects have turned to automatic crash reporting

systems. These systems are invoked when a process crashes. They gather stack traces,

memory dumps, identifying the thread that caused the crash, product information, etc.,

and prompt users to submit these. Automatic crash reporting tools often ask users to

add more descriptive information about the crash in order to assist developers in the

triaging process, but there is no data on how many users provide such details, or how

useful these are to the bug triaging process.

The terms “crash report” and “bug report” have distinct and different meanings.

“Crash reports” refer to automatic error information gathered when a process crashes

or quits unexpectedly. A “bug report” refers to a report filed manually by a user or

developer about a fault or flaw of any type experienced with the software.

We are interested in understanding how automated bug reporting fits into current

bug reporting and triaging practices, and if and how they add value to developers. To

the best of our knowledge, no such study has been done. These are important

questions, as deploying a crash reporting system is not without risks or costs. While

these systems increase the volume of raw data available to developers, they might not

necessarily make more information available to developers. The majority of crash

reports refer to a small number of common problems. Furthermore, such a system

could lead users to stop submitting traditional bug reports, feeling that they have

31

already contributed, thus leading to a net loss of information for developers. This is

especially true, as the issues covered by crash reports do not fully overlap with those

in bug reports, including usability issues and missing features. To this end our research

questions were:

RQ1. What impact do automatic crash reporting systems have on FOSS projects?

RQ2. What overhead do automatic crash reporting tools add to the bug triaging
process?

RQ3. Do crash reporting systems discourage participation in the bug reporting
process?

Given that there is a lot of diversity within the FOSS community, and there is no

such thing as a “typical” FOSS project, this paper is intended to be a first investigation

into these questions within the context of one of the leading FOSS projects, Mozilla.

The rest of the paper is organized as follows: We start with a review of research on

bug triaging. Next we describe our methodology, and the Mozilla systems we studied.

Section IV describes the results of our study, including excerpts from interviews with

developers and users of these systems. Section V discusses our findings and the pros

and cons of using these systems, as well as lessons to enhancing these tools. Section

VI concludes with a summary of the key findings and future work.

3.3 Related Work

Automatic crash reporting systems have been used in many closed source systems

(Apple (Apple, 2010), Windows (Kinshumann et al., 2011)). The most famous is the

Windows Error Reporting (WER) system by Microsoft, described by Kinshumann et

al. in [21]. The author mentions that “a bug reported by WER is about 5 times more

likely to be fixed than a bug reported directly by a human”. Kim et al. (2011) studied

the WER system and provided “Crash Graphs” which present a high-level aggregated

view of multiple crashes belonging in the same bucket.

There have been a few recent studies on Mozilla’s automatic crash reporting

system. Kim et al (2011) focused on prioritizing debugging efforts by predicting top

32

crashes. Dhaliwal et al. (2011) proposed a grouping approach to group crash report

triaging. They show that effective grouping of crash reports can reduce bug fixing

time by 5%. Khomh et al. (2011) proposed the use of crash entropy values to prioritize

crash types during triaging. These studies focus on a small subset of crash reports.

There has been quite a lot of work on automating and improving the bug triaging

process. Bug triaging refers to the steps taken to manage a bug from the time the bug

is reported to the time the bug is resolved. Anvik (2006) discussed a semi-automated

approach to assigning bugs to developers through a recommender system. Anvik et al.

(2006) proposed another text-based categorization that achieved between 57% and

64% accuracy for assignment of bug reports in the Eclipse and Firefox projects.

Matter et al. (2009) proposed a vocabulary-based approach where developer expertise

and bug vocabularies were matched. Tamrawi et al. (2011) designed a tool called

“Bugzie” which offered a fuzzy set-based approach to automated bug assignment, and

achieved 68% accuracy in predicting the 5 most suited developers. Jeong et al. (2009)

created a tool that visualized “bug tossing,” showing how bug ownership got passed

from developer to developer within a project in order to identify ‘tricky’ bugs and

effective contributors.

Another topic examined by researchers has been duplicate bug reports. Ko and

Chilana (2010) studied bug reports in the Mozilla project and found that though there

was a large number of duplicate reports, these were often seen as helpful by

developers. Duplicates could reflect the severity and priority of a bug. Bettenburg et

al. (2008) studied the Eclipse project and found that most developers did not consider

duplicate bug reports to be a serious problem.

Other studies have found problems with duplicate reports. Cavalcanti et al. (2010)

studied 8 FOSS projects and found that duplicate reports negatively impacted the

overall development process. They also identified factors that affect the frequency of

bug duplication. Davidson et al. (2011) studied this problem in 12 FOSS projects of

different size and focus. They found that medium-sized projects are most affected –

they have to deal with the same number of duplicates as the large projects, but without

33

their resources. However, they did not find a relationship between duplicates and

whether the user base was more or less technical. Anvik et al. (2005) studied

duplicates in Firefox and Eclipse and found that these were common and that there is a

need for tools to detect these. Jalbert and Weimer (2008) presented a machine learning

tool that identified duplicate bugs.

The quality of bug reports in FOSS projects is another important topic. Bettenburg

et al. (2008) surveyed developers and users of the Apache, Mozilla and Eclipse

projects and compiled a list of information that developers look for in a bug report.

Based on this inventory, they developed a bug reporting system called CUEZILLA.

This system provides a quality metric for bug reports and points to information that

would enhance the quality of the report. Breu et al. (2010) analyzed 600 bug reports

from the Mozilla and Eclipse projects and the information requests developers made

of reporters, and found that there was a need for tools to structure and guide the

reporting and information exchange process. Ko et al. (2006) examined the language

of nearly 200,000 bug report titles to understand how people describe bugs. They also

identified a need for tools that help reporters submit more structured reports, which

could be automatically parsed.

3.4 Methodology

Our goal was to analyze the impact of crash reporting tools on bug triaging in

FOSS projects. More specifically, we wanted to determine whether such systems lead

to a net gain or loss in information, as they could discourage users from submitting

more meaningful bug reports.

For our research, we examined Mozilla’s crash reporting system because a)

Mozilla products have a large user base and an active developer community, b) the

data needed for this study is publicly available, c) this is an extensively studied

project, which allowed us to set our findings in context, and d) they have used a crash

reporting system for an extended period of time, allowing procedures to develop and

be adopted within the project.

34

3.4.1 The Breakpad/Socorro Crash Reporting System

Mozilla started using their current custom crash reporting system in 2008,

coinciding with the release of Firefox 3. Currently, only their Firefox, SeaMonkey and

Thunderbird projects use this system. It has two components – Breakpad and Socorro.

Breakpad is an open source project started by Google. It runs as a thread in every

instance of the Mozilla process. It is invoked when a crash occurs in any Mozillla’s

processes, collects the call stack and memory dumps from the process, finds the thread

that crashed and sends the information to Socorro. The system prompts the users for

additional information, which they can provide if they wish. Socorro is a python-based

server system that aggregates and performs statistical analysis on the crash reports

submitted to Mozilla. The Mozilla QA team processes these and either adds new bugs

or amends existing ones.

3.4.2 Analysis

We collected daily crash report logs from March 2010 to October 2011. Due to

the volume of data the system generates, older logs are not kept. We gathered bug

information and bug revision histories from the start of the Mozilla project to October

2011 from their bug tracking system. Some of the reports were unavailable for

analysis due to permission issues, internal database errors or malformed content.

However, these only accounted for 5% of all bugs in the database.

To further evaluate the usefulness of Mozilla’s crash reporting system we

supplement the quantitative data with interviews of developers who worked directly

with the system. A total of 5 developers participated in our study - 2 Socorro/Breakpad

developers and 3 members of the Mozilla’s QA team responsible for processing the

reports. By examining perspectives of developers and users we can better judge the

impact of this system and identify design changes that would improve such systems.

35

3.5 Results

A previous study of 12 FOSS projects (Davidson et al., 2011) found that Mozilla

had a very active bug repository (around 3,361 new bugs reported per month)

compared to other projects. They also found that the more active the bug repository,

the more duplicates there were. They found that Mozilla was especially affected, with

24.7% of bugs submitted being marked as duplicates, significantly more than other

projects studied. We were interested in finding the reason for this high duplicate rate,

and whether the automatic crash reporting system lessened or amplified the problem.

 3.5.1 Quantitative Results

 First, we quantitatively analyzed the crash report logs from March 2010 to

October 2011. We aggregated basic statistics, listed in Table 5, and compared to the

activity in the bug reporting system over the same period.

Table 5. Mozilla Crash Reports (March 2010 - October 2011) And Bug Reports (July

1998 - October 2011) * Crash signatures added to database June 9, 2011

 Breakpad/
Socorro

Bug
Reports

Avg. # of reports per
month

96,131,054.5 4,048.4

% Duplicate 88.19% 22.68%
Avg. # of crash reports
turned to bug reports per
month

89.2*

Avg. # of bug reports
associated with crash
report data per month

 94.5

Days for crash reports to
be associated with bug
report (Avg)

230.87*

Mozilla on average receives 96 million crash reports per month, they outnumber

bug reports by more than 20,000:1. While these are very large numbers, one should

keep in mind that there were an estimated 350 million Firefox users by early 2010, and

36

between 15 and 20 million Thunderbird users. Of these 96 million crash reports

Mozilla only processes a sample of 10%, biased towards reports with user-provided

details. 88.19% of this sample is trivially classified as duplicates. This still leaves

1,135,308 reports to process per month. While this is a dramatic reduction, it is still a

huge set to work through.

Remaining reports are manually classified as either duplicates, not critical, or not

actionable. Of the remaining reports, 89.2 per month will be turned into one or more

bug reports (data is limited to the period after June 9, 2011 when the project started

tracking crash signatures in bug reports). As we explain below, that monthly average

is heavily skewed. Of all crash reports, this accounts for only 0.00009% that are

finally associated with a bug report, or 0.008% of unique crash reports sampled.

However, if we turn this around, 2.334% of bug reports are either created or

augmented with crash report data. Therefore, though there is a lot of waste, crash

reports add significant value to Mozilla’s QA.

The introduction of a crash reporting system, and the volumes of data these can

generate do come at a price. Developing effective strategies and tools to triage the data

are essential to leverage these systems.

Figure 2 shows a plot of the report date of a crash against the date when these were

associated with a bug (a new bug was created, or an existing bug was amended).

Again, the data is limited to the period after June 9 2011, when the project started

tracking these associations. In the 4.5 months for which we have data, the QA team

matched 402 crash reports, or 89.2 per month. More importantly, though the majority

of matched reports are recent (median 197.5 days), we see that a significant number

have been in the queue for close to two years. Given that Mozilla has had six major

releases in that time-frame, it shows that crash reports can help identify deep and

fundamental bugs that can haunt software project for years. There is therefore a strong

need to develop tools to not just help view reports more easily, but also help the QA

team analyze the data more easily.

37

Figure 2, Time taken to associate crash reports with bug reports

Bugs and crashes are of course cyclical and affected by the development activity

taking place at the time. When new versions of the software are released, we expect to

see spikes (see Figure 3) (Kim et al., 2011). The match is not perfect however;

adoption is not immediate, and there may be differences in quality control between

releases. Also, because Mozilla’s products are platforms for other software (plugins

and extensions), problems can spike as those are refreshed. From our conversations

with developers, such spikes are not uncommon.

0

100

200

300

400

500

600

700

800

#
 o

f
d

a
y

s
ta

k
e

n
 t

o
 a

ss
o

ci
a

te
 c

ra
sh

 r
e

p
o

rt
s

w
it

h
 b

u
g

 r
e

p
o

rt
s

Day when crash report was mapped to bug reports

38

Figure 3, Crash signatures vs. software releases in Mozilla

In Figure 4 we can see long-term trends for bug reporting and duplication rates.

The automatic crash reporting system was introduced in June 2008 (first red vertical

line), and they switched to a rapid release cycle in April 2011 (2nd red line). It is

important to note that though there is a strong downward trend in duplicate rates, this

may be artificially inflated because identifying some duplicates can take a long time.

The duplicate numbers should therefore be interpreted with caution.

0

5

10

15

20

25

0

2

4

6

8

10

12

14

#
 o

f
R

e
le

a
se

s

#
 o

f
C

ra
sh

 S
ig

n
a

tu
re

s
(i

n
 m

il
li

o
n

s)
of Major Releases # of Releases # of Crash Signatures

39

Figure 4, Temporal of view of bug activity in Mozilla. First red vertical bar

indicates the introduction of the crash reporting system, and the second the transition

to rapid release cycles

That said; we see a strong positive development in terms of reducing the number

of duplicate bug reports within the project. As we can see from Table 6, this

development has been statistically significant across the three project “periods”. In

terms of data quality, we can therefore say that it does not appear that the introduction

of the crash reporting system has interrupted a positive trend that was already in effect,

the reduction of duplicate bug reports in Mozilla. While this is perhaps not surprising

given the small number of crash reports that are turned into bug reports, it is a positive

nonetheless.

0%

5%

10%

15%

20%

25%

2500

3500

4500

5500

6500

7500

8500

9500

O
ct

-0
6

Ja
n

-0
7

A
p

r-
0

7

Ju
l-

0
7

O
ct

-0
7

Ja
n

-0
8

A
p

r-
0

8

Ju
l-

0
8

O
ct

-0
8

Ja
n

-0
9

A
p

r-
0

9

Ju
l-

0
9

O
ct

-0
9

Ja
n

-1
0

A
p

r-
1

0

Ju
l-

1
0

O
ct

-1
0

Ja
n

-1
1

A
p

r-
1

1

Ju
l-

1
1

O
ct

-1
1

%
 o

f
D

u
p

li
ca

te
s

#
 o

f
B

u
g

s

of Bugs % of Duplicates Poly. (# of Bugs) Poly. (% of Duplicates)

40

Table 6. ANOVA Results. The Mozilla Project (October 2006 To October 2011 And

Introduction Of Key Changes (Crash Reporting System June 2008 & Rapid Release

Cycle April 2011)

 Pre vs Post-
Crash System

Pre-Crash vs
Rapid Release

Post-Crash vs
Rapid Release

of Bugs

ANOVA(df=1,
F=33.199,
p<0.00001)
Tukey(p<0.000
1)

ANOVA(df=1,
F=47.965,
p<0.00001)
Tukey(p=0.00
01)

ANOVA(df=1,
F=1.4081,
p=0.2427)
Tukey(p=0.408)

% Duplicates

ANOVA(df=1,
F=96.333,
p<0.00001)
Tukey(p<0.000
1)

ANOVA(df=1,
F=126.89,
p<0.00001)
Tukey(p<0.00
01)

ANOVA(df=1,
F=15.187,
p=0.00038)
Tukey(p=0.000
8)

Another positive development is that though there was a slight dip in the number

of bug reports immediately after the introduction of the crash reporting system,

activity has since picked back up. We see an increasing trend in the number of bugs

reported per month after the introduction of the automatic reporting system (ANOVA:

df=1, F=33.199, p<0.0001). We can therefore conclude that though introducing the

crash reporting system may have been disruptive, these issues were worked out.

As we see in Figure 5, the community of bug reporters has been continuously

growing, and the community renews itself with new members, though the renewal rate

seems to be in decline (ANOVA: df=1, F=41.01, p<0.0001). It is also worth nothing

from this chart that though the rate of new reporters is relatively high, the growth of

the regular commenter community is relatively slow. Most new contributors leave

after posting a single bug report, as others have shown (Davidson et al., 2011).

41

Figure 5, Number of unique bug reporters and new contributors.

Though there is a declining trend in terms of first-time bug submitters, it is not

unexpected. As the community grows it approaches a saturation point in terms of the

number of people with both the ability and interest in contributing. As the community

grows, communication and coordination problems grow as well, discouraging further

growth.

The data therefore seems to show no long-term negative effects of the introduction

of the crash reporting system in terms of participation or data quality (here measured

as duplicate reporting rates).

 3.5.2 Qualitative Results

 To supplement our statistical findings, we interviewed five developers working

for Mozilla. Two participants were involved in developing the Breakpad and Socorro

systems, and the other three worked for the QA team that processes the crash reports

0%

10%

20%

30%

40%

50%

60%

70%

0

500

1000

1500

2000

2500

3000

3500

M
a

y
-0

7

A
u

g
-0

7

N
o

v
-0

7

F
e

b
-0

8

M
a

y
-0

8

A
u

g
-0

8

N
o

v
-0

8

F
e

b
-0

9

M
a

y
-0

9

A
u

g
-0

9

N
o

v
-0

9

F
e

b
-1

0

M
a

y
-1

0

A
u

g
-1

0

N
o

v
-1

0

F
e

b
-1

1

M
a

y
-1

1

A
u

g
-1

1

#
 o

f
N

e
w

 R
e

p
o

rt
e

rs

#
 o

f
U

n
iq

u
e

 R
e

p
o

rt
e

rs

of Unique Reporters % of New Reporters

Linear (# of Unique Reporters) Linear (% of New Reporters)

submitted to Socorro. All our participants were employed full

three had some formal background in computer science.

Participants were asked to give their opinions and share their experiences with the

current system and with working with crash

included but was not limited to what challenges they face in using or developing the

crash reporting systems, pros and cons of using crash reports to drive debugging, and

features that they would like to see in the s

posed as open-ended questions, and others as likert

these are presented in Fig

Figure 6, Interview Results. Values in “red” are the means and values in “blue” are

the standard deviations for each response

There was strong agreement that the system

on subjective experience

reports to bugs quickly and easily. Participants were mo

to Socorro. All our participants were employed full

three had some formal background in computer science.

Participants were asked to give their opinions and share their experiences with the

current system and with working with crash reports to debug Mozilla projects. This

included but was not limited to what challenges they face in using or developing the

crash reporting systems, pros and cons of using crash reports to drive debugging, and

features that they would like to see in the system in the future. Some questions were

ended questions, and others as likert-scale alternatives. The results of

these are presented in Figure 6.

, Interview Results. Values in “red” are the means and values in “blue” are

ard deviations for each response

There was strong agreement that the system – in its current incarnation and based

on subjective experience – helps developers fix bugs, and helps them associate crash

reports to bugs quickly and easily. Participants were more ambivalent about the

42

to Socorro. All our participants were employed full-time at Mozilla and

Participants were asked to give their opinions and share their experiences with the

reports to debug Mozilla projects. This

included but was not limited to what challenges they face in using or developing the

crash reporting systems, pros and cons of using crash reports to drive debugging, and

ystem in the future. Some questions were

scale alternatives. The results of

, Interview Results. Values in “red” are the means and values in “blue” are

in its current incarnation and based

helps developers fix bugs, and helps them associate crash

re ambivalent about the

43

usefulness of the user interface, and the relevance of the information shown to

developers. This leads us to conclude that though the system is useful, there are still

significant improvements to be made.

These positive reviews did not mean that participants were blind to the costs and

risks of this system. When asked about the challenges to deploying and using the crash

reporting system, a participant replied:

“It has a cost obviously. It’s a lot of data to collect and report on. That can be a
challenge to manage all that. We only report on a statistically valid subset of
crashes. We only report on 10%. We collect 100% crashes so that’s a lot of data
coming in and it’s really expensive and it’s a challenge to make sure that the
system is up and running.”

“I think it’s pretty decent system overall. I wish it were easier to install and better
and up-to-date documentation and installation utilities to help people. If the user
has a new program and if they wish to support automatic crash reporting they
have to dig deep into different websites and go through a lot of documentation to
get it up and running.”

Our participants did find the crash reporting system to be very helpful, as they feel

it is effective at helping developers find bugs and fix them:

“I would say it’s doing the job it is intended to as far as I can tell from a
developer’s perspective.”

More importantly, participants felt that the system added unique capabilities

without which certain types of bugs would have been difficult to detect:

“I always have a hard time as a QA person to strongly agree with a statement as
my job is to find exceptions. If it wasn't for Breakpad, we would not be aware of
some of the crashes that end up happening in the product. It would be definitely
harder.”

Participants felt that Breakpad could do a better job collecting useful information

in some situations, especially for newer platforms like Android devices.

“For android devices, it might not necessarily give the relevant information. [...]
It is getting better for Android. Some of the other things are minor tweaks on the
reporting end to make the information a bit more useful.”

44

3.6 Discussion
We started this research with three research questions:

RQ1. What impact do automatic crash reporting systems have on FOSS projects?

RQ2. What overhead do automatic crash reporting tools add to the bug triaging
process?

RQ3. Do crash reporting systems discourage participation in the bug reporting
process?

While we can’t say anything about FOSS projects in general, we did get some

compelling data for the Mozilla project, often held up as an exemplar in the FOSS

community, and certainly one of the largest and most influential FOSS projects.

Starting from the bottom up (RQ3), we found no evidence that crash reporting

systems discouraged participation in bug reporting, at least in the long term. Looking

at Figure 5 we see that though new reporters as a portion of all bug reporters has been

declining, this trend started before the introduction of the crash reporting system, and

does not seem to have picked up speed since. Furthermore, the total number of bug

reporters has continued to increase over time. Figure 4 shows that there was a slight

decrease in the total number of bug reports shortly after the introduction of the system,

but over the long term this number has also increased. Therefore we find no

compelling evidence for crash reporting systems discouraging participation in bug

reporting.

We did find a lot of evidence of the costs associated with adopting a crash

reporting system (RQ2). The huge volume of data collected, and the relatively low

number of bugs identified from the data is astounding. The costs, both monetary, as

well as in time and effort needed to collect and sort through such vast amounts of data

are significant, and thus adopting a crash reporting system is something that requires a

significant commitment.

In all likelihood, for a moderate-sized FOSS project, implementing such a system

will require a dedicated servers to receive reports, bandwidth charges, and because of

the specialized skills required and the less appealing nature of the sleuthing work

45

required, paid staff to try and process the data received. Our participants indicate that

there is also a cost to incorporating these systems into their products due to either

lacking documentation or tradeoffs in terms of implementation.

Much more work needs to be done to streamline the triaging and processing of

data, or of extracting value from the data that these systems generate. The application

of machine learning techniques to better match duplicates, better sampling techniques

to ensure data is gathered about the most interesting/relevant crashes, and better

diagnosis tools to help root out the underlying causes for crashes and turning these

into bug reports.

Finally, turning to RQ1, all the developers we talked to unanimously think that the

system provides real and significant value to the QA of Mozilla. Though only a tiny

fraction of crash reports are actually used by the team, one of every 40 bug reports use

data from the crash reports. These are bugs that would in all likelihood have been very

difficult to track down without the information in the crash reports. In this sense, we

can see that this system has a real and meaningful impact.

Because the implementation of these systems present both opportunities and

challenges, it is important to identify best practices and optimize these systems. FOSS

projects like the Kernel, Red Hat/Fedora, Ubuntu, etc. have deployed similar systems,

and our next step will be to do an inventory of these.

That said, it is important to realize that deploying a crash reporting system is likely

not an option for everyone. Many FOSS projects are not large enough to need such a

complex system, or would be overwhelmed by the flood of data. In such cases these

systems will likely prove counterproductive.

Threats to Validity

The data we gathered is just a snapshot in time for a single project. Considering

the activity level and dynamism of the Mozilla project, a lot of things may have

changed from the time we gathered our data and the time this paper goes to print.

46

Small improvements in the triaging process, or how crash reports are filtered can also

have a big impact here, given the low “exploitation rate” of crash reports.

Given that we’ve only examined one project and the procedures they follow, we

don’t know whether these will generalize to other FOSS projects. Mozilla is an outlier

in the FOSS community, both because of its size as well as its top-down structure and

reliance on professional employees. That said, Mozilla is often used as an exemplar, or

a role model for other FOSS projects, and this knowledge will fit into the greater body

of knowledge of how FOSS projects can and should be managed.

Without wanting to second-guess our participants, who after all have extensive

experience using this system, it is possible that the ratings and stated opinions of our

participants were biased by one of two factors: a) having a stake in the system (being

paid to develop or use the system), and b) lacking exposure to other systems of this

type. As one participant put it:

“I am not sure what alternatives we have. I think the advantages of having a crash
reporting system at all is really great.”

As we look for feedback and ideas for how to improve these systems, it is

important to be aware of these limitations; our informants and users often compare

these systems to no system, and thus excuse or ignore shortcomings.

3.7 Conclusion

We found that the Mozilla crash reporting system has had significant impact on the

QA of their products, with 1 in 40 bug reports now being tied to or derived from crash

reports. These systems come at a steep price however, as vast amounts of data tend to

be generated, which is difficult to handle. The return on investment for these systems

therefore has to be carefully considered for each project. We found no evidence to

support the claim that these systems discourage participation, at least in the long term,

and there is ample need for and opportunity for improvement of these systems.

47

3.8 Acknowledgements

We thank all the participants involved in our study for their valuable inputs and

feedback. We really appreciate the efforts and help we received from the

Breakpad/Socorro team at Mozilla for helping us with data collection. We especially

thank Lars Lohn from Mozilla for all his help in making this study possible. We also

thank the HCI research group at Oregon State University for helping in revising the

paper.

3.9 References

Ahsan, S.N., Ferzund, J. and Wotawa, F. “Automatic Software Bug Triage System
(BTS) Based on Latent Semantic Indexing and Support Vector Machine.” In Fourth
International Conference on Software Engineering Advances, 2009. ICSEA ’09, pp.
216–221.

Anvik, J. “Automating bug report assignment.” In Proceedings of the 28th
international conference on Software engineering, Shanghai, China, 2006, pp. 937–
940.

Anvik, J., Hiew, L. and Murphy, G.C. “Coping with an open bug repository” In
Proceedings of the 2005 OOPSLA workshop on Eclipse technology eXchange, San
Diego, California, 2005, pp. 35–39.

Anvik, J., Hiew, L. and Murphy, G.C. “Who should fix this bug?” In Proceedings
of the 28th international conference on Software engineering, Shanghai, China, 2006,
pp. 361–370.

Apple, “Technical Note TN2123: CrashReporter,” 2010.

Bettenburg, N., Premraj, R., Zimmermann, T. and Kim, S. “Duplicate bug reports
considered harmful … really?” In IEEE International Conference on Software
Maintenance, 2008. ICSM 2008, pp. 337–345.

Bettenburg, N., Just, S., Schröter, A., Weiss, C., Premraj, R. and Zimmermann, T.
“What makes a good bug report?” In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, Atlanta, Georgia,
2008, pp. 308–318.

Breu, S., Premraj, R., Sillito, J. and Zimmermann, T. “Information needs in bug
reports: improving cooperation between developers and users.” In Proceedings of the
2010 ACM conference on Computer supported cooperative work, Savannah, Georgia,
USA, 2010, pp. 301–310.

Cavalcanti, Y.C., Anselmo, P.M.S.N., Almeida, E.S., Cunha, C.E.A., Lucrédio, D.
and Meira, S. R.L. “One Step More to Understand the Bug Report Duplication

48

Problem.” In Proceedings of the 2010 Brazilian Symposium on Software Engineering
(SBES '10), pp. 148–157.

Cavalcanti, Y.C., Almeida, E.S., Cunha, C.E.A., Lucrédio, D., and Meira, S.R.L.
“An Initial Study on the Bug Report Duplication Problem,” in 2010 14th European
Conference on Software Maintenance and Reengineering (CSMR), 2010, pp. 264–
267.

D’Ambros, M., Lanza, M. and Pinzger, M. “A Bug’s Life Visualizing a Bug
Database.” In 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2007. VISSOFT 2007, 2007, pp. 113–120.

Davidson, J.L., Mohan, N. and Jensen, C. “Coping with duplicate bug reports in
free/open source software projects.” In 2011 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC '11), pp. 101–108.

Dhaliwal, T., Khomh, F., Zou, Y. "Classifying field crash reports for fixing bugs:
A case study of Mozilla Firefox." Software Maintenance (ICSM), 2011 27th IEEE
International Conference on , vol., no., pp.333-342, 25-30 Sept. 2011

Hooimeijer, P. and Weimer, W. “Modeling bug report quality.” In Proceedings of
the twenty-second IEEE/ACM international conference on Automated software
engineering, Atlanta, Georgia, USA, 2007, pp. 34–43.

Jalbert, N. and Weimer, W. “Automated duplicate detection for bug tracking
systems.” In IEEE International Conference on Dependable Systems and Networks
With FTCS and DCC, 2008. DSN 2008, pp. 52–61.

Jeong, G., Kim, S. and Zimmermann, T. “Improving bug triage with bug tossing
graphs.” In Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering, Amsterdam, The Netherlands, 2009, pp. 111–120.

Khomh, F., Chan, B., Zou, y., Hassan, A.E., "An Entropy Evaluation Approach for
Triaging Field Crashes: A Case Study of Mozilla Firefox." Reverse Engineering
(WCRE), 2011 18th Working Conference on , vol., no., pp.261-270, 17-20 Oct. 2011

Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S.C., Park, S. "Which Crashes
Should I Fix First? Predicting Top Crashes at an Early Stage to Prioritize Debugging
Efforts." Software Engineering, IEEE Transactions on , vol.37, no.3, pp.430-447,
May-June 2011

Kim, S., Zimmermann, T., Pan, K. and Whitehead, E.J. “Automatic Identification
of Bug-Introducing Changes.” In 21st IEEE/ACM International Conference on
Automated Software Engineering, 2006. ASE ’06, pp. 81–90.

Kim, S., Zimmermann, T., Nagappan, N. "Crash graphs: An aggregated view of
multiple crashes to improve crash triage." Dependable Systems & Networks (DSN),
2011 IEEE/IFIP 41st International Conference on , vol., no., pp.486-493, 27-30 June
2011

49

Kinshumann, K., Glerum, K., Greenberg, S. Aul, G., Orgovan, V., Nichols, G.,
Grant, D., Loihle, G. and Hunt, G. “Debugging in the (very) large: ten years of
implementation and experience.” Commun. ACM, vol. 54, no. 7, pp. 111–116, Jul.
2011.

Ko, A.J., Myers, B.A. and Chau, D.H. “A Linguistic Analysis of How People
Describe Software Problems.” In IEEE Symposium on Visual Languages and Human-
Centric Computing, 2006. VL/HCC 2006, pp. 127–134.

Ko, A.J. and Chilana, P.K. “How power users help and hinder open bug
reporting.” In Proceedings of the 28th international conference on Human factors in
computing systems, Atlanta, Georgia, USA, 2010, pp. 1665–1674.

Matter, D., Kuhn, A. and Nierstrasz, O. “Assigning bug reports using a
vocabulary-based expertise model of developers.” In 6th IEEE International Working
Conference on Mining Software Repositories, 2009. MSR ’09, pp. 131–140.

Raymond, Eric S. "The Cathedral and the Bazaar." Computers & Mathematics
with Applications 39.3-4 (2000).

Tamrawi, A., Nguyen, T.T., Al-Kofahi, J. and Nguyen, T.N. “Fuzzy set-based
automatic bug triaging: NIER track.” In Proceeding of the 33rd international
conference on Software engineering, Waikiki, Honolulu, HI, USA, 2011, pp. 884–887.

Wang, X., Zhang, L., Xie, T., Anvik, J. and Sun, J. “An approach to detecting
duplicate bug reports using natural language and execution information.” In
Proceedings of the 30th international conference on Software engineering, Leipzig,
Germany, 2008, pp. 461–470.

https://wiki.mozilla.org/images/e/ed/Analyst_report_ Q1_2010.pdf

http://blog.mozilla.com/thunderbird/2011/11

50

4. Conclusion

From the first manuscript, we can infer that the practice of open bug reporting incurs

cost. We see that the users are interested in contributing to FOSS projects by reporting

bugs and feedback. We can observe that the projects have to deal with overwhelming

number of inexperienced reporters which could be a potential problem if the projects

lack enough resources. Also, projects have a hard time sustaining user participation, as

most users disappear after contributing just one bug report. This should convince the

readers that the FOSS projects are in need of additional scaffolding that simplifies the

bug management process and assists novice reporters in submitting quality feedback.

From the second manuscript, we find that large and active projects like Mozilla are

aware of the importance of user feedback and prolonged user participation. The

introduction of automatic crash reporting system has certainly helped improve

Mozilla’s bug management practices. However, deploying such systems seems to be

quite a hurdle since the project requires excellent infrastructure to deal with huge

volumes of data.

Open bug reporting is certainly helpful and fundamental to realizing Linus’ Law;

“Given a large enough beta-tester and co-developer base, almost every problem will

be characterized quickly and the fix will be obvious to someone” (Raymond, 2000).

FOSS communities would reap huge benefits if they keep the reporters involved and

motivated.

51

Bibliography

Anvik, J. “Automating bug report assignment,” in Proceedings of the 28th
international conference on Software engineering, Shanghai, China, 2006, pp. 937–
940.

Anvik, J., Hiew, L., and Murphy, G. “Who should fix this bug?,” in Proceedings of the
28th international conference on Software engineering, Shanghai, China, 2006, pp.
361–370.

Chung, E., Jensen, C., Yatani, K., Kuechler, V., and Truong, K. N. “Drawing and
sketching in Open Source design”, in IEEE Symposium on /Visual Languages and
Human-Centric Computing, 2010. VL/HCC 2010.

Ghosh, A. “Economic impact of FLOSS on innovation and competitiveness of the EU
ICT sector”, 2006.

Jensen, C., Scacchi, W. "Role Migration and Advancement Processes in OSSD
Projects: A Comparative Case Study," Int Conf. on Software Engineering, ICSE’07.
20-26 May 2007.

King, S. “Joining Open Source Software Communities: An Analysis of Newbies’ First
Interactions on Project Mailing Lists”, 2009, MS Thesis.

Matter, D., Kuhn, A., and Nierstrasz, O. “Assigning bug reports using a vocabulary-
based expertise model of developers,” in 6th IEEE International Working Conference
on Mining Software Repositories, MSR ’09, pp. 131–140.

Park, Y. “Supporting the Learning Process of Open Source Novices: An Evaluation of
Code and Project History Visualization Tools”, 2008, MS Thesis.

Raymond, E. "Homesteading the Noosphere," 1998.

Wu, C., Gerlach, J., Young, C.. “An empirical analysis of open source software
developers’ motivations and continuance intentions, Information & Management”,
2007, pp 253-262.

Yunwen, Y., Kishida, K. “Toward an understanding of the motivation of open source
software developers.” In Proc. of the 25th Int. Conf. on Software Engineering, 3-10
May 2003.

