

AN ABSTRACT OF THE THESIS OF

Nitin Mohan for the degree of Master of ScienceComputer Sciencpresented on
March 9, 2012.

Title: Managing Bug Reports in Free/Open Sourciwgoe (FOSS) Communities.

Abstract approved:

Carlos Jensen

Free/Open Source Software (FOSS) communities afsenopen bug reporting to
allow users to participate by reporting bugs. Tractice can lead to more duplicate
reports, as inexperienced users can be less rigabaut researching existing bug
reports. The purpose of this research is to detegrthie extent of this problem, and
how FOSS projects deal with duplicate bug repakits.examined 12 FOSS projects: 4
small, 4 medium and 4 large, where size was detmuniby number of code
contributors. First, we found that contrary to whas been reported from studies of
individual large projects like Mozilla and Eclips#yplicate bug reports are a problem
for FOSS projects, especially medium-sized proje€teese medium sized projects
struggle with a large number of submissions andiclates without the resources large
projects use for dealing with these. Second, wadahat the focus of a project does
not affect the number of duplicate bug reports. @adings point to a need for
additional scaffolding and training for bug repostef all types.

Finally, we examine the impact that automatic cresporting has on these bug
repositories. These systems are quickly gainingdpularity and aim to help end-
users submit vital bug information to the develsp@ihese tools generate stack traces
and memory dumps from software crashes and padkege up so end-users can
submit them to the project with a single mousekclitve examined Mozilla’s

automatic crash reporting systems, Breakpad anadrBgcto determine how these

integrate with the open bug reporting process, ahether they add to the confusion
of duplicate bug reports. We found that thoughiahiadoption exhibited teething
troubles, these systems add significant value ammvledge, though the signal to

noise ratio is high and the number of bugs idesdipper thousand reports is low.

©Copyright by Nitin Mohan
March 9, 2012
All Rights Reserved

Managing Bug Reports in Free/Open Source SoftwaDSE) Communities

by
Nitin Mohan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented March 9, 2012
Commencement June 2012

Master of Sciencéhesis of Nitin Moharmpresented on March 9, 2012

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineeringladdomputer Science

Dean of the Graduate School

| understand that my thesis will become part ofgeemanent collection of Oregon
State University libraries. My signature belowtaarizes release of my thesis to any
reader upon request.

Nitin Mohan, Author

ACKNOWLEDGEMENTS

First and foremost, | thank the almighty for Hiedsings by surrounding me with
such wonderful people and providing me valuableeeemces and memories to

cherish throughout my life.

| am really grateful to my advisor, Dr. Carlos Jamsfor his constant support and
patience throughout my time at Oregon State Unityerk appreciate his efforts in

advising me on my research by offering helpful sgigns and feedback.

| would like to thank my committee members Dr. Rdnisletoyer, Dr. Alex Groce
and Dr. Arijit Sinha for their valuable time in atiding my defense and examining my
credentials. | wish to thank everyone from the F@88munities for providing me
the data and help to finish this thesis. | woulsbdike to thank the faculty and staff
from the EECS department and the Academic Prografkssessment and
Accreditation (APAA) office for their help | recead directly or indirectly throughout

my time at this university.

| thank my colleague Jennifer Davidson for her helmy research. | would also like
to thank my colleagues at Human Computer InteragfitCl) group at Oregon State

for their valuable suggestions and advice and hglpie draft this thesis.

There are no adjectives to portray the greatnesheoffamily | belong to and the
support | receive from every one of them in my yldifle. My parents, Mohan and
Jayalakshmi Mohan, my brothers and their famildsren, Kavitha and Nivedha (my
little niece) and Navin and Kamini have offered iimnemeasurable love and affection
and been with me at every facet of my life. My spkefriend Nithya, who has been
my moral support, and her family, deserve mentmmtiieir constant encouragement
and motivation to realize my dreams. | pray forith&ell being and happiness

throughout their lives.

CONTRIBUTION OF AUTHORS

Jennifer Davidson is credited for drafting mostlé contents in the first manuscript.
She wrote Perl scripts to download revision hisifrom Free/Open Source (FOSS)
projects’ bug database. She assisted in pre-progetise bug reports in the XML
format. She assisted in verifying statistical resul

| am the primary author for the second manusctiptso assisted in drafting and
making edits in the first manuscript. | wrote Bashipts to download bug repositories
from FOSS projects and pre-process bug reportshith Xormat. | did most of the

statistical analysis of data presented in the Reselction in the first manuscript.

TABLE OF CONTENTS

g (o Yo {1 o3 1] o IR TP 1

2 First Manuscript: Coping with Duplicate Bug Rejgsdn Free/Open Source Software

(FOSS) PIOJECES ...ttt e e e e e e e e e e e e e e aaaaaaaeas 5
2.0 ADSTIACT ...t et 6
2.2 INTFOTUCTION ...t rmr e e e e e 6
2.3 RelAted WOTK......ccoiiiiiiiie ettt 9

2.3.1 FOSS Workflow and Project Managementeeeeeeeeeeeeeneeenenennnennns 9

2.3.2Bug Triaging in FOSS ... 9
AR\ =3 i Yoo (o] (oo |V APPSR PPPPPIIN 12
A N g F= 1)V ST SPPPPPP 14
2.5 RESUILS ...ttt e e 14
2.5.1 Descriptive Project StatiStiCS........ccccccieviiiiiiiiiiieiiieieeeeeeeee e, 14
2.3.1 Bug Triaging PractiCescoiiiaeaaaeieiieiieiiiiiiiiiiiiineieeeieieeieeeenenes 17
2.6 DISCUSSION ..eeiiieiiiiiiitiie ettt e e e et e e e e e et r et e e e s rsnmne e e e e e e e e 20
2.6.1 Threats to Validityoooeriii e 22
2.7 Conclusion and FUture WOrKceceeeeeeeeemmnuemiieeieieeeeee———. 24
2.8 ACKNOWIEAGEMENLS ... 25

e B Lz (<Y (=] o1 TR 25

TABLE OF CONTENTS (Continued)

_Page
3 Second Manuscript: The Impact of Automatic Ciasports on Bug Triaging and

Development in MOZIlIA...........oooo e 28

N Y o 1S3 1 = Lo ST PTPPP P TPPPN 29

3.2 INEFOAUCTION ...ttt ettt e e e e e s renmne e e e e e e e 29

3.3 ReElAted WOTK... ..o 31

TV =3 i Yoo (o] (oo |V APPSR RPPPPPPT 33
3.4.1 The Breakpad/Socorro Crash Reporting System..........cccccvvvvevveennnen. 34

G N g F= 1)V ST SS P PPPPPP 34

BB RESUIS .. 35

3.5.1 Quantitative RESUILS..........couuiiime e 35

3.5.2 Qualitative RESUILS...........uuiiieieeeeieece e 41

3.6 DISCUSSION ..eeeiieiiiiiiiiitee ettt e e e ee ettt e e e e e e e e e e e e e s ssnmnr e e e e e e e e 44

3.7 CONCIUSION ...ttt eeeeee ettt ettt tas st et e btstbebestbbmnmnneeeeeeeeeeees 46

3.8 ACKNOWIEAGEMENLS ... 47

S.O REIEIBNCES ...ttt et e e e e a7

4 CONCIUSION .ttt e aaaaaasaaaaaaaaaeaaaaaas 50

BIDIOGIaPNY ... oo e 51

LIST OF FIGURES

Figure Page

1. General Structure of an OSS COMMUNILY. . ccemumuervrvrreerrnrinrrrieriinneeineneeeneneneeenes 2

2. Time taken to associate crash reports with BPQMS.eevvvvvvvvivieiiniinnnns 37.
3. Crash signatures vs. software releases in MOZill..............ccccceviiiii et e 38
4. Temporal of view of bug activity in Mozilla..............cccccevvviiiiiiiieee, 39
5. Number of unique bug reporters and New CONIBUL...............uvvvvereverimrmiiineniinnns 41

B. INTEIVIEW REBSUILS. ... e e e et e e e r e e e e e eeeen 42

LIST OF TABLES

Table _Page
1. Project SEIECHON.......ccooe e 13
2. Descriptive Project StatiStiCS.........ccuviiiiiiiiiiiiiiiiieieceeieeeee et eeeeeeteee e e e 15
3. Bugzilla Status And Resolution States.............ccooeviiiiiiiiiiieeeee 18
4. Bug Triaging PractiCeSccooeiiiiiiiiie e 29
5. Mozilla Crash Reports and Bug REPOIS....ccceevvvririiiiiiiiiiiiiiiiiiieiiiveinneneneeeens 35

0. ANOVA RESUILS ..ottt e et e e e mee e e aeneen 40

Managing Bug Reportsin Free/Open Source Software (FOSS)
Communities

1. Introduction

Free/Open Source Software (FOSS) is an approastftivare development where the
users are granted freedom to study, modify or teblige the source code of any
project licensed under free software licenses. Topen approach to software

development has gained in popularity and has bdeptad by many corporations.

Software widely used in categories such as web $eosy operating systems, servers,

and databases are primarily open source (Ghosh 2086).

Typical FOSS project are made u of like-minded peofrom different
organizations, cultures, geographic locations bnietties working together towards a
common goal. Participation in contributing to paifeis usually voluntary and is
primarily motivated by altruism (“the gift culturg’(Raymond, 1998). He proposes
that developers gift their source code expectimgprecation from other contributors.
Wu et al. (2007) surveyed 148 FOSS participantsfandd that the participants are
continually motivated by satisfaction through papation, enhancing personal skills

and capabilities, and career opportunities.

The software development model of open source giojés very different
compared to traditional closed source approachefadg, open source projects tend
to be highly distributed while closed source depaients are more often
geographically contained. FOSS developers collabousing text-based channels
including forums, mailing lists, IRCs and bug rejparses (Chung et al. 2010). Unlike
closed source projects, roles in FOSS projectsiefieed by the interests and skills of
individual contributors and their level of partiaippn (by code contribution,
communication between other members, etc.) in tmencunity (Jensen and Scacchi,
2007). A developer can assume multiple roles withenacommunity. According to Ye
and Kishida (2003), every FOSS community can bealized as a layered structure in
which the amount of participation increases towattts center. This structure is

referred to as “the onion model” and shown in fegtir

Peripheral Developers
Bug Fixers
Bug Reporters
Readers

FPassive Users

Figure 1. General Structure of an FOSS Communitydid Kishida, 2003)

Ye and Kishida identified eight major roles:
» Passive User: Only uses the software and does awticipate in software
development
* Reader: Reads the source code to understand thesof
» Bug Reporter: Report bugs/feature enhancementsetdevelopers of the project
» Bug Fixer: Fixes bugs submitted by reporters
» Peripheral Developer: Contributes feature to tHewvsoe
» Active Developer: Actively involves in contributirfgatures and fixing bugs
» Core Member: Coordinates the direction of desigrtte software

* Project Leader: Owns the project and involves ojgut direction

Any newcomer, referred to as “newbies”, who wistesontribute, goes through
“the joining process”. The newbies are requireddwe a good understanding of the
technical and social nature of the project befoagting to contribute. They generally
“lurk” in the mailing lists, forums and IRCs to keaabout the community and

understand the technical jargons used by the meamhbhethe community to discuss

about the issues. The lack of in-person meetingstlaa steep learning curve required
during the initial stages makes the joining proaasse intimidating and drives away

many people from contributing to open source.

Contributions to FOSS projects can be of any kiadhaly, giving feedback to
developers through bug reports and feature requestsg technical documentation,
submitting bug fixes and code patches, managing dbmmunity, etc. FOSS
communities often rely on users to participate imal@y Assurance (QA) by
submitting bug reports and bug fixes and encoufaiyge participation in the project.
This “more eyes, more shallow bugs” approach (Rayan@000) is hugely beneficial
to the projects since it provides a valuable merdmarfor feedback from the users.
Bug tracking systems like Bugzilla, Trac, Jira,.edce deployed by the projects to
manage the bug reporting process. These systems imabuilt capabilities for
managing bug reports like assigning bug IDs, tirteemping, identifying severity,
status and resolution of bugs and “triaging” theorés. Bug triaging is an important
phase in bug management and refers to the proomsswhen a bug is reported to
when it is resolved, and the steps taken to matiegerocess. There has been quite a
lot of research on predicting suitable developergdt assigned to bugs. Anvik et al.
(2006) provided a semi-automated and a text classipproach to build recommender
systems for assigning bugs to developers. Mattat. €2009) provided a vocabulary

based approach to match bugs based on develofier ski

However, open bug reporting has its share of pstfélllowing users to participate
in QA can potentially lead to high bug traffic amigher probability of bug duplication
(same bug reported by multiple users). Also, tip@ms from the users may be faulty,
incomplete or low in quality and correctness sitloe users cannot be expected to
have the knowledge and technical terms to desbulge. Some FOSS projects deploy
automatic crash reporting tools to help users énbihg reporting process. The purpose
of these tools is to automatically gather importafdrmation from a software crash

and prompt the user to report the crash to theldpges.

This thesis examines how FOSS communities manageuty duplication problem
and how automatic crash reporting systems fit thie overall picture. To do this we

have the following research questions.

RQ1. How significant of a problem are duplicate bugarp for FOSS projects?
RQ2. How does project size and focus affect the nundmel impact of duplicate
bugs?

RQ3. What impact does automatic crash reporting systeaus on FOSS projects?
RQ4. What overhead do automatic crash reporting systaaasto the bug triaging
process?

RQ5. Do crash reporting systems discourage user paatioip in the bug reporting

process?

This thesis manuscript consists of two researclersad he first paper deals with
the bug duplication problem. We analyzed the bypgseories of 12 FOSS projects: 4
small, 4 medium and 4 large where size was deteanioy the number of code
contributors. We found that duplicate bug reports @ problem for FOSS projects,
especially medium-sized, which struggle with a éargimber of submissions without
enough resources of large projects. We also fobatdfocus of the projects does not
affect the number of duplicate bug reports. Oudifigs indicate a need for additional
scaffolding for training bug reporters. The secqagher deals with automatic crash
reporting in Mozilla project and how it affects théug management process. We
performed quantitative analysis on the crash replonps available publicly in
Mozilla website. We also interviewed 5 developersl @QA members to gather

feedback about this system.

2 First manuscript: Coping with Duplicate Bug Reportsin
Free/Open Sour ce Softwar e Projects

Jennifer Davidson, Nitin M ohan, Carlos Jensen

School of EECS

Oregon State University

Corvallis, Oregon, 97331, USA

{davidsje, mohanni, cjensen} @ eecs.oregonstate.edu

Proceedings of the 2011 IEEE Symposium on Visuafuages and Human-Centric
Computing (VL/HCC), Pittsburgh, PA, USA
SESSION: Debugging and Program Understanding

2.1 Abstract

Free/Open Source Software (FOSS) communities afsenopen bug reporting to
allow users to participate by reporting bugs. Tjractice can lead to more duplicate
reports, as users can be less rigorous about ocbsegrexisting bug reports. This
paper examines how FOSS projects deal with duplibag reports. We examined 12
FOSS projects: 4 small, 4 medium and 4 large, whzeewas determined by number
of code contributors. First, we found that contremywhat has been reported from
studies of individual large projects like MozillachEclipse, duplicate bug reports are
a problem for FOSS projects, especially mediumesizehich struggle with a large
number of submissions without the resources okelagmpjects. Second, we found that
the focus of a project does not affect the numbbeiuplicate bug reports. Our findings

indicate a need for additional scaffolding andrirag for bug reporters.
2.2 Introduction

Free/Open Source Software (FOSS) projects have dal avith different
challenges, and consequently adopt different deweémt practices than “traditional”
closed-source software groups. In the FOSS commuhi¢é majority of contributors
are volunteers, roles are less strictly defined] enost contributors assume multiple
roles within projects. The volunteer labor forcebath the strength and the Achilles
heel of many FOSS projects. On one hand, voluntaéws projects to grow more
rapidly, and involve users more directly. On thieeo hand, FOSS projects often have
to deal with increased turnover, and occasion& tHctraining and coordination of

contributors and resources.

Users provide a major resource for Quality Assueaf@@A) in FOSS projects by
submitting bug reports and code fixes. This isla ppomoted by most FOSS projects,
which rely on users to help evolve the software andourage future participation in
the project. This practice is at the heart of lagarg what has become known as
Linus’ Law; “Given a large enough beta-tester anedeveloper base, almost every
problem will be characterized quickly and the fixllwe obvious to someone”

(Raymond, 2000). Consequently, FOSS projects amvyhaisers of open bug

reporting, which enables anyone from the commuboitsubmit bug reports.

While open bug reporting is beneficial, allowingets to participate in QA
potentially means faulty, incomplete or duplicatagbreports. The quality and
correctness of reports is a major issue when thiggss is opened to those with
minimal QA experience. While the quality and cotness of reports is based on the
experience of the users, and whatever scaffoldingraining the project makes
available, one expects duplicate bugs to be arastng problem as project size and
participation grows. While it is easy to spot doptes in a small bug database, this
gets harder as that database grows, meaning thatho rate of duplication and the
cost of detecting bugs increases. We expect thepgglation to affect the rate of
duplicate reports as well; if a project has a tediruser base, there should be fewer
duplicate reports. This idea was touched upon Hyacanti et al. (2010), where they
hypothesize that certain projects have fewer bpgrte because they have fewer end-

users.

FOSS communities do not always see duplicate hpgrteas a bad thing. Ko and
Chilana (2010) studied open bug reporting in thetext of Mozilla. While duplicates
were not the main focus of their paper, they fouhdt they were astonishingly
common, and in some cases developers find duplmegaeports helpful. Duplicates,
when identified, often provide additional infornati useful to narrowing down the
source of a bug (especially if reports are incoteplelhey also found that duplication
can be used to identify the most critical bugs. @ut00 duplicate reports, they found
that 82 of them were identified as such the day there reported, which means that
Mozilla has very effective strategies for identifgiand dealing with duplicate reports.
This may, in part, explain why duplicates were petceived as a major problem for

the project.

Similarly, Bettenburg et al. (2006) studied dupieceeports in the Eclipse project.
From a survey, they found that most developersdicconsider duplicate bug reports

to be a serious problem. They ran an experimeshtav how merging the duplicate

bug report with the “master” report improves thewacy of a machine learning
algorithm that triages bugs. They did not studytthree spent on duplicate detection,

but they did propose better search tools.

Mozilla and Eclipse are very atypical FOSS proje(@seen et al., 2009 and
Krishnamurthy, 2002). We therefore chose to lookat a more representative set of
projects dealt with duplicate reports, whether ¢heme considered helpful or
problematic, and what factors influence the impaad perception that duplicate bug

reports have on FOSS projects. To that end, oearek questions were as follows:

RQ1. How significant of a problem are duplicate bugamp for FOSS projects?
RQ2. How does project size and focus affect the nuralperimpact of duplicate

bugs?

While previous research has provided a solid Hasiaddressing problems of bug
management, most, if not all, focused on very [&@&S projects. Our contribution is
analyzing a larger, more varied dataset for bugnenm practices. As most FOSS
projects are small (Green et al., 2009 and Krishurtlng, 2002), with large projects
being extreme outliers, it is important to span $iee gamut — from small to large
projects. It is also important to examine techniead consumer-oriented projects, as
these groups likely approach bug reporting diffdyenOur study represents the
diverse nature of the FOSS community by examiniagrbjects that have from three
to thousands of contributors to determine how tleyal with bug triaging and

duplicate bug reports.

The rest of the paper is organized as follows: i8e@ describes related work in
FOSS project management, current research relatédgd triage and duplicate bug
reporting. Section 3 describes our methodologyjutting our project selection
process and classification methods. Section 4 thescthe results of our analysis of
bug repositories. Section 5 continues with a disiamsof our findings and possible
shortcomings, and Section 6 concludes the papédr mwiights into minimizing the

negative impacts of duplicate bugs.

2.3 Related Work

2.3.1 FOSSWorkflow and Project Management

FOSS projects are volunteer-driven where people foi address common
needs, for skill development, and to gain expegefitars et al., 2001 and Yunwen,
2008). Most communication and collaboration is darsing text-based channels,
including IRC, wikis, forums, mailing lists and bugpositories (Chung et al., 2010
and Green et al., 2009). People who join projeftendiurk” on mailing lists before
contributing code, learning the culture, convendioand how they can contribute
through observation and review of archived commativa (von Krogh et al., 2003).
Because of the volunteer nature of FOSS communttiese are few incentives for the
community to engage in mentorship and training efvecomers until they prove
themselves, as they may disappear from one dagetmext. This unstructured and

unsupervised joining process can be difficult teigate.

Roles in FOSS projects are defined by the interasts skills of the individual
contributor, the needs of the project, and the arhoficode a person contributes as
well as their level of participation in the commiynfJensen and Scacchi, 2007). One
of the main transition points from observer to deper is the submission of a patch.
Submitting a patch means interacting with develppga a mailing list or a bug
repository — oftentimes posting questions to maillists or forums (Ducheneaut,
2005). In most FOSS projects, the bulk of the caglecontributed by a small
percentage of the contributors (Ghosh et al., 20@Mockus et al., 2002).

2.3.2 Bug Triagingin FOSS

Bug triage is a commonly used term to refer topgieeess from when a bug is
reported to when it is resolved, and the stepsntéiananage that process. The main
steps in bug triaging include determining whethegorts are unique or duplicates,
determining the reproducibility of bugs, the prigrof bugs, deciding which developer

should be assigned to a bug, and determining whelieeissue has been resolved

10

before closing any tickets. Most FOSS projects oglybug tracking systems to track
bugs and to manage the efforts to address thesiéisted above.

Many FOSS projects engage in open bug reportingevaeyone is able to submit
a bug report regardless of experience or priorigpation. Project websites usually
provide guidelines to try and ensure bug reportstmegnimum requirements in terms
of information and completeness. Often these gundsl include instructions for
searching to see if the bug already exists in thigerepository. This is done to reduce
the number of duplicate bug reports. Despite tledfoets, there are documented issues

with duplicate reports and the quality of them.

Bettenburg et al. (2008) found a disconnect betwhennformation users provide
in bug reports and the information developers fousdful. They advocate tackling
poor quality bug reports through a scaffolding/noeinig process, in this case a plug-
in for Bugzilla named CUEZILLA, which provides fdeatck to the user as he/she
submits a bug report on how to provide more antebetformation about their issue.
Bettenburg et al. (2007) also proposed a versidleccguZilla that would provide
immediate feedback to the user about his/her bpgrtan the context of Eclipse
(Bettenburg et al., 2007).

Calvacanti et al. (2010) ran two statistical stadia eight projects to investigate
the duplicate bug reporting issue. The study coetbiprivate projects and FOSS
projects, which is interesting considering thastherojects would operate differently.
All FOSS projects in their study fell into the “mech” or “large” category, leaving
out smaller projects. They rated how various factdfected the number of duplicate

bug reports and concluded:

* The number of Lines Of Code (LOC) is a weak/ motdefactor
* The size of the repository does not seem to berfact

» The project life-time does not seem to be a factor

* The amount of staff seems to be a moderate factor

« The amount of submitters does not seem to be arfact

11

While they base “size” on Lines of Code and numiifebug reports, we instead
based size on the number of code contributorshEunrtore, they looked at profiles of
individual users to determine expertise level, @hie looked at the project focus in a

holistic manner.

Ko and Chilana (2010) focused on the Mozilla bygpsgtory, examining the value
of user-submitted bug reports. They also found ghality of bug reports lacking.
However, this was offset in the eyes of develog®rsthe fact that bug reporting
served as a path for users to become more engagedpossibly transition into
contributors. Anvik et al. studied duplicate bugsl &ug triaging in the Firefox and
Eclipse projects. They found that detecting dupdidaugs was an issue: “It's essential
that duplicates be marked without developers hatorigok at them, there are just so
many”. They concluded that there is a need forstdol help projects deal with

duplicates and bug triaging.

To address some of these problems, work has beenusing machine learning to
automate duplicate detection (Wang et al., 2008) antomatic bug assignment
(Anvik et al., 2005 and 2006). Jalbert and Weimesvjgled a classifier to detect
duplicate bug reports as they were being repodatbé¢rt and Weimer, 2008). While
automatic duplicate detection is a useful appro@achlealing with duplicate bugs,
Bettenburg et al. (2008) point out that detectisnnbt the last step in triaging
duplicates. When a duplicate bug is marked as thebug’s information is discarded.
A study was conducted using the Eclipse bug repgsihat showed how duplicate
bug reports included additional information usefultracking down the source of a
problem. Therefore, duplicates should not autoraliyicoe discarded, but rather new
information should be merged into other reportseylrhlso suggested improvements
to bug tracking systems, including but not limitedbetter search tools for users,
encouraging users to update existing bug repantsadowing users to renew old bug

reports. All of these suggestions might decreasdréguency of duplicates.

Another focus of study is bug triaging. Jeong €RaI09) created a visualization of

“bug tossing” that showed how bug ownership getssséd” from developer to

12

developer. The tool was created to shorten the tintekes for triagers to correctly
assign a bug to a developer. Weiss et al. (200d Pamjer (2007) studied how long it
takes to fix bugs, or how long a bug stays operyTbund that reducing the time it

takes to fix a bug also limits the window for dwglies, which increases productivity.
2.4 M ethodology

Our research goal was to build a deeper understgrafi duplicate bugs in FOSS
projects and the impact that these have on diftetgres of FOSS projects. More

specifically, we wanted to test the following thiegotheses:

H1. The more active the bug repository (the more mugsnitted per month), the
more duplicates we see.

H2. Consumer-oriented projects will see a larger nurobduplicates, as they have
more inexperienced contributors.

H3. The more bugs, the longer it takes people to fimal duplicate bugs (time

needed to mark a bug as duplicate).

The method for sampling projects, as outlined ie 8ection 1, was based on
project size (number of code contributors), foat@éumer vs. technical), and name
recognition. As an example, some projects havenaluser focus, as with Mozilla,
whereas other projects have a developer/adminhess, as with the Linux Kernel.
We grouped these projects into one of two categptieonsumer” or “technical”
based on a review of their community and websitee &Mose name recognition
because it can be seen as a metric for projectsateamature in their development,
and therefore have a good amount of informatiorthigir bug repositories. This

diversity of projects allows for some generalizépibf our results.

For our research we chose to focus on projectgubim Bugzilla system because
a) it is widely used by FOSS projects, b) bug infation is easily downloadable for
analysis, and c) it is the system that has been widgly studied in the past, which
provided us the opportunity to readily compare oesults to those of others.

However, as discussed later, this may have skewedse@ection of small projects

13

because they may not need something as compliestdgugzilla to manage their
project.
Table 1. Project Selection. Data from Ohloh (ohloh.net) Asig2010. Except Sudo,

Open Watcom, and Eclipse. LOC for Fedora is alticiow because Ohloh only
counts RPM Spec files and patches.

| Contributors| LOC | Focus
Small
Sudo 5 70,929| Technical
ClamAvV 10 818,077| Consumer
Open Watcom 30 2,443,522 Technical
Nouveau 70 87,144| Consumer
Medium
Apache httpd 102 686,316| Technical
Mandriva Linux 162 401,436| Consumer
Gce 429| 5,534,205 Technical
Fedora 677 66,963 Consumer
Large
Mozilla Core 1,010] 11,719,679 Consumer
Wine 1,181| 2,028,254 Consumer
Linux Kernel 2.6 6,758 8,935,959 Technical
Eclipse 1,334 12,484,977 Technical

Table 1 gives an overview of the projects selectiedir relative sizes, and their
focus. With some exceptions detailed below, LOC aathber of code contributors
(over the entire lifetime of the project) were gatd from Ohloh (www.ohloh.net).
For Sudo, we gathered the number of contributoosnfitheir webpage detailing
“authors” of the project. We used the information@pen Watcom’s webpage listing
“contributors”. Eclipse is a combination of manyadhprojects. Ohloh separates each
of these projects, so the number of contributortigicially low. Therefore, we used
the “total committers” column from the data tabtaufid on their website as the
number of contributors. Contributor data was gatieAugust 2010. Note that in
Table 1, we refer to contributor to mean code dbutor. This metric was only used
to classify the size of the project.

14

We chose thresholds for Small, Medium and Larggepts based primarily on the
number of code contributors. Small projects werendd as having less than 100 code
contributors. Medium projects have less than 1,6&fe contributors. Large projects

have over 1,000 code contributors.
24.1 Analyss

For our analysis, XML files containing bug desdops as well as HTML files
containing bug revision histories were examinedorimation from XML files was
extracted using a script provided by Ko and Chilg2G10). To examine HTML files,
we created perl scripts. To run statistical anayse these two datasets, we used R.
Most bug reports were publicly accessible. Some fepgrts could not be examined
because of insufficient permissions, internal dasaberrors in the repository, or
malformed content. Overall, these accounted fos l#®an 5% of bugs in the
repositories. We use the terms developer and mpiorthis paper. These differ from
the term code contributors. In this paper, deve®pave at least one bug assigned to
them in the repository, while reporters have onWerereported bugs. We used

ANOVA for all statistical inferences unless statgberwise.
2.5 Reaults

2.5.1 Descriptive Project Statistics

The first step was to collect basic statistics altbe size of the problem,
including the number of bugs reported per monté,nthmber of reporters, the number
of developers, the percentage of duplicates (ageddry developers), and how these

bugs are dealt with for each project (see Table 2).

Many projects invest time in screening reports keefthey are assigned to
developers. In part, what they screen for are daf@s, but also whether the bug is for
an older release of the software and to deterntireappropriate owner for the bug.

This process is more rigorous for some projects tthers.

Table 2.Descriptive Project Statistics. Weighted Averagégighted With Total Number Of Bugs) Reported Wigtd. Dev)
Where Appropriate. Averages For Project Groups (Grvedium Large) Given In Bold. Consumer OrientBdojects Are
Shaded.

B g °
n o 8 o) a 2 2
S n » £ B = S = | B E 2%
5 o o 5 5 3 S8 |ageg|£0 3o | e8>
2 g g 25 S6E | o€ S 3 ER®RT
= o = o = £ Q ° Swc |l ccwm T 2 =0 c
oS §o) S golie] o) o) 2B =25 | 253 2 == 5
T c 3 =3 ~3=3)) ag c Q. E2R o o5-
S O 5 5 - O — g £ go >0 > 5 %
(ON©) o o [alg m m > & > — [= <o e}
Small 28.75 9 369.75 0.02 10.86 96.67 560 46.93 125 190.99 133.07
] 0.00 65.58
Sudo 5 3 329 0.01 3.5p 13533 468 ($8) qoo ooor | 1%638| ooy
0.01 25.07
ClamAV 10 10 555 0.02 32.81 157.50| 6.22 (180) 4556 o1 58.74 o
025 35644
q
Open Watcom 39 14 33B 0.d6 8.47 s1p2 605 (f10) 638 0| 46988 i
8.30 67.45
Nouveau 70 4 257 0.02 11.90 12200 409 (20) 10| py| 10641 o
Medium 325 | 434.75 11,559 0.04 42751 169.29 14.15 19.02 166 | 32092 218.75
12.45 81.63 370
=
Apache HTTP 102 15 344 0.0Q4 51.85 352460 j'57) 51.93 Con | 4213t a0
— 13.29 0.05 102.88
Mandriva Linux 162 222 7,419 0.03 560.20| 24870 Cos 2483 oi0| 21748 jerae
] 13.74 125 10.29
q
Gee 429 304 12,26 0.0p 335.49 14200 oo 836 ooan| 24042\ (13110
1454 0.01 29057
Fedora 677 1,198 23,102 00s| 151275 159010| 0 161 oo | 3547| a0z
Large 2571 1,630 37,59 0.04 188943 140.25 19.57 2506 018 | 33255 518.98
) 24.70 0.16 629.25
Mozilla Core 1,010 3413| 110201f 003| 336115 16249 o 0H 3061 o he | 63832 grany
) 12,51 3.05 330.61
Wine 1,181 132 8,908 0.01 19534| 177.58 G 5250 ooeoy| 49768| (uss.on
Linux Kernel 2.6 6,758 664 7,48f 0.do 17643 2416%.51 (1,068) 0.93 0011 50749 107.58
: ’] ' : : S1 (L, : (0.02) : (198.14)
) 11.86 0.0 147.12
Eclipse 1,336 2,31(26,49 0.49 3,019.3 13455 37 one) 000 oo | 26487| a3

ST

16

In terms of our first hypothesis: “The more activ® bug repository, the more
duplicates we see.” This does not seem to be Meelium and large projects see a
statistically significant jump in duplicates comgdrto small projects (p=0.009,
F=10.37, df=1), but there was no statistically gigant difference between medium
and large projects (p=0.92, F=0.01, df=1). This nmragicate a threshold between
small and medium projects where reporters get dveiwed. The Linux Kernel
project, an exception to this rule shows us thégctiize management practices can

significantly lower the rate of duplicates.

Some results were surprising. The rate of repottedevelopers (people assigned
bugs) fell into a relatively narrow range. The sitéhe project did not seem to affect
this ratio (p=0.33, F=1.2485, df=2), nor did thensomer vs. technical focus of the

project.

One exception was the Linux Kernel project, whidiloivs very rigorous
procedures for bug reporting and has the lowesbrtepto developer ratio in our
study (10:1). Another exception was the Apachedhippoject, with a reporter to
developer ratio in excess of 232:1. One thing ttetame apparent when looking at
the data was that project culture and project mamagt practices had a strong effect
on how well projects deal with bugs and duplica@se therefore should be careful

when examining statistics and observe the commibatyre making assertions.

In terms of our second hypothesis: “Consumer-oe@rirojects will see a larger
number of duplicates, as they have more inexpeggraontributors.” Surprisingly,
was not supported in the statistical analysis. fHte of duplicate bug reports does not
appear to be statistically linked with the focuspobjects (consumer vs. technical)
(p=0.34, F=0.99, df=1). That is, projects with eganumber of non-technical users
are no more likely to be burdened with more dupddaugs than those with a large

number of technical users.

17

In terms of our third hypothesis: “The more bug® longer it takes people to find
the duplicate bugs (time needed to mark a bug pcdte).” It was supported. The
projects that had less than 10% duplicate repodsewhose that spent the least
amount time closing duplicates that had slipped ffesfirst screening, regardless of
how rigorous that screening had been. Screeningisncase means marking bugs as
duplicates before they were assigned.

Excluding small projects, where the assignment wfsbto developers can be
trivial due to the small number of developers, veendt see a big difference in the
time spent before assigning bugs to developersthedsuccess rate of screening
duplicates in projects of different sizes. The datinconclusive about a link between
screening success and review time (correlation: . 424¥, t=0.8322, df = 10,
coeff=0.2545). Screening time probably does nobact for the large variance in

time used by some projects (such as Apache httpagsigning and resolving bugs.

This is where practices surrounding bug reposisorier things like feature
requests can skew the data. Another issue to keapnd is that duplicate bugs may
have been handled differently by projects. As presiresearch has shown, duplicate
reports may provide helpful information (Bettenbetgl., 2008).

2.5.2 Bug Triaging Practices

We found differences in how projects manage aragj¢ribugs, as well as how
they use Bugzilla itself. For example, some prgdog feature requests together with
bug reports in Bugzilla. The process of triaginggbwaried across projects as well.
Furthermore, because Bugzilla is FOSS (and thexefastomizable), some projects
changed the “Status” and “Resolution” categoriebdtier fit their needs (see Table
3). The ability to customize is a core advantage-OISS, and allows projects to
support and define a custom processes. Howevemiration can make it difficult
for developers working across projects (a commoactpre) to adapt to the

idiosyncratic practices of a specific project.

18

Table 3.Bugzilla Status And Resolution States. SynonymaiaseS Were Collapsed
For The Purpose Of Analysis. Consumer Orientedeletdjitles Are Shaded.

Small Medium Large
3| |& 5| |2
S|o|< | o @
<>(= g2 = = | 8 R
«|gE|S[2|C |8 S|I=|lw|X|a
I E A E R EEEE
alololzl<|S|Islu|S|2|5|w
Status
Unconfirmed | X | X| X| X| X X| X X| X X
New X | X| X[X| X| X| X| X| X| X| X | X
Assignel XXX XXX XXX XX [X
Reopened X X[X X| X[X[X]| X| X[X[X | X
Resolved X[X X X| X| X[X X X| X | X
Verified X[X| X| X| X| X| X[X[X]| X| X | X
Closed X| X| X| X| X X X| X[X[X | X
Needinfo X X| X X| X X
Resolution
Fixed X X| X| X| X[X| X X| X X
Invalid X[X| X| X| X| X| X X| X| X | X
Wontfix XX X[X[X[X[X]| X]| X| X| X |X
Latel X[X| X X X X
Reminder X| X| X X
Duplicate X[X| X| X| X| X| X[X[X]| X| X | X
Worksforme | X| X| X| X| X| X| X| X| X| X| X | X
Moved X[X X X| X| X[X X X| X | X
Expirec X[X X[X
Notabug X X
Notourbug X X X X

Table 4 gives an overview of the dynamics of thasgects. As we can see, there
are deep differences in terms of the relativelgéanumber of reporters as seen in
Table 2, and that most reporting is done by a sgralip of people. The majority of
reporters post only one bug and a relatively smalnber of participants do the
majority of the work. This is consistent with wi@alvacanti et al. (2010) found. This

held true across projects of all sizes.

Table 4. Bug Triaging Practices. Breakdown Of Howny People Engage In Extended Bug Reporting, AsgigOf
Bugs To Developers, Reasigning Of Bugs To Develpand Who Marks Bugs As Resolved (*Used “Closed&t& For

Fedora). Consumer Oriented Projects Are Shaded.

Who Reported Bugs More . .
From Table 2 Than Once? Who Assigns Bugs? Who Reassigns Bugs? Who Marks Badresolved?*
How Many Bugs How Many Times Per How Many Times Per How Many Times Per
Reported? Person? Person? Person?
Project ac ! ? ?
Name " % =)
& S | 28
5 g |30 = - a > a 2 = 2
a 65 o < . o o g . @ o g . @ o g - @
g sz 8|8/ 8 S| 8 |8l 8 | S|8|8|8|c |8 8|3 °
3+ = = n E:S = = n E:S = = n E:3 = = 0
Small
Sudo 329 4.68 0.00 32[2 3.31 3.03 324(1 1.21 0.99 1 4 4.00 0.00 2| 194 194 272.94
ClamAV 555 6.22 45.5€ 120/3 485 6.78 3201 5.35 30.03 21 1| 4.62 6.38 6| 1.5/ 283.67 691.41
Open Watcom 338 6.05 46.36 102/3 5.13 8.21 82(1 3.01 6.24 11 2| 11.3 16.97 1| 781 781 0.00
Nouveau 257| 4.09 100 79(3 3.81 3.11 225[1 188 2.23 7 2| 2.29 2.14 20 1| 17.4§ 73.33
Medium
Apache httpd 3,447 12.44 51.93 688[2 272 217 56(1 143 0.93 35 1| 1.17 0.45 23 2| 212.91 1,008.9(¢
Mandriva 7,419 1329 24.83 3,2663 10.89 33.24 6,3431 8.79 58.07 988 2| 18.97 146.772 90 1| 588.69 5,546.1(¢
Gcc 12,267 13.74 89.39 3,5183 6.09 16.83 3,8151 6.65 72.38 195 2| 10.28§ 52.84 64 1| 495.41 3,914.8(¢
Fedora 23,104 14.54 1.61 10,6524 9.52 28.03 23,9791 7.70 39.80 3,948 2| 12.47 9154 760 1| 224.97 6,085
Large
Mozilla Core 110,20 24.7C 31.61 31,1173 6.05 16.11 59,55|1 6.94 68.71 6,83: 2| 34.3¢ 241.7] 1,53¢ 1| 337.2] 12980.¢
Wine 8,908 12.51 52,50 2,6453 5.11 9.62 597(1 2.84 8.28 115 1| 6.1 16.93 94 1| 212§ 2,028.7
Kernel 2.¢ 7,487 6.51 093 1,9602 411 6.47 77,4691 2.12 13.0§ 1,26(Q 1| 6.79 46.29 15 2| 339.27 1,304.9
Eclipse 26,495 11.86 0.00 12,1584 25.004 133.3 27,3711 11.24 87.28 5,704 2| 4931 350.09 430 1| 709.49 14,609.¢

6T

20

More surprising is that most projects allow rept® assign bugs to developers.
However, appearances are sometimes deceiving. blapgcts have dummy-accounts
for groups to hold bugs until someone has a chamoeview these and assign them to
the right person. As we see, the group of people massigns bugs is much smaller
than the group of reporters, though it is largantthe group of developers for most of
the projects. The cause for this is twofold: Codatgbutors are not all part of the
developer group (someone who has a bug assigndbetn) but can sometimes
reassign bugs to others. Furthermore, many profents non-development users help
triage bugs, such as the bug wrangler group in NMoaoth of these reasons help to

inflate the number of people who reassign bugs.

One of the interesting findings is how much praedtiffer on core leadership
practices such as who is authorized to mark bugdoasd. We see great variety from
large projects like the Linux Kernel project, whelg people close all bugs, to the
Mozilla project, where more than 1,500 people closgs. For Mozilla, this represents
almost half the developer population compared to @Ptthe Kernel developer

population performing this quality control.
2.6 Discussion

We gathered statistical data on bug reporting gadihg practices from a range of
FOSS projects. While not all of the statistics hbgen discussed in depth (we include
these for others seeking to explore these quejtiores have been able to show that

this is a complex space worthy of further study anprovement.

Turning to the research questions, we have founohgtevidence for RQ1;
duplicates are plentiful, though their impact, ergeived impact is not clear. For the
medium and large projects, save the Linux Kerried, duplicate rate was over 10%.
That constitutes a potential waste of effort, dothdevelopers and users. For Mozilla,
this constitutes over 494 reports per month thatesme has to write, and someone

else has to identify and discard as duplicates.

21

An example of the range of approaches for managerman be seen when
comparing Mozilla to the Linux Kernel, where thesfiseeks to widen participation,
but invests resources in managing the 25% duplicetes whereas the latter keeps
duplicates down through policy and training, in rmaler and more centralized

organization.

There are a number of reasons why duplicate repogtbad for both users and the
project community. Because duplicate reports gueoduct of a lack of knowledge of
the current state of the project, reporters arg aalding additional information by
accident. The lack of details on an individual begort, or the need to search through
and manually synthesize the information from migtipeports, may outweigh any
benefit from multiple reports, which is contrary wdhat Bettenburg et al. (2008)

propose.

One of the previous findings that inspired our gtuehs that duplicate reports
were not a serious concern for projects, speclfidar the Mozilla project. It is not
clear whether projects routinely reflect on dupksa their impact on current
operations and how to reduce them, or whether redubem is desirable. Our study
was quantitative so we cannot assess the true tngbabese duplicates on project

members.

Despite these issues, FOSS projects use open paging successfully to bring
in the user community and involving them in QA @dpr to developer ratios between
100:1 and 10:1). However, projects have a hard sogaining participation, as most
users contribute only one bug report. While someheke users may transition to
developers (which is not captured in our data)bekeve it to be highly unlikely that
such a transition would occur so rapidly.

The practice of open bug reporting carries a dasaddition to potential problems
associated with duplicate reports, screening armgtbaging is required on behalf of
projects to manage the large amount of reportss®éethat dealing with an avalanche

of untrained reporters may cause problems, esphed@a medium-sized projects.

22

These projects have the highest bug to develogimsrand virtually the same high

duplicate rates as large projects, without acaesiset resources larger projects have.

To answer RQ2, involving non-technical users ditlnesult in a larger number of
duplicate bug reports, which is somewhat contravywhat was discussed by
Cavalcanti et al., which determined that the experf participants of certain project
was a factor in duplicate bug reporting. This wasxpected, as the prevailing theory
was that duplication is in part due to poor pragiamongst end-users. As we did not
look at individual reporters, it is still possibleat technically skilled users routinely

write higher quality bug reports than end-users.

As we expected, the final stages of bug triagirg tgpically tightly controlled,;
closing bugs is handled by a small group of peaplmost projects. Because of the
high number of bug reports, it would be worthwhitestudy how to make the final

steps of the bug triaging process more manageable.

Finally, our study shows some of the dangers aasamtiwith exclusively studying
large projects like Mozilla and the Linux Kerneg there are dramatic differences in
terms of practices and resources. Looking at ti& wa gathered should convince the

reader that we must be very careful about genérglizom studies of large projects.
2.6.1 Threatsto Validity

While we analyzed a broad range of projects, ialgays difficult to make
generalizations about a diverse movement as FO®8e We believe that our sample
is good in that it includes projects of differeites, and that both consumer-oriented
and technical-oriented projects were representhdret were limitations to our
methodology and selection criteria.

For technical reasons we only sampled projectsubetl Bugzilla. We did this to
simplify and unify analysis, as we did not wanhtve to perform custom analysis for
a host of different types of repositories, and dei&h the incompatibilities that might

emerge. This decision however may bias some offindings, because many small

23

projects do not use a complicated tracking systech &s Bugzilla. This may mean

projects that we did study could be different frother, more common small projects.

Furthermore, we found that projects used Bugzitladifferent ways. Projects
triage bugs differently, and some allow featureuests and bug reports to be recorded
in the same Bugzilla instance. Our analysis ofviatlial bug reports may have been
affected by this; the average response time to magshave been confounded by the
inclusion of more long-term feature requests. Thisreoncern about the effect of
automated bug reporting on the bug reporting répgsi Conversations with Fedora
developers shed light on the issue, and showedAtiiaimated Bug Reporting Tools
(ABRT) do not artificially increase the number afipficate bug reports. However,
there has not been a discussion about the possibiliABRT possibly reducing the
number of duplicate bug reports, or of its possilerits in actively engaging end-
users. In future work, we plan to investigate thepact of ABRT on the bug

repository.

External to our analysis, the Bugzilla repositoneay not accurately reflect the
true state and workflow of projects. For exampfethe triager did not follow the
sequence of steps they claimed (i.e., not clainbngs until they are addressed), the
bug history may be inaccurate. Additionally, theme live, active projects, and
therefore the numbers presented in this papersepte snapshot in time. It is likely
that these numbers have already changed, andomilinue to change.

Finally, we chose to classify projects as smalldme or large based on the
number of code contributors. This is only one ofmgn@ossible ways of analyzing
projects, and though we believe this is a validssfecation given that we were
interested in examining how projects were able dpecwith the influx of new
contributors, others may be equally valid. Classgythese projects by the size of
their code-base for instance would have led tofferéint grouping of projects in our

sample.

24

2.7 Concluson and Future Work

Open bug reporting has a positive effect on pariton, engages users in QA, and
is fundamental to realizing Linus’ Law; “Given arde enough beta-tester and co-
developer base, almost every problem will be chareed quickly and the fix will be
obvious to someone” (Raymond, 2000). While opentepgrting does engage a large
group of users, most of their involvement is shajloneaning that most only report
one or a handful of bugs. While this is better tlmnhelp, the FOSS community

would be richer if it managed to keep reporteroined.

Another important result is that consumer-oriergegjects, which presumably
have a greater proportion of non-FOSS trained Bchrtical reporters, did not have a
significantly higher duplicate rate compared tdhtgcal projects. One would assume
projects with a technical focus (such as Apachelldvdvave more technical users
familiar with good bug reporting practices. Althdugnexpected, this shows that there
is room for additional scaffolding and support feporters of all types. While current
work on automatic duplicate detection and triagisgmportant, the Linux Kernel
project shows that through proper training and rganeent, the rate of duplication
can be controlled. Therefore, it may be worth itwes effort in more effective

training materials and interactive scaffolding.

Despite a surprisingly high duplicate rate for somedium and large-scale
projects, the communities seem able to deal wittsehwith relative efficiency,
screening a large number of these before assignrit@herefore remains to be seen

how much of a burden these duplicates really posleese communities.

In future work, we plan on interviewing and surveyi developers,
maintainers, as well as first time reporters to be&v we can help them avoid

duplicates where possible.

25

2.8 Acknowledgements

We thank all our participants and helpers at thgepts studied for their time in
helping us with data collection, parsing and intetation, especially John Poelstra
and Jiri Moskovcak from Fedora, and Andrew Ko fromiversity of Washington. We
also thank the HCI group at Oregon State Univeffsityhelp in drafting and revising
this paper.

2.9 References

Anvik, J. “Automating bug report assignment.” InoBr of the 28th Int. Conf. on
Software Engineering (Shanghai, China, May 20 -ZZ#)6). ICSE '06. ACM, New
York, NY.

Anvik, J., Hiew, L., and Murphy, G. C. “Coping witin open bug repository.” In
Proc. of the 2005 OOPSLA Workshop on Eclipse TetdgyExchange (San Diego,
California, October 16-17, 2005). ACM, NY NY, 35-39

Anvik, J., Hiew, L., and Murphy, G. C. “Who shoula this bug?” In Proc. of the
28th international Conference on Software Engimge(iShanghai, China, May 20 -
28, 2006). ICSE '06. ACM, New York, NY, 361-370.

Bettenburg, N., Just, S., Schréter, A., WeissPgemraj, R., and Zimmermann, T.
“What makes a good bug report?” In Proc. of theh8CM SIGSOFT Int. Symp. on
Foundations of Software Engineering (Atlanta, GAgovBmber 09 - 14, 2008).
SIGSOFT '08/FSE-16. ACM, New York, NY.

Bettenburg, N., Just, S., Schroter, A., Weil3, @Geniaj, R., and Zimmermann, T.
“Quality of bug reports in Eclipse.” In Proc of tf#07 OOPSLA Workshop on
Eclipse Technology Exchange (Montreal, Canada, Z1cR5, 2007). ACM, NY.

Bettenburg, N., Premraj, R., Zimmermann, T., Kim,"[Ruplicate bug reports
considered harmful ... really?" IEEE International nffwence on Software
Maintenance,. ICSM 2008, pp.337-345, Sept. 28-O2008.

Cavalcanti, Y.C., Anselmo, P.M.S.N., Almeida, ESunha, C.E.A, Lucredio, D.,
Meira, S.R.L . “One Step More to Understand thg Beport Duplication Problem.”
In Proceedings of the 2010 Brazilian Symposium offtvéare Engineering (SBES
'10). Washington, DC, USA.

Cavalcanti, Y.C., Almeida, E.S., Cunha, C.E.A, ladio, D., Meira, S.R.L "An
Initial Study on the Bug Report Duplication Problérhdth European Conference on
Software Maintenance and Reengineering, 15-18 RAHIO.

Chung, E., Jensen, C., Yatani, K., Kuechler, Vd &ruong, K. N.. “Drawing and
sketching in Open Source design”, in IEEE SymposmmVisual Languages and
Human-Centric Computing, 2010. VL/HCC 2010.

26

Ducheneaut, N. “Socialization in an Open Sourcdvat Community: A Socio-
Technical Analysis.” Computer Supported Coop. Wbtk 4 (Aug. 2005), 323-368.

Ghosh, R.A. and Prakash, V.V. “The Orbiten FreetWafe Survey.” First
Monday, 5(7), July 2000, http://www.firstmonday.bsgues/issue5_7/ghosh/

Green, C., Tollinger, I., Ratterman, C., Pyrzak, Eiser, A., Castro, L., and Vera,
A. “Leveraging open-source software in the desigd development process.” In
Proc. of the 27th Int. Conf. on Human Factors iimm@ating Systems (Boston, MA,
Apr. 04 - 09, 2009). CHI '09. ACM, New York, NY.

Hars, A., Ou, S.., "Working for free? Motivation§ garticipating in open source
projects,” System Sciences, 2001. Proceedings ef 3dth Annual Hawaii
International Conference on, vol., no., pp. 9 Bg5,Jan. 2001.

Jalbert, N.; Weimer, W. "Automated duplicate datecfor bug tracking systems,"
IEEE Int. Conf. on Dependable Sys. and NetworkshWAtCS and DCC, 24-27 June
2008

Jensen, C.; Scacchi, W. "Role Migration and Advamaat Processes in OSSD
Projects: A Comparative Case Study," Int Conf. aftvare Engineering, ICSE’07.
20-26 May 2007.

Jeong, G., Kim, S., and Zimmermann, T. “Improvinggliriage with bug tossing
graphs.” In Proc. of the the 7th Joint Meeting leé European Software Engineering
Conf. and the ACM SIGSOFT Symposium on the Fouodati of Software
Engineering (Amsterdam, The Netherlands, Aug. 228 2009). ESEC/FSE '09.
ACM, New York, NY, 111-120.

Ko, A. J. and Chilana, P. K. 2010. “How power useefp and hinder open bug
reporting.” In Proc. of the 28th Int. Conf on HumB&actors in Computing Systems
(Atlanta, GA, April 10 - 15, 2010). CHI '10. ACM,dWw York, NY.

Krishnamurthy, S. “Cave or Community?: An Empiridakamination of 100
Mature Open Source Projects.” First Monday, 2002. RLU
http://ssrn.com/abstract=667402

Mockus, A., Fielding, R. T., and Herbsleb, J. Dw@ case studies of open source
software development: Apache and Mozilla.” ACM Tsaations on Software
Engineering Methodology 11, 3 (Jul. 2002), 309-346.

Panjer, L. D. “Predicting Eclipse Bug Lifetimesri Proceedings of the 4th int.
Workshop on Mining Software Repositories. Int. Gaoehce on Software
Engineering. IEEE Computer Society, Washington, Day 20 - 26, 2007)

Park, Y. 2008. Supporting the Learning Process pérOSource Novices: An
Evaluation of Code and Project History Visualizatitools. Thesis.

Raymond, Eric S. "The Cathedral and the Bazaarrhiigers & Mathematics
with Applications 39.3-4 (2000).

27

von Krogh, G.,Spaeth, S., Lakhani, K. R. “Communigyning, and specialization
in open source software innovation: a case studesearch Policy, Volume 32, Issue
7, Open Source Software Development, July 2003,

Wang, X., Zhang, L., Xie, T., Anvik, J., and Sun,“An approach to detecting
duplicate bug reports using natural language amdwgion information.” In Proc. of
the 30th Int Conf on Software Engineering (LeipZBgrmany, May 10 - 18, 2008).
ICSE '08. ACM, New York, NY.

Weiss, C.; Premraj, R.; Zimmermann, T.; Zeller,iAoWw Long Will It Take to Fix
This Bug?," 4th Int. Workshop on Mining Software pRsitories, MSR '07, 20-26
May 2007

Yunwen, Y., Kishida, K. “Toward an understandingtb& motivation of open
source software developers.” In Proc. of the 2Bth Conf. on Software Engineering,
3-10 May 2003.

28

3 Second manuscript: The Impact of Automatic Crash Reportson
Bug Triaging and Development in Mozilla

Nitin M ohan, Carlos Jensen

School of EECS

Oregon State University

Corvallis, Oregon, 97331, USA

{mohanni, cjensen} @ eecs.oregonstate.edu

Proceedings of the 2012 IEEE Symposium on Visuaguages and Human-Centric
Computing (VL/HCC), Innsbruck, Austria.
(Submission in Process)

29

3.1 Abstract

Free/Open Source Software projects often rely arsusubmitting bug reports.
However, reports submitted by novice users may ladlrmation critical to
developers, and the process may be intimidating diffidult. To gather more and
better data, projects can deploy automatic cragbrti@g tools, which generate stack
traces and memory dumps when a process crashese $y&ems potentially generate
large volumes of data, which may overwhelm devealo@ad discourage users from
submitting traditional bug reports. In this papea® examine Mozilla’s automatic
crash reporting system and how it affects their tiiaging process. We find that of
all crash reports, less than 0.00009% end up ingaréport, but as many as 2.33% of
bug reports have data from crash reports addedlbgek from developers shows that
despite some problems, these systems are vall&kleonclude with a discussion of

the pros and cons of automatic crash reportingesyst
3.2 Introduction

Free/Open Source Software (FOSS) projects ofteptadifferent development
practices to traditional closed source projectsoAgthe reasons for these differences
is that FOSS contributors are often volunteers workogether across the world. The
lack of physical colocation, resources, and oftdrhac project planning, calls for
different development and project management mestiincluding bug triaging.
Effective bug reporting and triaging is vital toyasoftware project. The idea that
enough eyes make all bugs shallow (Raymond, 20083<IFOSS projects to involve

everyone in bug triaging.

While there are advantages to involving users ig kiaging there are also
possible downsides. Reports submitted by less exped users can be incomplete or
inaccurate (Bettenburg et al., 2008). Users mayusetthe right keywords to describe
a bug, which can make it harder for developersno the bug. A study by Davidson
et al. (2011) also found that as the size of tippmeng community grows, so does the

ratio of duplicate bugs. Though duplicate bug repare not always problematic

30

(Bettenburg et al., 2008 and Ko et al., 2010) aadéis potentially represent a waste of
time and effort. Though projects publish guidelinies submitting bug reports,

training and coordinating contributors is oftencuerwhelming task.

There have been a number of studies examining tigettiaging processes of
FOSS projects. Bettenburg et al. (2008) surveyesl dévelopers and users of the
Apache, Mozilla and Eclipse projects and found amatch between what users
reported and what developers found useful in bpgne. Breu et al. (2010) analyzed
questions posed in 600 bug reports in the Mozitid Bclipse projects to understand
how developers and reporters collaborate. Bothesudund a need for better ways to

handle bugs and enhancing the quality of bug report

To gather more data, some projects have turnedutometic crash reporting
systems. These systems are invoked when a proasges. They gather stack traces,
memory dumps, identifying the thread that causedcthsh, product information, etc.,
and prompt users to submit these. Automatic crapbrting tools often ask users to
add more descriptive information about the crasbraer to assist developers in the
triaging process, but there is no data on how mesgys provide such details, or how

useful these are to the bug triaging process.

The terms “crash report” and “bug report” have idedtand different meanings.
“Crash reports” refer to automatic error informatigathered when a process crashes
or quits unexpectedly. A “bug report” refers toeport filed manually by a user or

developer about a fault or flaw of any type experexl with the software.

We are interested in understanding how automategdréporting fits into current
bug reporting and triaging practices, and if and ltleey add value to developers. To
the best of our knowledge, no such study has bemre.dThese are important
questions, as deploying a crash reporting systenotisvithout risks or costs. While
these systems increase the volume of raw dataaseaito developers, they might not
necessarily make more information available to tgeys. The majority of crash
reports refer to a small number of common probleRwsthermore, such a system

could lead users to stop submitting traditional aports, feeling that they have

31

already contributed, thus leading to a net losgfafrmation for developers. This is
especially true, as the issues covered by crasirteedo not fully overlap with those
in bug reports, including usability issues and migdeatures. To this end our research

guestions were:

RQ1. What impact do automatic crash reporting systeave on FOSS projects?

RQ2. What overhead do automatic crash reporting tadid to the bug triaging
process?

RQ3. Do crash reporting systems discourage particpatn the bug reporting
process?

Given that there is a lot of diversity within th©&S community, and there is no
such thing as a “typical” FOSS project, this papentended to be a first investigation

into these questions within the context of onehefleading FOSS projects, Mozilla.

The rest of the paper is organized as follows: V&g svith a review of research on
bug triaging. Next we describe our methodology, tredMozilla systems we studied.
Section IV describes the results of our study,udirlg excerpts from interviews with
developers and users of these systems. Sectioscvssies our findings and the pros
and cons of using these systems, as well as lessarshancing these tools. Section

VI concludes with a summary of the key findings &mdire work.
3.3 Related Work

Automatic crash reporting systems have been usethimy closed source systems
(Apple (Apple, 2010), Windows (Kinshumann et aD12)). The most famous is the
Windows Error Reporting (WER) system by Microsafgscribed by Kinshumann et
al. in [21]. The author mentions that “a bug repdrby WER is about 5 times more
likely to be fixed than a bug reported directly @yruman”. Kim et al. (2011) studied
the WER system and provided “Crash Graphs” whigs@nt a high-level aggregated

view of multiple crashes belonging in the same letick

There have been a few recent studies on Mozilla®raatic crash reporting

system. Kim et al (2011) focused on prioritizingodgging efforts by predicting top

32

crashes. Dhaliwal et al. (2011) proposed a groupiogroach to group crash report
triaging. They show that effective grouping of ¢ragports can reduce bug fixing
time by 5%. Khomh et al. (2011) proposed the usgrash entropy values to prioritize

crash types during triaging. These studies focua small subset of crash reports.

There has been quite a lot of work on automatirdyiemproving the bug triaging
process. Bug triaging refers to the steps takenanage a bug from the time the bug
is reported to the time the bug is resolved. Ar(@B06) discussed a semi-automated
approach to assigning bugs to developers througlb@nmender system. Anvik et al.
(2006) proposed another text-based categorizatiah dchieved between 57% and
64% accuracy for assignment of bug reports in tokpge and Firefox projects.
Matter et al. (2009) proposed a vocabulary-basedoagh where developer expertise
and bug vocabularies were matched. Tamrawi et28l11) designed a tool called
“Bugzie” which offered a fuzzy set-based approachutomated bug assignment, and
achieved 68% accuracy in predicting the 5 moseduievelopers. Jeong et al. (2009)
created a tool that visualized “bug tossing,” shmyvhow bug ownership got passed
from developer to developer within a project in erdo identify ‘tricky’ bugs and

effective contributors.

Another topic examined by researchers has beencdtplbug reports. Ko and
Chilana (2010) studied bug reports in the Mozillajgct and found that though there
was a large number of duplicate reports, these vadten seen as helpful by
developers. Duplicates could reflect the sevenitgt priority of a bug. Bettenburg et
al. (2008) studied the Eclipse project and fourat thost developers did not consider

duplicate bug reports to be a serious problem.

Other studies have found problems with duplicap®res. Cavalcanti et al. (2010)
studied 8 FOSS projects and found that duplicap®rte negatively impacted the
overall development process. They also identifectdrs that affect the frequency of
bug duplication. Davidson et al. (2011) studied ghioblem in 12 FOSS projects of
different size and focus. They found that mediurediprojects are most affected —

they have to deal with the same number of duplscatethe large projects, but without

33

their resources. However, they did not find a retethip between duplicates and
whether the user base was more or less technicalikAet al. (2005) studied
duplicates in Firefox and Eclipse and found thasthwere common and that there is a
need for tools to detect these. Jalbert and We{2%)8) presented a machine learning

tool that identified duplicate bugs.

The quality of bug reports in FOSS projects is haptmportant topic. Bettenburg
et al. (2008) surveyed developers and users ofAgheche, Mozilla and Eclipse
projects and compiled a list of information thawelepers look for in a bug report.
Based on this inventory, they developed a bug temgpsystem called CUEZILLA.
This system provides a quality metric for bug rép@nd points to information that
would enhance the quality of the report. Breu ei(2010) analyzed 600 bug reports
from the Mozilla and Eclipse projects and the infation requests developers made
of reporters, and found that there was a needdolstto structure and guide the
reporting and information exchange process. Kd.&f2806) examined the language
of nearly 200,000 bug report titles to understaod people describe bugs. They also
identified a need for tools that help reportersnstibnore structured reports, which

could be automatically parsed.
3.4 M ethodology

Our goal was to analyze the impact of crash repgrtools on bug triaging in
FOSS projects. More specifically, we wanted to deitee whether such systems lead
to a net gain or loss in information, as they codistourage users from submitting

more meaningful bug reports.

For our research, we examined Mozilla’'s crash rmapgrsystem because a)
Mozilla products have a large user base and aneadiéveloper community, b) the
data needed for this study is publicly availablg,tids is an extensively studied
project, which allowed us to set our findings imtext, and d) they have used a crash
reporting system for an extended period of timewahg procedures to develop and

be adopted within the project.

34

3.4.1 The Breakpad/Socorro Crash Reporting System

Mozilla started using their current custom crasporéng system in 2008,
coinciding with the release of Firefox 3. Currentiply their Firefox, SeaMonkey and
Thunderbird projects use this system. It has twomgmnents — Breakpad and Socorro.
Breakpad is an open source project started by @odigkuns as a thread in every
instance of the Mozilla process. It is invoked wleenrash occurs in any Mozillla’s
processes, collects the call stack and memory ddmpsthe process, finds the thread
that crashed and sends the information to Socdite.system prompts the users for
additional information, which they can providehgy wish. Socorro is a python-based
server system that aggregates and performs gtatisthalysis on the crash reports
submitted to Mozilla. The Mozilla QA team procestesse and either adds new bugs

or amends existing ones.
3.4.2 Analysis

We collected daily crash report logs from March @@d October 2011. Due to
the volume of data the system generates, older dog:ot kept. We gathered bug
information and bug revision histories from thertstd the Mozilla project to October
2011 from their bug tracking system. Some of thports were unavailable for
analysis due to permission issues, internal dagalessors or malformed content.
However, these only accounted for 5% of all bughéedatabase.

To further evaluate the usefulness of Mozilla’s sbrareporting system we
supplement the quantitative data with interviewsle¥elopers who worked directly
with the system. A total of 5 developers partiogohin our study - 2 Socorro/Breakpad
developers and 3 members of the Mozilla’'s QA teasponsible for processing the
reports. By examining perspectives of developeis @sers we can better judge the
impact of this system and identify design chanfaswould improve such systems.

35

3.5 Reaults

A previous study of 12 FOSS projects (Davidsonlet2811) found that Mozilla
had a very active bug repository (around 3,361 rmwgs reported per month)
compared to other projects. They also found thatntore active the bug repository,
the more duplicates there were. They found thatiMowas especially affected, with
24.7% of bugs submitted being marked as duplicaiggificantly more than other
projects studied. We were interested in findingrigeson for this high duplicate rate,

and whether the automatic crash reporting systeseteed or amplified the problem.
3.5.1 Quantitative Results

First, we quantitatively analyzed the crash repogs from March 2010 to
October 2011. We aggregated basic statisticsdlisteTable 5, and compared to the

activity in the bug reporting system over the sgraeod.

Table 5. Mozilla Crash Reports (March 2010 - Octd@11) And Bug Reports (July
1998 - October 2011) * Crash signatures addethtabase June 9, 2011

Breakpad/ Bug
Socorro Reports

96,131,054.5 4,048.4

Avg. # of reports per

month

% Duplicate 88.19% 22.68%
Avg. # of crash reports

turned to bug reports per 89.2*

month

Avg. # of bug reports

associated with crash 94.5

report data per month
Days for crash reports to
be associated with bug 230.87*
report (Avg)

Mozilla on average receives 96 million crash repger month, they outnumber
bug reports by more than 20,000:1. While thesevarg large numbers, one should
keep in mind that there were an estimated 350anilkirefox users by early 2010, and

36

between 15 and 20 million Thunderbird users. Ofs¢h®6 million crash reports
Mozilla only processes a sample of 10%, biased itdsveeports with user-provided
details. 88.19% of this sample is trivially clag=if as duplicates. This still leaves
1,135,308 reports to process per month. Whileighes dramatic reduction, it is still a

huge set to work through.

Remaining reports are manually classified as eittuglicates, not critical, or not
actionable. Of the remaining reports, 89.2 per mmamwtl be turned into one or more
bug reports (data is limited to the period aftene]®, 2011 when the project started
tracking crash signatures in bug reports). As waamx below, that monthly average
is heavily skewed. Of all crash reports, this aateuor only 0.00009% that are
finally associated with a bug report, or 0.008%unique crash reports sampled.
However, if we turn this around, 2.334% of bug mpoare either created or
augmented with crash report data. Therefore, thabghe is a lot of waste, crash

reports add significant value to Mozilla’s QA.

The introduction of a crash reporting system, dre volumes of data these can
generate do come at a price. Developing effectrnagegjies and tools to triage the data

are essential to leverage these systems.

Figure 2 shows a plot of the report date of a ceainst the date when these were
associated with a bug (a new bug was created, axating bug was amended).
Again, the data is limited to the period after J@n2011, when the project started
tracking these associations. In the 4.5 monthsvtich we have data, the QA team
matched 402 crash reports, or 89.2 per month. Mopertantly, though the majority
of matched reports are recent (median 197.5 dayess)ee that a significant number
have been in the queue for close to two years. rGikkat Mozilla has had six major
releases in that time-frame, it shows that cragtorte can help identify deep and
fundamental bugs that can haunt software projecydars. There is therefore a strong
need to develop tools to not just help view repartse easily, but also help the QA

team analyze the data more easily.

37

800

700

600

500

400

300

200

100

of days taken to associate crash reports with bug reports

0}/
%

6;/
%

6;/
[

Day when crash report was mapped to bug reports

Figure 2, Time taken to associate crash reports by reports

Bugs and crashes are of course cyclical and affdzyethe development activity
taking place at the time. When new versions ofstbféwvare are released, we expect to
see spikes (see Figure 3) (Kim et al., 2011). Trecmis not perfect however;
adoption is not immediate, and there may be diffees in quality control between
releases. Also, because Mozilla’s products ardqutas for other software (plugins
and extensions), problems can spike as those &ieshlied. From our conversations

with developers, such spikes are not uncommon.

38

mm # of Major Releases m # of Releases ~ —@=—# of Crash Signatures
14 25
.- A
5 \ - 20
T 10
£ »
~ L [
§ 8 - 15 §
& 67 -~ 10 %
(2] #*
<
KR
..‘c:: -5
2 .
® m
0 - -0
T I R O O
S T

Figure 3, Crash signatures vs. software releask®milla

In Figure 4 we can see long-term trends for bugnapy and duplication rates.
The automatic crash reporting system was introducelline 2008 (first red vertical
line), and they switched to a rapid release cyoldpril 2011 (2nd red line). It is
important to note that though there is a strongrdeard trend in duplicate rates, this
may be artificially inflated because identifyingns® duplicates can take a long time.

The duplicate numbers should therefore be intezdrefith caution.

39

9500

25%

8500 1\
\A\ - 20%
7]
2
7 - 15% @©
% 6500 — S
@ =
q >
5 | N a
o+ 4 ML \ I I Y=
] °
5500 >
- 10% X
/ -’ \
4500 ¥
///
/’/ - 5%
3500
2500 |I| || | AL AL : ALLAL 0%
o ~ ~ ~ ~ o] o] e} e} [e2) [e)} D D o o o o — — — —
2 % 9 9 &% 9 © 9 © 9 9 Q o o o < o o o o
§ 822858532855 2858%32§88§82%233§
mm # of Bugs =====% of Duplicates —— Poly. (# of Bugs) —— Poly. (% of Duplicates)

Figure 4, Temporal of view of bug activity in Mdail First red vertical bar

indicates the introduction of the crash reportiggtem, and the second the transition
to rapid release cycles

That said; we see a strong positive developmetérims of reducing the number
of duplicate bug reports within the project. As wan see from Table 6, this
development has been statistically significant serthe three project “periods”. In
terms of data quality, we can therefore say thdobés not appear that the introduction
of the crash reporting system has interrupted d@ipedrend that was already in effect,
the reduction of duplicate bug reports in MoziNghile this is perhaps not surprising

given the small number of crash reports that ameetiinto bug reports, it is a positive
nonetheless.

40

Table 6. ANOVA Results. The Mozilla Project (Octol2906 To October 2011 And
Introduction Of Key Changes (Crash Reporting Sysfeme 2008 & Rapid Release

Cycle April 2011)

Pre vs Post- |Pre-Crash vs |Post-Crash vs
Crash System |Rapid Release Rapid Release
ANOVA(df=1, |[ANOVA(df=1, |ANOVA(df=1,
F=33.199, F=47.965, F=1.4081,

of Bugs p<0.00001) p<0.00001) p=0.2427)
Tukey(p<0.000 | Tukey(p=0.00 |Tukey(p=0.408)
1) 01)
ANOVA(df=1, |[ANOVA(df=1, |ANOVA(df=1,
F=96.333, F=126.89, F=15.187,

% Duplicates |p<0.00001) p<0.00001) p=0.00038)
Tukey(p<0.000 | Tukey(p<0.00 | Tukey(p=0.000
1) 01) 8)

Another positive development is that though thees & slight dip in the number

of bug reports immediately after the introductioh tbe crash reporting system,

activity has since picked back up. We see an isangatrend in the number of bugs

reported per month after the introduction of theomatic reporting system (ANOVA:
df=1, F=33.199, p<0.0001). We can therefore coreltitht though introducing the

crash reporting system may have been disruptiesgetissues were worked out.

As we see in Figure 5, the community of bug repertegas been continuously

growing, and the community renews itself with neembers, though the renewal rate
seems to be in decline (ANOVA: df=1, F=41.01, p€0.D). It is also worth nothing
from this chart that though the rate of new repsrts relatively high, the growth of

the regular commenter community is relatively sldMost new contributors leave

after posting a single bug report, as others hage/s (Davidson et al., 2011).

41

3500 70%

3000 A A

60%

2500

o - 50% o
2 2000 / A f - 40% &
o A J FAY V &J
[-'4
g AA / N :
g 1500 /77 30%=2
5 s
k-3
S 1000 20%
E-
500 10%

0%

T T T T T T T T T T T T T T T T T
N N N 0 0 00 0 O O O @ O O O O «H o« o
2 9 2 9 Q9 @ 8 8 @ @ o o o o o oo
> W > 9o > w > o > w > 9 > 6w > o > w
© =}] (] © 3 [e] (0] ©] [] (] © 3 [e] (0] © =}
S < Z2 B S Z2 LS Q2 B SsS JQ z2 w3 I

e # of Unique Reporters s % of New Reporters

Linear (# of Unique Reporters)

Linear (% of New Reporters)

Figure 5, Number of unique bug reporters and neviritutors.

Though there is a declining trend in terms of finste bug submitters, it is not
unexpected. As the community grows it approachsataration point in terms of the
number of people with both the ability and inteli@stontributing. As the community
grows, communication and coordination problems gesavell, discouraging further
growth.

The data therefore seems to show no long-term wegeffects of the introduction

of the crash reporting system in terms of partibgpaor data quality (here measured
as duplicate reporting rates).

3.5.2 Qualitative Results

To supplement our statistical findings, we intewael five developers working
for Mozilla. Two participants were involved in déeping the Breakpad and Socorro
systems, and the other three worked for the QA t#mnprocesses the crash reports

42

submittedto Socorro. All our participants were employed -time at Mozilla and

three had some formal background in computer sei

Participants were asked to give their opinions stmalre their experiences with 1
current system and with working with crareports to debug Mozilla projects. Ti
included but was not limited to what challengesytfece in using or developing tl
crash reporting systems, pros and cons of usirghaeports to drive debugging, a
features that they would like to see in tlystem in the future. Some questions w
posed as opeended questions, and others as I-scale alternatives. The results

these are presented in ure 6.

Breakpad/Socorro always provides relevant information
to the developers

I 3.65 (0.42)
T

1 1
Strongly Disagree Neutral Strongly Agree

Breakpad/Socorro always assists developers in fixing bugs

R 4.80 (0.45)

1 | 1
Strongly Disagree Neutral Strongly Agree

How long does it take to associate a crash report in
Socorro system with bug report in Bugzilla?

I 1.60 (0.894)
1

1 1
Very Fast Neutral Very Long

How easy is it to identify duplicate crash reports in the
Socorro system?

I 1.90 (0.742)
1

1 1
Very Easy Neutral Very Difficult

How helpful is the user interface in Socorro system to go
through the crash reports?
N 3,10 (0.548)

|

1 1
Not Helpful at all Neutral Very Helpful

Figure 6 Interview Results. Values in “red” are the meand values in “blue” ar

the standrd deviations for each respo

There was strong agreement that the sy« in its current incarnation and bas
on subjective experien— helps developers fix bugs, and helps them associath

reports to bugs quickly and easily. Participantgewmcae ambivalent about tt

43

usefulness of the user interface, and the relevaicthe information shown to
developers. This leads us to conclude that thobglsystem is useful, there are still

significant improvements to be made.

These positive reviews did not mean that partidipavere blind to the costs and
risks of this system. When asked about the chadieng deploying and using the crash

reporting system, a participant replied:

“It has a cost obviously. It's a lot of data to tmdt and report on. That can be a
challenge to manage all that. We only report ontatistically valid subset of
crashes. We only report on 10%. We collect 100%leza so that's a lot of data
coming in and it's really expensive and it's a daabe to make sure that the
system is up and running.”

“I think it's pretty decent system overall. | wighwere easier to install and better
and up-to-date documentation and installation ti to help people. If the user
has a new program and if they wish to support aat@mncrash reporting they

have to dig deep into different websites and gough a lot of documentation to
get it up and running.”

Our participants did find the crash reporting syste be very helpful, as they feel
it is effective at helping developers find bugs érdhem:

‘I would say it's doing the job it is intended tcs dar as | can tell from a
developer’s perspective.”

More importantly, participants felt that the systeadded unique capabilities
without which certain types of bugs would have bediicult to detect:

“I always have a hard time as a QA person to stigragree with a statement as

my job is to find exceptions. If it wasn't for Bkpad, we would not be aware of

some of the crashes that end up happening in thduat. It would be definitely
harder.”

Participants felt that Breakpad could do a bettérgollecting useful information
in some situations, especially for newer platfotikes Android devices.
“For android devices, it might not necessarily gitree relevant information. [...]

It is getting better for Android. Some of the ottiengs are minor tweaks on the
reporting end to make the information a bit morefut”

44

3.6 Discussion
We started this research with three research qunssti

RQ1. What impact do automatic crash reporting systeave on FOSS projects?

RQ2. What overhead do automatic crash reportints tadd to the bug triaging
process?

RQ3. Do crash reporting systems discourage paatiop in the bug reporting
process?

While we can’'t say anything about FOSS projectgeneral, we did get some
compelling data for the Mozilla project, often held as an exemplar in the FOSS
community, and certainly one of the largest andtnmdkiential FOSS projects.

Starting from the bottom up (RQ3), we found no ewick that crash reporting
systems discouraged participation in bug reportatdeast in the long term. Looking
at Figure 5 we see that though new reporters astep of all bug reporters has been
declining, this trend started before the introduetof the crash reporting system, and
does not seem to have picked up speed since. Fudhe the total number of bug
reporters has continued to increase over time.r€igushows that there was a slight
decrease in the total number of bug reports shaftér the introduction of the system,
but over the long term this number has also ine@as herefore we find no
compelling evidence for crash reporting system&alisaging participation in bug
reporting.

We did find a lot of evidence of the costs assedaivith adopting a crash
reporting system (RQ2). The huge volume of datéectdd, and the relatively low
number of bugs identified from the data is astongdirhe costs, both monetary, as
well as in time and effort needed to collect and 8oough such vast amounts of data
are significant, and thus adopting a crash repgpdiystem is something that requires a
significant commitment.

In all likelihood, for a moderate-sized FOSS prgj@mplementing such a system
will require a dedicated servers to receive repdramdwidth charges, and because of

the specialized skills required and the less appgalature of the sleuthing work

45

required, paid staff to try and process the dataived. Our participants indicate that
there is also a cost to incorporating these systiatostheir products due to either

lacking documentation or tradeoffs in terms of iempéntation.

Much more work needs to be done to streamline rilaging and processing of
data, or of extracting value from the data thas¢hgystems generate. The application
of machine learning techniques to better matchidaigs, better sampling techniques
to ensure data is gathered about the most integéstlevant crashes, and better
diagnosis tools to help root out the underlyingsesufor crashes and turning these

into bug reports.

Finally, turning to RQ1, all the developers we &lko unanimously think that the
system provides real and significant value to ti#e & Mozilla. Though only a tiny
fraction of crash reports are actually used bytéaen, one of every 40 bug reports use
data from the crash reports. These are bugs thatvio all likelihood have been very
difficult to track down without the information ithe crash reports. In this sense, we

can see that this system has a real and meaningjatt.

Because the implementation of these systems prdsatht opportunities and
challenges, it is important to identify best prees and optimize these systems. FOSS
projects like the Kernel, Red Hat/Fedora, Ubunta, leave deployed similar systems,

and our next step will be to do an inventory ofstne

That said, it is important to realize that deplayancrash reporting system is likely
not an option for everyone. Many FOSS projectsnatelarge enough to need such a
complex system, or would be overwhelmed by thedlobdata. In such cases these

systems will likely prove counterproductive.

Threats to Validity
The data we gathered is just a snapshot in time feingle project. Considering
the activity level and dynamism of the Mozilla o, a lot of things may have

changed from the time we gathered our data andirtie this paper goes to print.

46

Small improvements in the triaging process, or looash reports are filtered can also

have a big impact here, given the low “exploitatiate” of crash reports.

Given that we've only examined one project andghecedures they follow, we
don’t know whether these will generalize to oth@3S projects. Mozilla is an outlier
in the FOSS community, both because of its size@edkas its top-down structure and
reliance on professional employees. That said, Moz often used as an exemplar, or
a role model for other FOSS projects, and this kadge will fit into the greater body
of knowledge of how FOSS projects can and shoulshéeaged.

Without wanting to second-guess our participantsp \after all have extensive
experience using this system, it is possible thatratings and stated opinions of our
participants were biased by one of two factordia)ing a stake in the system (being
paid to develop or use the system), and b) lackxmpsure to other systems of this

type. As one participant put it:

“I am not sure what alternatives we have. | thihk advantages of having a crash
reporting system at all is really great.”

As we look for feedback and ideas for how to imgrahese systems, it is
important to be aware of these limitations; ouninfants and users often compare

these systems to no system, and thus excuse aeighortcomings.
3.7 Conclusion

We found that the Mozilla crash reporting system lhad significant impact on the
QA of their products, with 1 in 40 bug reports nbeing tied to or derived from crash
reports. These systems come at a steep price hgvesveast amounts of data tend to
be generated, which is difficult to handle. Theureton investment for these systems
therefore has to be carefully considered for eadjept. We found no evidence to
support the claim that these systems discouradeipation, at least in the long term,

and there is ample need for and opportunity forrowpment of these systems.

47

3.8 Acknowledgements

We thank all the participants involved in our study their valuable inputs and
feedback. We really appreciate the efforts and help received from the
Breakpad/Socorro team at Mozilla for helping ushwdtita collection. We especially
thank Lars Lohn from Mozilla for all his help in kiag this study possible. We also
thank the HCI research group at Oregon State Usityefor helping in revising the

paper.
3.9 References

Ahsan, S.N., Ferzund, J. and Wotawa, F. “Autom@aftiware Bug Triage System
(BTS) Based on Latent Semantic Indexing and Supgedtor Machine.” In Fourth
International Conference on Software Engineeringaktes, 2009. ICSEA '09, pp.
216-221.

Anvik, J. “Automating bug report assignment.” InoPeedings of the 28th
international conference on Software engineerirtggn8hai, China, 2006, pp. 937—-
940.

Anvik, J., Hiew, L. and Murphy, G.C. “Coping witmapen bug repository” In
Proceedings of the 2005 OOPSLA workshop on Eclipsénology eXchange, San
Diego, California, 2005, pp. 35-39.

Anvik, J., Hiew, L. and Murphy, G.C. “Who shouldc fihis bug?” In Proceedings
of the 28th international conference on Softwargireering, Shanghai, China, 20086,
pp. 361-370.

Apple, “Technical Note TN2123: CrashReporter,” 2010

Bettenburg, N., Premraj, R., Zimmermann, T. and K8n“Duplicate bug reports
considered harmful ... really?” In IEEE Internation@onference on Software
Maintenance, 2008. ICSM 2008, pp. 337-345.

Bettenburg, N., Just, S., Schréter, A., Weiss Rtemraj, R. and Zimmermann, T.
“What makes a good bug report?” In Proceedings hef 16th ACM SIGSOFT
International Symposium on Foundations of softwamgineering, Atlanta, Georgia,
2008, pp. 308-318.

Breu, S., Premraj, R., Sillito, J. and Zimmermann,'Information needs in bug
reports: improving cooperation between developads @sers.” In Proceedings of the
2010 ACM conference on Computer supported cooperatdrk, Savannah, Georgia,
USA, 2010, pp. 301-310.

Cavalcanti, Y.C., Anselmo, P.M.S.N., Almeida, ESunha, C.E.A., Lucrédio, D.
and Meira, S. R.L. “One Step More to Understand Bwg Report Duplication

48

Problem.” In Proceedings of the 2010 Brazilian Sgsipm on Software Engineering
(SBES '10), pp. 148-157.

Cavalcanti, Y.C., Almeida, E.S., Cunha, C.E.A., tadio, D., and Meira, S.R.L.
“An Initial Study on the Bug Report Duplication Ptem,” in 2010 14th European
Conference on Software Maintenance and Reengirge€¢@SMR), 2010, pp. 264—
267.

D’Ambros, M., Lanza, M. and Pinzger, M. “A Bug’s fei Visualizing a Bug
Database.” In 4th IEEE International Workshop onsudlizing Software for
Understanding and Analysis, 2007. VISSOFT 2007729f. 113-120.

Davidson, J.L., Mohan, N. and Jensen, C. “Copinth wiuplicate bug reports in
free/open source software projects.” In 2011 IEBE@sium on Visual Languages
and Human-Centric Computing (VL/HCC '11), pp. 10081

Dhaliwal, T., Khomh, F., Zou, Y. "Classifying fielcrash reports for fixing bugs:
A case study of Mozilla Firefox." Software Mainteca (ICSM), 2011 27th IEEE
International Conference on, vol., no., pp.333;3&30 Sept. 2011

Hooimeijer, P. and Weimer, W. “Modeling bug repquality.” In Proceedings of
the twenty-second IEEE/ACM international conferenme Automated software
engineering, Atlanta, Georgia, USA, 2007, pp. 34-43

Jalbert, N. and Weimer, W. “Automated duplicateedgon for bug tracking
systems.” In IEEE International Conference on Delabie Systems and Networks
With FTCS and DCC, 2008. DSN 2008, pp. 52—-61.

Jeong, G., Kim, S. and Zimmermann, T. “Improvingylitiage with bug tossing
graphs.” In Proceedings of the the 7th joint megtof the European software
engineering conference and the ACM SIGSOFT symposin The foundations of
software engineering, Amsterdam, The Netherlan@@92pp. 111-120.

Khomh, F., Chan, B., Zou, y., Hassan, A.E., "AnrBpy Evaluation Approach for
Triaging Field Crashes: A Case Study of MozillaeFox." Reverse Engineering
(WCRE), 2011 18th Working Conference on, vol., pp.261-270, 17-20 Oct. 2011

Kim, D., Wang, X., Kim, S., Zeller, A., Cheung, S.®ark, S. "Which Crashes
Should | Fix First? Predicting Top Crashes at arlyEatage to Prioritize Debugging
Efforts." Software Engineering, IEEE Transactions ,0vol.37, no.3, pp.430-447,
May-June 2011

Kim, S., Zimmermann, T., Pan, K. and Whitehead, EAditomatic Identification
of Bug-Introducing Changes.” In 21st IEEE/ACM Imtational Conference on
Automated Software Engineering, 2006. ASE '06,§1-90.

Kim, S., Zimmermann, T., Nagappan, N. "Crash graprs aggregated view of
multiple crashes to improve crash triage." Depeled&8ystems & Networks (DSN),
2011 IEEE/IFIP 41st International Conference owl,,vno., pp.486-493, 27-30 June
2011

49

Kinshumann, K., Glerum, K., Greenberg, S. Aul, Grgovan, V., Nichols, G.,
Grant, D., Loihle, G. and Hunt, G. “Debugging iretkvery) large: ten years of
implementation and experience.” Commun. ACM, val, Bo. 7, pp. 111-116, Jul.
2011.

Ko, A.J., Myers, B.A. and Chau, D.H. “A Linguistiinalysis of How People
Describe Software Problems.” In IEEE Symposium asu®l Languages and Human-
Centric Computing, 2006. VL/HCC 2006, pp. 127-134.

Ko, A.J. and Chilana, P.K. “How power users helpd amnder open bug
reporting.” In Proceedings of the 28th internatioc@nference on Human factors in
computing systems, Atlanta, Georgia, USA, 2010,1665-1674.

Matter, D., Kuhn, A. and Nierstrasz, O. “Assignirfigug reports using a
vocabulary-based expertise model of developers8tinlEEE International Working
Conference on Mining Software Repositories, 2008RV'09, pp. 131-140.

Raymond, Eric S. "The Cathedral and the Bazaarrhiiigers & Mathematics
with Applications 39.3-4 (2000).

Tamrawi, A., Nguyen, T.T., Al-Kofahi, J. and NguyeT.N. “Fuzzy set-based
automatic bug triaging: NIER track.” In Proceeding the 33rd international
conference on Software engineering, Waikiki, Hohglidl, USA, 2011, pp. 884-887.

Wang, X., Zhang, L., Xie, T., Anvik, J. and Sun,“8n approach to detecting
duplicate bug reports using natural language andcuwgion information.” In
Proceedings of the 30th international conferenceSoftware engineering, Leipzig,
Germany, 2008, pp. 461-470.

https://wiki.mozilla.org/images/e/ed/Analyst_repo@1 2010.pdf
http://blog.mozilla.com/thunderbird/2011/11

50

4. Conclusion

From the first manuscript, we can infer that thacgtice of open bug reporting incurs
cost. We see that the users are interested inilootitrg to FOSS projects by reporting
bugs and feedback. We can observe that the prdjegts to deal with overwhelming
number of inexperienced reporters which could Ipetential problem if the projects
lack enough resources. Also, projects have a lvaie gustaining user participation, as
most users disappear after contributing just org report. This should convince the
readers that the FOSS projects are in need ofiadditscaffolding that simplifies the

bug management process and assists novice reportgrsmitting quality feedback.

From the second manuscript, we find that largeatve projects like Mozilla are
aware of the importance of user feedback and pgeldnuser participation. The
introduction of automatic crash reporting systens leertainly helped improve
Mozilla’'s bug management practices. However, daptppuch systems seems to be
quite a hurdle since the project requires excellafiastructure to deal with huge

volumes of data.

Open bug reporting is certainly helpful and fundatakto realizing Linus’ Law;
“Given a large enough beta-tester and co-develbpse, almost every problem will
be characterized quickly and the fix will be obwow someone” (Raymond, 2000).
FOSS communities would reap huge benefits if thegpkthe reporters involved and

motivated.

51

Bibliography

Anvik, J. “Automating bug report assignment,” in oPeedings of the 28th
international conference on Software engineerirtggn8hai, China, 2006, pp. 937—-
940.

Anvik, J., Hiew, L., and Murphy, G. “Who should fikis bug?,” in Proceedings of the
28th international conference on Software engimgerShanghai, China, 2006, pp.
361-370.

Chung, E., Jensen, C., Yatani, K., Kuechler, Vd 8muong, K. N. “Drawing and
sketching in Open Source design”, in IEEE Symposam/Visual Languages and
Human-Centric Computing, 2010. VL/HCC 2010.

Ghosh, A. “Economic impact of FLOSS on innovatiod @ompetitiveness of the EU
ICT sector”, 2006.

Jensen, C., Scacchi, W. "Role Migration and Advama® Processes in OSSD
Projects: A Comparative Case Study," Int Conf. aftare Engineering, ICSE’07.
20-26 May 2007.

King, S. “Joining Open Source Software CommunitAs:Analysis of Newbies’ First
Interactions on Project Mailing Lists”, 2009, MSédis.

Matter, D., Kuhn, A., and Nierstrasz, O. “Assignibgg reports using a vocabulary-
based expertise model of developers,” in 6th IE&Erhational Working Conference
on Mining Software Repositories, MSR '09, pp. 13461

Park, Y. “Supporting the Learning Process of Opeuar& Novices: An Evaluation of
Code and Project History Visualization Tools”, 2008 Thesis.

Raymond, E. "Homesteading the Noosphere," 1998.

Wu, C., Gerlach, J., Young, C.. “An empirical arsidy of open source software
developers’ motivations and continuance intentidngormation & Management”,
2007, pp 253-262.

Yunwen, Y., Kishida, K. “Toward an understandingtioeé motivation of open source
software developers.” In Proc. of the 25th Inbn€ on Software Engineering, 3-10
May 2003.

