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Statistically-based estimation techniques are presented

in this study. These techniques incorporate structural test

data to improve finite element models used for dynamic

analysis.

Methods are developed to identify optimum values of the

parameters of finite element models describing structures.

The parameters which may be identified are : element area,

mass density, and moment of inertia; lumped mass and stiff-

ness; and the Rayleigh damping coefficients. A technique is

described for incorporating hydrodynamic effects on small

bodies by identifying equivalent structure mass, stiffness,

and damping properties. Procedures are presented for both

the free vibration problem and for forced response in the

time domain.

The equations for parameter identification are formu-

lated in terms of measured response, calculated response,

the prior estimate of the parameters, and a weighting
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matrix. The form of the weighting matrix is presented for

three identification schemes : Least Squares, Weighted Least

Squares, and Bayesian. The weighting matrix is shown to be

a function of a sensitivity matrix relating structural

response to the parameters of the finite element model.

Sensitivities for the forced vibration problem are derived

from the Wilson Theta equations, and are presented for the

free vibration problem.

The algorithm used for parameter identification is

presented, and its implementation in a computer program is

described.

Numerical examples are included to demonstrate the

solution technique and the validity and capability of the

identification method. All three estimation schemes are

found to provide efficient and reliable parameter identifi-

cation for many modeling situations.
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IDENTIFICATION OF STRUCTURAL PARAMETERS

AND HYDRODYNAMIC EFFECTS

FOR FORCED AND FREE VIBRATION

CHAPTER I

INTRODUCTION

The proper design of many land-based and sea-based

structures requires the ability to accurately predict their

response to dynamic disturbances. These disturbances may

originate from such sources as ground motions due to

earthquakes, fluctuating wind loads, vibrating machinery, or

wave-induced hydrodynamic effects. Often, a mathematical

model of the structure is generated and is solved by

computer to predict the response to a variety of expected

loadings.

For certain complex or critical structures, scale

models are constructed and subjected to laboratory tests.

The results of these experiments are then used to validate

and improve the mathematical model so that it may be used

with greater confidence as a response-predictor (1)*. When

systems are to be mass produced (e.g., vehicle structures

and their components), or when several nearly identical

*Numbers in parentheses denote entries in Bibliography.
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structures will be needed throughout a project (e.g.,

transmission towers, offshore rigs for oil exploration),

prototypes may be built. Results from tests of these

structures can be used to provide data for validating the

mathematical model; the model can then be used with greater

confidence to evaluate and refine the preliminary design.

The objective of this study is to investigate statis-

tically-based estimation techniques which use structural

test data to improve finite element models. These models may

be analyzed either for free vibrations or for forced

response in the time domain. Techniques are developed to

identify optimum mass, stiffness, and damping matrices

describing land-based and sea-based structures.

Mathematical Modeling of Structures

Essential to the accurate analysis of a structure

subjected to dynamic loads is a proper formulation of the

mathematical model. For a linearly elastic structure, this

description is based on the mass, elastic properties

(stiffness), and energy-loss mechanism (damping) of the

structure, as well as on the external sources of excitation

(applied forces or support motion) (2). If a finite element

formulation is used, the equations for the dynamic response

of the structure can be written as

[M]{R} + [C]fX1 + [K]{x} = {P(t)} (1.1)
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where [M] = structural mass matrix of size n x n

[C] = structural mass matrix, n x n

[K] = structural stiffness matrix, n x n

{P(t)} = vector of time-dependent external loads ,n x 1

fx1,00,{R} = vector of nodal displacements, velocities, and

accelerations, n x 1

and n is the number of displacement degrees-of-freedom

(d.o.f.) used to discretize the structure (3).

The accuracy with which Eq. (1.1) predicts the response

of the structure is directly dependent on the form and

composition of the property matrices; i.e. the mass,

damping, and stiffness matrices. The individual terms of

these matrices are, in general, functions of basic struc-

tural parameters, such as element area, moment of inertia,

and mass density. In an analysis, these quantities are

typically treated as deterministic values, which in turn

yield deterministic property matrices. However, in this

study they are treated as random variables which are capable

of assuming any value. Thus, property matrices based on

these parameters are also random, or nondeterministic.

The randomness of the structural parameters arises due

to the number, type, and severity of assumptions and

idealizations that must be made by the analyst when con-

structing the finite element model (1). In the traditional

approach to modeling, the analyst uses experience and

judgment to establish "best" estimates of all the paramet-
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ers, thus fixing these random variables at unchanging

(deterministic) values. These values are then used to

construct the structure property matrices [M], [C], and [K],

and a solution to Eq. (1.1) is sought.

In order to assess the adequacy of the structural

model, the solution obtained is often compared to a known

response. This response is usually in the form of response

measurements taken on a model or prototype structure

subjected to known disturbances. In cases where the predic-

ted response is not in satisfactory agreement with the

measured response, the analyst revises the "best" estimates

of the structural parameters, reformulates the property

matrices, and finds a new solution to Eq. (1.1). The

response from this solution is compared with the measured

response and the iterative process is repeated until,

according to some criteria, satisfactory agreement is

obtained between predicted and measured response. A model

adjusted in this manner may then be used with greater

confidence as a predictor for the response of the structure

under other forms of loading.

The iterative, trial-and-error technique described

above illustrates the inherent random nature of the struc-

tural parameters. They can, and often do, assume various

numerical values in an analysis, until a final set which

gives a "best" fit to the "true" solution is found (4).

Although this set of best estimates for the parameters may
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be sought by trial-and-error techniques, they may also be

found in a more efficient, systematic, and consistent

fashion through techniques of system identification (de-

scribed later in this chapter).

The next two sections contain discussions of typical

assumptions made when constructing finite element models of

structures. Such assumptions give rise to the need to

identify, in an iterative fashion, better estimates of

structural parameters. Following these sections is a

discussion of the methodology of system identification.

Structures in Vacuo

In the finite element method, the infinite degrees-of-

freedom (d.o.f.) structure is modeled as an assemblage of

elements connected at nodes, with a finite number of nodal

d.o.f. In the discretization, the structural properties

(mass, stiffness, damping) are concentrated at the nodes, as

are the applied disturbances (loads and prescribed displace-

ments) (5). In determining the equivalent nodal properties

of the structure, many approximations and idealizations must

be made. These result in a primary source of error in the

mathematical model. Some common difficulties in structural

idealization will now be discussed.

The mass and stiffness matrices for a structure are

usually formed at the element level and then assembled into

global structure matrices. For a beam element, for example,
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the mass and stiffness are well-defined functions of length,

area, mass density, moments of inertia, and Young's modulus.

Frequently, the values of these parameters are not well

established, especially in structures exhibiting irregular

or complex geometry. For instance, in the case of tapered

members, "equivalent" prismatic values for the cross-

sectional area and the moments of inertia are commonly used,

even though the area and inertias vary along the length of

the member (6). Such approximations introduce errors of

indeterminate magnitude into the mass and stiffness matrices

of the element.

At the global level, various idealizations are made in

order to reduce the complexity of the model: Structural

joints are usually modeled as either perfectly rigid or

perfectly flexible, conditions which are never physically

realized. As an alternative to this approach, it is possible

to model a connection as partially constrained by specifying

a lumped, or concentrated, stiffness in order to simulate

the actual amount of joint rigidity. The use of concentrated

stiffness may also be appropriate when haunched or flared

members meet at a point. In such a situation, a concentrated

mass might also be added at the joint in order to account

for mass effects not included at the element level. Concen-

trated nodal masses are also used to account for various

structural appurtenances and attachments. Such modifications
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to the global mass and stiffness matrices provide additional

sources of modeling error.

The damping matrix shown in Eq. (1.1) is used to

account for the total loss of energy in the system. Since

the mechanisms of energy loss are not well-defined or fully

understood for most structures, it is usually not possible

to account for damping effects at the element level (2).

Also, structural damping effects can come from several

sources, such as material damping, joint friction, and

nonstructural elements (such as shear walls) (3). For these

reasons, the damping matrices for most structures are

specified at the global level and are meant to incorporate

all important effects as equivalent linear viscous damping.

Since the damping matrix cannot be formulated as an

explicit function of the structural parameters, it is often

convenient to use a special form of damping known as

Rayleigh damping, or proportional damping (3). A Rayleigh

damping matrix is assembled from a linear combination of the

global mass and stiffness matrices according to

[C] = a[M] + B[K] (1.2)

where a and B are proportionality factors (the Rayleigh

damping coefficients). Thus, the content of the structure

damping matrix is dependent on the assumptions made on mass

and stiffness effects as well as on the choice of a and B.
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The values of a and B are usually selected on the basis of

previous modeling experience or results of vibration tests.

Structures in Fluid

In addition to the idealizations discussed in the

previous section, additional assumptions must be made in the

analysis of structures subjected to hydrodynamic loads.

These assumptions involve the inclusion of effects of fluid

mass and fluid damping in the structural model.

In the modeling of wave-induced forces on structures,

the applied nodal loads specified in Eq. (1.1) are often

expressed by means of Morison's equation (7,8,9) :

{PM} = pCm[V] {il} - p(Cm-1) [17] {R} +

+ (0.5pCD[A] ) I 1011-5c1T (1.3)

where {u}, fül = known fluid kinematics, n x 1

{x}, {k }, {R} = unknown structure kinematics, n x 1

p = fluid density

[A], [V] = projected area and displaced volume of

the structure, n x n (diagonal)

CM, CD = empirical mass and damping coef-

ficients for calculation of fluid

forces.

In general, the coefficients CM and CD depend on several real

fluid effects, as well as on characteristics of the struc-

ture; e.g., roughness and proximity of members (9). The
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determination of these coefficients is difficult and not

well-defined, and much attention has been devoted to this

topic in the literature (9,10,11).

The right hand side of Eq. (1.3) contains a nonlinear

term which is dependent on the relative velocity between the

fluid and the structure. This nonlinearity can cause great

difficulty in the analysis (9,11). One common practice is to

linearize this drag-related term (9) and consider the total

effect to consist of two components : one component acting

as a driving force related to the fluid velocity, and one

acting as fluid-induced damping of the structure. Using this

approach, one may linearize Eq. (1.3) and combine it with

Eq. (1.1) to give

([M] + p(Cm-1)[V]){R} + ([C] + 0.5pCDT[Ti]){k} +

+ [K] {x} = pCm[V]{U} + (0.5pCD[A]){11111} 1ulT (1.4)

where P is a linearization factor related either to the root

mean square value of the relative velocity or the time

average of the fluid velocity (9).

The first matrix in Eq. (1.4) may be regarded as the

effective mass of the structure, while the second matrix

represents the effective damping. These matrices include

both structure and fluid effects.

The effective mass matrix shown in Eq. (1.4) must

account for the added mass effect of the fluid (Cm-1), fluid

trapped inside structural elements, and the mass of any



10

excrescences, as well as the in vacuo mass of the structure

(9,12). The fluid-related terms are typically treated as

additional masses concentrated at the structural nodes.

Appropriate values are difficult to establish.

The effective damping matrix in Eq. (1.4) cannot be

assembled with a large degree of confidence. Besides the

limitations described in the previous section, the appear-

ance of the drag coefficient CD and the linearization factor

'P lend further uncertainty to the damping matrix. Additional

difficulties may arise during the solution of Eq. (1.4)

since the fluid damping term alters the assumed proportional

form of the damping matrix (9).

System Identification Method

A principal goal in the reduction of a complex struc-

ture to a mathematical model is to be able to use the model,

with confidence, to predict the response to various pre-

scribed disturbances. Applications might include the

determination of the mode shapes and frequencies of free

vibration, the calculation of the history of displacements

of a structure during an earthquake, or the prediction of

the response to wave-induced forces on a structure submerged

in the ocean. Frequently, data from actual tests of the

structure, or of a scale model, exist and these data are

used by the analyst to aid in refining the mathematical

model.
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The application of methods of system identification as

they apply to the mathematical modeling of structures will

now be addressed.

The mathematical description of a structure usually

consists of three components : the input to the mathematical

model; the series of equations which constitute the model;

and the output from the model. The input typically consists

of a given disturbance; e.g., applied loads and prescribed

displacements. The equations serving as the model must be

specified both with respect to form (e.g., a set of second-

order linear differential equations) and with respect to

parameters (e.g., the coefficients of the descriptive

equations). Equation (1.1) is an example of form and

parameters together defining a model. In a dynamic analysis,

the output from the mathematical model of a structure

typically consists of either time-dependent kinematics or of

the frequencies and mode shapes of free vibration.

The three components detailed above the input, the

equations, and the output - may also be described as the

input, the process, and the response of the (structural)

system being modeled (see Fig. 1).

In many engineering applications, the input and the

process are known (or assumed known) and the response of the

system is sought. The solution is obtained in a relatively

straightforward manner and is usually unique. In some

applications the process and its response may be known, and
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PROCESS

Equations
Parameters

OUTPUT

DESIGN PROBLEM GIVEN : Input & Process

DETERMINE : Output

INVERSE PROBLEM GIVEN : Input & Output

DETERMINE : Process

Figure 1. Structural Model as Input, Process, and Output
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it is desired to determine the input which gave rise to the

known response. In other instances, the input and response

of a system or process may be known, and a mathematical

description of the process is desired.

The latter two problems are referred to as "inverse

problems" (13,14) and do not generally possess unique solu-

tions. However, techniques of system identification allow

one to determine a solution which "best fits" the known

conditions (15,16,17). In particular, we are concerned with

the last modeling situation in which it is required to

determine some or all of the parameters of a known process,

given the form of the process, the input into the process,

and the output.

Consider a test structure instrumented to measure some

structural response of interest. This response, as previous-

ly discussed, could be mode shapes, frequencies, or kinemat-

ics. The measured response can be thought of as an observ-

able random vector of measurements, {Y}, polluted by a zero-

mean, unobservable, random error vector, {r}. The response

measurements are a function of the parameters of the system

which may be denoted as the random vector {Z}. The function

relating the response and the parameters is the known

process and may be represented by a known mapping matrix,

[H] (18). Thus, this system may be expressed as

{Y} = [H] {Z} + {r}. (1.5)
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Having measured {Y} and knowing [H], one may solve for the

parameter vector {Z} such that the response predicted by the

mathematical model best fits the measured response according

to some criteria (4).

Different assumptions regarding the statistical proper-

ties of the parameter vector {Z} and the zero-mean random

error vector {r} result in three different identification

procedures (18,19) : Least Squares, Weighted Least Squares,

and Bayesian. Similarities and differences among the three

methods will be addressed in Chapter III. However, following

is a brief description of how these three methods allow for

the estimation of the parameter vector.

Suppose a mathematical model is generated for the

instrumented structure under consideration. Prior to the

testing of the structure, the analyst makes a best (prior)

estimate of the structural parameters, denoted as {rp}. The

analysis is performed, yielding a calculated (predicted)

structural response based on the prior estimates of the

parameters. Let this response be denoted as {Q(rp)}.

The structure is now tested and the measured response

{Q,} becomes available. Assuming that there is an unaccep-

table difference between the predicted response and the

measured response, this difference may be used to refine the

prior estimate of the parameters. This new, better estimate

of the parameters is given for all three estimation tech-

niques by
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{f} = Irpl + [W] NV {C2(rd }) (1.6)

where [W] is a weighting matrix which possesses a different

form for Least Squares, Weighted Least Squares, and Bayesian

identification (19).

The weighting matrix, [W], will be functionally

dependent on the mapping matrix, [H], appearing in Eq.

(1.5). This can be demonstrated by expressing the solution

to the mathematical model as a Taylor Series expansion about

the prior parameter estimate (4) to obtain

( {Q(r) } {C2(rp)}) = [T] ({r} frpl) + {} (1.7)

where [T] is a sensitivity matrix relating the change in

structural response {Q} to changes in the parameters {r},

and {E} is an error vector. Comparing the form of this

equation to that given in Eq. (1.5), one sees that the

sensitivity matrix is the mapping matrix of the process.

Furthermore, linear estimation theory shows (18) that the

weighting matrix [W] is a function of the mapping matrix [H]

(or equivalently, [T]), and of the statistical properties of

{Z}, {Y}, and {F }. The form of this function varies for each

of the three identification procedures.

The complete process for parameter identification can

now be seen as an iterative one. The analyst assumes prior

estimates of the structural parameters, {rp}, and predicts

the response of the structure, {Q(rp)}. After determining

the sensitivity of the response to the parameters (expres-
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sible as [T]), a weighting matrix is formed. This weighting

matrix, [W], is used to calculate a better estimate, {f}, of

the structural parameters. This new estimate is based on

[{Qm} -{Q(rp) } ] , the difference between measured and predicted

response. The process is repeated until this difference may

be regarded as negligible or until there is no significant

difference between {t} and frpl. This process is depicted in

Fig. 2.

Scope of Work

In this study, statistically-based estimation tech-

niques are presented. These techniques use structural test

data to improve finite element models for dynamic analysis.

Methods are developed to identify optimum values of the

parameters of finite element models describing land-based

and sea-based structures. The parameters to be identified

are those contributing to the terms of the structural mass,

damping, and stiffness matrices. This study is limited to

models which exhibit linear structural behavior, and to

parameters which appear as linear terms in the mass,

damping, and stiffness matrices. Identification for the

product of two or more parameters is not considered.

To date, there have been no studies reported on the

identification of structural parameters for forced vibration

using standard finite element modeling techniques and

calculated kinematics. Also, there have been no studies on
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Estimate Parameters, rp

Assemble [M], [C], [K]

Calculate Response,Q(rp)

Calculate Sensitivities, [T]

Assemble [W]

Improved Estimate

(?) irpl + [W] ({Qm} {Q(rp)} )

Figure 2. Parameter Identification Flowchart
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the identification of concentrated mass and stiffness or

element mass density, or on the identification of structural

parameters to account for uncertainties in the response to

hydrodynamic loading.

Included in this study are the effects of element mass,

area, and moment of inertia; the effects of concentrated

mass and stiffness; the effects of the Rayleigh damping

coefficients; and the effects of hydrodynamic loading on the

mass and damping characteristics of the structure. Tech-

niques are presented for both the free vibration problem and

for forced vibration in the time domain.

An overview of previous research relating to the system

identification of structural parameters is presented in

Chapter II. In Chapter III, the basic estimation equations

are formulated, and the forms of the weighting matrix

corresponding to the three estimation schemes are presented.

The mapping matrix is decomposed into the product of two

submatrices, and the forms of these matrices are given for

use with free vibration and forced vibration models. Chapter

IV contains a discussion of the algorithm used in the iden-

tification process and its implementation in the computer

program which was developed. Numerical examples are included

in Chapter V to demonstrate the validity and capabilities of

the identification procedures detailed in this study. A

summary of the work presented, as well as conclusions and

possible extensions, are contained in Chapter VI.
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In Chapter I, the application of system identification

techniques to mathematical modeling was described. It was

seen that identification methods can be used to refine a

mathematical model of a structure by providing better

estimates of the parameters of the model. Much of the

available literature in system identification addresses the

problem of process identification with emphasis towards the

design of control systems. Surveys of this literature are

contained in papers by Bekey (13) and Astrom and Eykhoff

(20). However, the present study is concerned with the

estimation of model parameters. Therefore, only works which

address this problem will be mentioned here. Particular

attention will be given to references which discuss the

estimation of structural parameters.

Much of the research in system identification has been

centered in the aerospace industry, with applications to

shock and vibration analysis of aerospace structures.

Collins, et al. (21) presented one of the earliest litera-

ture surveys in 1970. The authors classified the existing

research into two major categories - techniques applicable

in the frequency domain and techniques applicable in the

time domain - with further categorization according to type
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of model, type of estimation technique, and other criteria.

This survey was updated by Hart and Yao (14) in 1977, with

emphasis given to techniques suitable for structural

dynamics. Other early state-of-the-art papers include those

by Flannelly and Berman (22) and Bowles and Straeter (23).

Flannelly and Berman addressed basic problems of system

identification for aerospace structures, while Bowles and

Straeter reviewed some computational considerations for

various schemes in use at the time.

An overview of existing system identification methodol-

ogy was presented in 1988 by the ASCE Task Committee on

Methods for Identification of Large Structures in Space

(24). This paper classified the available' techniques

according to three criteria : 1) model and parameters,

2) measurement data, and 3) estimation algorithm. Special

attention was given to methods which are suitable for large,

flexible space structures.

Numerous techniques and applications in system identi-

fication are presented in textbooks by Eykhoff (15), Ljung

(16), and Soderstrom and Stoica (17). The emphasis in these

works is on process identification and control systems;

applications to structures are not discussed.

Methods for the identification or estimation of

structural parameters may be grouped by many categories :

parametric or nonparametric, frequency domain or time

domain, single degree-of-freedom (d.o.f.) or multiple
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d.o.f., etc. Hart and Yao (14) grouped the methods into two

categories : those which require prior estimates of the

parameters and those which do not. This approach will be

continued in the present study, beginning with methods which

do not require prior estimates.

Many of the methods presented in the literature do not

use mass, stiffness, or damping matrices in modeling

structures. In some of those which do use these matrices,

the original form or size of the matrices must be changed in

order to perform the identification. In such cases, the

physical significance of the mass and stiffness matrices is

lost. Methods in which the full order, standard form, and

physical significance of these matrices is preserved will be

specially noted as such.

No Prior Estimates of Parameters

Gersch (25) and Gersch, et al. (26) developed a

procedure for determining the period and damping of multiple

d.o.f. structures. The method produces maximum likelihood

estimates using time series with autoregressive moving

average (ARMA).

A scheme for identifying the parameters of a nonlinear,

single d.o.f. model was presented by DiStefano and Rath

(27). The method is based on the minimization of a quadratic

loss function, and requires the measured acceleration,
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velocity, displacement, and forcing function in the iden-

tification process.

DiStefano and Pena-Pardo (28) investigated the response

of a linearly-damped viscous model and a nonlinear stiffness

model. The method they developed uses an invariant imbedding

filter operating on data from experiments conducted on

seismic tables.

Other approaches which do not require prior estimates

of parameters include those by Torkamani and Hart (29,30),

Berman and Hannelly (31), and Berman, et al. (32). The

papers by Torkamani and Hart detail a method for calculating

the impulse response function of single and multiple d.o.f.

systems. The method involves the discretization of Duhamel's

integral and uses data from records of ground motions during

earthquakes. The latter two works presented methods for

identifying parameters of a linear, discrete model using

modal data. Methods of computing the effects of changes in

mass and stiffness on natural frequencies and normal modes

were studied. Masri, et al. (33,34,35) proposed a method for

the nonparametric identification of chainlike systems which

are nonlinear and have multiple degrees-of-freedom. Time

histories of the excitation and response are needed, and the

magnitude of all masses must be known.

A method which uses the free-decay response-time

function of a structure has been presented by Ibrahim and

Mikulcik (36), Ibrahim (37), and Ibrahim and Pappa (38). In
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this method (Ibrahim Time Domain Technique), two response

matrices were formed from a special oversized model and were

used to calculate eigenvalues and eigenvectors. The damping

factors were then extracted from this information. Modal

confidence factors were used to distinguish between computa-

tional modes and structural modes.

System identification techniques were applied by

Kaplan, et al. (39) to determine the hydrodynamic coef-

ficients in Morison's equation from measured forces on an

offshore structure. A generalization of linear Kalman

filtering was used to convert an assumed two-point boundary-

value problem to an initial-value problem, resulting in a

sequential estimator. The coupled, first-order differential

equations which were generated are nonlinear and time-

varying.

A method was proposed by Batill and Hollkamp (40) to

predict the transient response of multiple d.o.f. structures

subjected to arbitrary input. An ARMA model was created from

the linear, discrete-time transfer function. The identifica-

tion process requires a two-stage, iterative technique and

an overspecified model, and uses free vibration response or

impulse response data.

Prior Estimates of Parameters

In a previously cited study of damped systems, Di-

Stefano and Rath (27) also detailed an identification scheme
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in which the nonlinear structural model was reduced to a

system of first-order equations using invariant imbedding.

A loss function is then minimized in a least squares

fashion, and the problem solved using a filtering method and

a Gauss-Newton method. Experimental errors were quantified

by inclusion of a vector of observation errors.

Ibanez (41) presented a method for obtaining the

pseudo-inverse of a matrix, thus allowing for the weighted

least squares solution of ill-conditioned linear systems.

Such systems result when there is an inequality between the

number of degrees-of-freedom used to model a structure and

the number of response measurements available.

Beliveau (42,43) addressed the estimation of mass,

stiffness, and damping matrices using natural frequencies,

mode shapes amplitudes and phase angles, and damping

constants. Eigenvalue and eigenvector sensitivities are used

in the procedure and an optimization is performed on an

objective function based on least squares, maximum likeli-

hood, or Bayesian inference. Beliveau (44) has also present-

ed a scheme for identifying mass, stiffness, and damping

matrices. This method uses least squares criteria and

acceleration records with a system of equations similar to

the equations of motion.

Identification of damping coefficients was the subject

of a study by Caravani and Thomson (45). The identification

algorithm involves the recursive minimization of a loss
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function based on weighted least squares, and operates on

the equations of motion in the frequency domain.

Caravani, et al. (46) used displacement, velocity, and

acceleration data to identify stiffness and damping effects.

Two algorithms were presented : one based on a least squares

approach and one based on weighted least squares. Both

methods require the stiffness and damping matrices to be of

tridiagonal form.

Beliveau and Favillier (47) developed a method for

estimating stiffness and damping parameters of buildings

based on acceleration measurements at each story. The

analysis was done in the frequency domain, and sinusoidal

loads and displacements were assumed. An objective function

based on Bayesian inference was minimized using a modified

Newton-Raphson scheme.

Shinozuka, et al. (48) transformed the equations of

motion into state equations at discrete times, and then into

ARMA models. The method of instrumental variables and the

method of limited information likelihood were then used in

the identification process. The coefficient matrices of the

original equations of motion were recovered from the

parameter estimates of the ARMA model.

Capecchi and Vestroni (49) replaced a finite element

model for a structure by an analytical polynomial function

in terms of the structural parameters. A Bayesian approach

was used with a classical Newton method to iteratively solve
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for the optimum values of the structural parameters. The

method was applied to a four-story frame consisting of beam,

truss, and plate elements. Pseudo-experimental mode shapes

and frequencies were used in the identification process.

Lee and Yun (50) presented a method for the estimation

of the model equations and parameters for linear, multiple

d.o.f. structures. The equations of motion were transformed

into a state-space equation, and then into a stochastic ARMA

(ARMAX) model. A sequential prediction error method was used

to estimate the parameters of the ARMAX model; the system

parameters were then recovered from the ARMAX parameters.

The technique was applied to a two d.o.f. and a three d.o.f.

shear building, using the floor accelerations as measured

data.

Studies in which the full order, standard form, and

physical significance of the mass and stiffness matrices are

maintained include those by Collins, et al. (4), Hart and

Torkamani (19), Leonard and Warren (1), Leonard, et al.

(51), and Leonard and Khouri (52).

Bayesian techniques for mass and stiffness character-

istics of a finite element model have been presented by

Collins, et al. (4). Initial estimates of element parameters

are updated using measured mode shapes and natural frequen-

cies in conjunction with eigenvalue and eigenvector sensi-

tivities. The method allows for the inclusion of both

modeling error and measurement error.
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Hart and Torkamani (19) summarized least squares,

weighted least squares, and Bayesian techniques for use with

a priori estimates of structural parameters. Numerical

examples were presented which demonstrate the effects of

various assumptions regarding measurement and modeling

errors. Only free vibration was considered.

Leonard and Warren (1) incorporated the Bayesian

techniques presented by Collins, et al. (4) into a finite

element program, EASE2 (53). The program was used for free

vibration estimation to iteratively modify section proper-

ties in a model of a construction crane. The crane was

modeled with beam elements, and test data consisted of the

frequencies and mode shapes of the first two modes. Leonard,

et al. (51) and Leonard and Khouri (52) extended the

capabilities of the program to include plate and shell

elements.
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In this chapter, linear estimation theory is presented

in general form. The theory for Bayesian estimation is

presented first, followed by Weighted Least Squares and

Least Squares estimation theory.

The estimation equations required for the identifica-

tion of structural parameters are then formulated. These

equations are shown to be a function of the sensitivity

matrix, [T], relating the change in structure response to

the change in the parameters of the finite element model.

This matrix is expressed as a product of two submatrices,

[T] = [B][A]. Forms of [T] are presented for both free and

forced vibration. Equations for calculating the terms in

submatrix [B] are presented for free vibration identific-

ation. For forced vibration, equations are derived which

allow the terms of [B] to be calculated. Forms of the

sensitivity submatrix [A] are detailed for the identifi-

cation of element, lumped, and damping parameters.

Linear Estimation Theory

Basic linear estimation theory is presented in this

section. This theory allows a vector of random variables to

be estimated from observed values of another random vector.



29

For the structural identification problem, improved esti-

mates of the structural parameters are sought; these

estimates use the measured response of an instrumented

structure. In the next section of this chapter, system

identification for a structure is shown to be an application

of linear estimation theory.

Assume the output from some known process is related to

the parameters of the process according to the linear model

{Y} = [H] {Z} + {I'} (3.1)

Let np = number of parameters, and nd = number of available

data (measurements). The terms in the above equation are

defined as

{Y} = Observable random vector, size nd x 1

[H] = Known mapping matrix, nd x np

{Z} = Random parameter vector, np x 1

frl = Unobservable random error vector, nd x 1

The rank of [H] is np < nd (18).

Use the notation E(*) to indicate the expected value of

a random variable; important statistical properties of {Z}

and {1'} are

E({Z}) = filzl, np x 1 (3.2a)

E[({Z}-{gz})({Z}-{gz1)T] = [Vn], np x np (3.2b)

E({r}) = fol, nd x 1 (3.3a)

Eurlfr1T) = [vrr], nd x nd (3.3b)
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E( {F } {Z }T) = {0 }, nd x np (3.4)

The zero value of the last term arises from the assumption

that the experimental error is independent of the parame-

ters. The expected value of {Z} is fAzl, and is assumed

known for Bayesian estimation (54); it is assumed unknown

for Least Squares and Weighted Least Squares estimation

(18). The matrices [Vzz] and [VIT] are defined, respectively,

as the variances of the parameter vector and the variance of

the error vector; it is assumed that their values are known.

For the remainder of this section, matrix notation will

be dropped for clarity of the presentation. However, it

should be remembered that all terms are either vectors or

arrays.

The expected value (mean) and variance of the output

vector Y can be expressed in terms of the mean and variance

of the parameter vector. By definition,

Ay = E(Y) (3.5)

and it follows from Eqs. (3.1), (3.2a), and (3.3a) that

Az = E(HZ+r) = HAz (3.6)

The variance Vyy is defined as

Vyy = ENY-Ay)(Y-Ay)T] (3.7)

which becomes, upon substitution of Eqs. (3.1) and (3.6) and

expansion of the product :
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V = H E[(Z-(Z-
YY

gz) ) T iliT + E(r)E(Z-Az)THT

+ H E[(Z-gz)]E(rT) + E(rrT) (3.8)

Substituting the relationships given by Eqs. (3.2b) and

(3.3a), one obtains

V = HV HT V (3.9)
YY ZZ

In a similar fashion, the following statistical properties

can be demonstrated :

V = E [(Z-(3.10a)
ZY ) Y-AY T = VZZHT

V = V T =
T

(3.10b)
YZ ZY HVZZ

E(ZZT) = Vzz + gzgzT (3.10c)

E(yyT) (3.10d)

E(ZYT) = Vzy + hzLYT (3.10e)

E(YZT) = Vn + AygzT (3.10f)

All three estimation schemes - Bayes, Weighted Least

Squares, and Least Squares - are based on a class of linear

estimators, 2, of the form

where

2 = G + DY (3.11)

G = vector of real numbers, np x 1

D = matrix of real numbers, np x nd

To select the best, linear, unbiased estimator (55,56) from

the class, G and D are selected so that
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E(2-Z) = 0 (3.12)

II = E[(2-Z)(2-Z)T] is minimized (3.13)

In the above, 11 is the squared-error loss function (57) and

is an nd x nd matrix. Equation (3.12) can be alternately

expressed as

E(2) = E(Z) = Az (3.14)

The loss function is minimized when

6il = 0 (3.15)

where 0 indicates the first variation of IL

Bayesian Estimation. In Bayesian estimation, the expected

value of the parameter vector, Az, is assumed to be known.

In order to determine the forms of G and D in Eq. (3.11),

the requirements of Eqs. (3.13) and (3.14) must be met.

The loss function defined in Eq. (3.13) can be expanded

by substituting (3.11) and performing the indicated matrix

operations, to obtain

II = GGT + GE(YT)DT - GE (ZT) + DE(Y)GT + GE (yyr)DT +

- DE(YZT) - E(Z)GT E(ZYT)DT + E(ZZT) (3.16)

If the relationships given by Eq. (3.10) are substituted

into this equation, the loss function becomes



II = GGT + GAyTDT - Giazr DAyGT

+ D (Vyy-FilyilyT) DT - D (Vyz+AyAzT)

(Vu+AzilvT) DT 4- (Vzz+AzAzT)

AZGT
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(3.17)

Equation (3.15) indicates that the minimization of II is

accomplished by setting its first variation equal to zero

(the null matrix). Since the loss function II is a function

of both G and D, the variation can be written as

6II = .5G]a + (ya = 0 (3.18)

where 6 G] 1 and 6 DI indicate the variation of II with respect

to G and D.

It can be shown (18) that the operation specified in

the above equation yields the following :

5GII = 0 : G + DAy - = 0

doll = 0 : GAyT + D (Vyy-f-AyAyT) - (Vzy+AzAyT) = 0

(3.19a)

(3.19b)

The desired form of G is found from the first of these two

expressions :

G = Az DAy (3.20)

It should be noted that the requirement specified in Eq.

(3.12), E(2-Z) = 0, leads to the same result; therefore,

this criterion is automatically satisfied. Also note that G

and Az are not mathematically independent. This is a feature

exhibited by Bayesian estimation, but not by the other

estimation schemes.
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The second term of the variation equation, given by Eq.

(3.19b), can be rearranged as

(G+DAy-µz) gyT + DVyy - Vzy = 0 (3.21)

The expression within the parentheses is equal to zero, by

virtue of Eq. (3.20). Thus, it is required that

from which

DV
YY

- V
ZY

= 0

D = V 1
ZY
V

YY

(3.22)

(3.23)

Substitution of Vu and Vyy from Eq. (3.10) yields the

desired form of D :

D = (VzzlIT) (MizzlIT + VIT)-1
(3.24)

With G and D now fully determined, the final form of

the linear estimator is obtained by substitution of Eqs.

(3.20) and (3.24) into Eq. (3.11), giving

2 = Az + vzzHT (HvzzHT +vrr) -1(Y-Ar)

In the next section of this chapter it is shown that

AZ = 0

Ay = 0

(3.25)

(3.26a)

(3.26b)

for the structural identification problem. In that instance,

G = Az-DAY = 0, and the estimator becomes



Z
VzzlIT (HVzzliT + Vrr) -1 y
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(3.27)

Weighted Least Squares Estimation. Recall that the desired

form of the linear estimator is given by

2 = G + DY (3.11)

In Least Squares and Weighted Least Squares estimation, it

is assumed that Az, the expected value of the parameter

vector, is unknown and is independent of G (18).

The first criterion that must be satisfied by the

estimator is

E(Z-Z) = E(G+DY-Z) = 0 (3.28)

After substitution of Y = HZ +r, and expansion and simplifi-

cation of the terms, it can be demonstrated that this

criterion requires

G + (DH-I)Az = 0 (3.29)

where I is the identity matrix. Since G and Az are assumed

to be mathematically independent, this equation is satisfied

if

G = 0 (3.30a)

DH = I (3.30b)

The second criterion to be satisfied requires that

6II = cl + dry = 0 (3.18)
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11 = E[(2-Z)(2-Z)T]

= E[(G+DY-Z)(G+DY-Z)T] (3.31)

This loss function is subject to the constraints of Eqs.

(3.30). It can be shown (18) that expansion and simplifica-

tion of Eq. (3.31), subject to Eqs. (3.30), leads to

II = DVrrDT + (I-DH)v + vT(I_HTDT) (3.32)

where v is a Lagrangian multiplier used to incorporate the

constraint of Eq. (3.30b).

It can be demonstrated (18) that minimizing II according

to Eq. (3.18) requires

Solve for D

DV ,I, vIHT = 0
rr (3.33)

D = V THIVrr-1 (3.34a)

and post-multiply both sides of the equation by H to obtain

DH = v THTVrr-1H

Since DH = I from Eq. (3.30b), this becomes

I = vIHTV/TH

(3.34b)

(3.35)

For the identity to hold, the Lagrangian multiplier must

assume the form



T HTV 1
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(3.36)

When this result is substituted into Eq. (3.34), the final

form of D is established as

D (HTvrr-1H) HTvrr-i (3.37)

With this D, and with G = 0 from Eq. (3.30a), the desired

estimator is obtained from Eq. (3.11) :

(HTvrr-1H) -1 HTvrr- 1 Y (3.38)

Least Squares Estimation. The Least Squares form of the

estimator 2 can be obtained directly from the result for

Weighted Least Squares.

In Least Squares estimation, it is assumed that the

variance matrix for the measurement error is of the form

VII = V2 (3.39)

where v2 is the square of the standard deviation of the

measurement error. With this variance, Eq. (3.38) becomes

2= [HT (0.2i) -1/4) -1HT (0.2i) -ly

which simplifies to the desired form

(HTH) -1 HT Y

(3.40)

(3.41)

An examination of Eqs. (3.27), (3.38), and (3.41)

shows that, for all three estimation schemes, the estimator



38

for the parameters can be cast in the form

2 = DY (3.42)

Formulation of the Estimation Equations for Structural
Identification

Suppose a mathematical (finite element) model is

generated for an instrumented test structure. Prior to

testing, the analyst makes a best (prior) estimate of the

values of the structural parameters, denoted by {rd. The

analysis is performed, yielding a predicted structural

response {Q(rp)} based on the prior estimate of the parame-

ters. An improved estimate of the response {Q(r)} can be

obtained by expressing the solution to the mathematical

model of the structure as a Taylor Series expansion about

the prior estimate of the parameters.

Consider a continuous, differentiable function f(r).

The Taylor Series expansion of this function about a nearby

point T. is given by

aff('r) - f(?) + (I- -T-) (3.43)

where the partial derivative of the function is evaluated at

the point T (58). For the structural identification problem,

the function under consideration is the response of the

structure, {Q}, which is a function of the structural

parameters, {r}. Therefore, expanding this response in a
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Taylor Series expansion about the (nearby) prior estimate of

the parameters, {rp}, yields

where the

{Q (r) } - {Q (r

derivative term

}

is

aQ[Tr-I {r} {rp}

at {rp}.

(3.44)

Define aevaluated

sensitivity matrix, [T], as

[T] - (3.45)

which relates the change in structural response to the

change in the structural parameters (4). This definition

allows Eq. (3.44) to be written as

{Q(r) } {Q(rp) } - [T] ({r}-{rp} (3.46)

After the structure is tested, the measured response

{Qin} becomes available, and can be considered as the "true"

response to be matched by the finite element model. The

measured data will be polluted by an error vector {6},

assumed to be zero mean with a variance of [V"]; that is,

E({e}) = {0} : nd x 1 (3.47a)

E({0{E}T) = [V"] : nd x nd (3.47b)

Thus, when the experimental response is used, Eq. (3.46)

becomes



( {Q,} -{Q(rp) } ) - [T] (frl-frpl) +fel
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(3.48)

This equation is of the same form as the standard

linear estimation equation, given by

where

{Y} - [H] {Z}+{r}

{Y} = {(2,} fQ(rp)1

[H] = [T]

{Z} = {r} - {rp}

frl = {e}

(3.1)

(3.49a)

(3.49b)

(3.49c)

(3.49d)

Recall that the estimator for {Z} was assumed to be of the

form

{2} - {G} +[D]{Y} (3.11)

It was shown that {G} = {0} for all three estimation

schemes, so that the estimator can be written as

al - [D] {Y} (3.42)

Let [W] represent [D] for the structural identification

problem, and note that

al = {f} frpl (3.50)

Substituting these terms into Eq. (3.42), along with {Y}

from Eq. (3.49a), one obtains



( {f} frpl ) - [W] ( {Q,} {Q(rp) } )

If this equation is rearranged, the improved estimate of the

structural parameters, {t}, is found to be

{f} - frpl+[w]({C4} -{Q(rd}) (3.52)

In this equation, [W] is referred to as the weighting

matrix, and is given by the three forms of [D] derived in

the previous section of this chapter. In those three

expressions, the following substitutions are made based on

the correspondence of terms :

[H] = [T]

[Vu] = [Vrr]

[VIT] = [V"]

(3.53a)

(3.53b)

(3.53c)

Therefore, the weighting matrix for the structural identifi-

cation problem is given for the three estimation schemes by

Bayes

[W] - [Vrr] MT( [T] [Vrr] [T]T+ [ViE] ) -1

weighted Least Squares

[W] - ( [T]T [V, e] -1 [T] ) -1 [T]r [V, ] -1

Least Squares

[W] - ([T]T[T])-1[T]T

(3.54a)

(3.54b)

(3.54c)

The matrices [Vrr] and [V"] are specified by the analyst,

and reflect the uncertainty in the parameters and data,

respectively.
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In the previous section of this chapter, the Bayesian

estimator for {Z} was reduced to the form al = [D]fY1

because it was anticipated that

{Az} = {0}

{Ay} = {0}

(3.26a)

(3.26b)

for the structural identification problem. This can now be

readily seen from Eq. (3.49), since

{Az} - E({r}-{rp}) - {rp} -{rp} - {0} (3.55a)

and

E({4,,}{Q(rp)}) {Qn} {Q,} {0} (3.55b)

In this section, it was shown that the improved

estimate of the structural parameters is given by

{f} frpl [W] ({4,}{4(r1) } ) (3.52)

where the weighting matrix [W] is a function of the sensi-

tivity matrix [T]. The following section considers the

sensitivity matrix in more detail.

Forms of the Sensitivity Matrix, [T]

As defined in Eq. (3.45), the sensitivity matrix [T]

relates the change in structural response to the change in

the parameters as

[T] - (3.45)
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Recall that Q represents the calculated response of the

structure. For free vibration analysis, Q comprises the

squared natural frequencies and the mode shapes. For forced

vibration, Q comprises the time-history kinematics; i.e.,

the displacements, velocities, and accelerations at the

nodal degrees-of-freedom. For both types of analysis, the

response will be shown to be an explicit function of the

mass and stiffness matrices, [M] and [K]. (For forced

vibration, the response will also be dependent on the

damping matrix, [C]; however, this matrix will be formed

from a linear combination of [M] and [K]). The mass and

stiffness matrices, in turn, are explicit functions of the

structural parameters (e.g., element areas). Thus, the chain

rule of differentiation may be used with Eq. (3.45) to

express the sensitivity matrix as

[T]
[4 I -{[41a 1[21 4.[PaTQC1[-aai 11

(3.56)

For computational ease and efficiency, [T] may be expressed

as the product of two submatrices (1,4) as follows :

[T] - [2J
1 [ -21 [ TQ< 1 I

(3.57)



Defining

[B] - [ [21 ] [g i ]

[A] -

the sensitivity matrix can be written as

[T] - [B][A]
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(3.58a)

(3.58b)

(3.59)

The exact forms of [B] and [A] depend on the type of

response (i.e., free vibration or forced vibration) and the

type of parameters to be estimated.

Free Vibration. Recall that the equations of motion for a

structure are given by

[M] {k} + [C] ficl + [K] {x} - {P(t) }

For a free vibration analysis, Q represents the frequencies

and mode shapes obtained from the solution to this equation

in the absence of damping and applied loading; that is

[M] {R} + [K] {x} - {0} (3.60)

The solution for the displacement is assumed to be harmonic

and of the form



{x} -IC- sin(Gyt y)
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(3.61)

where {0} contains the amplitudes of motion (mode shapes)

for the n degrees-of-freedom, o is the natural frequency of

vibration, and y is a phase angle (59). Substitution of {x}

and its second time derivative into Eq. (3.60) yields, after

rearranging,

([K] -632[14]){0} - {0}
(3.62)

A nontrivial solution of this equation, which is a form of

eigenproblem, requires that the determinant of the term in

parentheses vanishes. Define

A. (62 (3.63)

as the squared natural frequency; it is therefore required

that

I [K] -1[M] I- {0} (3.64)

Note that Eq. (3.64) actually represents n simultaneous

equations written in compact form, where n is the number of

d.o.f. The solution will therefore yield n values of the

squared natural frequency stored in the vector {A}, and n

sets of the vector 101, the mode shapes. Thus, for a free

vibration analysis, the complete response is given by

{4} TAll
{0)

(3.65)



and the sensitivity matrix is given by

[T] -
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(3.66)

If the form given by Eq. (3.57) is used, the sensitivity

matrix becomes

[T] - [-a (3.67)

Comparing this with the form shown in Eq. (3.59), the

sensitivity submatrix [B] for free vibration may be written

as

[B] - (3.68)

Submatrix [A] is given in Eq. (3.58b).

It should be noted that a full set of experimental data

(Qm) need not be measured; i.e., frequencies and mode shapes

do not have to be measured in every mode and for every

d.o.f. Define :

p = number of measured A

q = number of modes for which 0 is measured

s = number of d.o.f. at which 0 is measured
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nd = p+(q*s) = total number of measured data

np = number of parameters to be identified

n = number of d.o.f. in finite element model

The dimensions of the matrices are thus

[T] : nd x np

[B] : nd x 2n2

[A] : 2n2 x np

Recall the equation that specifies the improved estimate of

the structural parameters :

{f} - frpli-[1,1] ({Q,}-{C(rp)}) (3.52)

It can be seen that the dimensions of these matrices are

{f}, {r} : np x 1

Qm, Q (rp) : nd x 1

[W] : np x nd

The terms of submatrix [B] shown in Eq. (3.68) are arranged

in the following order :

all all all

7g;

ax2 axe

W1 71472

alnp 3A ax,p,

zi,f171 -aRr;

: Size np x n2 (3.69a)



[ axi
[-a-kj

all all
-a172 -a17,n

312 812

a /np a /np elm
-5Kin
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Size np x n2 (3.69b)



0/411 am12 7mnn

0021 421
am11 am12

aos1 ao, 30,

am11 Tic

0012 0012
3M11 -31412

0022 ao22

TPT-11 TM.T2

80, aos2

-aT4-7-11 -aT472

301g 001g
am11 am12

002g a CP2q

3M11 7R-12

aosq acpsq

3M11 am12

0012
a Mr

001,1

amnr,

3

Size (q*s) xn2

(3.70a)
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[301

[TR]

411 4" 4"
TRT, 70172

42, 421

acs, acs, 300

7T17, 7
412 3012 3012

-ari; 7gc;

422 a022

&pa aoa aoa
-3Y1-1 -01-72 TCnn

301,,

WI W2 ?Yr;

a 2q 302q

-71q, -312

ao, ao, 30,

Size (g*s) xn2

(3.70b)
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In the above, the first subscript on 0 indicates the degree-

of-freedom and the second subscript denotes the mode number.

The eigenvalue (A) and eigenvector (0) derivatives in

the above expressions are presented later in this chapter;

the submatrix [A] is discussed in the last section.
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Forced Vibration. For a forced vibration analysis, Q

comprises the nodal displacements, velocities, and acceler-

ations (at each time step) obtained from the solution of the

equations of motion :

[M] {R} + [C] {X} + [K] {x} - {P(t) }

Details of the technique used for the solution are presented

later in this chapter. The solution can be represented as

{Q} -[{x,} {kJ {51.} r (3.71)

where the subscript '*' indicates the solution obtained at

the current time step.

For this response, the sensitivity matrix is given by

[T - [2]
(3.72)

After application of the chain rule of differentiation, [T]

can be written as
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(3.73)

The damping matrix [C] will not explicitly appear in the

analysis; rather, it will be formed from the mass and

stiffness matrices according to the form of Rayleigh

damping :

[C] -a [M]+8[K] (1.2)

The solution for the kinematics (x k 54) will be found to

be an explicit function of the mass and stiffness matrices

and of the damping coefficients a and B. Thus, the sensitiv-

ity of the kinematics with respect to the damping matrix

(e.g., ax,/aC) will be accounted for when calculating ax,aM,

ax/aK, etc., since a and B will appear in the equations.

This will be described later in this chapter.

Using Rayleigh damping therefore allows Eq. (3.73) to

be collapsed to

[T] -
aQ -

1
[ ax,
[ -DR j

[ a*,

sax.

[ -Tr(
1

j

ak.
[2 I
[..E.K

]

dr

[ 1 I- 1

(3.74)
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Upon comparison of this with the form shown in Eq. (3.59),

the sensitivity submatrix [B] for forced vibration may be

written as

[B] -
(3.75)

Submatrix [A] corresponds to the last term in Eq. (3.74); it

is the same as that given in Eq. (3.58b).

Recall that a full set of experimental data (Qm) need

not be measured. Define :

p = number of measured x

q = number of measured x

s = number of measured x

nd = p+q+s = total number of measured data

np = number of parameters to be identified

n = number of d.o.f. in finite element model

With these definitions, the dimensions of the matrices are

thus

[T] : nd x np

[B] : nd x 2n2

[A] : 2n2 x np
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which are the same as in the identification problem for free

vibration.

The terms of submatrix [B] shown in Eq. (3.75) are

arranged in the following order :

[ax,
IT1

ax,, ax*, ax,
-alT1 Iv7In12

aX,2 aX*2
T4-1-71 -Cgr2

a X*p a X *p a X *p

MiT2 7M71n

ax*, ax*, ax*,
-a -311 12 -aVin
aX*2 ax.2

aX ofp aX ax
(12 -aVIn

Same order

Same order :

Same order :

Same order :

: Size pxn2 (3.76a)

Size pxn2 (3.76b)

Size q x n2 (3.76c)

Size q x n2 (3.76d)

Size sxn 2 (3.76e)

Size sxn2 (3.76f)

The kinematic derivatives in the above expressions are

derived later in this chapter. The submatrix [A] is dis-

cussed in the last section.
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Equations (3.74) through (3.76) are applicable to the

identification of all element-level parameters (e.g.,

element areas) and the structure-level parameters (concen-

trated masses and stiffnesses). Later in this chapter, it is

shown that the kinematic derivatives are explicit functions

of the structure mass and stiffness matrices which, in turn,

are explicit functions of these parameters. Note that the

damping matrix [C] was eliminated from Eq. (3.73) through

the assumption of Rayleigh damping; thus, the term [aC/ar]

is not accounted for in the equations already presented.

However, since damping is accounted for by using

[C] = a[M] + B[K], the equations which give the solution for

the kinematics x,, X and R, will be explicit functions of

a and B, as well as [M] and [K] (60). Thus, for identifica-

tion of the Rayleigh damping coefficients, Eq. (3.72) can be

expressed directly in terms of these two parameters as

MI
(3.77)

For the sensitivity matrix in the form [T] = [B] [A), the

sensitivity submatrix [B] for identification of damping

parameters is given by



[B] -
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(3.78)

and submatrix [A] is the identity matrix, [I].

For identification of the damping coefficients, the

number of parameters to identify, np, is equal to one or two

(depending on whether one or both of the coefficients are to

be identified). Therefore, the dimensions of the above

matrices are

[T] : nd x np

[B] : nd x np

[A] : np x np (Identity Matrix)

The terms of the submatrix [B] shown in Eq. (3.78) are

arranged in the following order :

: Size p x 1 (3.79a)



[ax,
-3-id

Size p x 1

- Same order : Size q x 1

- Same order : Size q x 1

- Same order : Size s x 1

- Same order : Size s x 1
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(3.79b)

(3.79c)

(3.79d)

(3.79e)

(3.79f)

The kinematic derivatives in the above expressions are

derived later in this chapter.

Forms of the Sensitivity Submatrix, 1131

The sensitivity matrix was decomposed into the product

of two submatrices according to [T] = [B] [A], and forms of

[B] were established for both free and forced vibration.

Equations are presented in this section for the terms

contained in the various forms of the [B] submatrix.
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Free Vibration. The frequency and mode shape derivatives

(sensitivities) indicated in Eqs. (3.69) and (3.70) can be

obtained using perturbation techniques (61,62). They have

been presented by Collins, et al. (4) and are as follows :

al;
a,,

li Oui CPvi

loll [M] {Ø},

CPU; CPvl

acPiJ i [1 Ai Oil+ Ouw Ovj )
(s

(Pi j Ouj Ovi
-D-MIT/ w-1 li k 2

acpu i riwouwovi ) (1 swj)
zicuv ..1 xj Av

(3.80a)

(3.80b)

(3.81a)

(3.81b)

In the above equations, N is the number of modes that must

be included in the summation for convergence to be attained

(N < number of d.o.f.). Also, the summation convention on

repeated indices is used, and Sii is defined as

J1 : i-j
6"-0 : ioj

(3.82)

It has been found by others (1,4), and is confirmed subse-

quently in this study, that only a few terms are typically

needed in the summations to ensure convergence.

Forced Vibration. In this chapter, expressions for the

kinematic sensitivities are derived from the relationships
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used to solve the equations of motion. Because these

sensitivities are dependent on the method used to solve for

the kinematics, this method will first be presented,

followed by the derivation of the sensitivities.

To solve for the unknown kinematics (displacements,

velocities, and accelerations), the equations of motion,

restated below, are satisfied at discrete time points spaced

At apart :

[N] {R} + [C] {X} + [K] {x} - {P(t) }

For clarity of the following presentation, matrix

notation will not be used in this section, except when

presenting the final form of the kinematic sensitivity

equations.

Although standard numerical methods for the solution of

differential equations can be used to solve for x, x, and x,

other techniques are available which take advantage of the

special nature of the terms in the above equation. One of

the most widely used techniques is the Wilson Theta Method,

which is an extension of the linear acceleration method. The

Wilson Theta Method is a self-starting, implicit integration

scheme and is unconditionally stable under conditions which

are easily satisfied (60).

Assume that the displacements, velocities, and acceler-

ations are known at the discrete time steps from time 0 to

time t. To obtain the solution for the kinematics at time
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t+At by the Wilson Theta Method, equilibrium is established

at some later time t+OAt. For unconditional stability of the

solution, 0 > 1.37; for convenience, 0 = 1.4 is usually

used.

The acceleration is assumed to vary linearly from

time t to time t+OAt, as shown in Fig. 3. Thus, the acceler-

ation at some intermediate time T, measured from time t, is

Rt+T Xt ÷ Tt ( 54+8At Xt, (3.83)

Integrating twice and evaluating the constants of integra-

tion from the boundary conditions

@ T - 0 :

@ T - 0 :

*t+T *t
Xt*,,. Xt

(3.84a)
(3.84b)

yields the velocity and displacement at any value of T as :

T2
*tf-r - *t + Rt./. 4- 20 At ( 544aAt 54

T2 T3..X
t+,,

Xt + Sr,tr + _X,. +
2 60 At (Rt+eAt Rt )

For clarity of presentation, let the subscript I** I

(3.85a)

(3.85b)

indicate

time 't+OAt', '*' indicate time 't+At', and the absence of

a subscript indicate time 't'. This notation allows the

accelerations to be written more compactly as

R Xt

R* Rt+At

X - Xt+Eut

(3.86a)
(3.86b)
(3.86c)



xt

t

Xt.,
X t

I I

t+T t+ter t +9fr

OAt

ACCELERATION

TIME
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Figure 3. Definition Sketch for Wilson Theta Method
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The other kinematic terms can be written in a similar

fashion.

Evaluating the velocity and displacement equations at

= OAt (time t+OAt), and using the notation defined above,

one obtains

k. mkt+eet -
eof

(51*.+50 (3.87a)

x Xt4eAt X + OAt
(0,At)2/..

+ + 2x (3.87b)
6

With expressions for the kinematics at the projected time

step, equilibrium is established by substituting these

kinematics into the equations of motion, Eq. (1.1) :

MR+C):c+Kx 17(t) (3.88)

The loading term is obtained by extrapolating the specified

load to time t+OAt; that is,

R(t) R + ( R,-R ) (3.89)

where "R" denotes the applied loading P(t) in Eq. (1.1).

In order to find a solution to Eq. (3.88), the acceler-

ation and velocity need to be expressed in terms of the

displacement, x. Solve (3.87b) for L in terms of x :

6

(0At)2 1TH (3.90)
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Substitution of this equation into (3.87a) allows k to be

expressed in terms of x as

x.
0 At ..x

Define the constants
6 6

ao
ti

- a2 -
(Ot)2
3 eAta-

1 TAT
a3-

2

(3.91)

(3.92)

and substitute Eqs. (3.90), (3.91), and (3.92) into

Eq. (3.88). The equations of motion become

M (aox ao a2Sc -2R) + C (aix aix -2k a3R) +

+Kx - rt
(3.93)

Collect coefficients of x and bring all other terms to the

right hand side of the equation to rewrite this equation as

(a0M+a1C+K)x -17+M(aoxa25c+2R) +
+C(a1x+2k+a3R)

Define the "effective stiffness" as

(3.94)

R - a0M+a1C+K (3.95)

and the "effective loads" as

& - 17, + M(aoxa2k+ 2R) +C(a1x+2k+a3R) (3.96)

The equations of motion, Eq. (3.90), can then be written as

R x.. - k.. (3.97)
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A solution for x,,, the displacement at the projected time

t+OAt, can be obtained from this equation.

In order to recover the kinematics at time step t+At,

Eq. (3.90) can be substituted into Eqs. (3.83) and (3.84),

with T = At, to yield

where

= a4 (x.-x) +a5k+a6R

= 5c+a704+50

= x+a95c+a8 01+250

6 At
a4 - a7 -

03At2 2

6 At2
a5 = a802At 6

a6 - 1- , a9 At

(3.98a)

(3.98b)

(3.98c)

(3.99)

The kinematic sensitivities can now be derived from the

above relationships. The sensitivities are sought for the

current time step, denoted by the subscript '*'. It is

assumed that all of the kinematics at the current time step

have been calculated, and that the kinematics and sensitivi-

ties from the previous time steps are available.

Sensitivity aivarifi : To calculate the acceleration/mass

sensitivity, the equations of motion must be expressed in

terms of 54 as the only unknown. To do this, Eq. (3.98a) is

solved for x and the result is substituted into Eq. (3.93)

to obtain
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M
a4 a4

R
* a 4

a2X 25t) +
ll

a a a
o 0 5 x

a0a6

+ C R*-
4

X
a
4

X 2SC a351) + (3.100)al ala
5

ala6

X* a5 a6+K _- X- 51+x - R.,
l a4 a4 a4

Rearrange terms, and define the constants

Thus,

b1

b2

b3

a0

a4

a° a6

a4

a0a6

a4

b4

b5

b6

aa41

ai as

a4

a6

a4

b7

b8

b9

1

a4

a 5

a4

a6

a4

(3.101)

(biM + b4C + b7K) + m (b2k + b35t + a2X + 2R) + (3.102)
+ C (b5X + b65t + 2X + a3R) + K (b8X + b95t x)

Combine constants by defining

gi b5+2
g2 4a2 + b2

g3 - b3 + 2

g4 b6+ a3
(3.103)

This allows the equation of motion to be written as

+ b4C + b7K) R, - + M (g2X + g351) +

+ C (gik + g4R) + K (b8k + b9R x)
(3.104)

The acceleration/mass sensitivity can now be determined

by taking the partial derivative of both sides of this

equation with respect to M1 :



a aka
(blm b4c b7K) x, + (biM + b4C +1D7K)

-
aM (g2k + g3R) + M (g2x + g3R) +

aC a
(gik g4R) C (gik g4R)

M (~hh8.11,.(b8X + b9R x) + K
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(3.105)

Performing the indicated differentiations, and solving for

the unknown sensitivity, one obtains

aR
- (311 + b4C + b7K) -1 i-b1 M K ) R,

am (g2x. g3x.. ) + M (Oh g3 Mak

zwac (gik g4k) + clg, ak
g4 -arci

ak

aK
(b8Sc + b9- x) + K (b8 ax + b9

ax ax )1

In this equation,

alc

TMT

since the stiffness matrix is assumed independent of the

mass. The term amomij is a matrix with all terms equal to

zero, except the term in the ij-th position (row i, column

j), which is unity. This matrix is denoted as Iij; that is,

(3.106)

(3.107a)

- am (3.107b)



With this notation, Eq. (106) can be simplified to

ac ) R
- (biM + b4C + b7K) -1 1 -biLrij -b4 . +{

asc as1)
+ Iij (g2k + g3k) + M(g2 W + g3 f-0#7j

asc
+ (gik + g4x) )aR +ac "N (...,

+ 1/4. igi g4 -a--Ti

ax
Kib ax

+ b
ax

9
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(3.108)

Since matrix multiplication is distributive and associative,

this equation can be rearranged as

ax,
- ()Dim b4c b7K) -1 I

ac

gi amci )5( + g4 imyacii)

ax / \ ax
K + kg2M + giC + b8K) _5 +

+ (g3M + g4 C + b9K ) amR.i

R. +

(3.109)

For Rayleigh damping, recall that the damping matrix is

expressed as a linear combination of the mass and stiffness

matrices as

[C] -a [M]+8[K]

When C is expressed in this fashion,

aC a (aM+BK) - a Iij

(1.2)

(3.110)
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Substitute Eqs. (1.2) and (3.110) into Eq. (3.109), and

define the constants

g5 - b1 + ab4

g6 b7 + 8b4
g7 g2 4- agl

g8 g3+ag4
g9 - b9+Bg4

go bo i-Bgi

This yields the desired form of the acceleration/mass

sensitivity :

- (g5[M]+g6[K] ) -1 1-g5[Iii]{R,}+g7[Iij]fkl+

+ g8[Iij] {R}- [K] 1 IA1+ (g7[M] +go [K] )1 amk il (3.112)

+ (g8[M]+g9[K] )1and)

An examination of the above equation reveals that the

acceleration/mass sensitivity vector is of size n x 1. The

remaining vectors presented in this section are also this

size. If experimental data are not available for all n

degrees-of-freedom, then a subset of the n x 1 vector must

be extracted. This is discussed in Chapter IV.

Sensitivity aR,dalcii : If the form of Rayleigh damping in

Eq. (1.2) is substituted into the equation of motion given

by Eq. (3.104), along with the constants in Eq. (3.111), the

result can be written as

(g5M+g6K) R R -Kx + (g7M+g0K) Sc +
+ (g8M+g9K) R

(3.113)
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Take the partial derivative of both sides of this equation

with respect to Kij, and note that

aM
- 0 (3.114a)

aK - IF (3.114b)
1T-C:

ij

ac
(3.114c)

Equation (3.113) then yields the desired form of the

acceleration/mass sensitivity :

{ - (g5[14]+g6 [K])-1(96[Iii){5t,}-[Iii){x} +

+ go[I1 ]fkl+g9[Iii]{k}-[K]f
IJ

a*(g7[M] +go [K] )
rte} + (g8 [1.1] +g9 [lc] ) fz.(3(})

Sensitivity aSc/a/Iii

(3.115)

In order to determine the veloc-

ity/mass sensitivity, the equation of motion given by Eq.

(3.102) must be rewritten with X, as the only unknown. This

is done by solving Eq. (3.98b) for R, in terms of k, as

- 1 (Sc.
a7

Substitution of this result into Eq. (3.102) gives

(3.116)



(b1M + b4C + b7K) Sc, - a7 { k.. +
+ 14 [ (102 + a2+ b1)Sc + (b3+2 +bi) R +

a7 J)

c_[ 1_b5 2+ _ + 134) Sc + (b6+a3+b4) R +
a 7

+ K [1138 + b7) 5c + ( b9 + b7) R x 1 1
a7

Define the following constants :

fi - a b +a + ID, )
7 2 2 a71 f4

f2 - a7(b3+2+b1) f5

f3 - a71 b5
+ 2+ 2.3-- 4 f6a7

- a_7 b( _6 a+ _3 + b4 )

b7)
- a71b8+

- a_7b (_9b+_7)
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(3.117)

(3.118)

Substitution of these constants into the previous equation

yields

(b1M + b4C + b7K) Sc. - a717. + M (f1X + f2R) +

+ C (f3k + f431) + K (f5Sc + fdt x)
(3.119)

Take the derivative of both sides of this equation with

respect to Mu to obtain

a ax,
(bim + b4c 4- b7K) Sc. + (biM + b4C + b7K)

+ wam (fik 4" f251) + Mifi
asc

+ f2
aR

-avc..)

+

+

(fax
4- f4R)

(f5k + fis5t

a*

4-

f aR ) ++ c if 3 +
4 71,7i

a* aRx) + K (f5
3M1 +

f
6 -aT, i

(3.120)
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Upon substitution of Eq. (3.107), the above equation can be

solved for the sensitivity :

akt
- (blm 4- b4c + b7K) -1aM

Recall that

( biIij +b4 amci )

+ Iii (fik + f2R) 4- 4-
f
2

ax +Mifl T,-/axTi /47:Iii

a )

+ ztT
ac (f3sc+ f4R) + c (f3 4-

f
4 -01-4TJ

ak aR )

+ K ax ax ax )1
(f 5+ 6 Zici

sc
+

[C] -a [M]+B[K]

aC - a In
10TIii

g5 - b1 + ab4

g6 b7 4- Bb4

and define new constants

f7 f1 + af3 f9 - f2 + af4

f8 f5 + Bf3 f0 '. f6 + Bf4

+

(3.121)

(3.122)

Substitution of the above into Eq. (3.121), and rearrange-

ment of terms, results in the desired form of the veloc-

ity/mass sensitivity :

(g5 [M] +go [K] )-1 1 -g5[Iii] {SC} +f7[Iii] {k} +

x
+ f9 [Iu] {2} -a7[K]

a{Tpd+ (3.123)

ak ait
+ (f7 [M] 4 f8 [K] ){-a-}d+ (f9 [M] +fo [K] )

J
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Sensitivity ak.laKu : Substitution of Rayleigh damping

into Eq. (3.119), along with the previously defined con-

stants, allows the equation of motion to be expressed as

(g5M + g6K) a717t.** a7Kx + (f7M + foK) +

+ (f9M + foK)
(3.124)

Taking the partial derivative, and using the simplifications

given in Eqs. (3.114), one finds the desired form of the

velocity/stiffness sensitivity as

(g5[14]+g6[K])-11-g6[Iii]{Sc}-a7[Iii]fxl+

f8[Iijfkl+fo[Ii000.-a7[K]W+ (3.125)

ak
(f7[M] fa [K] ){_5_14_ f

9
[m] 4-fo [K] ){

ZT-Ti
})

foKn j

Sensitivity ax,LIMii Before the displacement/mass

sensitivity can be derived, the equation of motion must be

expressed on terms of x, as the only unknown. This is done

by solving Eq. (3.98c) for R, as a function of x,, and

substituting the result into Eq. (3.102). Thus

1
(x* x -a9k)

and the equation of motion becomes

(3.126)



Define

(b,M + b4C + b7K) x, - a8 { ft +

11 bi )
+

[( a8)
"2 + a2+

+ c [( b4) x + 11)5 + 2 +
a8

73

x + (b3 + 2 +2b1) R

X (b6 + a3 + 2 b4) R l

+

+

(3.127)a 8

ba4a91

8

+ K [( x + (b8+
b7 a0

x + (139 + 2b7)
a8 a8

(
b7

110 - a8 -1 h4 - a8 ( b3 + 2 + 2bi )
a8

h1 - a
b1 a9

_8 _b2 + _ a2 + h5 - a8(b6+ a3+2b4)

h2 - a8 b5(
bLa

+2 + h6 - a8(b9+2b7)
a8

(
b7 a9

h3 - a8 b8 +
%..8

(3.128)

and substitute these constants into the previous equation to

obtain

+ b4C + b7K) x, - a8K + M (bix + h1x + h4R) + (3.129)
+ C (box + h2Sc + h531) + K (hox + h3Sc + h6R x)

Take the derivative of both sides of the equation :

a ax.
1-al

(bim + b4c + b7K) x. + ()Dim + b4c + b7K) -
1,

( ax a* aiz
(bix + hik +100 + m 101 + hi + h4 +

. -a1,7 . wi -aliii

(box + h2Sc + h5R) + C b4
ax

2
ax aRwi ZKi wi

JI

6 -=-031(hox +1135c h6R) + K (ho ax ax + h

°P1 1 j j

(3.130)
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With the simplification given by Eqs. (3.107), the above

equation can be solved for the sensitivity :

ax. ac
(g5M + g6K) + b4 x, +

Tfdirj

+ I; (bix + hi* + h4R) + m + +h4 +ax

axac
(box h2k + too 4- cit./. h2 zracjax h5 ziciaR

ax ax
dMij

+ h3 + h6M"

(3.131)

Recall Eqs. (1.2), (3.110), and (3.111), and define

h7 - h0 + BID/.

- h, + ah2
h9 h3 + Bh2

e0 - h4 + ah5

el - h6 + Bh5 (3.132)

Substitution of these constants into Eq. (3.131), and

subsequent rearrangement of the equation, results in the

desired form of the displacement/mass sensitivity :

ax.
- (g5 [M] +g6[K] )-1 (-g5[Iij] {x,} +

+ g5 [ILO {x} +h8[Iii] +eo [Iii] {R}+

(g5 [M] +h7 [K]

(h0[M]+h9[K])A1+

+ (e0[M]+e1 [K])A9)

(3.133)
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Sensitivity ax,/aKij If the necessary constants are

substituted into the equation of motion given by Eq.

(3.129), along with the assumption of Rayleigh damping, the

following is obtained :

(g5M + g6K) x* - 4.** + (g5M + h7K) x + (3.134)
+ (h8M + h9K) x + (e0M + eiK)

Upon differentiation, and simplification according to Eqs.

(3.114), the above equation yields the desired form of the

displacement/stiffness sensitivity :

Sensitivity

ax*
- (g5[14]+g6[K])-1(-g6[Iii]fxs1+

ax

the equation of

(3.135)

motion

+ h7[In]fxl+h9[Iijfkl+el[IijOtl+

(g5[M] +h7[K] ){

(h8 [M] +h9[K] )

(e0 [M] +e1 [K] ) {

331,/aa : Recall

17..+

expressed in terms of the acceleration 34 :

12,* Kx + (g7M+g0K) +

(g8M g9K)
(g5M 'MO (3.113)

where the constants in this equation are given in Eq.

(3.111). Take the derivative of both sides of this expres-

sion with respect to the first Rayleigh damping coeffi-

cient, a :



aR*
,Te(g514+ g6K) X. + g5M g6K) -0-Fe

(g7M goK) -0Trak -0(ja (g7m÷ goK)
aR

(g8M g9K)
a

(g8m g9K) Ruct
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-K ax ax
x +

(3.136)

Note that the constants g5, g7, and g8 are functions of a;

their derivatives are given by

ag5 - b4 (3.137a)

(3.137b)

(3.137c)

Since the mass and stiffness matrices are not functions of

a and B, it follows that

aM - 0
-0(Te

aK 0da

(3.138a)

(3.138b)

Substituting Eqs. (3.137) and (3.138) into Eq. (3.136), one

obtains the acceleration/alpha sensitivity as

f
da

aR,s} (g5[14]+g6 [K] ) ( -b4 [M] {51,} +gi [M] {St} +

+ g4 [M] {R} [K]{.axa} + ( [PI] +go [K] ) {2} +

g8 [M] + g 9 ) Ital (3.139)
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Sensitivity aR./aB : When the derivative with respect to

B is taken of Eq. (3.113), the result is

a aRt ax ax
(g-3M + g6K) X. + (g5M + g6K) _____ - K

, x .

?T3
ax a

÷ (g7M + goK) ?T3 + -aT3 (g7m+ goK) Sc ÷ (3.140)

aR
+ (gam+ g9K) TE + -aT3 (gam+ g9K) R

Note that g6, g9, and go are functions of B; their deriva-

tives are found to be

ag6 b
-a-B- 4

ag9
g4OW

agod-E gl-

(3.141a)

(3.141b)

(3.141c)

The derivatives of the mass and stiffness matrices are

am -
-3T3

ax
- o

-0T3

(3.142a)

(3.142b)

since neither are a function of B. Substitution of the above

into Eq. (3.140) will yield the acceleration/beta sensit-

ivity :
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f al* - (g5[M] +g6[K] ) -1 ( -b4[K] {R*} +g1 [K] {X} +

+ g4 [K] {R} [K] { ?+ ( g7 [14] +go [lc] ) IzT3ak}÷ (3.143)

+ (g8[M]+g9[K] ) MI)

Sensitivity ak./aa : Equation (3.124) along with the

constants given by Eqs. (3.111) and (3.122) express the

equation of motion in terms of X, as the only unknown. The

derivative of this equation can be taken with respect to a,

recognizing that the terms g5, f7, and f9 are functions of a.

The result, after simplification, is the desired veloc-

ity/alpha sensitivity :

{,a5c} - (g5 [M] +g6 [K] ) -1 ( -b4[M] {Sc*} +f3[M] {S} +
da

+ ft, [14] {R} --a7[K]{4 }+ ( f7 [M] +fa [K]) {-aTza}+

+ (f9 [M] +fo [ K ] ) 6a31) (3.144)

Sensitivity asciaB : Beginning with the equation of motion

given by Eq. (3.124), one may derive the velocity/beta

sensitivity in a similar fashion :

- (g5 [M] +g6 [K] ) -1 1 -b4 [K] {Sc*} +f3 [K] {5} +
dB

ax a*
+ f4 [K] {R} a 7 61+ ( f7 [14] i-f8 [K] ) 61+

+ (f9[M]+fo[K])11111) (3.145)
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Sensitivity ax./aa : The equation of motion given by Eq.

(3.134), in conjunction with the constants defined in Eqs.

(3.111) and (3.132), contains the displacement x, as the

only unknown. Following the same procedure as above, one

finds the displacement/alpha sensitivity to be

{,axda*1 - (g5[M]+g6[K])-1 1-b4[M] lx*l+b4[M] {x} +

+ h2 [M] {k} +h5 [M] {R} + ( g5 [M] +117[K] ) 01-1- (3.146)

ak
(h8{m] 4-119[K] ) 61+ (eo [M] +ei [K] ) kaRcel)

Sensitivity ax,faB : In a similar manner, Eq. (3.134) can

be differentiated with respect to B, and the result simpli-

fied to yield the displacement/beta sensitivity :

{-,0--x*/ - (g5 [M] +go [K] ) -1 (-b4[K]fxsl+b4[K]fxl+
dB

ax
h2 [K] {k} +h5 [K] {R}+(g5[M]+h7[K]){, 1 +dB

ak aR
(h8 [m] +h9[K] 1 + (eo [M] + [K] ) )

dB
(3.147)

Forms of the Sensitivity Submatrix, fAl

The sensitivity matrix [T], as given by Eq. (3.57),

expresses the change in structural response to the change in

the parameters as

[T]-[J- {[g1L PaTQC 1

(3.57)
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where
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[T] = [B][A] (3.59)

[A] - (3.58b)

In this last matrix, the n2 x np terms of [aM/ar] are

arranged as follows :

ICI

am" am" am"
77.7 717

am, am,

aNnn amnn

7i;

(3.148)

The n2 x np terms of [aK/ar] are arranged in the same order.

The procedure for assembling [A] is now presented. This

procedure differs for the identification of element param-

eters, lumped parameters, and damping parameters.

Element Parameters. In the finite element method, the

structure mass and stiffness matrices, [M] and [K], are

assembled from mass and stiffness matrices, [m] and [k],

calculated at the element level. Similarly, the mass/param-

eter and stiffness/parameter sensitivities in submatrix [A]
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can be assembled from sensitivities calculated at the

element level.

Consider the uniform, planar, elastic beam element

shown in Fig. 4. The six degrees-of-freedom for the element

are shown : they are the axial, transverse, and rotational

displacements at the nodes. The structural parameters which

dictate the mass and stiffness characteristics of the

element are shown in the figure and are defined as follows :

I = Moment of inertia

A = Cross-sectional area

i = Distributed mass per unit length

E = Modulus of Elasticity

L = Length

The element stiffness matrix for the element (63) is

symmetric and is given by

[k] -

AE
L

0 0
AE
L

0
12E1 6E1

0
-12E1 6E1

L3 L2 L3 L2

0
6E1 4E1

0
-6E1 2E1

0 0

L2 L L2 L

AE AE
0 0 0 0

L L

0
-12E1 -6E1

0
12E1 -6E1

L3 L2 L3 L2

0
6E1 2E1

0
-6E1 4E1

L2 L L2 L

(3.149)



S2 S5

E, I, A, m, L

Figure 4. Beam Element
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Two approaches are available for forming the element

mass matrix, [m] : the consistent mass method, and the

lumped mass method (59). The consistent mass method produces

a fully-populated mass matrix, while the lumped mass method

yields a diagonal matrix. For a large class of structural

analysis problems, the lumped mass approach is of sufficient

accuracy and is preferred because of the reduced solution

effort which results (2). The lumped mass approach is used

to form the element mass matrices in this study. The use of

consistent mass matrices would not require any modifications

to the identification procedure, other than the inclusion of

additional off-diagonal terms.

In the lumped mass approach used in this study for

forming [m], the mass of the element is lumped at the

translational degrees-of-freedom (axial and transverse) . The

inertial effects corresponding to the rotational d.o.f. are

assumed to be negligible. Thus, the element mass matrix is

given by

riL

2

EL
2

0

EL
2

EL
2

(3.150)



where all off-diagonal terms are zero (59).

form
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Recall that the sensitivity submatrix [A] is of the

[A] - (3.58b)

Consider the matrix [aK/ar] in this equation. It represents

the stiffness/parameter sensitivities for the entire

structure, and is assembled from the individual element

sensitivities, [ak/ar], following the same procedure used to

assemble the structure stiffness matrix from the element

stiffness matrices.

The stiffness/parameter sensitivities for an element

are obtained by taking the partial derivative of [k] with

respect to the parameter being identified. For example,

suppose that the moment of inertia of element Hill is to be

identified and that it is the j-th parameter being identi-

fied; thus,

ity is

rj = Using

aki

Eq.

0

0

0

0

0

0

(3.149),

0 0

12E 6E

0

0

0

0

0

0

the element

0 0

-12E 6E

sensitiv-

(3.151)

L3

6E

L2

4E

L3

-6E

L2

2E

L2

0

-12E

L

0

-6E

L2

0

12E

L

0

-6E

L3

6E

L2

2E

L3

-6E

L2

4E

L2 L L2 L
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The matrix [aM/ar] appearing in [A] is assembled from

the element sensitivities [am/ar] in a similar manner.

Suppose rj = i, the element mass density. Then the mass/par-

ameter sensitivities for the element are obtained by taking

the partial derivative of [m] with respect to the param-

eter in :

L
2

am

L
2

0

L
2

L
2

0

(3.152)

The sensitivity submatrix [A] formed in this fashion is

used for both free vibration and forced vibration identifi-

cation.

Lumped Parameters. Consider, now, the estimation of lumped

structural parameters; i.e., concentrated masses and

stiffnesses incorporated directly at the structure level in

[M] and [K]. Suppose that a concentrated spring stiffness

KLii is the j-th parameter to be identified; thus, rj = Kt-1;.

The Kii term in the structure stiffness matrix consists of

all of the contributions from the element stiffness matrices

plus the concentrated stiffness KL11. This term can be

expressed as



Kii = E k" +- kl-..n
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(3.153)

where E k1 indicates assembly over all of the contributing

elements. Thus, the stiffness/parameter sensitivity can be

calculated at the structure level, and is given by

{all d ax

-aT aKL"

It can be seen from Eq. (3.153) that

aKii alcii
- 0 + 1

7T aKLii

(3.154)

(3.155)

The partial derivatives of all other terms in [K] are zero,

since they do not contain KL.

A similar argument can be made for a concentrated mass

MI-ii;
the outcome will be analogous.

For lumped parameter identification, submatrix [A] is

therefore a matrix containing zeroes everywhere except at

the locations corresponding to the concentrated masses and

stiffnesses which are to be identified; these locations

contain the value unity. The submatrix [A] formed in this

manner is used for both free vibration and forced vibration

identification.

Damping Parameters. In a previous section, it was shown

that the equations which allow for the solution of the

kinematics are explicit functions of the damping parameters,
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a and B. This allows the sensitivity matrix to be expressed

directly in terms of the kinematic/damping sensitivities as

[T] - - [B] [A]
(3.156)

Thus, for the identification of the damping parameters, the

submatrix [A] is simply the identity matrix, [I].
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ALGORITHM AND PROGRAM DEVELOPMENT

Introduction
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A computer program was developed to implement the

theory and procedures presented in this study. General

features of the program are described in this chapter.

Special programming techniques and algorithms used to

execute the system identification theory are also described.

Special attention is given to the calculation of the

sensitivity submatrices [A] and [B], and to the assembly of

the sensitivity matrix, [T]. Finally, important aspects of

the weighting matrix are presented for the three estimation

schemes available in the program.

Program Description

The program is divided into two distinct components.

The first component uses the finite element method (FEM) for

the analysis of plane frame structures. The second component

consists of the code needed to set up and execute the

parameter estimation using the system identification (SID)

techniques presented in this study. Organizing the program

in this manner allows the estimation algorithm to be kept

entirely separate from the finite element code.

The program is written in FORTRAN and contains approxi-

mately 4000 statements. The FEM component consists of a main
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The program is written in FORTRAN and contains approxi-

mately 4000 statements. The FEM component consists of a main

routine and 28 subroutines; the SID component comprises 34

subroutines. This modular construction allows each sub-

routine to perform a specific, narrowly-defined function. An

overlay structure is used to minimize memory requirements,

as are a total of 37 files, both sequential and random

access. These files are used to store the mass and stiffness

matrices, load history (for forced vibration), experimental

data, and sensitivity matrices.

The finite element portion of the program performs a

linear analysis of two-dimensional, elastic frames composed

of prismatic members. The program is capable of static, free

vibration, and forced vibration analysis. The input consists

of the data typically required for a FEM frame program.

The SID portion of the program is capable of identify-

ing element and lumped parameters for free vibration

response, and element, lumped, and damping parameters for

forced vibration response. Any number of parameters may be

identified simultaneously, and in any combination of the

basic types (element, lumped, damping). For example,

consider parameter estimation for forced vibration response.

The user may request estimation of any or all of the

following parameters, for as many elements as desired :

moment of inertia (I), cross-sectional area (A), and mass

density (it). One or more concentrated masses (ML) and/or



90

concentrated stiffnesses (KL) may also be identified at the

same time, along with one or both of the Rayleigh damping

coefficients, a and B.

Input for the identification component of the program

consists of : 1) the scheme desired (LS, WLS, Bayes), 2) a

list of the parameters to be identified, 3) measured data,

4) data and parameter variances, and 5) convergence crite-

ria. Program printout consists of the improved estimates of

the parameters and the response of the model based on these

parameters.

Parameter estimation proceeds within an iteration loop

which is terminated when convergence is attained. To define

the convergence criteria, the user specifies the required

tolerance on : 1) the percent change in the parameters, and

2) the percent difference between measured and calculated

response. To minimize calculations, only quantities that are

effected by changes in the parameters are recalculated

within the iteration loop.

Free Vibration

A flowchart depicting the general progression of the

system identification process for structures was presented

in Fig. 2. The detailed flowchart shown in Fig. 5 is for

free vibration identification as it is implemented in the

computer program. In this figure, "M and K sensitivities"

denotes [aM/ar] and [aK/ar]; "? and 0 sensitivities" denotes



INPUT DATA

EL OR
EL + L

7

CALC. M & K
SENSITIVITIES, [A]

BEGIN SID
ITERATION

LOOP

SOLVE EIGEN
PROBLEM

/ZERO OUT
{or },[T],[W] EL = IDENTIFY ELEMENT PARAMETERS

L = IDENTIFY LUMPED PARAMETERS

L
ONLY

7

Y

[T]=[B][A]

CALC. ADDTL [B]
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NEEDED
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ASSEMBLE [T]

FROM [B]
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Figure 5. Flowchart for Free Vibration Identification
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O
CALC. WEIGHTING

MATRIX, [W]

lArI=EWMCW-{Qp })

A
{r}={rp} +{er}

A
{rp} = {r}

END
SID LOOP

Figure 5 (Cont.). Flowchart for Free Vibration
Identification
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[ax/am], [axialq, [a00m], and [30/3K]. Reference should be

made to the flowchart for the following discussion.

Calculation of [A] and [B]. The two classes of parameters

which may be estimated for a free vibration problem are

element parameters and lumped parameters. The program begins

by reading in all of the data for the finite element model,

followed by the data needed for the system identification

calculations. After all data are read, the sensitivity sub-

matrix [A] is formed if any element parameters are to be

identified. As previously discussed, [A] is assembled from

sensitivities calculated at the element level using the same

FEM routines used to assemble the structure mass and

stiffness matrices from the element matrices.

Consider the matrix of stiffness/parameter sensitivi-

ties given by Eq. (3.151). It is apparent that the terms in

this matrix would also be obtained if the stiffness matrix

of element "i" is evaluated for a unit value of the moment

of inertia; i.e., for Ii = 1. Thus, the matrix [ak/ar] can

be calculated by calling the finite element routine which

calculates [k]. When calling this routine, a value of unity

is passed for the parameter being identified.

The element level sensitivities are calculated in this

manner for all of the moments of inertia and areas to be

identified. These element level sensitivities are then

assembled to form [aK/ar], the stiffness/parameter sensitiv-

ities for the entire structure. The assembly is accomplished
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by calls to the finite element routine which assembles [K]

from the element [k] matrices.

In the same manner, the mass/parameter sensitivities

[aM/ar] are assembled from sensitivities calculated at the

element level. These sensitivities are calculated by calling

the finite element routine for forming [m]; the routine is

called with a unit value for R, the mass density of the

element.

Each call to the [m] or [k] routine calculates one

column of submatrix [A]. After a column is calculated, the

values are written to file. The logic for the entire process

is contained in the SID component of the program.

To minimize computer resources when assembling [A],

advantage is taken of the special form of [M] and [K]. Since

[M] is a diagonal matrix, only the n sensitivities corre-

sponding to the main diagonal are calculated and stored.

Because [K] is a symmetric matrix, only the (n2+n)/2

sensitivities corresponding to the upper triangle are

calculated and stored. Thus, the size of [A] is reduced from

n2 x np to [n + (n2+n)/2] x np.

For the estimation of lumped parameters, [A] differs in

content from the matrix used for element estimation. In the

previous chapter, [A] was shown to consist mostly of zeroes,

with unity appearing in np locations (np = number of parame-

ters). It would be inefficient to form and store such a

sparsely populated matrix. Therefore, a more efficient
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procedure is used to form [T] directly from [B] for lumped

parameter identification. This procedure is described in the

next section.

The SID iteration loop is now begun. The structure

response (eigenvalues, X and eigenvectors, 0) is calculated

according to Eq. (3.64). This response is based on the prior

(most recent) estimate of the parameters. For the first pass

through the loop, the prior values of the parameters are the

initial values used to construct the finite element model.

The sensitivities needed to form [B] can now be

calculated. If only lumped parameters are to be identified,

the X and 0 sensitivities of [B] are calculated, as needed,

depending on the type of measured data available and the

type of lumped parameters. For example, if experimental

frequencies are available and concentrated masses are being

estimated, only [ax/am] is calculated. The sensitivity

matrix [T] can be assembled directly from [B]; the procedure

to do this is described in the next section.

If only element parameters are to be identified, the X

and 0 sensitivities are calculated, as needed. For example,

if mode shapes have been measured and element areas and mass

densities are being estimated, [30014] and [300K] must be

calculated.

If a combination of element and lumped parameters are

to be identified, the X and/or 0 sensitivities required for

the element parameters are first calculated. If any of the
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sensitivities needed for the lumped parameters were not

calculated when processing the element parameters, they are

now calculated.

In all cases, the X and 0 sensitivities which consti-

tute the terms of matrix [B] are calculated according to

Eqs.(3.69) and (3.70). As each column of [B] is calculated,

it is written to file. Recognition is made of the diagonal

form of [M] and the symmetry of [K]. Thus, sensitivities are

only calculated and stored for the main diagonal of [M] and

the upper triangle of [K]. As a result, the size of [B] is

reduced from p+(q*s) x 2n2 to p+(q*s) x [n + (n2+n)/2].

Assembly of [T]. The sensitivity matrix [T] can now be

formed. If lumped masses and stiffnesses are the only

parameters being estimated, [T] can be assembled directly

from [B] as follows.

For simplicity, only consider the frequency/stiffness

sensitivity [axialq. Suppose the second parameter to be

identified, r2, is the concentrated stiffness KL11. The total

stiffness Kit is made up of this term and the contributions

from the elements. For this case, the sensitivity matrix is

calculated from [T] = [B][A] and is given by



[T]

311 311 311-

1 7R-372 3KKnn

312 312

?<3.1 ?T<7.2

81 ax alP P P
-aTC11

3K11 OK11 aKil

3K12 31(12_

aKnn aKnn aKnn

71:1
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(4.1)

The form of the submatrix [A] used for lumped parameter

identification was

form allows the above

[T] -

discussed in the

equation to be

311 311 311

previous chapter.

written as

0 1 0

00

0 0 0

This

(4.2)
312 312

P
OKnn

aA,P P
-3-1-C11 71(12

After multiplication, matrix [T] becomes

[T] -

ax
0 P - 0

-OTT1

(4.3)

Thus, the first column of [B] becomes the second column of

[T]. This result can be generalized as follows. Suppose

rj = KLi. Determine the row of [A] which would contain the
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term aKdari, say row v. Then column j of [T] is equal to

column p of [B]. The remaining columns of [T], corresponding

to the remaining lumped stiffnesses, can be assembled in a

similar fashion. This is the procedure used by the program

to form [T] directly from [B].

The other sensitivities (a). /am, 30014, and aooK) are

processed in the same fashion when assembling [T].

If any element parameters are to be estimated, the

sensitivity matrix can be constructed according to

[T] = [B][A]. However, the program does not perform this

calculation using the standard algorithm for matrix multi-

plication. The complete [B] and [A] matrices are large and

would occupy a significant amount of computer memory if they

were retrieved from file in their entirety. Also, to perform

the matrix multiplication in the usual manner, the values in

[B] need to be retrieved by rows in order to multiply the

columns of [A]. However, [B] and [A] are written to file by

columns, and must be retrieved in the same order. Therefore,

a special procedure is needed in the program to assemble [T]

from [B] and [A].

The routine which does this reads a column of [B] from

file, and then reads the first column of [A] for processing.

It locates the terms in [A] which are to be multiplied by

the terms in the column of [B]. The multiplications are per-

formed, and the results are saved in [T]. The remaining

columns of [A] are read from file one at a time and pro-
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cessed. The procedure is then repeated for the remaining

columns of [B].

If both element and lumped parameters are to be

identified, [T] is first assembled for all of the element

parameters; it is then augmented for the lumped parameters.

Calculation of Improved Parameters. Once [T] is completely

assembled, the weighting matrix [W] can be calculated

according to the identification scheme chosen; i.e., LS,

WLS, or Bayes. Equation (3.54a), (3.54b), or (3.54c) is used

for this calculation. The changes in the parameters, {Or},

are then calculated as

{Or} - ({t} {rp}) - [W]({W-{4(r01) (4.4)

For this calculation, the measured response .(Qml is read

from file; {Q(rp)} (denoted as Qp in the flowchart) is the

response calculated by the program for the prior (most

recent) values of the parameters. The improved estimate of

the parameters, {f}, is determined from

{t} = frpl + {Or} (4.5)

Convergence is now checked; if the convergence criteria

have been met, the SID iteration loop is terminated, and the

vector {t} represents the best estimate of the structural

parameters. If the process has not converged, the vector {t}

becomes the vector of prior estimates, {rd.. If any element

parameters have been modified, the corresponding element
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matrices [m] and [k] are recalculated to reflect the

changes. The structure matrices [M] and/or [K] must now be

updated, since they are effected by changes to both the

element parameters and the lumped parameters. This SID

iteration loop is repeated until convergence is attained, or

until the maximum number of iterations specified by the user

has been reached.

Forced Vibration

Figure 6 presents a detailed flowchart for forced

vibration identification, as it is implemented in the

computer program. In this figure, "M and K sensitivities"

denotes [aM/ar] and [aK/ar]; "Kin/M and Kin/K sensitivities"

denotes faxiaMl, fax,/aKl, etc.; and "Kin/a and "Kin /!3

sensitivities" denotes {a)4/act}, fax,/aBl, etc. Reference

should be made to the flowchart for the following discus-

sion.

Calculation of [Al and [B]. Three classes of parameters

may be estimated for a forced vibration problem : element

parameters, lumped parameters, and damping parameters. After

the program reads in all data, the sensitivity submatrix [A]

is formed if any element parameters are to be identified.

This is done using the same procedure described for free

vibration identification.

The SID iteration loop is begun; within this loop is

another loop on time. At each time step, the equations of
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Figure 6. Flowchart for Forced Vibration Identification
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Figure 6 (Cont.). Flowchart for Forced Vibration
Identification
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motion, Eq. (1.1), are solved for the kinematics using

Eqs. (3.87) and (3.98). Since the constants appearing in the

kinematic sensitivity expressions do not vary with time,

they are calculated during the first time step and saved.

Also, the matrix (g5M + g6K)-1 is calculated and saved; this

matrix appears in all of the equations for the kinematic

sensitivities.

The sensitivity submatrix [B] must now be formed. The

system identification can be performed for any number and

type of parameters, and in any combination. Consider, first,

identification problems where all parameters are from the

same class (e.g., all element parameters).

For element parameters, Eqs. (3.112), (3.123), and

(3.133) are used to calculate the kinematic/mass sensitivi-

ties if any mass densities are to be identified. If any

moments of inertia or element areas are to be identified,

the kinematic/stiffness sensitivities are calculated by

Eqs. (3.115), (3.125), and (3.135). These sensitivities

constitute the columns of submatrix [B]; they are calculated

in the order shown in Eq. (3.76) and are saved to file.

For lumped parameters, the kinematic/mass and kine-

matic/stiffness sensitivities are calculated from the same

equations used for the element parameters. If any of these

sensitivities were determined when the element parameters

were processed, the calculations are skipped.
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If any damping parameters are being estimated, the

kinematic/damping sensitivities given by Eq. (3.139) and

Eqs. (3.143) through (3.147) are calculated, as needed.

In all cases, the sensitivities which constitute the

columns of submatrix [B] are calculated and stored to file

in the order shown in Eqs. (3.76) and (3.79). The kinematic

sensitivities are calculated and saved for each time step.

After all time steps have been processed, the time loop is

terminated; the sensitivity matrix [T] can now be assembled.

Assembly of [T]. Recall that all of the kinematic sensi-

tivities which were calculated and stored on file are of

size n x 1, where n = number of d.o.f.. Thus, they contain

values for the sensitivity of the kinematics at all n

degrees-of-freedom. For example, 054/amul is made up of

values corresponding to 341,342,...,31*n. If measured accelera-

tions are only available for "p" of the d.o.f., only those

sensitivities corresponding to the p d.o.f. are to be

included when forming [T]. Therefore, in assembling [T], the

program extracts the subset of sensitivities corresponding

to the d.o.f. at which measured data are available.

For the estimation of element parameters or lumped

parameters, [T] is assembled in the same manner as for free

vibration identification. For the estimation of the damping

parameters a and B, submatrix [A] was shown to be an

identity matrix. Therefore, the sensitivity matrix [T] is

simply submatrix [B].
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If estimation is to be carried out for a combination of

parameters, the sensitivity matrix [T] is assembled in

stages, with each stage corresponding to one of the three

classes of parameters. The processing take place in the

following order : 1) element parameters, 2) lumped parame-

ters, and 3) damping parameters. For example, suppose

parameters from all three classes are being identified. All

of the element parameters are treated first, and the portion

of [T] corresponding to these parameters is assembled. The

lumped parameters are then processed, and [T] is augmented

with the appropriate sensitivities. Finally, the portion of

[T] corresponding to the damping parameters is formed and is

joined to the portions already assembled. The sensitivity

matrix [T] is now complete.

Calculation of Improved Parameters. The remainder of the

identification process is identical to the procedure used

for free vibration estimation. Note that the structure mass

and stiffness matrices, [M] and [K], do not have to be

reassembled if the Rayleigh Damping coefficients are the

only parameters being identified, since these matrices are

not functions of a and B.

Comments on the Three Estimation Schemes

Three identification schemes are available in the

program : Least Squares, Weighted Least Squares, and Bayes.

Other than minor differences in the input to the program
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(data and parameter variances), the only difference among

the three schemes appears in the calculation of the weight-

ing matrix, [W].

From Eq. (3.54), it can be seen that each scheme

requires a different matrix to be inverted for the calcula-

tion of [W]. Let this matrix be denoted by [N]. For the

three estimation schemes, the matrix that must be invert-

ed is :

LS : [N]-1 = ([T]T[T])-1 (4.6a)

WLS : [N]-1 = ([T]T[Vee][T])-1 (4.6b)

BAYES : [N] -1 = ([T][Vrr][T]+[Vee])-1 (4.6c)

For the first two schemes, the size of [N] is np x np, where

np = number of parameters. For Bayesian estimation, [N] is

an nd x nd matrix, where nd = number of measured data.

For free vibration problems, np and nd are usually of

the same order of magnitude. However, for forced vibration,

nd>>np since measurements are typically available at several

locations and for many time steps. Therefore, [N] will be

very large; its inverse may be difficult to obtain and is

subject to numerical inaccuracies.

The weighting matrix [W] is used to calculate the

changes in the parameters {Or} which, in turn, are used to

obtain the improved estimate of the parameters {f}. In order

to calculate [W], the inverse of [N] must exist; therefore,

[N] must be a nonsingular matrix (64).
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From the equations above, it is seen that the calcula-

tion of [N] involves the sensitivity matrix [T]. The size of

[T] is nd x np and its rank is np (18). Therefore, singular-

ity of [N] is dictated by the magnitude of nd relative to

the magnitude of np. Three distinct possibilities exist and

will now be described.

Case 1 : nd > np . If there are more data than parameters

being identified, then nd > np. The matrix [N] is nonsing-

ular for both Least Squares and Weighted Least Squares

estimation; [N] will be nonsingular for Bayesian estimation

only if [VEE] * [0].

For Bayesian identification, the matrix product

[T][Vrr][T]r is singular. In Eq. (4.1c), [VEE] is used to

remove the singularity. Therefore, this matrix, which is the

variance matrix for the experimental error, must be nonsing-

ular. When a nonsingular [VEE] matrix is specified, [N] is

nonsingular and may be inverted. Note, however, that

different values of [Vrr] , the variance matrix expressing the

uncertainties in the parameters, will cause different values

of [W] to be calculated. Thus, the values of the expected

parameters, {f}, are greatly affected by the choice of [VEE]

and [Vrr].

Finally, [W] as calculated by Least Squares and

Weighted Least Squares will be identical if all of the data

measurements possess the same uncertainty; i.e., if [VEE] =

c[I], where c is any positive number.
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Case 2 : nd = np . If there as many data as parameters,

then nd = np. For this case, all three estimation schemes

produce a nonsingular [N] matrix for any values of [VIE] and

[Vrr]. In addition, the Least Squares and Weighted Least

Squares schemes result in identical weighting matrices.

Bayesian estimation will produce this same matrix if

[Vee] = [0], regardless of the value of [VrT]. Finally, for

[Vrr] = [Vu] = c[I], the weighting matrix calculated

according to the Bayes scheme is independent of the value

of c.

Case 3 : nd < np . If the number of parameters to be

estimated exceeds the amount of available data, then

nd < np. Least Squares and Weighted Least Squares identifi-

cation is not possible for this situation, since [N] will be

singular. However, Bayesian estimation is possible, subject

to the limitations and observations presented in Case 1.
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Example problems are presented in this chapter to

demonstrate the validity and capability of the parameter

identification procedures presented in the previous chap-

ters. The computer program described in Chapter IV was used

to execute all of the problems.

As can be seen from Eq. (3.52) and Fig. 2, the identi-

fication procedure relies heavily on the difference between

measured response and predicted response. To test conver-

gence of the identification process, fictitious experimental

data were generated analytically for the examples in this

chapter. This was done for two reasons : 1) suitable

experimental data were not available for the types of

problems considered, and 2) known baseline responses were

desired so that convergence of the identification process

could be more readily detected.

In generating the pseudo-experimental data for each

example structure, a finite element model was formulated

with all structural parameters fixed at their true, or

target, values. The program was then used (in its non-

identification mode) to calculate the response based on

these values. This response was then treated as experimen-

tal, or measured, data in the parameter estimation process.
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In the second example problem, zero-mean Gaussian noise was

added to the response to simulate actual experimental

measurements.

After experimental data were generated for a structure,

various (prior) analytical models were postulated to be

different from the model used to generate the data. These

prior models had one or more structural parameters with

values that were different from those used to generate the

measured response. The program was then run to identify

improved estimates of the parameters.

Since the measured data were generated under controlled

conditions (i.e., for known target values of the param-

eters), the quality of the obtained solution can be easily

judged. This is done by comparing the final parameter

estimates with the target values, and by comparing the final

calculated response with the measured response.

Six example problems are presented in this chapter.

These problems demonstrate the major capabilities and

features of the identification techniques for both free and

forced vibration.

The first example is a one-story frame acted upon by a

time-varying load. Parameter identification is performed, in

turn, for the column moment of inertia, the floor mass, and

the damping coefficient. Studies are made to determine the

effects of the type, quantity, and spacing of the measured
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kinematics. The effect of noisy data on convergence is also

investigated.

The second example problem presents studies of a two-

story frame for free and forced vibrations. Simultaneous

identification of two or more parameters is demonstrated,

and the effect of the type of measured data are shown. The

column inertias, floor masses, and damping coefficients are

the parameters estimated. A comparison is made of the Least

Squares, Weighted Least Squares, and Bayesian estimation

schemes.

A cantilever beam is used as the third example to

further illustrate the ability to identify two or more

parameters at the same time. Free vibration is considered,

and identification is performed at the element level for the

moments of inertia and mass densities.

A cantilever beam with two lumped masses is studied in

the fourth example. Parameter estimation is performed for

the element cross-sectional areas using free vibration data.

The beam is then subjected to a suddenly-applied load at the

tip, and time-history identification is executed. Simul-

taneous identification is made of the element mass densities

and moments of inertia, followed by simultaneous identi-

fication of the element inertias and one of the Rayleigh

damping coefficients.

The fifth example presents a tower with a concentrated

mass at the top. The tower is supported at mid-height by a
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pair of guys, modeled as a linear spring (concentrated

stiffness). The foundation is partially restrained against

rotation : this effect is modeled by a rotational spring

(concentrated stiffness). The identification of these

stiffnesses is executed individually and simultaneously, for

both free vibration and forced response.

An ocean-based guyed tower is presented as the sixth

example problem. The tower supports a deck mass (platform)

and is acted upon by a train of regular waves. The displace-

ment of the platform was calculated for the hydrodynamic

load given by a form of Morison's equation which includes a

nonlinear, relative velocity term. This displacement was

taken as the measured response of the structure. The model

was then executed for the same conditions, using the same

hydrodynamic and structural parameters, but using a form of

Morison's equation which does not contain the relative

velocity term. In this model, identification was performed

on one of the Rayleigh damping coefficients in an attempt to

correct for the missing relative velocity dependence. A

second model was formed for which estimates of the hydro-

dynamic parameters were in error, and which did not include

relative velocity effects. Multiple structural parameters

were identified in an attempt to account for all modeling

errors.
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Example 1 : One-Story Frame

For the first example, studies are made to determine

the effects of the type, quantity, and spacing of the

measured data on forced vibration identification. The effect

of noisy data on convergence is also studied. A summary of

the studies performed for the structure in Fig. 7 is given

in Table 1.

The single story frame in Fig. 7 consists of two steel

columns supporting a rigid floor. The columns have a moment

of inertia of 61.9 in4, are 20 feet in height, and form a

30-foot bay. The total floor load is 1000 lb/ft, giving a

mass at the floor level of 932 slugs. The mass of the

columns is small in comparison to the floor, and may be

neglected in the analysis.

A sinusoidal, time-varying force is applied at the

floor level. This loading function has a maximum amplitude

of 4300 lb and a period of 1.95 sec. The response of the

frame is damped, with damping in the first mode equal to 10

percent of critical damping (a = 1.288).

A time step size of 0.10 sec was chosen for the analy-

sis, and pseudo-experimental response data were generated

for the structure based on the above values. These data

consisted of the displacement, velocity, and acceleration of

the first floor. In Fig. 8, one curve, labeled "pseudo-

experimental data", depicts the acceleration time-history

for the structure.



Figure 7. One-Story Frame

F(t)
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Study Param. Scheme Data Effect

Studied

No. of

Cases

1 I LS k Number of

data

4

2 M LS x Number of

data

4

3 a LS ii Number of

data

4

4 a LS k Spacing

of data

7

5 a LS Combs. of

x ,x ,x

Type of

data

6

6 M LS x Noisy

data

7

Table 1. Studies for Example 1
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Figure 8. Calculated Acceleration Based on Initial Estimate
vs Experimental Acceleration - Inertia
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The Least Squares estimation scheme was chosen for this

problem. Unlike the other two schemes, this method doesn't

rely on user-supplied variances for the parameters or for

the data. Therefore, the behavior of the solution will be a

direct measure of the capabilities of the identification

procedure; the solution will not be affected by subjective

estimates of the variances.

In order to study the behavior of the identification

process for the column inertia, an initial estimate to a

finite element model was postulated to be different from the

one used to generate the pseudo-experimental data. The new

model possessed the same mass, area, Young's Modulus, and

damping coefficient as the original, but the value of the

column inertia was considered to be uncertain. An initial

estimate of I° = 52.5 in4 was made for the inertia. This

value is 15 percent lower than the true (target) value and

represents an amount of error typical in an engineering

analysis.

The pseudo-experimental (measured) acceleration was

used with the Least Squares identification process in order

to select a "better" estimate for the inertia. The selection

is guided by the difference between the "measured" response

and the calculated response based on the prior estimate(s)

of the parameter(s). The response curve plotted in Fig. 8,

labeled "initial estimate", depicts the acceleration of the

frame obtained using the initial estimate I°.
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The first study demonstrates the effect of the number

of acceleration data points on the identification of the

column inertia. Successive runs of the computer program were

made using the accelerations at the first two, three, four,

and five time steps. As can be seen in Fig. 9, in all cases

the value of the column moment of inertia converged to the

exact value in one iteration, and the solution was stable.

The number of data points had no effect on the rate of

convergence or on the converged value. Figure 10 illustrates

the convergence of the calculated response to the measured

response. The percent error between the calculated and

pseudo-experimental accelerations is plotted for two

models : one for which the column inertia is equal to the

initial estimate, and one for which it is equal to the

identified value. The analysis was repeated using a differ-

ent initial estimate for the inertia which was 15 percent

higher than the target value. The solution converged in a

similar fashion to the same value of inertia.

For the next study, the same procedure was followed for

the identification of the first floor mass. An initial

estimate of the mass was established at M0 = 1072 slugs (15%

high). Figure 11 shows that the identified mass converged to

the exact value in two iterations, and the number of

experimental data points had only a minor effect on the

behavior of the solution. Similar results were also obtained
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Figure 9. Effect of Number of Data Points on Convergence
of Inertia
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of Mass
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for a different initial estimate that was 15 percent lower

than the target value.

This procedure was repeated once again to investigate

the identification of the Rayleigh damping coefficient, a.

Figure 12 demonstrates the nature of this solution. An

initial estimate of a° = 1.095 was assumed; this value is

15 percent lower than the one used to generate the experi-

mental data. Although convergence is slower for the damping

coefficient than for inertia or mass, the convergence is

well-behaved and stable. In assessing the quality of this

solution, the convergence of the predicted response to the

pseudo-measured response must also be considered. For this

study, the value of a is in error by about 7 percent after

one iteration : however, the maximum error in the response

is less than 2 percent if that value is used. After five

iterations, this maximum response error is less than 0.2

percent. An examination of the results of this and several

other studies indicates that the kinematics are less

sensitive to changes in the damping coefficients than to

changes in the other structural parameters. This analysis

was repeated for a different initial estimate of a that was

15 percent higher than the true value; results were similar.

The next two studies performed were investigations into

the effects of the spacing and type of experimental data

used. Since the Rayleigh damping coefficient exhibited the

slowest rate of convergence, it was selected for these
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Figure 12. Effect of Number of Data Points on Convergence
of Damping Coefficient
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studies. The initial estimate of a was 15 percent lower than

the true value.

The effect of the spacing of data points was studied by

specifying pseudo-experimental accelerations at five time

steps selected by various criteria. Referring to the

experimental data plotted in Fig. 8, the five points were

first chosen at every other time step, and identification of

a was performed. Next, the accelerations at the first five

time steps were used as the measured response for the

identification process. Other distributions of the data

included selecting five points from the first peak of

response, five from the second peak of response, and

dividing the five points between the two peaks. The results

of these analyses, along with a description of the location

of the points, is given in Fig. 13. It can be seen that the

effect of data spacing is negligible. The rate and nature of

convergence, as well as the identified value, are nearly

identical to the results reported in Fig. 12. It should also

be noted that using twice as many data points (at the first

ten time steps) does not improve the solution.

It was desired next to determine if the type of

kinematic data had a significant effect on the identifi-

cation process. Once again, the damping coefficient a was

chosen because of its slower convergence properties.

Experimental data was sampled at every other time step, for

a total of five steps. Identification of a was executed
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using just the displacements at these steps, just the

velocities, and combinations of displacements, velocities,

and accelerations. The results plotted in Fig. 14 show that

the identification process is insensitive to the type of

kinematic data used.

The final study for this structure involved identi-

fication using noisy data. The pseudo-experimental acceler-

ation data in Fig. 8 were polluted with zero-mean Gaussian

noise with a variance of 7 percent to simulate typical

response data from a structure test. Identification of the

mass was performed using the same prior value used for the

study depicted in Fig. 11. The results of the analysis for

noisy data are shown in Fig. 15. Various numbers of data

points were considered. The rate of convergence is unaffect-

ed by the presence of noise; however, the solution converges

to slightly different values of mass depending on the amount

of noise present in the data points used as measured

response.

The differences in pseudo-measured and calculated

response are seen in Fig. 16. The curves based on the

initial estimate and on the identified value of mass are

plotted for the case that used data from the first ten time

steps. Similar curves were obtained for the other cases

detailed in the previous figure. The plots shown in Fig. 17

show the error between the predicted responses and the noisy

acceleration data. There is a significant improvement in the
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response based on the identified mass, with the maximum

error reduced by a factor of ten.

Example 2 : Two-Story Frame

Studies are performed for both free and forced vibra-

tion for the structure in Fig. 18. The effect of the type of

data on the simultaneous identification of two or more

parameters is studied. In addition, a comparison is made of

the Least Squares, Weighted Least Squares, and Bayesian

estimation schemes. Table 2 presents a summary of the

studies performed.

A second floor was added to the structure in Example 1

to create the two-story frame shown in Fig. 18. The columns

for the first floor are unchanged, but the floor mass was

reduced to 745 slugs. The second story columns have a moment

of inertia of 22.1 in4 and support a floor mass of 559

slugs.

The force from the previous example is applied at the

first floor level, and a second force with the same period

is applied at the upper level. This force has a maximum

amplitude of 3200 lb.

Damping was specified as 4 percent of critical damping

in the first mode, and 10 percent in the second mode. These

damping ratios result in Rayleigh coefficients with values

a = -0.024 and B = +0.018.
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Study Params. Scheme Data Effect

Studied

No. of

Cases

1 1
1'

I
2

LS Combs. of

R
1'

R
2

Type of

data

3

2 M1, M
2

LS Combs. of

R
1'

R
2

Type of

data

3

3 a, B LS Combs. of

R
1'

R
2

Type of

data

3

4 a, B,

1
1'

I
2

LS R
1'

x2 SID on 4

params.

1

5 1
1'

1
2

LS Combs. of

11' 12' 01' 02

Type of

data

3

6 M1, M
2

LS Combs. of

A 0 G5
1' 2' 1' ,2

Type of

data

3

7 M1, M
2

LS, WLS,

Bayes

A 1,
A2 [VEE],

[Vrr]

5

Table 2. Studies for Example 2
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A time step of 0.10 sec was used in this example, and

the calculated accelerations based on these data were taken

as the pseudo-experimental response for forced vibration

identification. The natural frequencies and mode shapes were

also calculated, and used as experimental data for free

vibration identification.

For the first three forced vibration studies, the

accelerations at the two floor levels were used as the

pseudo-measured response, and the effect of the type of data

was examined. Identification was performed for two structur-

al parameters simultaneously using : 1) only the accelera-

tion of the first floor, 2) only the acceleration of the

second floor, and 3) both accelerations. Accelerations were

sampled at the first six time steps, and Least Squares

estimation was used.

For the first study, initial estimates of the two

column moments of inertia were made : 1°1 = 74.3 in4 (20%

high) and IO2 = 24.3 in4 (10% high). Figure 19 shows that

both inertias converged to their exact values in four

iterations. Note that when only the acceleration of the

second floor was used, the initial adjustment to 12 was

large and was in a direction opposite from the correct

value. Also, the adjustment to II for this case was

substantially more than the adjustment when using the other

acceleration data. However, both inertias converged to the

correct value, and at a rate that was only slightly slower.
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Figure 19. Effect of Type of Data on Convergence of
Inertias - Forced Vibration
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The two floor masses were identified in the next study.

Initial estimates of these parameters were taken as M01 = 596

slugs (20% low) and M°2 = 503 slugs (10% low). Convergence

to the correct values occurs within four iterations, and is

shown in Fig. 20. If only the pseudo-measured acceleration

of the first floor is used, the two mass values are over-

adjusted in the first two iterations, but converge quickly

afterwards.

In the third study of this group, the simultaneous

identification of the two Rayleigh damping coefficients was

performed. Figure 21 shows the convergence characteristics

for this analysis. Initial estimates of the two parameters

were taken as a° = -0.0300 (25% high) and B° = +0.0198 (10%

high). As was demonstrated in Example 1, estimation of the

damping parameters converges at a slower rate than estima-

tion of the other structural parameters. Note from the

figure that the poorest convergence behavior occurs when

only the second floor acceleration is used. However, it was

found that the calculated response for this case converges

to the same accuracy as for the other two cases shown.

Next, the ability of the identification process to

simultaneously operate on four parameters was investigated.

The two column inertias and two damping coefficients were

chosen for this study, and the initial estimates of these

parameters were set to the values previously given. The

results of the Least Squares estimation are presented in
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Fig. 22; the accelerations at the two floor levels were used

to guide the process. As was seen in previous studies, the

inertias converge rapidly while the damping coefficients

proceed at a slower rate. Note that the shape of the

convergence curves are unchanged for the inertias, but have

been altered for the damping parameters.

Although the Rayleigh coefficients appear to converge

slowly (12 iterations), the calculated response actually

converges quite rapidly. This can best be seen by plotting

the root-mean-square (RMS) error of the two floor accelera-

tions relative to the pseudo-experimental accelerations.

This error can be defined as

RMS Error -1 E Rexp (5.1)

where n = number of time steps at which experimental data

are specified, and the subscripts indicate the response

predicted by the model and the experimental response. The

plots of the RMS error are presented in Fig. 23, where it

can be seen that the error is essentially zero by the third

iteration. This sort of behavior was observed for all

problems which involved the identification of damping

coefficients.

In addition to the forced vibration studies just

presented, three studies for free vibration were executed.

The first two used Least Squares estimation, while the third
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study compared results from Least Squares, Weighted Least

Squares, and Bayesian estimation techniques.

For the first investigation, the two column inertias

were identified. Initial values of the parameters used were

the same as for the forced vibration studies. Pseudo-experi-

mental data consisted of the first two natural frequencies

and mode shapes. Figure 24 presents the convergence charac-

teristics for three cases based on different amounts of

experimental data : 1) frequencies only, 2) frequencies and

first mode shape, and 3) frequencies and both mode shapes.

Both values of the column moments of inertia converge in one

iteration. Inclusion of the mode shapes has negligible

effect. This is consistent with the findings of other

researchers (1,4), and will be seen again in Example 3.

Similar behavior is exhibited in the identification of

the two floor masses, as can be seen in Fig. 25. For this

analysis, the same prior mass values were used as for the

forced vibration study.

The final investigation for this structure examined the

effect of the parameter and data variance matrices, [Vrr] and

[VE,], on the performance of the Bayesian estimation scheme.

Also included for comparison are the Least Squares and

Weighted Least Squares estimation schemes. The two floor

masses were used for this analysis, and the same initial

values were assumed as for the previous studies. The outcome

of this investigation is presented in Fig. 26, and is based
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on the data given in Table 3. All of the parameter estima-

tions use the first two natural frequencies as the measured

response.

Case 3 represents the Weighted Least Squares (WLS)

solution which, for this problem, produces exactly the same

results as the Least Squares (LS) method. It has already

been noted in Chapter III that both schemes produce identi-

cal results when the number of data equals the number of

parameters being operated on, regardless of the makeup of

the data variance matrix, [VEE]. It can be seen from the

figure that this solution is also the best one for this

problem. No subjective information is being used (i.e.,

engineer-supplied estimates of the quality of the data) :

therefore, the results will not be skewed by any judgements

made by the user.

The Bayes solution in Case 4 represents the poorest

solution. From the figure, it can be seen that there is very

little revision of the parameters. This behavior is a direct

consequence of the content of the two variance matrices. The

parameters have been assumed to contain little error

relative to the data : thus, the identification process will

allow little modification to the parameters.

The best Bayes solution is represented by Case 5, for

which both parameters and both measured responses are

equally weighted. In addition, the parameters are assumed to

be more in error than the data. Of the four Bayesian
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Case Scheme V,, Vrr

1 Bayes 0.10, 0.05 0.10, 0.10

2 Bayes 0.10, 0.05 0.10, 0.05

3 WLS (=LS) 0.10, 0.05 Not Applicable

4 Bayes 0.20, 0.20 0.02, 0.02

5 Bayes 0.05, 0.05 0.10, 0.10

Table 3. Assumed Variances for Data and Parameters
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estimation cases, this case converges to mass values which

are closest to the true ones.

For Case 1, the identified value for the first floor

mass is farther from the true value than the identified

solution for the second floor mass. This is attributable to

the relationship between the assumed parameter and data

variances for M1 and M2. For M1, the uncertainty in data and

parameter is assumed equal. For M2, the paramater value is

more uncertain than the data; thus, this mass will experi-

ence more adjustment.

To understand the behavior of the Case 2 solution,

comparison should be made to Case 1. The only change from

Case 1 is in the assumed variance of M2 : this value has

been cut in half and is now equal to the assumed data

variance. Since neither parameter is more uncertain than the

other (relative to the data), they both participate equally

in the adjustment process. The result is that M1 now

converges to a solution very near the exact value. Note that

the solution for M2 still exhibits about the same amount of

error, but it now converges to a value below, rather than

above, the true one.

Several other cases were also investigated for this

problem. For these cases, the same relationships between the

data and parameter variances were used, but the magnitudes

of the variances were changed (by as much as a factor
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of 100). Results which are similar to the behavior detailed

above were observed.

Observations from this study illustrate an inherent

difficulty in Bayesian estimation : the identification

process is very sensitive to the assumptions made regarding

the variance matrices EV) and [V,]. Unless the analyst has

great, justifiable confidence in the content of these

matrices, Least Squares and Weighted Least Squares estima-

tion are to be preferred.

This study of the effects of the variance matrices on

parameter estimation was repeated for forced vibration

identification. Similar behavior resulted and the same

conclusions can be drawn.

Example 3 : Cantilever Beam

Figure 27 shows a non-prismatic, steel cantilever beam

consisting of two-elements. Free vibration identification

for this structure has been reported by Collins, et al. (4)

and by Leonard and Warren (1).

The element cross-sectional areas were both fixed at

100 in2. The first two natural frequencies and corresponding

mode shapes were calculated for the following target

values : II = 888 in4, 12 = 988 in4, and ini = i2 = 0.888

slugs/in. These frequencies and mode shapes correspond to

lateral modes of vibration and were used as the experimental

response for the Bayesian identification process.
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For the first part of this example, the two element

inertias were established at initial values of 1°1 = 957 in4

and I% = 1148 in4. Compared to the true values of the

inertias, these "best guess" values are 7.7 percent and

16.2 percent high, respectively.

Using the first two natural frequencies( A1,12), the two

inertias converged exactly to the target values in two

iterations. The convergence characteristics can be seen in

Table 4. The table shows that the calculated frequencies

(based on the revised values of the parameters) also

converged to the pseudo-experimental values. These results

are in agreement with those reported by other research-

ers (1,4).

The identification process was repeated using the first

two natural frequencies and the first two mode shapes to

guide to process. The inclusion of the modes shapes resulted

in negligible differences to the behavior seen in the table.

This is also in agreement with findings previously reported

in the literature.

The identification of the inertias was performed using

Bayesian estimation with variances [Vrr] = [I] for the

parameters and [V"] = [0]. These variance matrices were used

in the previous studies, and indicate complete confidence in

the data and large, equal uncertainty in the parameters.

However, it should be noted that Bayesian estimation for

this problem using these variances is identical to Least
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Iter I
1

% Err 12 % Err X
1

% Err X
2

% Err

0 956.6 +7.73 1148.0 +16.2 2449 +8.31 69810 +11.6

1 887.8 -0.02 985.5 -0.25 2260 -0.04 62500 -0.13

2 888.0 0.00 988.0 0.00 2261 0.00 62580 0.00

Table 4. Convergence of Inertias and Squared Frequencies
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Squares and Weighted Least Squares estimation, the number of

parameters is equal to the number of data. This was noted in

the previous chapter.

For the second part of this example, Bayesian identifi-

cation was performed for the element mass densities, using

the first two natural frequencies to guide the identifica-

tion process. Initial values of these parameters were taken

as irri = 1.021 slugs/in (15% high) and iii°2 = 1.066 slugs/in

(20% high). The results of this analysis are shown in

Table 5. It is seen that the convergence rate and conver-

gence accuracy is similar to the identification of the

inertias.

The same variance matrices were used for this part of

the example; thus, the results are identical to those

obtained from either of the two other identification

schemes. The previous studies referenced above did not

attempt identification of the element mass densities.

Example 4 : Cantilever Beam with Concentrated Mass

The two-element cantilever beam shown in Fig. 28 is

used in conjunction with Least Squares estimation for this

example problem. Free vibration identification on the two

cross-sectional areas is performed first. Next, the beam is

subjected to a suddenly-applied load and forced vibration

identification is executed. Simultaneous identification is

made of the element mass densitites and moments of inertia,
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Iter m1 % Err m
2

% Err X1 % Err X
2

% Err

0 1.021 +15.0 1.066 +20.0 1891 -16.4 53060 -15.2

1 0.869 -2.14 0.853 -3.94 2351 +3.98 64670 +3.34

2 0.888 0.00 0.887 -0.11 2264 +0.13 62640 +0.10

3 0.888 0.00 0.888 0.00 2261 0.00 62580 0.00

Table 5. Convergence of Mass Densities and Squared
Frequencies
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followed by simultaneous identification of the element

inertias and the Rayleigh damping coefficient a.

The beam has concentrated masses at midspan and at the

tip. Pseudo-experimental results

following data :

II = 888 in4

12 = 988 in4

= 0.888 slugs/in

M1 = 124 slugs

E = 30 x 106

were obtained using the

Al = 24 in2

A2 = 15 in2

E2 = 0.888 slugs/in

M2 = 77.6 slugs

psi

The first study involves free vibration of the beam.

The undamped natural frequencies (load F(t) = 0) correspond-

ing to the first two axial modes of vibration

ed and used as pseudo-experimental data for identification

of the element areas. Initial estimates of the areas were

taken as A°
1
= A°

2
= 30 in2, which are 25 percent and 100

percent higher than their true values. Both areas converged

to the exact values in three iterations, as shown in

Table 6. The table also shows that the calculated frequen-

cies converged to the pseudo-experimental values in the same

number of iterations. This behavior is consistent with the

results presented in the previous example problem.

The second study involves forced vibration of the beam.

Forced vibration identification with damping was performed,

using a time step of 0.01 sec. For this study, the tip of
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Iter A
1

% Err A
2

% Err X.

x 106

% Err 1
2

x 106

% Err

0 30.00 +25.0 30.00 +100 2.766 +39.1 16.230 +79.8

1 22.83 -4.88 15.43 +2.87 1.933 -2.77 9.083 +0.61

2 23.94 -0.25 15.02 +0.13 1.985 -0.15 9.031 +0.03

3 24.00 0.00 15.00 0.00 1.988 0.00 9.028 0.00

Table 6. Convergence of Areas and Squared Frequencies
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the cantilever is subjected to a suddenly applied force of

20,000 lbs, as shown in Fig. 28. The Rayleigh damping

coefficient a was set to 2.90; this corresponds to damping

in the first mode equal to 5 percent of critical.

Two cases were examined. First, the two element

inertias were identified simultaneous with the two element

mass densities. The initial values of these parameters were

assumed as :

1°1 = 957 in4 (7.7% high)

1°2 = 1148 in4 (16.2% high)

in°1 = 1.021 slugs/in (15% high)

m°2 = 1.066 slugs/in (20% high)

The pseudo-experimental

tion of these four parameters consisted of the lateral

accelerations at midspan and at the tip. These data were

provided at the first five time steps. Using these response

data, the parameters converged to within 0.1 percent of

their target values in two iterations, as did the calculated

accelerations.

The second case studied involved the simultaneous

identification of the two mass densities and the damping

coefficient. The initial densities given above were used,

along with an initial estimate for the damping given by

a° = 3.50 (20% high). The identification process used the

same kinematics as the previous case. The densities and the
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calculated accelerations converged to within 0.2 percent of

the exact values in four iterations; the damping coefficient

converged within 1 percent.

Example 5 : Tower with Concentrated Mass and Stiffness

The identification of concentrated stiffness is the

subject of this example. The structure shown in Fig. 29

models a guyed tower on an elastic foundation with partial

rotational restraint at the base. The nonlinear effect of

the guys are replaced by a concentrated stiffness, approxi-

mated by a linear spring of stiffness K2. Rotational

flexibility at the base is provided by pinning the structure

at this node and attaching a rotational spring of stiff-

ness K1.

Least Squares identification of the two stiffnesses was

performed for both free and forced vibration. Structural

data used to generate the pseudo-experimental responses are

as follows :

I = 144 in4

A = 7.61 in2

in = 0.500 slugs/in

K1 = 9.0 x 108 lb-in/rad

K2 = 3.0 x 104 lb/in

M = 2485 slugs

E = 30 x 106 psi

For free vibration identification, the pseudo-experi-

mental data consisted of the first two natural frequencies

corresponding to lateral vibration. Three cases were
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Figure 29. Tower with Concentrated Mass and Stiffness
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investigated : 1) identification of K1 alone, 2) identifi-

cation of K2 alone, and 3) simultaneous identification of K1

and K2. Initial values were set to el = 18.0 x 108 lb-in/rad

and K8
2
= 6.0 x 104 lb/in, which are 100 percent higher than

the target values.

For the first case (identify Kl only), the value of the

rotational stiffness converged to within 0.1 percent of the

exact value in three iterations, as did the calculated

frequencies. The second case (identify K2 only) provided

convergence of the linear concentrated stiffness and of the

two calculated frequencies in one iteration. Convergence was

within 0.1 percent. In the final case, simultaneous identi-

fication of both stiffness values Kl and K2 produced conver-

gence in three iterations. Convergence within 0.1 percent

was achieved for K 1, K
2,

and both natural frequencies.

The forcing function shown in the figure was used in

the forced vibration study with a 0.025 sec time step. The

lateral accelerations at midspan and at the tip were used as

pseudo-experimental data in the identification process.

These accelerations were provided at the first four time

steps.

The three cases described above were also used for this

part of the problem. When identifying K1 alone, convergence

of the concentrated stiffness and of the two accelerations

occurred in three iterations to within one percent of the

exact values. For K 2 alone, convergence of the same quanti-
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ties to the same tolerance occurred in two iterations.

Simultaneous identification resulted in convergence of the

two concentrated stiffness values and of the calculated

accelerations to within 0.3 percent. Convergence occurred in

four iterations.

Example 6 :
Two-Dimensional Guyed Tower in Waves

A structure subjected to deep water waves is investi-

gated in this example. System identification techniques are

used to account for uncertainties and simplifications

related to the hydrodynamic loading and response. Least

Squares identification is used.

Two studies were performed for this structure. The

first study compares the response obtained with the relative

velocity form of Morison's equation to the response obtained

from the linearized form of this equation. The second study

investigates the use of effective mass and damping matrices

to account for uncertainties in CD and CM and for inaccura-

cies introduced by the linearization of Morison's equation.

The ocean-based guyed tower (65) is shown in Fig. 30.

The tower is 1600 feet tall and supports a deck of mass MD

at its top. The nonlinear guys were approximated by a linear

spring with a concentrated stiffness, KG. The structure data

are as follows :

I = 1.571 x 105 ft4

A = 62.80 ft2

N = 466.4 kslugs

KG = 109 k/ft
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a = 0 B = 0.136

E = 4.176 x 106 ksf

Ili = 0.778 kslugs/ft (including trapped water)

The values of a and B correspond to structural damping equal

to 2 percent of critical damping in the first mode.

The tower is located in 1500 feet of water and is

subjected to a train of regular waves with a height of

30 feet and a period of 10 seconds. Airy (linear) wave

theory was used to calculate the wave kinematics (9,66). The

basic hydrodynamic data are :

Drag coeff. : CD = 0.7

Inertia coeff. : CM = 1.8

Fluid density : p = 0.0020 kslug/ft3

Drag width (projected width) = 115 ft

Displaced volume = 312.5 ft3/ft

The drag width and displaced volume are used to calculate

the projected area A and displaced volume V in the equations

which follow. The structure was modeled with two beam

elements. Five degrees-of-freedom were included : two

lateral displacements and three rotations. A time step of

At = 0.5 seconds was used.

As discussed in Chapter I, the load on the structure is

given by Morison's equation, Eq. (1.3). The loading speci-

fied by this equation is dependent on the relative velocity

between the fluid and the structure :
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{P(t) } = pCm[V]fill - p (Cm-1) [V] {R} +

+ (0.5pCD[X] ) { I ii-id }{u-Sc}T (1.3)

This form of the load, when substituted into the equations

of motion given by Eq. (1.1), results in the following

equations for the response of the structure :

([M] + p(Cm-1) [V]) {51} + [C] {x} + [K] {x} =

= pCm[V]ltil + (0.5pCD[A]){1u-k1} 0-5c1T (6.1)

If Morison's equation is linearized to eliminate the

relative velocity term, the structure loading and response

is given by Eq. (1.4) :

([M] + p(Cm-1)[V]){R} + ([C] + 0.5pCDT[T]) licl +

+ = + (0.5pCD[A]) flullfulT (1.4)

For both studies, pseudo-measured response was generat-

ed for the structure using the data given above; the

relative velocity form of the equations was used, Eq. (6.1).

In this equation, the force at each time step is a function

of the relative velocity la-k. However, this term cannot be

calculated since the structure velocity x is unknown at the

current time step. To overcome this difficulty, a technique

was used which "lags" the structure velocities by one time

step; i.e., x from the previous time step is used with the

fluid velocity la from the current time step. The kinematic

response of the structure was calculated, and the displace-
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ment of the deck was taken as the pseudo-measured response.

The displacement time-history is plotted in Figs. 31 and 32.

The first study investigated the effects of linearizing

the relative velocity term in Morison's equation. The

response of the structure was calculated for the given data

using Eq. (1.4). The displacement is plotted in Fig. 31, and

is labeled "response based on initial estimate".

The response error which is introduced by this simpli-

fication can be reduced, to some extent, by increasing the

amount of structure damping (12). Therefore, system identi-

fication was used to estimate a new value of the Rayleigh

damping coefficient B.

Using the pseudo-measured displacement for the first 10

time steps, an improved value of B = 1.0173 was identified

in 5 iterations. The response based on this value is plotted

in Fig. 31 and is labeled "response based on "best" esti-

mate". The increase in damping produces a calculated

response which is in close agreement with the response based

on the relative velocity form of Morison's equation.

The second case studied also investigates the modifica-

tion of structural damping to account for relative velocity

effects. In addition, initial values of the fluid force

coefficients were selected to be different from the values

used to generate the pseudo-measured response. This simu-

lates the typical modeling situation in which these values

are subject to significant uncertainty. Both the drag
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Figure 31. Calculated Displacement vs Experimental
Displacement No Relative Velocity Term
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coefficient CD and the inertia coefficient CM are affected

by real fluid effects and are not time-invariant (9);

appropriate values are therefore difficult to establish.

The response of the structure was calculated using the

structure data previously given and initial values of

CD = 1.2 (71% high) and CM = 2.0 (11% high). The response was

based on Eq. (1.4), the linearized form of Morison's

equation. This form does not include the relative velocity

term. The curve in Fig. 32 labeled "response based on

initial estimate" shows the time-history of this response.

The pseudo-measured response generated with the relative

velocity form of Morison's equation is also shown in this

figure. The difference in these responses is apparent from

the figure.

Parameter identification was next used to allow the

finite element model to more accurately predict the response

of the structure. The effective mass and damping matrices in

Eq. (1.4) were modified to account, to some extent, for the

inaccuracies introduced by CD, CM, and the lack of the

relative velocity term. This was accomplished through

estimation of the Rayleigh damping coefficients and a

concentrated (lumped) mass. The guy stiffness KG was also

identified. The initial value of the lumped mass was set

equal to zero.

The same data points used for the first study were also

used for this identification problem. Converged values for
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the four parameters were obtained in 5 iterations. These

values are : a = 0.290, B = 0.143, ML = 128, and KG = 83.8.

The response based on these improved estimates is shown in

Fig. 32 and is labeled "response based on "best" estimate".

It can be seen that the finite element model is a better

predictor of the response when these identified values of

the parameters are used.



CHAPTER VI

CONCLUSION

Summary
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System identification techniques for free and forced

vibrations of finite element models have been presented and

validated in the previous chapters. These techniques were

shown to be a useful tool for the systematic improvement of

finite element models when data from tests of structures are

available.

Classical linear estimation theory was presented, and

the weighting matrices were derived for Least Squares,

Weighted Least Squares, and Bayesian identification. The

were derived from a first order Taylor Series. These

equations were shown to be of the same form as the equations

for linear estimation when the parameter vector is random.

Forms of the sensitivity matrix were presented for both free

and forced vibration. The sensitivity matrix was expressed

as the product of two submatrices. One of these relates

changes in structural response to changes in the structure

mass and stiffness matrices; the other relates changes in

these matrices to changes in the basic structural param-

eters.

Specific forms of the first submatrix were given for

free vibration identification. For identification with
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forced vibration, various forms of this matrix were derived

from the basic relationships used in the Wilson Theta

method. One of these forms relates the change in the

calculated kinematics to the structure mass and stiffness

matrices. This matrix is to be used for identification of

all parameters except the Rayleigh damping coefficients.

Another form of this submatrix was derived for identifi-

cation of the damping parameters. The derived expressions

relate the change in kinematics directly to changes in the

coefficients.

For identification of element parameters, it was shown

that the second submatrix can be formed from the element

stiffness matrix by setting the parameter values to unity.

for concentrated mass and

stiffness, the submatrix was shown to consist of zeroes and

ones, the latter located at positions corresponding to the

concentrated parameters. For identification of damping, it

was seen that the second submatrix is the identity matrix.

Implementation of the system identification procedure

in a computer program was described. In this program, the

identification calculations and manipulations are isolated

from the finite element routines. To minimize computer

memory requirements, an overlay system was used along with

offline storage of the experimental data, sensitivity

matrices, and load vector. Efficient techniques for forming

the various required matrices were detailed.
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The present study was shown to be a significant and

useful addition to the current techniques of system identi-

fication as applied to finite element models. Most of the

methods previously developed operate on specialized models

subject to many restrictions and limitations; only a few

allow system identification techniques to be applied to

standard finite element models. Of these, none have ad-

dressed identification for forced vibration. Previous

studies of free vibration identification have not addressed

mass density, concentrated mass, or concentrated stiffness.

The current study is also the first to investigate the

identification of structural parameters to account for

uncertainties in the hydrodynamic loading.

Six example problems were presented. A general discus-

sion of these examples follows.

Discussion

A one-story frame acted upon by a time-varying load was

examined in the first example. The column moment of inertia,

floor mass, and damping coefficient were the parameters

identified. The effects of the quantity, type, and spacing

of experimental data were investigated. The behavior of the

solution was found to be relatively unaffected. The improved

estimates of inertia and mass were seen to converge rapidly;

the damping coefficient converged at a rate which was
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slightly slower. The identification procedure operated

successfully with noisy data.

A two-story frame was investigated in the second

example. Simultaneous identification of two or more param-

eters was studied. The two column inertias and two floor

masses converged rapidly to the correct values using the

floor accelerations as the measured response. Convergence of

the two damping coefficients was slightly slower. In all

cases, the predicted response was in close agreement with

the measured response. The quality of the solution and the

rate of convergence were not affected by the type of data

(accelerations of first floor only, second floor only, or

both floors). Identification of four parameters simul-

taneously was also presented.

Free vibration studies were also presented in the

second example. Convergence of the inertias and masses was

seen to be faster than for forced vibration identification.

An investigation was made of the effects of parameter and

data variances on the behavior of Bayesian estimation. It

was concluded that the Bayes scheme is quite sensitive to

the content of the variance matrices. If the analyst is

unsure of the values to use in these matrices, Least Squares

or Weighted Least Squares estimation is to be preferred.

The cantilever beam in the third example was used to

demonstrate free vibration identification of element mass

density and moment of inertia. Rapid convergence of these
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parameters to the exact values was achieved using the first

two natural frequencies as measured response. Inclusion of

the mode shapes did not noticeably improve the solution.

In the fourth example, a cantilever beam with two

concentrated (lumped) masses was analyzed. The two cross-

sectional areas were successfully identified using free

vibration natural frequencies. Forced vibration identifi-

cation was performed for four element parameters simul-

taneously : the two inertias and the two mass densities.

Convergence was achieved rapidly using the midspan and tip

accelerations. The analysis was repeated, this time for the

two inertias and one of the Rayleigh damping coefficients :

quick convergence was exhibited.

A tower supported by a linear spring and a rotational

spring was presented as the fifth example. These concen-

trated stiffnesses were identified singly and simultan-

eously, for both free and forced vibration. Even though the

initial estimates of these parameters were in error by 100

percent, convergence to the exact values was achieved within

a few iterations.

The final example was used to investigate hydrodynamic

effects on a guyed tower subjected to ocean waves. Pseudo-

experimental response data were generated using the relative

velocity form of Morison's equation. The model was then

solved for the same data, but using a form of the equation

without the relative velocity term. One of the Rayleigh
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damping coefficients was selected to be modified by the

identification process. The improved estimate of this

parameter resulted in a very close match between the

predicted and experimental responses. This suggests that the

relative velocity effects in Morison's equation can be

accounted for (in some instances) by an adjustment to the

damping of the model. A second study was presented for this

example, in which modeling errors were present (in the mass

and drag coefficients), and relative velocity effects were

neglected in the fluid loading. By allowing the identifica-

tion procedure to operate on four structural parameters

(concentrated mass, concentrated stiffness, and the two

Rayleigh damping coefficients), the predicted response was

brought into closer agreement with the experimental data.

Thus, uncertainties in the hydrodynamic parameters and

loading can be partially corrected for by adjustments to the

mass, damping, and stiffness characteristics of the struc-

ture.

Possible Extensions

Several possible extensions to the present study

suggest themselves :

(1) Storage requirements and execution time can be

extensive for forced vibration identification. A

large portion of this is attributable to the

amount of calculations necessary to evaluate the
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kinematic sensitivities. The sensitivity of the

response must be calculated with respect to each

degree-of-freedom : however, the experimental

data are typically specified at a small subset of

these d.o.f. Significant reductions in storage

space and execution times could be realized if a

reduced set of kinematic sensitivities could be

used.

(2) Although convergence of the Rayleigh damping

coefficients is easily achieved, the rate of

convergence is slower than for other parameters.

Techniques to speed the convergence of damping

analyses should be investigated.

(3) For free vibration identification,

gence was obtained when the natural frequencies

were specified as the measured data. Inclusion of

the mode shapes has negligible effect on the

process. Further studies are needed to investi-

gate the mode shape sensitivities and their

effect on parameter estimation, with special

attention directed toward increasing the partici-

pation of these terms.

(4) In some situations encountered in forced vibra-

tion identification, the adjustments made to the

parameters during the first iteration is larger

than is needed. Convergence characteristics could
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be improved if a relaxation method were developed

to inhibit this overcompensation.

The element mass densities were used in the

lumped mass form of the element mass matrix. The

program could be easily modified to allow an

option to use the consistent mass formulation for

structures where this is deemed necessary. How-

ever, the use of consistent mass matrices will

result in a full structure mass matrix, with

nonzero, off-diagonal terms. This will increase

the execution time and storage requirements for

both free and forced vibration problems.

(6) It was shown that errors and simplifications in

hydrodynamic load terms can be accounted for,

to some extent, by performing identification of

the structural parameters. Further investigations

of this technique are needed.

(7) Although the effect of noisy data was examined,

more insight into the identification process

could be gained by conducting tests of real

structures under closely controlled conditions.

The measured responses from these tests could be

used with the identification program to further

investigate the effect of uncertainties in the

experimental data.
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(8) System identification was performed for parame-

ters which appear as linear terms in the stiff-

ness matrix. The work presented in this study can

be extended to include the estimation of nonlin-

ear terms, such as the product of parameters and

parameters which appear with mixed powers. An

example of the former is the product EI for a

beam subjected to lateral bending. The latter

case occurs, for example, when analyzing a thin

plate for lateral bending and membrane effects.

In this case, bending is a function of the cube

of the plate thickness, while the in-plane ef-

fects are a function of the thickness.

(9) The present study was limited to finite element

models based on linear behavior theory. Further

investigations should be made in which nonlinear

behavior is considered.
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