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Computer Simulation of

Phase Transitions in Zirconia

Chapter 1

Introduction

Zirconia (ZrO2, zirconium oxide) is a ceramic material which occurs naturally as the min-

eral baddeleyite. Commercially available as both a natural and manufactured product, major

applications include uses in alumina-zirconia abrasives, refractory products, ceramic coloring

agents, and PZT piezoelectric materialsl.

The high melting temperature and corrosion resistance of zirconia are attractive properties

for general use as a ceramic material, but applications have been limited until recently by the

unusual temperature dependence of the crystal structure. At room temperature, zirconia crys-

tals are monoclinic. Between approximately 1000C and 2300C the structure is tetragonal, and

between 2300C and the melting temperature of 2750C zirconia has a cubic structure. During

cooling from the tetragonal to monoclinic phase, an abrupt volume expansion occurs and the

resultant stresses reduce any large crystals to a granular or powder form.

Recent interest in zirconia has been stimulated by the discovery of additives which stabilize

zirconia crystals in their high-temperature structures and an economical process for producing

large crystals2. Stabilized zirconia is an excellent ionic conductor of oxygen, and new applications

include uses in oxygen sensors3, high temperature fuel cells4 and hydrogen production by water

dissociations. Cubic zirconia is also popular as a synthetic gemstone.

Another recent application of zirconia takes advantage of the tetragonal-monoclinic trans-

formation by using zirconia microcrystals as a toughening agent for other ceramic materials. It

has been found that the microcrystals transform during microcracking in such a way as to inhibit

further crack propagation; this phenomenon has led to recent investigations into the 'transfor-

mation toughening' properties of zirconia5,7.

Interest in these and other properties of zirconia has resulted in a number of experimental

and theoretical studies regarding the nature of the crystalline structures and the mechanisms

for the phase transitions. The structures of the low pressure phases are well defined and a

number of high pressure phases have been described. Theoretical work includes band structure
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calculations9,9,1° for static crystal structures as well as thermodynamic" and crystallographic

analyses12,13 of the phase transitions.

Practical studies of structural phase transitions at finite pressure and temperature are now

possible with dynamical simulations at the atomic scale. An appropriate set of interatomic po-

tentials is determined and nonlinear equations of motion are used to generate thermodynamic

averages which correspond to given external conditions. The subject of this thesis is the devel-

opment and implementation of appropriate methods and computational techniques for the study

of the phase transitions in zirconia by dynamical simulation with simple interatomic forces.



Chapter 2

Structure of Zirconia Crystals

2-1 General

3

Studies of zirconia at high temperatures and at high pressures have yielded at least six

distinct crystal structures. The monoclinic, tetragonal I, and cubic structures found at low

pressure are well defined. In addition, high pressure phases form at approximately 4,15 and 32

GPa. The most probable structures at these pressures appear to be tetragonal II (orthorhombic

I), orthorhombic II, and tetragonal III, respectively; the two high pressure tetragonal phases are

distinct from each other and from the low temperature tetragonal I phase. The existence of these

high pressure phases is well documented but the exact atomic structure has not yet been well

established. A summary of experimental evidence for the various phases is given in the following

sections.

While the variety of phases may make the formulation of a single set of interatomic forces

insufficient for a detailed reproduction of the entire phase diagram, it may be hoped that a

relatively simple set of forces will be capable of producing the general features of the experimental

structure and phase transitions and that further refinement of the potential will lead to more

realistic models.

The detail given here is intended as a guide for measuring the the success of the simple

forces and computational methods used in this study to simulate atomic zirconia.

2-2 Monoclinic and Tetragonal I Phases

The crystal structure of monoclinic zirconia was established in 1959 by McCullough and

Trueblood14, based on projection data from natural crystal fragments which did not appear

to contain the twinning common to natural crystals. Their proposed structure has since been

confirmed and refined through x-ray single crystal diffraction16, x-ray powder diffraction's, and

neutron diffraction17 experiments. The space group is P21 /c with twelve atoms in the unit cell.

The zirconia atoms are coordinated by seven oxygen atoms. The oxygen atoms form approximate

planes. The atoms in these planes are coordinated by either three or four zirconium atoms, with
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neighboring planes containing oxygen atoms with different coordination numbers.

Phase equilibrium studies by Baun18 found that the tetragonal phase first appears on heat-

ing around 1000C, and the last trace of the monoclinic phase disappears around 1180C. On cooling

the monoclinic phase appears around 970C with the last of the tetragonal phase disappearing at

750C. Later studies confirmed the hysteresis in the phase transition and a monoclinic-tetragonal

transition temperature of 1170C, while the reverse transformation was found to be 850C to 975C

depending on crystallite size19. Smaller crystallites have lower transition temperatures, and in

the extreme case (crystallites less than 300 Angstroms) the tetragonal form may be retained at

room temperature20. The volume increase from the tetragonal to the monoclinic structure is

about 3%.

2-3 Tetragonal I and Cubic Phases

The tetragonal and cubic high temperature phases were described by Teufer21 and Smith

and Kline22 from high temperature x-ray diffraction data and were later refined by Adelbert and

Traverse23 in neutron diffraction experiments over the temperature range of 1295C to 2410C in

neutral and reducing atmospheres. The cubic phase has the fluorite structure with space group

Fm3m and three atoms in the unit cell. The tetragonal structure is closely related to the cubic

structure but the oxygen atoms are displaced from their fluorite positions and the unit cell shows

an expansion along the axis parallel to these displacements. The space group of the tetragonal

form is P42/nmc with six atoms per unit cell. Neither high temperature crystal structure is

retained at room temperature after quenching.

The tetragonal-cubic transition was found to be 2300C in a neutral atmosphere and 2050C

in a reducing atmosphere. A mixed phase containing both tetragonal and cubic crystal structures

was found in samples of oxygen-deficient zirconia. Similar results for the presence of a mixed phase

in nonstoichiometric crystals have also been obtained by metallographic and high temperature

x-ray experiments24.

The melting temperature of pure Zr02 has been measured at 2710±15C25, with a reduction

in melting temperature and a mixed liquid-cubic phase for oxygen-deficient samples24.

2-4 Tetragonal II (Orthorhombic I) Phase

In situ measurements of zirconia at high pressures were obtained by Block et al.26 in 1985
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using optical polarizing microscopy of single crystals and x-ray powder diffraction studies. They

found a phase transition to a tetragonal structure which begins at 3.8GPa and is complete

at 8.3GPa. The volume change for the monoclinic to tetragonal II transition (mc-ttrII) was

measured at -3.8%, comparable to the me -ttrI volume change of -3.0%. At room temperature

the phase boundary is given as 3.3GPa for increasing pressure and 2.8GPa for decreasing pressure.

The hysteresis of 0.5GPa is relatively constant up to the mc-ttrI-ttrII triple point, which occurs

around 600C with increasing pressure and 535C with decreasing pressure.

In a later report27, the same authors found that annealing of the high pressure phase

at 350C and 8GPa results in the retention of the phase after quenching. In this paper the

most probable structure is revised to an orthorhombic cell (orthol) with space group Pbcm, in

agreement with x-ray measurements of Kudoh et al28'29. Both the ttrll and orthol unit cells

contain twelve atoms and lattice parameters for the two cells are very similar.

In an article published almost simultaneously with Block's later report, Alzyab et al.3°

used DAC techniques coupled with high pressure Raman scattering and found a gradual phase

transition beginning at 3.6GPa and complete at 4.1GPa. Their data led them to conclude that

this high pressure phase is tetragonal, probably with D2d or C4 symmetry.

Further studies may resolve the question of whether the symmetry of the high pressure phase

found above 4GPa should be properly considered as tetragonal or orthorhombic. Despite this

uncertainty, the transition temperatures, hysteresis range and approximate unit cell dimension

are all fairly well established.

2-5 Orthorhombic II Phase

A phase transition from the tetragonal II structure to a higher pressure orthorhombic phase

was also found by Block et al26. The structure of this phase is that of cotunnite (PbC12), with

twelve atoms per unit cell. The coordination number of the zirconium atoms in this phase is nine,

in contrast to coordination numbers of eight for the tetragonal II and seven for the monoclinic

phases. The orthorhombic (ortholl) phase appeared at 16.6GPa and the last of the ttrll phase

disappeared at 22.0GPa. The phase transition was found to be accompanied by a volume change

of -6.8%. The ortholl structure was not found to be quenchable in this study. A later report by

Ohtaka and Kume31 found that the ortholl phase can be retained at low pressures if samples were

sufficiently annealed; this data was used to construct an orthoI(ttrII)- ortholl phase boundary

at approximately 20GPa.
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2-6 Tetragonal III Phase

A recent study by Arashi et al.32 used x-ray diffraction and micro-Raman scattering experi-

ments to investigate the phases of zirconia up to 60GPa. They found evidence of a transformation

from the orthoII phase to a tetragonal phase (ttrIII) at pressures over 35GPa and concluded that

the most probable symmetry for this new phase is P4/mi,P42/n, P4/mmm, or P4/mbm. This

phase is distinguished from that found earlier by Alzyab et al. The volume change for this tran-

sition is -3.8%, making ttrIII the densest of the zirconia polymorphs. The proposed symmetry

groups suggest that the coordination number of zirconium atoms in this phase is eight.

2-7 Summary

Lattice parameters and volumes for the various phases are given in Table 1. A partial phase

diagram is shown in Figure 1.

structure

(units)

a

(A)

b

(A)

c

(A)

#

(deg.)

volume

(A3)

temp.

( °C)

press.

(G P a)

monoclinic17 5.151 5.212 5.317 99.2 140.9 20

tetragonal 123 5.144 5.269 139.4 1160

cubic23 5.269 146.3 2410

tetragonal1126 5.009 5.237 131.4 8.3

orthorhombic 129 5.036 5.255 5.086 134.6 600 6.0

orthorhombic 1126 3.29 5.62 6.34 117.2 21.6

tetragonal 11132 4.52 5.01 102.4 55

Table 1: Lattice parameters for zirconia phases.
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Figure 1: Phase diagram for zirconia. Data is from references 19, 25, 26, and 31-33.
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Chapter 3

Computer Simulations of Atomic Systems

3-1 Atomic Models for Phase Transitions

Structural phases are described by the relative positions of the atomic nuclei for the various

species of atoms within a material. Since the forces which determine the atomic positions are

quantum mechanical in nature, an accurate description of atomic motion could in principle be

formulated on the basis of the time evolution of the combined nuclear and electronic state vector.

In practice, such a description is impractical because of the computational burden involved; from

a theoretical viewpoint, this method is excessively complicated. Since the properties under study

are characterized by a relatively small number of physical parameters, the most useful atomic

models contain a similarly small number of parameters. While approximations and methods

have been developed towards this end, the construction of a realistic model for the study of the

properties of materials is generally limited by the number of particles in the system of interest,

the computer resources available, and the efficiency of the numerical calculations.

Dynamical properties present a particular challenge for atomic models, and a number of

approximations are in general use for the study of atomic motion. The most common of these

is the adiabatic or Born-Oppenheimer approximation. The electrons are expected to reach an

equilibrium state on a time scale that is relatively short compared to that of the nuclear motion,

and in the adiabatic approximation the electrons are taken to be in the ground state at all times.

This allows a separation of the nuclear and electronic wave functions. The electronic ground

state is calculated by considering the nuclei as static point charges and the nuclear forces are

calculated from the electronic state through the Hellmann-Feynman theorem. As a result, the

forces on the nuclei are determined by the nuclear positions and models may be constructed

which make no direct reference to the electronic wave functions. This simplification is generally

considered to be justified in structural models although it does not allow for the possibility of

electron-phonon interactions or forces which are fundamentally quantum mechanical in nature,

such as the Van der Waals interaction.

In many cases an analytic potential for the atomic nuclei is formulated by adopting a physi-

cally reasonable form and fitting parameters to experimental data or static quantum calculations

performed for nuclear positions near an equilibrium configuration. Other methods have been
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developed which require more or less empirical or fitted data. Examples are the techniques of

Carr and Parrinello34, which minimize a set of electronic wave functions concurrently with the

evolution of the nuclear positions, and the embedded atom method of Daw and Baskes35, which

uses density functional theory to generate forces from the overlap of fixed atomic charge densities.

Intermediate approaches have also been implemented; an example is the Gordon-Kim mode136,

in which the overlap of electronic charge densities is used only to determine short range pairwise

forces between atoms.

The choice of method for generating realistic interatomic forces is made by considering the

material under study and the computational burden involved. Ionic and dielectric materials are

subject to long range forces, and the accurate calculation of these forces may preclude the choice

of any but the simplest of short range forces. In materials with strong covalent bonding, pairwise

forces may be insufficient to reproduce the experimental structure and three-body potentials are

utilized. Realistic results for systems with defects have also been found to require many-body

potentials such as those of the embedded atom method or the classical potentials of Finnis and

Sinclair37.

Zirconia shows a mixture of ionic and covalent characters, and is commonly considered

to contain Zr4+ and 02- atoms. While this is an oversimplification, it is apparent from band

structure and atomic charge density calculations38 that zirconia is at least partially ionic in

character. This observation will be taken as a starting point for the development of a classical

potential for this system.

3-2 Periodic Boundary Conditions

The bulk properties of a material may be found by cluster calculations, in which the

properties are computed for larger and larger systems until numerical convergence is obtained.

Alternatively, a bulk material may be divided into a large number of identical computational

cells, each cell containing the same number and type of atoms. With the assumption of periodic

boundary conditions, the configuration and momenta of the atoms within each cell are identical

to those of the corresponding atoms in every other cell, and the number of independent atoms

is reduced to the number found in a single cell. By taking the number of cells to be infinite,

the motion of the independent atoms is made to simulate a system which has no surface. This

is expected to give realistic results for numbers of atoms which are small compared to those in

cluster calculations.

Since the motion of equivalent atoms in each cell is assumed to be the same, the choice
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of the particular unit cell should be immaterial provided that the cell contains exactly one of

each of the independent atoms. This implies that a cell may be equally well described by any

of several sets of unit cell edge vectors and that the choice of the origin for the unit cell or the

replacement of any single atom by an equivalent atom in an adjacent computational cell should

not affect the equations of motion.

If consistency with periodic boundary conditions is required, this places some constraint

on the form of the potentials which may be used. In summations of potential terms from an

infinite lattice, the sum must be absolutely convergent in order to obtain unambiguous results.

The effect of this constraint on the Coulomb potential is discussed at length in the following

chapter.

In some cases, the use of periodic boundary conditions may affect the atomic forces even

though the equations of motion are invariant with regard to the choice of computational cell. As

an example, total angular momentum is not generally conserved in periodic systems. The rate of

change of angular momentum for a system of particles within a cell depends on the orientation of

the particles relative to the cell, since the separations between atoms in adjacent cells depends on

the cell orientation. Such effects may be difficult or impossible to eliminate, and interpretation of

the results of simulations using periodic boundary conditions must take such effects into account.

3-3 Statistical Ensembles

The determination of macroscopic properties from interatomic potentials is made through

the application of statistical thermodynamics. Once a classical (or quantum mechanical) Hamil-

tonian is obtained, the ensemble averages may by determined for systems in the presence of

external constraints such as constant temperature, pressure, or volume. There are currently two

techniques in common use: the Monte Carlo method39, in which atomic coordinates and momenta

are generated randomly and averages are weighted according to the appropriate thermodynamic

distribution function; and molecular dynamics (MD), which follows the motion of the individual

atoms by numerical integration.

Time averages in molecular dynamics are equated to ensemble averages through the ergodic

theorem. This theorem relies upon the assumption that the points in phase space sampled by the

system as it evolves in time are representative of the entire phase space available to the system.

In many cases this assumption is unjustified, and molecular dynamics simulations cannot be

considered to be equivalent to the associated ensemble. While Monte Carlo methods do not have

this shortcoming, they are somewhat less intuitive for systems with continuous variables and are
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less applicable to systems which are not in equilibrium. The importance of such considerations to

the phase transitions in zirconia is not entirely clear, although features such as the hysteresis in the

monoclinic-tetragonal transformation suggest that non-equilibrium dynamics may be involved.

For these reasons, the method of molecular dynamics has been utilized in this study.

A number of developments have been made in the theory of molecular dynamics in recent

years. In the original formulation, a fixed number of particles is confined to a fixed volume and

the Lagrangian or Hamiltonian equations of motion conserve the energy of the system. This

formulation is interpreted as a microcanonical ensemble. In view of the equivalence of different

types of ensembles in the thermodynamic limit, this single ensemble is sufficient to generate any

of the macroscopic properties of the material. Even so, the constraint of constant volume and

the difficulty of establishing a given internal temperature make this ensemble very inconvenient

for the study of phase transitions which occur as a result of changing temperature and pressure.

A method of generating averages corresponding to ensembles other than the microcanonical

was introduced in 1980 by Anderson40. The introduction of an extended Hamiltonian which

includes kinetic and potential terms due to a 'virtual' volume variable makes it possible to produce

time averages which correspond to isobaric-isoenthalpic ensemble averages while preserving the

deterministic and conservative properties of the usual microcanonical formulation. Extensions of

this technique by Parrinello and Rahman41 to unit cells with varying shape allow the simulation

of systems which undergo structural transitions at fixed pressure. Introduction of a 'virtual' time

variable by Nose42 provided a method for generating canonical averages at a given temperature.

These are the basic techniques implemented here in order to investigate the phase diagram of

zirconia. Since their advent, these 'new' molecular dynamics methods have been successfully

applied to the study of phase transitions in a variety of materials, including Ag2S43 and AgI44,

two materials which display structurally dependent ionic conductivity similar to that found in

zirconia.

3-4 Molecular Dynamics at Constant Temperature

The Hamiltonian for N particles in a microcanonical ensemble is generally of the form

N 2

H = >P= +2mi
i=1

where the potential <I) is a function of the coordinates of the particles only. In order to obtain

equations of motion which give time averages equal to the canonical ensemble averages for this

Hamiltonian, Nose postulated the Lagrangian42
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L=Emis2 (I) (79 + 942 (f +1)kTegIn(s)
2 2i=i

with the corresponding 'extended' Hamiltonian given by

2 -
pi(v) = = MiS ri

Sri

P s = a- ; = Qs
N

H ri(v)
2mis2

+ (1)(fi) (f +1)kTegIn(s)
1-1i=i

In these equations, s is a 'virtual' variable, and p, is the momentum conjugate to s. The

subscript `t? (for 'virtual') is added to the particle momenta to distinguish them from the 'real'

momenta in the original Hamiltonian; the canonical momenta averages are obtained from the

virtual equations of motion if pi is identified as s-lpi(v). With the time scaled according to

dt(r) = s-ldt, the appropriate value for the constant (f + 1) is 3N, the number of degrees of

freedom for the original system. The equations of motion for the original variables are then

(dropping the superscript from the time differentials)

dQi pi
dt mi

dpi acp p,
dt 8qi --aPt

ds sp,
dt Q

N 2
dp---s- =E 3NkTeq
dt 2mi

The virtual variables and the extended Hamiltonian alter the equations of motion for the

momenta by the addition of a frictional term. The kinetic energy of the system is driven towards

Teq through the coupling between the real and virtual momenta.

The time averages of functions of pi and Fi are proved by Nose to be equal in the ergodic

limit to the canonical ensemble averages. This is done by calculating the partition function

and ensemble averages for the extended system. Hoover45 has since shown that the canonical

distribution is a stationary solution of the equation governing conservation of probability in the

extended system. This implies that a canonical distribution will be maintained by the particles

in such a system. The two derivations are similar in content, both showing that in at least some

sense Nose's equations of motion are consistent with a canonical ensemble.
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Nose's proof of the equality of time averages and canonical ensemble averages is particularly

interesting because it is exact not only in the thermodynamic limit but also for small numbers

of particles. This has resulted in numerical and analytic studies specifically concerned with the

application of Nose's equation to small systems.

In applications to very simple systems, H.J.F. Jansen" has demonstrated that the behavior

of free particles is unphysical, and the behavior of harmonic oscillators is dependent on the

initial conditions and the value of the virtual mass Q. For small Q or initial conditions far from

equilibrium the averages will not be those of a canonical distribution and the motion of the

particles may include accelerations which are not only unphysical but also numerically unstable.

In general, Nose's equations cannot be considered to model a classical heat bath, and in particular

this method is not applicable to calculations of phonon energies.

Hoover and others45,47,48 have investigated the behavior of the one-dimensional harmonic

oscillator for various initial conditions and virtual masses. For conditions which produce chaotic

motion an approximately canonical distribution is obtained, while other starting conditions pro-

duce marginal or completely unphysical motion.

These results suggest that the ergodic theorem is not well satisfied for systems with small

numbers of particles. Larger systems generally exhibit a correspondly greater amount of disor-

dered behavior, and the chaotic conditions required to produce a canonical distribution are more

easily met. Still, instabilities may be introduced if the equilibrium temperature is reset in order

to simulate a rise or fall in the temperature of the system.

In the past few years different sets of equations of motion have been found which also

give canonical averages in the ergodic limit. Jellinek49 in particular has shown how to generate

many different dynamics which are consistent with the canonical distribution, along with the

suggestion that the averages obtained for a particular case may be tested by applying a different

dynamics to the same system and comparing the results. Bulgac and Kusnezov50 argue that

Nose's formulation does not decouple the coordinate and momentum distribution functions, and

propose an extended system with an additional virtual variable used to scale the coordinates.

Their method is shown to result in distribution functions for the one-dimensional harmonic

oscillator which are much closer to the canonical distributions than those obtained with Nose's

formulation.

The progress in obtaining more reliable equations of motion is encouraging, but at present

these new methods are still largely untested. Nose's method, despite its shortcomings, is still

useful for the simulation of systems at a given equilibrium temperature. The average of the kinetic

energy in a system will be driven toward the set temperature regardless of the initial conditions;
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whether this results in a system with canonical distribution functions must be determined for

each particular case.

3-5 Molecular Dynamics at Constant Pressure

Anderson40 introduced an extended Hamiltonian which allows the volume of a molecular

dynamics unit cell to vary isotropically in response to a given pressure, and showed that the

ensemble averages obtained with this Hamiltonian are equal (to order 1/N) to the averages

for an isobaric-isoenthalpic (NPH) ensemble with the same external pressure. Parrinello and

Rahman41 generalized Anderson's Hamiltonian to obtain equations of motion which allow the

shape of the unit cell as well as the volume to vary in response to a given hydrostatic pressure.

The Lagrangian proposed for this purpose by Parrinello and Rahman is

WL =
2

ehT (DM ± Tr(hT h) Pertdet(h)
i=1

In this equation the components of the unit cell vectors a , and are column vectors

comprising the 3x3 matrix h, hT is the transpose of h and the determinant of h is the volume

of the unit cell. The components of h are treated as virtual variables along with the vectors 4i.

The relationships between the real and virtual variables are

aax

Fi = hqi = ay(
az

bx

by

bz

cz

Cy

cz

/
Si

\ Ci

=

The components of the vector 4'i describe the position of the its particle within the unit

cell. i,tii,and (i are the displacements of this particle along the vectors ci,E,and 6, respectively.

If the center of the unit cell is taken as the origin, the position of any particle within the unit

cell will be described by a vector qi with component values between 0.5 and -0.5.

The correspondence between the real and virtual momenta is determined by applying the

ergodic theorem to the Hamiltonian expressed in 'virtual' variables and identifying the resulting

ensemble average as an isobaric-isoenthalpic ensemble average for a classical Hamiltonian ex-

pressed in 'real' variables. It may also be noted that the direct substitution pi = miri would be

inconsistent with periodic boundary conditions, since the momenta defined in this manner would

not necessarily be equal for equivalent atoms in different unit cells.
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When periodic boundary conditions are imposed, the potential is generally a function of

the unit cell dimensions as well as the particle coordinates. In this case the equations of motion

may be written

Ph

ri = + hh ri
mi

(94.(77, h)
= hT_ihrFi = j; _ hT-i itTpi

Ph
" W

\---
Lem' M i + Pedet(h) + fhhT} hT 1
i=1 i=1

E {P P,z} det(h)hT -1

Pex 0 0

Pex = ( 0 Pex 0

0 0 Pex

841(F,h)
(fh)ao =

The equations for Fi and pi are equivalent to those derived previously by Hoover et.a1.51

for the study of externally driven nonequilibrium phenomena. In addition, the unit cell matrix

h is driven by the difference between the external stress tensor P and the microscopic stress

tensor P.

Ray and Rahman52 show that these equations of motion generate a thermodynamically

consistent isoenthalpic-isobaric (NPH) ensemble. They also show that the physical stress tensor

Per necessary to hold the unit cell matrix h constant in a microcanonical EhN ensemble with

fixed unit cell dimensions is equal to the average of the microscopic stress tensor P. The 'h' in

the EhN ensemble denotes a constant unit cell matrix h; in the more usual EVN microcanonical

ensemble, the volume is held constant and the unit cell is generally presumed to be cubic.

The equilibrium condition for the unit cell dimensions when the components of h are allowed

to vary is

or

(IV = 0 = ((P -Pez)det(h)hT-1) E ((P Pe)A)

(PA) = P (A)

In these equations, brackets denote a time average and A is the area tensor. If h is well

defined at equilibrium, then this equilibrium condition is the same as the relation between internal
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and external stress tensors in the fixed-cell EhN ensemble. This equivalence provides a simple

method for verifying the cell dimensions obtained with the NPH ensemble and a given external

pressure. If the cell dimensions are fixed at their average values, then a simulation in the EhN

ensemble at the same temperature should result in components of the microscopic stress tensor

which are equal to the corresponding components of the given external pressure tensor used in

the NPH simulation.

Suggested modifications to the Parrinello-Rahman equations have mainly focused on the

form of the kinetic energy term for the virtual variables:

Kv(PR) = 2 WTr(iiTit)

As pointed out by Ray53, this expression leads to equations of motion which do not reduce

to those of Anderson's model for a cubic molecular dynamics cell and a single virtual volume

variable. A virtual kinetic energy expression which does agree in this case is given by

Kv(R) = 1 cTr(hT hhT hT hh)
2

Cleveland54 shows that Kv(pR) is not invariant with respect to replacement of one set of

unit cell vectors with another equivalent set of vectors. A virtual kinetic energy term which does

have the required invariance as well as reducing to Anderson's model in the isotropic limit is

given as

h'v(c) = 2w(det(h))2Tr(hh-1hT-1 /IT)

If either Kv(R) or Kv(c) is used instead of Kv(pR) as the virtual kinetic energy term in the

Parrinello-Rahman Lagrangian, the equations of motion for 17, and pi are left unchanged, while

the expressions for 137, and h include a number of new terms which are functions of h and ph only.

3-6 NPT Molecular Dynamics

The following Lagrangian has been implemented for the study of pressure and temperature

induced phase transitions in zirconia:

L = E mis2ZhThqi- 4)(14,h)

W
--Q 3NkBTezln(s) + Tr(hT h) PeAet(h)
2



The relations between the real and virtual variables and the equations of motion are
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The time average of any function of gi and Fi is equal, in the ergodic limit, to the isobaric-

isothermal (NPT) ensemble average for a system described by the Hamiltonian

N 2

H = > Pi
, h).

icl
mi

A proof of this equivalence and the derivation of the equations of motions are given in

Appendix A.

Similar Lagrangians for the simulation of NPT dynamics have been formulated by Nose"

for the case of isotropic volume changes and by Ferrario and Ryckaert" for rigid molecules. These

formulations vary most noticeably in the manner in which the rotation of the computational cell
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is suppressed. If the Lagrangian of Parrinello and Rahman is used in simulations, it is possible

for the cell to rotate as a whole. There is no physical significance to this rotation, and it may

be reduced or eliminated by introducing constraints which reduce the number of independent

variables in the matrix h from nine to six. Nose accomplished this by symmetrizing h with a

coordinate rotation at the beginning of the simulation; the cell was seen to remain approximately

symmetrical and the cell rotation was small compared to that found with h unsymmetrized.

Ferrario and Ryckaert proposed a simpler scheme, in which the cell vector d is fixed along the

x-axis and l; is constrained to lie in the x-y plane. This procedure offers some computational

advantages due to the reduced number of variables in the force equations, and this is the method

used in implementing the Lagrangian presented above.

The validity of either procedure for suppressing rotation is easily tested, since the average

values of h may be used to simulate an NhT ensemble and the internal pressure tensor computed in

this ensemble may be compared directly to the fixed external pressure set in the NPT simulation.

The relation between internal NhT and external NPT pressures will also be affected by the choice

of the form of the kinetic energy term in the Lagrangian. If good agreement is obtained, it may

be concluded that the particular formulation used is consistent with NPT ensemble dynamics.

With this in mind, the methods which are the simplest to implement have been chosen. The

kinetic energy term is that of Parrinello and Rahman, and in the matrix h the elements ay ,az

and b, are set to zero.

In the expressions for the components of the microscopic stress tensor 2, the term aTh'h)

contains partial derivatives of the potential with respect to each of the nine components of h.

However, if ay, az , and bz are set to zero, the potential is no longer a function of these variables,

and partial derivatives cannot be evaluated with respect to these variables. By utilizing the

symmetry of the stress tensor, the terms in question can be eliminated. The components of P

are then

N 2 N
.9(1)(F, h)

ax
01.(1.; h)

b,
04,(F, h)

c,Pdet(h) = E Ez- + E firx,
i=1 mi aaz at, acr:=1
N 2 N

.9.1(r., h)
b

04)(F, h)
cPy y de t ( h ) = VL., 15.- ± E fiyYi Y

i=1 Ini i=1 abY Y acY

2
a4) (F, h)

N
y"'Pzzdet(h) = Piz E

cz
''' 772i

i=1. i =1
acz

N N &Iv h)
by

aitiv,h)Pxy det(h) = E Pi.PiY + E .f.iyimi ab, acz Yi=1 i=1
= Py, det(h)
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Pzzdet(h)
h)Pix Piz + E ix zim aci

-t-

i=1

= Pzzdet(h)

cz

Pyzdet(h) E PiyPiz + E x zi 649( cf"yh) cz
i=1 i=1
Pzydet(h)

A general expression for the rate of change of the total angular momentum of the particles

can also be derived once P is shown to be symmetric. This expression for the torque is:

Ct = E i x f;

84)(7r, h) h) h)= ax -1-bx
a-1;

+cx

Derivations for expressions involving the microscopic stress tensor are given in Appendix B.

As a check on the validity of the proposed Lagrangian, and as a first approximation to a

model potential for zirconia, simulations were run for four zirconium and eight oxygen atoms

interacting through a Born-Lande type potential:

ZiZje2
e h) =

2
E surf
cri37 I -1L07 17:7 I I

1707 110
Tj

In this expression .fiap.y = ca--1-)5W+-ye; a, a, and y are integers running from +oo to oo; the

prime on the last summation indicates omission of the terms for which i = j and a = a = -y = 0;

and (1)surf is a correction to the Coulomb potential necessary for convergence of the lattice sum.

This last term is included implicitly if the Ewald summation method is used to calculate the

Coulomb forces. The constant C was set to obtain an equilibrium volume approximately equal

to that of monoclinic zirconia at low temperatures. Details regarding the calculation of the

lattice sums and the methods used in the simulations are given in later chapters; the results

given here are presented simply to evaluate the equivalence of the calculated time averages and

the associated NPT ensemble averages.

This system was brought to equilibrium at 300K and zero pressure. The pressure was then

raised to 0.1, 1 and 10 GPa, with the temperature held constant at 300K. With the pressure

held at 10 GPa, the temperature was raised to 1000K and then to 5000K in 1000K increments.

Finally, the temperature and pressure were reduced directly to the starting conditions of 300K

and zero pressure.
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With the exception of the final run, the results found were in good agreement with expected

results. The cell vectors described a cubic shape in the starting configuration and this shape was

retained throughout the simulation to an accuracy of a few tenths of a percent, again with the

exception of the final run. In the following discussion, the results for all of the runs except the

last are summarized, and the last run is then considered separately.

With increasing pressure, the volume decreased from 143.5 to 140.9 A3. As the temperature

increased the cell expanded more or less linearly to a maximum volume of 158.9 A3 at 5000K.

The diagonal elements of the internal pressure tensor were within two or three percent of the

set external pressure for temperatures below 3000K and a set external pressure of 10 GPa; with

lower pressures and higher temperatures the fluctuations were relatively large and the figures

were not quite as consistent. The off-diagonal elements were less than one percent of the external

pressure at high pressure and low temperature, and the general behavior with other conditions

was similar to that of the diagonal elements.

The average kinetic energy gave an internal 'temperature' which agreed with the set external

temperature to an accuracy of one percent or better throughout the simulation. The momentum

distribution was compared to an ideal Maxwell-Boltzmann distribution for each set of external

parameters. Agreement was generally good, but some variations were noted. In cases of obvious

deviations from the ideal distribution, the virtual momenta were set to zero and the simulation

was restarted; this resulted in some improvement in the distribution. Examples of distributions

before and after resetting the virtual momenta are shown in Figure 2.

At 1000K and 10 GPa, the components of the cell vectors were replaced with their average

values and held constant during the following run. The average value of each diagonal internal

pressure element was found to be within one percent of the value of the external pressure used to

establish the average cell dimensions. The averages of each of the off-diagonal elements remained

at less than one percent of the diagonal value.

In the final run, the system exhibited extremely nonphysical behavior. While the real

momenta were quickly reduced to zero, the velocities remained high, and the kinetic energies of

the virtual cell variables increased by several orders of magnitude. The cell itself expanded so

quickly that it would be fair to say that it exploded. Since numerical accuracy was completely

lost in this run, it is difficult to draw any real conclusions from this data except to note that

in this case the simulation failed. This failure during rapid changes in external temperature is

consistent with results previously obtained for very small systems".

Provided that changes in temperature are introduced gradually, the equations of motion

appear to provide a reasonable simulation of an NPT ensemble. The agreement between the pres-
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Figure 2: Distribution functions for particle momenta before (a) and after (b) resetting virtual

momenta to zero.
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sure obtained for NPT and EhN ensembles is quite good, particularly at lower temperatures. At

higher temperatures, this situation can be expected to improve for systems with larger numbers

of particles and correspondingly smaller fluctuations.

The momentum distribution produces a good approximation to the canonical Maxwell-

Boltzmann distribution in most cases, although it is sometimes necessary to reduce the kinetic

energy of the virtual variables in a rather ad hoc way to achieve this agreement.

According to the ergodic theorem, the average kinetic energy should be 0.5kT for each

of the virtual variables. In general, this is not found to be the case. Typical values for the

virtual kinetic energies may be orders of magnitude above or below the ergodic value, and while

it may be that these averages will be obtained if the run times are extremely long, for reasonable

simulation times this is not the case. In some cases, energy appeared to circulate between the

virtual momenta in a cyclic fashion.

In contrast to the nonergodic behavior of the virtual momenta, stable values were reached

rather quickly for the kinetic energy of the real system, the components of the microscopic

pressure tensor, and the magnitudes of the cell vector components. This suggests that equilibrium

for these quantities is reached despite the failure of the ergodic assumption in other respects. For

this reason, the equations of motion are expected to give reasonable results for NPT simulations

provided the momentum distribution is monitored and brought into correspondence with the

canonial distribution when deviations are objectionably large.

While the simulation techniques are judged to be reasonable, the atomic potential used in

this preliminary study is obviously inadequate and a more realistic potential must be used to

model the phase transitions.



23

Chapter 4

Interatomic Force Calculations

4-1 Electrostatic Forces

When periodic boundary conditions are employed, a molecular dynamics computational cell

containing N atoms may be considered to be a unit cell with an N-point basis in a crystal lattice.

The calculations of long-range Coulomb interactions can then be performed with techniques

developed for the evaluation of electrostatic energies and forces within crystals. While essentially

all molecular dynamics simulations which include long-range ionic interactions have used the

Ewald method57 to calculate the Coulomb energy and forces, alternative methods offer some

computational advantages. A method for performing Coulomb lattice sums using multipole

techniques is developed and implemented as part of this work, and results are contrasted with

those of the Ewald method.

The necessity for special procedures to obtain lattice sums for the Coulomb potential is

due not only to the extremely slow convergence of the lattice sums but also to the ambiguous

results obtained from straightforward summations. The cause of this ambiguity can be found by

examination of a simple lattice summation for the energy per unit cell due to N charged particles

within an MD computational cell. This energy may be written:

E E E L giqa

a=co p.-00 7 =-00 i=1 j.1 I ' Raf37

co co co N N

where Rol, aci--1-04-ye; a, E, and care Bravais lattice vectors; and the prime on the summation

over lattice indices now indicates omission of the terms for which i = j and a = = -y = 0.

Using this expression to approximate the energy by evaluation of a finite number of terms

leads to contradictions with the periodic boundary conditions which have been postulated for

the MD cell. In the usual case of a cell in which the total charge is zero, the energy sum has a

finite limit. However, if the cell has a nonzero dipole moment there will be a constant electric

field component throughout the MD cell. Because of this, the potential at a point on one face of

the cell will differ from that at a point translated through the cell along a Bravais lattice vector

to the opposite face. The existence of a non-zero dipole moment also makes the constant electric

field component dependent on the choice of the unit cell. An example of how this may occur is
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Figure 3: Two equivalent unit cells for tetragonal Zr02. Cross-hatched circles are Zr4+ atoms

and open circles are 0 atoms. P is the dipole moment of the unit cell.

illustrated in Figure 3. Two different, equivalent choices for the unit cell of tetragonal zirconia

are shown along with the net dipole moment for the cell. It is seen that the dipole moment can

be made to change sign simply by redefining the locations of the atoms on the corners of the cell.

If the derivative of the energy sum is calculated for each of these cells, then each sum will contain

terms describing an electric field parallel to the dipole moment of the associated unit cell, and

even though the cells are physically equivalent the electric fields for the two cases will differ in

sign.

The presence of a constant electric field component in an MD simulation due to a nonzero

dipole moment in the unit cell tends to accelerate each charged particle in a direction parallel to

the dipole moment of the cell until a particle leaves the cell. Applying periodic boundary con-

ditions, there is an identical particle displaced by a Bravais lattice vector which simultaneously

enters the cell through the opposite face. When the entering ion is included in the multipole

moments of the cell instead of the exiting ion, the unit cell is effectively redefined. The config-

uration of the unit cell could change, for example, from one of those shown in Figure 3 to the

other in the course of the simulation. When this happens, the electric field inside the cell changes
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discontinuously. Since the particles in an MD cell are not taken to have any particular symmetry,

a dipole moment is generally present and discontinuities in the electric field and therefore the

forces is the general rule.

The dependence of the energy sum on the dipole moment of the unit cell is well known. In

addition to early studies on the effect of the order of summation of terms on the energy totals58,

the development of fast summation techniques for the Coulomb energy of ionic lattices has led to

methods which can give different total energy values for the same unit cell. The Ewald method

and the planewise summation method59 (PSM), for example, yield different values if the unit cell

has a net dipole moment.

4-2 The Ewald Method

The potential due to a lattice of positive point charges is obtained in the Ewald method

by surrounding the point charges with equal positive and negative Gaussian charge distributions

and a uniform volume charge. The point charges plus the negative Gaussian distributions and

the positive Gaussian distributions plus the negative volume charges are then summed separately,

with the convergence of the positive Gaussian-volume charge lattice sum improved by performing

the sum in reciprocal space. Both sums converge, in contrast to the simple Coulomb lattice

sum. The reason for this is that the Ewald sum does not evaluate the lattice sum for positive

point charges alone, but rather evaluates the sum for the point charges plus a uniform negative

background charge. When the energy of a collection of positive and negative point charges in

the unit cell of a neutral crystal is calculated using the Ewald potential, the background charges

cancel and so the energy sum is generally taken to be due to the point charges alone.

The total dipole moment of the Ewald unit cell is always zero, since each point charge

plus volume charge has a dipole moment of zero irrespective of the position of the associated

point charge. The absolute convergence of the Ewald energy sum resulting from the zero dipole

moment leads to periodicity of the potential within the cell and to invariance of the forces in a

given cell regardless of the exact choice of unit cell.

The difference between results obtained from the Ewald method and the simple Coulomb

lattice sum can be clarified by replacing the infinite lattice summation in the Ewald method with

a summation over a very large but finite lattice. By inspecting the surface of the finite crystals,

it can be seen that the volume charges cancel each other exactly only if the net dipole moment

of the unit cell is zero. If the dipole moment is nonzero, then there will be a net surface charge

on the exterior of the crystal. A derivation of the Ewald energy sum which describes the surface
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charges explicitly is given in Appendix C. Expressions for the forces calculated from the Ewald

energy are also given in are given in Appendix C.

The absolute convergence properties of the Ewald method make this method a reasonable

one for dynamical simulations. While the system under study must now be taken as that of a

Coulomb system plus a specified surface charge, the lack of physical currents in a neutral crystal

implies that there must be, in general, surface conditions which result in the cancellation of any

constant forces predicted by the simple Coulomb sum. The Ewald method thus produces forces

which are both mathematically unambiguous and physically realistic for crystals which do not

have an intrinsic dipole moment.

A drawback of the Ewald method for computing Coulomb forces presents itself when simu-

lations containing large numbers of particles are considered. For an MD cell containing N atoms,

the number of Ewald sums required to calculate the forces is proportional to N2.

The terms which are summed in an Ewald energy calculation are rather complicated, par-

ticularly the direct sum. A force calculation requires the calculation and summation of terms

which are even more complicated. The speed of convergence can be improved in a simple way by

adjusting the free parameter a in the Ewald sums so that the direct and reciprocal sums converge

at the same rate. Nijboer and de Wette6° have shown that this will occur if a = Nirr/L, where

L is the length of a cubic cell edge. Sangster and Dixon61 show that the reciprocal sum can

be reformulated so that the number of terms is proportional to N rather than N2, and the free

parameter can then be adjusted to increase the number of reciprocal space terms and decrease

the number of direct space terms required to obtain a given degree of convergence. The optimum

value of a will be that which minimizes the overall computational time. An implementation

of both the original and modified Ewald methods62 indicates that the techniques suggested by

Sangster and Dixon can increase the speed of computation by a factor of about two or three.

The Ewald method was extended by Nijboer and deWette6° to include cases in which the

interactions are proportional to any negative power of the separation distance. Williams63 later

extended these methods to allow multiple atoms in a unit cell. These techniques give formulas

which can be used to perform fast summation of potentials and forces which would otherwise

converge very slowly, such as the r-4 dipole-charge interaction commonly encountered in ionic

models and the T-6 Van der Waals or dispersion interaction. These formulas become progressively

more complicated as the reciprocal power increases, and it is common to use a cutoff radius to

calculate these potentials rather than utilize the rapidly converging formulations.
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4-3 Planewise Summation Methods

In the planewise summation method, two-dimensional lattice sums are first obtained for

lattice points in the planes defined by two of the lattice vectors and the contributions from each

plane are then summed along the third lattice vector. A Fourier transform is applied to the

two-dimensional sums, which allows the third sum to be performed analytically. The result is a

lattice sum which requires summation over only two reciprocal lattice indices.

Planewise summation was first developed by Nijboer and de Wette59 for dipole lattices and

crystals with monoclinic and higher symmetry. They later extended the method" to summation

of multipole lattices of all orders and used the multipole summations to calculate an electrostatic

potential for ionic lattices. The method was extended to multipole lattices in triclinic crystals

by Massidda65. Massidda and Hernando also developed a formulation for the direct use of the

planewise summation method to obtain the electrostatic potentia166.

The planewise summation method offers some computational advantages over the Ewald

method. The lattice summation is performed over two indices rather than three, there is only

a reciprocal space sum and not a direct sum, and the individual terms in the sum are generally

simpler to calculate than those in an Ewald sum.

A disadvantage of both Ewald and direct planewise summation methods is that the number

of calculations is proportional to N2. An additional disadvantage of the planewise method is the

dependence of the potential on the choice of the planes in the crystal and inconsistency with

periodic boundary conditions when the dipole moment of the unit cell is nonzero.

An alternative to the direct planewise method is the separation of the potential into mul-

tipoles which can then be summed individually. By using procedures similar to those of the

fast multipole method of Greengard and Rokhlin67, algorithms can be written which require a

number of calculations proportional to N.

The multipole expansion of the Coulomb potential contains the same indeterminacy and

dipole dependence of the simple Coulomb sum, so for dynamical simulations it is necessary to

modify the potential in such a way that periodic boundary conditions are maintained regardless

of the choice of unit cell. It is possible to accomplish this by separating the indeterminate part

of the multipole expansion into contributions due to surface charges and a separate lattice sum

which is absolutely convergent. This is the same separation that is included implicitly in the

Ewald method. In the following derivation of a periodic multipole potential, the two methods

will be shown to be equivalent.

In order to expand the Coulomb potential in multipole moments, it is necessary to define a
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sphere about the origin of the MD cell and restrict the application of the multipole expansion to

those terms in the lattice sums which come from cells with centers outside the sphere. This radius

must be greater than the longest diagonal of the MD cell to insure the validity of the multipole

expansion. The cells inside the sphere are hereafter referred to as 'near-neighbors'. When a

multipole expansion which separates the lattice sums from the particle locations is used", the

energy sum becomes

1
n n

E = E EE' gig;

cri37 =nn i=1 j=i I
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Here the unnormalized spherical harmonics are defined as

Ckn;Im =

(7') = Pilml(cosO)eim°

A derivation of this equation is provided for reference in Appendix D. With the multipole mo-

ments of the MD cell defined as

Qlm = Egioim(1'i)
i=1

and the first term defined as Enn, the energy can be written as

1 Yk-Fi,n+rn (fla/37)
2

E = Enn + EECkn;ImQ4imQkn
Rk 1+1kn Im cep-yOnn ctR'Y

The lattice sums can be calculated separately for each combination of k+1 and n+m. For

k + 1 > 4, these sums are absolutely convergent" and can be calculated by the PSM without

ambiguity. The indeterminancy in the total energy is contained in the lattice sums with k + 1 < 4,

and since these sums are at best conditionally convergent other methods must be used for their

evaluation.

In all cases but one, terms in the sum which contain combinations of k and 1 with k + 1 < 4

can be shown to be zero. This is the case for any combinations with k or 1 equal to zero,

since charge neutrality of the MD cell insures that Q00 = 0. The inversion symmetry of the

Bravais lattice in combination with the parity of spherical harmonics of odd order leads to zero

contributions from all odd-valued combinations, including k+1 equal to 1 or 3. The only non-zero

terms with k + 1 < 4 are those with k=1 and 1=1. The strength of this term is determined by
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the collective dipole moment of the charges in the MD cell. As expected, if the dipole moment

is zero, then Qi, is zero and there is no indeterminancy is the overall sum.

In order to evaluate the term with k=1=1 and nonzero dipole moment, a set of point charges

of arbitrary magnitude can be added and subtracted at the center of the face of each cell in the

lattice. The energy in the MD cell due to these added point charges is zero, which in this case

may be written

or
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In these equations, r), and c are the unit cell lattice vectors. By combining the contribu-

tions from the positive and negative charges at each common lattice point, a single lattice sum

plus a number of surface terms are created:
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The last three terms contain point charges spaced uniformly on the surfaces of the finite

crystal. Representing these terms by -Est,f and performing a multipole expansion on the terms

in the lattice which are not near neighbors,
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30

Referring to t

multipole term as Q

0 =E

Values for 4a ,

the compensating c

where qi is the ioni

within the unit cell

unit cells of Figure

In an orthorh

ments of the unit cel

dipole moment alon

dipole moment for t

a surface charge, a

Esurf
1

EECIcn;ImCAn(ikcn
kn Im

Yk+1,n+rn cr13-y)

Rk+1+1aPryOnn a,37

b, and ic are determined by setting eh,. = Qim.The resulting values for

arges are

ga = E
i=1

qb = gilji
i=1

qc= EgiCi
i=i

charge of the ith atom and and (i are the fractional displacements

long the a*, b, and -e directions, respectively. Compensating charges for the

are shown in Figure 4.

mbic lattice the compensating charges are proportional to the dipole mo-

. In triclinic lattices the values are proportional to the projection of the total

the lattice vectors. Using these values for the compensating charges, the

e MD cell can be equated to an expression containing terms which represent

ear neighbor sum, and lattice sums which are all absolutely convergent.
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P=0

Figure 4: Addition of compensating charges which result in zero dipole moments for the unit

cells of Figure 3. Parallel hatched circles are the compensating charges.

Here the sums on the RHS are restricted to values of k and 1 for which k +1> 4. When this

expression is inserted into the original Coulomb sum, the required form for the total electrostatic

energy is obtained.

E Enn + itnn E surf

Yk+1,n+m (Rap -y}+-
2

EEckn,,,..Q7,(Qt. -ozn) E
Rk+1+1Im kn af3-yOnn al37

The distance from the original MD cell to the surface charges can be taken to be very large

compared to the cell dimensions. In this limit the point charges at the summation limits can be

well approximated as surface charges with values pa = Abp, N = I Ale and pa = Aab.

Aab is the area of the MD cell face defined by lattice vectors a and I). Aar and Aba are defined

similarly.

If the energy of the system is taken as

Emp E Esur f

then all of the lattice sums are absolutely convergent and the forces generated by Emp are periodic
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with the lattice. Because of this, the value of the energy is not affected by the definition of the

unit cell. In fact, Env is the same as the Ewald energy if the same lattice limits are used in both

cases. The Ewald energy may also be considered as the simple Coulomb energy plus a surface

term, with the magnitude of the the surface charge distribution exactly equal to that obtained

for the multipole method (Appendix C). For lattice sums taken over the same limits, the surface

charge distributions generated by each method are identical.

The computation of lattice sums for interaction potentials inversely porportional to higher

powers of the separation distance is somewhat problematic. Direct extension of the planewise

method yields expressions which are difficult to sum analytically or which contain slowly con-

verging series. Expressions for planewise sums for potentials varying as 1.'4 and T-6 are given in

Appendix E.

It would be possible to tabulate the integrals in the T-4 and T-6 formulations in order to

speed the computation of these sums. The formulas in these cases are absolutely convergent, so no

special considerations are required in their use. Performance in an algorithm could be expected

to be competitive with that of the Ewald-type summations, with the number of calculations

proportional to N2 in either case.

Incorporation of interaction potentials of the form r'n into a multipole method presents

even more difficulties. The multipole separation used for the Coulomb potential cannot be used

for the higher power terms; since these terms do not satisfy Laplace's equation they cannot be

constructed from linear combinations of the solutions to that equation. The multipole character

of the summations could be preserved by separating the lattice sums and particle coordinates

through application of a three-dimensional Taylor series expansion. The lattice sums so obtained

are found to be derivatives of the direct lattice sums for r'n evaluated at the origin. These sums

could in principle be evaluated with a number of operations proportional to N by the planewise

summation as outlined above and then differentiated to obtain the terms which would be included

in the multipole sums

A more intuitive approach to including the higher-power terms can be found by considering

these terms in light of their physical origins. The T-4 term is generally considered to be a charge-

dipole interaction, while the r-6 terms usually arise from an induced dipole-dipole interaction.

If each atom is assigned a polarizability, then the dipole moment induced in each atom will

be proportional to the electric field at that atom. The field at each atom is obtained as part

of the force calculation. The charge-dipole interaction could then be calculated directly for

near neighbors and through an additional multipole sum for the long-range contributions. The

corrections to the electric field at each atom would in turn cause corrections in the atomic dipole
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moments, and the procedure would be repeated until self-consistency is obtained. At each step

the only corrections are to the multipole moments of the unit cell; the lattice sums remain

unchanged throughout the self-consistency routine.

The direct calculation of dipole interactions through the multipole method has a number of

advantages. All of the electrostatic forces due to dipole interactions are included automatically.

The T-4 and T-6 potentials, for instance, need not be considered separately. Using fast multipole

techniques, it is possible to construct algorithms which include all of the electrostatic forces to

any required degree of accuracy with a number of calculations proportional to N. The short-range

forces would be calculated in the last step of the fast multipole procedure and would also require

a number of calculations proportional to N. The method could readily be extended to include

quadrupole and higher order interactions if required. A deficiency of this method is that it does

not allow for the faithful modelling of materials with intrinsic dipole moments or interactions

such as the Van der Waals force which are implicitly quantum mechanical in nature.

The multipole expressions for energy and force have been incorporated in a rather simple

way into an algorithm for molecular dynamics simulations. The near neighbor interactions are

calculated directly, and the planewise summation method is used to calculate the lattice sums

for the long-range Coulomb interactions. The resulting algorithm includes a number of calcu-

lations proportional to N2 due to the near neighbor terms. The terms in these calculations are

simpler than those of the Ewald summation, and total run time is expected to be less for sys-

tems containing moderately large numbers of atoms. The number of multipole calculations is

proportional to N but it is also proportional to the fourth power of the highest order multipole

index included in the sums. If the full procedure of the fast multipole method is implemented,

each stage of the procedure reduces the number of near neighbor calculations by a factor of eight

and increases the number of multipole calculations by the same factor. Trial implementation of

a one-stage fast multipole algorithm indicated that for several hundred atoms the fast multipole

routine increased the run time. There are many approaches to improving the speed of the fast

multipole algorithm but these are beyond the scope of this work. Energy and force calculations

using the planewise summation method are given in Appendix D.

Both the Ewald method and the planewise summation method have been incorporated

into algorithms for calculating the long-range energy and forces. Analytically, the two methods

produce identical numerical results when applied to a given MD cell. The choice of which to use

in dynamical simulations may be made by considering the speed and accuracy of the algorithms

for each of these methods.
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4-4 Numerical Accuracy of Algorithms

Computation of energies and forces in molecular dynamics simulations are limited in pre-

cision by the numerical accuracy of the algorithms. The accuracy is determined by the choice of

parameters used in calculating the interactions due to short-range forces as well as those used in

the long-range Coulomb interactions. The various types of numerical errors are discussed in this

section, and the parameters necessary to achieve a given relative error are obtained. Derivations

of the various expressions for the fractional errors are given in Appendix F. The short-range

forces are assumed here to be proportional to r-1°.

For a short-range potential proportional to 7.-10 the associated energy per unit cell is:

00 N
1E Cio

2
a0 -y=-00

E - 110
-y=-00 ij =-1

In a numerical computation, the sums over the lattice are finite and the expression for the

total energy contains a truncation error. If the sums are evaluated for all lattice parameters with

an absolute value less than or equal to a given positive integer value, the truncation error can be

written:

is:

E E
6sr = Esr E Cio

2
«43-7.-m

!to, - rj 110

A approximate expression for the fractional error with a given value for the lattice limit M

(5 24 1

cm E 210 7M7

The estimated error bounds for various values of M are given in Table 2, along with the

actual errors calculated for NaC1 and tetragonal and monoclinic zirconia.

M em(est.) NaCl Zr02(ttr) Zr02(mc)

1 3x10-6 2x10-4 1x10-4 6x10-6

2 2x10-6 4x10-6 2x10-6 9x10-8

3 2x10-7 3x10-7 2x10-7 7x10-9

Table 2: Truncation errors for short-range energy sums.

Ewald summations include a free parameter a which is set to a = / /a, a being the

lattice constant. This definition of a is used for all calculations described here, with the result
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that for non-cubic cells the rate of convergence depends on the ratios of the lattice constants.

The fractional truncation error for the Ewald sum is estimated as:

ew(a)2(3-1-5-1--.4-(2M+1)) M > 1

In this approximation a is the largest lattice constant and b is the smallest. Error estimates and

calculated errors for lattice sums computed with the Ewald method are listed in table 3.

M em(1 = 1) )2- I NaCI Zr02(ttr) Zr02(mc)

1 10-4 10-2 10-1 1x10-5 840-4 1x10-4

2 10-11 10-5 10-3 5x10-12 5x10-8 6x10-3
3 10-20 10-10 10-5 2x10-20 lx10-14 2x10-16

Table 3: Truncation errors for Ewald energy sums.

In dynamical simulations, a fractional error of 10-4 in the forces is generally considered to

be acceptable. Due to the convergence of the Ewald sum, this accuracy can usually be obtained

with M=2, M=1 being marginally acceptable for cubic crystals. In most cases, the accuracy

of the calculations will be much better than the estimate. For the crystals listed in the tables,

the error for M = 2 is :4 10-8 for the Ewald sums and N 10-5 for the short-range sums. The

short-range energy is estimated to be approximately 10% of the total energy, so the short-range

error relative to the total for M=2 is e 10-8.

A multipole calculation for the energy in the MD cell will include truncation errors for both

the short-range and Coulomb energies. The multipole expansion is valid for cells with centers

more than the maximum MD cell diagonal from the the origin, but if this distance is used as a

cutoff radius the multipole terms will converge very slowly. For maximum efficiency, the number

of direct calculations within a given cutoff radius must be weighed against the number of terms

in the multipole expansion which are required to achieve a given accuracy.

The accuracy of the short-range energy sums is directly determined by the cutoff radius.

An estimate for the fractional short-range truncation error is:

47 a 7
E s r 7 . 210 R

R is the cutoff radius and a is an average lattice constant. Estimated and calculated errors

are listed in table 4 for various values of the cutoff radius. In this and the following tables, the

parameter n is defined as n E- RI ro, with r0 equal to the maximum MD cell diagonal. The value

ro = .c/ is used to calculate the estimated values.
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n en(est.) NaC1 Zr02(ttr) Zr02(mc)

1.5 2.2x10-6 4x10-6 9x10-6 2.5x10-7

2.0 2.9x10-7 5x10-7 8x10-7 1.7x10-9

2.5 6.1x10-9 7x10-5 1x10-7 2.4x10-9

Table 4: Truncation errors for radial short-range energy sums.

The error estimates for a spherical lattice sum are directly related to those for the cubic

sum used with the Ewald method. Values for n= 1.5, 2.0 and 2.5 in table 4 are approximately

the same as those for M=2, 3, and 4, respectively, in table 2.

In all cases, the short-range sums within the cutoff radius have a fractional error of 10-5

or less. For simulations in which the short-range energy is expected to approximately a tenth of

the total energy, the short-range error is expected to be less than 10-6. For a multipole method

in which Coulomb and short-range energy and forces are calculated directly for all lattice points

within a given radius, accuracy of short-range contributions with any practical cutoff radius will

be sufficient unless a relative precision of 10-7 or less is required. In most cases, the truncations

errors in the multipole sums will determine the overall accuracy of the calculations.

The truncation error for the multipole expansion is:

p k p-k I
1 Yk +1,n+rnr Pry)6mp =

II`

C/012;1732 Cn.Q77.
Rk+7 +1R «Q7 r9 I k=0 n=-k 1=0 m = -1 ce/97

The magnitude of the error is determined by the value of p, the highest multipole index

retained in the sums, and also by the cutoff radius, since this radius determines the minimum

value of A.afi.y . An approximate expression for the fractional truncation error for the expansion

is:

I 6A (n + 1 \n_(p+i)

ri 1-1 n 1)

The parameter n in this expression is again the ratio of the cutoff radius to the maximum

MD cell diagonal. Estimated values for et, with n = -3- and n = 2 are shown in table 5.

The contribution from cells outside the cutoff radius is around one percent of the total

Coulomb energy for all of the examples given. The magnitude of this contribution falls off very

slowly as the cutoff radius is increased, so in estimates of the multipole truncation error the

multipole energy is taken to be one percent of the total Coulomb energy.

Additional numerical errors in the multipole sums arise from the computation of the lattice

sums using the planewise summation. This method uses Fourier transforms to replace multipole
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n p em(est.) NaCI Zr02(ttr) Zr02(mc)

4 0.6 1.0 0.54 0.27

6 0.3 8.8x10-4 0.22 1.9x10-2

8 0.13 8.8x10-4 8.8x10-2 3.0x10-2

10 6.0x10-2 5.6x10-5 6.1x10-2 1.8x10-3

1.5 12 2.6x10-2 3.2x10-5 3.3x10-4 2.8x10-3

14 1.1x10-2 5.3x10-6 1.8x10-3 3.6x10-4

16 5.0x10-3 7.9x10-4 7.2x10-6

18 2.0x10-3 5.2x10-4 6.8x10-6

20 1.0x10-3 2.7x10-5 6.8x10-6

4 4.3x10-2 1.0 1.0 9.4x10-2

6 2.3x10-2 6.0x10-3 0.24 1.2x10-2

8 5.9x10-3 6.0x10-3 6.6x10-3 4.1x10-4

10. 1.5x10-3 1.2x10-4 2.6x10-3 1.6x10-6

2.0 12 3.7x10-3 1.0x10-5 1.0x10-3 6.1x10-6

14 9.2x10-5 1.2x10-4 1.8x10-6

16 2.3x10-5 3.9x10-5 3.6x10-7

18 5.7x10-6 7.3x10-8

20 1.4x10-6

Table 5: Truncation errors for the multipole expansion.

lattice sums with more rapidly converging series. One consequence of this is that the method

can be applied only to sums over a complete lattice. In order to use the planewise method as

part of a multipole method, the multipole sums are rewritten:

E Yi.(40,y) Ylm(40) Ylm (A0-0
R1+1 R1+1 RI+1crAy#n n cer , aP7 aR'Y nn «01

The prime denotes a sum over all lattice points except the origin. This sum can be calcu-

lated using the planewise summation method for each value of 1 and m. The terms in the sum

over near neighbors are then calculated separately and subtracted from the planewise result.

The subtraction of two lattice sums which are nearly equal in value tends to exaggerate

the numerical errors introduced with the planewise summation method. A truncation error in

the planewise sums will produce errors relative to the lattice sum over all space, which is usually

several orders of magnitude larger than a sum which is restricted to lattice points outside a cutoff
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radius. The error in the total Coulomb energy is found to be

1.;,.Ecoui
Ecatc sm E;sm

f
Emp Emp

ePSM + EcouiEcoul Ecoul Ecoul

with ePsm. equal to the fractional truncation error for the planewise summation and

p p k
'171APOLP7)EEEE Ckn;pk,vnQknQp*k,vn Z_, DU+1PSM

1/=-11k=On=k a/37 a/7

Elitsm is generally of the same order of magnitude as the total Coulomb energy and can be

several orders of magnitude larger than the multipole energy Emp. Because of this, the planewise

sum truncation error EY>sm must be much smaller than the multipole truncation error cp in order

to achieve similar error contributions in the total Coulomb energy sum.

The equations used to implement the planewise summation method are adapted from the

formula of Massida for a general triclinic lattice, and are listed in Appendix D. When the recipro-

cal space summations are limited to indices with absolute values less than or equal to a positive

integer M, the value of Elicsm is estimated as:

(M + iy7re-2(m+1) =,=,4sm (M) eAm 2(27)A (2P /1-1-11)1

cz and a are the dimensions of the MD cell in the z and x directions respectively. Estimated

values for eY,',sm for various values of p, czla and M are given in Tables 6 and 7. The values

listed under the crystals are the computed values for emm a-.- ei,sm (M) sm I Ecoui.

The estimates are seen to be fairly close to the calculated values for the monoclinic zirconia

and sodium chloride crystals, where 1, and the tetragonal zirconia crystal, where c/a

The convergence of the planewise summation method is strongly dependent on the c/a ratio, due

to the analytic summation of terms along the z direction. Choosing a value of M to limit the

truncation error in all cases, including c/a << 1, would necessitate a value of M which would in

many cases be impractical. A value for M is chosen instead for crystals of approximately cubic

symmetry, with the understanding that if the shape of the crystal becomes distorted in such a

way that c/a << 1 then the entire MD cell must be rotated so that c/a > 1 and the required

error tolerance is maintained.

Using the tables of estimated errors, sets of parameters may be specified to obtain a required

error tolerance in the multipole and Ewald methods. A summary of these parameters is listed in

Table 8.

In order to check the relative efficiency of the two methods, runs were made with each

force routine for the same unit cell. Each run included 81 force and 3 energy calculations. The

parameters used were Mew =3, p=14 and Mpsm =7 for an expected relative error of 10-6. The

results are plotted in Figure 5.
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p M est.

el,m : czla =1

NaC1 Zr02(mc)

8 3 4.0x10-4 3.2x10-32 1.1x10-6

4 4.4x10-6 3.1x10-34 5.0x10-8

5 3.5x10-8 2.2x10-36 4.6x10-1°

10 3 3.1x10-3 1.8x10-4 1.6x10-4

4 5.4x10-5 2.6x10-6 1.4x10-5

5 6.2x10-7 2.7x10-8 1.9x10-7

6 5.4x10-9 2.1x10-" 9.6z10-1°

12 4 4.3x10-4 1.4x10-6 3.7z10-5

5 7.3x10-6 2.0x10-8 7.1z10-7

6 8.7x10-8 2.1x10-w 4.8x10-9

14 5 6.1x10-5 1.1x10-6 4.6x10-6

6 9.9x10-7 1.6x10-8 4.2x10-8

7 1.2x10-8 1.7x10-1° 5.5x10-11

16 5 3.9x10-4 1.6z10-6 1.6x10-4

6 8.5x10-6 3.2x10-8 1.9x10-6

7 1.3x10-7 4.6x10-1° 2.4x10-9

18 6 5.7x10-5 1.5x10-7 1.9x10-5

7 1.2x10-6 2.8x10-9 2.0x10-8

8 1.8x10-8 4.0x10-11 1.8x10-9

20 6 3.1x10-4 6.8x10-7 8.1z10-5

7 8.2x10-6 1.6x10-8 4.1210'8

8 1.6x10-7 2.9x10-1° 1.5x10'

Table 6: Truncation errors for the planewise summation: -9-: = 1.
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p M est : czla= .4
e pm

Zr02(ttr) est.: czla -=11\

8 3 1.2x10-8 1.2x10-8 0.64

4 9.7z10-12 8.5x10-12 4.3x10-2

5 6.0x10-15 4.4x10-15 2.2x10-3

10 3 9.3x10-8 2.4x10-7 5.0

4 1.2x10-10 2.8510-10 0.53

5 1.1x10-13 2.1z10-13 3.8x10-2

6 6.5x10-17 1.3x10-16 2.1x10-3

12 4 9.5x10-10 3.4x10-9 4.3

5 1.2x10-12 3.7x10-12 0.45

6 1.0x10-15 2.9x10-15 3.4x10-2

14 5 1.0x10-11 1.2x10-11 3.8

6 1.2x10-14 1.3x10-14 0.39

7 1.0x10-17

16 5 6.6x10-11 9.2x10-10 24.2

6 1.0x10-13 1.4x10-12 3.3

7 1.1x10-17 1.5x10-15 3.0x10-2

18 6 6.8x10-13 3.9x10-12 22.2

7 1.1x10-15 5.4x10-15 3.0

8 5.7x10-18 0.29

20 6 3.7x10-12 5.1x10-11 121

7 7.5x10-15 9.1x10-14 20.5

8 1.1x10-17 1.2x10-16 2.6

Table 7: Truncation errors for the planewise summation: a # 1.
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Figure 5: Computer run times for various numbers of atoms per unit cell. Forces are calculated

by the Ewald method (circles) or by the planewise summation method (triangles).
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Chapter 5

Program Description

5-1 General Description

The program NPT performs molecular dynamics simulations for a system of atoms by

numerical integration of the classical equations of motion given in Section 3-6, which correspond

to a constant pressure-constant temperature ensemble. The integrations are performed with

either a fourth-order Runge-Kutta69 or a fourth-order Gearn integration subroutine. The number

and types of atoms are arbitrary. Forces between atoms are calculated from pairwise potentials

of the form

ri;
iZZi e

ui;
rag

2
+

-y=1
n ij,

In this expression i and j refer to atomic species, Zi and Zi are the atomic valence charges, Cii-y

is a constant, rii is the separation between the atoms, and nii.y is a positive integer. The number

of terms in the short-range interaction is arbitrary. Periodic boundary conditions are imposed

on the MD cell, and if the motion of an atom carries it outside the cell a lattice translation

is performed which brings the atomic coordinates back into the cell. The energies and forces

are calculated with algorithms utilizing either Ewald or planewise lattice summations for the

long-range Coulomb interactions.

The virtual variables can optionally be held constant by setting the appropriate input pa-

rameters. If the virtual time variable is held constant the time averages of the particle coordinates

and momenta correspond to those of an isoenthalpic-isobaric (NPH) ensemble. Holding the vir-

tual cell variables constant yields canonical averages for a cell with constant shape and volume

(NhT ensemble) and holding all virtual variables constant gives a constant energy-constant cell

shape (EhN) ensemble.

Atomic parameters which must be specified are the mass, charge, and initial position for

each atom and the force constant and exponent for each short-range interaction term. Initial

parameters for atoms and unit cell vector components are listed in the file crystals.

Run parameters and output file toggles are taken from the auxiliary file NPT.in.(fileno),

with (fileno) an arbitrary character string which is used to label the run and which is automat-

ically appended to the name of each output file. An NPT.in. file with typical input parameters



input parameters for NPT.c

external temperature (Kelvin): 300
external pressure (GPa): 3.0
no. of samples: 200
integrations per sample time: 5
time per integration (femtoseconds): 0.5
unit cell: zirc_mc
force routine: FMM
integration routine: Gr 4
no. of unit cells per MD cell edge: 2
seed: 1
Q(mass for 'virtual' time variable): 1.5e-21
W(mass for 'virtual' volume variables): 1.5e-21
constant time variable (s): no
constant volume variables (a,b,c): no
quench virtual variables: no
output files:

NPT.x.[fileno] (atomic positions): yes
NPT.e.[fileno] (system energies): yes
NPT.sp.[fileno] (time variables): yes
NPT.abc.[fileno] (cell dimensions): yes
NPT.m.[fileno] (animation source): no
NPT.ay.[fileno] (system averages): yes
NPT.nn.[fileno] (near neighbors): yes
NPT.pdist.[fileno] (momenta dist.): yes

Figure 6: Typical input file for program NPT.
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is given as Figure 6. Pressure may be any floating-point number, while temperature must be

a positive integer. The available choices for the force routine are ewald and FMM(planewise

method). Choices for the integration routine are RK 4 and Gr 4. The no. of cells per unit cell

edges is used to create MD cells by stacking unit cells along the lattice vectors; the number of

atoms in the simulation is the number of atoms in the unit cell times the cube of this parameter.

Seed is the input to a random number generator used in setting the initial atomic momenta.

Output toggles are set by specifying yes or no for each file. If the file input is yes then the

program will generate that output file. Files which normally take data from previous runs also

recognize a restart input, which causes the earlier run data to be ignored.

To begin a simulation, the program run command is NPT start (fileno). A subsequent

command of NPT cont (fileno) causes the program to continue from the end of the previous run

so that the output is that of a continuous, uninterrupted run. New parameters may be introduced
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during the simulation by continuing with NPT cont (fileno) (infile). In this case the program

will resume with new parameters taken from the file NPT.in.(infile). A flow diagram is given

as Figure 7.

The output file NPT.x.(fileno) is the record file. Initial parameters and atomic and

virtual coordinates and momenta are recorded at the start of a run, and final coordinates and

momenta are recorded at the end of the first and each consecutive run. New parameters are

listed whenever a change is made during a run. Since the parameters are read from the .x file

instead of the initial input file, a continued run will retain the parameters of the previous run

and parameter changes need not be reintroduced. The accumulated simulation time is also listed

in this file.

Energy values for each sample are placed in NPT.e.(fileno). Total energy, potential

energy and kinetic temperature are tabulated. The total energy is conserved by the equations

of motion, so that variations in this quantity are indicative of the accuracy of the integration

routine. The kinetic temperature is defined as

2KET =
3NkB

In this expression, KE is the kinetic energy of the atoms, kB is Boltzmann's constant, and N is

the number of atoms.

Sampled values for the virtual time variable and its conjugate momentum are listed in

NPT.sp.(fileno). Values of the cell vector components at each sample time are listed in

NPT.abc.(fileno). NPT.m.(fileno) contains a list of particle positions and parameters for

use in a graphic display of the particle motion.

Averages and standard deviations for various functions of the coordinates and momenta are

tabulated in NPT.ay.(fileno). The magnitude of each virtual variable is included along with

volume, energy and pressure terms. Kinetic, potential and total energy averages are separated

into real and virtual components and kinetic energies are listed for each virtual variable. The

corresponding kinetic temperature is given for each kinetic energy average. Averages of the total

energy of the system and each independent component of the microscopic pressure tensor are

also listed. Figure 16 in Chapter 6 is an example of this file.

Pair correlation data is placed in NPT.nn.(fileno). Tabulated values for a given pair

type and separation distance include all distinct pairs at each sample time. Totals are kept for

separations up to a preset cutoff (usually 10 Angstroms). This data is primarily intended as an

input file for a graphics program. In the output graph, the near neighbor numbers are divided

by the square of the separation distance so that the values approach a constant asymptotic limit

as the distance increases. Several examples of graphical output are given in Chapter 6.



NPT start fileno NPT cont fileno

parameters, file toggles from NPT.in.fileno

45

NPT cont fileno infile

parameters, file toggles from NPT.in.infile

allocate storage and initialize atomic and virtual variables

parameters from NPT.x.fileno

current variables from NPT.x.fileno

new parameters to NPT.x.fileno

allocate storage and initialize output variables

initialize file(s)
yes new file(s)?

no
restart?

no

current variables from existing file(s)

open output file(s)

integrate equations over sample time

update output variables

no
last sample?

yes

update and close output file(s)

deallocate storage

Figure 7: Main flow diagram for program NPT.

yes
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Momentum samples are tabulated in NPT.pdist.(fileno). This data is also used primarily

as input for a graphics program; examples of the output are given in Figure 2 in Chapter 3 and

also in Chapter 6. The momentum data represents the number of atoms with a given total

momentum at each sample time. The momenta are normalized by mass so that atoms with

different masses contribute equally to the totals. The 'most probable momentum' used to scale

the graphics output is calculated for the temperature set in the input file and does not necessarily

correspond to that of the tabulated data. The ideal Maxwell-Boltzmann distribution plotted with

the sampled values is constructed by requiring that the ideal curve have the same average kinetic

energy as the sampled data and that the areas under the sampled and ideal curves are equal.

The 'kinetic temperature' on the graph is calculated from the sampled data.

5-2 Program Structure

The programming language used is ANSI C71. Each atom and each virtual variable is

assigned to a structure which holds all current data for that atom or variable. Information in

each atomic structure includes the atomic type (given by the element symbol), mass, charge,

position and momentum and their derivatives, and forces. Virtual structures are similar except

that there is no associated charge and the information describes one dimension instead of three.

The atomic structures are arranged in an array with length equal to the total number of atoms.

Storage for the atomic array is allocated within the program, so that any number of atoms can

be accommodated without resetting any internal program parameters.

Storage for other variable-length arrays and optional output variables are also allocated by

the program as required. The memory required by the program is thus held to a minimum while

input parameters remain flexible. Variables are initialized as part of the allocation routine.

The unit cell parameters used to initialize the atomic and virtual cell parameters are defined

in the auxiliary file crystals. Each set of unit cell parameters is collected in a separate structure,

and a particular unit cell can be selected by using the structure name as the unit cell parameter

in the NPT.in.(fileno) file.

The structure definitions are rather lengthy, and have been placed into a file labelled NPT-

def. This file also contains definitions of constants and abbreviations of commonly used ex-

pressions. NPTdef and crystals are referenced from the main part of the program with an

#include statement.

Inappropriate input parameters in either start or continuation run commands or input files

results in program termination accompanied by an explanatory error message. Faults in storage
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allocation routines result in similar messages.

Due to the length of the program code, a number of subroutines are in files separate from the

main program file, NPT.c. Subroutines used to control program flow or intitialize the principle

data structures are contained in NPTa.c. Integration and storage allocation subroutines are

in NPTb.c, and output file subroutines are in NPTc.c. There are 4451 lines in the complete

program.

A graphics program for each output file, except record and average files, provides screen

displays and plotter outputs of the sampled and tabulated data. Selection of data included in

the output is generally made through arguments appended to the run command.

The program xEgraph.c displays data from NPT.e.(fileno) in a window environment.

The run command xEgraph (fileno) t produces a plot of the kinetic temperature values at

each sample time. The command xEgraph (fileno) pe produces a similar plot of the potential

energy data from the same file.

Data from NPT.sp.(fileno) is plotted by the program xSpgraph.c. The command xSp-

graph (fileno) produces a plot of the virtual time variable at each sample time. If ps is appended

to the run command, the conjugate momentum is plotted instead.

Plots of the cell parameters and volume are produced by xVgraph.c with data taken

from NPT.abc.(fileno). The volume at each sample time is plotted with the run command

xVgraph (fileno). If one or more of the MD cell vector components ax, bx, by, cx, cy, or cz

is appended to the run command, the sampled values of the appended components are plotted

instead of the volume. For example, the run command xVgraph (fileno) ax produces a plot

of the x component of the MD cell vector a-, and xVgraph (fileno) ax by cz plots on a single

graph the x,y,and z components of (7,r),and a- respectively.

The file NPT.m.(fileno) is the input for the program mds3d.c. This program produces

a three-dimensional display of the particles in motion. The display includes double-buffering and

does not operate within a window environment. The run command is mds3d (fileno).

The graphics programs associated with the .nn and .pdist output files are Ngraph.c and

Pgraph.c respectively. Ngraph (fileno) (pairtype) and Pgraph (fileno) produce pair corre-

lation and momentum distribution functions from NPT.nn.(fileno) and NPT.pdist.(fileno).

The (pairtype) appended to the Ngraph command is the name of a particular atomic pair, eg

Zr-Zr or Zr -O.

Graphics programs utilize the Hewlett-Packard Starbase graphics language and will run

only on machines which support this language. Programs also include commands which reference

the X Window System version 11 although the number of references is relatively small and the



48

programs could be altered to run in a different windows environment with a minimal number of

changes.

The total number of lines in the graphics programs is 1415.

5-3 Integration Subroutines

Subroutines for the numerical integration of the first-order differential equations were writ-

ten with Runge-Kutta, Gear, and Adams72 predictor-corrector algorithms. Of these, a sixth-order

Gear routine used the least amount of computation time for given error tolerances but was nu-

merically unstable for moderately large integration intervals. The fourth-order Gear routine does

not show this instability while run time is about half that of the Runge-Kutta routine.

The Gear predictor-corrector algorithms achieve their accuracy by using values of variables

and their derivatives from previous time steps to calculate the corrector. Because of this, these

routines require only one force calculation for each integration. This is in contrast to the Runge-

Kutta method, which requires four force calculations, and traditional predictor-corrector routines,

which require two or more.

The fourth-order Gear routine Gr4 uses values from the two previous integrations, so

another routine must be used to obtain the first two sets of data. The Runge-Kutta subroutine

RK4 is used for this purpose. The extra storage needed to hold the two additional sets of

coordinates, momenta and derivatives is provided by increasing the dimension of the atomic and

virtual structure arrays from one to three. The same amount of storage is provided for the

Runge-Kutta subroutine, which uses the additional storage to hold temporary values generated

during integration.

While calculations made outside the integration routines generally change the values of

current variables only, the subroutine xcenter also operates on the values from previous time

steps. If the motion of an atom results in translation through a lattice vector, values from

previous runs must also be translated in order to maintain continuity in the Gear routines.

Implementation of both Gear and Runge-Kutta algorithms is most convenient if the vari-

ables and their derivatives are arranged in linear arrays. The two subroutines artos and stoar

transfer values between the linear arrays used in the algorithms and the atomic and virtual

structure arrays.
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5-4 Energy and Force Calculations

Long-range Coulomb interactions are calculated by the Ewald method or by planewise

summation depending on the descriptor in the input file, ewald or FMM. The error tolerance of

each of these routines is adjusted through internal parameters located at the beginning of each

subroutine. Energy values are calculated if required by the .av or .e output files and do not

affect the numerical integration of the equations of motion.

The Ewald method energy and force routines ecoulomb and fcoulomb use the equations

of Appendix C to calculate the Coulomb terms over a truncated lattice sum. The lattice indices

are set by the internal parameter Mew. This is the same parameter used to estimate the numerical

precision in the previous chapter; it is the maximum absolute value of any index.

A number of expressions in the lattice sums are independent of the atomic positions and

are precalculated in a preliminary lattice summation. These values are stored in arrays with size

proportional to (2Meu, + 1)3. Storage is allocated in the routine so that alteration of static array

parameters is not necessary if Mew is changed.

The free parameter in the Ewald equations is set equal to Vi/ax, with ax the length of the

lattice vector it. The error functions are calculated by subroutines which use either a continued

fraction or a series algorithm depending on the magnitude of the argument.

Short-range energy and forces are calculated by a direct sum over the same lattice indices

used for the Coulomb sums. Expressions for the short-range energy and forces are given in

Appendix G.

The multipole subroutines eFMM and fFMM calculate the long-range Coulomb energy

and forces by the planewise summation method. An internal parameter in the subroutine Rmax

sets the radius of a sphere about the origin as a multiple of the length of the maximum MD cell

diagonal. All periodic translations of the MD cell which have their origin within this sphere are

referred to as 'near neighbors'. Coulomb and short range energies and forces due to atoms in

near neighbor cells are calculated directly. A direct calculation is also made for the compensating

charges on the cell faces which form at the surface of the near neighbor volume. The equal and

opposite charges which would cancel these charges within the near neighbor volume are contained

in the multipole moments of the adjacent cells and so a net charge remains to be accounted for

at these locations.

The index of the highest order terms included in the multipole sums is equal to the in-

ternal parameter {max. Multipole moments for the atomic and compensating charges and their

derivatives are computed by the subroutines mpole and dmpole. Lattice sums are calculated
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in the subroutine PSM according to the equations of Appendix D. Since the planewise sums

include contributions corresponding to multipoles at the near neighbor sites, multipole sums

for the near neighbors are calculated directly and subtracted from the planewise results. The

planewise summation indices are set by the internal parameter Mpsm, again the same parameter

used previously to characterize the numerical precision.

The planewise sums include a preliminary calculation of expressions which are independent

of the multipole indices. Incomplete gamma functions are computed with a continued fraction

algorithm.

The accuracy of the energy routines were ascertained by comparing the results of the two

methods with each other and with published values of the Made lung constant for NaCl. The

energies computed by different methods were found to have the same values to a precision of at

least ten decimal places for NaC1 and eight decimal places for monoclinic and tetragonal zirconia.

Different unit cell definitions were tried in the tetragonal cell, and the differences in the total

calculated values were used to help define the precision. The most accurate value found for the

Made lung constant of NaC1, given by Slater57, contains only six decimal places. Both methods

give results that are consistent with this value.

Forces routines were tested by total energy calculations at each integration step. Both

routines conserve the total energy of the system to a precision of at least ten decimal places.

Drift due to the integration algorithms make it difficult to check the accuracy to any greater

precision.

The short-range interactions tabulated in the crystals file are selected for each atom pair

by comparing the atomic labels with the interaction labels. The interaction terms need have no

particular order or number, although the total number of short-range interaction terms must be

included with the values of the initial unit cell dimensions. The units of the force constants in the

crystals file are those most conveniently used in the force routines. If an interaction potential

is written with energy in Hartrees and distances in atomic units, the force constant for each

interaction term in crystals is obtained by multiplying the constant in units of Hartree-(au)'"

by art, ao being the Bohr radius in Angstroms.

5-5 Hardware

A Hewlett-Packard model 9000/835SRX workstation was used for writing and debugging

simulation and graphics programs. This machine performs double precision operations at 2.0

Mflops. Standard RAM capacity is 8MB. Added accessories include an additional 8MB RAM
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and an HP98721A graphics accelerator with a 16-plane frame buffer for graphics rendering. The

video display is an HP model 98752A with 19" color screen and 1280x1024 pixel resolution.

Simulation runs were made on an HP Apollo series model 720 PA-RISC workstation rated

at 17.0 Mflops. Memory includes 16MB RAM, 400MB on internal hard drives, and 1GB on

external hard drives. The monitor is an HP model A1097 with 19" color display and 1280x1024

resolution.

Figures were plotted on an HP 7475A plotter.

Both computers are accessible through Ethernet. The address for the model 9000 is zir-

con.physics.orst.edu, and the Apollo series workstation is addressed as vangogh.physics.orst.edu.
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Chapter 6

Results and Summary

6-1 Effective Potentials for Zirconia

The desired form for an effective interatomic potential in zirconia includes Coulomb in-

teraction terms and short-range terms which are inversely proportional to higher powers of the

separation distance between atoms. The determination of an appropriate potential involves the

specification of an effective charge for each type of atom and short-range force constants for

each combination of atomic species. The simplest potential of this form for zirconia has only

three independent parameters: the effective valence charge on the zirconium atoms, an overall

short-range force constant and a short-range inverse power exponent:

z2e2 CVZrZr = r rn
z(Z)e2 C

VZr-0 = r rn
(i)2e2 CVo_o = r rn

The short-range constant C must be positive to provide a repulsive force between atoms. This

is a soft-sphere potential corresponding to a system in which all atoms have the same size. As

shown previously, a potential of this type with n = 10 produces a stable cubic crystal which does

not undergo structural phase transitions with changes in the external temperature and pressure.

Introducing different crystal radii for the zirconium and oxygen atoms adds only one ad-

ditional parameter to the potentials. The short-range constants are defined in terms of the

zirconium radius 0Zr and the oxygen radius cro as

czr_zr = c(azr + crzr)n = A( 12130 )12

Czr_o = C(azr co)n E. A

Co-o = C(o-o cror = A(1 +2 pr

# a aZr
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According to Pauline, the effective ionic crystal radius for Zr4+ is 0.80A and the crystal

radius for 02 is 1.40A, so that )3 = 0.57. The assignment of the larger radius to the more mobile

oxygen atoms is in contrast to the usual case for superionic conductors, in which a smaller mobile

ion is considered to diffuse through a lattice of larger, less mobile ions.

The regularity of the charge density contours38 in monoclinic zirconia suggests that steric

effects play at least some role in the determination of the crystal structure. These contours

are shown in Figure 8. Monoclinic zirconia is seen to be composed of layers of oxygen atoms

separated by layers of zirconium atoms. The oxygen atoms are generally classified as 0/ or On

corresponding to the two inequivalent oxygen positions in the crystal. The layers of Or atoms and

the layers of Zr atoms form essentially square two-dimensional lattices. The 011 layers can be

viewed as a set of squares which have been rotated to form a two-dimensional lattice of adjacent

squares and triangles. The Zr atoms are coordinated to the On triangles on one side and the

0/ squares on the other, resulting in the seven-fold coordination of Zr in the monoclinic crystal.

A stable structure based on steric effects alone would be one in which a decreased energy due to

a smaller separation between the Zr atoms and the OH atoms outweighs the increased energy

of a larger separation between the Zr atoms and a fourth 0// atom. The smaller coordination

would be possible if the zirconium radius is smaller than the oxygen radius.

The determination of the equilibrium crystal structures which are possible with soft-sphere

potentials is an interesting question in its own right, and one that can be answered in a straight-

forward manner through use of the program NPT. The results of an investigation into soft-sphere

crystal structures are summarized in the next section. It is seen that the soft-sphere potentials

do not produce any of the phases of zirconia except the cubic phase. In the following section, a

potential which produces the monoclinic structure of zirconia is tested.

6-2 Soft-Sphere Ionic Crystals

The soft-sphere potential energy for a collection of ions is written as

n

U =
z; e2 (cri OV)

2 rij rii « [37
crio-r

In order to study the equilibrium crystal structures which result from this type of expression, the

exponent n was set equal to 10 and the effective valences for the zirconium and oxygen atoms

were set at +4 and -2 respectively. The atoms were placed in the equilibrium positions of the

cubic zirconia crystal and the overall short-range force constant was adjusted to minimize the

forces on the virtual lattice variables. The potential energy of the system was then minimized
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(a)

(c)

(b)

a b c b a

a b c b a

as (d)

Figure 8: Charge density contours for monoclinic zirconia: (a)0i atoms; (b)Zr atoms; (c)Oii

atoms; (d) location of sections in crystal.
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by running the program NPT with variable cell shape and a starting temperature of 2K. The

kinetic energy was removed after each twenty time steps by resetting all real and virtual momenta

to zero. This procedure was repeated for values of the zirconium-oxygen radius ratio 13 between

0.41 and 3.5, yielding several different minimum energy structures.

For /3 > 0.8, the structures remained in the original fluorite configuration, hereafter des-

ignated 'cubic I'. In this structure the coordination number for the zirconium atoms is 8. The

zirconium atoms form an FCC lattice while the oxygen atoms are in a simple cubic configura-

tion. A structural diagram and an oxygen-oxygen pair correlation plot for this crystal are given

in Figure 9. In the structural diagram, the smaller circles represent zirconium atoms and the

larger circles are oxygen atoms. The numbers within the circles are the fractional unit cell coor-

dinates perpendicular to the plane of the paper. This notation is common to all of the structural

diagrams in this section.

With /3 = 0.78 or 0.79, the unit cell remained cubic but the positions of the oxygen atoms

shifted so that the Zr-0 coordination changed from 8 to 6. This 'cubic II' structure is shown in

Figure 10, along with the associated 0-0 pair correlation diagram.

All crystals with 0.52 < a < 0.77 were minimized to an orthorhombic unit cell, with the

zirconium lattice distorted from that of the fluorite structure and the oxygen atoms rearranged

to give a Zr-0 coordination of 6. The oxygen atoms form approximate hexagonal close-packed

lattices with c/a ratios from a maximum of 1.69 for )3=.75 to a minumum of 1.65 for )3=0.52,

slightly larger than the 'ideal' HCP c/a ratio of 1.63. The crystal structure is similar for all

radius ratios in this range. The structure and 0-0 pair correlations are shown in Figure 11.

With fl = 0.45 and /3 = 0.48, the system minimized to the tetragonal structure shown in

Figure 12. In this configuration the Zr-0 coordination is 4.

Finally, for /3 = 0.414, a cubic phase with a Zr-0 coordination of 4 was obtained. This

phase is designated here as 'cubic III'. The structure and 0-0 pair correlations are displayed in

Figure 13. In this phase the oxygen atoms have achieved a close-packed FCC configuration. The

zirconium atoms form a BCC lattice with a lattice constant that is equal to the oxygen lattice

constant.

These results are expected to be generally representative of the minimum energy structures

for compounds with the formula AB2, since the atomic masses do not affect the equilibrium

positions. A change in the effective valences or overall short-range force constant is equivalent

to a change in scale, so that variation of either of these parameters will change the equilibrium

volume but not the crystal structure.

The effect of varying the exponent n can be assessed to at least some degree by comparing
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the soft-sphere results to the limiting case of a hard-sphere potential (n oo). The coordination

numbers for hard-sphere systems can be found analytically by assuming that the smaller ions will

be surrounded by the largest possible number of larger ions'', resulting in coordination numbers

of 4 for 0.225 < < 0.414, 6 for 0.414 < < 0.732, 8 for 0.732 < /3 < 1.0, and 12 for fi = 1.0.

The last case is that for close-packed spheres and is not directly applicable to AB2 compounds.

In general, the soft sphere structures change coordination at values of /3 which are slightly higher

than those predicted for hard spheres. Also, the simple analysis of the hard-sphere situation

predicts only one crystal structure for a given coordination number.

Results for soft-sphere crystal structures are summarized in Table 9. Lengths are given

in Angstroms. This tabulation may not be complete, since other structures are possible with

/3 < 0.414 and intermediate structures such as the 'cubic II' crystal found for /3 = 0.78 and 0.79

may exist for 0.48 < f3 < 0.52. It is also possible that the final structure depends on the initial

conditions and that some or all of the structures found may represent local rather than global

energy minima. The consistency of the results within the various ranges of /3 even when the final

cell orientations differ suggests that this is not the case.

Dynamic stability and temperature and pressure dependence of the soft-sphere structures

were investigated by performing NPH simulations at temperatures of approximately 100K, 1000K,

and 2000K at zero external pressure and at 100K with an external pressure of 30GPa. The

simulations were started in the minimum-energy structures found for /3 equal to 0.414, 0.48, 0.52,

and 0.75. The unit cell contained the minimal number of 12 atoms, which was judged sufficient

for determination of the general properties of the potentials. Equilibrium was achieved relatively

quickly in most cases. In all cases but two, simulations were continued until the momenta

distribution gave a good approximation of the Maxwell-Boltzmann curve and all cyclical variables

were observed to have,constant averages. The exceptions were the simulations at zero pressure

and at 30GPa with kinetic temperatures of 100K for equal to 0.48. In all other respects these

two simulations appeared to produce stable averages, but the momenta did not appear to be

approaching thermal equilibrium even after repeated quenching of the virtual momenta before

continuations of the simulation. This cannot be due to any effects of a virtual time variable,

since this variable was held constant throughout all of the simulations.

Results of the dynamic simulations are shown in Table 10. Lengths are again in Angstroms.

The values listed under each cell vector component on lines labelled 'a' are the linear thermal

expansion coefficients calculated from the values of the preceding line. The expansion coefficients

are found to be somewhat anisotropic while the magnitudes are of the same general order as that

of most real crystals. For simulations with the external pressure set to zero the average internal
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0 ax by cz volume structure

0.414 5.97 4.22 5.97 150.4 cubiclll

0.45 7.08 4.84 4.84 165.8 tetragonal

0.48 6.86 4.92 4.92 166.1 ,,

0.52 5.81 4.79 5.13 142.8 orthorhombic

0.60 5.82 4.85 5.27 148.8 ,,

0.70 5.88 4.93 5.39 156.2 ,,

0.73 5.90 5.42 4.96 158.6 ,,

0.75 5.90 4.98 5.44 159.8 ,,

0.76 5.91 5.44 4.99 160.4 ,,

0.77 5.91 5.00 5.45 161.0 ,,

0.78 5.31 5.31 5.31 149.7 cubicll

0.79 5.32 5.32 5.32 150.6 ,,

0.80 5.26 5.26 5.26 145.5 cubic'

0.85 5.26 5.26 5.26 145.5 ,,

0.95 5.26 5.26 5.26 145.5 ,,

1.00 5.26 5.26 5.26 145.5 ,,

1.20 5.26 5.26 5.26 145.5 ,,

3.50 5.26 5.26 5.26 145.5 1)

Table 9: Crystal structures for soft-sphere potentials.
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pressures are not exactly zero in all cases, indicating that there is some internal stress in the

crystal. This may explain in part the resistance of the low-temperature simulations for # = 0.414

to achieve thermal equilibrium, but it should be noted that in all cases with zero external pressure

the fluctations in the internal pressure are greater in magnitude than the average pressures listed

here. In the high-pressure simulations, the pressure fluctuations were much less than the pressure

averages.

With two exceptions, the structures retained the original crystal symmetry under all of the

imposed conditions. A typical example of a stable structure is given by the simulation results for

/3 equal to 0.52 at 1000K and zero pressure. The momentum distribution and oxygen-oxygen pair

correlations are shown in Figure 14. The time evolution of the volume and the MD cell lattice

vectors are shown in Figure 15, and the output file containing the average values of the dynamic

variables is given in Figure 16. It can be seen from the volume and lattice vector component plots

that the structure reached equilibrium rather quickly. A comparison of the pair correlation plot

with that of Figure 11(b) shows a structure differing from the minimum-energy configuration

only by the broadening and overlap of the peaks. Zirconium-zirconium and zirconium-oxygen

pair correlations show the same correspondence.

In the case of /3 equal to 0.48 at 100K and 30GPa, a phase transformation was observed

from the tetragonal phase to the orthorhombic soft-sphere structure. The 0-0 pair distribution

function for this case as well as that for P equal to 0.48 at 100K and zero pressure are shown

for comparison in Figure 17. The similarity of the high-pressure structure to the orthorhombic

structures is even more evident if Figure 17(b) is compared to Figure 14(b), the corresponding

plot for /3=0.52 at 1000K. The averages of the lattice vector components also show the change

from the tetragonal to the orthorhombic structure. The structural changes in these simulations

represents a clear departure from that possible with hard-sphere potentials, since hard spheres

are by definition incompressible.

A phase transition was also observed for P equal to 0.52 at 2000K and zero pressure.

During the course of the simulation the volume expanded to approximately three times that of

the original unit cell and the unit cell became monoclinic. The structure was relatively slow to

stabilize, and the simulation time required for completion of the structural change was much

longer than the time required by the other cases. The evolution of the volume and the lattice

parameters are shown in Figure 18.

These simulation results demonstrate that soft-sphere potentials are capable of generating

pressure- and temperature-dependent phase transitions, and it would be interesting to generate

a full set of phase diagrams with [3, T and P as parameters. There are clearly transitions beyond
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Q T(K) P(GPa) as by cz volume structure

0.414 0 5.97 4.22 5.97 150.4 cubiclll

165 1.6 5.97 4.22 5.97 150.7 ,,

976 0.7 5.98 4.25 5.98 151.9 ,,

a 1.4x10-6 6.1x10-6 1.9x10-6

1906 0.4 6.01 4.26 6.01 153.5 ,,

a 4.7x10-6 2.3x10-6 4.5x10-6

195 32.0 5.89 4.16 5.89 144.3 ,,

0.48 0 6.86 4.92 4.92 166.1 tetragonal

573 1.4 7.41 4.88 4.88 176.5

1053 1.1 7.44 4.90 4.90 178.3 ,,

a 9.3x10-6 5.1x10-6 6.0x10-6

1907 0.1 7.48 4.91 4.92 180.4 2)

a 6.1s10-6 3.8x10-6 4.3x10-6

242 29.8 5.72 4.70 5.00 134.3 orthorhombic

0.52 0 5.81 4.79 5.13 142.8 orthorhombic

74 0.0 5.81 4.79 5.13 142.8

944 0.0 5.86 4.83 5.14 145.5 ,,

a 9.9x10-6 8.6x10-6 2.5z10-6

1990 0.0 14.16 6.28 5.41 481.0 monoclinic

81 30.1 5.70 4.70 5.08 136.2 orthorhombic

0.75 0 5.90 4.98 5.44 159.8 orthorhombic

53 0.0 5.91 4.98 5.44 160.0 1)

965 0.0 5.92 5.00 5.46 161.5 ,,

a 1.8x10-6 5.0x10-6 3.3x10-6

1923 -0.1 5.93 5.03 5.48 163.2 5)

a 2.3x10-6 5.2x10-6 3.4x10-6

57 30.4 5.80 4.90 5.35 151.8 ,,

Table 10: Dynamic simulation results for soft-sphere potentials
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Figure 14: j3 = 0.52,T=1000K,P=0:(a) momentum distribution; (b) oxygen-oxygen pair correla-

tions.
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Figure 15: 0 = 0.52,T=1000K,P=0:(a) volume; (b) unit cell lattice vector components.
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NPT.ay.32
samples variable

1001

ax
bx
by
cx
cy
cz
vol

<A>

1.00000000e+00
5.83915396e+00
-1.17834457e-02
4.81535545e+00

-4.94574494e-03
2.09263976e-03
5.15447211e+00
1.44927258e+02

scirt(<A*A>-<A>*<A>)

0.00000000e+00
4.92148201e-02
7.59906650e-02
2.06904739e-02
3.53029530e-02
2.50957033e-02
3.17965960e-02
1.21716025e+00

kinetic temp (deg(()

ke re 1.53417205e-02 2.71382662e-03 988.713
pe re -4.81542882e+00 2.70902615e-03

etot re -4.80008710e+00 4.32073256e-04

ke vi 5.57955735e-04 4.03562031e-04 184.927
pe vi 0.00000000e+00 0.00000000e+00

etot vi 5.57955735e-04 4.03562031e-04

etot (ev) -4.79952914e+00 3.79581453e-05

ke ps 0.00000000e+00 0.00000000e+00 0.000
ke pax 1.31929027e-04 1.57215959e-04 306.083
ke pbx 1.76970776e-04 1.82662425e-04 410.582
ke pby 7.14661191e-05 1.05948380e-04 165.806
ke pcx 3.21410822e-05 4.43349739e-05 74.569
ke pcy 3.65784925e-05 3.53760854e-05 84.864
ke pcz 1.08870239e-04 2.02302870e-04 252.585

pxx (GPa) -1.15210670e-01 6.26934557e+00
pyy (GPa) 3.64361029e-01 7.60397421e+00
pzz (GPa) 7.60256806e-02 5.86020892e+00

pxy (GPa) -4.91260187e-03 6.68659506e+00
pxz (GPa) 4.66008641e-02 3.58348479e+00
pyz (GPa) -4.19885848e-02 3.51744461e+00

2001

1.00000000e+00 0.00000000e+00
ax 5.86143538e+00 5.88562852e-02
bx -6.52586512e-03 8.39319726e-02
by 4.82593598e+00 2.76831913e-02
cx 1.83981408e-02 1.49267762e-01
cy 2.37976955e-03 2.96732328e-02
cz 5.14418609e+00 3.60155094e-02
vol 1.45508626e+02 1.59889654e+00

ke re 1.46383886e-02 2.40389579e-03 943.386
pe re -4.81545368e+00 2.43426849e-03

etot re -4.80081529e+00 5.52762418e-04

ke vi 1.12692211e-03 5.57677323e-04 373.504
pe vi 0.00000000e+00 0.00000000e+00

etot vi 1.12692211e-03 5.57677323e-04

etot (ev) -4.79968837e+00 5.62657744e-05

ke ps 0.00000000e+00 0.00000000e+00 0.000
ke pax 1.84668731e-04 2.46303568e-04 428.442
ke pbx 1.60483818e-04 1.66260534e-04 372.332
ke pby 1.25902880e-04 1.79325820e-04 292.102
ke pcx 4.40987019e-04 4.17742803e-04 1023.115
ke pcy 4.56699576e-05 6.08313383e-05 105.957

ke pcz 1.69166061e-04 1.80598815e-04 392.475

pxx (GPa) -1.17188506e-01 6.66078259e+00
Pr/ (GPa) 2.26116067e-01 8.07547280e+00
pzz (GPa) -8.66624858e-02 7.20035034e+00

pxy (GPa) -1.81949507e-02 5.05364710e+00
pxz (GPa) -1.37752185e-01 6.49406156e+00
pyz (GPa) 2.57200023e-02 3.59360603e+00

Figure 16: )3 = 0.52,T=1000K,P=0: averages of dynamic variables.
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Figure 17: Low-temperature pair correlations for /3 =0.48 at (a) zero external pressure and (b)

30GPa external pressure.
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Figure 18: 13=0.52 at 2000K and zero pressure: (a)volume; (b) unit cell lattice vector components.
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those obtained for relatively small number of examples here. For example, at sufficiently high

temperatures all of the crystals should display pair correlations indicative of melting, which was

not observed in any of the simulations described here. Unfortunately, none of the structures

obtained for the soft-sphere potentials seem capable of reproducing any of the low temperature

or high pressure phases of zirconia.

6-3 Simulation of a Monoclinic Crystal

At the present time, the best potential available for modelling the monoclinic zirconia

crystal is76:

Vzr-zr

Vzr-o

vo-o

=

=

0.5266 28.24
+

3.233x105
r

0.2633

r 4 r10

8.63
+

1.511x104
r

0.13164
r4 r10

10.96 1.903x105
+r +

r4 r 11

In these expressions, distance is in atomic units and energy is in Hartrees. The constants

were obtained by a numerical fit to density-functional total energy calculations for monoclinic

zirconia. The Coulomb terms imply effective charges of +0.7256 for the zirconia ions and -0.3628

for the oxygen ions.

In addition to the Coulomb and short-range potentials, this potential contains terms pro-

portional to r-4. These terms represent charge-dipole interactions and are found in potentials

for other ionic superconductors, such as those used in simulations of Ag2S43 and Ag144. The

inclusion of these terms in the force and energy routines of the program NPT is accomplished

by considering these to be short-range terms. This is expected to have an adverse effect on the

overall precision of the force and energy calculations because of the relatively long-range nature

of the r-4 potential. For the preliminary structural studies done here, this loss of precision is

not expected be important and a cutoff radius is imposed to truncate the r-4 terms along with

the r-1° and r-11 terms. The use of a cutoff radius for r-4 interactions in molecular dynamics

studies is common in the literature, including the simulations of the two superionic conductors

just cited.

The minimum-energy structure for the zirconia potential was obtained through the same

procedure used to determine soft-sphere structures. The unit cell remained monoclinic but in
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a simulation at zero pressure the components of the cell vectors did not attain stable values.

When an external pressure of 310 GPa was imposed during a second minimization from the

experimental structure, the structure again remained monoclinic. The stability of the high-

pressure structure was investigated with an NPT simulation at 310 GPa with 12 atoms in the MD

cell with temperatures of 300K, 1000K, and 2000K. Throughout these simulations the structure

remained essentially unchanged. An additional simulation was performed at 3 GPa and 150K,

and the high-pressure structure was again found to retain the original monoclinic symmetry. In a

subsequent simulation starting from the high-pressure structure at zero pressure the components

of the cell vectors again did not attain stable values. Apparently, this potential will produce a

stable monoclinic crystal structure only with the application of external pressure. Zirconium-

zirconium and zirconium-oxygen pair correlation plots for the static monoclinic structure are

shown in Figure 19.

A larger system with 96 atoms in the MD cell was used to obtain more detailed results for

the zirconia potential. The external pressure was held constant at 3 GPa and simulations were

performed with NPT dynamics. The system was first brought to equilibrium at 300K, then the

external temperature was reset to 2000K and the system was again brought to equilibrium. The

virtual momenta were reset to zero after every few hundred samples. Momentum distributions

for the system at 300K and 2000K are shown in Figure 20. Kinetic energy and potential energy

plots are given in Figure 21. The evolution of the MD cell volume and lattice vector components

are shown in Figure 22, and the virtual time variable and associated momentum are give in

Figure 23. The effects of quenching the virtual momenta are seen as discontinuities in the slopes

of the plots of the virtual variables, and in the discontinuity of the momentum associated with

the virtual time variable. The pair correlation plots in Figures 24 and 25 may be compared to

those of the static monoclinic crystal. It is seen that the structure is unchanged, and at 300K

the effect of raising the temperture is mainly to broaden the widths of the peaks. At 2000K the

structure is no longer visible. At this temperature the structure is evident only in the averages

of the lattice vector components. Simulation results are summarized in Table 11. Lengths in this

table are in Angstroms. The cell dimensions for the 96 atom system have been divided by two

for comparison with the values obtained for 12 atoms.

The results for 96 atoms at 300K are quite similar to those for 12 atoms, which provides

at least some justification for the use of the smaller MD cells to obtain preliminary results. The

simulation times were 6.245 ps for 12 atoms and 11.225 ps for 96 atoms, representing about one

day and two weeks, respectively, of computer run time.

The simulation of 96 atoms at 2000K was very slow to reach an internal pressure in ap-
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Figure 20: Momentum distributions for the monoclinic crystal: (a) 300K; (b) 2000K.
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Figure 21: Total energies for the monoclinic crystal: (a) kinetic energy; (b) potential energy.
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Figure 22: Lattice parameters for the monoclinic crystal: (a) volume; (b) unit cell lattice vector

components.
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Figure 24: Pair correlations for the monoclinic crystal at 300K: (a) Zr-Zr; (b) Zr-O.
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T(K) ax by cz cz volume P(GPa) samples

N = 12 155 5.17 5.42 -.77 5.29 148.3 2.9 1000

153 5.16 5.43 -.76 5.29 148.2 3.0 2500

N = 96 301 5.16 5.43 -.76 5.29 148.0 3.7 1200

300 5.16 5.44 -.75 5.30 148.6 3.2 1100

1984 5.21 5.50 -.71 5.37 153.9 13.9 350

2007 5.45 5.70 -.70 6.14 174.4 7.6 350

2000 5.54 5.79 -.71 5.71 183.1 6.2 350

1993 5.58 5.84 -.72 5.76 187.8 5.6 650

2008 5.81 6.07 -.74 5.98 210.7 3.3 400

2002 5.91 6.16 -.75 6.07 220.9 2.5 400

Table 11: NPT simulation results for zirconia potential

proximate agreement with the external pressure. Better agreement between these two quantities

would be desirable if very well-defined cell dimensions are required. In this study, the simulation

was terminated after it became clear that no phase transformations were forthcoming.

The lack of phase transitions is an obvious shortcoming of the potential used. Another

deficiency is found when the lattice constants in Table 11 are used to calculate the linear thermal

expansion coefficients for the simulated crystal. The measured value of this parameter for mon-

oclinic zirconia is 8.12x10-6/degree K, while the calculated figure for the sides of the simulated

crystals are 71.3-79.2x10-6/degree K. This is difference of a full order of magnitude.

6-4 Discussion

The studies of soft-sphere and monoclinic potentials described in the previous sections

demonstrate the general usefulness of NPT molecular dynamics. The program NPT, originally

designed for investigation into the dynamic properties of classical systems, has been shown to

useful as well in the determination of static properties such as the minimum-energy structures

associated with a given potential.

While the systematic study of soft-sphere potentials has produced some interesting results,

the small number of atoms used in the simulations leaves some doubt as to the general validity

of these results. This true for the dynamic studies in particular, as the static minimum-energy
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structures can realistically be expected to have the periodic symmetry imposed on the system

by the small unit cell size. It is encouraging that the small cells reach dynamic equilibrium in

most cases, but in some cases all of the tests of equilibrium are not met. While there are many

possible reasons for this, without complementary studies of larger systems conclusions reached

for the limited number of atoms must remain suspect.

Most of the molecular dynamics studies found in the literature involve several hundred

atoms and several thousand time steps. The techniques for the calculation of forces in these

studies are similar to those used in the program NPT. Considering the computer time consumed

in studies of 12 or 96 atoms, this implies that molecular dynamics must be done with supercom-

puters in order to produce meaningful results. Even so, the intense computational requirements

have had a pronounced effect on the types of potentials which have been investigated through

molecular dynamics.

The complexity of the force calculations has paralleled the development of faster, more

powerful computers, with comparatively little improvement in computational techniques. Molec-

ular dynamics was originally applied to hard-sphere systems, progressing through Lennard-Jones

and other short-range potentials to current types of potentials such as classical three-body po-

tentials, short-range potentials calculated from simplified versions of density-functional theory,

or long-range potentials calculated using Ewald-type methods. The emphasis in most molecular

dynamics research has been on increasing the size of the systems, while the precision of the

calculations is rarely addressed. The 'minimum image' convention commonly used with periodic

boundary conditions illustrates this point. With this convention, of all of the 'image' atoms

generated by periodic boundary conditions, only the one nearest in position to a given atom is

included in the force calculations for that atom. The number of calculations for a single term in

the potential is then exactly N2, with N the number of atoms in the system. The error analysis

performed earlier for short-range force cutoffs gives a quantitative measure of the low precision

of this approach. Long-range forces are usually calculated with a version of the Ewald method

which restricts the number of terms containing the error function to cells immediately adjacent

to the original MD cell, another practice which sacrifices precision for speed.

While development of techniques which allow the simulation of systems at constant pressure

and temperature have increased the range of problems which may be investigated with molecular

dynamics, these techniques also increase the computational burden.

With all of the limitations imposed by the need to minimize computational time, the

applications of molecular dynamics are, at present, limited to the study of systems for which

an accurate potential is already available. The systematic study of a general type of potential,
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even one so simple as soft-spheres, is practically impossible to perform for the large variety of

system sizes and initial conditions required to produce unambiguous results. Potentials must

be obtained either by fitting to empirical data or by the analysis of large numbers of ab initio

atomic calculations. In either case, the potentials produced apply only to a single element or

compound. As demonstrated in the study of monoclinic zirconia, there is no guarantee that

a potential so derived will give realistic results in a dynamic simulation. If the potential is

unsuccessful, variation of the parameters for further simulation testing is too time consuming for

serious consideration.

While the problems associated with the computational demands of molecular dynamics

are imposing, there is still considerable room for improvement through the development of more

efficient numerical techniques. The problems of calculating realistic forces can be divided into

two general categories: those associated with the short-range forces due to the overlap of the

quantum-mechanical wave functions of adjacent atoms, and those of the calculation of the lattice

sums required by the long-range electrostatic forces.

The most promising approaches for dealing with the short-range forces involve the ap-

plication of density-functional methods. At present, most of these methods calculate energy

differences for the overlap of static, precalculated wave functions. Ideally, the wave functions

should be allowed to vary with time. This is the approach taken in 'quantum molecular dy-

namics'. Hopefully, the development of similar techniques using charge density instead of wave

amplitudes as the fundamental variable will eventually result in methods amenable to general

application.

Long-range electrostatic forces for molecular dynamics programs are almost universally

calculated by some variation of the Ewald method. There has been no substantial improvement

in the application of this method in the last twenty-five years. The use of multipole methods offers

a viable alternative to the present state of long-range force calculations. As outlined in earlier

chapters, multipole methods offer several advantages over the presently used techniques. First,

a full implementation of a fast multipole method requires a number of calculations proportional

to N, rather than N2, and the short-range interactions are limited to adjacent atoms. This

eliminates the need for minimum-image conventions, near neighbor lists, and short-range cutoffs.

Second, the separation of the potential into charge, dipole and higher order multipoles gives a

more intuitive picture of the physical interactions. This is clearly illustrated by the problems

associated with periodic boundary conditions. In the multipole formulation, the dipole terms

are clearly distinguished as the source of inconsistencies with boundary conditions, while the

Ewald formulation tends to obscure the situation to the point where the implicit cancellation of
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dipole moments is generally unrecognized. The calculation of higher-order terms such as charge-

dipole or dipole-dipole interactions are also made transparent by the multipole methods, while

Ewald-type lattice sums can at best model these terms with potentials which vary as I-4 or r-6.

The implementation of the multipole method used in the simulations described in the pre-

vious section for a system of 96 atoms is a first step in the use of these methods. While the

formulation presented here is more or less competitive with the Ewald lattice sums in computa-

tional run time, the additional complexity of the program code makes it unlikely to appeal to

many researchers in its present form. Before this type of method is generally accepted, either

the code must be drastically simplified or the efficiency must be increased to a point that the

additional complexity is justified.

6-5 Summary

Experimental data on the structural phases changes in zirconia has been gathered from the

literature and summarized. The computational techniques of molecular dynamics were reviewed

and equations of motion were formulated which allow, in principle, the study of phase changes

as a function of temperature and pressure.

The molecular dynamics program NPT was written and tested. This program performs nu-

merical integration of the classical equations of motions in simulations which allow a varying cell

size and shape. The simulations produce time averages which are related to the thermodynamic

ensemble averages of any of several different types of ensembles.

Routines used to calculated the interatomic forces are provided for potentials which vary

as the inverse power of the separation distance between atoms. Calculation of Coulomb forces

is done either with the Ewald method or by a multipole method, with selection of method as an

input option. The multipole routine was adapted from equations of the planewise summation

method for triclinic lattices. The two methods are shown to be analytically equivalent and the

precision and speed of the two routines are compared.

Initial conditions and parameters are varied through changes in a separate input file. Out-

put selections include momentum distributions, pair correlations, averages of dynamic variables,

and sampled values of virtual variables and system energies. Graphics programs are provided for

all appropriate output files.

Results generated by the program NPT were presented for energy minimization of crystal

structures and for dynamic simulations.

A number of different minimum-energy structures for soft-sphere potentials were found.
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Simulations were performed for several soft-sphere structures and dynamic properties were es-

tablished. Structural phase changes were observed in two cases.

A potential derived from ab initio calculations for monoclinic zirconia was tested. No phase

transitions were observed for this potential.
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Appendix A

NPT Dynamics

A-1 Derivation of the Equations of Motion

The following classical Lagrangian is proposed for simulations of systems of atoms at con-

stant external temperature Tex and constant external pressure Pex:

2 N
Emig hT (1)(h4,h)
i=i

6
Q w+-
2

s2 3N kBTex1n(s) + E h2ap PerV(h)
c5=1

In this expression h is the 3x3 matrix composed of the MD cell vectors ii, b,and 6, and qi is

the position of the ith atom projected along the cell vectors, and V(h) is the volume of the cell.

projected along the cell vectors. Each component of "q"'i has a range of to -1-1.

(
az bx cx

h E 0 by cy

0 0 cz

xi Si

yi = hi; = h(qi

The momenta are defined as

Pei
-(v) aL
Pi = = (aqi

PCi

= mis2hTi4i

aL
75

,.,.s= = Qs

N./3 = =wizapuna,
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The Hamiltonian is then

H
N

E(pa.+p,7,i+pa)+pse Eph.sito- L
i=1 af3

1 1

mP0h hT if + 4(4, h) L

2

+3N kBTeln(s) 2117Pai3 Pe,,V (h)

Hamilton's equations of motion are taken from this expression:

aH 1 h_iLT-1. (v)ait) mis2 Pi

v) aH
Pi thifv)

(944i

hT tid(r, h) E h
OH ps= =
aPs Q
_aH 2 . 1 n,-(0ThihTipt) 3N kBTeX

/5, = as 2mri
aH Ph.s/14 =

aPhe.fi

OH
likfi = hap

1
pi
(v))(h 1 hT 1 p(v))T

S2

a4)(77, h) av
ahcr, e. aho

On changing to the 'real' variables

ri =hqi

pi = =

the equations of motion become:

14"i = /Iv Ph L-1_, A
147" smi

_4hT-ipio+
s.

psgi 1

s sQ W
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Ps

158

1 3N ki3Te,
s 77"12i

= Ph.ft

Ph
(1)( av= (E APT 0ah h)

h
T - 13.TihT)hT- 1

772i

With the time differential dt replaced with a new 'scaled' time variable dr = Pt, the

equations of motion are

fi =

A =

a =

di: Pi sph
J = mi

iz-1 774
to- '

19c/ SFi z.
= _ A hTi

Ph Pidr
n

ds sp,
dr Q

Ps = Ps v-, 1
Tr Pi Pi 3N ksTex

i mi

h = sdh =
ph

Ph

dr W
dPh (v.. 1 _T x, ;.=
dr s miPiPi + riff + fhhT PezV)hT-1

(fh)ap = °(1:9h(7:,3h)

(h).0 = hap
(Ph).p = 151z.s

A-2 Equivalence to NPT Ensemble

The classical isothermal-isobaric (NPT) ensemble average for any function A of the particle

coordinates and momenta and the system volume is usually given as

In this equation

ifocp,,,v)+pv
foe° dV fv d3Nr d3N p e kBr.. )A(p, r, V)

(A) N pT =
f 110(p, r,
oe° dV fv d3N r f d3N p e kBT

N 2

Ho(p, r, E 2+-2 + ()(r, V)
z
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The 6N variables , FN and A., PN are represented by r and p,and V is the volume of

the system.

In order to obtain averages which include variable cell shape, the volume integral is replaced

by integrations over each component of the cell vectors ii,r),anda.. The appropriate ensemble

average is then

(A)NPT = H (p,r,h)+P V(h)
f d6h fh d3Nr f d3Np e kBr..

The Lagrangian proposed for simulation of NPT ensembles given in the preceding section

results in equations of motion which conserve the total energy E of the system. The ensemble

average appropriate to this Lagrangian and the associated Hamiltonian is the microcanonical

average

f d6 h fhd3Nr f d3Np e
(Ho(P,*ihB)T-FLesV(h)\

'A(p,r,V)

f d6h f d6ph f ds f dps f d3Ng f d3Np(v)6(H(mD) E)A(r,p, h,ph, S,Ps)
(`4)1 t, f d6h f d6ph f ds f dps f d3Ng 5 d3Np(v),5(Houp)_ E)

With a change to the 'real' variables pa and ri, the Hamiltonian becomes

p2 p2
H(MD) = Ho(r,p, h) + fkBTozln(s)+ E eg_ pev(h)

In this equation f is a constant which will eventually be set equal to 3N. The Jacobians for the

transformations are

h_j. 1

a(zi, yi,zi) 1 v

s3 hT s3v
49(Pzi,Pyi 7 PZi)

The ensemble average for a function A of p,r,and h is now

f d6h f d3Np f d3NrA(r,p,h) f dps f d6ph f dss3N8(H(w) E)
(A)MD f d6h f d3Np f d3Nr f dps f d6ph f dss3N6(11(mD) E)

The integral over s can be performed analytically by taking HMD E = g(s) and using

b[g(s)] =
b(s so)

so is the value of s for which g(s) = 0 and g'(so) is the derivative of g(s) at s = so:

SO = e 1kgTex [14)(r >12,h)+P..17 (044 4-E E]

9' (so) =
f kBTex

so
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f d6h f d3N p f d3NrA(r,p,h) f dps f d6phsr+1
(A)MD

f d6h f d3Np f d3Nr f dps f d6phs36N +1

The common factors of f kelTex have been cancelled from this expression. The integrations

over the virtual momenta can now be performed analytically, resulting in factors of of
(3N-1-1)E

in both numerator and denominator. When these factors as well as the constant e -rksr. are

cancelled, the following result is obtained:

f d6h f d3N p f d3N rA(r, p, h)e [110(r ,p ,h)+P=V (0]

(A) M D =
f d6h f d3N p f d3Nre -41.1.)(11°(r'P'h)+P"v(h)]

If f = 3N + 1, this is identical to (A)NPT

According to the ergodic theorem, for sufficiently long time intervals the time average of A

is equal to the ensemble average:

AMD -I- 11 M T idrA(p(r), r(r), h(r))Too 0

(A)MD

If the time averages are evaluated with equations of motion which include a scaled time

variable dt = ldr, the time average is

AMD = T,co T
linl ,1 I dtA(p(t), 7-0), h(t))

0

111112%.00 f(T dr1A(p(7),r(7),h(r))

foT dr1

(1)Afp= $

(1)/t/D

The additional factor of s in each of these averages reduces the factor in the numerator of

(A)MD to 3N. The partition function is unchanged by the time scaling, but in the ratio of the

averages the partition functions cancel and

f d6h f d3Np f d3N rA(r, p, h)e
(A) AID =

fkB31sil'Io(r ,P,h)-FP. .V(h)]

f d6h f d3Np f d3Nre [Ho(r,p,h)-FPV (0]

If f E 3N, then AMD = (A.)NPT
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Appendix B

Stress Tensor Calculations

The microscopic stress tensor is defined for systems with periodic boundary conditions as

Ow, h)
mi ah

If the potential for an MD simulation is formulated with only six components in the cell matrix

h, with ay,az, and bz set to zero, the potential becomes

(1)(f.; h') = 4(F, h) lay=c6-_zb=o

To obtain expressions for the elements of the pressure tensor from (1.(f.., h') it necessary to eliminate

from the definition of 1' any partial derivatives with respect to ay,az, and bz.

Explicit expressions for the diagonal elements are:

1 ,2 , al> 194) a.t.Pz. = E --px 7" E f,i xi a, 0, c,
mi ' as Obx aci i

x 1 2 ait a4) acT,
PYY = LiN.+ E fYiYi ay

-5-ct
by

Ty cY acmi
i i Y Y

pzz E-1p?, + E fz.zi az _ bz (94' ,zo.t.
mi oaz abz ac.

In these expressions, it is not necessary to evaluate any of the derivatives with respect to

ay,az, or bz since the terms containing these derivatives are all equal to zero. Removing similar

terms from the off -diagonal elements leaves:

Pxy

PXz

Pyz

Pzx

Pzy

= atl, a4)1
E-p.,p,i + E fri Yi uY Tc eY a,mi

i i
1 .94,= r_, PziPzi + > hizi cz Ocmi

i i x

1 04)
= L...,v' miPyilizi ±E fy,zi cz0---

ci i Y

1 04, a4, (94,E -m pyipzi + E fy i xi a, 7--- bxi cx
i 2 i as uoy u Y

a(I) a4, a(r)
,_,--1-zzirzi . ,....d.,. _i- az u. c= 's--% D V/ 4- V.' f a!

i i aaz abz r aczmi

= a.:1, a4)1
n-;:ipzipy,+ E fzi Yi vy 51T, eY acz

i
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The expressions for the last three elements contain the deriatives of ay, az, and bz in

terms which do not necessarily vanish. By appealing to the invariance of the total potential

energy under coordinate rotations, an additional relationship between these terms is found. The

total potential energy of any system interacting through pairwise forces and periodic boundary

conditions can be written:

(DV, =E E E (p(ii .fico-y)
i j ai37

In this equation a,)3, and y are the indices for the summations along the lattice vectors 6,E,

and 6, and Fla E as + )3E + -ya".

A coordinate rotation around the z-axis is obtained by changing the x- and y-coordinates

into cylindrical form and introducing a rotation angle 0:

xi = A cos(0i + 9)

sin(0i + 0)

= 1)(4.y cos(0 ap.y + 9)

Pa/-y sin(0 ap-y + 9)

Xapl,

Yapy

Since the total potential energy is the same for any value of 9,

a , h)
a6

= 0
axi

(ax 797) + ayi

= EM.Yi fy,00-

E(.lxiN y ix i)

--cy 7 +
ceP-r

= ,pfzi fyixi)

ayi ael, a X °yam,.

) E(axo ae oYco, ae )
aP7 7

Da, Yapy
_ .ri.affry

0'Y
(34

a
Y E axo, a

cfP7

(9K,07

by v.ap)81/..n. -y0'7
a4)

ar a +ait
(11 cA-y (1 *Al, OK,fry

a P7 " aP7

by + Ox
ab

a
acz aay aby

C
acy



Solving this equation for ax Z- and substituting the result in Pyx leads to

Pyx
v, i act a(tfyixi oz cx

mi aby acy

act act a(1) a4)

+E(fx'Yi fY.xi)bY jc"cY-a-c;+ 62 rb; cr acy

I. a.1) ait
= cyE-PY,P-H-Efzi Y8 bYabz ac. mi

2 i
= P. zy
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The same method applied to rotations around the y- and x-axes leads to the equalities for

the other off-diagonal elements:

Pxz = Pzx

Pyz = Pzy

The microscopic stress tensor is symmetric, with six independent components instead of

nine. The expressions used for the off-diagonal elements are those which do not contain partial

derivatives with respect to ay, az or bz.

By subtracting equal off-diagonal elements from each other, expressions are found for the

components of the total torque exerted on the particles:

Pxy Pyx = 0
act a(D act act act

= E(fxiya fyixa) byab Cy +axaa
+ bx +cz

Nz

= E(xify, Yih.)

act act act a(t ad> a(tc.,--)
°71 aay aY oar) kv2 aby vY abz) c2 acy acx

act act 04)= (a x (vi) z + (-1; x z + (6 x z

The expressions for the x and y components of the torque are found in similar fashion from

the relationships between the two other pairs of off-diagonal elements. In matrix notation, the

complete expression for the torque is
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ast. acp a(p=
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Appendix C

The Ewald Method of Lattice Summations

C-1 Derivation of the Total Energy Sum

The electrostatic potential at a point F in an infinite Bravais lattice of unit point charges

plus a neutralizing background charge is

A B C
1h) E li1/1 E E E d3r1

a=A P=B 7=C I ficefi-y 1. I V
f

I k. Cri37 P

This lattice sum converges, although the value of the sum may depend on the manner in which

the limits are approached. V is the volume of the unit cell and Vol, is the volume around the

lattice point

In the Ewald method, the potential is evaluated by adding and subtracting a Gaussian

charge distribution at each lattice point. The potential at a point F due to the Gaussian centered

at Rap.y is defined as

f e 2 r
(I) (0117 (

rir
) 3 fd3 r/

fico-y P

This integral can be evaluated directly, giving

1 2 [(111-13-r-il
e_

t 2
dt(I, (all, (77)

I RaP7 I \ j°
erf(E fico-y 71. I)

fia,a7 77. I

When this expression is subtracted from the first term in 4.(v), the result is

(1)12,(i.) = lirn EEE
R - I

1 er f (E fice 137 - I)}

1707 7;.a=A /3=B 7=C {I -.a151'

A B C

E-
erfc(c I fiapy 77: I)

cr,37 =oo I fic/P7 r
The limit has been taken to infinity. Since this expression is absolutely convergent, the limit of

this term is independent of the details of the summation.
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The potentials from the volume charge and the Gaussian distribution are combined in a

second term:

A B C

(h) = ' E E d3r' Pg (77') Pv (i.1)ew
I P + Act,87a=A #=B 7=C

The integral is related to an integral in reciprocal space through Parseval's theorem:

fd3rf(7)g* (f) = d3 h F (TOG* (it)

The usual factors of 27r are absent from this expression due to the definition used for the Fourier

transforms. With

F9(1.1) = d3ri p(rI)e-i27711.4

(-L)3 d3ri e-C21.12

(2.1.)2
= e 472

Fv (rz) f d3r'pv(r')ei21 1'
1 1 1

2 a(X, y, z)j2 I chi I dcei22-13(ea+nr,-1-(6)
a(4', 7),C)

sin (7rrz JO sin (7t17, I)) sin (xi;

7r3(ii ei)(E, b)(1; )
i2Thfi

G(r) d3r' e

I IL 1517 + P F I

ei2rh.?"
e2rri'Vta 0-y -10 I darn

r"
1

7rh2

the reciprocal space integral is written

1
A B C

4, (eht) I d3 h e owi°2- f {e 24201 ..,.

v(h)} A,Aill,.. E E E ei27h-"R-.0-rrh2 cr=A #=B -y=C

When the lattice limits are taken to infinity the lattice sum is equal to6°:

A B C oo oo oo
1E ei2"171"' Fapry)

A,B,C *00 Va=A13=B y = C a=co /3=-00 7=co

KaP-y aha + /314 7f- "ritc

Tzi = bij j = a, b, c
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Using this expression, integration is straightforward for all terms except the one for which

hap? is equal to zero. For this case the integrand must be replaced with the limit as E. 0:

lim
irh2

e-i2ria.r
[e( 1r-L' )2 Fv (E)1 = 11(0 - a-)2 + (it r))2 + o2))13-0 3

+C(v)
E2

The limit is retained in the second term because the value of this term depends on the

direction of it as the limit is approached. If the lattice has cubic symmetry, a unique limit is

obtained. For lattices with less than cubic symmetry, the limit is not unique and the lattice sum

is said to be conditionally convergent.

A general expression for the potential due to the unit point charge lattice with neutralizing

background is

O =
2er fc( I Rap? c°1) 4r -1/4 1

K

V K2
4,2 e`xsc.07.f c(V)

E2
a137 =-0o I IL,(37 77: I) ce,(37=oo aP7

Rath = 27ritap7

This is the general form of the Ewald potential. The last term, c(v), is a constant with a known

value if the direction in which the limit is approached is known.

Another way to obtain expressions for c(v) is to change variables in the reciprocal space

integral so that the directions of the integrations coincide with the directions of the lattice vectors

ci,E, and F. As each lattice sum is extended to infinity, it is replaced by a delta function in a

single dimension and the integration is performed. The limit Tz 0 need be taken only in the

last of the three integrations, so the order of the summation determines a particular value for

c(v). For example, if the last summation is taken in the Tab direction, then

(V) 7
C

6
=

31q,

The potential at F = 0 is undefined for the term in the direct lattice sum if a = = 7 = 0.

This term is evaluated by subtracting the self-energy term and taking the limit as 0:

(b000(F = 0)
(ew)

li111(4) 000 r )

erf (Er)
lim(

o

2f
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The total electrostatic energy of a collection of N particles in a unit cell described by lattice

vectors a,b, and 6 is then

1
U(ew) E E ziz; e24,(Fj

K2

erfc(c I + i) 47r e 4<2
zizie2

2
e 0/37 3

Ot: afr-r I + V Ld K2
ap-y al3-7

erfc(eRco-r) 47r 1 1425m 2f
2 V K2La

aP'Y
R aP'Y \Fr

+ 2 E E zizi e2(-1-2 c())
3

The subscript on c(v) allows for the possibility that the sums were not performed in the

same manner for each term in the potential. If the summations are taken in an identical manner

for each term then c(v) is a single constant and the last term will vanish as long as the total

charge in the unit cell is zero. If the last term is set to zero, then this expression is the Ewald

energy per unit cell.

From the original definition of the Ewald potential as a sum of potentials from point charges

and volume charges, it is also possible to write the electrostatic energy in the Ewald formulation

as

We-)

u(coul)

u(coul) u(S)
A B C NN

lim E E EEE zizje2
A,B,Cco I RaP7a=A p=B ^r=C i=1

A B C NN
U(S) == lim E E EEE ziz; e2 Iv d371

A,B,C*oo (Rapt' P Fia=A #=B-y=C i=1 j=1

The sum over particles has been taken inside the lattice summation. This insures that the

summations are identical for each term in the potential and that the energy is equal to the usual

Ewald value.

The potential due to the volume charges can be replaced with a sum of surface integrals

by first making a change of variables:

Ti

cue

= i(7+ niE+ Cie
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= + 713[.+ e

Then

A-1-1+ti B+-1+qi
1

Us = e2 z- Ez-L_, 3 2
de" de d("

A,B,C j i A 1-+Ei j j

With a neutral unit cell, the volume charge is zero within the limits A + 1- to A

B+;-- to B 1, and C+ z to C If this volume is excluded from the sum, the contributions

from the volume charges are limited to integrations over cells which are at the limits of the lattice

sums. If the limits are sufficiently large, the volume charge may be approximated by a surface

charge concentrated at the limit. For example,

A+1 +ei A+1+eiA+1
z' I Pnlc +

1
I n( + Ad- Fi

cue

The potential due to the surface charge is found by performing the surface integration over 17"

and (". Neglecting edge and corner effects, the total energy due to the surface charges is

u.a9 = lim z; ti dii d([
A ,B ,C oo _B C FIIC + Ail Fi I VII( Ael

B
Pa Pa

j

C [I Fe( + kg Fi 1 Vec .131. 7.7 j

+ I de
A

Pb

A
A B r

Pc Pc

LA JB Llren ± ce- 7 : 7 1 i Ftn ce- 77:i

Pa = E ziSi

Pb = Ezini

Pc = Ezi(i

If the surface charge is approximated by a point charge of the appropriate value at each

surface lattice point, the integrals can be replaced with two-dimensional lattice sums. The value
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of the point charge is found to be numerically equal to that of the surface charge. As the limits

are taken to infinity, the volume, surface and point charge representations become equivalent.

C-2 Ewald Force Summations

In order to simplify the expressions for the forces, the Ewald energy is written

With

u(e") . 1 E 4e2 E {,,,,,, + erf c(eR,,,67)1 f \--"" 2 2Z e
ap7 j 2

i a/37 i

Fij I)I+ EE zizie2 E' coicos(z,.. . ii.J) + erfc(e iiap,y

i ; <2: afi-r 1 E. 1".i.i 1

erf c(erij)
EE .zzzie2

i
ri;<i

47r 1 K297
Car37 = e 4<2

azbycz K!fh,

27r bz 27r , cy bzcy czby
IZo-y ax + am + p a)z

ax as cz by azby

1201P7 = ad+ t3r) +

(aaz (My 7cy)u (7cz) 2

rij =

The force on the km particle is then

fk
80-)

E E zi,e2 E (sikVi + 6j kt j)Capi,COS(i?a pl. fij)
i j<i aP-r

6ikti)erfc(e I Rapry rz7 I)

j<i a/37 ILP7

_ E E zizae2(bikti 6jkt.)erfc(erii
<i 3 rij

E zk zi e2 E 'coi,sinvec, .

Jok .07

2c _e2Ifia_7_ft 12 er f c(c Fkj 1)E zkz;e2 E p k31

Ok a Si I I?. ach, 7.kj

(11.07

iRaP7 rk7l 2



The forces associated with the components of the cell vectors ii, b, and Fare defined as

OU(ew)V, h)
(fh)st = ahst

fh = 1 2 2 x - i racco, a ( er fc(eRap-r)) OR071
2 zz

l37a1. h
+ aRap, Rap? j Oh jI

E E zizi e2 E
ah

'Y cos(48, . Fii)
i j<i

(-a gao,+ E E zi,e2 E cap.), sin(I? r23)
ah

ij
I j <i aP7

a eric(c ILfry I) a Izizie2E rij
j<i ap7 a I Rap-v j I R. aP-r Fii ah

The partial differentials are:

Then

°cap,
ah

Cap7 [8'7r2 ( 1 alfry hT-1MMTh 1 hT-1 hT_11
4e2 K2

col, [2 (1 1 )
4E2 + K c243.1, a I3-Y '1a161'

_=

7

aR R
a ( er fc(eR)) 1 er fc(eR) 2e e_e2R2

Rg(R)
R R

Rapy 1
Roy MT

Oh Rol
a I RaP-r Fii I

1= (11a0-y Fii) MTah I fiap-r Fii I

a(gap-r Fii) = 27rhT 1 Mill1 hT
ah s,

= -467(hTFii)T

fh E E iizie 2 E' {c(ah4cos(ga,7 Fi;

<i atf37

a /37 afry hT 1 sin(li: col, Fij )

-g Fij p(fiaP-r Fii)MT} (1 6ii)
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Appendix D

Multipole Summations

D-1 Derivation of the Multipole Expansion

In terms of the unnormalized spherical harmonics, the usual multipole expansion is

1 1

I I

00 1

)
,n.-1 (i+m)! 3 'm \riii R1+1

rj <Ri

104

Pilmi (COS 0)eim#

According to the well-known differentiation formula for the spherical harmonics, the last term is

yirn(fzi) (_01_ im(i+sfin(m)) a
a zi )

a v
(1 m)!

-mi
+ sgn(m)ry.i.

ltn(1-f-sgn(m)) a \ Iml a \ 1-1,721 / \
m)! I)! + sgn(m)53 2 )

The upper sign is for m > 0, the lower for m < 0. With

Ri

(k n)!7.37s, ( ft)

(k n)! kn(") Rk +1
k=0 n=-k

v- 71)! 2n(14-sgn(n))

(k Ors Ykn(fi) (k n)!k=0 n=-k
-In!

ri < R

When this expression is substituted into the previous equation,

(a + sgn(n)07

Yim(k)
0.

1

= E
Ri k=0 n=- k (k n)!(1 m)! r37;:71 (*i)Fkn;im (f?)

ini



Fkri;Im(fi)

Using
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(_i)kIm(11-3gn(m)) in(1-1-89n(n)) (49
ax + i sgn

7n)
( 9 ) Iml

1

(00x sgn(n)(98y)Inl

iFay) (ax 08y) (-7-1)

and keeping track of the signs,

02
(Fza) 2 U..)

82 (1\
82z

a
Fkn ;1271 =

(_1)k-1(m-Fn)(1-1-ign(m-Fni, sgn(n
ax OY

\k+1-1m+n! \
(jr)

(-1)1(k+1-m-n)! Yk-F1'n-l-m(E)

Rk+'+'

Inserting these results into the original multipole expansion gives

1

I I

co
(/ c,.

(f.3)(1 + m)!1=0 m=-1
oo k

E E 1
rkYk*(1-0( 1)1(k + 1 n)! Yki-l'n+m(121)

k=0 n=k (k n)!(I rn)! z
Rk+I+1

co 1 oo k= EEEE (k n!)(I rlYrin(i.i)rfr kn(li) Rk+r-Fi
(-1)1(k + I m n)! Yk+1,n+m(k)

1=0 m=-1 k=0 n=k

D-2 Coulomb Energy and Force Summations

The energy per unit cell of a collection of N charged particles subject to periodic boundary

conditions is expressed as

U('") = Enn + Eno + Emp

The first two terms are contributions to the energy from particles in near neighbor unit cells,

that is, unit cells displaced by lattice vectors fiapi, with Rapt < ro. The constant ro can be, in
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principle, any length greater than twice the unit cell diagonal. The first term is the interparticle

energy, and the second is the energy from the interaction of the particles with the compensating

charges.

Enn
N N

= 1 I

-.EEgigiE 1 ,.-..z 4;1
1=1 j=1 nn I "ce/37 fi

N N
= .'EE.,: +EEgigiE

I

inn, co-r 1=1 5<1 nn Fi 17107 Tj

The prime on the summation index indicates that the near neighbor at the origin is excluded.

The forces on the particles are

i(nn) aEnn

ari

qiEql E li
77:7

0i nn I
ap7 13

:1

The 'virtual' forces are defined as

so that

(foi; = aEnn
Ai;

ax bx ex

h = 0 by cy

0 0 Cz

T

f)(tnn) .IEEEgiqj (7:i _r,07

nni .1107 3 13

The second term in the energy is

x---
Enn =

1 2 qi E E 4-; 1

i nn j=a,b,c I ri RaP'y 11.07 + if I

It is not necessary to sum over all of the lattice points, since the compensating charges

cancel inside the near neighbor volume. The lattice points which give non-zero contributions for

the first term in the parentheses are denoted collectively as `nna',`nnb',and `nnc' for 46,4b,and

respectively. The contributing lattice points for the second term in the parentheses are found by
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inversion, since the near-neighbor surface has the inversion symmetry of the Bravais lattice. The

sum is then

1 v-
Enn qi E E 1

11,

,

i abc nn I nnj 1 ri + nnj=, j

7=7 17a137

The forces from the compensating charges are

a
f(c)

tnn

[j=a,b,c nnj I ii -11ranj 13 1 Fi ± ltanj 13

1 Arinj) (Ti + 1Lni)2qi E gj

+2qi E 1.171.5.33
j=a,b c

Sj E Eqk 1 1

k nnj I 7k Rnnj I I Fk finnj I]
(15-1)k

In the last definition the subscripts j of the inverse matrix elements are 1,2, and 3 for j=a,b,and

c respectively. The 'virtual' forces are

fi(c)
atnn

oh

[j=a,b,c nnj 1 Fi IZranj 13 1 Fi ± kr gni 13
=

2
E E jinni) + fin.n.f)

4j
1

(

Nso

+hT-1 Sb (ia lib ic)

Sc /

a Pa
/3+ 16i.9

T
+

7+ -}bjc

The long-range Coulomb energy is

Env = E ckn;imqkn(QT,.. +(Am) i Yk+1,n+m(li

1

crf31)

Rk+1+knlm cr137 nn aP7

Q7, = E qi707,7noi)
i
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C2im = E
2 j) (Vn(i) Vn(i))

j=a,b,c

ckn;im = ( -1)k (k + n)!(1 + m)!

The lattice sum is calculated with the planewise summation method, which gives the multipole

sums over all lattice points except the origin. Defining

Psm,(rn°)

sL(')

= E Yim ap-y)

R'+'
«07 a/37

E, Yhn (Rafh)
Ri+1nn «07

and excluding multipoles with indices greater than a maximum index p, the energy is

A-1 k pk 1

1 (0)
En, P=-2E E >2 >2 ckn;rmQ;n(Clim + e)im)(PSM S)k +I,n +m

k=ln=k 1=1 n=-1

All of the terms with k+1=odd are zero, because of the inversion symmetry in the lattice sums.

Long-range forces on the particles are

'Pr) =
aEmp

ari
1 8

(
*,
/knlri))E Ckn;1m(2Qtm Qtn)(PSM 5.)(4)-1,n+m

kn 1m

1 1 -
>2 ckn;trnvi,n E (v,u) ni,;3(-3))(Psm S)(k021,n+rn

knim j=a,b,c

The derivatives of the spherical harmonics are calculated with the following expressions:

a
Yinz (01 = 1 1-1

(71) (1+ m)(1 + n2 1)r1-131*1,rn-1 (01

[riVn (0] = i [r1-1371,172+1(f) + + m)(1 + n2 1)2.1-1Y1*-1,7n-1 (21ay 2

[riVn (0] = (1 + rn)r1-1371* 1,m (f)
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The long-range 'virtual' forces are

fi(11r)

SL.411)

psm,(mh)

(80"im
ah )..

n( )

OE,"
Oh
P-1 pk1 x-- (h)

2
2_, 2_, 2_, 2_, ckn;/mQz(Q,,n + Orm)(Psm s),+,,n+,
k=1 n 1=1 m
p-1 pk a0; cr\(0)

Ckn;Iml4kn Ohm °Jvl
k=1 n 1=1 m

a v. y,,,(Rap,,,)

ap7nnt

. a (y,m(Rap.))
(a # 7)

aRnni «p7 Ric:1-017

a (Ro.y)
ahz- R'+'

«15.7

(Vim
ahi;

= 49 (ar +EhThqW:7?

()IYIP1(3) j =a,b,c

The derivatives of the spherical harmonics are obtained from the differentiation formula:

+
7.1

+I T1 +21
1(11

+2
(1 m+ 2)(1 in

2 r1

2 (1 m + 2)(1 m + 1\1741,m-1(1[3714-1-1,m+1(7) +
2 7-1+2

1-}1 m
1)

37

74+2

(1 77/ + ri+2

Expressions for the components of PS.M(mh) are given in the next section.
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D-3 Planewise Summations

The equations used to implement the planewise summation method are adapted from the

formula of Massidda65 for a general triclinic lattice. The equations used here are as follows:

2_d YPv ( 07 ) PSMR,)
RP+1ce,67 crih

= 4°) + + 42,)

s(0,) = (-1) 2( r ( 1
ax (1.)! (p 1)by (p + 1)ax

S(1) (270" v fiveivec,shp-i_ ,S(1) = (..coCaf3
agby (2 v) -'0,13

Oco = tan-1(11.'16 ) = tan-1 hi,a16'Y

hag i i6a3,z

1hag = az + Paz abx)

e-116,
cap =

1 - e-H<.$ (2cosXag e-Has )

Hag = 27T-z hag
ax

__ 27r((cz lz) + j2-)
ax by by

COSX0 e-11°9 i/ = evenco/ =
sin,Cco v = odd

ivO.Airg(ti + v + 1), ircr4]2" ( 1) i(P+v)
Si,2) =

1/141(1.1 PA! ap I (axa.c,p)m+1

+TA E iiveive.P hP,T, 1 [ (p + u + 1), irh2,,,3])
agbv ap

-clap = (a + f3bz )1 + IY-ii
ax ax

0 c r 13 = tan-1 (cr2'5 Y:) = tan-la aP 'Y
oag X Cr cr13,x

r(a, X) = 100 eti(al)dt

Xag

The incomplete gamma function r(a, x) is calculated for a = Z,x = rh2 3
3and a = x = ir2g.a

For other values of a, the recurrence relation is used:

r(a + 1, = ar(a, x) + xa e-'



The derivatives with respect to the components of the matrix h are

psm(h) a4°) +04) +
a s(t421)

ah ah ah

The non-zero derivatives of SO are

:)° (1212)!

as2) c,c))[ p
aax ax (-1 1)by aid

as(p°,) c(,°)

aby (p 1)1);

Derivatives of id are:
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1 (c2h2/.= a_ ab
k a= Puy) a=by

0 0

111



112

Finally, the derivatives of Sµ2) are:

c(4)

a s2)
ah

acra,(3,

ah

acraThy

ah

(-1)P2'
N/Tr(l[ti v]!)
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c(2,) irP E leive hati;lr[-1(-p + v + 1), 7100])ah P h, 2
ail

±c(2Pv )
1-- gr2L--

liveive-fih"0-3r[(p v 1), Irh2cep]aby
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Appendix E

Planewise Sums for r-4 and 7'6

The evaluation of lattice sums with the form

X
Un (77) h) E

1

-/ Cii E
1

12ij ap7

is performed here for n=4 and n=6. The method generally follows that of Scholl68, including

planewise summation over the lattice. The prime on the sum indicates exclusion of the self-energy

term.

The terms with rij = 0 are separated from the total, and the two sums are evaluated

separately:

In these expressions

1 1
UT' h) =-_- E E h) + E ciiSf)n)(h)

sr E 1

ap7 I AO/ T In

= E, 1

«07
R

aTh'

«et+ Ol;+ 76

(«az + O'bz + -ycz)1 + (#by + -ycy)9 + ('rcz)i

=

= ed+ YE-F (6

With the following definitions

-dap = «6+ PE:

= 7(cxi + cy9)
b cz c b, c= -y( Y a+ 1b)

axl/y bY

= +

k = 17Clcz



then

Stn) = EE 1

(I 60 + vy er 12 +k2)2

The sum over a and g is done by applying the two-dimensional version of Poisson's rule:

114

E fc6.0) = E F(4.)

where

SiYy =

.3 =

F(l)

The angular integral is

/271.

/9=0

The complete integral is":

Fa° vgb

bij j = a, b

x

d2cr
(1 e + dr 12 +k2)2

ei2ir(e7 ii,.)F l d20.
(0-2 + k2)5-

doeizrsacos(e) = 2110(2z-so)

ei2ire.F oo

d2C (0.2 + k2)T = da 2rJ0(2rso-)
0

= 2rkii(21-s)
221

1 K_ _1(2rsk)
2.3--11-(1)

For n=4 and n=6, this becomes

sit) = E e_i27,(67yr)
w

.96) = E ei27(6.-6,)
ry tui

2irs
k

K_1(27rst,k)

7.2s2

:v K_2(271-spuk)

The modified Bessel functions can be replaced with the integral expression

K_n(z)= 71.(1Z)n ezt
r(n+.1)

With the change of variables x = 2irspvt, the sums are then



514) =

516) =

CPU

00
N"'"` e-i27(67-6,.).4

/iv 12 i r s ,,, 7
(47 1-1

E e-i27(6.,-er).4
oo

dx(x2 (271-spu)2)4 E e-17-ci"re-i""1-
12w 12AS"PI/ 7

dx(.2 pirspo2)1 E

2irc7.7 Spy

The sum over y can now be done analytically, yielding

sinh ((1 ()cz x) eicA- sinh ((cz x)

cosh (c, x) - cos (cp,,)

sinh ((1 ()czx) e-14/- sinh ((czx)
cosh (czx) - cos(cpv)

Inserting the expression for the sum over y into 514) and 516) makes the integral rather com-

plicated. Without an analytic expression for this integral, it would be simpler computationally

to use the three-dimensional sums with the modified Bessel functions K1(x) and K2(Z). These

functions decrease asymptotically as z- 2 e-z , so convergence should be fairly rapid.

The second part of the lattice sum is

Ee--17-C1c=re-i7eu.

7

( < 0

( > 0
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S(n) 1

Rn
a/37 al37

Rna 1 fln
7#0 ce0 a1.'7 af3

a 5f(L) St(;)

The first term, with 7 0 0, can be evaluated by the same method used for Sj.n) . The resulting

expressions are

Spa)

Spa) =

Ld
700 /Iv

E
W

-y00 /iv

27sµ,,
K_1(27rspvcz

17Icz

7r2S2
thv K-2(27rSpvCz

17 12 c?

7 1)

1 7 1)

The sum over 7 can again be performed within the integral representations of the modified Bessel

function:

cos (cp,) e-c.=
00

cosh (czx) cos (ci,)



The term s(nOb ) can be partly evaluated by line-wise summation:

, 1

a RnaP0 as ((aaz + Obx)2 + (aby)2)2
1

EE fir (a) E
/3$0 a c40 (aa)n

fi(3n)(x)
((raz + gbz)2 + (ftby)2y2=

The one-dimensional Poisson rule is applied to the first lattice sum, giving, for n=4,

E .64)(a) = E44)(p)
cr

00

Fi(3

-
4)(p) = e-i21(Azi14)(x)dx

00

116

r ( ay )3 27by I )3 I
it 1)e-. :2 =1/31(bylts1-b.o)

2az Urby I /3 I ax

This expression can be summed in two dimensions, with convergence going as [3-3e-IP1. The

complete expression for n=4 is

S,(;11,)
b _1 ( a 2 1 {1

+ 2 t(1 2r-Y-gp)e 27r fli4 cos (27rLi(3/2)
2 pbyr

P
az ax

p=i =1

v. 1

(Qaz)4
00o

With the sum over p done analytically, this becomes

c(4)
iax\ 2 1 e2141P - cos (27.k.-#)ar

oo

2 211") (i3by)3 cosh (21-11-Y-0') cos(271- irr- 0)
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Although the lattice sums in this expression are only one-dimensional, the first sum con-

verges as /3-3 and the second as 0-4. Neither can be said to converge quickly. A preferable

method might be to apply an extended Ewald method to the two-dimensional sums obtained for

f:= 0 and 7 = 0.



Complete expressions for the lattice sums with = 0 are
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The expression for n=6 was obtained with the use of the relation

46)(p) =
1 a44)

4,82by aby

}
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Appendix F

Error Approximations for Numerical Calculations

F-1 Short-range Energy

The truncation error for the short-range energy is defined as

SE(") E(") Esard,

00

2

1- E ci, E
ij 07,00 I 1-icr,

1

87 F

1

i In a(37 -nn I IL07 Fi

2
ij crP-yOnn I I-107 In

If the lattice sums are truncated by deleting any terms with the absolute value of the lattice

indices a, , or y greater than a given positive integer M, then the error can be characterized as

a function of M.

The number of lattice points with the absolute value of any one or more of the lattice

indices equal to M and having no index with absolute value greater than M (abbreviated as

a,(3-y E M) is

Then

6E(")
2
E ci, E E

mm = 24M2 + 2

00
1

ij p=M +1 af37EA I Ra/37

24u2 + 2E cii [(/2 -1)42

1
00 24

2
c4

=m anyn-2
ij

12
an(n 3)mn-3 Cii

ij

In these equations the quantity a is an average lattice vector length. The total short-range energy

is approximated by calculating the energy in the unit cell with a separation between particles of

half of the lattice vector length:

In
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Then

(sr) 5E("
Em

E(sr)
24 1

(n 3)Mn-3

If the sums are truncated instead by including only terms with Rap? < Rco, then the

truncation error is

6E(")

Then

F-2 Ewald Energy Sums

E
1

ij i4=1-1fa pa<R, I 113-,<(p+1)a .2( 'Y
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E(sr)

4R 1 ( a p-3
(n 3) R'

n

The Ewald energy contains sums over reciprocal space as well as a direct lattice sum. If

the free parameter c is chosen so that the two sums converge at the same rate, then the total

truncation error will be twice that calculated for either sum alone. This is assumed to be the case,

so the truncation error is calculated for by considering only the reciprocal space sum. The value

used for c is 4, where a is the length of a unit cell vector. The truncation error is estimated as
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In the expressions for the relative error, E(Ciew) is taken to be equal to the total Ewald energy

since the origin (M = 0) is excluded from the lattice sum. If the length of a second lattice vector

g is greater than that of a., then

SEMw) 4e-r(f)2(m+1)2
a

e(etvM )
e

)2)(3+5+ ---I-(2M+1))

This expression is defined for M > 1, and is a maximum if a is the smallest lattice vector length

and b is the largest.

F-3 Multipole Expansions

The multipole energy is defined in terms of the unnormalized spherical harmonics as

1E(mP) =
I

co k co (-1)((k + 1 ril n)! t;z.\Yk+1,m+n VI)= EEEE (k n)!(1 m)! r2mri kny j Rk+/+1
k=0 n=k 1=0 m=-1

If the multipole terms are calculated only up to a maximum index it, then
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The approximations for the spherical harmonics are made by converting the unnormalized ex-

pressions to normalized form and replacing each normalized spherical harmonic with an average

value of (41r)- I .

If D is the length of the longest cell diagonal and the smallest lattice vector is n times the



length of the diagonal, then

Then
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Since e(ImP) is less than E-n2P) for n > 1,
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F-4 Planewise Summation

The truncation error for the planewise summation is found to be almost entirely due to

the sum over lattice planes which excludes the plane at z = 0. The sum over terms for z = 0

is calculated with the use of incomplete gamma functions, which converge very rapidly with

increasing lattice indices. The lattice sum for z # 0 is
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Appendix G

Short Range Energy and Forces

The expression used to calculate the short range energy is

() N-1N-1 tiy
E(sr) C EEEE, fijk

3=0 j=0 k=1 Iniik

In this expression, i and j refer to atomic species, c(") and fijk are constants, Ilijk is a positive

integer and rij = The prime on the lattice sum indicates exclusion of the self-energy

terms. For calculation of the forces, E(sr) is written
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The short range forces on the particles are
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The 'virtual' forces are defined as
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With these definitions,
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