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Occurrence of human error in highly complex systems, such as a cockpit, can be

disastrous and/or overwhelmingly costly. Mismanagement of multiple concurrent

tasks has been observed by researchers to be a type of repetitive human error in

previous studies of accidents and incidents. This error may occur in the form of

wrong selection of a strategy to attend to tasks, and/or wrong assessment of a task's

priority at each moment.

The desire to prevent such errors forms two essential questions: 1) Is there any

(near) optimal method of managing multiple concurrent tasks? 2) Flow optimally

do human operators manage these tasks? To answer the first question, operations

research as it is applied to single machine scheduling was used. The operator was

assumed to be a single resource that attended to different tasks, one at a time. To

answer the second question, a software environment was developed to measure the

human's multitasking performance, which was then compared with the answer to

question one.
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In this research, the operator's quality ofperformance was maximized as opposed

to the number oftasks accomplished, which was considered by previous

researchers. A metaphor of 'Juggler and spinning plates' along with a graphic bar

illustration was used to resemble an operator (a juggler) who manages several tasks

(plates on vertical poles) concurrently.

Several mixed (binary) integer-linear programming models were developed

discretely over time. One model was selected and solved by the means of tabu

search heuristic method. In tabu search, the significance of different initial solution

finding mechanisms and different applications of long-term memory was

investigated. A conjecturing method, within the tabu search, was introduced for

solving problems with very large planning horizons. In all cases, tabu search gave

good quality solutions in a much shorter time than branch-and-bound.

Under five different scenarios, ten subjects were studied while managing multiple

concurrent tasks in the software environment. None of the subjects could gain a

score better than tabu search in any of the scenarios. Subjects' patterns of

attendance to tasks were analyzed and compared against the pattern suggested by

tabu search, and similarities/differences were identified.
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A Mathematical Modeling Framework for Scheduling and

Managing Multiple Concurrent Tasks

CHAPTER 1: INTRODUCTION

Rapid growth of technology and the development of complex systems is changing

the role of the human operator from being a direct moment-to-moment controller of

a system to one of a supervisor or a monitor of multiplefully automated or

semiautomatedtasks. One of the main objectives of automation in complex

systems is removing human error1 by eliminating the human from the process. In

most cases, automation has reduced the number of faults in a system associated

with manual repetitive tasks. But a fair number of disastrous faults are still caused

by human error while supervising automated systems. Boeing statistical summary

shows that between 1987 and 1996, over 65% of the Hull Loss Commercial Jet

Aircraft Accidents--in the US and worldwide--were primarily caused by the cockpit

crew, and not by any other factor such as maintenance, weather, or the airplane

(Boeing, 1997). A typical pilot error can be attending to tasks that do not have the

highest priority among the other cockpit tasks. For instance, a captain who was

distracted with a low-priority task on China Airline caused an incident with

substantial damage to the aircraft (Chou, 1991). A study by Chou et aT. (1996)

shows that mismanagement of cockpit tasks occurred in 23% of the 324 accidents,

and 49% of the 470 incidents reviewed. Compared to accidents, incidents are less

severe occurrences with regard to death, injury or damage. "Incidents ... affect or

could affect the safety of operations" (Federal Aviation Regulations, 1994).

Evidence shows that before an accident happens, it occurs a few times as an

incident but is overlooked (Chou et al., 1996).

1 For more details on human error refer to the textbook by Reason (1990).
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The main challenge for a pilot in managing cockpit tasks is the multitasking nature

of it. A pilot has to repeatedly perform different tasks within the four broad

categories of Aviation, Navigation, Communication, and System Management. For

instance, detecting/fixing a unit's malfunction, communicating with the air traffic

controller (ATC), keeping the proper altitude, and changing the heading are all

relatively independent tasks, which have the potential to occur simultaneously. The

more of these tasks that occur at the same time, the harder it is for a pilot to manage

them, and the more likely it is to miss one. All the tasks in a multitasking

environment are competing for a limited resourcethe pilot's attention. There are

several theories and models developed for representing a human's attention

allocation including multitasking capability (Funk, 1998). Despite the differences

between these models, all of them have agreed on the assumption that humans have

a limited capacity for processing multitasks (Moray et al., 1991).

A multitask supervisory control scenario for a human operator is not limited to a

pilot in the cockpit. In many other complex systems such as nuclear power plants,

computer based industrial systems, a military tank crew, a commander in charge of

several units, or a corporate manager, a common pattern of the monitor/decision

maker responsible for several concurrent tasks is found. Hence, a normative

modelstandard of comparisonthat provides an optimal or near-optimal

algorithm for a human's attention allocation among multiple concurrent tasks,

against which to compare and contrast actual human performance, will make a

significant contribution to a variety of domains. Such comparisons can provide

guidance to help human operators in complex, high-risk systems allocate attention

more effectively.



CHAPTER 2: LITERATURE REVIEW

Theories and models of multitasking can be divided into psychological and

engineering theories (Pew and Mayor, 1998). Engineering theories are focused on

describing human behaviors, whereas psychological theories are more influenced

by the mechanisms underlying behaviors. Pattipati and Kleinman (1991)

summarize some of the work done in modeling a human's attention allocation.

Operations Research as a known subject of combinatorial optimization is a valid

tool for this purpose. Carbonell et al. (1968) for the first time applied queuing

theory to model the visual scanning of an operator monitoring several tasks by

looking at different displays. In their model, a human's visual attention resource

was considered as a single server and the displays awaiting the server's attention

were regarded as customers in a queue. Other researchers (Walden and Rouse,

1978; Chu and Rouse, 1979; Greenstein and Rouse, 1982) expanded this idea by

assigning a service time probability distribution to the human attention resource as

a server.

Tulga and Sheridan (1980) defined a paradigm with several queues, each having a

group of similar tasks arriving randomly with random rewards, time requirements,

and deadlines. The objective was to maximize the aggregate reward earned by

working on different tasks. The decision made at each point in time was the

solution of a deterministic combinatorial optimization problem (dynamic

programming with branch and bound strategy). Pattipati et al. (1983) argue that one

of the disadvantages of queuing theory approach is its difficulty to find an optimal

sequencing strategy. Moreover, queuing theoretic emphasizes the stationary

parameters of a system. These parameters such as mean waiting time (waiting time

for a display to be read), or mean service time (task processing time) will help

designers have a better understanding of the multitasking environment. However,

the general interest/issue is in the moment-to-moment decisions made by the



human operator rather than parameters such as mean waiting time. Combinatorial

approaches, on the other hand, have a deterministic view and cannot easily handle

randomness associated with the nature of a multitasking system as well as queuing

theory can. The main shortcoming of the queuing approach is that the operator has

to follow a rule (First in-First served, or Last in-First served) and does not have the

freedom to attend to the most urgent task.

Moray et al. (1991) used a different subject within operations research to model a

human operator in charge of multiple concurrent tasks. They proposed a normative

model based on scheduling theory. The optimal strategic decisions made by the

model were then compared with those made by a human operator. Moray et al.

(1991) considered the human as a single machine and cognitive/physical tasks that

he needed to accomplish as jobs. For example, bringing a vehicle back to the

centerline of the roadway is ajob. The criterion in their model was to maximize the

operator's performance. In their study, performance was measured by the number

of tasks completed by their due date (a different interpretation of performance is

described in Section 4.1). They assigned no partial credit to partially completed

tasks (i.e., only fully completed tasks were valued). This means that their model

could suggest ignoring a task due to not having a chance to be completed fully by

its deadline. Nor was the interruption of tasks associated with any cost in their

study.

Engineering theories are not limited to operations research. Other approaches used,

in the manual control mode rather than the supervisory control mode explained

above, have been based on estimation and optimal control theory (Pattipati and

Kleinman, 1991). Estimation theory is concerned with predicting future states or

detecting changes in parameters of a dynamic process, while control theories focus

on how a human can achieve a desired state, in a manual control mode, optimally

(Rouse, 1980). The emphasis of estimation and control theories in human-machine



interaction is different from the focus of this research. Consider the example where

a driver should be within the appropriate lane and also maintain a certain speed.

Control theory minimizes the series of actions that one takes in terms of choosing

the appropriate steering wheel (or accelerator pedal) angle to achieve the desired

state, while minimizing the deviation of the outcomes of these actions from the

desired state. The emphasis of this research, however, is on how the operator's

high-level attention is allocated to different tasks. In the driver example, whether a

driver at any point in time should attend to the task of 'being in the appropriate

lane,' or 'keeping the proper speed,' is what is addressed. It is assumed that as soon

as the operator attends to a task (e.g., staying in the appropriate lane), the task

status starts improving with a certain speed (optimally or not) towards the desired

state. It is further assumed that tasks are independent and the driver can pay

attention to at most one task at a time. The latter assumption is a reasonable

assumption for the operator's monitoring, information processing and action

selection skills as opposed to sensory-motor skills. Other researchers also have

used the single resource assumption for the human's attention (Tulga and Sheridan,

1980; Moray et al., 1991; Greenstein and Rouse, 1982).



CHAPTER 3: PROBLEM STATEMENT

The objective of this research is to develop a normative modelas a standard of

comparisonfor a human operator to attend to the most appropriate task at each

point in time, considering the consequences of choosing this task in a fixed time

span. This model will be used with a simple experimental apparatus that allows the

researcher to manipulate different variables of a multitasking environment and

compare the (optimal) behavior of the model with that of the human operator.

Such normative models must be capable of measuring the performance of the

decision-making process. The measure of performance, which is widely considered

in previous research as maximizing the number of tasks accomplished (Chapter 2),

does not seem to apply successfully to all multi-tasking environments. In a true

multi-tasking environment, tasks do not simply leave the system after

accomplishment, but they stay in the system and their status varies repeatedly

between poor and desired status depending on how much attention they receive

(Chapter 4). Unlike prior studies, the focus of the normative model developed in

this research would be maximizing the operators quality of performance in terms

of how well the tasks are performed instead of the number of tasks accomplished.

Such a normative model would also indicate exactly what task has to be attended at

a specific point in time. Clearly, the focus here is different from the queuing

theoretic approach where the emphasis is on estimating the stationary parameters of

the system.

The approach that will be used in this research for developing the normative model

is through mathematical modeling in Operations Research, as it is applied to

Scheduling. However, before defining the parameters of the mathematical model,

there is a need to somehow distinguish, define and quantify the elements of a multi-

tasking environment in order to capture that environment to the best extent
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possible. This quantification should address decision-making between tasks,

criteria to evaluate the quality of the decision-maker's performance over time for

each task and for all tasks that the decision-maker is responsible for as a whole, and

the difference between tasks' characteristics and worth. Further, such

quantifications should be applicable to a wide-variety of multi-tasking

environments. For this purpose, a metaphor will be introduced to picture a model of

the real-life multi-tasking environment, and within that metaphor some parameters

essential to the description of a multi-tasking environment will be defined (Chapter

4).

After modeling a generic multi-tasking environment mathematically (Chapter 5),

there is typically a need for solving that model with efficient heuristic algorithms in

a timely fashion. Tabu search algorithm is the heuristic structure that will be used

for this purpose (Chapter 6-7). On the other hand, an environment is needed to

allow the researcher to measure and analyze human operator's decision-making

performance. This environment will be developed in computer software (Chapter

8). Finally, the results obtained from the human operator's performance will be

compared against the results obtained from solving the mathematical model.

Similarities and differences of this comparison will be pointed out to guide

operators about their strengths and weaknesses (Chapter 8).

In summary, the objectives of this research are as follows:

1. To define and quantify the elements and behavior of a generic multi-tasking

environmentChapter 4.

2. To develop a mathematical model with the use of the parameters and variables

defined in (1) that aims at finding the best decision-making performance within

the limitations of a multi-tasking environmentChapter 5.

3. To develop an efficient heuristic algorithm that would solve the model

proposed in (2)Chapter 6-7.



4. To develop a task management environment that would measure and analyze

the human operator's decision-making performanceChapter 8.

5. To compare and contrast the human operator's performance identified in (4)

with that of the mathematical model's found in (3) Chapter 8.



CHAPTER 4: METHODOLOGY

In the following sections, first the definition of performance in previous studies

(number of accomplishments) is reviewed and its shortcomings are addressed;

second, a new definition of performance based on 'quality of performing the tasks'

is proposed to improve its applicability to generic multi-tasking environments.

Based on this new definition, a metaphor of 'juggler and spinning plates' is

suggested in order to help understand and quantify the parameters and elements of

a multi-tasking environment. Finally, some scenarios are discussed to show the

applicability of this metaphor and advantages of looking at a multi-tasking

environment from this perspective.

4.1 QUALITY OF PERFORMANCE VS NUMBER OF
ACCOMPLISHMENTS

The aforementioned studies in Chapter 2 have always considered the operator

either as a server who accomplishes different tasks waiting in the queue, or as a

scheduler who schedules attention to tasks. The primary goal has been

accomplishing as many tasks as possible to maximize the aggregated value. If the

operator is considered as a server who is serving a queue of customers, there is a

starting point and ending point for him to service each customer (service time). The

service to a customer cannot be interrupted; otherwise the customer would not be

satisfied. Also if the operator is perceived as a scheduler, he/she is looking for

maximizing the overall value of the tasks accomplished. All of these studies were

measuring the performance by the number of tasks accomplished. Evidently, these

studies were also looking for maximizing the performance.

In this research, performance is defined in terms of quality ofperforming tasks

instead of number of tasks accomplished. In generic multitasking environments, the

tasks are required to be controlled continuously and usually exist all of the time.
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Tasks cannot be assumed to have beenfully served to depart the queue or system,

and be counted as a task accomplished. The service that tasks receive is usually a

temporary service with variable service time that can help them stay closer to their

desired operating status. It is assumed that all tasks have a tendency to deviate from

their desired status if not attended to. Therefore, the operator's implicit objective

would be to minimize this cumulative deviation among different tasks that are not

considered finished in a multitasking environment. The accumulation of these

deviations is undesirable and too much of it in highly complex multi-tasking

environments may lead to disastrous results. Chou (1991) quotes from the National

Transportation Safety Board (NTSB) report of an accident,

It is obvious that this accident, as well as others, was not the final
consequence of a single error, but was the cumulative result of
several minor deviations from normal operating procedure which
triggered a sequence of events with disastrous results.

As indicated earlier, there are many multitasking environments in which no task is

consideredfinished. For example, monitoring the speed while driving a car is an

ongoing task. At no point in time, can the driver claim that keeping the proper

speed is no longer a concern because he/she has adjusted the vehicle's speed (i.e.,

completed the task) once earlier on during the ride. Most likely, the driver deviates

from the proper speed during the ride, but only when he/she deviates too much and

too often from the perfect speed status, do we call him/her a poor driver with a low

performance. This applies to other tasks during driving such as latitudinal control,

fuel management, engine temperature monitoring, or even tuning the radio.

Typically, an incident occurs when the operator deviates from the desired status in

too many tasks to be able to correct them, or allows one critical task to deviate too

much. As a result, those critical tasks that deviate beyond the correctable range

trigger the accident. Thus, maximizing the performance in this study means

maximizing the quality of performing the tasks.
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4.2 JUGGLER AND SPINNING PLATES!

In order to better understand the environment discussed in this research, the

metaphor ofjuggler and spinning plates is used. A simplistic view of any

multitasking environment can be compared to a juggler who has several plates

each on a vertical stickand tries to keep them spinning. At each point in time, the

juggler has to decide as to which plate to attend. The juggler has to assure that no

plate falls down and all the plates spin smoothly and do not wobble. Figure 4.1

shows this process in which for demonstration purposes it is assumed that all the

plates (tasks) start at their 100% (perfect) satisfaction level (SL). i.e., the plates are

spinning as smoothly as possible. This perfect SL can correspond to the task of

controlling the speed in driving when the driver has just adjusted the vehicle's

speed to comply with the posted speed. At each point in time a plate deviates from

its perfect SL (and starts wobbling) by the fixed rate of 25% per time unit if not

attended to. This rate is called the deviation rate (DR). It is also assumed that the

rate a plate resumes its perfect satisfaction level is 25% per time unit if attended to.

This rate is called the correction rate (CR). The plates may have different values

such as a crystal plate versus a plastic plate, but in Figure 4.1, all plates have the

same value.
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Figure 4.1 Attendance to three plates (tasks) from the juggler's (operator's)
standpoint



13

4.3 VARIABLES TO MANIPULATE

Manipulating the following variables within the simplistic metaphor of spinning

plates will add to the difficulty of the problem, but may improve the applicability of

the model.

The rate that a plate (task) deviates from the perfect status (deviation rate, DR)

The rate that a plate (task) approaches its 100% Satisfaction Level or perfect

status when attended to (correction rate, CR)

The fact that the plates (tasks) have similar or different rates

The cost of losing a plate (task), or its importance

The cost of switching the attention between the plates (tasks)

4.4 APPLICATION OF THE METAPHOR

In the following sections, it is shown how one can explain some already known

concepts or scenarios in a multi-tasking environment by using the plate metaphor

or the bar graphs explained above.

4.4.1 Performance

Performance usually means, "How well is a task being performed over time?"

Since a plate resembles a task in the plate metaphor, this question can be translated

into, "How well is a plate spinning over time?" using the plate metaphor. In the bar

graph, it would be, "How high is the SL kept over time?" The answer to the above

questions could assess the quality of performance for a plate that has been

wobbling too much for a period of time, and spinning very smoothly for some other

period of time.

The question seeks the average performance over time, and not the status in an

instance. An example for this view is when a person is asked, "Did you have a good
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flight?? The flight might have been both smooth and rough, but overall how it is

rated is the answer. A student's GPA (Grade Point Average) is another example in

which the performance assessment is not based on a specific course. It is the overall

performance of the student in all courses taken over time. However, different

people might have different criteria for rating a student's performance. Some might

consider the number of failed courses (the fewer the better), while some others

might look for the number of courses with a grade of B or above (the more the

better). Whatever the criteria is for assessing performance over time in a multi-

tasking environment, it will be placed in the objective function of the mathematical

model. It might be maximization of the average SL, minimization of the number of

crashes, and so on.

4.4.2 Status

Before assessing the quality of performance over time, there is a need for a measure

to assess the quality of performance at a specific point in time. The quality of

performance at an instance in time is called status in this research. To compare with

the questions asked in the previous section, the question to ask is "How well is the

task being performed at this moment?" For instance, a driver glances at his/her

vehicle's speedometer to assess the vehicle's speed status (under or over the speed

limit). This is a judgment call based on the information gained at that instance. In

the bar graphs, the satisfaction level (SL) of a task at a specific point in time,

expressed in percentage, can be considered as a measurement unit for what is called

as status here. In the plate metaphor, the measurement of how well or how smooth a

plate is spinning is not easy, because there is no clear definition of smoothness in a

spinning plate. A simple measurement unit for smoothness in spinning may be the

number of rotations per minute. The lower this number, the harder the plate

wobbles. In the mathematical model, the SL of a bar, between 0 and 1, will be used

to indicate the status of a task at a specific point in time.
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4.4.3 Importance, Weight or Value

The notions of importance, weight or value are used interchangeably in this

research, and all differentiate the impact of different tasks on the overall goal even

when they have the same amount of deviation from their perfect status. For

example, suppose that a car is expected to drive in a straight highway whose lateral

position with respect to the center of the lane is controlled via the steering wheel.

When in highway, a reasonable angle for the steering wheel can range from - 600 to

+ 60° while the perfect angle is zero. If the driver holds the steering wheel at -30°,

it is very likely that the deviation in the latitudinal control yields disastrous results

(e.g., hitting a car in the adjacent lane, or getting off the highway). However, the

deviation from the posted speed is not so critical, and one can drive 90 miles/br in a

60 mile/hr highway with a relatively low chance of accident. If a reasonable speed

range is assumed to be from zero to 120, this deviation is (9060)/1201/4th of the

range. Note that the deviation in the latitudinal control had the same ratio (3 0/120)
114th of the possible range.

As it was indicated earlier, importance is defined in terms of the contribution of a

task to the overall goal. Thus, measurement of the importance should be a relative

number with no specific unit. Assume that the overall goal is to minimize the

summation of deviations of each task ( deviation1) in the system from its perfect

status. Suppose that task (plate) A is twice as important as task (plate) B. This

means, one unit of deviation in task A should be counted twice in the overall goal.

To account for importance, the overall goal has to focus on minimizing the

summation of deviation times importance of each task in the system

( deviation, x importance,). In such a case, price of a plate can perfectly

substitute for the notion of importance. It should be noted that with such a

definition for the overall goal, a plate that is spinning at 50% of its satisfaction
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level, is costing the system (overall goal) with half of its price. This means that the

cost of a plate depreciates gradually, and it does not lose its price suddenly only

when it crashes.

The mathematical model in the next chapter will explicitly include the previously

discussed concepts: correction rate (CR), deviation rate (DR), performance, status,

and importance. The applications of the juggler metaphor can further be extended

to include other concepts often faced in task management environments such as:

deadline, urgency, priority, salience of task related stimuli, automation, etc. None

of these concepts are explicitly included in the mathematical model due to the

limited scope of this research. However, the conceptual application of the metaphor

to explain these terms can be found in Appendix A.
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ChAPTER 5: MODEL DEVELOPMENT

The objective is to develop a mathematical model as a standard of comparison for a

human operator to attend to the most appropriate task at each point in time,

considering the consequences of choosing this task in a fixed planning horizon.

Many different behaviors and in turn different scoring mechanisms (objective

functions) can be considered for the juggler paradigm. However, to keep the scope

of this research manageable, only one of these scenarios is selected and the future

chapters will all refer to that scenario. In the scenario selected (No. 4 in Table 5.1),

the objective function will focus on maximizing the aggregated satisfaction level

(SL) of the operator's performance on all tasks over the planning horizon. In this

scenario, the operator will also be penalized for each time unit that a task is kept at

zero SL. This scenario seems to represent a good majority of multitasking

environments.

Different scenarios led to the development of different mathematical models in this

research. These models are based on different behaviors at the minimum (zero) or

maximum (100%) SLs. Table 5.1 and Figure 5.1 show a summary of these models.

In the following sections, these scenarios are discussed in detail, and their

mathematical models are presented. All models are formulated as a mixed (binary)

integer-linear programming model. See the textbook by Hillier and Lieberman

(1995) for further information on linear programming. Majority of these models,

including No. 4 that is selected for the rest of this research, are based on discrete

time unit and are computationally complex to solve. Appendix B shows why such

models are NP-hard in the strong sense, and therefore need to be solved by efficient

heuristic procedures explained in Chapter 6. Further, two polynomial time

algorithm solutions are presented for two special cases in scenario 1 and scenario 3

of the following table.
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Table 5.1 Summary of the mathematical models

No Objective Function
Task behavior at

ZeroSL I00%SL

Max total weighted average
may be picked up later with deteriorates if not attended

SL (simple objective
no penalty to

function)

task is considered

Miii total weighted flow may be picked up later with accomplished and stays
2

time no penalty there without requiring

further attention

task is considered

may be picked up later with accomplished and stays
3 Mm total completion time

no penalty there without requiring

further attention

Max total weighted average penalized as long as it stays
deteriorates if not aende4

SL (primary objective in zero SL but may be

function) picked up later
to

Max total weighted average
deteriorates if not attended

5 SL (modified objective crashes and stays at zero SL

function)
to

Mm total weighted no of deteriorates if not attended
6 crashes and stays at zero SL

crashes to

deteriorates if not attended
7 Max first crash time crashes and stays at zero SL

to
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Tasks can repeatedly
reach zero or 10096

No pn,shment for
reachini1 the zero

level

Max Total Weighted Average
Satisfaction Level

[Simple Objective Functionj

A task is considered'
completed

(accomplished) when
it reaches 100%

Tasks are pwjshed
they reach the zero

level, bt can
repeatedly reach ze

Max Total Weighted Average
Satisiaction Level

IPrimalv Objective Functioni

A task is considered
crashed when it

reaches the zero lev6

I I

i I

I Mm Total Completion Time Mm Total Weighted Flow Time

----------------------
f - - -
I I

Max Total Weighted Average 1

Mm Total Weighted Satisfaction LevelMax First Crash Time
No of Crashes [Modied Objective Functionj I

I
I

I
I

L ----------------------
Figure 5.1 Overview of the mathematical models
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5.1 MAXIMIZATION OF THE TOTAL WEIGHTED
AVERAGE SL ACROSS TASKS (SIMPLE OBJECTIVE
FUNCTION)

This model represents a scenario where tasks can repeatedly reach their perfect

(100%) status or minimum (zero) SL with no penalty. When a task reaches zero

level, it can be picked up any time later if attended to. Meantime, that task's

contribution to the total score is zero, and there is no negative penalty. Also, if a

task reaches its maximum level (100%) it contributes fully to the total score, but its

SL will begin to drop the moment the attention is switched to a different task. This

objective function is the core of all other objective functions discussed in this

chapter. It captures the fundamental behaviors essential to the functionality of most

generic multi-tasking environments. Since the scoring system does not change at

the maximum (100%) or minimum (0%) SLs, it is also called simple objective

function. If the maximum or minimum boundaries for SL are removed, there is an

optimal rule for order of attendance to tasks. For further details refer to Appendix

C.

5.1.1 Parameters and Variables



M a very large num

5.1.2 The Model

Formula

Max

# Explanation

1
Tn

z=
(T + l)( w1) ,=, i=i (0)

Subject to:

maximizes the weighted average satisfaction

level (SL) among the tasks over the planning

horizon T.

OZ 1
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n at most one task at any time t can be attended

I,,
t=O,1,... 7'-! (1)

i=1
to.

current state of a task depends on its previous

A , = s + (x H]) CR, (1-x ,,) (2) state and whether it was attended to in the last

DR period.

paired with constraint (6): maximum
s,, <- A.,+(z11)M (3)

satisfaction level (SL) of a task is 1 (%100).

paired with constraint (5): minimum

s, (1 z,,) M (4) satisfaction level (SL) of a task is zerocannot

be negative.

s 0 (5) see the explanation for constraint (4).

S 1 (6) see the explanation for constraint (3).

t = 1, 2, ..., T this range applies to constraints (2) (6).

= 1, 2, ..., n this range applies to constraints (2) (6).

5.2 MINIMIZATION OF THE TOTAL WEIGHTED FLOW
TIME ASSUMING ATTAINING PERFECT SL (100%) IS
COMPLETION OF A TASK

This is a scenario in which a task can actually get accomplished and left unattended

for the rest of the planning horizon. It is assumed that all tasks are present in the



22

system at time zero. Therefore, flow time for a task in this context equals to the

time that it gets accomplished and leaves the system. A task is fully accomplished

the moment it reaches its maximum SL (100%). This scenario is similar to the

classical machine-shop scheduling problems where a part gets processed on a

machine and leaves the system. In this mathematical model, the planning horizon

should be at least as large as the completion of the last job. Therefore, all tasks

have to get accomplished (reach their maximum SL) one way or the other within

the planning horizon to be able to fully evaluate this objective function.

If preemption is not allowed, a task's processing time will be equal to the time it is

attended to until the time that it reaches its maximum SL (accomplished). What

makes this problem different from typical machine-shop scheduling problems is

that a task's processing time increases the longer it is unattended. In machine-shop

scheduling, such jobs that take longer to process the later they are processed are

called deteriorating jobs. Morton and Pentico (1993) discuss an example of

deteriorating jobs where the later the hot steel slabs are processed, the more heat

they require in order to get to the desirable temperature for rolling. Alidaee and

Womer (1999) have a comprehensive review of theories for solving scheduling

problems for deteriorating jobs on a single machine.

5.2.1 Parameters and Variables

DR deviation rate of task i if not attended to.

CR correction rate of task i if attended to.

w weight (value) of task 1 in the overall objective.

I, status of task I at time tjust before being attended to

s iO = initial status, which is a known parameter between zero and 1 (100%).

x binary variable: is task i attended to at time t? 0 (No) or 1 (Yes).

A ,, auxiliary variable to help find s,,
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t = 0, 1, 2, ..., Tunits of time planned; Tshould be large enough to allow for completing

all tasks.

a very large

5.2.2 The Model

Formula # Explanation

maximizes the weighted reward that is

T awarded to each task, at every time unit,
MaxZ =

i=i (0) since it is finished until the end of

Subject to: makespan. This in turn minimizes the

weighted flow time, Z (T+1) ( w,).

at most one task at any time t can be
x. 1 t=0 I ... T-1 (1)

1 ' attended to.

current state of a task depends on its
s,1 + (x,j)CR1 (1-x11j)DR

A ,, = (2) previous state and whether it was
+ (y) (DR)

attended to in the last period.

paired with constraint (6): maximum

s1, < A, , + (z ,) M (3) satisfaction level (SL) of a task is I

(100%).

paired with constraint (5): mmimum

si,, (I -z11) M (4) satisfaction level (SL) of a task is zero

cannot be negative.

s,,, 0 (5) see the explanation for constraint (4).

1 (6) see the explanation for constraint (3).

= mt (s, ,), starts giving a reward, at

yi,, i c (7) each time unit, after a task is finished

until the end of the makespan.
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1 1, 2,..., T this range applies to constraints (2) (7).

1, 2, ..., n this range applies to constraints (2) (7).

Comments:

The algebraic summarization of constraints (2) (6) can be represented as:

s = Max {0, [Min{ 1, s
, + (CR) ('x1) - (DR) (J-x, + (DR) (yj,) fl }

5.3 MINIMIZATION OF THE TOTAL COMPLETION TIME
ASSUMING ATTAINING PERFECT SL (100%) IS
COMPLETION OF A TASK

The behavior of this system is very similar to the previous scenario. A task will be

considered accomplished as soon as it reaches its maximum (100%) SL. A task will

require no more attention when it is accomplished and is counted as one completed

task. Tasks can repeatedly reach the zero level and resume a higher status with no

penalty. The objective of this scenario is to minimize the total completion time of

all tasks. A task's weight is of no importance for this objective function. For one

special case, there is an optimal rule for order of attendance to tasks. The

assumptions for this special case and the proof of the rule is discussed in Appendix

D.

5.3.1 Parameters and Variables

DR deviation rate of task i if not attended to.

, correction rate of task I if attended to.

s, status of task i at time tjust before being attended to

= initial status, which is a known parameter between zero and 1 (100%).
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x,, binary variable: is task i attended to at time t? 0 (No) or I (Yes).

A,, auxiliary variable to help find s,

M a very large

5.3.2 The Model

Formula # Explanation

Miii Z = C minimizes the total completion time of all tasks.
(0)

Subjectto: ZT

x1, 1 t = 0, 1, ..., T-1 (1) at most one task at any time t can be attended to.

current state of a task depends on its previous

A,, = .s' + (x ,,) CR (1-x (2) state and whether it was attended to in the last

DR + (y,H) (DR1) period.

paired with constraint (6): maximum satisfaction
S,1 < A,,+(z,,)M (3)

level (SL) of a task is 1 (100%).

paired with constraint (5): minimum satisfaction
s,, (lz11)M (4)

level (SL) of a task is zerocannot be negative.

S 0 (5) see the explanation for constraint (4).

S 1 (6) see the explanation for constraint (3).

YI,I = Tnt (s, ,), starts giving a reward, at each

- j s,, (7) time unit, after a task is finished until the end of

the makespan.

completion time of a task equals to the

C T (8) makespan minus the rewards earned, at every
YE,,-!

time unit, since the time the task was finished.
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total completion time is the maximum
C C1 (9)

completion time of all tasks.

t = 1, 2 ..... T this range applies to constraints (2) (9).

= 1, 2, ..., n this range applies to constraints (2) (9).

Comments:

The algebraic summarization of constraints (2) (6) can be represented as:

s +j = Max { 0, [Min{ 1, s, + (CR) ('x1) (DR) (1 -x1,) + (DR) (y, ) }] }

5.4 MAXIMIZATION OF THE TOTAL WEIGHTED
AVERAGE SL ASSUMING ATTAINING ZERO SL IS
PENALIZED (PRIMARY OBJECTIVE FUNCTION)

Since this model is selected to be used and referred to in the following

chapters, it is also called primary objective function. In this model, a task can

reach its maximum (100%) or its minimum (zero) SL repeatedly over time.

However, a penalty is assigned for every time unit that a task stays at zero SL. This

will discourage the model from leaving some low weight tasks unattended for a

long time in favor of some higher weight tasks. The degree of penalty is arbitrary

and can change the behavior of the system depending on how large or small it is.

Too large a penalty encourages the model to prevent tasks from staying at a zero

SL instead of keeping some other tasks at a very high level. On the other hand, too

small a penalty may completely ignore some tasks that stay at a zero SL in favor of

keeping some others at a very high level. Note: a zero penalty reduces this model

back to the simple objective function in Section 5.1. The penalty coefficient is

consistent across tasks in the objective function. Since this coefficient is also

multiplied by the weight of the task, tasks with higher weight will be penalized

more than lower weight tasks, which is what is expected. The penalty coefficient
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used for the purpose of this research is 20% of the maximum weighted value that a

task can get. The great flexibility and wider application of this model compared

to the other ones encouraged the researcher to use this model for the rest of

this research. The model will be referred to as the primary objective function

or simply the objective function in the next chapters.

5.4.1 Parameters and Variables

[1, A,, 0
z1,, binary variable: Z, bA >0

binary variable, [1 - Tnt (1- s ,)}, equals zero when ZERO level is attained and is 1

otherwise,

k arbitrary penalty coefficient activated when a task stays at a zero level. k 0

= 1, 2, .., n independent tasks.

t 0, 1, 2, ..., Tunits of time planned.

a very
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5.4.2 The Model

Formula # Explanation

Max

Z
1

(T + 1)( w.)

(w)[s, k(1-y11)]
10 1=1

Subject to:

maximizes the weighted average

satisfaction level (SL) among the tasks

(0) over the planning horizon T. it also

penalizes a task if it is at the zero level.

-kZ 1

at most one task at any time t can be
x 1 t = 0,1,..., T-1 (1)

attended to.
i=1

current state of a task depends on its

A,, s ,, + (x H)) CR (1-x ,H) DR, (2) previous state and whether it was attended

to in the last period.

paired with constraint (6): maximum

s ,, A,, + (z j,,) M (3) satisfaction level (SL) of a task is 1

(100%).

paired with constraint (5): minimum

,, (1 z,,) M (4) satisfaction level (SL) of a task is zero

cannot be negative.
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Comments:

The algebraic summarization of constraints (2) (6) can be represented as:

s ,+j = Max { 0, [Min{ 1, s + (CR) (xi) - (DR) (1 -xi) } J }

5.5 MAXIMIZATION OF THE TOTAL WEIGHTED
AVERAGE SL ASSUMING ATTAINING ZERO SL IS
TERMINATION (CRASH) OF A TASK (MODIFIED
OBJECTIVE FUNCTION)

In this model a task can repeatedly reach and drop from the maximum (100%) SL,

but as soon as it reaches the zero level it crashes and stays there. This model has

exactly the same objective function as the simple objective function in Section 5.1,

for which it is also called modified objective function. The only thing that differs

between the two models is the constraints enforcing the crashing behavior. Figure

5.2 illustrates this difference. The motivation behind this model is that sometimes

in real life a task is not worth pursuing when it crashes and cannot be attended to

any longer. In general, such a behavior resembles tasks that have a deadline to be

attended to, and after the deadline they are not worth pursuing. Refer to 'Deadline'

in Appendix A.
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Max Total Weighted Average Satisfaction Level
[Modified Objective Function]

Adding the constraints that cause a plate
crash when t reaches the zero level.
i.e., a plate can no longer resume a higher
level as soon as it reaches the zero level
once (crashes).

Removing the constraints that cause a
plate crash when it reaches the zero level.
i.e., a plate can repeatedly reach the zero
level and resume a higher level when it is
attended to.

Max Total Weighted Average Satisfaction Level
[Simple Objective Function]

Figure 5.2 Comparison between the simple and modified objective functions in
Sections 5.1 and 5.5

5.5.1 Parameters and Variables

DR, deviation rate of task i if not attended to.

CR, correction rate of task i if attended to., weight (value) of task i in the overall objective.

s,, status of task i at time tjust before being attended to

s , = initial status, which is a known parameter between zero and 1 (100%).

x,, binary variable: is task i attended to at time t? 0 (No) or 1 (Yes).

A auxiliary variable to help find s,
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I1,A1, O
z,,, binary variable: z

>0

y, binary variable, [1 - mt (1- s i)], equals zero when ZERO level is attained and is 1

otherwise.

= 1, 2, ..., n independent tasks.

t = 0, 1, 2, ..., Tunits of time planned.

M a very large number.

5.5.2 The Model

Formula # Explanation

Max
maximizes the weighted average satisfaction

1
T

Z = (w, )(s,,) level (SL) among the tasks over the planning
(T + 1)( w1) horizon T.

0Z1
Subject to:

at most one task at any time t can be attended
x1, 1 t = 0,1,..., T-1 (1)

to.
i=1

current state of a task depends on its previous

A1, = s + (x ) CR - (1-x ,,') (2) state and whether it was attended to in the last

DR, -(1 -y,,,) (CR,) period.

paired with constraint (6): maximum
s,, < A,,+(z,,)M (3)-

satisfaction level (SL) of a task is 1(100%).

paired with constraint (5): minimum

s,,, (1 z,,) M (4) satisfaction level (SL) of a task is zerocannot

be negative.

s ,, 0 (5) see the explanation for constraint (4).

s ,,, 1 (6) see the explanation for constraint (3).

yj,, = I - mt (1 - s, ,), starts giving a flag, at each

Yz - i M. s,,, - (7) time unit, after a task is crashed until the end of

the makespan.
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t = 1, 2, ..., T this range applies to constraints (2) (7).

= 1, 2, ..., n this range applies to constraints (2) (7).

Comments:

The algebraic summarization of constraints (2) (6) can be represented as:

s Max {O, [Min{ 1, s , + (CR) (x1) (DR) (1-x,) - (CR) (1 y,t) }] }

5.6 MINIMIZATION OF THE TOTAL WEIGHTED NUMBER
OF CRASHES ASSUMING ATTAINING ZERO SL IS
TERMINATION (CRASH) OF A TASK

The objective function of this model is different from the previous models in that a

task's satisfaction level per se does not contribute to the objective function. In this

scenario also a task crashes when it hits the zero level and cannot increase its status

any longer. The focus of this model, however, is to minimize the total weighted

number of tasks that crash over the planning horizon. It is assumed that some tasks

are likely to crash, but the goal is to minimize the number of these losses

considering their weight (value). In this model, it is of no value how well a task's

status is kept as long as it does not crash. The trade off takes place in choosing

between saving a few higher weight tasks versus many lower weight ones.

5.6.1 Parameters and Variables

DR / deviation rate of task I if not attended to.

CR1 correction rate of task I if attended to.

w, weight (value) of task un the overall objective.
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S status of task I at time tjust before being attended to.

5i3O = initial status, which is a known parameter between zero and 1 (100%).

x,, binary variable: is task i attended to at time t? 0 (No) or 1 (Yes).

A , auxiliary variable to help finds ,,,

11,A1, O
zii binary variable: z., =

>0

binary variable,, [1 - mt (1-s, ,)], equals zero when ZERO level is attained even once

during the planning horizon and is I otherwise.

= 1, 2, ..., n independent tasks.

t = 0, 1, 2, ..., Tunits of time planned.

M a very large number.

5.6.2 The Model

Formula # Explanation

n

Mm Z = (w, )( 1

minimizes the weighted # of crashes over the

(0) planning horizon,

Subject to: 0 Z(Ew).

t=o, 1,..., T-1 (1) atmostonetaskatanytimetcanbeattendedto.

current state of a task depends on its previous state
A ,, = s + (x i/_I) CR1 - (1- (2)

and whether it was attended to in the last period.
x DR

paired with constraint (6): maximum satisfaction
s A

,
+ (z ) M (3)

level (SL) of a task is 1(100%).

paired with constraint (5): minimum satisfaction
s1, < (1 z11) M (4)

level (SL) of a task is zerocannot be negative.

I,, 0 (5) see the explanation for constraint (4).

s 1 (6) see the explanation for constraint (3).

Yi 1 - Tnt (1 s, ,), signals the task that has
Ms11 (7)

crashed sometime during the makespan.
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= 1, 2, ..., T this range applies to constraints (2) (7).

= 1, 2, ..., n this range applies to constraints (2) (7).

Comments:

The algebraic summarization of constraints (2) (6) can be represented as:

s j,t+] = Max {O, [Min{ 1, s + (CR) (xi,) - (DR) (1-x,) }] }

5.7 MAXIMIZATION OF THE FIRST CRASH TIME

The objective function of this model is similar to the last model in that a task's

satisfaction level per se does not contribute to the objective function. However,

weight of the tasks has no contribution in this model either. In this scenario, if a

task hits the zero level, it will crash the whole system of tasks and it ends the task

management operation. The focus of this model is to postpone the crash of any of

the tasks, and in turn the crash of the system, as long as possible. This applies to

situations in which all tasks are vital to the existence of the system and the operator

cannot afford to lose any of them. In this case, the objective is to not lose any task

as long as possible within the planning horizon.

5.7.1 Parameters and Variables

DR, deviation rate of task i if not attended to.

CR1 correction rate of task j if attended to.

s , status of task i at time tjust before bethg attended to

= initial status, which is a known parameter between zero and 1 (100%).

x1 binary variable: is task i attended to at time t? 0 (No) or 1 (Yes).

A ,, auxiliary variable to help find s
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11,4, Oz, binary variable: z. =" O,A,, > 0

binary variable, [1 - mt (1-s, ,)], equals zero when ZERO level is attained for any task i

at time t and is 1 otherwise.

= 1, 2, ..., n independent tasks.

t = 0, 1, 2, ..., Tunits of time planned.

a very large

5.7.2 The Model

Formula # Explanation

minimizes the summation of points in time since a

Mm Z = (t)( 1
O

task is crashed until the end of makespan. This in
'

turn minimizes the first crash time,
Subject to: 0 Z(fl.

t=o, 1,..., T-1 (I) atmostonetaskatanytimetcanbeattendedto.

A
s ,,j + (x ,,,) CR (1

(2
current state of a task depends on its previous state

x ) DR, - (1 y,) ' and whether it was attended to in the last period.

(CR,)

paired with constraint (6): maximum satisfaction
Si, < A11+(z,,)M (3)-

level(SL)ofataskis 1(100%).

paired with constraint (5): minimum satisfaction
(1 z,,)M (4)

level (SL) of a task is zerocannot be negative.

s, 0 (5) see the explanation for constraint (4
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Comments:

The algebraic summarization of constraints (2) (6) can be represented as:

s 1,+j = Max {O, [Min{1, s, + (CR!) (xl!) - (DR) (1-x,,) - (1 yt) (CR!) } }
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CHAPTER 6: TABU SEARCH-BASED HEURISTIC METHOD

6.1 INTRODUCTION

For every difficult combinatorial optimization problem, there is a need for an

effective algorithm to find its optimal or near-optimal solution in a reasonable time.

For such problems, implicit enumeration techniques such as branch-and-bound will

not be effective. As the problem in this research is proved to be NP-hard, clearly

there is a need for an effective heuristic algorithm. Morton and Pentico (1993)

explain that the new heuristic search techniques, although not yet fully mature,

have proven to be significantly helpful in the scheduling domain. One category of

these heuristic methods uses intensUIcation/diversfIcation techniques. Within this

category, the popular heuristics are: tabu search, simulated annealing, and genetic

algorithms.

Tabu search, first introduced by Glover (1986), is the heuristic procedure selected

and used to solve the problems addressed in this research. Tabu search explores the

solution space to find an optimal or near-optimal solution. It has been applied

successfully to a variety of applications, especially scheduling (Barnes et al., 1995).

This method overcomes the shortcomings of its competitors in escaping the trap of

local optimality. Unlike other methods that are memoryless (simulated annealing

and other randomized approaches) or use rigid memory structures (branch-and-

bound), tabu search uses flexible memory structure. The search history, recorded in

the memory, along with the conditions embodied in tabu restrictions, constrains or

frees the search process to reach better solutions more effectively. The long-term

memory component of tabu search enables the search to intensify the search in the

region that is historically found good, or diversify the search to less explored

regions.
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The fundamental principles of tabu search are discussed in detail in Glover (1989,

1 990a, and 1 990b). In the next section, the mechanism of the tabu search is

described. Then, the initial solution finding methods and steps associated with the

algorithm for the problem in hand is discussed. Finally, an application of the tabu

search heuristic to an example problem is presented.

6.2 TABU SEARCH MECHANISM

The foundation of tabu search is built upon the following features (Glover, 1990b):

1. flexible memory structure: it allows exploitation of the evaluation criteria

and historical search information more thoroughly. This can be contrasted

to rigid memory structures (branch-and-bound) or memoryless structures

(simulated annealing and other randomized approaches).

2. a memory structure control mechanism: this mechanism imposes or frees

the constraints on the search process. Tabu restrictions and aspiration

criteria are in fact the controls.

3. short term and long-term memories: the combination of these two memory

functions allows for intensifying or diversifying the search. Intensification

means more thoroughly searching neighborhoods that are historically found

good. Diversification, on the other hand, searches those neighborhoods that

have been relatively unattended. The former search digs deeper while the

latter moves to new regions.

The hill-climbing like tabu algorithm progresses the search at each step to a better

(higher evaluation) move. When it reaches the highest evaluation (peak of the hill),

all local moves will lead to inferior solutions and hence none will be chosen. But

this peak may be the local optimum and not the global one. Tabu search has the

capability of not getting caught in the trap of local optima by moving the search to

new regions until a (near) global optimum is reached. The search, however, does
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not stop when (and if) it reaches the optimum and it has to be stopped through other

criteria such as number of iterations or time elapsed.

The first step for tabu search is having an initial solution. The initial solution is an

arbitrary solution that can be feasible or infeasible. It can be generated randomly or

through systematic procedures. Intuitively, the better the starting point, the easier

(faster) will the search get to (near) optimal solutions. This is especially of concern

for larger problems. In this research, two methods for generating the initial solution

are employed. These methods are discussed in detail in the next section.

Once an initial solution is determined, its neighborhood solutions can be explored

by perturbing it. The value of each of these solutions is determined by the objective

function, which in this research is maximizing the weighted satisfaction level over

time. These solutions have to pass through a tabu filter whose goal is to escape the

cyclic trap of local optima. The tabu filter is implemented through comparison of

neighborhood solutions against a set of restricted moves listed in the tabu list (TL).

This list is constructed based on the recent change in previous best solution that

resulted in a better solution. The tabu list records these changes or moves in the

order they were received. The size of this list is determined through

experimentation, which usually has a logarithmic growth by increasing the problem

size.

Tabu restrictions prevent the search from repeating the moves that are expected to

reach a local optimum already attained. So after a set of neighborhood solutions is

generated, the best local move among them is compared against the tabu list. If the

move is restricted, it is normally ignored and the second best move is considered.

There are cases, however, that a restricted move may have a better value than the

best global value found so far, the aspiration level. Only in such a case, when

aspiration criterion is met, a tabu restriction can be overwritten. The best move,
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after filtering against the tabu list and aspiration criterion, is selected for future

perturbation, and generation of a new neighborhood. This move is recorded into the

candidate list (CL). Besides the previous two filters, tabu list and aspiration level,

the best solution in each configuration has to be compared against the candidate list

as well. This is to avoid perturbing a seed and exploring its neighborhood that was

already explored. This process is repeated until the search is terminated.

Short-term memory, or the tabu list, is the core of tabu search process. Long-term

memory, or the frequency matrix, can enhance the effectiveness of the short-term

memory. They can focus further on searching the regions that were historically

promising (intensification); or direct the search to neighborhoods that were rarely

visited before (diversification). The information on all the previous moves required

to exploit the long-term memory is recorded in the frequency matrix. After one

complete set of search is performed, with the aid of long-term memory, a new

complete search restarts. Although the starting seed is the same, the restrictions

drawn from the long-term memory direct the search differently than before. The

number of restarts is arbitrary and depends on how much time a researcher is

willing to sacrifice for what quality of solutions. Evidently, the more restarts

imposed, the better the quality of solutions, and the more time consuming the

search will be.

6.3 INITIAL SOLUTION

Selecting an initial solution is the starting point for generating neighborhood

solutions and exploring them. In general, a good starting solution is believed to

expedite the search process to reach a better value. The question is what initial

solution is considered good. The answer can only be found through

experimentation and comparison. Also, because there is more than one problem

investigated with different sizes and parameters, it is the initial solutionjmnding

mechanism that is compared against another, not the solution itself. The procedure
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can be deterministic or random. In this research, two random procedures are used

for generating initial solutions. One is simply a random order of tasks generated

without considering any of the task parameters. The other one is also a random

order, but the odds of a task appearing in that random order is different from the

other tasks. The former method that tasks have equal chance of being selected in

the order of attendance is called uniform random. The latter procedure, in which

tasks have different chances or weights of being selected, is called weighted

random.

6.3.1 Uniform Random

Imagine for each task to be attended there is a ball with the task number on it. Drop

all the balls in a sack, and at every time unit within the planning horizon, blindly

pick a ball from the sack to decide which task to attend to, record the number, and

drop the ball back. That is similar to how the initial solutions were generated in this

research with a uniform random method. No additional rationale or rule is

considered in generating an order of attendance in this method. None of the

parameters of the system such as correction rate, deviation rate, weights, planning

horizon, etc. had any effect in this procedure. Thus for n number of tasks, each task

has a 1/n chance to be selected at each time unit. This procedure is called uniform

random.

6.3.2 Weighted Random

Imagine two big tanks of water. One tank has a very small hole from which water is

dripping and a very big bowl for refilling the water. The other tank has a very big

hole, but a very small bowl to be refilled with. The goal is to keep the level of

water high in these two tanks. Naturally, more time is spent on the second tank (big

hole and small refilling bowl) because it requires more attention. Occasionally, one

also attends to the first tank (small hole and big refilling bowl), but it does not take

much of his/her time to keep the level of water high in it. Now if it is told that
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having a high level of water in one of these tanks is more important than the other

one, it is intuitive that the more important tank will be attended to more frequently.

The above example is the idea behind weighted random procedure for generating

initial solutions. Instead of holes and refilling bowls, deviation rates (DR) and

correction rates (CR) are used. The importance of a task is determined by its weight

DR
or value (w). A ratio w has been developed based on the last three parameters

(DR, CR, and w) to determine the chances of tasks being attended to during the

planning horizon. The higher is this ratio for a task, the more likely is for that task

to be attended to. Thus at each time unit task i is attended to with a probability of

DR.
w.

CR,
Although a smarter procedure compared to uniform random, this

'CR1

method does not consider the satisfaction level of a task, which is in many cases the

motivation behind an order of attendance. A weighted random procedure is merely

a reflection of frequency of attendance to tasks in the long run. That is, the tasks

that are selected in the initial solution may be very similar to the ones suggested by

the optimal solution, but the order in which they are listed can be far different.

6.4 GENERATION OF NEIGHBORHOOD SOLUTIONS

After selecting an initial solution as a seed, one can go after generating a

neighborhood of solutions whose values are to be explored. The neighborhood of

solutions in this research is generated very simply. Pick a seed (initial solution) in

which for each time unit in the planning horizon an order of attendance to tasks is

predetermined. Start with the first time unit, exchange the first task with another,

and leave the rest of the order of attendance unchanged. This will be a new solution

in the neighborhood. For n number of tasks one can generate up to (n 1) solutions
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by changing the tasks only in the first time unit. This is also called a perturbation

on the task. When all the solutions spawned from the first time unit are generated,

move on to the second time unit. At this time repeat the same procedure (change

the tasks in that time unit), but leave the order of attendance before and after time

unit 2 unchanged. In general, a neighborhood solution is exactly the same as the

initial seed, but differs in the task that is attended to only in one of the time units.

To generate all the neighborhood solutions, continue the task perturbation for every

time unit until the planning horizon is reached. For a planning horizon 0, 1, 2, ..., T

and n number of tasks, with any seed one can generate (n 1) T+I solutions in the

neighborhood.

Every one of the neighborhood solutions generated has to be evaluated and checked

against the tabu list. If a solution exists in the tabu list, it should be disregarded

unless its value is higher than the aspiration level, the best value found over all the

neighborhood solutions so far. The best solution among the legitimate solutions

remaining in the neighborhood will be admitted into the candidate list and used as

the new seed for next generation of solutions.

6.5 STEPS OF TABU SEARCH

The research problem is focused on finding an optimal or near-optimal order of

attendance to tasks at each time unit in the planning horizon. This order should

maximize the weighted average satisfaction levels of tasks over time. The steps

associated with the tabu search-based heuristic algorithm to solve this problem are

presented next.

6.5.1 Step 1Initial Solution

Randomly generate an initial solution for the order of tasks to be attended to at each

time unit in the planning horizon. This solution can be generated through one of the

two methods explained before.



6.5.2 Step 2Neighborhood Solutions

A neighborhood of solutions should be generated using the initial solution as a

seed. This neighborhood is created by perturbing the tasks at each time unit in the

planning horizon.

6.5.3 Step 3Evaluation of Solutions

Evaluate the weighted average satisfaction level over time for every solution

generated. Check every solution against the tabu list and filter out solutions that are

restricted. A restricted solution (move) may not be disregarded only if its value is

higher than the aspiration levelthe best value found among all the neighborhoods

to this point. Select the best move of the current neighborhood solutions and update

the following tabu search parameters:

6.5.3.1 Tabu List

Every time the best move in the neighborhood is selected, update the tabu list by

recording the changed parameter of the initial seed that resulted in the best move.

Therefore, the tabu list includes the parameter before the change, which produced

the best seed of the neighborhood after being changed. This list is updated

circularly in the order it was received. As the tabu list size is fixed in this research,

if the list is filled to its size, the next item that is admitted to it replaces the oldest

item in the list. Thus, it is a fixed-size storage with first-in-first-out rule. The tabu

list size is found through experiments and it should be adjusted for the size of

problem. For the purpose of this research, the following formula has been found to

be appropriate for the tabu list size: 3 + [log2 (n x T)J where n is the number of

tasks, and T is the planning horizon.

Initial experimentation indicated no gain in using the variable-size tabu list instead

of the fixed-size. Thus, it was not considered for further experimentation.



6.5.3.2 Candidate List

After generating the neighborhood from the initial seed, and filtering them against

the tabu list, aspiration criterion and non-identical candidate, one legitimate

solution is selected from that neighborhood as the best move. That solution should

be recorded into the candidate list, and the number of entries into the candidate list

should be increased by one. The new candidate list entry will serve as the new seed

for the next generation of neighborhoods. The very first record of the candidate list

is the same as the first initial solution.

6.5.3.3 Aspiration Level

The aspiration level is equal to the value of the best solution found since the very

start of the search. Upon admitting a new solution to the candidate list, its value has

to be compared against the aspiration level. If this value is better, aspiration level

has to be updated with this new value.

6.5.3.4 Index List

The index list is a subset of the candidate list. It contains the local optima among

the solutions in the candidate list. If a value of a candidate list solution is better

than the solution immediately before and after, it will be admitted into the index

list. A maximum size can be set for the index list to signal termination of the search

process if reached. For the purpose of this research, the maximum size was set to

the following empirical formula: [i{log2 (n x T)}2] where n is the number of

tasks, and T is the planning horizon.

6.5.3.5 Number of Iterations

For every new candidate list solution (seed), a new set of neighborhood solutions is

generated, and the number of entries in the candidate list is increased by one. This



also applies to the number of iterations, which needs to be increased by one. A

maximum number of iterations could be set so that if all the other search

termination conditions fail, this condition will ultimately terminate the search. The

empirical formula used for the maximum number of iterations used in this study

was: [{1og2(nxT)}2j where n is the number of tasks, and Tis the planning

horizon.

6.5.3.6 Number of Iterations Without Improvement

The number of iterations with no improvement would increase the same way as the

previous section except that it increases by one only if there is no improvement in

the objective function when moving from one solution to the next in the candidate

list. The maximum number of iterations without improvement could be used to

indicate the end of the search process if reached. For the purpose of this study, the

following empirical formula was believed to determine a good maximum number.

Maximum number of iterations with no improvement = [log2 (n x T)]

Where n is the number of tasks, and T is the planning horizon

6.5.3.7 Long-Term Memory (LTM)

To diversify or intensify the search, a long-term memory frequency matrix is used.

This matrix has two dimensions. One dimension is the task (n tasks) and the other

dimension is the time (Tplanning horizon). Therefore, it is a (n * T) matrix in

which cell (i, j) represents the number of times task i was attended to at timej by

the solutions in the candidate list. Upon admitting a new solution into the candidate

list, the frequency matrix also has to be updated with the information provided by

the new solution. After the search process has stopped, the information in the

frequency matrix (long-term memory) can be used to restart the search. The search

restarts with the same seed initially used, but the information in the long-term

memory directs it differently than the first time. Previous studies involving
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applications of tabu search have shown that two restarts is a good tradeoff between

the solution quality and computational efficiency (Logendran and Sonthinen,

1997).

At every restart, tabu list, candidate list, index list, number of iterations, and

number of iterations with no improvement is reset to zero. In the following, two

different uses of long-term memory are explained.

6.5.3.7.1 LTM Max

The frequency matrix indicates how many times the best moves in the search

process suggested that a certain task has to be attended to at a certain time. Thus,

the maximum number in the matrix indicates that the majority of the good solutions

agree on attending to that task at that point in time. In case of ties between two

maximums, a column-wise strategy is used to pick the first maximum. LTM_Max

is a method that uses this information and restarts the search with the same seed,

but this time it fixes attendance to that particular task at that particular time. Thus,

all the new solutions generated are generated around that fixed combination of task-

time. This method is also called intensification as it intensifies the search around

the solutions that were repeatedly found good by the previous search. After every

restart, the frequency matrix is reset to zero.

6.5.3.7.2 LTM Mm

In contrast to LTM_Max, the minimum number in the same frequency matrix

would indicate how few times (or none) the attendance to a certain task at a certain

time was recommended by the previous search. This also means that any

neighborhood around that combination of task-time is highly unexplored. In case of

ties between two minimums, a column-wise strategy is used to pick the first

minimum. LTM_Min is a method that employs this information and assures, for the
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next restart of the search, that any solution generated revolves around this fixed

task-time combination. Thus, it gives the search process an opportunity to explore

the least explored areas. For this reason, it is also called diversification. The

frequency matrix has to be reset to zero prior to every restart.

6.5.4 Step 4Search Termination Conditions

The above process is repeated until one of the search termination conditions is met.

The typical conditions for terminating the search process are:

Maximum number of entries in the candidate list is reachednot used in this

study.

Maximum number of iterations is reached. To set this number, the empirical

formula used for this research was: [{log2 (n x T)}21 j where n is the number of

tasks, and T is the planning horizon.

Maximum number of consecutive iterations with no improvement in the

objective function is reached. To set this number, the empirical formula used

for this research was: [log2 (n x T)] where n is the number of tasks, and T is the

planning horizon.

Maximum number of local optima or entries in the index list is reached. This

number can be a fraction of the maximum number of iterations. For the purpose

of this research, this number was set to: [i{log2(n x T)}21] where n is the

number of tasks, and T is the planning horizon.

Maximum computation time is reachednot used in this study.

Maximum number of restarts is reached if the long-term memory is used. For

the purpose of this study, this number was set to 2.



One or more of the above conditions should be employed to stop a search process;

otherwise the search would not stop even though it might have reached the global

optimum.

6.6 APPLICATION OF TABU SEARCH TO A PROBLEM
INSTANCE

In order to clarify the steps listed in Section 6.5, a small example is explained in the

following paragraphs with the application of those steps. Consider a problem with 3

tasks, a planning horizon of 4 time units, initial satisfaction level of 0.983 and the

following deviation rates, correction rates, and weights.

Table 6.1 Parameters of the problem instance

NumberofTasks: 3

Planning Horizon: 4

Initial SL: 0983

ask: 0 1 2

CR: (1 -10) x DR 0.16 0.18 0.1

OR: (0.01 - 0.10) 0.08 0.02 0.02

V:(1-1O) 1 3 10

N(DRICR) 0.5 0.33 2

6.6.1 Step 1First Iteration

The initial seed for this example was generated using the weighted random

DR .

procedure. The task with a higher w has a higher chance of appearing in the

order of attendance. As it is shown in Table 6.2, task 2 has the highest chance

(7 1%) and task 1 has the least chance (12%) to appear in the initial seed.
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Table 6.2 Likelihood of tasks appearing in the initial seed

Lx
Task

a i Sum

w(DR/CR) 0.5 0.33 2 2.83

w(DRICR)/total 18% 12% 71% 100%

The initial seed randomly generated for this example is: {0, 0, 2, 2)

6.6.2 Step 2First Iteration

Using the initial seed {0, 0, 2, 2), generate the neighborhood by perturbing on the

tasks at each time unit, yet one time unit at a time.

Table 6.3 Neighborhood generated at the first iteration

IteratIon

I

0 (lnftiaI)

Value

968.25

I Time
L

0 0 2 2

1 973.21 1

2

0 2

r
2

22 97744

3 972.15 0 1 2 2

4 972.97 0 2 2 2

5 959.54 0 0 0 2

6 963.85 0 0 1 2

7 967.68 0 0 2 0

8 969.55 0 0 2 1
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6.6.3 Step 3First Iteration

The best value selected among the solutions generated in the neighborhood is

solution 2, {2, 0, 2, 2} with the value of 977.44. This solution is used to update the

following parameters.

6.6.3.1 Tabu ListFirst Iteration

Recall that the initial solution was {0, 0, 2, 2}. The best solution generated in the

neighborhood that the search procedure is going to move to is {2, 0, 2, 2}.

Therefore the tabu list should be updated with {O, x, x, x} meaning that no solution

of such kind will be allowed in the next iteration unless its value is superior to the

aspiration level. If the formula proposed in Section 6.5.3.1 were to followed, the

fixed size of the tabu list would be:

Fixed tabu list size: 3 + [log2 (n x T)] = 3 + [log2 (4 x 3)] 6

However, for the sake of simplicity and in order to show the circular entry of

records in the tabu list, the tabu list's size in this application is assumed equal to

1.

6.6.3.2 Candidate ListFirst Iteration

The best solution of the neighborhood will be recorded in the candidate list. The

candidate list already has one record that is the initial solution {0, 0, 2, 2}. The new

record added will be {2, 0, 2, 2}. Note that the new record is not tabu, and it has not

existed in the candidate list before.

Increase the number of the candidates in the candidate list by one, which will be

equal to 2. Because this number is less than 100 (arbitrary maximum), the search

can continue.
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6.6.3.3 Aspiration LevelFirst Iteration

The value (968.25) of the initial solution {O, 0, 2, 2} was the initial value for the

aspiration level. This value must be updated with the value (977.44) of the new

seed in the candidate list {2, 0, 2, 2} because it is superior.

6.6.3.4 Index ListFirst Iteration

The initial solution {0, 0, 2, 2} by convention is always admitted to the index list.

The new solution {2, 0, 2, 2} with the value of 977.74 is superior to the previous

(initial) solution {0, 0, 2, 2} with the value of 968.25. Therefore the new solution

has a potential to be admitted into the index list if the next new solution's value is

inferior to 977.74. At this moment, total number of records in the index list is equal

to one.

6.6.4 Step 4First Iteration

The conditions for terminating the search are:

. The maximum number of iterations would be:

[{log2 (n x T)}2' j = [{log2 (3 x 4)}21 J = 14 However, for the sake of simplicity in

this example, this number is set to 4. At this iteration, the number of iterations

equals to 1, so the search can continue.

Maximum number of consecutive iterations with no improvement would be:

[log2(n x T)] = [log2 (3 x 4)1 = 3 At this iteration, the number of iterations with

no improvement equals to zero, so the search can continue.

Maximum entries in the index list is:

[1{log2(n x T)}21 = [1{log2 (3 x
4)}21] =7 At this iteration, there is only one

entry in the index list so the search can continue.

Maximum number of restarts is 2. At this iteration, the number of restarts is

zero so the search can continue.



53

6.6.5 Step 2Second Iteration

The new seed {2, 0, 2, 2} is the last selected entry in the candidate list. The new

neighborhood is generated based on this seed in the following table. The first

neighborhood solution is crossed out because it violates the tabu restriction {O, x, x,

x} and its value was inferior to the aspiration level (977.44).

Table 6.4 Neighborhood generated at the second iteration

teration

2

Time
Value

0 1 2 3

0 977,44 2 0 2 2

49772

8 978.74 2 .2

6.6.6 Step 3Second Iteration

The best solution in this neighborhood is the last solution {2, 0, 2, 1 } with the value

of 978.74. This solution is used to update the following parameters.

6.6.6.1 Tabu ListSecond Iteration

The new solution that the search is going to move to is: {2, 0, 2, 1}. Recall that the

seed used for generating this neighborhood was {2, 0, 2, 2}. Therefore, the new

tabu restriction would be {x, x, x, 2}. As the size of the tabu list is selected to be
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equal to 1 in this problem, the new entry in the tabu list will replace {0, x, x, x}, the

first record.

6.6.6.2 Candidate ListSecond Iteration

The new entry in the candidate list will be the best solution of the last

neighborhood generated that is {2, 0, 2, 1}. The number of records in the candidate

list should be increased by one, which will now be equal to 3. This number is far

below the maximum of 100 entries, so the search can continue.

6.6.6.3 Aspiration LevelSecond Iteration

The value of the aspiration level should be updated if it is inferior to the best value

found in the last neighborhood. As 978.74 of the last candidate list is superior to the

aspiration level (977.44), the value of the aspiration level has to be updated with

978.74.

6.6.6.4 Index ListSecond Iteration

The value of the new candidate in the candidate list (978.74) is superior to its

previous candidate (977.44). Therefore, the previous solution lost its chance to be a

local optimum and the new one becomes a potential local optimum if the value for

its next entry is inferior.

6.6.7 Step 4Second Iteration

The conditions for terminating the search are:

The maximum number of iterations is 4. At this iteration, the number of

iterations equals to 2, so the search can continue.

Maximum number of consecutive iterations with no improvement is 3. At this

iteration, the number of iterations with no improvement equals to zero, so the

search can continue.



55

Maximum entries in the index list is 7. At this iteration, there is only one entry

in the index list so the search can continue.

Maximum number of restarts is 2. At this iteration, the number of restarts is

zero so the search can continue.

6.6.8 Repeat the Cycle

The following tables show how the above procedures will be implemented for the

next two iterations.

Table 6.5 Neighborhood generated at the third iteration

(teratlon Time
Value L

3 0 1 23J_LJ t J

Solution 8 is rejected, as it is a tabu move and/or it already existed in the candidate

list.

New candidate: {2, 0, 2, 0}, (976.87)

New tabu list: {x, x, x, 1 }
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Updated candidate list: 0, 0, 2, 2}, {2, 0, 2, 2), {2, 0, 2, 1), {2, 0, 2, 0)

Updated aspiration level: 978.74> 976.87, so no update needed.

Updated Index list: {0, 0,2, 2); {2, 0,2, 1} because 977.44<978.74>976.87.

Table 6.6 Neighborhood generated at the fourth iteration

tteration Time
Value L

0 1976.8712 jO 12 10

ti

In the above table, solution 7 is rejected, as it is a tabu move and its value is no

greater than the aspiration level (978.74). Solution 8 is also rejected, as it already

existed in the candidate list.

New candidate: {2, 1, 2, 0), (977.75)

New tabu list: {x, 0, x, x}

Updatedcandidatelist: {0,O,2,2}, {2,0,2,2}, {2,0,2, 1), {2,O,2,O}, {2, 1,2,

0)

Updated aspiration level: 978.74> 977.75, so no update needed.

Updated index list: {0, 0, 2, 2), {2, 0, 2, 1), no new local optimum is added.
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The following table shows a summary of solutions generated and their

corresponding parameters updated.

Table 6.7 Summary of solutions for the first four iterations

lteratlonl
I CL

Value Solution

IL I AL
tabu

Solution Value Solution

0 (initial) 968.25 {0, 0, 2, 2} {0, 0, 2, 2} 968.25 {0, 0, 2, 2}

1 977.44 {2, 0, 2, 2} {0, x, x, x} 977.44 {2, 0, 2, 2)

2 978.74 {2, 0, 2, 1) (x, x, x, 2) 978.74 {2, 0, 2, 1)

3 976.87.{2, 0,2,0) {x, x, x, 1) {2, 0,2,1) 978.74 {2, 0,2,1)

4 977.75 {2, 1,2,0) {x, 1, x, x} 978.74 {2, 0,2,1)

The following table shows how the maximum frequency matrix is updated based

on the selected candidate lists in Table 6.7.

Table 6.8 Updating steps of the maximum frequency matrix

CL Taskl
Time

0 f 2 3

{O,O,2,2} 0 0 0 0 0

(initial seed) 1 0 0 0 0

Reset table to zero 0 0 0 0

0 0 1 0 0

{2,0,2,2} f 0 0 0 0

.-i- 1 0 1 1
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Table 6.8 (Continued) Updating steps of the maximum frequency matrix

TaskL
O 1 23

{2,O,2,l}
0 0 2 0 0

T 0 0 0 1

2 2 0 2 1

{2,0,2,0}
0 3 0 1

0 0 0 1

i 3 0 3 1

{2,l,2,0}
O 0 3 0 2

-r 1 0 1

1 4 0 4 1

6.6.9 Long-Term Memory (LTM)

Because the search is over, new restarts could be used with a new seed modified by

the information given through the long-term memory.

6.6.9.1 LTM Max

The maximum number in the last frequency matrix is 4 that is repeated for both

combination of (task 2-time 0) and combination of (task 2-time 2). This indicates

that these combinations were repeated in the candidate lists the most number of

times. A column-wise strategy is used to pick the first minimum (task 2-time 0).

Following LTM Max rule, a whole new restart for the search process can be

performed based on a new seed. The new seed will be a modified solution of the

initial seed of the last iteration {2, 0, 2, 2 } except that the underlined 2 shows that

this element will be fixed throughout all new generation of neighborhoods.
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6.6.9.2 LTM Mm

The process will be the same as LTM_Max except that the minimum number in the

matrix is selected to be fixed. In this example, there are several cells with zero

magnitude that show none of those task-time combinations have been suggested by

the candidate lists. The first cell with the smallest number (column-wise) is picked

and will be fixed. So the new seed will be {O, 0, 2, 2} and the underlined 0 shows

that this element will remain fixed throughout the generation of solutions.

6.6.lONew Restart

For this example, an LTM Mm strategy is used which results in {0, 0, 2, 2} as the

initial seed. Therefore, the new neighborhood should be generated and evaluated by

perturbing on the tasks at each time unit, yet one time unit at a time. The following

tables show the process of generating these solutions. Note: tabu list, candidate list,

index list, number of iterations, and number of iterations with no improvement is

reset to zero.

The solutions generated after the first restart is listed in Table 6.9. Those solutions

that are crossed in that table were either tabu moves for which the solution values

were inferior to the aspiration level, or they were solutions that already existed in

the candidate list.



Table 6.9 Neighborhood solutions generated after the first restart

iteration Solution Value L Time0123
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Table 6.10 shows a summary of updated parameters for the candidate list solutions,

and Table 6.11 shows the updated frequency matrix after all the iterations of the

first restart.

Table 6.10 Summary of solutions for the four iterations after the first restart

iterationt I tabu I

Value Solution Solution

AL,.

Value Solution

0 (initial) 968.25{O, 0,2,2) {O, 0,2,2) 978.74 {2, 0,2, 1}

1 972.97 {O, 2, 2, 2) {x, 0, x, x} 978.74 {2, 0, 2, 1)

2 976.71 {O, 2, 1,2) {x, x, 2, x} 978.74 {2, 0, 2, 1)

3 974.68 {O, 2,0,2) {x, x, 1, x} {O, 2, 1,2) 978.74 {2, 0,2,1)

973.12 {O, 2,0, 1) {x, x, x, 2) 978.74 {2, 0,2, 1)

Table 6.11 Updated frequency matrix after alliterations of the first restart

Task I

0

Time

1 2 3

0 4 3 2 2

1 0 1 1 2

2 4 4 5 4

The LTM_Min for the next restart would suggest the seed {1, 0, 2, 2}. The

following table shows a summary of the updated parameters after evaluating the

solutions generated from the new seed.
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Table 6.12 Summary of solutions for the four iterations after the second restart

IIL AL
Iteration i tabu L L

Value Solution Solution Value Solution

0 (initial) 973.21 {1, 0, 2, 2) {1, 0, 2, 2} 978.74 (2, 0, 2, 1)

1 973.77 {1, 2, 2, 2) {x, 0, x, x} 978.74(2, 0, 2, 1)

2 977.77 (1, 2, 0, 2) {x, x, 2, x} 978.74 (2, 0, 2, 1}

3 974.62 (1, 2, 0, 1) {x, x, x, 2) {1, 2, 0, 2) 978.74 (2, 0, 2, 1)

973.44 {1, 2, 0, 0) {x, x, x, 1) 978.74 {2, 0, 2, 1)

Table 6.13 Updated frequency matrix after all iterations of the second restart

Task
0 1

Time

2 3

0 4 3 5 3

1 4 1 1 3

2 4 8 6 6

Because there were only two restarts required in this example, the search ends at

this point..

Table 6.14 shows that the best solution found is {2, 0, 2, 1 } with the value of

978.74. The computer time for the example illustrated above was a fraction of a

second. Using Hyper Lingo 4.0 (1998) software for solving this problem through

implicit enumeration techniques proves that the solution found by tabu search is

optimal. Tabu search heuristics, with the same steps that were explained in this

chapter, are used in the next chapter to solve problems with a variety of difficulties.

The structure of these problems, tabu search results and its computational
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efficiency compared to the branch-and-bound used in Lingo are discussed in the

next chapter.

Table 6.14 Summary of the best solutions found at different search steps

Search Number The best solution in IL Value

Initial solution configuration {2, 0, 2, 1 } 978.74

First long-term memory restart {0, 2, 1, 2} 976.71

Second long-term memory restart {l, 2, 0, 2} 977.77

6.7 PSEUDO-CODE AND FLOW CHART OF TABU SEARCH-
BASED HEURISTIC

The following psuedo-code is adapted and modified from Subur (2000).

Determine the tabu search parameters
Generate the initial solution
Set the Aspiration Level Solution (ALS) to the initial solution
Set the Aspiration Level (AL) to the total weighted average SL of the initial solution
Initialize the Long-term Memory Matrix (LTM) to zero
Do

{

Add the initial solution to the list of restart solutions
Initialize the Tabu List (TL)
Initialize the number of Iteration (IT)
Initialize the number of Iteration without improvement (IT_IMP)
Initialize the Candidate List (CL) and the Index List (IL)
Admit the initial solution to the Candidate List (CL) and the Index List (IL)
Evaluate the total weighted average SL of the initial solution
Set the current seed to the initial solution
Do

{

Number of Iterations (IT) is increased by 1
Generate the neighborhood solutions by perturbing on the tasks of the current seed
at each time unit, yet one time unit at a time.
For each neighborhood solution generated from the current seed

Evaluate the total weighted average SL



rii

If (move E TL and AL is not satisfied)
Exclude the solution that results from the move

}
The best solution - 0
Do

Identify the neighborhood solution that has the maximum total weighted
average SL
If (the neighborhood solution CL)
{

The best solution +- the neighborhood solution
The best move the move that results in the neighborhood
solution

} while (the best solution = 0)
The next seed the best solution
CL the best solution
TL the best move
If (the total weighted average SL of the best solution > AL)

Update AL and ALS
If (the current seed = local optimum)
{

IL the current seed
Entries into IL is increased by 1

If (the next seed> the current seed)
Iteration without improvement (IT IMP) +- 0

Else
Iteration without improvement (IT IMP) is increased by 1

Update LTM matrix
The current seed the next seed

}while (IT and IT_IMP and entries into IL have not reached the specified numbers)

Do

{
Identify the next new restart solution by suing the LTM matrix (either
intensification or diversification)

} while the new restart E list of restart solutions
Next initial solution +- new restart solution

} while (the number of restart has not reached the specified number)
Terminate the search
Return ALS with the value of AL as the best solution found so far
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Start with an initial solution;
initialize ALS, AL and LTM

Initialize IL, IT, IT IMP, CL and IL

Admit initial solution to CL and IL ]
Generate the neighborhood solutions

Evaluate each move with its corresponding
solution

I

Disregard the
move and its

Is AL

solution

Identify the best solution

H
corresponding

No

NO4the solution

No

Apply the move that results in the best I

solution

Update TL, CL, IT and LIM;
check to update IL, AL, ALS and IT IMP

criteria is met?

Yes

Is Max number
reached? N0

Yes

[ Terminate the search

Return ALS as the best solution with a
value of AL

Use LTMto identify a new
restart solution for

diversification / intensification

TL = Tabu List
AL = Aspiration Level
ALS = Aspiration Level Solution
CL = Candidate List
IL = Index List
LTM = Long-Term Memory matrix
IT = number of Iterations
IT IMP = number of Iterations
without Improvement

Figure 6.1 Flow chart of tabu search-based heuristic adapted and modified from
Subur (2000)



CHAPTER 7: PERFORMANCE OF TABU SEARCH-BASED
HEURISTIC

7.1 INTRODUCTION

The most desirable solution to any OR problem is the optimal solution. However,

optimal solutions are not always practical to find. In many cases, it is actually

impossible to find one within a reasonable time. The main obstacle on the way of

finding optimality is the duration of time that it takes. It may take from several

hours to several days or even weeks to find an optimal solution for a

computationally complex problem (NP hard). Even small increases in the size of

such problems may increase the time required for solving them by dozens of folds.

Heuristic algorithms, such as tabu search, are used to overcome this problem. They

will not guarantee an optimal solution, but they are expected to identify near-

optimal solutions in a much shorter time. Therefore, the performance of such

algorithms is measured with the quality of their solutions and their timeliness.

Measuring the time that an algorithm takes is not a difficult task. Measuring the

solution quality, however, can be complicated. If the optimal solution could be

found in a timely manner, the difference between this solution and the one found by

the heuristic algorithm would determine the algorithm's precision. However, in

cases where there is no known optimal solution, evaluating a good heuristic

solution would take more than a simple subtraction. An upper bound (for

maximization) has to be found to measure the proximity of the heuristic solution

against it. An optimal solution must lie between the upper bound and the heuristic

solution. Therefore, the difference between the two (without knowing the optimal)

usually is a very good measure for the quality of a heuristic solution. In the

following section, the performance (computational time and solution quality) of

tabu search heuristic applied to this research is measured.
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7.2 TABU SEARCH PERFORMANCE

To investigate tabu search performance, problems were divided into three different

sizes of small, medium, and large. Refer to Section 7.3 for a complete description

of these problems. In the following sections, the quality of the solutions generated

by tabu search for this research, and the computational time efficiency of those

solutions are discussed.

The computer used for the purpose of the study in this chapter was a Pentium 4, 1.7

GHz, 256 MB RAM, with Windows 2000 operating system. Tabu search was

coded in the Microsoft Visual Basic 6.0 programming language. In order to find the

optimal solutions using the branch-and-bound enumeration method, Hyper Lingo

4.0 (1998) computer software, hereafter called Lingo, was used. Any computational

time reported in this chapter could significantly vary if performed on a computer

with different hardware/software specifications.

7.2.1 Small Size Problems

The results showed that the performance of the tabu search-based heuristic is

exemplary. For the small size problems where optimal solutions could be found by

Lingo in a timely manner, the tabu search heuristic also found the optimal solution

in a fraction of a second on all problems attempted. For the medium and large size

problems, however, Lingo could not find optimal solutions in a timely fashion.

Therefore, there was no easy target against which to evaluate the performance of

tabu search. For such problems, good upper bounds had to be found to measure

how well the tabu search-based heuristic has performed.

7.2.2 Medium Size Problems

Unlike small size problems for which an optimal solution could be found in a

matter of seconds, medium size problems could take several hours long. Most
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optimal solution. An arbitrary time length of 2.5 hours (researcher's patience) was

determined as a cut-off point for Lingo to find an optimal solution for four

experimental problems. All four problems were carefully constructed in the lower

end of the medium size problems. The lower end of medium size problems was

selected because it was expected that Lingo could find an optimal solution within a

reasonable computation time. The initial experiments showed that the closer the

initial satisfaction level is to zero, the harder the problem becomes. This is caused

by the introduction of new binary variables, in the mathematical model, to penalize

zero satisfaction levels. Therefore, the experiment consisted of problems with

initial satisfaction levels both above and below 50% to represent a more general

case.

The following table shows the range of parameters for the medium size problems.

Abiding by the following ranges, four distinct problems were selected that

represented lower end of the range available for number of tasks and planning

horizon. Also abiding by the range, two of the satisfaction levels were selected

above 50% and two below.

Table 7.1 Specifications of medium size problems

LMedium Size Problems

rumuer in me intervai 01

# of tasks [5, 8], integer value

Planning horizon

(time units)

[5, 10], integer value

Initial satisfaction

level for all tasks

[0, 1], up to 2 decimal points



Table 7.2 shows how the data was generated for the parameters of each task in all

problems. Table 7.3 shows the parameters generated for all four problems.

Table 7.2 The rule underlying generating parameters of each task for medium size
problems

Parameter
A NUDCT ieneraten trom a anaom unnonn 1HS1TWUUOU

in the Interval of

Weight [1, 10], integer value

Deviation rate [0.01, 0.10] up to 2 decimal points

Correction rate [1 to 10] multiplied by the corresponding deviation rate

Lingo could not find an optimal solution for any of these problems within a 2.5-

hour time limit. Each one of these problems were further relaxed by Lagrangian

relaxation techniques and solved again by Lingo. The concept and implementation

details of Lagrangian relaxation are discussed in the next section. For all the

problems, Lingo found a solution within the same time limit and in fact much faster

most of the time. These relaxed solutions (upper bounds) on average were less than

11% from the best solution found by the tabu algorithm (Table 7.4). If all the tasks

start at perfect status (100% SL), and stay at perfect status throughout the

experiment (i.e., deviation rate is zero), the objective function will be equal to 1.

This is the intuitive upper bound. If the intuitive upper bound of '1 'were used

instead of the upper bounds obtained by Lagrangian relaxation, the tabu results

would have resulted in a 31% average deviation. Therefore, upper bounds found by

Lagrangian relaxation are almost three times superior to the intuitive bound, and

that makes the time spent on implementing Lagranginan relaxation all the more
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Table 7.3 Parameters generated for the four sample problems in medium size

Problem No: 1 2 3 4

Tasks:
7 5 6

(5,8]

Planning Horizon:
6 6

[5,10]

Initial SL:
0.90 0.80 0.35 0.40

[01]

1 2 3 4 5 6
I I I

n_t_,_._ t_

CR

(1-10)xDR 0.48 0.09 0.21 0.15 0.14

DR

(0.01-0.10) 0.08 0.03 0.07 0.03 0.02

Weight

(1-10) 1 4 8 3 7

CR

(1-10)xDR 0.24 0.9 0.16 0.3 0.42 0.5 0.36

2
DR

(0.01-0.10) 0.04 0.09 0.02 0.1 0.06 0.05 0.04

Weight

(1-10) 3 6 6 1 4 4 10

CR

(1-10)xDR 0.24 0.24 1 0.09 0.25

DR

(0.01-0.10) 0.03 0.08 0.1 0.01 0.05

Weight

(1-10) 6 9 9 6 10

CR

(1-10)xDR 0.08 0.1 0.36 0.18 0.56 0.28

DR

(0.01-0.10) 0.08 0.01 0.09 0.02 0.08 0.04

Weight

(1-10) 1 5 7 3 9 10
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worthwhile. A comparison summary between the upper bounds and optimal

solutions can be found in Table 7.4.

Unlike tabu search, Lingo uses an implicit enumeration algorithm to find the

optimal solution. This is a systematic evaluation of all possible solutions without

explicitly evaluating all of them often called as branch-and-bound (Greenberg,

2002). One important research question is how well the tabu search-based heuristic

performs compared to the implicit enumeration algorithm applied by Lingo to the

original problem before relaxation. To answer this key question, there was a need

to let Lingo run in order to identify an optimal solution. The initial cut-off time of

2.5 hours for Lingo was extended to more than 3 times for a total duration of 8

hours in the hope of finding an optimal solution. Preliminary experimentation also

indicated that the 8-hour time limit would be reasonable for the lower end, medium

size problems. In particular for the above four instances, Lingo consistently found

an optimal solution in less than 8 hours. The average time taken to solve a problem

optimally was 302 minutes. It took an average of 45 minutes for the relaxed version

of these problems to find the optimal solution that is the upper bound in this case.

This duration was 6.7 times shorter than the time taken for original problems to

find a solution optimally before relaxing.

The computation time required for the tabu search-based algorithm is almost

negligible. It took an average of 1.5 seconds for tabu search to find the best

solution. In the absence of an optimal solution, this solution is only 10.63% from

the upper bound found by relaxation. After letting Lingo run for 8 hours to find an

optimal solution, it is determined that the tabu search-based solutions are in fact

only less than 2% from the optimal. Thus, in the previous examples, tabu search is

clearly a better alternative than implicit enumeration as it gives a result within 2%

precision, but more than 9000 times faster! The following table provides a



72

summary of the above comparison. In the next section, Lagrangian relaxation

technique used in this research is discussed in detail.

Table 7.4 Relative comparison between optimal, upper bounds, and tabu solutions

L

ProbLem j
j 1J 3 4 1Average1

(Opt. Tabu) I Opt. % 0.24 0 5.62 0 1.47

Deviation_____________________
(Upp. Tabu) / Upp. % 4.29 6.8 14.69 16.74 10.63

(1 -Tabu) % 9.02 17.7 54.47 42.77 30.99

(Opt. Upp.) I Opt. % -4.24 -7.29 -10.63 -20.1 -10.57

Time (See) Tabu 1 2 1 2 1.5

Lingo Time Optimal 448.17 172.92 212.73 372.5 301.58

(Mm) Relaxed 11.97 25.87 18.17 123.9 44.98

Time Ratio Opt. I Upp. 37.45 6.68 11.71 3.01 6.71

7.2.2.1 Lagrangian Relaxation: Application

Lagrangian relaxation is a theoretical concept that is widely used in practice for

finding upper (lower) bounds to typically complex integer-programming problems

(Fisher 1985, Fisher 1981). The concept is based upon replacing a set of difficult

constraints by a penalty term in the objective function. This penalty or punishment

is accounted for by assigning a unique multiplier to the amount of violation of each

of those constraints and their dual variables. Major challenges for this technique

are: 1) which constraints to choose? 2) how to compute good multipliers?

Generally, the constraints selected for relaxing should make the problem

significantly easier without losing the essential properties of the original model.

The answer to question 2 is a general-purpose procedure called 'subgradient
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method.' This method involves a series of iterations that use the solution to the

relaxed problem to find new penalty multipliers, and uses the new multipliers to

define a new relaxed problem. The cycle is repeated until the solution to the relaxed

problem converges to a number and becomes highly insensitive to the change of

multipliers. The closer is this number to the best solution found by alternative

heuristics, in this case tabu search, the more desirable is the upper bound.

Sometimes when an upper bound is within a predetermined proximity (e.g., 5%) of

the heuristic result, the search for a better upper bound stops.

The choice of constraints, the starting values for multipliers, and the step size in

iterations of the subgradient procedure are as much art as they are science. A bad

choice of values for any of the above items can result in upper bounds that are

exceedingly far from the heuristic solutions or good upper bounds that take

immensely long time. It usually takes several trials before finding the right balance.

For the above four problems, constraint 1 (Refer to the model in Chapter 5.) was

the one that was finally selected for relaxation. This constraint enforces that only

one task at a time could be attended to. So violation of this constraint could mean

attending to more than one task at any point in time. Relaxing constraint 1 resulted

in identifying good upper bounds within a reasonable time. Relaxation of constraint

3 did make the problem significantly easier, but the upper bounds identified were

too far off. This poor result is attributed to M (a very large number) as one of the

multipliers in constraint 3. Relaxing this constraint means punishing it for the

amount of violation with its dual variable in the objective function. A penalty term

with a very large multiplier (M in this case), suppresses the rest of the multipliers in

the objective function. This, in consequence, leads to poor results.

The equality constraint 2 was relaxed in three different fashions: two of them

involved substituting the equality constraint with two inequalities, relaxing one



74

inequality (greater than or less than) and leaving the other one in the model. The

last method was to relax the equality constraint treating it as a strict equality

constraint. The only difference when relaxing an equality constraint (versus

inequality) is the penalty multipliers do not have to be non-negative integers. None

of the three different trials were helpful. These relaxations either changed the

structure of the model completely and resulted in solutions of no value or took a

very long time to find an acceptable upper bound. Thus, constraint 1 was the only

promising constraint for relaxation. It should be noted that this constraint is in fact

a matrix of constraints with T (planning horizon) rows.

As noted earlier, the relaxation of constraint 1 resulted in upper bounds that gave

the tabu solutions an average deviation of 10.63%. For the four problems, the

average percentage deviation between the upper bounds found by relaxing

constraint 1 and the optimal solution is 10.57%. The deviation comparisons are

shown in the Table 7.4.

7.2.2.2 Lagrangian Relaxation: Technical Details

Throughout this section, bold letters are used to indicate matrices or vectors.

Consider the following problem:

Z = max cx

Subject to:

Ax<b
Dxe
x ? 0 and integral

where x is n* 1, b is m* 1, e is k* 1 and all other matrices have comfortable

dimensions.

If we were to relax constraints Ax b, the above problem would result in:
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ZD(u) = max cx + u (b Ax)

Subject to:

Dx < e

x? 0 and integral

where u is an m vector of non-negative multipliers.

Any answer to ZD(u) will be an upper bound to Z. Ideally, the most desirable u

should solve the following problem:

ZD = mm ZD(u), u : 0.

In order to find the tightest upper bound, a set of iterations should be followed

through. A very tight upper bound may require completion of many cycles of the

algorithm and in turn be time consuming. A compromise should be made between

precision and the time that it takes.

The following are the steps for a generic Lagrangian relaxation algorithm.

1) u°=0,k=O.

2) Assign an arbitrary number to step size (tk).

3) ut' max{0, uk tk(b - A.x')}. Revise multipliers for the set of relaxed

constraints.

4) Solve the relaxed problem (LR') with new multipliers (u) and find the new

upper bound ZD(u).

5) If the iteration limit is reached, or the new upper bound is lower than the

best answer found so far for the primal problem (Z*), STOP and quit the

algorithm.
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6) If the solution to relaxed problem (x') is feasible in primal problem, update

the best answer found so far for primal problem (Z*)

7) Increase kby 1.

8) Gotostep2.

For further details of the above procedure, refer to Fisher (1985).

There are methods suggested in literature for choosing an appropriate step size and

changing it between iterations in the above procedure. However by experiment, it

was found for the above four problems, not changing the step size across the

iterations gives the best result. The initial selection of the step size for each

problem was arbitrary and based on trial and error. No change was made to the step

size in subsequent iterations. This can be seen in Table 7.5.

The third step of the above algorithm refers to the constraints in the original model

that were decided to be relaxed. In the four examples discussed before, constraint

(1) was relaxed. Thus, the third step of the above algorithm would translate to:

= max{O, uk
tk(l )}, t = 0, 1, ..., T-1

where n = number of tasks, T = planning horizon, tk = step-size for iteration

t index for time, and 11k = T vector of multipliers for iteration k of the set

of constraints 1.

Table 7.5 shows the performance of Lagrangian relaxation compared to optimal for

the four problems experimented.
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Table 7.5 Relative comparison between optimal and upper bound solutions found

by Lagrangian relaxation in different steps

Problem

'onstraint i L.agrangan teiaxauon
Objective Devlitton from Optimal

Solution Time (mm) t Function (Optimal - Lagrangtan)IOptlmat

Optimal 448.17 0.9120 0%

Lagrangian

0 0.9873 -8.26%

663 0005 0.9518 -4.37%

5.30 0.005 0.9506 -4.24%

2.55 0.005 0.9531 -4.51%

Optimal 172.92 0.8230 0%

2
Lagrangian

0 0.9655 -17.31%

25.87 0005 0.8830 -7.29%

38.12 0005 0.8766 -6.50%

Optimal 212.73 0.4824 0%

Lagrangian

9.13 0.8134 -68.60%

1.72 0.010 0.5936 -23.05%

7.32 0.010 0.5337 -10.63%

Optimal 372.5 0.5723 0%

4
Lagrangian

37.93 0.8440 -47.48%

25.97 0010 0.6873 -20.10%

57.23 0.010 0.6312 -10.29%

21.85 0.010 0.6138 -7.25%

The main motive for any relaxation is not finding the optimal solution in a timely

manner. The only reason that the optimal solutions are mentioned in the above

table is merely to evaluate how well the Lagrangian relaxation has performed, and

how much time it has saved compared to finding the optimal.
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7.2.3 Large Size Problems

As it was mentioned earlier, the performance of tabu search is measured in terms of

its quality and its timeliness. To measure the quality of a heuristic solution,

knowing the optimal solution or in its absence an upper bound is vital. For this

category of problems, it was practically impossible to find an optimal solution in a

timely fashion. Even an attempt to find an upper bound would take unreasonably

long time for these problems. A relaxed version of the original problem, whose

solution would be an upper bound, is still a very difficult problem to solve in this

category. Therefore, there is no optimal solution or upper bound available to

measure the quality of tabu search-based heuristic solutions for large size problems.

However, all different combinations of tabu algorithm and initial solutions were

compared against each other to identify which combination yields the best quality

solution. Similar comparisons were performed on small and medium size problems.

The timeliness of tabu heuristics, on the other hand, is measurable and proves to be

very good. It took less than a minute for tabu search to give its best solution for all

problems experimented in the large size.

7.3 DESIGN OF EXPERIMENT

7.3.1 Treatments

To have a better understanding of the tabu search performance and the factors

impacting it, problems experimented with were divided into three different sizes.

These different sizes define a clear distinction for computational complexity of

problems under investigation. The following table shows the structure for the small,

medium and large size problems.
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Table 7.6 Specifications of small, medium, and large problem sizes

i A amherGenerate1 fromaianuom
Optimal Solution I

Problm 1)1st Int I*EO

SiZ #iofTasis v. . rlanñingRorion
Enumeration(Llngo) Jg:) (ts)

Small Found in a few seconds [2, 3] [2, 4]

Medium Found in a few hours for [5, 8] [5, 10]

some cases

Large Impractical to find in a [12, 15] [11,20]

reasonable time

For each one of the above categories of problems, a few research questions have to

be addressed. In particular, it is of interest to know if any of the following

treatments has any effect on the quality of the best solution found by tabu search

and its timeliness.

1) The significance of the two different initial solution generation methods:

uniform random and weighted random.

a. H0: There is no difference in the score gained by tabu search using

uniform random versus weighted random initial solution finding

mechanisms.

b. H1: There is a difference in the score gained by tabu search using

uniform random versus weighted random initial solution finding

mechanisms.



2) The significance of the three different tabu search-based heuristics: Fixed-

no-long-term, Fixed-LTM-Max, and Fixed-LTM-Min.

a. H0: There is no difference in the score gained by tabu search using

Fixed-no-long-term, Fixed-LTM-Max, or Fixed-LTM-Min.

b. H1: At least one of the three methods produce different results than

the other two.

3) The significance of the interaction between the above two treatments which

constitutes for a total of 3 x 2 = 6 levels.

a. Ho: There is no interaction between initial solution finding

mechanisms and tabu search methods.

b. H1: There is interaction between initial solution finding mechanisms

and tabu search methods.

To address the above research questions, a special multi-factorial experimental

design, called split-plot design, is used. Initial experimentations implied no

apparent difference in computation time between the above treatments. Therefore,

only one performance measure is used: quality of the best solution found by tabu

search heuristic.

For this experimental design, two factors are defined. They are 1) initial solution

generation method and 2) tabu search-based heuristic. The first factor has two

different levels: a. uniform random and b. weighted random. Uniform random

means assigning a random schedule of attending to tasks for the initial solution.

This schedule is obtained by generating an integer number (task number) from a

random uniform distribution at each time unit. The second level, weighted random,

uses a ratio w. (___L) to determine the chances of a task being selected at each time
CR1

unit. The random number is generated so that at any time unit a task i has a chance
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DR1w,()
of

DR
to be attended to. The rationale behind this method of generating

initial solutions is explained in detail in Section 6.3.2.

The second factor, the tabu search-based heuristic method, has three different

levels. All three levels use a fixed tabu list size. However, if long-term memory is

activated, they differ in how it is used. The first one does not use the long-term

memory at all; the second one uses the long-term memory based on maximal

frequency. This means that the heuristic deepens the search around the solutions

that have been suggested by tabu the most number oftimes. This type of search is

also called intensification. The third level employs the long-term memory based on

minimal frequency. In this search, the heuristic diversifies the search by searching

around the solutions that have been looked at by tabu the least number of times.

Initial experimentation showed no significance for variable tabu list size. Therefore,

treatment levels for tabu search method did not include 'variable tabu list size' in

the treatments summarized in Table 7.7.

Table 7.7 Treatments and their levels in the design of experiment

Facft>r or Treatment Treatment Levels

Initial solution generation method
Uniform random

Weighted random

Fixed tabu list size and no long-term memory

Fixed tabu list size and long-term memory based

Tabu search method on maximal frequency Max_LTM

Fixed tabu list size and long-term memory based

on minimal frequency MiTI_LTM
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7.3.2 Sample Size

Different formulas are available for finding the appropriate sample size in the

design of experiments textbooks. These formulas are all based on the difference

that needs to be detected, the variation in the data, and the risk that can be tolerated

(Hicks and Turner, 1999). When a researcher deals with simpler cases, these

formulas are clear such as the ones for comparing the means of two populations

with equal variance, a completely randomized single-factor experiment, or a two-

factor factorial design. However, there is no simple formula to find the sample size

for more complicated designs such as a split-plot design used in this research.

Hicks and Turner (1999) state that the choice of sample size in practice is usually

arbitrary. When it is not possible to determine the sample size accurately, one is

advised to take as large a sample as possible to detect smaller differences in means

with less risk. Although two or three replications (blocks) is recommended for

similar problems in the textbooks (Hicks and Turner, 1999; Montgomery, 2001), a

conservative sample size of ten was selected for the purpose of this experiment.

This was due to negligible costs associated with time and/or effort to take samples

on the computer.

7.3.3 Split-Plot Design

To conduct this experiment, ten problem instances within each problem size were

created. The procedure for creating such instances is described in Appendix E.

Each problem instance is different in structure that is characterized by the number

of tasks, planning horizon, initial satisfaction level, correction rates, deviation rates,

and weights. This can cause significant variation in results of the treatment factors

among problem instances. Blocking is a technique used to reduce the variation

between problem instances. Each problem instance is considered a block. Thus, the

significance of the treatment factors, if any, can be attributed to the treatments and

not to the difference among problem instances.
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For each block, all the six (two levels of initial solution and three levels of tabu

search) combinations of both factors are tested. If the six treatments were

independent or experimented randomly, the design would have been a randomized

complete block design. However, to remove the influence of the differences

between the initial solutions produced by the same initial solution finding

mechanism, a refined design called split-plot is used. First, an initial solution is

generated by one of the two procedures (levels) and then three levels of tabu search

are applied to that initial solution. This is different from generating three different

initial solutions for three different tabu search heuristics, which is a requirement of

a randomized complete block design. Thus, the design in this research is a special

form of block design called split-plot design. For this purpose, initial solution is the

whole plot treatment and tabu search heuristic is the subplot treatment. The subplot

treatment is usually the factor of maximum interest to the researcher, which is also

the case in this design. The following picture shows the sketch of this split plot

design. For further details on block designs and split designs, refer to the textbook

by Montgomery (2001).

1S2

______HiTS1 TS2 TS3

TS TS2 TS3

Block

Figure 7.1 Split-plot design with Initial Solution (IS) as the whole plot and Tabu
Search (TS) method as subplot
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7.4 EXPERIMENTAL RESULTS AND ANALYSIS

The small, medium, and large size problems generated for the purpose of this

experiment are shown in Appendix E.

7.4.1 ANOVA Tables for Small, Medium, and Large Size
Problems

The following sections contain the ANOVA tables (Table 7.8-Table 7.10)

investigating the significance of tabu search methods (three levels) and initial

solution finding mechanisms (two levels) and their interaction in the quality of the

final best solution found by the tabu search heuristic. None of the ANOVA tables

for small or medium size problems suggests any significance of the primary effect

of treatments or their interactions. The ANOVA table for large size problems

(Table 7.10), however, indicates that there is a significant difference between the

levels of tabu search methods.

Table 7.8 The ANOVA table for small size problems

Source LW Type UI SS Meau Square F Value Ir F
Whole plot:

block 9 316390478 351544976

seed 1 0 0

block seed

(whole plot error)
9 0 0
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Table 7.8 (Continued) The ANOVA table for small size problems

Sorce 1W :m'. Y !
Sub plotJ

tábu' 2 0 0

blockxtabu 18 0 0

tabuxseed 2 0 0

block xtabu xseed

(subplot error)
18 0 0

To14(eorrccted): 59 316390478

Table 7.9 The ANOVA table for medium size problems

Source JDF1 Tpé ifi SS Mean Square
t

F Value
j

l'r> F
I

LWItOIC

;blOCk 9 315380656 350422951

seed 1 92 405 92 405 1 5419 0 24572

block x seed

(whole plot error)

9 539368 5993

Sub pIot

tàbu 2 122 061 22932 012966

btockxtabu 18 4793 0266

tabuxseed 2 1387 0693 22871 013030

block x tabu xiEed

(subplot error)

18 5.453 0.303

Totaf(córreàted) 59 3154451.19
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Table 7.10 The ANOVA table for large size problems

Source 1W Type UI SS Mean Square F Value Fr> F

Whole plot

block 9 2234603 32 248289 258

seed 1 104017 104017 13199 0.2802

blockseecl

(whole plot error)

9 709258 78806

Sub plot:

tabu 2 67 264 33 632 3 5978 0.0485

biockxtabu 18 168265 9348

Labuxsecd 2 8368 4184 16414 0.2214

block x tabu x seed

(subplot error)

18 45878 2549

Total corrected 59 2235706 37

The Student Newman Keuls (SNK) Multiple-Range Test

Among the small, medium, and large size problems, only 'tabu' factor in the large

size problems (Table 7.10) had significant difference between its levels, P-value

0.0485. Therefore, the new question to answer is which of the three levels of tabu

methods is significantly different from the others. To answer this question, a

Student Newman Keuls (SNK) multiple-range test is used. This test has smaller

type I (alpha) error than the error in Duncan's test. For this reason, the power of

this test is generally lower than Duncan's, and it is harder in the SNK test to declare

significant difference between a pair of means. In contrast, the SNK test is less

conservative than Tukey procedure and has the potential to find more differences
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conservative than Tukey procedure and has the potential to find more differences

between treatments (Weber and Skillings, 2000). The following calculations were

performed by the SAS statistical software (Release 8.02). For further information

on the steps of the SNK test and the application of the SAS software to this test,

refer to the textbook by Hicks and Turner (1999).

The SNK criteria: SNK(k, aE) = q k v tIVr

where

qa,k,v is the Studentized range statistic

k is the number of means, in this case 3 for three levels of tabu methods.

v is the degree of freedom for the estimate of the experimental error. In this

case, block x tabu is used as the experimental error for assessing the

significance of tabu. Therefore, it is 18.

s2 is the experimental error, in this case 9.348.

r is the number of observations used to calculate each mean, in this case 60/3

=20.

aE usually an experimental error rate equal to 0.05.

First, means of each level has to be ranked as follows.

Table 7.11 Ranking of different tabu search methods based on their mean

L.ev& Tabu Method Mean

1 406.2435

3 407.5515

2 408.837





asterisk. Therefore, it can be concluded that there is significant difference between

the mean of Tabu 1 (Fixed tabu list size, no long-term) and the mean of Tabu 2

(Fixed tabu list size, LTM_Max) with P-value <0.05. To ensure the reliability of

the test, the normal probability plot of the residuals in the large size is provided in

Figure 7.2. Since the plot is quite normal, the assumption of normality for the

residuals is not violated and the final conclusion is valid.

Since the differences in means do not exceed their critical value for the other

comparisons, no significant difference between them can be concluded. For this

reason a normal probability plot for the small or medium size was not needed.

Thus, the only conclusion made with 95% confidence is that the 'Fixed size,

LTM_Max' method performed better than the 'Fixed size, no-long-term' method in

the large size categories.
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Figure 7.2 Normal probability plot for the residuals in the large size

7.4.2 Very Large Size Problems

Previously three categories of small, medium, and large size problems were

described based on their difficulty in finding an optimal solution or an upper

bound. Tn small size problems, optimal solutions were found in no time; in medium

size problems, they took several hours; and in large problems, it was not even

attempted to find the optimal solution since it could have taken days or weeks. In

none of the three problem sizes, however, finding the best solution with tabu search

was an issue. Tabu search gave its best solution in no time for small size problems,

and in a few seconds for large size problems. This will change in the category of



very large size problems in which tabu search could take hours, if not days or

weeks to find the best solution.

There is no limit to increasing the size of the problems in this research by

increasing the number of tasks and/or planning horizon. Unless there is a

motivation for doing so, one can engage himself in a never ending race. The

motivation behind very large size problems, in this case, was a need to solve

problems for a relatively very large planning horizon, and compare the solution so

obtained with human performance. The experiments with human subjects that will

be discussed in the next chapter involve a person playing with a computer game

consisting of six tasks for five minutes. The game allows a person to switch his/her

attention every tenth of a second if he/she wants to, so the time unit will be tenth of

a second in that environment. Therefore, five minutes will be equivalent to 3000

time units. Even to compare the subject's score with the near-optimal score for only

ten seconds, one has to solve a mathematical model with a planning horizon of 100

time units, which is a very large problem. Therefore, the category of very large size

problems was developed to address a very specific need.

In this category, number of tasks is fixed at 6, but the planning horizon should be at

least 100 time units. Therefore, what makes the problem computationally

demanding is not the number of tasks, because a six-task problem falls in the

category of medium size problems (Table 7.6). It is the planning horizon that is far

higher than the largest planning horizon previously considered, which is 20 time

units in the large size category (Table 7.6). The following table shows

characteristics of very large size problems that have been attempted in this

experimentation.
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Table 7.14 Specifications of very large size problems

Size Problems
I

L 41I1UWLVL ut uijiw:

Number of tasks 6

Planning horizon (time units) Larger than 100

Initial satisfaction level for all tasks 0.50

If the parameters of the tabu search is properly set to allow a reasonable search for

the best solution, it will take several hours or even days to solve a problem with T =

3000 time unit planning horizon to compare with five minutes of human

performance. One alternative way around this would be to rescale the time unit to

one second instead of tenth of a second. If this is done successfully, the problem

can be solved for T = 300 time units to capture a five-minute period, which is lot

easier and faster. In order to do so, parameters of the system should be adjusted

with the assumption that a task can be attended to every second instead of 0.10 of a

second. Table 7.15 shows how the parameters of a problem can be transformed to

scale down the planning horizon.

When the transformed problem is solved with tabu search-based heuristics, the

order of attendance can be conjectured to the actual game, having in mind that

when a task is attended to it has to be for at least one second. That is, if the

transformed problem suggests that a task should be attended for one time unit (one

second), in the actual game environment this task has to be attended for ten time

units (10 x 0.10 of a second). This conjecturing technique proves to be very

effective in estimating a near-optimal order of attendance. The following tables

consider smaller size problems to show that the conjectured solution is very close

to the solution of the actual problem if it was solved directly. Moreover, it shows



that the time taken for finding a conjectured solution is far less than solving the

problem directly. On average, a conjectured solution took 0.6% of the time it took

to solve the same problem directly using tabu search.

Table 7.15 Original and transformed parameters for the conjecturing technique

,ivivai rrwnem wwi 1 ,IJUU I 1 raUSIOTWeU rroiem W1UI 1 UU
I

CR DR We.gbt CR Wetght

1 9 2 6 90 20 6

2 5 1 5 50 10 5

3 8 3 10 80 30 10

4 8 3 6 80 30 6

5 9 4 4 90 40 4

6 13 2 2 130 20 2

When the transformed problem is solved with tabu search-based heuristics, the

order of attendance can be conjectured to the actual game, having in mind that

when a task is attended to it has to be for at least one second. That is, if the

transformed problem suggests that a task should be attended for one time unit (one

second), in the actual game environment this task has to be attended for ten time

units (0.10 of a second). This conjecturing technique proves to be very effective in

estimating a near-optimal order of attendance.

Table 7.16 considers smaller size problems to show that the conjectured solution is

very close to the solution of the actual problem if it was solved directly. Moreover,

it shows that the time taken for finding a conjectured solution is far less than

solving the problem directly. On average, a conjectured solution took 0.6% of the

time it took to solve the same problem directly using tabu search.



Table 7.16 Comparison between transformed, conjectured, and actual solutions

I JJdrIbJQrrTWU i ionjecwrea i c;uat
Scenario a i Time Taken I Time Taken

T=2... T2OO T=200

1 400 0:00:06 400 400 0:09:56

2 458.57 0:00:08 458.58 459.52 1:00:25

3 422.77 0:00:10 423.48 426.88 1:08:50

4 489.29 0:00:10 489.59 501.37 1:03:20

5 524.32 0:00:16 524.96 522.07 0:48:08

Scenario
Transformed

T=26
Time Taken

ConJectured

T*250
Actüit1
T250

Time Taken

1 375.12 0:00:12 374.23 375 0:15:35

2 448.2 0:00:15 448.26 448.75 1:39:30

3 399.61 0:00:31 400.74 401.98 1:39:02

4 481.91 0:01:42 482.76 482.06 1:12:03

5 521.55 0:00:15 521.41

i Transformed i Conjectured
Scenario i Time Taken

T30 T*300

514.73

a Actual
I

T=300

1:19:32

i

Time Taken
-

1 350 0:00:13 349.99 350 0:22:31

2 436.82 0:02:30 436.69 437.05 2:39:59

3 376.45 0:00:18 376.79 369.58 1:53:17

4 474.57 0:00:31 473.86 478.14 2:23:56

5 524.83 000:24 524.97 527.28 3:19:40

Although from Figure 7.3 it seems evident that the conjectured solutions are almost

as good as direct solutions, the following statistical analysis is performed to prove

it.
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Figure 7.3 Comparison between conjectured and actual solutions

Statistical Analysis

To find out if there is a difference between the conjectured results and direct

results, a paired t-test is performed for all the data combined (15 sample pairs). The

hypotheses for this test are:

H0: The mean difference between a conjectured score and a score gained directly

by tabu search, for all data combined, is zero or

Jt difference = 0

H: The mean of the score difference between conjectured and direct method is not

zero or

P difference 0

The mean and the median for the combined sample data is:



Sample mean= -0.54

Sample median= - 0.49

Then the following is calculated for the pair-wise t-test:

Computed t-Statistic = - 0.4689

P-value = 0.646

The t-statistic and P-value indicate that with a 95% confidence there is no

significant difference between the pairs. The t-test is based on normality

assumption. Since the normality assumption is not very strong in this case, two

non-parametric tests are also performed, which are less sensitive to presence of

outliers and assumption of normality. These tests are: Sign and Signed Rank test.

For further information on these tests refer to the textbook by Ramsey and Schafer

(2002). The hypotheses for both of these tests are:

H0: The difference between a conjectured score and a score gained directly, for all

data combined, has a zero median or

Median difference = 0

H1: The median of the score difference between conjectured and direct method is

not zero or

Median difference 0

Sign test is based on counting the values above and below the hypothesized

median. The following is obtained for Sign test:

Large sample test statistic 1.336

P-value = 0.181
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Signed Ranked test, on the other hand, is based on comparing the average ranks of

values above and below the hypothesized median. The following is calculated for

Signed Rank test:

Large sample test statistic 0.93 7

P-value 0.348

The P-values of the non-parametric tests are also bigger than 0.05. Therefore, none

of the three tests could reject the null hypothesis with 95% confidence. Thus, it can

be concluded with 95% confidence that there is no difference between the sample

pairs of data, or conjectured results are as good as results gained directly.

7.5 DISCUSSION

The objective of this chapter was to evaluate the performance of tabu search, and to

investigate the influences of different tabu search methods, and different initial

solution finding mechanisms in finding a good solution. For this purpose, problems

were divided in three different sizes: small, medium, and large.

To compare the performance of tabu search against the optimal, there was a need to

find optimal solutions for these problems. In small size problems, optimal solutions

could be found in no time; only for some of the problems in the medium size,

optimal solutions could be found in less than 8 hours; and for large size problems,

it could have taken days or weeks to find optimal solutions, so it was not attempted.

Tabu search gave optimal solutions in no time in small size problems. For a few

problems in the medium size range, although optimal answers existed, upper

bounds were found by Lagrangian relaxation techniques. This was a good test to

evaluate the tightness of the gap between the upper bound, optimal, and tabu search

solution. For the problems tested, tabu search gave solutions within 2% of the



optimal, but more than 9000 times faster than optimal. Tabu search also gave

solutions within 11% of the upper bound, but more than 1300 times faster than

finding the upper bound. All these indicate that tabu search had a great performance

in the medium size problems. Since it was not practical to find an optimal or upper

bound for large size problems in a reasonable time, the quality of tabu search

solutions for this category of problems is unknown. However, tabu search proved

to be very time efficient for large size problems also, and gave its best solution in

less than a minute.

To investigate the effect of different tabu search methods and different initial

solution finding mechanisms on tabu solutions, a split-plot experiment was

designed. The results proved that only in large size problems, a 'Fixed tabu size,

LTM-Max' method performs significantly better than a 'Fixed tabu size, no long-

term.' None of the other tabu methods or initial solution finding mechanisms, in no

other scenario, proved to be significantly different.

The next chapter explains a situation in which human subjects have to play a game

that has the same constraints and objective functions as the mathematical model,

but with very large planning horizons. To compare the performance of the subject

with a near-optimal solution, there was a need to solve these problems with tabu

search. The relatively very large planning horizon of these problems makes them

also very difficult to solve. Unlike small, medium, and large size problems in

which tabu search could give its best solution in a fraction of a second up to a

minute, in these problems, tabu search might take hours or days. A conjecturing

method is offered that scales the problem down to a shorter planning horizon with

adjusted parameters, solves it, and rescales the solution back up to the original

planning horizon. For the sample data, this conjecturing technique proved to give

equally as good results as if it was solved directly, but in a remarkable 0.6% of the

time.



The next chapter will discuss an environment to measure and analyze human

performance in a multi-tasking environment subject to the constraints and objective

functions of the mathematical model discussed so far. Human performance will be

compared to the near-optimal solution found by tabu search for that environment.
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CHAPTER 8: PERFORMANCE OF HUMAN VERSUS TABU
SEARCH IN MULTIPLE TASK MANAGEMENT

8.1 INTRODUCTION

In Chapter 4, a generic multi-tasking environment was analyzed and some of its

parameters were defined. Using these parameters, this environment was

mathematically modeled (Chapter 5), and solved by tabu search (Chapter 6-7). The

solution found through this mathematical model for any set of parameters would be

a near-optimal solution (standard of comparison) against which human

performance could be compared. In this chapter, a task management environment is

explained that allows the researcher to record and measure the performance of the

human as an operator of this environment. A set of experiments were conducted for

this purpose and the subject's performance were reviewed (replayed), analyzed

through graphs, and compared with the corresponding near-optimal solution. The

objective was to find out how far/close a human subject's performance was to the

near-optimal solution, and to find out if there was any pattern of attention

allocation that humans use. In the following sections, there is a detailed description

of the task management environment, the structure of the experiments, their results

and conclusions.

8.2 METHOD

The details of the experiment are discussed in the following paragraphs. This

includes a description of participants and equipment (task management

environment), how the experiment was performed, and its statistical design.



101

8.2.1 Participants

Ten subjects, two females and eight males but not selected based on gender,

participated in this research. Subjects were invited to participate voluntarily

through a verbal conversation. All subjects were informed that they were not

getting paid/awarded for their participation. Due to the ease of accessibility, they

were all OSU college students who were comfortable with the use of a mouse in a

computer, the minimum qualification required. They all had a minimum of 8 hours

per week experience in working with a computer with an average of 26 hours per

week. Their age range was 21 to 32 years with an average of 25 years old. Only

half of them drove a car with an average of 4 driving hours per week. The detailed

specifications of the participants can be found in Appendix F.

8.2.2 Equipment (Task Management Environment)

8.2.2.1 Hardware

The experiment took place in an ordinary room with no distractions or noise

beyond the level accepted in a library's quiet area. The essential devices used were

an office desk, two chairs, desktop computer, monitor, mouse, pen and paper. The

computer used was a Pentium 11/300 MHz, 64 MB RAM, with Windows NT 4.0

operating system.

8.2.2.2 Software

A computer program named Tardast' (Persian for Juggler) was utilized for the

purpose of this experiment. The software was coded in the Microsoft Visual Basic

6.0 programming language. A simplistic view of any multitasking environment

could be compared to a Tardast (user of this software) who has several tasks on

The later customized versions of Tardast used at Oregon State University are named TME (Task
Management Environment).
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hand and tries to perform satisfactorily in all those tasks. This software served as a

low-fidelity multitasking experimental environment in which the behavior of the

tasks (deterioration/correction rates from/to their satisfactory status), importance of

the tasks, and the duration of the experiment could be manipulated. This software

was used to better understand how human operators allocate their attention among

multiple concurrent tasks.

The software interface represented six tasks, which were shown as bars (Figure

8.1). Should the subject not have attended to a task, its status deteriorated from the

satisfactory level with a certain adjustable rate DR. On the other hand, while the

subject attended to it, its status improved towards the desired state by a different

adjustable rate CR. Subjects could attend to a task by simply depressing a button

underneath each task using their mouse. Software updated the status of the tasks

every tenth of a second. Therefore, theoretically a subject could switch between the

tasks as quickly as tenth of a second although most of the time it was longer due to

human psychomotor limitations. The software computed a numerical score

depending on how well the subject had kept the average status of the tasks over

time, how long tasks were penalized at the zero SL, and whether or not he/she had

ignored the more important tasks. For further information on how this score is

calculated, refer to the primary objective function in Section 5.4. The computer also

recorded what task the subject had attended to at any point in time. Subjects'

attendance to tasks were replayed on the computer, reviewed and studied in the

form of graphs by utilizing a Microsoft Excel 2000 spreadsheet. This helped to

discover the pattern of attendance to tasks (if any) used by the subject.
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Figure 8.1 Tardast interface

8.2.3 Experimental Procedure

At the start of the experiment, the subject was assigned a unique, randomly

generated identification number. This number was used for the rest of the

experiment to record associated data and avoid disclosing the subject's real identity

in future reports of this research. The experiment started after the subject read and

voluntarily signed the informed consent document (Appendix G). The subject was

then asked to read a one-page instruction sheet on the mechanics of the experiment

and the game, significance of this project and its overall goal (Appendix H). Then,

some further instructions were given to the subject verbally by the experimenter.

For the sake of consistency, the experimenter used a one-page memory aid to recite

these instructions (Appendix I).
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Subjects had to play the computer game (Section 8.2.2.2) in five different

scenarios. The scenarios differed from each other in the CR, DR, and weight

(value) of the tasks (Section 8.2.4). The length of the game at each scenario was

five minutes for which the subject's attendance to tasks for the entire game was

recorded. However, subjects had to have a maximum of ten practice trial plays per

scenario, each one minute long, per scenario before doing the actual five-minute

run for which the data was collected. After the data was collected for all the

scenarios, a brief questionnaire was given to the subject. This questionnaire

inquired gender, age, computer experience (hours per week), driving experience

(hours per week), and whether the subject used any particular strategy when

playing the games in these different scenarios. The questionnaire can be found in

Appendix J. Subjects were thanked and dismissed by the experimenter after

finishing the questionnaire. The experiment lasted a maximum of 2 hours 15

minutes. Figure 8.2 shows the breakdown of the elements of the experiment and

their sequence, and Table 8.1 shows the time allocation for these elements within

the experiment.

one scenario

Informed consent Maximum of 10 Actual 5-minute

and instructions practice trials data collection

(one-minute each)

3rd Scenario Optional break 4th Scenario

(practice trials and (5 minutes) (practice trials and

actual data collection) actual data collection)

Questionnaire End of the

(10 minutes) experiment

Figure 8.2 Experimental procedure for human subjects

2l Scenario

(practice trials and

actual data collection)

5th Scenario

(practice trials and

actual data collection)
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Table 8.1 Time breakdown of the experimental elements for human subjects

Experimental Element TIme (minute)

Informed consent and pre-instructions 15

10 one-minute practice trials (per scenario) To

Actual data collection (per scenario) 5

Total practice trials plus actual data collection (one scenario) 15

Total practice trials plus actual data collections (all 5 scenarios) 15 x 5 75

Questionnaire 10

Break 5

Allowance (record time and switch time between scenarios) 25

Total length of the experiment per subject 130

The trials were only performed to let the subject familiarize himself/herself with the

environment of the scenario and discover his/her own best strategy for playing the

game in that scenario. Only the score (not the pattern of attendance) of the practice

trials were recorded to demonstrate to the subject and experimenter how fast/much

the subject was improving, how better one strategy was compared to a strategy

previously chosen, and how many trials were left out often. If the subject's three

highest scores were within 5% of each other and if the subject expressed verbally

that a particular strategy would be his/her best choice, then the practice trials were

brought to an end at the subject's request and the actual five-minute data collection

started. Subjects were allowed a maximum of ten practice trials, which were all

used by most of the subjects in the majority of the scenarios.
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8.2.4 Scenarios

All five scenarios in this experiment were common in that tasks started with an

initial SL = 0.50 (50%) and that tasks were penalized for 20% of their value for

every time unit that they stayed at a zero SL. They all differed, however, in the

combination of CR, DR, and weight. The primary intent of these scenarios was to

discover how close to the near-optimal order of attendance a human subject would

get by intuition. Intuition may be sufficient for the simple experimental scenarios,

but by increasing the variability of the factors (CR, DR, and weight), it might have

its shortcomings. If the complexity of a scenario confuses the subject so much that

his/her intuition would not be sufficient for discovering the near-optimal order, it is

desirable to know what factor(s) CR, DR, or weightis (are) the most influential

in increasing this complexity and confusion.

Scenario 1 was a placebo experiment and was equivalent to a sugar pill in medical

experiments. In this scenario, all tasks were identical and the subject's order of

attendance had an insignificant effect on the final score. Subjects were expected to

gain the closest score to the near-optimal one found by the mathematical model.

This scenario was intended to help discover any bias or particular behavior in

subjects' decision-making solely influenced by the environment of the experiment

(hardware and software) and limitations/capabilities of humans. An example could

be attending to tasks on the right side of the screen versus the left side. In this

scenario, if any consistent patterns were discovered among subj ects, it was to be

later considered (excluded) when investigating the rest of the scenarios. It also

helped to discover if a subject was exceptionally superior/inferior to the rest of

subjects with regard to the use of the mouse regardless of good/bad decision-

making.

In Scenario 2, tasks were identical except that most of them had different DRs. This

scenario sought the subject's reaction and performance when DRs were different.
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Scenarios 3 and 4 were similar to Scenario 2, but instead of DR, their CR or weight

was different. The last scenario (5) was the most complicated one, in which all

tasks had different CRs, DRs and weights. It was of interest to know how well

subjects handled this scenario considering its complexity.

Table 8.2 shows a summary of the scenarios' designs and their underlying

motivation relative to CR, DR, and weight.

Table 8.2 Design of the scenarios and their underlying motivation

Ifl1WRF JUFUS
Scenario MoUvatlon

Rs DRs Weghts

Does the subject attend to tasks equally, or is
he/she biased towards something?

How close can he/she get to the optimal
Identical Identical Identical score? This will be solely due to psychomotor

limitations (how fast can he/she move/click the
mouse) and not due to bad decision-making.

Are all subjects behaving similarly?

2 Identical Different Identical Does the subject follow the optimal order or seem
to ignore the differences in DR?

3 Different Identical Identical Does the subject follow the optimal order or seem
to ignore the differences in CR?

4 Identical Identical Different Does the subject follow the optimal order or seem
to ignore the differences in weight?

How close can the subject get to the optimal

5 Different Different Different score?
How complex does the subject find this

scenario?

In the following table, the arbitrary parameters used for a task within a scenario are

shown. The task's parameters within a scenario did not change between subjects

throughout the experiment. However, the order of scenarios to which subjects were

exposed was random (e.g., 2-3-5-1-4) to even out the possible learning effect when

taking the experiment.
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Table 8.3 Parameters used for tasks in different scenarios

Scenario Task 0 1 2 3 4.. 8

CR 9 9 9 9 9 9

1 DR 3 3 3 3 3 3

w 5 5 5 5 5 5

CR 9 9 9 9 9 9

2 DR 2 1 3 3 4 2

w 5 5 5 5 5 5

CR 9 5 8 8 9 13

3 DR 3 3 3 3 3 3

w 5 5 5 5 5 5

CR 9 9 9 9 9 9

4 DR 3 3 3 3 3 3

w 6 5 10 6 4 2

CR 9 5 8 8 9 13

5 DR 2 1 3 3 4 2

w 6 5 10 6 4 2

Table 8.4 Approximate average across tasks for parameters used in Table 8.3

Parameteis Approximate Average Across Tasks

CR 9

DR 3

Weight 5

Although the scenarios in Table 8.3 might seem to have very different parameters,

they follow a simple rule. The average CR, DR, and weight for every scenario is



109

almost the same to preserve the number of tasks that are likely to be unattended in

each scenario. Table 8.4 shows the approximate average for all scenarios:

The average ratio of = -1 is a good estimate of how many tasks (n) can be

kept at a high satisfaction level in the long run (Appendix K). For the parameters of

the above problem, the average = 2. = 3 means that a maximum of four out of
DR 3

six tasks are likely to stay in a high status and the remaining two will be mostly

unattended. These parameters were designed intentionally to discover which tasks

subjects of the experiment would ignore.

8.2.5 Experimental Design

This experiment measured the subjects' score after playing with the software for

five minutes in each of the five scenarios. On the other hand, for each scenario,

tabu search was run a few times and the best score of those trials were picked as a

standard of comparison for that scenario. All subjects could not attend to any task

for about 5-15% of the time due to being slow in handling the mouse, which

lowered their score. On the other hand, tabu search does not have such a shortage,

which makes it hard to have a fair comparison. Therefore, subjects' data was

thoroughly gone through and repaired. It means that any time that they did not

attend to any task, the gap in the data was replaced with the next task to which they

actually attended. Then, the subject's score after the data repair in each scenario

was compared to the score gained by the tabu search. The following two tests were

conducted:

1) A two sample pair-wise comparison combining all the scenarios to find out

if there was any difference between the mean of subjects' scores and tabu-

search's scores.
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2) A two sample pair-wise comparison for each scenario to find out if there

was any difference between the mean of subjects' scores and tabu-search's

scores in that scenario.

8.2.5.1 Dependent Variable

The dependent variable was the subject's repaired score gained after playing with

the software for five minutes.

8.2.5.2 Independent Variable

The independent variables were:

Scenario: A fixed effect variable with five levels.

Subject: A random effect variable with ten levels.

8.3 STATISTICAL RESULTS

The statistical results in both combined and per-scenario cases indicate with 95%

confidence that there is a significant difference between the repaired results

obtained by subjects and the corresponding tabu search results. Since the mean and

median of the difference (subject's repaired score minus tabu' s score) was negative

in all cases, and since subjects could never attain a score higher than tabu's, it could

be concluded with 95% confidence that tabu search has a better performance than

the subjects. See Appendix L for further details on the statistical tests.

8.4 BEHAVIORAL RESULTS

In this section, in order to study the behavior of the subject more objectively the

original data before repair is used to draw the graphs in Appendix M. If the

repaired data were used, the "none" column in the graph for frequency of

attendance would be zero. In all scenarios, the subjects' pattern of attendance is

considered and the best, worst, and mean performance is discussed. Also, scores of
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all the subj ects are shown by a bar graph at the end of each section to give an

overview of the overall performance in each scenario to the reader.

8.4.1 Scenario 1: Identical Tasks

In this scenario, tasks were identical and had no difference in parameters. The

following table shows the parameters used for tasks in this scenario.

Table 8.5 Parameters used for tasks in Scenario 1

Scenarioi Tas

8.4.1.1 Best

Figure M.1 in Appendix M shows the best participant performance in this scenario.

Three of the tasks were concurrently brought to 100% SL in the first minute, and

maintained at that level for the rest of the time span. This resulted in an above 90%

average SL for these three tasks (3, 4, and 5) and a near zero SL for the rest. Tasks

0, 1, and 2 were not attended to at all. The subject did not attend to any task for

15% of the time due to being slow in handling the mouse.

8.4.1.2 Worst

Figure M.2 in Appendix M illustrates the performance that resulted in the lowest

score in this scenario. The subject in this case attended to only four of the tasks (0,

1, 2, 3 and 4) sequentially for most of the time (first three minutes), and completely

ignored the rest of the tasks (4 and 5). In the last two minutes of the time span, the
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subject attempted to have three (and later down to two) of the tasks at a fairly high

SL, and kept the rest of the tasks (out of the four attended to) just high enough to

not be penalized. Overall, this subject had an average SL of 3 0-45% in four of the

tasks and almost zero average in the rest. This subject did not maintain a high SL in

any of the tasks long enough to improve his score.

8.4.1.3 Tabu

Figure M.3 in Appendix M depicts the order of attendance suggested by the tabu

search. Tasks 0, 2, and 4 were attended to and kept at a very high status for most of

the time span. After the third minute, task 0 got less attended to in favor of task 3.

Task 1 was shortly attended to in the first half, and task 2 was occasionally

attended to in the second half of the time span.

8.4.1.4 Mean

Figure M.4 in Appendix M shows the average performance of all the participants in

this scenario. Tasks 3 and 4 had the highest frequency of attendance and tasks 0

and 1 the lowest. Consequently, tasks 3 and 4 had the highest average SL and tasks

0 and 1 the lowest.

The following Figure shows the original and repaired scores of all the subjects in

this scenario.
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Figure 8.3 Subjects' original scores and repaired scores in Scenario 1

8.4.2 Scenario 2: Different DRs

In this scenario, tasks had identical parameters except for their DR. These tasks in

their increasing order of DRs were: 1, 0 (or 5), 5 (or 0), 2 (or 3), 3 (or 2), and 4.

The following table shows the parameters used for tasks in this scenario.

Table 8.6 Parameters used for tasks in Scenario 2

Scenario i Task 0

8.4.2.1 Best

Figure M.5 in Appendix M shows the best participant performance in this scenario

among the subjects. This subject attended to the two lowest DR tasks (1 and 0) first

and brought them to a high SL; then attended to the next lowest DR task (5) and
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after these three tasks were at a fairly high status, the next lowest DR task (2) was

attended to. For a good portion of time subject maintained all these four tasks (0, 1,

2, and 5) at a high SL. In the meanwhile, the subject occasionally attended to the

least DR task (4). The subject could have gained an even better score if he attended

to task 3 instead of task 4 due to its lower DR. Although tasks 2 and 3 were

identical, task 3 was not attended to at all, while task 2 had the highest attendance

rate. Overall, the subject maintained a high SL (70-90%) in the four lowest DR

tasks, and an over 30% SL in the fifth task (4). The 6' task (3) was not attended to

at all although it did not have the highest DR. This subject did not attend to any

task for 3% of the time due to being slow in handling the mouse.

8.4.2.2 Worst

The performance with the lowest score is shown in Figure M.6 in Appendix M. The

subject maintained the highest SLs of 60% and 45% for the two lowest DR tasks (1

and 5). However, due to being overly concerned with the penalization of the rest of

the tasks, he attempted to not let any of them reach a zero SL. This resulted in a

poor average SL for these tasks.

8.4.2.3 Tabu

The attendance order suggested by the tabu search can be seen in Figure M.7 in

Appendix M. Initially, the three lowest DR tasks (0, 1, and 5) were brought up to a

high SL. Then, gradually the model attended to the next two low DR tasks (3 and

2), and brought them to a high status. For about 100 seconds the model kept all

these five tasks at a high status concurrently. In the last 50 seconds, because the

model realized the time span was about to end and the two lowest DR tasks (0 and

1) would not reach a zero SL, the model stopped attending to them in favor of

avoiding task 4 from being penalized. The model kept a good average SL for all

tasks with a range of 20-80% SL. Task 0 and 1 had the highest average SL (80%).
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However, task 0 had to be attended to twice as often to attain the same average as

task 1 due to the fact its DR was also twice the DR of task 1.

8.4.2.4 Mean

The overall average performance of all participants for this scenario is depicted in

Figure M.8 in Appendix M. As illustrated, the participants had a good

understanding of the differences in DR and attained a higher SL for the task with

the lower DR. Identical tasks (0 and 5), and (2 and 3) were treated almost equally

by the participants. In this scenario, the participants did not attend to any task for

less than 5% of the time.

The following Figure shows the original and repaired scores of all the subjects in

this scenario.

Scores in Scendria 2

ERepred

Subject

Figure 8.4 Subjects' original scores and repaired scores in Scenario 2

8.4.3 Scenario 3: Different CRs

This is a scenario in which tasks had equal DRs and equal weights. They only

differed in their CRs. These tasks in their decreasing order of CRs were: 5, 0 (or 4),
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4 (or 0), 2 (or 3), 3 (or 2), and 1. The following table shows the parameters used for

tasks in this scenario.

Table 8.7 Parameters used for tasks in Scenario 3

Scenario Task 0 1 2 3 4 5

CR 9 5 8 8 9 13

3 DR 3 3 3 3 3 3

w 5 5 5 5 5 5

8.4.3.1 Best

The graphs for the best participant performance in this Scenario are illustrated in

Figure M.9 in Appendix M. The subject realized that the best strategy would be to

only attend to four tasks with the highest CR. Therefore, tasks 1 and 2 were never

attended to. The subject initially attended to the two highest CR tasks (5 and 0) and

brought them near to their 100% SL quickly and kept them stable before attending

to the next two high CR tasks (4 and 3). Then, the subject tried to maintain a high

SL for task 3 in the first half of the planning horizon, and for task 4 in the second

half Overall, these two tasks maintained an average SL of almost 60%. The bar

graphs show that task 3 required more attendance than task 4 to keep the same

average SL. This is due to slightly lower CR of task 3 compared to task 4. Among

the four tasks attended to, task 5 had the lowest attendance at 20%, but the highest

average SL again because of its very high CR. This subject had good understanding

of the differences in CR between the tasks and attended to them accordingly. The

subject did not attend to any task for 4% of the time due to being slow in handling

the mouse.
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8.4.3.2 Worst

The performance with the poorest score in this scenario is illustrated in Figure

M. 10 in Appendix M. It is observed from the data that the subject had a fairly

sequential order of attendance to tasks with the primary intention of not letting any

task reach a zero SL. This subject spent the most time on task 3 and 4 (third and

second high CR tasks). Overall, he maintained a poor average SL of 20-30% for the

first two high CR tasks (4 and 5) and a poorer average SL of less than 20% in the

remaining tasks. This subject tried to manage too many tasks and was overly

concerned with the penalization of tasks. The subject seems to have had a moderate

understanding of the differences in CR between the tasks, but he did not have a

clear strategy with regard to these differences.

8.4.3.3 Tabu

The attendance order suggested by the tabu search in this scenario is depicted in

Figure M. 11 in Appendix M. Tasks 5, 4 and 3 (first, second, and fourth high CRs)

were brought to near 100% SL for the first minute of the experiment. Afterwards,

task 4 received less attention in favor of bringing task 0 (second high CR) to near

100% SL. After the second minute, task 4 gradually resumed its status also and all

four tasks (0, 3, 4, and 5) were juggled to maintain a high and fairly stable SL. The

highest CR task held a high SL average of nearly 90%; the next three high CRs

maintained an average of 60-85% SL. The two least CR tasks (tasks 1 and 2) were

almost unattended.

8.4.3.4 Mean

Figure M. 12 in Appendix M illustrates the average performance of all participants.

They all seem to have had a good understanding of the differences in CR and

planned their attendance accordingly. The highest CR task (5) maintained the

highest average SL (64%). The next two high CR tasks (0 and 4) maintained the

next high averages (almost 45%). The least high CR task (1) almost did not receive
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any attention. Across all participants, no task was attended to for about 5% of the

time.

The following Figure shows the original and repaired scores of all the subjects in

this scenario.

Scores in Scenario 3

100%
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60% 9 Original

40% U Repaired

20%
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Figure 8.5 Subjects' original scores and repaired scores in Scenario 3

8.4.4 Scenario 4: Different Weights

In this scenario, tasks had identical parameters except for their weight. These tasks

in their decreasing order of weight were: 2, 0 (or 3), 3 (or 0), 1, 4, and 5. The

following table shows the parameters used for tasks in this scenario.
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Table 8.8 Parameters used for tasks in Scenario 4

8.4.4.1 Best

Figure M.13 in Appendix M shows the performance of the subject with the best

score in this scenario. The subject equally focused on tasks 2, 3, and 0 throughout

the experiment. In the first minute, he juggled between tasks 2, 3, and 0

sequentially to attain their 100% SL. After reaching 100% SL, he kept near this

status by consistently juggling between the same tasks. This strategy resulted in an

overall average of over 90% SL for tasks 2, 3, and 0, and an average of near zero

SL for the rest of the tasks. The subject clearly favored the three more valuable

tasks and completely ignored the other three. This subject did not attend to any task

for 11% of the time due to being slow in handling the mouse.

8.4.4.2 Worst

The worst performance in this scenario is depicted in Figure M. 14 in Appendix M.

This subject tried to attain a good SL in four and sometimes five tasks, which

resulted in a poor score. He managed to keep an average of near 76% SL for the

most valuable task, but kept a poor average of 16% or less for the rest of the tasks.

Besides the most valuable task (2) that had an attendance rate of 27%, each of the

other three valuable tasks (0, 3, and 1) had a decent attendance rate of 20-23%. The

reason these three tasks had such a low average SL, considering the good

attendance rate, is that the focus was to avoid letting them reach zero SL and be

penalized. The subject acknowledged the differences in weight between the tasks
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and attended to them accordingly. However, he tried to handle too many tasks

being overly concerned with avoiding penalization of tasks.

8.4.4.3 Tabu

In this scenario, the solution suggested by tabu search after a few trials is

demonstrated in Figure M. 15 in Appendix M. Matching with the best performance

previously discussed, the three most valuable tasks were the focus of attention for

the first 40 seconds until they reached a stable state near their 100% SL.

Afterwards, they were kept in their steady state as much as possible with an

attendance rate of over 25%. When in the steady state, the next valuable task (1)

occasionally was attended to with an overall attendance rate of almost 20%. The

overall averages of the three most valuable tasks' SL were slightly below 90% as

opposed to slightly above 90% in the best subject performance. However, the next

valuable task (1) had a near 20% SL average in this case, while it was not attended

to at all with an almost zero average SL in the best subject performance case.

8.4.4.4 Mean

The participants' performance in this scenario on average (Figure M.16 in

Appendix M) indicates that they had a good understanding of the differences in

weight between the tasks. The three most valuable tasks were attended to the most,

each with a rate of 25-30%. The next frequency of attendance belonged to the

fourth valuable task (1) and the other two tasks were ignored. Thus, the overall

attendance was similar to the one suggested by the tabu search. The most valuable

task (2) had an average SL of 85%; the next two valuable tasks (0 and 3) had an

average SL of over 60%; the fourth valuable task (1) had an average of slightly

above 10%; and the rest of the tasks had almost a zero average. Subjects had an

average rate of 7% for not attending to any task in this scenario.
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The following Figure shows the original and repaired scores of all the subjects in

this scenario.

Figure 8.6 Subjects' original scores and repaired scores in Scenario 4

8.4.5 Scenario 5: Different CRs, DRs, and Weights

This was the most complicated scenario in which all of the tasks' parameters (CR,

DR, and weight) differed from each other. Tasks' DRs were identical to the case in

Scenario 2; their CRs were identical to Scenario 3; and their weights were identical

to Scenario 4. The following table shows the parameters used for tasks in this

scenario.

Table 8.9 Parameters used for tasks in Scenario 5

Sàenarh Task 0 1 2 3 4 5

CR 9 5 8 8 9 13

5 DR 2 1 3 3 4 2

w 6 5 10 6 4 2
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8.4.5.1 Best

The best participant performance in this scenario is illustrated in Figure M. 17 in

Appendix M. This performance was almost the same as the best performance in

Scenario 4. That is the differences in CR and DR between the two scenarios did not

affect anything and only the three most valuable tasks were attended to and the rest

were ignored. This subject did not attend to any task for 10% of the time due to

being slow in handling the mouse.

8.4.5.2 Worst

This performance, depicted in Figure M. 18 in Appendix M, has resulted in the

poorest score because the subject has attempted to manage all six tasks. Except the

two most valuable tasks (2 and 3), the rest of the tasks were either over or under

attended considering their value and contribution to the final score. The most

valuable task had an average SL of over 30%, while the rest of the tasks had an

average of 10-15% SL. This poor result could have improved if some low-value

tasks had attained a lower average in favor of the high-value tasks attaining a

higher average. The subject's attending to too many tasks, being overly

considerate of getting penalized, caused his poor performance.

8.4.5.3 Tabu

Figure M. 19 in Appendix M shows the solution suggested by the tabu search after a

few trials. This strategy initially attended to tasks 0, 1, and 2 with the primary

intention of achieving near 100% SL for 0 and 2, and meanwhile keeping task 1 at

50% SL. This was a very reasonable strategy as task 2 had the highest value. Task

0 and 3 equally had the second highest value, but task 0 was preferred as it had a

better CR and a lower DR. After these two tasks (0 and 2) reached a fairly steady

state near 100% SL, the tabu strategy also attended to task 1. Although this task (1)

had both a lower value and CR compared to task 3, it seems to be preferred because

it had a lower DR.
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After task 1 also reached a near 100% SL along with the other two (0 and 2), the

fourth task (3) was attended to around the 50th second. This task had the highest

value between the remaining three, which all had a zero SL by then. By the second

minute, all four tasks reached a steady state near their 100% SL. The two least

valuable tasks were rarely attended to. The least valuable task (2) was also rarely

attended to seemingly because of its very high CR and low DR. Tasks (0, 1, and 2)

had an overall average SL of above 90%; task 3 had an over 70% average SL. This

indicates that this strategy successfully managed the four highest value tasks.

8.4.5.4 Mean

The overall performance of the participants in this scenario (Figure M.20 in

Appendix M) indicates that they had a good understanding of the differences

between the scenarios. The three most valuable tasks had the highest rate of

attendance, 20-30% each. They also held an average SL of 55-75%. The fourth

valuable task (1) had the fourth rate of attendance (10%) and also the fourth highest

SL (over 20%). The participants' performance had good similarity with the one

suggested by the tabu search, except that they were less careful about task 1.

Although task 1 was the third valuable task, it had the least DR, and so it was very

easy to keep at a high SL. In this scenario, the participants did not attend to any

task for 6% of the time due to not handling the mouse properly.

The following Figure shows the original and repaired scores of all the subjects in

this scenario.
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Scores in Scenario
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Figure 8.7 Subjects' original scores and repaired scores in Scenario 5

8.4.6 Questionnaire

Subjects were given a brief questionnaire after finishing all five scenarios. The

questionnaire included questions about their specifications (Section 8.2.1), any

particular strategy for task management if used (discussed below in Section 8.5.2)

and any comments that they had about the way the experiment was carried out.

Highlights of these comments are:

They enjoyed the experiment: "Cool experiment!" "It's an interesting

game!" "...[it] was entertaining."

Problems with the mouse: "Using [the] mouse is not convenient." "My

finger hurts!" "I was trying to push my finger [in difficult scenarios...] to

achieve a grand score." "The [right] mouse button got in the way

occasionally when I accidentally pressed it and lost the [attention on the

task temporarily.]"

Training procedure: "Training should be [several] three-minute [trials]

instead of [ten] one- minute [practice trials]."

Interface of the software: "How about making [height of] the buttons larger

at the expense of the [height] of [the] bars?"
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8.5 DISCUSSION

8.5.1 Statistical

In all the experiments conducted, subjects' performances were inferior to tabu-

search's. In this comparison, subjects were given two bonuses compared to tabu

search to compensate for the time lost by the subject for not attending to any task.

1) Tabu search was intentionally limited to switch between the tasks one

second at a time at its quickest switching rate. However, subjects could

switch between the tasks as fast as every tenth of a second if they opted to.

2) In all the experiments conducted, subjects did not attend to any task for 1-

15% of the time with an average of 6%. In the statistical comparison,

subjects' data was repaired. That means any time that the subject did not

attend to any task, the gap in the data was filled with the task that he/she

next attended to. The score of this new data was calculated and then

compared with tabu search in the statistical comparison.

In spite of the above two bonuses given to the subjects, neither in all scenarios

combined, nor in any scenario considered independently, could subjects beat the

score gained by the tabu search. In some cases, however, subjects gained good

scores that were within 3% of the tabu solution (Figure 8.8). The maximum best

score gained among the subjects in each scenario was no worse than 15% of the

tabu solution in any of the scenarios.

Figure 8.8 shows that on average subjects had the best performance in Scenario 1

(placebo) and Scenario 4 (different weights), in which they averaged around 15%

of the tabu solution. This result was expected in Scenario 1 as all the tasks were

identical and the order of attendance had the least significance. However, for

Scenario 4, it means that subjects had a good reaction to the differences in weight
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between the tasks. This also might be because the weight of the tasks were

explicitly displayed to the subject all the time as opposed to CR or DR, which they

had to sense by playing with the software.

Average Scores in Each Scenario
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(a) Subjects' average original scores, (b) Subjects' relative mean,
repaired scores, and corresponding maximum, and minimum scores to
tabu scores tabu scores after the data repair

Figure 8.8 Summary of subjects' scores in each scenario

In the same figure, it can be seen that subjects in Scenario 3 (different CRs) and

Scenario 5 (with all parameters being different) held the largest relative difference

to tabu. This result in Scenario 5 means that the complexity of the scenario due to

different parameters in CR, DR, and weight enlarged the gap between the subject's

performance and the near-optimal one. The result in Scenario 3 can be justified

with the fact that subjects could sense a task's CR only when they attended to that

task. However, subjects had a better sense of the differences in DR (Scenario 2)

because they could compare the DRs just by looking at the adjacent tasks dropping.
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This relative comparison for CRs was not as easy in Scenario 3 because only one

task at a time could be attended to, and no two tasks could be improved at the same

time to be compared. The fact that a task's DR was always visible while its CR was

visible only when attended might explain the 6% better average in Scenario 2

versus Scenario 3 in Figure 8.8 (b). A task's weight, on the other hand, was given

to the subject explicitly on the screen, which might explain the better performance

in Scenario 4 versus Scenarios 2 and 3.

8.5.2 Behavioral

Looking at the subjects' performance graphs, based on the original data before the

data repair, and reading their answers to question 6 in the questionnaire on whether

they followed a particular task management strategy, several common patterns

were recognized. These findings are discussed in the following bulleted paragraphs.

Subjects who were overly concerned with the penalization of the tasks and

attempted to handle too many tasks (more than four) could not perform very

well. These subjects had a tendency to over estimate the effect of 'failure'

or in this case penalization of the tasks. Almost all subjects learned to let

one or more tasks go (less than 5% attendance rate) and in consequence

gained better scores as they advanced through the experiment. See Section

8.5.3.2 for further details.

The general rule of priority is: tasks with higher weight, lower DR, and

higher CR should be kept at the higher average SL. The majority of subjects

had the above approach partially in mind. The better they followed this

approach, the better score they received.

Subjects who tested and explored all the tasks at each scenario in their

practice trials had a better understanding of the parameters (CR and DR) of
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the system and, in consequence, could prioritize their tasks better. This

exploration was not needed for the value of a task as it was displayed next

to each task.

The majority of subjects took the parameters of the system under

consideration in the order of weight (value), DR, CR, and proximity. That

is, if the values of the tasks were significantly different, the higher value

ones were attended to without much consideration of CR or DR (Scenario 4

and 5). When weights (values) were equal or nearly equal, tasks with lower

DRs were attended to without much consideration of CR. If weight and DR

were equal or nearly equal, subjects attended to high CR tasks. And when

the difference between value, DR and CR across the tasks was not quite

apparent, tasks that were in close proximity of each other were attended to.

(Note: "proximity" is not considered as a parameter in the mathematical

model in this research.)

The order in which subjects could identify the parameters was also very

similar to the above order in which the subjects took those parameters under

consideration. The increasing order of difficulty for understanding the

parameters was: weight (value), proximity, DR, and CR. That is, subjects

had a perfect knowledge of the values as they were displayed on the screen

next to each task, and they also had a perfect knowledge of the tasks'

proximity; they had a good knowledge of the DRs as each task could be

compared with its adjacent tasks when deteriorating simultaneously; and a

fair knowledge of the CRs because it was not easy to compare two CRs

simultaneously. For the same reason, subjects reported that Scenario 5

(different weights, DRs, and CRs) was the easiest to distinguish its

parameters, and Scenario 1 (identical tasks) was the most difficult.
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Ironically, they gained the farthest average score from the optimal in

Scenario 5, and the second closest score to the optimal in Scenario 1.

8.5.3 Learning Effect

Any experiment involving human subjects is injeopardy of being affected by the

learning effect. Such effects are typically controlled, reduced, or eliminated by

taking proper counteractions. One or more of the following learning effects might

have affected this experiment:

1) Learning effect within the scenario: the more the subject practices a

scenario, the better score he/she gains.

2) Learning effect between the scenarios: the more the subject practices the

game in general, the better score he/she gains.

3) Learning effect of the experimenter: the more the experimenter conducts the

experiments, the better he learns how to conduct them.

8.5.3.1 Learning Effect Within the Scenario

This effect was desirable because the experimenter intended to compare the

subject's best possible performance with that of tabu search. This was handled by

letting the subjects play the one-minute practice trials as many as ten times. Some

of the subjects who had reached their peak of performance early in their practice

trials showed little or no improvement in their consecutive scores. Having settled

on their preferred strategy, subjects were allowed to quit the practice trials before

the tenth round. A good majority of the subjects, however, used all ten trials since

they wanted to practice and experience new strategies even after reaching their

performance peak. Therefore, the practice trials were very effective in letting the

subjects reach the peak of their learning curve. However, these trials could not be

fully successful because the time span of the practice trials (1 minute) was different

from the time span of the data collection (5 minutes). One might argue that the



130

subjects could still improve their score if they had practiced more with the 5-minute

time span. However, this was not practical due to being too time consuming for the

scope of this research.

8.5.3.2 Learning Effect Between the Scenarios

Unlike the previous learning effect, this effect was undesirable, so it was handled

by randomizing the order of the scenarios that the subject was exposed to. Many of

the subjects gradually became more familiar and skilled with the environment and

goals of the experiment as they advanced through the scenarios. This learning was

independent from the order of the scenarios in which they were exposed to.

Randomization of the scenarios' order would successfully even out (but not

eliminate) this effect across the scenarios. Hence, the statistical conclusions for

each scenario, or all scenarios combined, would not be affected by this learning

effect. However, randomization would not eliminate this effect if the subjects'

results were to be analyzed individually. If a person has received the lowest score

among the other subjects in one scenario, that scenario might have been the first

scenario that he/she was exposed to.

Perhaps, one other method that could further reduce the learning effect was to

randomize the order of tasks (parameters) within each scenario. For example, in

table 8.3, it can be seen that Scenario 3 and 5 have equal correction rates for each

task. If a subject were exposed to these two scenarios consecutively, his/her

knowledge that the task on the right most of the screen (task 5) has the highest CR

(13) would carry on to the next scenario. Although subjects were encouraged to

reevaluate the tasks' parameters in each scenario independently, their

understanding of these parameters might have been affected by the learning effect

if exposed to certain scenarios successively. This problem could be overcome by

randomizing the order of tasks in each scenario. Figure 8.9 shows the existence of

the learning effect between the scenarios.
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Figure 8.9 Learning effect across the order of experiments

Note that the X-axis in Figure 8.9 indicates the order, and not the type of scenario.

For example, 4 in that axis does not mean Scenario 4, but it means the fourth

scenario that the subjects were exposed to, which was different between the

subjects. The Y-axis shows a relative percentage of the subject's score compared to

the other subjects in the scenario that he/she was exposed to. For example, if a

subject's second scenario were Scenario 4, and he gained the lowest score in that

scenario (4), he would receive a 0% at x = 2. On the other hand, he would receive a

100% at x = 2 if he gained the highest score among the other subjects for Scenario

4. If a subject's experiment were Scenario i, they value for the point (x, y)

would be calculated by:

subject's score in scenario i min(scores in scenario i)yvalue= xlOO
max(scores in scenario i) min(scores in scenario 1)
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As demonstrated in Figure 8.9, there is an obvious learning curve across the

scenarios exposed to. In the third, fourth, and fifth experiment, eight of ten subjects

scored on the top 20% of the score range for the scenario, which they were exposed

to. On the other hand, in the first scenario, nine out often subjects scored in the

lower 40% of the score range for the scenario, which they were exposed to. This

clearly shows that the subjects have performed better the more they progressed into

the experiments. Figure 8.9 also shows that no subject had very poor or very good

performance. All subjects had at least one score in the top 20% and in the low 40%.

8.5.3.3 Learning Effect of the Experimenter (Serial Effect)

When analyzing the data collected from an experiment, one of the undesirable

effects that the data analyst needs to investigate is called serial effect. This effect

may be in the form of a gradual increase/decrease in the results of the experiment

as one advances through data collection. For further information on serial effect see

the textbook by Ramsey and Schafer (2002). In general, serial effect is attributed to

gradual change in the settings of the experimental environment, including the

experimenter, over time. For the purpose of this experiment, the influential

parameters of the experimental environment such as the computer, monitor, mouse,

chair, illumination, and so on are believed to have remained unchanged. However,

one parameter was not completely immune to this effect, and that was the way the

experimenter conducted the experiment.

Although an experimenter usually tries his/her best to be consistent throughout the

experiments, he/she gradually learns how to conduct his/her experiments faster,

easier, and smoother. This gradual improvement in conducting the experiment

might affect the results of the experiment and cause inconsistency, which is

undesirable. The experimenter of this research also might have been subjected to

this learning effect. This effect was handled by asking the subject to read a one-



133

page instruction sheet (Appendix H) with sufficient time before the experiment to

maintain consistency of the instructions that they received. Moreover, there were

minor hints that were given verbally by the experimenter before the start of the

experiment. These hints were written down as a memory aid for the experimenter's

consistency, but explained verbally to the subject to save time. The experimenter

also had determined in his mind that subjects would not be given any information

about the CRs and DRs of a task, or any recommendation on what strategy to

choose. The potential for inconsistency, however, still existed in answering the

subjects' questions in the middle of the experiments. Each question and answer was

unique and there was no one way to answer it, and this might have caused the

experimenter to gradually answer questions in a certain, biased way. The following

graph shows the learning curve across the subjects.
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Figure 8.10 Learning effect across the order of subjects

The Y-axis of Figure 8.10 (above) is the average ofy values in the formula

explained for Figure 8.9 across all five scenarios for each subject. It can be seen

that the last three subjects scored on the top 30% of the score ranges of the
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scenarios that they were exposed to. On the other hand, the first four subjects

scored only on the top 50%. Moreover, the two highest performances belong to the

last three subjects. All these observations suggested the possibility of a learning

effect caused by the experimenter across subjects. The report generated by

STATGRAPHICS PLUS Version 5.0 in Appendix N shows that there is a

statistically significant relationship between the 'average relative score across

scenarios' and the 'order of subjects' at the 95% confidence level. This concludes

that the learning effect caused by the experimenter across the subjects is significant.

8.6 CONCLUSIONS

This chapter started with developing an environment in which a subject was

exposed to several tasks that had to be managed concurrently. The subject's goal

was to gain the highest score in every scenario. This score was compared against

the near-optimal score for each scenario. This environment also allowed recording

the pattern of the subject's attendance and analyzing it by replaying it or using

graphs.

A primary conclusion is that no subject could gain a score, even after the data

repair, higher than the near-optimal score in any of the scenarios. This conclusion

was verified statistically with 95% confidence that tabu's score is superior to that of

the subject in each scenario and in all scenarios combined.

The best average results for subjects' repaired scores were found in Scenarios 1 and

4, which were within 15% of the near-optimal. In Scenario 1, all the tasks were

identical and task management had its least effect. And in Scenario 4, tasks only

differed in weight (value), which was an explicitly displayed parameter on the

screen. The worst average score (within 30% of the near-optimal) was in Scenario 5

where all the tasks had different parameters (CR, DR, and value). This clearly

indicates that the subjects did not perform optimally and the gap between their
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scores and the near-optimal score enlarged as the complexity of the problem

increased.

The maximum repaired scores in each scenario followed the same pattern as the

average repaired scores mentioned in the above paragraph. Scenarios 1 and 4 had

the highest maximum scores (within 1% and 3% of the near-optimal), and Scenario

5 had the lowest maximum score (within 15% of the near-optimal). These results

imply that by further practice and/or proper training humans can achieve near-

optimal scores especially in less complicated scenarios.

The subjects' consideration of parameters when attending to tasks was closely

related to their understanding (identifying) of those parameters. The parameters that

were easier to identify by the subjects, were also considered more in making

decisions. The decreasing order in which the subjects considered the task's

parameters in their decision-making was: weight (value), DR, and CR. Not

surprisingly, the decreasing order of simplicity in which the subjects could identify

and distinguish these parameters between the tasks was the same: weight (value),

DR, and CR.

The more the subjects tried to keep tasks with higher weight (value), lower DR, and

higher CR in a higher average SL, the better score they received. The majority of

the subjects had the above strategy in mind for at least a portion of time.

It was observed that the subjects who performed poorly were overly concerned

with being penalized (seemingly "failure") and attempted to handle too many tasks.

Those who ignored one, two, or more tasks gained a higher score.

In general, the subject's strategy with regard to the number of tasks attended, and

the selection of those tasks was the most important factor in gaining a good score.
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Handling too many tasks or attending to the wrong tasks decreased the subject's

score significantly. Moment to moment decisions on how to attend to tasks were

insignificant in gaining a high score compared to the strategy chosen.

Generally, tabu search had a stepwise strategy in handling the tasks. It first brought

three tasks to a high SL concurrently, and then attended to the fourth and

sometimes fifth one while maintaining the previous tasks attended to at a high

status. Most of the subjects performed poorly in this regard. They either attempted

to handle too many tasks all at once, which resulted in a poor score; or they ignored

half of the tasks even while the other half was in good standing, which still resulted

in a good score if the choice of tasks were correct.

The pattern of attendance by the subjects was not too far from the one suggested by

the near-optimal solution. Those subjects who scored average or higher had partial

similarities with the near-optimal pattern for at least a portion of time.

The learning effects caused by the subjects and by the experimenter affected this

experiment. Although the primary statistical and general behavioral conclusions are

robust and reliable for the subjects together, one should consider these effects

carefully when interpreting the behavior of the subjects individually.

The main contribution of the present work is the development of an abstract, but

flexible environment that can measure and analyze a human's task management,

and compare it with that of another human or a near-optimal performance. A

good/bad or near-optimal strategy depends on the structure of the experiment and

the parameters of the system. Therefore, one has to be cautious in extending his/her

conclusions to other environments with different parameters. There are many

further experiments that can be done in such a flexible environment, but probably
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the most important of all is to assess how closely this environment represents real-

life task management.
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CHAPTER 9: CONCLUSIONS AND SUGGESTIONS FOR
FURTHER RESEARCH

The motivation behind this research was to prevent humans' task management

errors, which will also be the ultimate goal for future studies of this kind. While

studying accidents and incidents in several complex systems such as cockpits and

nuclear power plants, many researchers noticed a common pattern: human error

occurred while managing multiple concurrent tasks. Although these researchers

could easily recognize such drastic errors in task management, they have not had a

generic prescription on how to prevent them. Is it possible to manage tasks

perfectly in such environments? This question was the driving force behind this

research.

In the real world, people are striving for perfection, but ironically, the moment one

speaks of 'perfection' he distances himself from the real world. Fortunately the

realm of mathematics offers opportunities for attaining such perfection. In the field

of operations research, this perfection is called "optimality." For this reason,

operations research as it is applied to scheduling, was used to find an optimal

method of managing tasks. Typically in the domain of scheduling, jobs are

sequenced in a certain optimal order to be processed by machines. This theory was

thought to be applicable to sequence tasks in a certain optimal order, to be attended

to by an operator such as a pilot. It was soon evident, however, that environments

such as a cockpit are too complex to model mathematically. The research was then

simplified to finding an optimal method of managing tasks in a much more abstract

environment of concurrent task management.

In Chapter 2, it is shown that other researchers, who attempted to find a

mathematically optimal way of task management, had primarily focused on

maximizing the number of tasks accomplished. It is, however, explained in Chapter
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environments. In these environments, a task's status varies repeatedly between poor

and desired status depending on how much attention it gets, and a task never gets

accomplished to leave the system. Instead of the number of tasks accomplished, a

more appropriate objective for these situations seemed to be maximizing the

operatofs quality of performance. Hence, the metaphor of 'Juggler and spinning

plates' was introduced in Chapter 4 to resemble an operator (a juggler) who

manages several tasks (plates on vertical sticks) concurrently. Moreover, this

metaphor with a graphic bar representation allowed to quantify parameters of the

task management environment. This quantification paved the way for the

mathematical model to capture this environment. The main elements quantified are:

1) Satisfaction Level (SL): the status of a task between zero and one.

2) Correction Rate (CR): the constant rate that a task's SL improves while

attended.

3) Deviation Rate (DR): the constant rate that a task's SL deteriorates while

not attended.

4) Importance, weight, or value (w): the constant relative worth of a task

compared to other tasks.

Several mathematical models were offered in Chapter 5 to capture this

environment. Although similar in concept, these models mostly differed in their

objective functions, and the tasks' behaviors at extreme SLs. Only one of the

models, which was thought to be the most representative of real-life situations, was

used. Nonetheless, every one of these models has the potential to represent a

different environment, and to be further studied. All models were formulated as a

mixed (binary) integer-linear programming model. In these models, time was

considered discretely, and the operator was assumed to attend to, at most, one task

at a time, which is equivalent to the single machine scheduling. The model selected

for the purpose of this research had an objective function of maximizing the
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average satisfaction level across tasks over time. In this model, tasks were

deteriorating if not attended, while only one task improved if attended to; neither

tasks could exceed a SL of one, nor fall below a SL of zero. Tasks were, however,

penalized linearly for the length of time that they stayed at a zero SL. This penalty

was to discourage the operator from letting tasks stay at a very low satisfaction

level.

The computational complexity of the mathematical model was proven to be NP-

hard in the strong sense (Appendix B). Hence, an implicit enumeration technique

such as the branch-and-bound could take an unreasonably long computation time

for solving large size problems. To overcome this inefficiency, it was decided to

apply a meta-search heuristic, known as tabu search, to the problem at hand.

Although such heuristics do not guarantee optimality, they usually provide good

near-optimal solutions in a relatively short time. The structure and steps of this

heuristic are thoroughly explained in Chapter 6.

There are many ad hoc studies on the performance of tabu search. For the purpose

of this study too, the performance of tabu search based heuristics also had to be

evaluated. In Chapter 7, the quality of solutions found by tabu search, their time

efficiency, and factors affecting their quality were investigated. Problems were

divided into three different sizes of small, medium, and large based on their

difficulty in finding the optimal solution by the branch-and-bound technique.

9.1 FACTORS AFFECTING SOLUTION QUALITY OF TABU
SEARCH

A split-plot experiment was designed to investigate the effects of different tabu

search methods and different initial solution finding mechanisms on the quality of

tabu search solutions. Initial experiments had ruled out the possibility of any effect

by these factors on the time that it takes for tabu search to find the best solution.
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Thus, the only response variable in the experimental design was the objective

function value of the solution. Three different levels for tabu search methods were

considered based on their use of long-term memory. Also, two different levels

considered for the initial solution finding mechanism included one completely

random solution, and one weighted random solution based on the weight (value) of

the tasks. The experiment concluded no significant difference between the factors

in any of the problem sizes with 95% confidence, except that a 'Fixed tabu size,

LTM-Max' method performs significantly better than a 'Fixed tabu size, no long-

term' in large size problems. Differences in the initial solution finding mechanisms

were concluded to be insignificant by the experimental design. However, when

very large size problems were later solved, the differences between the initial

solution finding mechanisms became more apparent, which one might consider for

future research and experimentation.

9.2 SOLUTION QUALITY AND TIME EFFICIENCY OF TABU
SEARCH

Table 9.1 shows that in small to large size problems, tabu search proved to be very

time efficient and found the best solution in a very short time. Branch-and-bound

technique could find the optimal solutions in no time for the small size, in less than

eight hours for easier problems in the medium size, and could not find the optimal

solutions for large size problems, even when unreasonably long computation time

was allocated. Tabu search, on the other hand, gave the best solution in no time for

small problems, a few seconds for medium problems, and in less than a minute for

large size problems.

In small size problems, the best solutions found by tabu search were all optimal.

For a few easier problems in the medium size, branch-and-bound technique could

find the optimal solution (unlike tabu search) with an average time of 302 minutes.

Although tabu search did not find the optimal solution for these problems, it gave
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solutions that were only within 2% of the optimal, but 9000 times faster (less than

two seconds!) For the medium size, it was also shown how to estimate an upper

bound by a technique known as Lagrangian relaxation. Such upper bounds are

helpful in evaluating tabu search solutions in the absence of knowing the optimal

solution. For the sample problems, it took an average of45 minutes to calculate

their upper bounds assuming that optimal solutions were not known, which is 15%

of the time that it actually took for finding their optimal solutions. Although tabu

search solutions were found in less than two seconds, which is 1300 times faster

than finding the upper bound, their objective function values were only within 11%

of the upper bound.

Finding an optimal solution for the large size problems by branch-and-bound

technique could take days, so it was not pursued. Therefore, it is not possible to

evaluate the quality of tabu search solutions for the large size problems. However,

looking at the remarkable performance of tabu search in small and medium size

problems, it is believed that the large size solutions also could not be too far from

the optimal. Table 9.1 summarizes the time efficiency and solution quality of the

tabu search based algorithm in comparison with that of the branch-and-bound

technique.

The fourth category of problems was later introduced, and called 'very large'

problems. This category of problems was solely created to address problems with

exceedingly large planning horizons. The motivation was to solve problems with

five-minute planning horizons, as that was the length of time the human subjects

were intended to experiment with later. Since human subjects were allowed to

switch between the tasks as fast as one tenth of a second, a five-minute planning

horizon translated into a 3000-time-unit planning horizon. Even tabu search could

not give a timely and reasonable solution for such a huge problem. A conjecturing

method was introduced to solve such problems by scaling the problem down to a
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reasonable size: solving it by the tabu search, and rescaling it back up to its original

size. For the sample size problems with smaller planning horizons, this

conjecturing technique gave solutions as good as if the problem was solved

directly, but in only 0.6% of the time. The quality of the solutions found by

conjecturing, for 3000 time unit problems, is not known, but it proved to be

sufficiently good when later compared with the performance of human subjects.

Table 9.1 Time comparison between tabu search and branch-and-bound

Time Taken by Bramb-aud-Bàuàd
Problem

Upper Bound Tabu Search
Size Optimal Solution

(LargraugIn Relax.)

Quality: optimal Quality: optimal
Small Not needed

Time: fraction of a second Time: fraction of a second

(Upp. - Tabu) / Upp. %:

Quality: optimal (Opt. - Upp.) / Opt. %: 10.63%

Medium Time: 302 Mm on Average -10.57% (Opt. Tabu)/ Opt. %:

for easier problems solved Time: 45 Mm on average 1.47%

Time: few seconds

Quality: no solution found Quality: no solution found Quality: unknown
Large

Time: unreasonably long Time: unreasonably long Time: less than one minute

Quality: no solution found Quality: no solution found ility: no solution found
Very Large

Time: unreasonably long Time: unreasonably long *Time: unreasonably long

Later solved by conjecturing technique using tabu search in a reasonable time

9.3 HUMAN PERFORMANCE

Being able to generate solutions by the tabu search, it was possible to compare the

human performance with a near-optimal solution. To measure and analyze human

performance, a software environment was introduced in Chapter 8 that allowed a

subject to manage several tasks concurrently under different scenarios. Subjects
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were instructed to manage the tasks in a manner to maximize the score assigned by

the computer. This score was later compared with the near-optimal score. Besides

the score, the task management environment also allowed recording the subject's

pattern of attendance, which could then be compared with the near-optimal pattern

of attendance.

Five different scenarios, based on the combination of CR, DR, and weight (value)

of the tasks, were designed. With the use of the conjecturing technique, tabu search

was run a few times for approximately 3-4 hours per run. The best of solutions

given by tabu search under each scenario was regarded as the near-optimal solution

for that scenario.

No subject could gain a score higher than the near-optimal score in any of the

scenarios. Subjects gained the best average scores, within 13% and 15% of the

near-optimal, in Scenario 4 (different DRs) and Scenario 1 (identical tasks)

respectively. On the other hand, subjects had the worst average score, within 30%

of the near-optimal, in the most complicated scenario where all the tasks had

different parameters. These results indicated that the subjects did not perform even

near optimally, and their performance weakened as the complexity of the problem

increased. Subjects' maximum best scores, however, ranged within 1% to 15% of

the near-optimal in all scenarios. Such good scores imply that subjects can achieve

a near-optimal score especially in less complicated scenarios with further

practice/training.

Several of the subjects at their early scenarios overreacted to the idea of penalizing

the tasks (seemingly "failure") while at the zero SL. This caused poor performance,

whereas those subjects who ignored at least one of the tasks had a much better

performance. To gain a good score, the subject's selection of the tasks and the

number of tasks to attend was much more important than his/her moment-to-.
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moment decisions on how to attend to tasks. Selection of tasks should be based on

higher weight (value), lower DR, and higher CR.

Tabu search solutions seemed to have a stepwise strategy in handling the tasks.

That is raising the status of three tasks to a high SL concurrently, and then

attending to the fourth and sometimes fifth task, while maintaining the high status

of the previous tasks. In contrast, most of the subjects either attempted to handle

too many tasks in poor statuses all at once, which resulted in a poor score; or they

ignored half of the tasks even while the other half was in good standing, which

resulted in a good score if the choice of tasks were correct, but could be improved

by attempting to handle the next unattended task.

Nine out of ten subjects performed better in their late scenarios as compared to the

early ones. Although this indicates a learning effect, the statistical and general

behavioral conclusions are robust and reliable since the order of scenarios was

randomized. However, this learning effect has to be considered cautiously when an

individual's performance in an individual scenario is looked at. Moreover, those

subjects who took the experiment later performed better than those who took it

earlier. This serial effect in the data shows the learning effect of the experimenter

as he advanced through the experiments. This improvement in the score did not

affect the statistical results, but has to be considered if one compares the subjects'

performances with each other.

It was observed that the order by which the subjects considered the parameters of a

task, had a close relationship with the order by which they could understand

(identify) those parameters. The easier it was to identify a parameter, the more it

was considered when making decisions on how to attend to tasks. Because of the

setting of the software, the decreasing order of simplicity by which a subject could

identify and distinguish a parameter between the tasks was: weight (value), DR,
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and CR. Understandably, the decreasing order by which the subjects considered the

task's parameters in their decision-making was the same: weight (value), DR, and

t1

9.4 FUTURE RESEARCH

There are not many studies reported in the past that relate to the type of research

that was addressed here. As a result, there are numerous ways to extend this

research to other research topics. In the mathematical end, one can enhance the

model's parameters by making CR, DR, or weight (value) time dependent, adding

switching costs between the tasks, adding deadlines, including arrival time for new

tasks, and so on. One may use other deterministic models such as non-linear

programming or even stochastic models such as fuzzy logic, queuing theory, or

simulation. In the computational end, one can investigate the application of parallel

computer processing in tabu search or use other heuristic methods such as genetic

algorithms or simulated annealing.

In the task management environment for the human, one can create many different

experiments, which may include investigating the effects of salience of stimuli,

proximity of tasks, discrete andlor stochastic task behaviors instead of continuous

increase/decrease in their SL, easy scenarios that have manageable number of tasks

with reasonable CR/DR rates versus difficult scenarios, etc. However, the most

critical experiment, in this end, will be validating how closely this environment

resembles real life task management. In the subject's side of it, one can investigate

the effects of gender, age, expertise in different multi-tasking fields, race, culture,

sleepiness, etc. In the objective function and scoring mechanism, also, there are

many ways to create new experiments some of which are listed by different models

in Chapter 5. These models are mostly created by variations in how tasks are

penalized, and how they behave at extreme satisfaction levels.
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9.5 FINAL COMMENTS

This research was no different from many other studies in that it created more

questions than it answered, and in answering questions, it opened more roads than

it closed. What is task management? What is perfection in task management? Can

humans manage tasks perfectly? If not, how well can they? Can mathematical

methods outperform humans? Are mathematical methods as good in practice as in

theory? Which methods do perform better? And finally, how similar or different is

human performance to these methods?

While this study has answered these questions one way, other perspectives may

answer them differently. It is with the accumulation of such questions and answers

from different perspectives in different fields that the great wall of science is built.

This research was just another brick in the wall.
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APPENDIX A: OTHER CONCEPTUAL APPLICATIONS OF
THE JUGGLER METAPHOR

A.! DEADLINE

Deadlines can be defined in two different ways: attention deadline and completion

deadline.

Deadline to attend to a task (attention deadline): This means that a task has to

be attended to before a certain point in time.

attention deadline = the time before which a task has to be attended to

In the plate metaphor, if the objective is to avoid a plate crash, attention

deadline equals to how long it takes for a plate to fall if not attended to. If the

current satisfaction level of a task is SL, the attention deadline with the above

assumptions is:

SLattention deadline =
DR

Deadline to complete a task (completion deadline): This means that a task has

to be completed before a certain point in time. However, completion of a task

does not have a clear meaning in the plate metaphor or multi-tasking

environments in general. Completion can be defined as the resumption of a

certain level of satisfaction, so processing time means the time that it takes for a

task to be attended to until completed. Obviously, if a task is attended to

continuously, it will be completed faster versus switching back and forth

between the tasks. Completion and attention deadlines are not independent.
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Recall that attention deadline is about as late as one can wait before attending to

a task. Therefore, completion deadline could not be earlier than attending to a

task just before its attention deadline and processing it continuously until

completion, or resumption of the desired SL. In the following formula,

'processing time' in fact means 'the time that it takes a task to be completed

since it is attended to continuously just before its attention deadline.'

earliest completion deadline processing time + attention deadline

Suppose that completion means resumption of the perfect status. The time that

it takes to bring a task from zero to % 100 SL if continuously attended to, plus

the deadline to attend to a task (attention deadline), would be the earliest

completion deadline. If the current satisfaction level of a task is SL, the earliest

completion deadline with the above assumptions is:

completion deadt =1 SL SL
me +-

CR DR

In either attention or completion deadline, there has to be some kind ofa penalty

for not meeting them. The penalty might be as low as zero (i.e., the deadline can be

passed without incurring any cost) or a very high penalty that causes the whole

system of tasks to crash just by not meeting that one deadline. For example, when

driving the deadline for turning before a sharp turn next to the ocean has a very

high and deadly penalty that causes the driver-car system crash into the ocean. On

the other hand, the penalty for not meeting the deadline for not running out ofgas is

the discomfort of staying next to the road, but its not deadly. Finally, the deadline

to roll the window up when the weather suddenly changes to rainy is the time that

the driver has before he passes the rainy portion of the road. If the driver does not

meet the deadline, rolling the window up is of no use anymore, because the weather
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is no longer rainy. The penalty for not meeting this deadline is a very minor

discomfort compared to the previous two scenarios.

A.2 URGENCY

"Urgency" is implicitly included in the mathematical model for the primary

objective function (Chapter 5) by penalizing a task the moment it reaches the zero

SL. The closer tasks are to the zero SL, the more urgent they are. Therefore, not

reaching the zero SL, in that environment, has a deadline that needs to be met. The

following is a generic definition of the urgency and its relationship to deadline.

In general, the term urgency seems to be inversely related to the deadline. The

closer a task is to its deadline or the smaller the time opportunity window is, the

more urgent that task is.

1
urgency cc

closeness to deadline

With the above definition for the attention deadline, the following is true:

urgency cc

S/ SL

As it is seen in the above formula, the factors that contribute to the urgency of a

task are its current satisfaction level (SL) and its deviation rate (DR) from the

perfect status.

A.3 PRIORITY

The priority of a task to be attended specifies its position in the sequence of

attending to tasks. This priority is determined in terms of the contribution ofa task
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to the overall goal, and not its urgency, importance, or status per se. For two

identical tasks that have equal CR, DR, importance, and penalty for not meeting the

deadline, the one that is more urgent has a higher priority also. However, if the

previous parameters are different, priority cannot be found easily because it has to

assure the best sequence that maximizes the performance over time. The optimal

solution to the mathematical model is the sequence of highest priority tasks at each

point in time to attend to, in order to maximize the overall performance. Finding

such a perfect sequence that points out the highest priority task at each point in time

throughout the planning horizon is very challenging, if not impossible, for a human

operator.

A.4 SALIENCE OF TASK RELATED STIMULI

Ideally, this factor (salience of stimuli) is the same as importance defined earlier.

However, this is not always true. A perfect human operator has a perfect

knowledge of the task's importance. However, an imperfect human operator has to

perceive the importance of a task, which might be influenced by the task's salience.

perceived importance =J(importance, salience)

Perceived importance is influenced by the actual importance and its salience,

whereas importance is the actual contribution that a task makes to the overall goal.

An example would be to coat a metal plate with gold. The perceived importance of

this plate would be equally important to a real golden plate.

A.5 AUTOMATION

A task may be performed manually or by an automated system. Automation can be

divided into the following:
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Automation of attention: This means that the attention is allocated to the most

urgent, or to the highest priority task (plate) automatically.

Automation of performance: This means that as soon as a task is attended to

once (automatically or manually), its satisfaction level increases automatically.

The alternative would be the case when continuous attention is required to

increase the satisfaction level. For example, modern gas nozzles are pushed

once and they fill the vehicle's tank and stop automatically when it is filled,

whereas the old ones required continuous push on the nozzle to fill the tank.

Automation of hold: This type of automation keeps a task at a certain level of

satisfaction without being attended to. e.g., cruise control of a car.

A.6 ARRIVAL OF NEW TASKS

A task that is and stays at its desired status with no attention is of no concern, and

can be considered nonexistent. However, when a task's SL suddenly decreases to a

level below 100%, it needs attention to resume the 100% level. Therefore, it can be

assumed that a new task has been added to the system. For example, a pilot may be

keeping an altitude of 20,000 feet according to the previous orders in order to

maintain a SL of 100% for the task 'altitude.' As soon as the ATC asks for a change

in altitude to 30,000 feet, the satisfaction level of 'altitude' task drops to a level

below 100% until the pilot attends to this task and reaches the 30,000 feet.

A.7 MONITORING

Monitoring means assessing parameters of the system (such as SL, CR, DR, and

importance) and continuously detecting any changes in them. Tasks normally stay

steady at a certain level of satisfaction if they are fixed. However, in some cases

they might deviate from where they are, so they need to be monitored. e.g., a car's

speed is fixed by cruise control (SL = 100%), but for unknown reasons the device

loses its control and SL starts decreasing.
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A.8 SOME EXAMPLES

A.8.1 Example 1: Turbulence

"A pilot is trying to maintain certain heading, altitude, and speed when sudden

turbulence causes an altitude deviation.

This will be equivalent to a sudden increase in the deviation of the task altitude

from its perfect status. Therefore, the SL in this task suddenly drops and it requires

attention to resume its perfect status. If properly monitored, the new SL of this task

is detected and it is attended to according to its priority.

A.8.2 Example 2: Equipment Failure

"A pilot is maintaining heading, altitude, and speed when a critical equipment

failure occurs. While attending to the failure, environmental conditions tend to

move the aircraft away from the desired heading, altitude, and speed."

This is equal to a sudden increase in the deviation of a very important task, which is

normally steady at its perfect status even when it is not being attended to. The

distinction of this task (malfunction) from the other routine tasks is that the

correction rate is unknown. i.e., the pilot does not know how fast he/she can fix the

problem. The parameters of all the tasks should be reassessed frequently while

fixing the problem. Detection of failure is not addressed in this research and

operators are assumed to be informed of the failure by obvious signals.

A.8.3 Example 3: ATC New Altitude

"A pilot is satisfactorily controlling the aircraft's altitude when the air traffic

controller advises him/her to descend to a new altitude."
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This is treated exactly the same way as the case when there is turbulence. The new

desired altitude, required by the ATC, suddenly increases the deviation of the task

altitude. Consequently, the urgency of the task increases. The distinct difference

between this scenario and the turbulence is that the sudden increase in deviation

that is caused by the ATC advice is a routine practice while flying. Turbulence and

malfunction, however, might have some extra psychological impacts on the pilot

due to their rare occurrence. The psychological impact of the problem is not

addressed in this research.
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APPENDIX B: PROOF FOR NP-HARDNESS OF THE
MATHEMATICAL MODEL

B.1 GENERALIZED TRAVELING SALESMAN PROBLEM
(GTSP)

In the Generalized Traveling Salesman Problem, the salesman has to find the

shortest distance to travel among m countries and return to where he started. Each

country has n cities and only one city within each country can be visited. This

problem is a known NP-hard problem in the strong sense. The following graph

shows two feasible paths for four countries.

AI
4%

t=1
4%

t=2

'O'

Figure B. 1 Two feasible paths for traveling between cities of four countries
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In the above problem, suppose the order of visiting the countries is predetermined.

Also, suppose that the cost of moving to city] from any city of the previous country

is equal and it does not change across the countries. There will be a polynomial

time algorithm solution if the previous conditions hold true (Appendix C). Assume

the salesman currently resides in city] of country i, and is deciding to which city in

country 1+1 (because the order is predetermined) to move. With the conditions

explained above, his best choice would naturally be to pick the shortest path from

his current location to any city in the next determined country (i + 1).

t=1 t=2 t=3 t=4

Figure B.2 Traveling between the cities of four countries with predetermined order
of countries and equal cost of traveling to a city

B.2 REDUCTION OF TASK MANAGEMENT PROBLEM
(TMP) TO GTSP

The task management problem (TMP) in this research can be reduced to GTSP

formulation by assuming that the countries are points in time. Cities within each

country can be considered as tasks, only one of which can be attended to at any

point in time. The distance vector between cities of different countries would be the

gain in the task management scoring system by attending to a task. Unlike the
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GTSP, in the TMP the goal is to maximize the cumulative magnitude of vectors in

the course of the salesman's trip.

If there were no limitations on the maximum (1) or minimum (0) SL that a task can

take, the TMP problem had a polynomial time algorithm solution. This exactly

matches with the special case explained previously in the GTSP with

predetermined order of traveling between the countries, and equal cost for traveling

from cities a country to a specific city in the next country. Since in the reduction of

TMP, countries are points in time, the order of attendance between them must be in

strict natural sequential order. One can only move from time zero to time 4 by

passing through times 1, 2, and 3 sequentially. On the other hand, the gain of

attending to a task is independent from the task that was previously being attended,

and it does not change over time. Thus under these conditions, both the TMP and

the GTSP can be solved in polynomial time.

t=0 t=1 t=2 t=3 t=4 t=T

Figure B.3 Reduction of TMP to GTSP with predetermined order of countries if
there were no boundary limitations for maximumlminimum SL of tasks

Introducing the boundary limitations for maximum/minimum SL of tasks, would

increase the complexity of the TMP immensely. The cost of traveling between
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cities of different countries (or equivalently the gain of going from task to task

across time) would no longer have a unique magnitude. In fact, the number of

possible values for the cost/gain vector will grow exponentially with the number of

countries (or expansion of planning horizon). It is the decision aniong these

exponentially growing cost/gain alternative vectors, instead of a unique value, that

results in NP-hardness of the TMP with the SL boundary conditions.

In the following example, it is selected n = 4 (number of tasks) to describe how the

complexity of the problem grows as the planning horizon gets larger. Assume that

the bold path is the optimal path and note that a null task is added for not attending

to any task that results in n+1 = 5 cities in each country.

The C1,5,2 value may
change depending on
which of the
preceding 5 paths has
been taken.

I'

t=O t=l t=2 t=3 j rt=4

Figure B.4 TMP if boundary limitations for maximumlminimum SL of tasks were
introduced

T: Planning horizon
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n: Number of tasks. An additional task is accounted for a null task when no task

is attended to. So the total number of cities would be ii + 1.

C1 is the gain (loss) of the scoring system by switching attention from task ito

taskj at time t- 1 for one time period.

The value varies depending on the whole path taken that has ended in task i at

time t -1. The following table shows that by adding one more time unit, the number

of paths to consider grows by a multiplication of n = 5. This clearly indicates the

exponential growth of the problem in hand. In general, the number of paths to

consider for calculating C at any time t- 1 can be expressed as (n+ 1)(t2), t >1.

Table B.1 Exponential growth of the complexity of TMP

t

Number of Paths to Consider

for C*lculatlng

T
1

5

4 25

5 125

5(12)

If there were only the maximum (100%) SL constraints (i.e., no non-negative SL

limit), C would be only influenced by the frequency of attendance to taskj in the

prior path taken. With both maximum and minimum SL constraints, however, all

tasks in the previous time units (i.e., 0, 1, ..., t-1) could affect a C1 value whether

or not they have been attended to. To better match TMP with GTSP and graph
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theory requirements, there has to be a cost/gain of Ct for any travel between the

countries. To remove the unreasonable paths, the cost can be chosen very high, so it

will never be selected. This applies to trips in the opposite direction of time (e.g.,

time t to time t- 1) or skipping a number in the sequence of time (e.g., time t to time

t + 2). Also, a null state is defined for t = 0 with a zero traveling cost from t Tto t

= 0, so the graph would be a complete cycle.

Since the computational complexity of the problem in hand is proven to be NP-hard

in the strong sense, it should be solved using efficient heuristic algorithms (Chapter

6).
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APPENDIX C: OPTIMAL RULE FOR MAXIMIZING THE
TOTAL WEIGHTED AVERAGE SL ACROSS TASKS-

SPECIAL CASE

C.1 INTRODUCTION

Recall the environment of the simple objective function in which tasks can

repeatedly reach 100% SL or zero SL. The objective was to maximize the average

SL across tasks. If the boundaries for SL are removed, there is an optimal rule for

achieving the above objective function. That is, if tasks can have higher than 100%

SL or lower than zero SL, the rule presented below is optimal.

C.2 THEOREM

Assuming that tasks can hold higher than 100% SL or lower than zero SL, the

optimal order of attendance for maximizing the total weighted average SL across

tasks over time is to attend to the task with the highest weighted summation of

correction rate and deviation rate (i.e., w(CR + DR)) at all times.

C.3 PROOF

1 n
100%-:

50% -
L

SL1

} SL2
SL

0% -

Figure C.1 Current status of tasks
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Current value of the system:

Assume that taskj is attended to for one time unit; now the value of the system is:

w1(SL1 DR1)+w2(SL2 DR2)+...+w1(SL, +CR1)+...+ w(SL DRy)

which is equal as:

w1(SL1 DR1)+w2(SL2 DR2)+...+w1(SL1 DR1 +DR1 +CR1)

+...+w(SLDR)

which can be simplified to:

w1(CR1 +DR1)+w1(SL1 DRy)
L I

The larger this term,

the higher is the

increase in value

Constant regardless of

the order of attendance

As it can be seen the second term is constant regardless of the task that is attended

to. Therefore, the first term is the only one that increases the value of the system.

The larger this term, the higher is the increase in value of the system. Because the

parameters of that term (w, CR, and DR) are independent of time and the order of

attendance, the task with the highest w(CR+DR) has to be attended to at all times.
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APPENDIX D: OPTIMAL RULE FOR MINIMIZING THE
TOTAL COMPLETION TIME-SPECIAL CASE

D.1 INTRODUCTION

Recall the scenario where tasks will be accomplished or completed the moment

they reach their maximum (100%) satisfaction level (SL). Within this scenario

further assume that tasks can have negative SLs and there is no minimum for their

SL (previously zero). For the last assumption, if the objective function is to

minimize the total completion time of all tasks, there is a one to one

correspondence between the optimal order presented below and the optimal order

found for the deteriorating jobs presented by Kunnathur and Gupta (1990). In

application, one can disregard the negative SL assumption if the tasks have too

high statuses and their deviation rates are too low, since it is very unlikely that any

of the tasks reach a zero (or negative) SL regardless of their order of attendance.

However, in order to present the proof for the optimal rule, we must first prove that

preemption is not optimal.

D.2 PARAMETERS AND VARIABLES

TC, = total completion time for strategy i

C, = completion time of task i

VP, = variable processing time of task / when attended to after other tasks are

attended

P, = processing time of task I if attended to at tithe t =0 ....................................................................

CR, correction rate of ta sk
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l-SL1
1-SL2

SL2

0% -

Figure D. 1 Status of the tasks at time t 0

D.3 PREEMPTION IS NOT OPTIMAL

In the following, two strategies are considered with and without preemption. It is

proven that the one with preemption could always be improved with a no-

preemption strategy for a better total completion time.

Strategy A: Task 1 gets attended to at time zero, and then attendance to task 1 gets

interrupted at time tin order to attend to task 2 until it is completed, and finally task

1 is attended to again until its completion.

Task 1 Task 2 Task 1

Task 1 interrupted at Task 2 completed Task 1 completed
time t in favor of task 2

Figure D.2 Order of attendance with preemption.

DR2
C2 =t+VP2 =t+P +t(-)

CR2



DR1VF =I -t+VP2(-------),or
CR1

VP=P_t+[P2+t(DR2) DR1](-), or
CR2 CR1

DR DR2)(1)
CR1 CR2 CR1

TCA =C1 =C2 +V],or

TCA =[t+P2 +t(DR2 )]+{P t+P2(-L)
CR2

1

TCA = 2
+P ()+t(2 DR2

)+2
CR1 CR2 CR2

DR2 DR1+t( )(),or
CR2 CR1

)(DR1)

CR1
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Strategy B: Task 2 gets attended to at time zero until its completion, and then task 1

gets attended to until its completion.

Task2 Task 1

Task 2 completed Task 1 completed

Figure D.3 Order of attendance without preemption.

C2 =P2

vp =IT +C2(P-i)=P1 +P2(1)

TCB =C1 =C2 +V = +] p(1)

It can be seen that Strategy B has a better completion time than Strategy A.
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TCA TCB = t(1R2
) +

CR2 CR2 CR1

So it can be concluded that preemption is not optimal. Therefore, in finding the

optimal sequence of tasks in the following theorem, tasks are attended to with no

preemption.

D.4 THEOREM

Assuming that tasks can hold negative satisfaction levels, the optimal sequence of

tasks for minimizing the total completion time of all tasks, must satisfy the

following requirement:

(1SL)/ <(1SL2)/
/DRI /DR2

D.5 PROOF

This theorem is proven by induction. First, it is required to prove that the theorem

holds true for k = 2 tasks. Second, it is supposed that the theorem holds true for k

tasks, and then its validity is proven for k + 1 tasks. Thus, the theorem will be true

for any number of tasks.

D.5.1 Proof for k 2 Tasks

Theorem: Assuming that tasks can hold negative satisfaction levels, the optimal

sequence of tasks for minimizing the total completion time of k = 2 tasks, must

satisfy the following requirement:

(1SL1)/ <(1SL2)/
/DRI /DR2 (0)
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The problem is solved with both possible orders of attendance, and then it is shown

that the order that satisfies inequality (0) has the shorter total completion time.

Strategy a: Attend to task 1 first and task 2 second.

TCa=C2

Cl =:]Jj
(1SL1)

CR1

C2 =C1 +VP2

=
(C1)(DR2)

CR2

(1--SL)

CR2

The total completion time (TCa) for Strategy a:

TC =c_p+p+i)R2)
a

CR2

Strategy b: Attend to task 2 first and task 1 second.

TCb = C1

C =P (1SL2)
2 2

CR1

C1 =C2+VI

(C2)(DR1)

CR1

(1SL1)

CR1

The total completion time (TCb) for Strategy b:
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TCh =Cl
CR1

Assuming Strategy a yields a better (shorter) time:

TC11 <TCb

P + P
(C1)(DR2) <2 + (C2)(DR1)

1 2
CR2 CR1

(C1 )(DR2) <(C2 )(DR1)

CR2 CR1

(1SL)(DR2) (1SL2)(DR1)
CR1 CR2 CR2 CR1

(1SL1) (1SL2)
DR1 DR2

Thus, the optimal order of attendance to minimize the total completion time for k =

2 tasks has to follow this order:

(1SL1)/ <(1_SL2)/
(0)/DR, /DR2

D.5.2 Proof for k + 1 Tasks if the Theorem Holds True for k Tasks

Induction Assumption: Assuming that tasks can hold negative satisfaction levels,

the optimal sequence of tasks for minimizing the total completion time of k tasks,

must satisfy the following requirement:

(1SL1)/ <(1_SL2)/ ...(1_k)/' (1)/DRI /DR2 /DRk
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Theorem: Assuming that tasks can hold negative satisfaction levels, the optimal

sequence of tasks for minimizing the total completion time of k + 1 tasks, must

satisfy the following requirement:

(1 SL1 )/ (1 SL2) / (1 SLk) / (1 SLk+l)/ (2)/DR1 /DR2 /DRk /DRk!

The inequality (2) suggests that the optimal order is { 1, 2, ..., k-i, k, k+1 }. It is

evident that swapping the order for any two of the first k tasks i = 1, 2, ..., k would

not improve the total completion time according to inequality (i). Therefore, the

only alternative order to the one suggested by the theorem is {i, 2, ..., k-i, k+i, k}.

If the new order is proven to be inferior to the one suggested by inequality (2), the

theorem is proven.

Assume that completion time for the first k-i tasks takes Ck1 time units. Therefore

after finishing the first k-i tasks, if it is proven that the inequality (3) holds true

then according to inequality (0), the proof for k 2 tasks, the alternative order

would be inferior to the one suggested by inequality (2) and the theorem is proven.

(1 SLkCkI) (i SLk! C )
(3)

DRk DRkl

Where SL1, is satisfaction level of task i at time t.

Note that the concept of each side of inequality (3) is the time that it has taken a

task to deviate to its current SL from the perfect (100%) SL if unattended. Thus,

this time period at t = Ck1 has only increased by Ck1 time units compared to the

time t = 0. Therefore, inequality (3) can be simplified as:
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(1 SLkO) - (1 SLk+lO)
Ck_I +

DRk DRkI
(1 SLkO) (1 SLk!O)

DRk DRk+l

The simplified inequality is part of the order initially assumed by inequality (2) so

inequality (3) is proven, and therefore the theorem is proven for k + 1 tasks.

D.5.3 Proof for All Tasks

The theorem is proven to hold true for k = 2 tasks. It is also proven that the theorem

holds true for k + 1 tasks if it is assumed to be true for k tasks. Therefore, by

induction the theorem is proven for any number of tasks.

If the denominator and numerator of the proven inequality is divided by the task's

correction rate (CR), the following inequality will result:

(1 SLk CA 2 )/CRk (1 SLk+l
CA 2 )/C'Rk+l (1 SL2 )/cR

DRk / CRk DRk+l / CRk+l DR, / CR

The numerator of this inequality is equivalent to the processing time and the

denominator is equivalent to the rate that the processing time of a task increases if

not attended to. This inequality has a one-to-one match with the proof presented by

Kunnathur and Gupta (1990) for deteriorating jobs on a single machine.



176

APPENDIX E: DATA GENERATED FOR SMALL, MEDIUM,
AND LARGE SIZE PROBLEMS

Table E. 1 shows how problems with different sizes are created; and Table E.2

shows how parameters of each task for every problem size is generated.

Table E. 1 Specifications of small, medium, and large problem sizes

Problem Size Number of Tasks Planning 1*orizon Initial SL

Small [2, 3] [2, 4] [0, 1]

Medium [5, 8] [5, 10] [0, 1]

Large [12, 16] [11, 20] [0, 1]

Table E.2 The rule underlying generating parameters of each task for every
problem size

A number generated from a random uniform
Parameter

distribution in the interval of

weight [1, 10], integer value

deviation rate [0.01, 0.10] up to 2 decimal points

correction rate [ito 10] multiplied by the corresponding deviation rate

initial satisfaction [0, 1], up to 2 decimal points

level for all tasks

In the following tables (Table E.3-Table E.5), the data generated for the small,

medium, and large problem sizes of the experimental design is included.
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E.1 SMALL SIZE

Table E.3 Data generated for the small size problems

_,_ , -
Blocks

-
DlO(F I'IO I .) 0 1 0 ILl

Tasks:
2 2 3 2 2 3 2 3 2 3

[2, 3]

Planning Horizon:
3 2 4 2 3 2 2 4 4 2

[2, 4]

Initial SL:
0.270 0.663 0983 0.849 0.008 0.161 0.575 0.147 0.212 0.37

[0, 1]

Block No: 1 2 3 4 5 6 7 :8 9 10:

CR
0.45 0.35 0.16 0.5 0.27 0.7 0.5 0.08 0.9 0.06

(1-1 0)xDR

DR
0.05 0.05 0.08 0.05 0.03 0.1 0.1 0.02 0.09 0.01

(0.0 1-0.10)

Weight
8 9 1 3 2 9 8 3 6 4

(1-10)

CR
0.56 0.02 0.18 0.72 0.24 0.28 0.54 0.12 0.64 0.63

(1-10)xDR

2
DR

0.07 0.02 0.02 0.08 0.04 0.07 0.09 0.03 0.08 0.09
(0.01 -0.10)

Weight
7 2 3 7 5 2 9 9 9 1

(1-10)

CR
0.1 0.16 0.56 0.4

(1 -1 0)x DR

DR
0.02 0.08 0.08 0.1

(0.01-0.10)

Weight
10 4 8 7

(1-10)
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E.2 MEDIUM SIZE

Table E.4 Data generated for the medium size problems

blOCKS

Block No: 1 2 3 4 5 6 7 8 9 10

Tasks:
6 8 5 5 7 8 5 8 5 7

[5, 8]

Planning Horizon:
5 8 6 8 5 6 10 10 9 10

(5, 10]

Initial SL:
0.126 0.531 0.677 0.163 0.484 0.964 0.837 0.54 0.376 0.94

[0,11

Block No: 1 2 $ 4 8 S 7 8 9 10

CR
0.08 0.4 0.48 0.08 0.36 0.09 0.01 0.1 0.36 0.8

(1 -1 0)x DR

DR
0.01 0.04 0.08 0.08 0.04 0.01 0.01 0.02 0.06 0.1

(0.01-0.10)

Weight
4 1 8 4 8 7 5 3 10

(1-10)

CR
0.4 0.12 0.36 0.28 0.6 0.12 0.16 0.27 0.4 0.49

(1 -1 0)x DR

2
DR

0.04 0.03 0.06 0.07 0.06 0.02 0.04 0.03 0.1 0.07
(0.01-0.10)

Weight
10 9 8 1 4 7 9 3

(1-10)

CR
0.9 0.08 0.24 0.1 0.18 0.16 0.48 0.35 0.06 0.27

(1-1 0)xDR

DR
0.1 0.01 0.03 0.1 0.06 0.04 0.08 0.07 0.03 0.09

(0.01-0.10)

Weight
10 6 8 8 9 5 10 7

(1-10)

CR
0.45 0.6 0.1 0.28 0.35 0.27 0.06 1 0.08 0.1

(1-1 0)x DR

DR
0.05 0.06 0.01 0.04 0.05 0.03 0.02 0.1 0.04 0.01

(0.01-0.10)

Weight
4 1 2 10 8 2 8 5 5

(1-10)
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Table E.4 (Continued) Data generated for the medium size problems

BlockNo:
j

1 2
J

6 7
j

8 9
j

o

CR
0.16 0.16 0.36 0.3 0.42 0.54 0.7 0.8 0.08 0.6

(1-1 0)xDR

DR
0.02 0.02 0.06 0.06 0.07 0.09 0.07 0.08 0.08 0.06

(0.01-0.10)

Weight
1 2 10 3 4 7 8 10 2 9

(1-10)

CR
0.16 0.12 0.12 0.08 0.36 0.4

(1-1 0)xDR

6
DR

0.08 0.06 0.06 0.08 0.09 0.05
(0.01-0.10)

Weight
9 1 7 2 6 6

(1-10)

CR
0.45 0.28 0.18 0.01 0.24

(1 -1 0)xDR

DR
0.05 0.04 0.06 0.01 0.03

(0.01-0.10)

Weight
7 7 2 2 1

(1-10)

CR
0.3 0.72 0.21

(1-1 0)x DR

8
DR

0.06 0.09 0.07
(0.01-0.10)

Weight
10 10 1

(1-10)
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E.3 LARGE SIZE

Table E.5 Data generated for the large size problems

Blocks

Block No 1 2 3 4 5 6 7 8 9 10

Tasks:
14 13 16 13 13 14 15 13 16 13

[12, 16]

Planning Horizon:
20 12 16 11 20 18 18 15 11 13

[11,20]

Initial SL:
0.348 0.669 0.047 0.365 0.432 0.868 0.796 0.874 0.116 0.253

(1, 0]

6
j.
7j8,9 10BockNo: 1 2 L' j4

Task

CR
0.56 0.30 0.40 0.45 0.08 0.30 0.32 1.00 0.40 0.25

(1 -1 0)x DR

DR
0.08 0.05 0.10 0.05 0.01 0.05 0.08 0.10 0.05 0.05

(0.01 .0.10)

Weight
7 8 10 6 9 1 8 1 10 4

(1-10)

CR
0.70 0.72 0.42 0.10 0.42 0.12 0.18 0.08 0.80 0.27

(1 -1 0)xDR

2
DR

0.07 0.08 0.06 0.01 0.07 0.04 0.02 0.04 0.10 0.03
(0.01 -0.10)

Weight
2 10 7 2 6 3 9 7 2 4

(1-10)

CR
0.40 0.24 0.08 0.18 0.48 0.32 0.56 0.48 0.56 0.32

(1-1 0)xDR

DR
0.08 0.08 0.01 0.02 0.06 0.08 0.07 0.08 0.08 0.04

(0.01-0.1 0)

Weight
5 7 3 9 8 5 1 10 9 4

(1-10)
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Table E.5 (Continued) Data generated for the large size problems

I 2 6 7 1819 L1°

CR
0.08 0.15 0.08 0.16 0.04 0.45 0.10 0.72 0.50 0.20

(1 -10)xDR

DR
0.01 0.05 0.02 0.04 0.04 0.05 0.05 0.09 0.10 0.05

(0.01-0.10)

Weight
4 1 10 7 6 5 3 6 6 6

(1-10)

CR
0.45 0.63 0.72 0.06 0.24 0.32 0.27 0.08 0.30 0.15

(1-1 0)xDR

DR
0.05 0.07 0.08 0.01 0.06 0.08 0.09 0.02 0.05 0.05

(0.01-0.10)

Weight
1 1 10 5 6 10 5 3 7

(1-10)

CR
0.12 0.90 0.14 0.56 0.04 0.50 0.90 0.04 0.20 0.25

(1-1 0)x DR

6
DR

0.02 0.09 0.07 0.07 0.01 0.05 0.10 0.04 0.04 0.05
(0.01-0.10)

Weight
8 4 1 7 8 1 9 5 3 6

(1-10)

CR
0.90 0.10 0.60 0.35 0.81 0.12 0.06 0.07 0.48 0.16

(1-1 0)xDR

DR
0.10 0.10 0.06 0.07 0.09 0.04 0.06 0.01 0.08 0.08

(0.01-0.10)

Weight
2 10 6 1 9 5 2 9 7 10

(1-10)

CR
0.70 0.02 0.04 0.28 0.72 0.42 0.06 0.12 0.54 0.32

(1 -10)xDR

8
DR

0.07 0.01 0.01 0.07 0.08 0.06 0.01 0.02 0.09 0.08
(0.01-0.10)

Weight
3 2 5 1 1 10 10 10 7

(1-10)
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Table E.5 (Continued) Data generated for the large size problems

L_
jslockNo:J 1

j
2

J

6
I I I

CR
0.04 0.48 0.01 0.12 0.10 0.24 0.32 0.48 0.10 0.36

(1-1 0)xDR

DR
0.01 0.06 0.01 0.02 0.10 0.08 0.04 0.08 0.05 0.06

(0.01-0.10)

Weight
4 10 2 8 10 6 4 7 7 4

(1-10)

CR
0.36 0.45 0.03 0.40 0.08 0.81 0.49 0.36 0.07 0.90

(1-1 0)x DR

10
DR

0.04 0.09 0.03 0.08 0.04 0.09 0.07 0.06 0.07 0.09
(0.01-0.10)

Weight
10 9 4 7 3 9 6 7 10 8

(1-10)

CR
0.14 0.27 0.05 0.24 0.06 0.30 0.12 0.72 0.70 0.48

(1-1 O)xDR

DR
0.07 0.03 0.05 0.08 0.03 0.10 0.06 0.09 0.07 0.08

(0.01 -0.10)

Weight
4 8 9 7 3 2 5 4 1 7

(1-10)

CR
0.30 0.36 0.90 0.03 0.42 0.64 0.35 1.00 0.90 0.63

(1-1O)xDR

12
DR

0.10 0.09 0.09 0.03 0.06 0.08 0.07 0.10 009 0.09
(0.01-0.10)

Weight
7 6 3 6 6 10 10 2 4

(1-10)

CR
0.18 0.40 0.12 0.45 0.07 0.49 0.21 0.30 0.04 0.80

(1-1 0)xDR

13
DR

0.09 0.05 0.02 0.09 0.01 0.07 0.07 0.06 0.02 0.08
(0.01-0.10)

Weight
1 7 4 10 5 8 9 3 3 4

(1-10)
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Table E.5 (Continued) Data generated for the large size problems

Lfs1ockNo:J1 2 3
J

4 j 5J6
J

8
J

9 101

CR
0.01 0.10 0.18 0.42 0.45

(1 -1 0)xDR

14
DR

0.01 0.02 0.09 0.06 0.09
(0.0 1-0.10)

Weight
7 1 7 10 8

(1-10)

CR
0.06 0.64 0.72

(1-1 0)xDR

15
DR

0.01 0.08 0.09
(0.01 -0.10)

Weight
1 7 5

(1-10)

CR
0.80 0.12

(1-10)xDR

16
DR

0.10 0.06
(0.01-0.10)

Weight
10

(1-10)
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In the following table, the tabu result for the small, medium, and large size

problems with three levels of tabu algorithms and two levels of random seeds is

shown.

Table E.6 Tabu results for small, medium, and large size problems under all
treatments; Tabu Algorithm (No LTM: -1, LTM_Max: 0, LTM_Min: 1) and
Random Seed (Uniform: -1, Weighted: 1)

BLOCK
Tabu

Algorithm

Random

Seed

SMALL

Tabu Result

MEDIUM LARGE

Tabu Result Tabu Result

1 -1 -1 585.5 318.47 355.14

1 0 -1 585.5 318.47 359.65

1 1 -1 585.5 318.47 359.65

1 -1 1 585.5 318.47 375.16

1 0 1 585.5 318.47 375.16

1 1 1 585.5 318.47 375.16

2 -1 -1 843.18 661.21 543.21

2 0 -1 843.18 661.21 544.41

2 1 -1 843.18 664.39 543.21

2 -1 1 843.18 674.79 543.63

2 0 1 843.18 675.18 543.63

2 1 1 843.18 674.79 543.63

3 -1 -1 978.74 832.34 179.01

3 0 -1 978.74 832.34 184.35

3 1 -1 978.74 832.34 190.55

3 -1 1 978.74 832.34 185.69

3 0 1 978.74 832.34 188.59

3 1 1 978.74 832.34 188.13
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Table E.6 (Continued) Tabu results for small, medium, and large size problems
under all treatments; Tabu Algorithm (No_LTM: -1, LTM_Max: 0, LTM_Min: 1)
and Random Seed (Uniform: -I, Weighted: 1)

Tabu

Algorithm

Random

Seed Tabu Result

MEDIUM

Tabu Result

LARGE

Tabu Result

4 -1 -1 910.9 216.07 363.86

4 0 -1 910.9 216.07 363.86

4 1 -1 910.9 216.07 363.86

4 -1 1 910.9 216.07 364.38

4 0 1 910.9 216.07 364.38

4 1 1 910.9 216.07 364.38

5 -1 -1 234.85 541.75 380.27

5 0 -1 234.85 541.75 381.5

5 1 -1 234.85 541.75 380.27

5 -1 1 234.85 541.75 370.86

5 0 1 234.85 541.75 370.86

5 1 1 234.85 541.75 370.86

6 -1 -1 438.13 908.66 596.91

6 0 -1 438.13 908.66 604.81

6 1 -1 438.13 908.66 596.91

6 -1 1 438.13 907.84 600.12

6 0 1 438.13 907.84 604.99

6 1 1 438.13 907.84 600.12

7 -1 -1 756.17 862.87 583.43

7 0 -1 756.17 862.75 584.84

7 1 -1 756.17 862.87 583.43

7 -1 1 756.17 863.15 584.94

7 0 1 756.17 863.15 586.53

7 1 1 756.17 863.15 586.45
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Table E.6 (Continued) Tabu results for small, medium, and large size problems
under all treatments; Tabu Algorithm (No_LTM: -1, LTM_Max: 0, LTM_Min: 1)
and Random Seed (Uniform: -1, Weighted: 1)

BLOCK
Tabü

AIgo$thm

Randàm

Seed

SMALL MEDIUM LARGE

Tabu ResultTabu Resutt Tabu Resuk

8 -1 -1 384.82 634.56 730.47

8 0 -1 384.82 634.56 733.28

8 1 -1 384.82 634.56 731.08

8 -1 1 384.82 649.14 737.05

8 0 1 384.82 649.14 737.05

8 1 1 384.82 649.14 737.05

9 -1 -1 710.24 495.79 122.5

9 0 -1 710.24 495.79 122.5

9 1 -1 710.24 495.79 128.05

9 -1 1 710.24 490.04 134.12

9 0 1 710.24 490.04 134.12

9 1 1 710.24 490.04 134.12

10 -1 -1 559.44 865.09 189.74

10 0 -1 559.44 865.09 196.33

10 1 -1 559.44 868.09 189.74

10 -1 1 559.44 869.93 184.38

10 0 1 559.44 869.93 195.9

10 1 1 559.44 869.93 184.38
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APPENDIX F: SUBJECTS' SPECIFICATIONS

Table F. 1 Subjects' specifications

Subjects Gender Age
omputer

HourslWeek

uriver

Hour&Week

1 M 24 40 5

2 F 23 13 0

3 M 30 8 1

4 M 29 20 0

5 M 25 9 2

6 M 21 14 3

7 M 23 25 0

8 F 32 40 12

9 M 21 40 0

10 M 22 50 0

Average 0.8 25 25.9 2.3
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APPENDIX G: INFORMED CONSENT DOCUMENT

Oregon State University
Department of Industrial and Manufacturing Engineering

I agree to participate in a Ph.D. dissertation research conducted under the supervision of Dr.
Kenneth Funk of the Oregon State University, Department of Industrial & Manufacturing
Engineering. After approximately half an hour of introduction, training, practice, and gaining an
acceptable level of competence determined by the researcher, I will be asked to play a simple
computer game and answer a brief questionnaire after finishing the game. The total length of the
experiment should not be more than 2 hours.

I understand that my participation in this project is completely voluntary and that I will not be paid
for this voluntary participation. I may withdraw from this study at anytime without any penalty
and I may decline to answer any questions if I choose.

I understand that my participation could cause me only minimal risk, inconvenience, or discomfort.
That is, I understand that the probability and magnitude of harm, inconvenience or discomfort
anticipated in this study are not greater than those encountered in daily life. I also understand that
Oregon State University does not provide compensation or medical treatment in the event that I am
injured or harmed in any way as a result of participation in this study.

I understand that all records collected in this survey are available to the research investigators,
support staff, and any duly authorized research review committee. I grant Oregon State University
permission to reproduce and publish all records, notes, or data collected from my participation,
provided that there will be no association of my name with the collected data and that
confidentiality to the extent permitted by law is maintained unless specifically waived by me.

I understand that I will have the opportunity to ask questions and receive satisfactory answers from
Shakib Shaken. I understand any further questions conceming this survey should be directed to Dr.
Kenneth Funk at (541) 737-2357.

If I have questions about my rights as a research subject, I should contact the IRB Coordinator, OSU
Research Office, (541) 737-3437, IRBorst.edu.

My signature below indicates that I have read and that I understand the process described above and
give my informed and voluntary consent to participate in this study. I understand that I will receive
a signed copy of this consent form.

Signature.............................................................. Date

Name, Last name

Contact Info.
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APPENDIX H: INSTRUCTION SHEET READ BY THE
SUBJECT

A Comparison of Optimal and Actual Task Management

A computer program named Tardast (Persian term for Juggler) will be utilized for the purpose of
this experiment. A simplistic view of any multitasking environment can be compared to a juggler
(user of this software) who has several tasks on hand and tries to perform satisfactorily in all those
tasks. The use of this software may give a better understanding of how human operators allocate
their attention among multiple concurrent tasks.

The software interface primarily consists of six tasks, which are shown as bars. If you do not attend
to a task, its status starts deteriorating from the satisfactory level with a certain rate. On the other
hand, its status improves toward the desired state by a different rate while you attend to it. You can
attend to a task by simply depressing a button underneath each task using your mouse. Depending
on how well you keep the average status of the tasks over time and whether or not you ignore the
more important tasks, a numerical score is computed by the software. The computer also records
what task you have attended to at any point in time. This data will be reviewed and investigated in
the form of graphs. This will help to discover the pattern of attendance to tasks (if any) used by you.
The pattern used by you and other subjects in this experiment will be compared against the near-
optimal pattern found through Operations Research techniques.

There are five scenarios for which the data will be gathered. For each scenario, you will be given
several short (one minute) practice trials to familiarize yourself before running the main experiment
(five minutes). Throughout all the trials your objective will be to gain the maximum score possible.
You can choose any strategy that you please if you feel it will get you the best score. This might
mean trying to keep all tasks at a fairly satisfactory level, or keeping more important tasks at a very
good level and letting less important tasks go, or attending to tasks randomly or sequentially, etc. At
the very end of the experiments, you will be asked to answer a short questionnaire.

The satisfaction level (score) of each task can vary between 0 to 1000. For each task the 'Average
score' over time is calculated first. This average is simply multiplied by the task's 'weight' or value
(shown on the screen next to the task with the $ sign) and is called 'weightedAvg. score.' And
finally, the summation of these scores among all the tasks divided by the total weight of all tasks is
called 'Total WeightedAverage Score.' This number again varies between 0 to 1000. There is a
punishment if a task hits the zero level. For every time unit that a task stays at the zero level, its
score is punished by (- 200). However, if a task has a very low value, it might be still beneficial to
let it be penalized and attend to more valuable tasks. It is up to your discretion to choose your
favorite strategy after practice trials.

Please let the experimenter know if you have any questions

Good luck!
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APPENDIX I: INSTRUCTIONS EXPLAINED TO THE
SUBJECT VERBALLY

Remind the subject that he/she can talk out loud.

Remind the subject to use the report or replay features in the software at the

end of each practice trial.

Remind that while moving the mouse pointer between the tasks, the subject

should not release the mouse button, until the point it reaches the other task, to

keep improving the task status initially attended to. This would decrease the lost

time for switching between the tasks.

, Remind that the subject can take a look at the score and the bar representing it

on the top left of the screen. This would help the subject to see if he/she is

actually improving the system status by acquiring a certain strategy.
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APPENDIX J: POST EXPERIMENT QUESTIONNAIRE

Subject # ..........................
...............................

1. Gender? M F

2. Age?

3. How experienced are you in working with computer in terms of hours per week?

4. If you are a driver, how many hours per week do you drive?

5. Are you a pilot? If Yes, how many hours per month do you fly?

6. Did you use a particular strategy for determining which task to attend to? If so,
describe it.

7. Do you have any comments concerning this experiment?
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APPENDIX K: ESTIMATE OF HOW MANY TASKS CAN BE
KEPT AT A HIGH STATUS IN THE LONG RUN

The total correction rate in the system should be at least equal to the total deviation rate

to be manageable:

1)

2)

3)

[(xi, )(cr,.) (1 x, )(dr1)] 0
1=0 /=1

(x,, )(cr) (1 x,, )(dr,)
1=0 /=1 1=0 i=1

t=0 i=1

(1 x11)(dr1)
1=0 1=!

If deviation rates are all equal to DR, and if also correction rates are all equal to CR,

the following holds true:

4)
CR

(n-1)DR

5)
DR

Inequality (5) will be a good estimate for the number of tasks that can be managed in

CR. Average (CR)
the long run if is replaced by

DR Average(DR)
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APPENDIX L: STATISTICAL ANALYSIS FOR THE HUMAN
PERFORMANCE EXPERIMENT

L.1 SAMPLE SIZE

To find out the appropriate number of samples in an experiment, one has to first

determine what statistical test with what precision he/she desires. Refer to the

textbook by Diamond (2001) for further details on calculating the sample size. In

general, if the mean of a population is going to be compared against a particular

number, and if the variance of the population is known, the following formula is

used to determine the sample size.

N=(Ua +Ufl)

where N = sample size, -2 = population variance, = increment of importance,

Ua = normal distribution number for alpha risk, and ufi = normal distribution

number for beta risk.

The number of subjects was predetermined in this experiment to be ten subjects due

to time limitations of the scope of this research. Since every subject had to take the

experiment in five different scenarios, the total number of samples was fifty.

Although the above formula was not used to determine the sample size, it can be

used to find the precision of the experiment when sample size is known:

S=(Ua +Ufl)=
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In this experiment, the population can be considered the paired difference in the

subject's score and the near-optimal score gained by tabu search. The mean of this

population can then be compared (double sided) against zero, which tests whether

there is a difference between the scores gained by the subject and those gained by

the tabu search. From the experiments, it was estimated that the standard deviation

of the population, for all scenarios combined, was a = 120. Therefore, if it is

desired to have a 0.05 and /3 = 0.10 for a sample size N = 50, then:

= (1.960+1.282)-2r = 55.02 55

A precision of S = 55, in a score range of 0 to 1000, is very reasonable (5.5%).

This precision means that the statistical test cannot distinguish the difference

between the subject's score and tabu search's if it is less than 55. It is shown in

Section L.2 that there is significant difference between the subject and tabu search,

which also means that the absolute value of the sample mean was greater than 55.

The same approach can be applied to data for each scenario considered

independently. It should be noted that there are only ten samples in each scenario.

From the experiments, it was found out that the largest standard deviation among

the scenarios belonged to scenario 5, a = 157. Therefore, if it is desired to have a =

0.05 and /3= 0.10 for a sample size ofN= 10, then:

S = (1.960 +1.282)L = 160.96 161

A precision of S 161, in a score range of 0 to 1000, is fairly reasonable (16.1%)

although it is the worst precision among all the scenarios. This precision means that
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the statistical test, in scenario 5, cannot distinguish the difference between the

subject's score and tabu search's if it is less than 161. It is shown in Section L.3

that there is significant difference between the subject and tabu search in scenario

5, which also means that the absolute value of the sample mean was even greater

than 161. Section L .3 shows that there was significant difference between the

means in all the other scenarios as well. Thus, knowing the precision of test for any

of those scenarios is not much important as the null hypothesis is rejected.

L.2 ALL SCENARIOS COMBINED

The first test conducted, has considered all scenarios together and tested whether

there is a significant difference between the mean of the subject's score and tabu-

search's score. This test in a pair-wise comparison translates to finding the score

difference between each subject and its corresponding tabu score for that scenario,

and then testing whether this difference is zero or not.

H0: The mean difference between a subject's score and its corresponding tabu

search's score, for all scenarios combined, is zero or

IL difference = 0

H1: The mean of the score difference between subject and tabu is not zero or

Ii difference 0

The mean and the median for this sample is:

Sample mean = - 121.83

Sample median = - 106.245

First, a pair-wised t test is conducted, and the result is:

Computed t statistic = 8.1912

P-value = 9.6279E-1 1
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Since the normality assumption is not very strong and the data is skewed, two non-

parametric tests are also performed, which are less sensitive to presence of outliers

and assumption of normality. These tests are: Sign and Signed Rank test.

Sign test is based on counting the values above and below the hypothesized

median. The hypotheses for this test are:

H0: The difference between a subject's score and its corresponding tabu search's

score, for all scenarios combined, has a zero median or

Miedian difference = 0

H1: The median of the score difference between subject and tabu is not zero or

Median difference 0

For a sign test the results are:

Number of values below hypothesized median: 50

Number of values above hypothesized median: 0

Large sample test statistic = 6.92965 (continuity correction applied)

P-value = 4.24549E-12

Since the P-value for this test is less than 0.05, the null hypothesis can be rejected

at 95% confidence interval.

Signed Ranked test, on the other hand, is based on comparing the average ranks of

values above and below the hypothesized median. The hypotheses for this test are:

H0: The difference between a subject's score and its corresponding tabu search's

score, for all scenarios combined, has a zero median or

Median difference = 0
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H1: The median of the score difference between subject and tabu is not zero or

Iviedian difference 0

For a signed-rank test, the results are:

Average rank of values below hypothesized median: 25.5

Average rank of values above hypothesized median: 0.0

Large sample test statistic = 6.14914 (continuity correction applied)

P-value = 7.82 133E-10

Since the P-value for this test is also less than 0.05, the null hypothesis can be

rejected at 95% confidence interval.

Therefore all three tests unanimously reject the hypothesis that subject's score is

the same as tabu's score. Since the mean (- 121.83) and median (- 106.245) of the

difference shows that subject's score is significantly inferior, and since none of

subject's could get a score better than tabu in any scenario, it can be concluded that

the score gained by tabu is superior to the score gained by the subject.

L.3 EACH SCENARIO CONSIDERED INDEPENDENTLY

In the previous section it was concluded that in all scenarios combined, subjects'

performances were inferior to the tabu search solutions. However, chances are to

observe a different result if each scenario is looked at independently. Imagine a

scenario in which subjects had exceedingly poor performances. This result might

have a high contribution in concluding that in all scenarios combined, subjects'

performances were inferior although they might have performed well in some other

scenario(s). Therefore, the next set of statistical tests is applied to each scenario

independently. The tests and hypotheses are the same as the ones performed in all
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scenarios combined. These tests are: t-test, Sign test, and Signed Rank test. The

latter two are less sensitive to outliers and assumption of normality for residuals.

Table L.1 shows a summary of the results for each scenario independently. In all

cases, the null hypothesis was rejected at 95% confidence because P-value was less

than 0.05. Therefore, in none of the scenarios it could be proven that subjects

performed as good as tabu search. Moreover, the mean and medians in all scenarios

were negative indicating that the performance of the subject was inferior to that of

tabu search's. The raw data is also included in Table L.2.

Table L. 1 Summary of results for each scenario independently

Scen
mean

Diffr.

ivieaian

Diffr

T-iesr ign ie igneu KflK iest

Ststk. PVaI. Ststic. P-VaI. Ststic P-Vaj.

I4UU

Uypo.

1 -60.5 -40.3 -3.76 0.0045 2.846 0.0044 2.752 0.0059 Reject

2 -134.8 -103.9 -4.20 0.0023 2.846 0.0044 2.752 0.0059 Reject

3 -133.6 -117.4 -4.56 0.0013 2.846 0.0044 2.752 0.0059 Reject

4 -76.6 -33.6 -2.67 0.0256 2.846 0.0044 2.752 0.0059 Reject

5 -203.7 -117.9 -5.05 0.0007 2.846 0.0044 2.752 0.0059 Reject



Table L.2 Raw data for all scenarios

Subject Scenario L ubjects Qcore

Orig nal epaire

200

acore ue!ta

abu Repaired Tabu

1 5 570.01 577.08 685.06 -107.98

2 5 404.35 440.16 685.06 -244.90

3 5 562.84 568.05 685.06 -117.01

4 5 554.52 580.55 685.06 -104.51

5 5 557.54 566.35 685.06 -118.71

6 5 562.95 572.61 685.06 -112.45

7 5 156.36 234.65 685.06 -450.41

8 5 564.06 570.53 685.06 -114.53

9 5 253.85 360.70 685.06 -324.36

10 5 315.01 343.26 685.06 -341.80

1 4 559.85 566.28 574.66 -8.38

2 4 360.55 427.20 574.66 -147.46

3 4 554.91 559.59 574.66 -15.06

4 4 508.22 534.53 574.66 -40.13

5 4 355.84 401.70 574.66 -172.96

6 4 516.71 534.49 574.66 -40.16

7 4 269.94 299.10 574.66 -275.55

8 4 536.92 552.47 574.66 -22.18

9 4 552.33 558.06 574.66 -16.60

10 4 503.40 547.66 574.66 -27.00

1 3 308.61 328.67 456.37 -127.71

2 3 328.41 341.72 456.37 -114.66

3 3 116.11 140.51 456.37 -315.87

4 3 204.14 315.98 456.37 -140.39

5 3 163.42 180.47 456.37 -275.90

6 3 404.80 430.24 456.37 -26.13

7 3 361.79 388.33 456.37 -68.04

8 3 286.42 336.28 456.37 -120.09

9 3 382.27 391.90 456.37 -64.47

10 3 358.94 373.17 456.37 -83.20
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Table L.2 (Continued) Raw data for all scenarios

Subject Scenario
Subjects Score

Orig nal Repair.

Score Delta

aba Repaired * Tabu

1 2 499.72 520.08 581.70 -61.62

2 2 509.33 516.83 581.70 -64.86

3 2 473.02 496.96 581.70 -84.74

4 2 388.10 458.56 581.70 -123.14

5 2 400.33 427.90 581.70 -153.80

6 2 348.17 363.16 581.70 -218.54

7 2 509.73 552.48 581.70 -29.22

8 2 260.76 327.57 581.70 -254.13

9 2 538.45 549.50 581.70 -32.20

10 2 232.57 256.15 581.70 -325.55

1 1 260.68 267.61 398.45 -130.84

2 1 230.58 301.58 398.45 -96.87

3 1 359.72 374.60 398.45 -23.85

4 1 302.00 330.31 398.45 -68.14

5 1 190.70 243.28 398.45 -155.17

6 1 369.09 378.48 398.45 -19.97

7 1 351.36 385.76 398.45 -12.68

8 1 348.11 356.69 398.45 -41.76

9 1 371.93 381.50 398.45 -16.95

10 1 348.42 359.59 398.45 -38.86
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APPENDIX M: ANALYSIS OF THE TASK ATTENDANCE

(a) Task Attendance

Frequency of Attendance
Over Time for Each Task

35%

30%

25% - r
20%

15%

10%

5%

0% -,

0 1 2 3 4 5 None

Task

Average Status (SI) Over Time
for Each Task

i0--iI-Ii
Task

(b) Frequency of attendance over time (c) Average status (SL) over time

Figure M. 1 Best human performance in scenario 1 (identical CR, DR, and weight,
across tasks); score: 372



203

Task Attendance
6

oô.i-1 .0

Time (Sec)

-Task 13 -Task 1 -Task 2 -Task 3 -Task 4 Task51

(a) Task Attendance

Frequency of Attendance
Ouer Time for Each Task

3O

e 25

1 r
2O

15

lo -- --- -------
---------

Task

Average Status (SL) Over Time
for Each Task

loo
9o,-
8O'

7O

6O

5O'

JIt1ll
0 1 2 3 4 5

Task

(b) Frequency of attendance over time (c) Average status (SL) over time

Figure M.2 Worst human performance in scenario 1 (identical CR, DR, and weight,
across tasks); score: 191
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Figure M.3 Tabu performance in scenario 1 (identical CR, DR, and weight, across
tasks); score: 398
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Figure M.4 Mean of the human performance in scenario 1 (identical CR, DR, and
weight, across tasks); score: 313
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Figure M. 5 Best human performance in scenario 2 (different DR across tasks);
score: 538
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Figure M.6 Worst human performance in scenario 2 (different DR across tasks);
score: 233
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Figure M.7 Tabu performance in scenario 2 (different DR across tasks); score: 582
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Figure M.8 Mean of the human performance in scenario 2 (different DR across
tasks); score: 416
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Figure M.9 Best human performance in scenario 3 (different CR across tasks);
score: 405
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Figure M. 10 Worst human performance in scenario 3 (different CR across tasks);
score: 116
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Figure M. 11 Tabu performance in scenario 3 (different CR across tasks); score: 456
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Figure M.12 Mean of the human performance in scenario 3 (different CR across
tasks); score: 291
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Figure M. 13 Best human performance in scenario 4 (different weight across tasks);
score: 560
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Figure M. 14 Worst human performance in scenario 4 (different weight across

tasks); score: 270
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Figure M. 15 Tabu performance in scenario 4 (different weight across tasks); score:
575
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Figure M. 16 Mean of the human performance in scenario 4 (different weight across
tasks); score: 472
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Figure M. 17 Best human performance in scenario 5 (different CR, DR, and weight,
across tasks); score: 570
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Figure M. 18 Worst human performance in scenario 5 (different CR, DR, and
weight, across tasks); score: 156
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Figure M. 19 Tabu performance in scenario 5 (different CR, DR, and weight, across
tasks); score: 685
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Figure M.20 Mean of the human performance in scenario 5 (different CR, DR, and
weight, across tasks); score: 450
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APPENDIX N: SIMPLE REGRESSION ANALYSIS FOR THE
LEARNING EFFECT ACROSS THE SUBJECTS

The following graph, generated by STATGRAPHICS PLUS Version 5.0, shows
the plot of the fitted regression model to the data underlying Figure 8.10.

Plot of Fitted Model

cI7O

0
0
Co

0246810
Order

Figure N. 1 Plot of the fitted regression model to the average relative score gained
by the subjects across scenarios, and the order of subjects
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The following is the regression analysis for the fitted regression model generated

by STATORAPHICS PLUS Version 5.0.

Table N.1 Regression analysis linear model: Y a + b x X

Dependent variable: Score

Independent variable: Order

Parameter Estimate Standard Error TStatistic P-Value

Intercept 48.9333 8.02426 6.098 18 0.0003

Slope 3.08485 1.29323 2.38539 0.0442

Analysis of Variance
C .+ - C_ ...t CS t S - CS fl tS - At fl

aCt a.awaas ,.fl1t...a w a t*.*n, V Sflt

Model 785.094 1 785.094 5.69 0.0442

Residual 1103.81 8 137.976

Total 1888.9 9

Correlation Coefficient 0.644698

R-squared = 41.5636

R-squared (adjusted for d.f.) = 34.259 percent

Standard Error of Est. 11.7463

Mean absolute error = 7.93 697

Durbin-Watson statistic 2.86045 (P0.0203)

Lag 1 residual autocorrelation = -0.438723

The output shows the results of fitting a linear model to describe the relationship

between Score and Order. The equation of the fitted model is

Score = 48.9333 + 3.08485*Order
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Since the P-value in the ANOVA table is less than 0.05, there is a statistically

significant relationship between Score and Order at the 95% confidence level.

The R-Squared statistic indicates that the model as fitted explains 41.5636% of the

variability in Score. The correlation coefficient equals 0.644698, indicating a

moderately strong relationship between the variables. The standard error of the

estimate shows the standard deviation of the residuals to be 11.7463. This value can

be used to construct prediction limits for new observations.




