Laurentide ice-sheet instability during the last deglaciation

The Faculty of Oregon State University has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOI</td>
<td>10.1038/NGEO2463</td>
</tr>
<tr>
<td>Publisher</td>
<td>Nature Publishing Group</td>
</tr>
<tr>
<td>Version</td>
<td>Version of Record</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>http://cdss.library.oregonstate.edu/sa-termsofuse</td>
</tr>
</tbody>
</table>
Laurentide ice-sheet instability during the last deglaciation

David J. Ullman1,2*, Anders E. Carlson1,2*, Faron S. Anslow3, Allegra N. LeGrande4 and Joseph M. Licciardi5

Changes in the amount of summer incoming solar radiation (insolation) reaching the Northern Hemisphere are the underlying pacemaker of glacial cycles4-6. However, not all rises in boreal summer insolation over the past 800,000 years resulted in deglaciation to present-day ice volumes3,6-8, suggesting that there may be a climatic threshold for the disappearance of land-based ice. Here we assess the surface mass balance stability of the Laurentide ice sheet—the largestglacial ice mass in the Northern Hemisphere—during the last deglaciation (24,000 to 9,000 years ago). We run a surface energy balance model5,10 with climate data from simulations with a fully coupled atmosphere–ocean general circulation model for key time slices during the last deglaciation. We find that the surface mass balance of the Laurentide ice sheet was positive throughout much of the deglaciation, and suggest that dynamic discharge was mainly responsible for mass loss during this time. Total surface mass balance became negative only in the early Holocene, indicating the transition to a new state where ice loss occurred primarily by surface ablation. We conclude that the Laurentide ice sheet remained a viable ice sheet before the Holocene and began to fully deglaciate only once summer temperatures and radiative forcing over the ice sheet increased by 6-7 °C and 16-20 W m-2, respectively, relative to full glacial conditions.

Evidence for rapid mass loss in past ice sheets4,12 suggests that ice-sheet instability may be a characteristic of ice-volume hysteresis due to warming climate and associated internal feedbacks6,8,13-15. Once a forcing threshold is crossed, an ice sheet will transition to another stable state5,15,16. In the case of the Greenland ice sheet, this threshold is defined as the transition from positive to negative surface mass balance (its present surface mass balance is positive and counterbalanced by dynamic mass loss through calving)6,17. For large Quaternary glaciations, such an instability should be a climatic threshold for land-based ice sheets to ultimately disappear through a negative surface mass balance4, potentially preconditioned by ice-sheet geometry4,18-20. The gradual deglacial rise in boreal summer insolation and atmospheric CO2 concentration18,21,22 provide an opportunity to analyse whether Northern Hemisphere ice sheets exhibited threshold behaviour leading to inexorable deglaciation18,23,24. If such a threshold existed, this could explain why some intervals of rising boreal summer insolation culminated in near-complete deglaciation of the Laurentide ice sheet (LIS), whereas other insolation rises were followed by only partial deglaciation, with ice sheets persisting over Canada25-27.

We examine LIS surface mass balance stability across the last deglaciation to test for the existence of a deglacial threshold. We focus on the LIS because it was the largest of the Northern Hemisphere ice sheets and also the last to disappear4,12, meaning it was the controlling factor on when the Earth entered the current interglacial period. Deglacial climate was simulated with the NASA Goddard Institute for Space Studies atmosphere–ocean general circulation model (AOGCM) ModelE2-R at specific time periods (24, 21, 19, 16.5, 15.5, 14, 13, 11.5, and 9 thousand years ago (kyr BP)). This climate was used to force a surface energy balance model (SEBM; refs 10, 11) of the LIS with climate output from the AOGCM at these specific time slices when the LIS extent is well mapped12,23 (Fig. 1f,g) and its surface topography has been reconstructed based on the underlying substrate3-7 (Supplementary Fig. 1). The LIS reconstructions used in our SEBM are consistent with the AOGCM topography and provide a realistic representation of the low-angle southern LIS margin profile3-7 (see Methods).

Our study makes two crucial distinctions from previous simulations of deglacial LIS mass change6,8,13,15. First, we use a SEBM because it incorporates a number of variables that affect surface melt beyond just temperature (for example, net longwave/shortwave radiation, sensible/latent heat flux, energy from melting/refreezing)15,21,23. With a few exceptions5,26, previous simulations have used positive degree-day (PDD) methods that parameterize surface melt as a function of only surface air temperature6,18, PDD parameters are empirically derived from modern conditions and do not explicitly consider the direct impact of deglacial changes in insolation on surface mass balance17.

Second, we exclude transient ice dynamics in favour of using known LIS extents with static topographic reconstructions based on flow-line simulations. Although previous dynamic simulations may capture the general size and shape of the LIS (refs 6,8, 15,18,21,22), they do not resolve the topography and individual lobes of the LIS southern margin, and also do not match known intervals of deglacial LIS extent13,13,24. For both PDD and SEBM assessments of surface mass balance, such low-angle geometry that matches known LIS extents is necessary for representing the true size of the LIS ablation zone and documenting potential stability thresholds.

Therefore, it is not possible with these previous PDD-dynamic approaches to relate known deglacial LIS extents to radiative forcings to test if the LIS at a given time had a stable or a negative surface mass balance. Here, we use a known LIS extent and concurrent climate forcing to assess if the LIS would inevitably

1Department of Geoscience, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. 2College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA. 3Pacific Climate Impacts Consortium, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada. 4NASA Goddard Institute for Space Studies & Center for Climate System Research, Columbia University, New York, New York 10025, USA.
5Department of Earth Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA. *e-mail: dullman@coas.oregonstate.edu; acarlson@coas.oregonstate.edu
Figure 1 | Deglacial forcings of surface mass balance and model results. a, Map of boreal summer insolation anomalies (colour shading) relative to present. b, Atmospheric CO$_2$ concentration. c, Northern Hemisphere stack of surface temperature change from 21 kyr BP (blue shaded bar). Black diamonds show corresponding AOGCM temperature anomalies from 24 kyr BP. d, AOGCM summer (June, July, August) net surface radiation increase (from 24 kyr BP) over the LIS (red diamonds). e, AOGCM summer (JJA) surface air temperature increase (from 24 kyr BP) over the LIS (blue diamonds). f, Percentage area of LIS remaining. g, Percentage of LIS area lost relative to previous time slice (shaded grey region). h, Comparison of surface mass balance (SMB) over the entire LIS from the SEBM (blue) and PDD (red). Solid line is the median value, with shaded regions indicating the upper (95%) and lower (5%) quantiles of the simulations. i, Estimated rate of dynamical discharge (grey shading indicates uncertainty as propagated from surface mass balance results). j, Rate of LIS volume change (light blue). The vertical shaded bar indicates earliest possible timing of the transition to negative total SMB.

deglaciate at a given time period owing to negative surface mass balance. Such a negative surface mass balance provides a upper limit on the forcing threshold for deglaciation. By evaluating LIS surface mass balance and volume change, we can also infer the component of mass change due to dynamic discharge.

Our deglacial ModelE2-R simulations compare well with reconstructions of deglacial Northern Hemisphere temperature (Fig. 1c), suggesting that our time-slice approach captures much of the deglacial hemispheric temperature change. ModelE2-R contains water isotope tracers that agree with past δ18O records, suggesting that the AOGCM also captures general changes in the hydrologic cycle (Supplementary Fig. 2 and see Methods). At 24 and 21 kyr BP, our surface mass balance results are consistent with the range of previous SEBM results for the last glacial maximum. Despite a gradual increase in radiative forcing (Fig. 1a,b) and attendant warming over the LIS from 24 to 9 kyr BP (Fig. 1d,e), the simulated LIS surface mass balance remains positive from 24 to 11.5 kyr BP, with an increase to peak surface mass balance at 15.5 kyr BP (Figs 1h and 2a). After 15.5 kyr BP, surface mass balance declines, reaching negative values by 9 kyr BP (Figs 1a and 2a). This transition to negative surface mass balance by 9 kyr BP occurs after only a small additional increase in surface radiative forcing and temperature from 11.5 kyr BP relative to the full deglacial forcing change. Although bias in the AOGCM forcings is probably minimal (Fig. 1c), a slight shift in the timing of this transition is possible, but would still have probably occurred between 11.5 and 9 kyr BP (see Methods).

Using the surface temperature from ModelE2-R over the same LIS topography, we estimate surface ablation using a PDD scheme with a range of scaling and refreezing factors from previous LIS simulations (Fig. 2b and see Methods). The deglacial trend in PDD surface mass balance exhibits a more linear decrease across the deglaciation, without the positive mass balance peak at 15.5 kyr BP. The PDD surface mass balance never becomes negative (except under extreme PDD scaling factors; see Methods), implying the need for substantial dynamic discharge throughout the entire deglaciation to account for deglacial changes in ice volume. Even when the LIS is mainly land-based, the PDD scheme simulates that the LIS would never deglaciate through surface ablation, in conflict with observations. These large differences in deglacial surface mass balance trend suggest that the direct influence of the evolving shortwave and longwave radiation is an important forcing, which was not included in previous PDD simulations.
are sufficient to offset accumulation as total surface mass balance becomes negative (Fig. 1b). Before 13 kyr BP, the northwest sector was probably balanced by dynamic discharge to the Arctic Ocean26. The surface mass balance for the Hudson Bay (HB), Baffin Island (BI) and Newfoundland (NL) sectors were largely in equilibrium with climate across the entire suite of simulations, requiring only small dynamic losses to offset accumulation (Figs 2 and 3).

Positive surface mass balance for the entire LIS until after 11.5 kyr BP suggests that dynamical losses were responsible for much of the LIS retreat4,19,21,28 and ~60% of total mass loss up to the Holocene. From 24 to 19 kyr BP, we estimate a dynamical discharge loss of 700–2,500 Gt yr−1 (95% confidence) to counterbalance surface mass accumulation and account for associated LIS volume change (Fig. 1i), which is in the range of the modern dynamical loss from Antarctic ice sheets (~1,800–2,400 Gt yr−1; ref. 17) over a similar length of marine-terminating margin23. The most positive surface mass balance modelled at 15.5 kyr BP implies a dynamic loss of 3,900–4,200 Gt yr−1, which is roughly concurrent with increased LIS iceberg calving during Heinrich event 1 (refs 12,28), although we did not attempt to simulate that event with our climate forcing. The negative surface mass balance at 9 kyr BP in our model may still require dynamical loss of ~1,500 Gt yr−1. This reduction in dynamical loss coincides with the LIS pullback from the ocean after ~11.5 kyr BP (from ~40% marine-terminating to ~15%; ref. 23) and associated evidence for a reduction in ice streaming29.

Only ~40% of the LIS area loss had occurred by the Holocene23 (Fig. 1f) despite 40–60 W m−2 of rising boreal summer insolation (Fig. 1a) and ~80 ppm increase in atmospheric CO2 (Fig. 1b). The transition from positive surface mass balance to negative surface mass balance between 11.5 and 9 kyr BP (Fig. 1h), with no abrupt change in surface forcings (Fig. 1d,e), suggests a threshold was crossed in LIS surface mass balance stability. Following this transition, dynamic influences may have been important in the collapse of ice over Hudson Bay around ~8.2 kyr BP, but this LIS volume reduction was still probably initiated by surface ablation11,15. The transition to negative surface mass balance by 9 kyr BP is correlated with an acceleration in LIS retreat (Fig. 1g), corroborating the timing of surface mass balance transition in our SEBM results. Much of the LIS retreat occurred in the Holocene at rates two to five times faster than before ~11.5 kyr BP (Fig. 1g), which we simulate to be driven by intensified surface melting.

Our detection of a threshold in LIS surface mass balance has implications for what climate forcing is required to drive a full deglaciation1–4,15. Although the latitudinal extent and geometry of the LIS may provide an important precondition for deglaciation possibly driven by dynamic discharge4,11,18,21,28, our results suggest that full LIS deglaciation would only occur once the combined orbital and greenhouse gas forcing reached peak early Holocene levels, potentially providing a upper limit on this climate threshold15,16. Our simulations show that this upper-limiting threshold is a summer surface radiative forcing increase of 16–20 W m−2 and summer temperature increase of 6–7 °C over the LIS (Fig. 1d,e) relative to full glacial conditions. Because not all Holocene-like changes in orbital forcing lead to interglaciations3–4, internal forcing from atmospheric CO2 may then be the critical differentiator as to whether or not a full deglaciation occurs. However, the mechanisms that caused the rise in atmospheric CO2 to ~260 ppm during the last deglaciation, or previous deglaciations, are poorly established at present25,27,28. Nevertheless, our results suggest a two-phased LIS retreat pattern during the last deglaciation, with initial mass loss due to dynamic discharge followed by an unstable surface mass balance-driven retreat during the early Holocene.

Methods

Methods and any associated references are available in the online version of the paper.
Received 15 December 2014; accepted 15 May 2015; published online 22 June 2015

References

5. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last glaciation. Nature 484, 49–55 (2012).

Acknowledgements

United States National Science Foundation awards AGS-0753660 (A.E.C.), AGS-0753868 (A.N.L.), and the National Aeronautics and Space Administration supported this research.

Author contributions

Correspondence and requests for materials should be addressed to D.J.U. or A.E.C.

Additional information

Supplementary information is available in the online version of the paper. Reprints and permissions information is available online at www.nature.com/reprints.

Competing financial interests

The authors declare no competing financial interests.
performs fairly well, within 1 s.d. of the median value of observed climate performance on snow/ice albedo feedbacks. Here ModelE2-R outperforms nearly all CMIP5 models for temperature and available, ModelE2-R performs in the ‘middle of the pack’ amongst all Coupled and deep ocean temperature were all less than 0.03 ◦C per century. Even though we apply this equilibrium approach across a transient de-glaciation, our simulations compare favourably with the reconstruction of Northern Hemisphere temperature (Fig. 1c). Because we force our surface mass balance model (see below) directly with AOGCM output, it is necessary to evaluate the general bias in the climate simulations. For the historical period, where direct climate measurements are available, ModelE2-R performs in the ‘middle of the pack’ amongst all Coupled Model Intercomparison Project Phase 5 (CMIP5) models for temperature and precipitation. Perhaps more relevant for an examination of the de-glaciation is its performance on snow/ice albedo feedbacks. Here ModelE2-R outperforms nearly all of the CMIP5 models6,5. For general climate sensitivity, ModelE2-R also performs fairly well, within 1 s.d. of the median value of observed climate sensitivity, calculated over the past 50 years48. For North America specifically, ref. 45 provides a overview of the performance of all CMIP5 models. The biases in temperature and precipitation for ModelE2-R show a winter −0.33 ◦C and summer −0.64 ◦C over all North American temperature bias, with northeastern Canada having a positive 1 ◦C winter and 0.79 ◦C summer bias. The precipitation bias over this area is 15% in winter and 11% in summer. These values place ModelE2-R in the mid-range for biases. It would be an interesting experiment to apply these biases and see how the LIS surface mass balance results are influenced. However, it is not clear that during the de-glaciation period that the biases would be the same; the jet stream is displaced southwards during the de-glaciation and specific humidity is overall lower. Positive temperature and precipitation biases would probably counteract one another (slightly cancel) in changing equilibrium line altitude (ELA). Assessing model bias across the de-glaciation is more difficult as we are limited to comparisons with reconstructions and proxy measurements. Nevertheless, we believe that our ModelE2-R results provide a fairly accurate assessment of the de-glacial temperature and hydrologic change, as indicated by our comparisons with the ref. 5 Northern Hemisphere temperature reconstruction (Fig. 1c). The inclusion of water isotope tracers in ModelE2-R allows direct comparison with proxy measurements of δ18O in precipitation from ice cores and speleothems. We specifically select only those δ18O records that span the entire de-glaciation (see Supplementary Table 1). Model tracers match the general patterns in δ18O of precipitation (δ18Oa) from proxy records (refs 46–58, Supplementary Fig. 2). The notable exception is the 9 kyr BP simulation, showing a lack of significant correlation between model and data δ18O anomalies. We believe that there may be three reasons explaining this lack of correlation. The first issue is the low signal-to-noise ratio for Holocene δ18O anomalies. For most records, the difference in δ18Oa between 9 kyr BP and the present is small. The second potential bias in the model or error in proxy measurements could switch the direction of change (positive or negative), providing a negative impact on model–data correlation. Second, three of the records in our δ18Oa database come from Greenland ice cores. Each of these data records have a slight positive anomaly in δ18Oa at 9 kyr BP, whereas our simulations show a slight negative anomaly. However, in our ice-sheet boundary conditions in the AOGCM, we use ICE-5G (refs 35,59) for all time periods. Recent work has significantly revised the Greenland ice-sheet topography in the early Holocene, which could explain some of the offset between model and data at these sites. Third, a number of our other observational sites that do not correlate well with the model at 9 kyr BP actually occur near shifts in the positive/negative δ18O anomaly front. A shift in this front by less than a few hundred kilometres in the model may have provided a better correlation. Many of these sites have complex surrounding topographies, which may drive such local edge effects not captured in our model. The smaller δ18O anomalies at 9 kyr BP again make it difficult to capture the signal as compared with the earlier time periods with larger global climate change. Surface energy balance model. The equilibrium output from each time-slice simulation was used to force the surface energy balance model (SEBM) of ref. 10, using the downscaling method of ref. 11 onto 10 km × 10 km grids of LIS topography for each time slice (Supplementary Fig. 1)41. The use of this SEBM is advantageous over the standard positive degree-day (PDD) methods6,10 by incorporating more of the climate-driven surface processes that complicate surface mass balance, particularly those related to the resolution of refreezing rates at the surfaceaining. The SEBM can be adjusted with variables from different ice-conditioned surfaces, such as snow/ice roughness and temporal changes of albedo through a melt season. We assign these variables to match the range of observations from the Greenland and Antarctic ice sheets1,42–44. We then conducted 1,000 Monte Carlo simulations for each time slice to assess the range of parametric uncertainty in surface mass balance due to variability in the SEBM sensitivity parameters. The uncertainty range in SEBM results is expressed as the upper and lower 95% quantiles of the distribution of results from those experiments (Fig. 1h). This range of surface mass balance estimates is used to infer the range of possible dynamical discharge amounts (also upper and lower 95% quantiles) by subtracting the surface mass balance estimates from the rate of change in volume across the LIS reconstructions52 (Fig. 1j). The SEBM results are dependent on model resolution, as lower-resolution reconstructions of the ice-sheet topography can lead to large jumps in the area extent above or below the equilibrium line. A previous study using lower-resolution AOGCM output to force an earlier version of our surface mass balance model found that the ice-sheet resolution (from 100 km down to 10 km) did not have an effect on total surface mass balance at 9 kyr BP (ref. 11). However, given updates to the surface mass balance model to better simulate a realistic equilibrium line altitude, as well as a diverse array of ice-sheet geometries across LIS, we conducted a series of resolution tests at each time slice using a fixed set of the model’s sensitivity parameters and found that the SEBM results did not stabilize until resolutions of 10 km (Supplementary Fig. 3), allowing us to select the optimal resolution to be 10 km. Owing to the high computational expense at this resolution, we also ran simulations at 50 km resolution as an initial test of the SEBM and Monte Carlo approach. When we include our model uncertainty (expressed as the range of results from our Monte Carlo simulations), the results at 10 and 50 km resolution are nearly consistent across all time slices (Supplementary Fig. 4). This match in the results from different resolutions suggests that although for a given set of SEBM parameters there may be large differences in the resulting surface mass balance until resolutions of 10 km and higher (Supplementary Fig. 3), the parametric uncertainty included in our Monte Carlo approach spans the effects of resolution uncertainty. The SEBM has a base albedo that is exposed when all snow melts on the surface. This base albedo approaches 0.85 and 0.45 above and below the equilibrium line, respectively. We prescribe an initial ELA at 45◦N using a linear trend in ELA from 2,000 m at the last glacial maximum to 3,000 m at 11.5 kyr BP, as suggested by cirque elevations from the American Rockies46–50. These values are for initialization as the effective snowline evolves in the SEBM with changes in conditions over the melt season. Given the large latitudinal extent of the LIS, we also assign a latitudinal dependence of −150 m per degree latitude in the initial ELA to match similar trends across Cordilleran glaciers and the Greenland ice sheet51,52. We tested the impact of GISS ModelE-R bias in our SEBM forcings by applying perturbations of ±1 ◦C in surface air temperatures and ±15% for precipitation, for a median set of SEBM sensitivity parameters. This uniform perturbation does impact the overall magnitude of the surface mass balance, but the general de-glacial
trend is maintained (Supplementary Fig. 5). Particularly, surface mass balance does not reach values that are more negative than the last glacial maximum (LGM) conditions (24–19 kyr BP) until after 11.5 kyr BP in each of these perturbed runs. To the extent that the LGM ice sheet was nearly stable at the LGM, such negative anomalies from the LGM state provide a consistent transition in the LIS surface mass balance, regardless of SEBM forcing bias from GISS ModelE-R. However, we show these results only to demonstrate that even extreme AOGCM bias would not affect our final conclusions. We also choose not to include such forcing bias in our final assessment of surface mass balance because such perturbations are slightly arbitrary, any model bias is unlikely to have been spatially and temporally uniform across the AOGCM array. For all these simulations, and such temperature/precipitation forcing perturbations are not in equilibrium with the LIS topographic boundary conditions as in our standard simulations.

We calculate regional surface mass balance (SMB) averages to determine the sectors of the LIS that dominate surface mass loss/gain. These regions were assigned using topographic divides in the LIS reconstruction to separate ice drainage areas, as shown in Supplementary Fig. 1.

Positive degree-day (PDD) calculations. To compare our SEBM with the tradition PDD ablation methods used in previous studies of LIS mass balance, we apply a modified PDD scheme that was developed for the Greenland ice sheet
data, using daily AOGCM output (temperature, precipitation, and evaporation) lapsed to a LIS topography at 50 km resolution. The PDD surface mass balance (SMB) at each grid point \((i, j)\) is calculated as:

\[
\text{SMB}_i^j = P_i^j - E_i^j - \text{PDD}_{\text{melt}}(i, j)
\]

and

\[
\text{PDD}_{\text{melt}} = \begin{cases} 0, & \text{SAT} \leq 273.15K \\ f_{\text{melt}}(\text{SAT}_i^j - 273.15) + f_{\text{melt}}(\text{SAT}_i^j - 273.15) & \text{SAT} > 273.15 \\ \end{cases}
\]

where \(P\) is precipitation, \(E\) is evaporation, \(f_{\text{melt}}\) is the degree-day factor for bare ice [applied only over areas where snow depth (that is, snow water equivalent, SWE) is less than 1 mm], \(f_{\text{snow}}\) is the degree-day factor for areas of snow cover (SWE \(\geq 1 \text{ mm}\)), \(r_i\) is the degree-day factor for bare ice (SWE \(\geq 1 \text{ mm}\)), \(r_i\) is the degree-day factor for snow (SWE \(\geq 1 \text{ mm}\)), \(r_i\) is the degree-day factor for snow (SWE \(\geq 1 \text{ mm}\)), \(r_i\) is the degree-day factor for snow (SWE \(\geq 1 \text{ mm}\)), \(r_i\) is the degree-day factor for snow (SWE \(\geq 1 \text{ mm}\)), \(r_i\) is the degree-day factor for snow (SWE \(\geq 1 \text{ mm}\)), and \(\text{SAT}\) is SAT minus 273.15K.

At 14 kyr BP, the ICE-5G simulation results in a surface mass balance that overlaps with the standard (ref. 24) simulation (1,300–2,200 Gt yr\(^{-1}\) and 700–1,800 Gt yr\(^{-1}\), respectively), but the lack of ablation along the southern margin in the ICE-5G simulation again leads to the slight increase in overall surface mass balance (Supplementary Fig. 7). In addition, the 14 kyr BP ICE-5G simulation has a region of ablation north of Lake Superior away from the margin. Were it not for this unlikely ablation zone, the ICE-5G surface mass balance would again be substantially higher than our standard (ref. 24) 14 kyr BP simulation. As surface melt across the fairly narrow low-elevation ablation zones provides the dominant control on overall surface mass balance losses (see text), proper ice-marginal resolution is necessary to adequately simulate LIS surface mass balance and its evolution throughout deglaciation. The southern margin resolution in ICE-5G is much too coarse to capture this necessary spatial variability in surface mass balance.

Code availability. The code used in the surface energy balance model is available in the Supplementary Information.

References

