Steven C. Lovejoy for the degree of Master of Science in Mechanical Engineering presented on June 16, 1989.

Title: Design and Analysis of a High Speed Dynamic Tow Carriage
Redacted for Privacy
Abstract approved: \qquad
C.E. Smith

A need exists to develop a high speed dynamic tow carriage used to motivate hydrodynamic specimens through a fluid environment. It is desired to simulate high Reynolds number unsteady flow about the specimen by towing the specimen through the fluid. The fluid environment is to be provided by the existing uni-directional wave tank at 0.H. Hinsdale Wave Research Laboratory at Oregon State University. This paper is both a feasibility study and a conceptual design of the dynamic tow carriage.

The first part of this paper develops a first order theoretical model of the dynamic tow carriage. The model has four main components, 1) the carriage/specimen model, 2) the wire rope model, 3) the idler pulley model, and 4) the driver pulley model. The carriage/specimen is modeled as a large point mass with viscous damping. Power is input to the driver pulley which transfers the power to the wire rope. The wire rope is modeled as linear springs with discretized mass and structural damping. The wire rope then transfers power to the carriage/specimen to propel it along the length of the wave tank.

The second half of this paper develops a conceptual design of the system. Theoretical results from the system model are interpreted and used for design parameters for each component of the real system. The carriage/specimen structure is a 5.5 m long 3.7 m wide light weight yet rigid space frame made of aluminum tubing. This component was designed using finite element techniques for both a static and vibrational analysis. The carriage is supported and guided by rigid linear motion bearings that nearly span the length of the wave tank. Power is supplied by a 400 kW hydrostatic drive to a 1.5 m diameter driver drum with enough stored cable to pull the carriage through 60 m oscillations.

The analysis and design suggest that the 1000 Kg carriage/specimen structure can be driven to velocities exceeding $17 \mathrm{~m} / \mathrm{s}$ and accelerations on the order of gravity. For cylindrical tow specimens having a length of 3.4 m and a diameter ranging from 2 to 600 mm a maximum Reynolds number equal to 4×10^{6} and Kuelegan Carpenter parameter equal to 8×10^{3} appear feasible.

Design and Analysis of a
 High Speed Dynamic Tow Carriage

by
Steve C. Lovejoy

A THESIS
submitted to
Oregon State University
in partial fulfillment of
the requirements for the degree of

Master of Science

APPROVED:

Redacted for Privacy

\qquad
Professor of Mechanical Engineering in charge of major Redacted for Privacy

Head of Department of Mechanical Engineering
Redacted for Privacy
Dean of Graduate School V

Date thesis is presented: June 16th, 1989

Typed by the author for: Steven C. Lovejoy

Acknowledgement

I would like to thank Prof. Charles Sollitt for his enduring support and enthusiasm. I also greatly appreciate the infinite patience and wisdom of Cheryl Zedwick and Laurie Broderick.

TABLE OF CONTENTS

1.0 Introduction 1
1.1 Background 1
1.2 Purpose 3
1.3 Scope 3
2.0 Tow Carriage System Analysis 8
2.1 System Model 8
2.2 System Equations 13
2.3 System Dynamics 34
2.3.1 Carriage/Specimen Forces 34
2.3.2 Power Calculations 40
3.0 Tow Carriage System Behavior 46
3.1 Parameter Quantification 46
3.2. Applications of the System Model 73
3.2.1 Kinematics 75
3.2.2 Dynamics 84
3.2.3 Maximum Performance Selection 112
3.3 Free Vibration Analysis of System Model 115
4.0 Tow Carriage Structural Analysis and Design 122
4.1 Carriage Structure Performance Requirements 122
4.2 Description of the Carriage Structure Design and Model 124
4.3 Material selection for the carriage structure 126
4.4 Description of the Finite Element Model of the Carriage Structure 127
4.5 Static Analysis of the Finite Element Model 133
4.6 Modal Analysis of Carriage Frame 138
5.0 Conceptual Design of the Tow Carriage System 151
5.1 Conceptual Layout of System 151
5.2 Guide Rail and Support Structure 151
5.3 Power Train 163
5.4 Primary Idler Pulley 175
5.5 Secondary Idler Pulley 176
5.6 Total System Cost Estimation 182
6.0 Conclusions 187
6.1 Summary 187
6.2 Conclusions 187
6.3 Recommendations for Future Studies 189
REFERENCES 191
APPENDIX A Program Towplot 192
APPENDIX B Program Toweigen 196
APPENDIX C ANSYS Input/Output Files 203
APPENDIX D Calculation of K6 269

LIST OF FIGURES

Figure Page
1.1 Drag force 6
1.2 Added mass 6
1.3 System layout 7
2.1.1 System model 9
2.1.2 Carriage/specimen model 11
2.1.3 Wire rope mode 1 11
2.1.4 Driver pulley model 12
2.1 .5 Idler pulley model 12
2.2.1 FBD of driver pulley model 16
2.2.2 FBD of node 2 16
2.2 .3 FBD of node 3 20
2.2 .4 FBD of Idler pulley model 20
2.2 .5 FBD of node 4 21
2.2 .6 FBD of node 8 21
2.2.7 FBD of node 9 21
2.2.8 FBD of node 10 21
2.2 .9 Phasor diagram of kinematic response 26
2.2.10 Kinematic phasors at various positions of the cycle 32
2.2.11 Matrix representation of system equations 33
2.3.1 Instantaneous power requirement response 45
3.1.1 X-chart for wire rope lay selection 48
3.1 .2 System sensitivity to wire rope size 53
3.1 .3 Reduced wire rope model 54
3.1 .4 Response of linear damped free vibration 55
3.1 .5 Log decrement of wire rope versus tension 57

LIST OF FIGURES (Continued)
Figure Page
4.5.1 Stress output of finite element model 134
4.6.1 Participation factors in X-direction 141
4.6 .2 Effective masses in X-direction 141
4.6.3 Mode shape at 19.467 Hz 142
4.6.4 Participation factors for Y-direction 143
4.6.5 Effective masses for Y-direction 143
4.6.6 Mode shape at 8.077 Hz 144
4.6.7 Mode shape at 40.44 Hz 145
4.6.8 Participation factors for Z-direction 146
4.6.9 Effective masses for Z-direction 146
4.6.10 Mode shape at 31.75 Hz 147
5.1.1 Layout of system components 152
5.2.1 Load versus friction relationship for linear bearings 154
5.2.2 Typical cross-section of rail support 158
5.2.3 Typical length-section of rail support 159
5.2.4 Typical cross-section of cable side rail support 160
5.2.5 Exploded view of cable guide 161
5.2.6 Typical length-section of cable side guide rail 162
5.3.1 Cable guide frame 165
5.3.2 Individual cable guide 165
5.3.3 Simplified schematic of servovalve controlled motor 166
5.3.4 Torque response of servovalve controlled motor 166
5.3.5 Simplified schematic of secondary controlled hydrostatic drive 168

LIST OF FIGURES (Continued)

Figure Page
5.3.6 Torque response of secondary controlled hydrostatic drive 168
5.3.7 Top view of conceptual layout of drive train 173
5.3.8 Side view of conceptual layout of drive train 174
5.4.1 Primary idler carriage design 177
5.4.2 Exploded view of primary idler carriage rail bearing 178
5.4.3 Conceptual design of primary idler pulley 179
5.5.1 Top view of secondary idler pulley 180
5.5.2 Side view of secondary idler pulley 181

LIST OF TABLES

Table Page
3.1.1 Physical parameters of the tow carriage model 47
3.1.2 Wire rope mass and strength 48
3.1.3 Wire rope modulus of elasticity 49
3.1.4 Stiffness and mass values for wire rope model 53
3.1.5 Summary of driver pulley rotational inertia calculation 64
3.1.6 Drum to cable diameter ratio 66
3.1.7 Summary of idler pulley model parameter quantification 68
3.1.8 Summary of carriage/specimen model parameter quantification 71
3.2.0.1 Summary of performance parameters 74
3.2.3.1 Summary of maximum performance selection 114
3.3.1 Natural frequencies and periods of undamped system 121
4.5.1 Summary of reaction forces on carriage structure 136
4.6.1 Vortex shedding frequencies of circular cylinders 149
5.2.1 Manufactures data on THK linear motion bearings 155
5.3.1 Summary of performance characteristics of servovalve controlled motors and secondary control hydrostatic drives 169
5.3.2 Operating range of driver drum 172
5.6.1 Cost estimation of total system 185

LIST OF APPENDICES FIGURES

Figure Page
D-1 FBD of hydraulic cylinders 269

Symbol	Description
a	Numeric constant
A	Square matrix Section (2.2)
A	Reference area Sections (2.3-3.1)
b	Numeric constant Sections (2.2-2.3)
b	Length Section (3.1)
B	Column matrix
c	Numeric constant Section (2.3)
C	Damping coefficient equations (3.1.7,3.1.9,3.1.11,3.1.12)
C	Chord length when associated with airfoils
C_{c}	Damping coefficient of wire rope model
$\mathrm{C}_{\text {eff }}$	Damping coefficient of carriae/speciman model
$c_{\text {x }}$	Critical damping coefficient
C_{6}	Damping coefficient of idler pulley model
${ }_{\text {c }}^{\text {A }}$	Rotational damping coefficient
C	Drag coefficient Section (2.3)
C	Basic dynamic load rating Section (5.2)
$C_{\text {d }}$	Non-l inear drag coefficient
C_{i}	Inertial coefficient
d	Diameter
D	Diameter
DF	Drag force
$D F_{\text {max }}$	Maximum drag force per cycle
DOF	Degree of Freedom
e	Exponential function
E	Modulus of elasticity
E	Bulk modulus of elasticity
EM	Effective mass
F	Force
F_{0}	Drag force
Fi	Inertial force
$\mathrm{F}_{\mathrm{R1-2}}$	Reaction forces
$\mathrm{F}_{\mathrm{s} 2}$	Static preload force
$F_{x}^{\text {s2 }}$	Force in X-direction
$F^{\text {x }}$	Force in Y-direction
F_{z}	Force in Z -direction
F_{1-9}	Nodal forces
H_{s}	Static tension in cable
$\mathrm{i}^{\text {s }}$	Square root of -1
I	Rotational moment of inertia
I_{1}	Rotational inertia of driver pulley model
I_{1}	Maximum area inertia
I_{2}	Rotational inertia of idler pulley model
$\mathrm{I}_{1}{ }^{2}$	Minimum area inertia Inertial force
$1 \mathrm{~F}_{\text {max }}$	Maximum inertial force per cycle
J	Polar moment of inertia

Symbol	Description
k	Spring constant
k_{c}	Spring constant of wire rope model
k_{v}	Virtual spring constant
k_{6}	Spring constant of idler pulley model
K	Stiffness matrix
1	Stroke length of hydraulic cylinder
1 s	Average stroke length
$L_{\text {Ls }}$	Half span of cable Equation (3.1.1)
L	Length Equations (3.1.3,3.1.4)
L_{c}	Length of circular cylinder Figure (3.1.10)
L_{N}	Nominal bearing life Section (5.2)
Lh	Service life time of bearing
m	Mass
m_{c}	Mass of wire rope model
m_{s}	Structural mass of carriage
$\mathrm{m}_{\text {S }}$	Total mass of carriage/specimen model
m_{6}	Mass of idler pulley model
M	Moment
M	Mass matrix
$M_{\text {A }}$	Bearing moment
M_{B}	Bearing moment
M ${ }_{\text {c }}$	Bearing moment
M_{x}	Moment in X-direction
M_{4}	Moment in Y-direction
M_{z}	Moment in Z-direction
n	Index
	Strokes per minute
P	Instantaneous power Section (2.3)
P	Bearing load Section (5.2)
$\mathrm{P}_{\text {ave }}$	Average power per cycle
P_{D}	Power due to drag
$P_{\text {max }}$	Maximum power per cycle
$P F^{\text {max }}$	Participation factor
r	Inner radius
R	Outer radius
R_{1}	Radius of driver pulley model
R	Radius of idler pulley model
sby	Stress due to bending in y -direction
sbz	Stress due to bending in z-direction
sdir	Stress due to axial loading
sigl	Maximum stress
sig3	Minimum stress
t	Time Chapter (2)
t_{n}	Thickness Chapter (3)
$\mathrm{T}^{\text {h }}$	Drive torque Section (2.2)
T	Drive torque
T_{M}	Motor torque
$T_{\text {Max }}$	Maximum torque
$U^{\text {Max }}$	Displacement function

Symbol	Description
U	Displacement amplitude
V°	Velocity Chapter (2-4)
V_{r}	Volume displacement per revolution
$V_{\text {max }}{ }^{\text {r }}$	Maximum velocity per cycle
W	Unit weight
W	Width
x	Displacement
\dot{x}	Velocity
$\ddot{\mathrm{x}}$	Acceleration
χ_{1-11}	Nodal displacements
$\dot{\chi}_{1-11}$	Nodal velocities
$\ddot{\chi}_{1-11}$	Nodal accelerations
$\delta{ }^{1-1}$	Log decrement
Δ	Used as a prefix to denote a change
η	Efficiency factor
θ_{1}	Displacement of driver pulley model
θ_{2}	Displacement of idler pulley model
θ_{1}	Velocity of driver pulley model
θ_{2}	Velocity of idler pulley model
$\ddot{\theta}_{1}$	Acceleration of driver pulley model
θ_{2}	Acceleration of idler pulley model
${ }^{2}$	Friction factor
ξ	Damping ratio
ρ	Density
$\rho_{\text {stee }}$	Density of steel
σ	Pressure
Σ	Summation
τ	Period
$\tau_{\text {d }}$	Damped natural period
$\tau_{\text {res }}$	Resonant period
$\tau_{\text {ud }}$	Undamped natural period
ϕ	Phase angle Drive torque phase angle
ϕ_{1}	Driver pulley displacement phase angle
ω	Angular frequency
$\omega_{u d}$	Undamped natural frequency
\forall	Displaced volume

Design and Analysis of a High Speed Dynamic Tow Carriage

1.0 Introduction

1.1 Background

Wave loads on ocean and coastal structures may be physically modeled in three ways:

1) fix a model structure in a wave basin and propagate scaled waves past the model
2) fix a model in a U-tube and simulate the wave kinematics with unsteady U-tube oscillations
3) attach the model to a towing device and move the model through still water at the same relative motion as a wave would establish between a fixed structure and a wave induced velocity field.

The first method best reproduces pressure gradients and free surface effects in addition to modeling depth dependent kinematic and dynamic gradients. The second method simulates local loads at any depth but distorts pressure gradients, does not reproduce free surface conditions and cannot simulate random wave loading. The third method does not reproduce the superimposed wave kinematic and dynamic gradients but can be designed and operated to reproduce local relative kinematics exactly and can simulate random as well as periodic motion. Because local kinematics are essential for drag and inertial loading, the third method is the better approximation to the first method.

Wave loads are known to be Reynolds number dependent, i.e., drag and inertial loads scale differently in different models. Most offshore

Wave loads are known to be Reynolds number dependent, i.e., drag and inertial loads scale differently in different models. Most offshore structures are fabricated from cylindrical components. Generally, cylindrical drag coefficients attain a relative minimum and inertial coefficients attain a relative maximum at Reynolds numbers near 5 x 10^{5}, as shown in Figs. 1.1 and 1.2. Steady flow results (Roshko, Fig. 1.1) suggests that drag coefficients may become constant beyond the super critical range of Reynolds numbers at approximately 3×10^{6}. It is to be concluded that simulated wave loads must observe Reynolds similarity for prototype Reynolds numbers less than or equal to 3 x 10^{6}.

Typical prototype ocean design conditions involve structure members on the order of 10 ft . in diameter and velocities on the order of 10 $\mathrm{ft} / \mathrm{sec}$ yielding Reynolds numbers in excess of 10^{7}. It is clear that large scale facilities are required to simulate these wave conditions.

The O.H. Hinsdale Wave Research Laboratory at Oregon State University is the largest research quality wave testing environment in the United States. Reynolds numbers on the order of 5×10^{5} can be simulated in this laboratory with water depths to 11.5 ft and breaking wave heights to 5.0 ft . In the Netherlands and West Germany, two laboratories can produce waves approximately 25% larger than at OSU. In order to generate waves at Reynolds numbers approaching 5×10^{6}, the OSU facility size would need to be increased by a factor of 4.64. Costs increase with the square to cube of the size, depending upon whether the basin is proportionately scaled. Accordingly, constructing a laboratory to achieve wave scales at Reynolds numbers approaching 5 x
10^{6}, would require investments at 21.5 to 100 times the cost of the OSU facility. In today's dollars, this would amount to an investment between 64 and 300 million USA dollars. The alternative to constructing a wave laboratory is to simulate large Reynolds number waveloading with a dynamic tow carriage. As will be shown in this research study, a feasible dynamic tow carriage can be constructed to achieve Reynolds numbers greater than 3×10^{6} at a cost of much less than one million USA dollars. It is clear that economic incentives exist to pursue this method of waveload simulation.

1.2 Purpose

The purpose of this research study is to demonstrate that a dynamic tow carriage is feasible and to develop a conceptual design. The function of the design is to illustrate the feasibility analysis and is not necessarily a final design for the optimum dynamic tow carriage.

The conceptual design consists of a lightweight yet rigid space frame used to support a hydrodynamic tow specimen. The frame or carriage is rigidly supported by high speed, low friction linear motion bearings that allow the carriage and specimen to move along the length of the wave channel. The carriage/specimen is propelled by a cable/pulley/drum reeving which in turn is powered by a hydrostatic drive system. A mathematical model of the tow carriage system predicts the carriage and specimen can be driven to speeds in excess of 55 $\mathrm{ft} / \mathrm{sec}$ and accelerations of 1 g over a 200 ft stroke. With cylindrical test specimens having a length of 11 ft and diameter ranging from 1 in to 2 ft Reynolds numbers near 4×10^{6}
and Keulegan Carpenter parameters in excess of 8×10^{3} appear feasible.

1.3 Scope

This study is divided into five main sections:

1) development of a mathematical model to characterize tow carriage system behavior
2) application of the model to evaluate alternative carriage system components
3) developement and application of a dynamic structural analysis of alternative tow carriage frames
4) sizing and specifying all system components
5) summary of the major components of a feasible tow carriage system.

The mathematical model of the dynamic tow carriage system is a first order representation of the real system. The carriage and specimen are modeled by a large point mass allowed one degree of freedom with linear drag forces and added mass associated with the submerged tow specimen. The cable is modeled by series connected descretized mass with linear springs and dashpots. Driver and idler pulleys are modeled as frictionless circular cylinders with mass and rotational inertia.

System parameter response and sensitivity are analyzed to select the appropriate values for a numerical simulation of system operation. Output performance parameters such as forces, power, and resonance are interpreted to select conceptual design components.

The carriage structure is designed using a finite element model for both static and vibrational analyses. The hydrostatic drive is
designed to provide a broad power range accommodating both high load \backslash low speed and low load \backslash high speed operating conditions. The carriage guide rails are selected to provide very rigid support with low friction.

The final design consists of a 11 ft by 18 ft aluminum tow carriage weighing 2,200 lbs with a load capacity of over 11,000 1bs. The specimen and supporting carriage ride on linear motion bearings which span either side of the wave channel. The cable attaches to one side of the carriage and is spooled on a driver drum with three idler pulleys in series to complete the continuous cable loop. A 700 hp electric motor supplies power to a two pump, four motor hydrostatic drive which powers the driver drum. The major tow carriage system components are identified in Fig. 1.3.

Draģ coefficient vs. Reynolds Number for Free Stream Flow condition. (e/D $=6 \mathrm{for}$ oscillating cylinder data and $\mathrm{e} / \mathrm{D}=3$ for wave force data.) Yamamoto \& Nath, 19.6

Figure 1.1 Drag coefficient

Added Mass coefficient vs Reynolds Number for Free Siream Flow condition Yamamoto \& Nath, 1976

Figure 1.2 Added mass
Primary idler pulley
(2) Secondary idler pulley
(3) Driver cable guide
(4) Driver drum \& drive train
(5) Carriage bearing structure with cable way
(6) Carriage bearing structure
(7) Tow carriage structure

Figure 1.3 System layout

2.0 Tow Carriage System Analysis

2.1 System Mode1

The mathematical representation of the dynamic tow carriage is a nine degree of freedom (DOF) system composed of seven point masses coupled by linear springs with viscous structural damping and two rotational DOF with viscous damping and inertia; see Fig. (2.1.1). The system can be divided into four basic components 1) the carriage/specimen model, 2) the wire rope model, 3) the driver pulley model, and 4) the idler pulley model.

1) Carriage/Specimen Model: The carriage with attached tow specimen is modeled as a large point mass. It has one translational DOF and viscous damping associated with a velocity referenced to a fixed inertial reference frame; see Fig. (2.1.2). Because the specimen experiences non-linear turbulent damping an equivalent linear damping coefficient is calculated, based on average power absorption/dissipation per period. Refer to Section (2.3) for a derivation. This damping coefficient is used in force calculations that are 180 degrees out of phase with the carriage/specimen velocity. It is assumed that the drag force of the tow specimen is much larger than any bearing friction associated with the carriage travel and therefore bearing friction is neglected.

The mass of the carriage/specimen is the sum of the structural mass of the carriage, the nodal wire rope mass near the carriage/specimen and the added mass of the tow specimen interaction with the water in the wave channel. The added mass changes with

Figure 2.1.1 System model
specimen geometry, therefore the total mass of the carriage/specimen varies with tow specimen geometry. Refer to Section (2.3) for a derivation. The total mass is used for force calculations 180 degrees out of phase with the carriage/specimen acceleration. In addition to drag and inertial forces the carriage/specimen is subjected to wire rope forces that provide the primary tow motion.
2) Wire Rope Model: The wire rope model is discretized into six nodal point masses with six translational DOF; see Fig.(2.1.3). The point masses are coupled by a spring that generates forces linearly proportional to the difference in linked nodal displacement relative to one another. A viscous damper also couples the masses that generates forces linearly proportional to the difference in linked nodal velocities relative to one another. These couplings model structural stiffness and damping of the wire rope respectively. The wire rope model has three components on the upper and lower sides of the system model.
3) Driver Pulley Model: The driver pulley is modeled as a circular cylinder with one rotational DOF about the axis; see Fig. (2.1.4). It is assumed that the wire rope forces act in plane and in line with the wire rope nodal displacements. The rotational inertia is calculated as if the cylinder is hollow with a finite thickness; see Section (3.1). The bearings are assumed frictionless and therefore no rotational damping is considered. A driving torque is imposed about the axis of rotation and is forced to have a sinusoidal temporal dependence.

Figure 2.1.2 Carriage/specimen model

Figure 2.1.3 Wire rope model

Figure 2.1.4 Driver pulley model

Figure 2.1.5 Idler pulley model
4) Idler Pulley Model: The idler pulley is modeled as a circular cylinder with one rotational DOF about its axis and one translational DOF which allows translation of the rotational axis in line with the linked wire rope displacements; see Fig. (2.1.5). Rotational viscous damping is used to model braking if necessary. This damping produces torque 180 degree. out of phase with the angular velocity and is linearly proportional to the angular velocity. Rotational inertia is calculated similarly to the driver pulley.

The structural mass, stiffness, and damping of the translational DOF is modeled similarly to the wire rope model but with the spring and damper coupling the pulley mass to a fixed wall. It is assumed that the wire rope forces act in plane and in line with wire rope nodal displacements.

2.2 System Equations

Coupling the four sub-models together provides a set of equations to describe the total carriage system as follows. Referring to the free body diagram (FBD) of the driver pulley, Fig. (2.2.1), there is one rotational DOF, θ_{1} and two translational DOF , x_{1} and x_{11}. The forces acting on the body are the two wire rope forces F_{1} and F_{8} and the reaction force $F_{R 1}$. The upper wire rope force F_{1} can be expressed in terms of the nodal displacements and velocities of nodes 1 and 2 as

$$
\begin{equation*}
F_{1}=k_{c}\left(X_{1}-X_{2}\right)+c_{c}\left(\dot{X}_{1}-\dot{X}_{2}\right) \tag{2.2.1a}
\end{equation*}
$$

where k_{c} and c_{c} are the linear stiffness and damping coefficients of the wire rope model. Similarly the lower wire rope force F_{8} can be expressed in terms of the nodal displacements and velocities of nodes 11 and 10 as

$$
\begin{equation*}
F_{g}=k_{c}\left(x_{11}-x_{10}\right)+c_{c}\left(\dot{x}_{11}-\dot{x}_{10}\right) \tag{2.2.1b}
\end{equation*}
$$

If the driver pulley is assumed radially rigid one can make the kinematic observation that relates x_{1} and x_{11} to θ_{1} as follows

$$
\begin{align*}
& x_{1}=\theta_{1} R_{1} \tag{2.2.2a}\\
& \dot{x}_{1}=\dot{\theta}_{1} R_{1} \tag{2.2.2b}\\
& x_{11}=-\dot{\theta}_{1} R_{1} \tag{2.2.3a}\\
& \dot{x}_{11}=-\dot{\theta}_{1} R_{1} \tag{2.2.3b}
\end{align*}
$$

Substituting Equations 2.2.2 and 2.2.3 into Equation 2.2.1 yields

$$
\begin{equation*}
F_{1}=k_{c}\left(\theta_{1} R_{1}-X_{2}\right)+c_{c}\left(\dot{\theta}_{1} R_{1}-\dot{X}_{2}\right) \tag{2.2.4a}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{g}=k_{c}\left(-\theta_{1} R_{1}-X_{10}\right)+c_{c}\left(-\dot{\theta}_{1} R_{1}-\dot{X}_{10}\right) \tag{2.2.4b}
\end{equation*}
$$

Summing moments about the axis of rotation and using Newton's Second Law of Motion for rotation yields

$$
\begin{equation*}
\sum M=T+F_{9} R_{1}-F_{1} R_{1}=I_{1} \ddot{\theta}_{1} \tag{2.2.5a}
\end{equation*}
$$

where T is the imposed driving torque that motivates the system and I_{1} is the rotational inertia of the driver pulley.

Substituting Equation 2.2.4a into Equation 2.2.5a we have
$\sum M=T+\left[k_{c}\left(-\theta_{1} R_{1}-X_{10}\right)+c_{c}\left(-\dot{\theta}_{1} R_{1}-\dot{X}_{10}\right)\right] R_{1}-\left[k_{c}\left(\theta_{1} R_{1}-X_{2}\right)+c_{c}\left(\dot{\theta}_{1} R_{1}-\dot{X}_{2}\right)\right] R_{1}=I_{1} \ddot{\theta}$

Moving to node 2 it appears from the FBD, Fig. (2.2.2), there is one translational DOF at the point mass m_{c} labeled x_{2} and two wire rope forces F_{1} and F_{2}. Applying Newton's Second Law for translation,

$$
\begin{equation*}
\sum \mathrm{F}_{\mathrm{P}}-\mathrm{F}_{2}=\mathrm{m}_{\mathrm{c}} \ddot{X}_{2} \tag{2.2.6a}
\end{equation*}
$$

where m_{c} is the lumped mass of the wire rope model between x_{1} and x_{2}. Substituting the force expressions in terms of the nodal kinematics into Equation 2.2.6a yields
$\sum F=k_{c}\left(\theta_{1} R_{1}-X_{2}\right)+c_{c}\left(\dot{\theta}_{1} R_{1}-\dot{X}_{2}\right)-k_{c}\left(X_{2}-X_{3}\right)-c_{c}\left(\dot{X}_{2}-\dot{X}_{3}\right)=m_{c} \ddot{X}_{2}$

Node 3 is a descretization of the carriage/specimen model plus the adjacent wire rope model. It is seen from the FBD, Fig. (2.2.3), there is one translational DOF x_{3} with two wire rope forces F_{2} and F_{3} plus a drag force F_{d}. The drag force is linear with carriage/specimen velocity relative to a fixed reference frame. The mass of node three is the sum of the carriage structural mass, the local wire rope mass, and the added mass of the tow specimen. Both the linearized drag coefficient and the added mass of the tow specimen are developed in Section (2.4). The drag force can be expressed as

$$
\begin{equation*}
F_{D}=C_{e f f} \dot{x}_{3} \tag{2.2.7}
\end{equation*}
$$

Figure 2.2.1 FBD of driver pulley model

Figure 2.2.2 FBD of node 2
where $C_{\text {eff }}$ is the linearized drag coefficient. Applying Newtons Second Law for translation,

$$
\begin{equation*}
\sum F=F_{2}-F_{3}-F_{0}=m_{T} \ddot{X}_{3} \tag{2.2.8a}
\end{equation*}
$$

where m_{T} is the sum of the three mass terms described above. Substituting the expressions for the wire rope forces F_{2} and F_{3} and the drag force F_{D} yields
$\sum F=k_{c}\left(X_{i}-X_{3}\right)+c_{c}\left(\dot{X}_{2}-\dot{x}_{3}\right)-k_{c}\left(X_{3}-X_{4}\right)-c_{c}\left(\dot{x}_{3}-\dot{x}_{4}\right)-c_{\text {eff }} \dot{x}_{3}=m_{T} \ddot{x}_{3}$

Instead of developing an equation of motion for node 4 next it is advantageous to first analyze the idler pulley model and then examine node 4. From the FBD of the idler pulley model, Fig. (2.2.4), one finds one rotational DOF θ_{2} and three translational DOF x_{4}, x_{6}, x_{7}. This is similar to the driver pulley model but contains one more translational DOF namely x_{E}. In the real system a pre-load on the wire rope is needed for stability and as a means of absorbing energy. By allowing the axis of the idler pulley to translate as shown, stiffness and damping can be added to provide pre-load and energy absorption respectively.

The forces acting on the idler pulley model are the two wire rope forces F_{4} and F_{5} plus the reaction force at node six $F_{R 2}$. The reaction force $F_{R 2}$ is modeled in a similar manner to the wire rope forces but the reference node is fixed to an inertial reference frame instead of another translational DOF. Thus the reaction force can be expressed as

$$
\begin{equation*}
F_{R 2}=k_{6} X_{6}+c_{6} \dot{x}_{6} \tag{2.2.9}
\end{equation*}
$$

The translational DOF x_{6} allows a summation of forces as well as a summation of moments about the axis of rotation. Applying Newtons Second Law for translation yields

$$
\begin{equation*}
\sum F=F_{4}+F_{5}-F_{R 2}=m_{6} \ddot{X}_{6} \tag{2.2.10a}
\end{equation*}
$$

where m_{0} is the lumped mass of the idler pulley. Substituting the expressions for the wire rope forces F_{4} and F_{5} and the reaction force $F_{R 2}$ yields

$$
\begin{align*}
\sum F & =k_{c}\left(X_{4}-x_{5}\right)+c_{c}\left(\dot{x}_{4}-\dot{x}_{5}\right)-k_{c}\left(x_{8}-x_{7}\right)+c_{c}\left(\dot{x}_{8}-\dot{x}_{7}\right)-k_{6} X_{6}-c_{6} \dot{x}_{6} \\
& =m_{6} \ddot{x}_{6} \tag{2.2.10b}
\end{align*}
$$

Assuming the idler pulley radially rigid, one can make the kinematic observation relating nodes x_{5} and x_{7} to x_{6} and θ_{2} as follows.

$$
\begin{align*}
& X_{5}=\theta_{2} R_{2}+X_{6} \tag{2.2.11a}\\
& \dot{X}_{5}=\dot{\theta}_{2} R_{2}+\dot{X}_{6} \tag{2.2.11b}\\
& x_{7}=x_{5}-\theta_{2} R_{2} \tag{2.2.12a}\\
& \dot{X}_{7}=\dot{x}_{6}-\dot{\theta}_{2} R_{2} \tag{2.2.12b}
\end{align*}
$$

Substituting Equations 2.2.11 and 2.2.12 into Equation 2.2.10b yields

$$
\begin{align*}
\sum F & =k_{c}\left(X_{4}-\theta_{2} R_{2}-X_{6}\right)+c_{c}\left(\dot{X}_{4}-\dot{\theta}_{2} R_{2}-\dot{X}_{6}\right)+k_{c}\left(X_{8}-X_{6}+\theta_{2} R_{2}\right)+c_{c}\left(\dot{X}_{8}-\dot{X}_{6}+\dot{\theta}_{2} R_{2}\right)-k_{6} X_{6}- \\
c_{6} \dot{X}_{6} & =m_{6} \ddot{X}_{6} \tag{2.2.10c}
\end{align*}
$$

$$
\begin{equation*}
\sum M=F_{4} R_{4}-F_{5} R_{2}=I_{2} \ddot{\theta}_{2} \tag{2.2.13a}
\end{equation*}
$$

Substituting Equations 2.2.11 and 2.2.12 into Equation 2.2.13a yields
$\sum M=\left[k_{c}\left(X_{4}-\theta_{2} R_{2}-X_{6}\right)+c_{c}\left(\dot{X}_{4}-\dot{\theta}_{2} R_{2}-\dot{X}_{6}\right)\right] R_{2}-\left[k_{c}\left(X_{8}-X_{6}+\theta_{2} R_{2}\right)+c_{c}\left(\dot{X}_{8}+\dot{X}_{6}+\dot{\theta}_{2} R_{2}\right)\right] R_{2}-$ $\dot{\theta}_{2} C_{\theta}=I_{2} \ddot{\theta}_{2}$
where I_{2} is the rotational inertia of the idler pulley.

With the kinematic relationships expressing the motion of node 5 and 7 in terms of x_{6} and θ_{2}, one can better analyze node 4. Examining the FBD , Fig. (2.2.5), reveals one translational DOF x_{4} with two wire rope forces F_{3} and F_{4}. Applying Newtons Second Law for translation yields

$$
\begin{equation*}
\sum F=F_{4}-F_{5}=m_{c} \ddot{x}_{4} \tag{2.2.14a}
\end{equation*}
$$

Substituting the expressions for the wire rope forces yields

$$
\begin{equation*}
\sum F=k_{c}\left(X_{3}-X_{4}\right)+c_{c}\left(\dot{X}_{3}-\dot{X}_{4}\right)-k_{c}\left(X_{4}-X_{5}\right)-c_{c}\left(\dot{X}_{4}-{ }_{5}\right)=m_{c} \ddot{X}_{4} \tag{2.2.14b}
\end{equation*}
$$

The kinematic dependence on node 5 can now be eliminated by substituting Equations 2.2.11 into Equation 2.2.14b yielding
$\sum F=k_{c}\left(X_{3}-X_{4}\right)+c_{c}\left(\dot{X}_{3}-\dot{X}_{4}\right)-k_{c}\left(X_{4}-\theta_{2} R_{2}-X_{6}\right)-c_{c}\left(\dot{X}_{4}-\dot{\theta}_{2} R_{2}-\dot{X}_{6}\right)=m_{c} \ddot{X}_{4}$

Figure 2.2.3 FBD of node 3

Figure 2.2.4 FBD of idler pulley model

Figure 2.2.5 FBD of node 4

Figure 2.2.6 FBD of node 8

Figure 2.2.7 FBD of node 9

Figure 2.2.8 FBD of node 10

Moving to node 8 it is seen from the FBD, Fig. (2.2.6), there is one translational DOF x_{8} and two wire rope forces F_{5} and F_{6}. Applying Newtons Second Law and substituting Equations 2.2.11c and 2.2.11d for x_{7} and \dot{x}_{7} respectively yields
$\sum F=k_{c}\left(X_{9}-X_{8}\right)+c_{c}\left(\dot{X}_{9}-\dot{X}_{8}\right)-k_{c}\left(X_{8}-X_{6}+\theta_{2} R_{2}\right)-c_{c}\left(\dot{X}_{8}-\dot{X}_{6}+\dot{\theta}_{2} R_{2}\right)=m_{c} \ddot{X}_{8}$

From the FBD of node 9, Fig. (2.2.7), one finds x_{9} to be the single translational DOF with wire rope forces F_{6} and F_{7}. Newtons Second Law yields

$$
\begin{equation*}
\sum F=k_{c}\left(X_{10}-X_{g}\right)+c_{c}\left(\dot{X}_{10}-\dot{x}_{9}\right)-k_{c}\left(X_{g}-X_{8}\right)-c_{c}\left(\dot{x}_{g}-\dot{X}_{8}\right)=m_{c} \ddot{x}_{9} \tag{2.2.16}
\end{equation*}
$$

Similarly the $F B D$ of node 10 , Fig. (2.2.8), yields

$$
\begin{equation*}
\sum F=k_{c}\left(X_{11}-X_{10}\right)+c_{c}\left(\dot{X}_{11}-\dot{X}_{10}\right)-k_{c}\left(X_{10}-X_{g}\right)-c_{c}\left(\dot{X}_{10}-\dot{X}_{g}\right)=m_{c} \ddot{x}_{10} \tag{2.2.17a}
\end{equation*}
$$

Eliminating the kinematic dependence on node 11 by substituting Equations 2.2.3a and 2.2.3b for x_{11} and \dot{x}_{11} respectively yields
$\sum F=k_{c}\left(-\theta_{1} R_{1}-X_{10}\right)+c_{c}\left(-\dot{\theta}_{1} R_{1}-\dot{X}_{10}\right)-k_{c}\left(X_{10}-X_{9}\right)-c_{c}\left(\dot{X}_{10}-\dot{X}_{9}\right)=m_{c} \ddot{X}_{10}$

The equations of motion developed to this point may be summarized as follows:

A moment balance on the driver pulley yielded:
$T-\theta_{1}\left(2 R_{1}{ }^{2} k_{c}\right)-\dot{\theta}_{1}\left(2 R_{1}{ }^{2} c_{c}\right)-\ddot{\theta}_{1}\left(I_{1}\right)+X_{2}\left(R_{1} k_{c}\right)+\dot{X}_{2}\left(R_{1} c_{c}\right)-X_{10}\left(R_{1} k_{c}\right)=0$

A force balance on node 2 yielded:
$\theta_{1}\left(k_{c} R_{1}\right)+\dot{\theta}_{1}\left(c_{c} R_{1}\right)-X_{2}\left(2 k_{c}\right)-\dot{X}_{2}\left(2 c_{c}\right)-\ddot{X}\left(m_{c}\right)+X_{3}\left(k_{c}\right)+\dot{X}_{3}\left(c_{c}\right)=0$

A force balance on node 3 yielded:
$x_{2}\left(k_{c}\right)+\dot{x}_{2}\left(c_{c}\right)-x_{3}\left(2 k_{c}\right)-\dot{x}_{3}\left(2 c_{c}+c_{e f f}\right)-\ddot{X}\left(m_{T}\right)+X_{4}\left(k_{c}\right)+\dot{x}_{4}\left(c_{c}\right)=0$

A force balance on the idler pulley yielded:

$$
\begin{equation*}
x_{4}\left(k_{c}\right)+\dot{x}\left(c_{c}\right)-x_{6}\left(2 k_{c}+k_{6}\right)-\dot{x}_{6}\left(2 c_{c}+c_{6}\right)-\ddot{X}\left(m_{6}\right)+X_{8}\left(k_{c}\right)+\dot{x}_{8}\left(c_{c}\right)=0 \tag{2.2.10c}
\end{equation*}
$$

A moment balance on the idler pulley yielded:

$$
\begin{equation*}
X_{4}\left(R_{2} k_{c}\right)+\dot{X}\left(R_{2} c_{c}\right)-\theta_{2}\left(2 R_{2}^{2} k_{c}\right)-\dot{\theta}_{2}\left(2 R_{2}^{2} c_{c}+c_{E}\right)-\ddot{\theta}_{2}\left(I_{2}\right)-X_{8}\left(R_{2} k_{c}\right)-\dot{X}_{8}\left(R_{2} c_{c}\right)=0 \tag{2.2.13b}
\end{equation*}
$$

A force balance on node 4 yielded:

$$
\begin{equation*}
x_{3}\left(k_{c}\right)+\dot{x}\left(c_{c}\right)-x_{4}\left(2 k_{c}\right)-\dot{x}_{4}\left(2 c_{c}\right)-\ddot{x}_{4}\left(m_{c}\right)+X_{6}\left(k_{c}\right)+\dot{x}_{6}\left(c_{c}\right)+\theta_{2}\left(k_{c} R_{2}\right)+\dot{\theta}_{2}\left(c_{c} R_{2}\right)=0 \tag{2.2.14c}
\end{equation*}
$$

A force balance on node 8 yielded:

$$
\begin{equation*}
x_{6}\left(k_{c}\right)+\dot{X}_{6}\left(c_{c}\right)-\theta_{2}\left(k_{c} R_{2}\right)-\dot{\theta}_{2}\left(c_{c} R_{2}\right)-x_{8}\left(2 k_{c}\right)-\dot{X}\left(2 c_{c}\right)-\ddot{x}_{8}\left(m_{c}\right)+x_{g}\left(k_{c}\right)+\dot{X}\left(c_{c}\right)=0 \tag{2.2.15}
\end{equation*}
$$

A force balance on node 9 yielded:

$$
\begin{equation*}
x_{8}\left(k_{c}\right)+\dot{x}_{8}\left(c_{c}\right)-x_{9}\left(2 k_{c}\right)-\dot{x}_{9}\left(2 c_{c}\right)-\ddot{x}\left(m_{c}\right)+x_{10}\left(k_{c}\right)+\dot{x}_{10}\left(c_{c}\right)=0 \tag{2.2.16}
\end{equation*}
$$

A force balance on node 10 yielded:

$$
\begin{equation*}
x_{g}\left(k_{c}\right)+\dot{x}_{g}\left(c_{c}\right)-x_{10}\left(2 k_{c}\right)-\dot{x}\left(2 c_{c}\right)-\ddot{x}_{10}\left(m_{c}\right)-\theta_{1}\left(k_{c} R_{1}\right)-\dot{\theta}_{1}\left(c_{c} R_{1}\right)=0 \tag{2.2.17b}
\end{equation*}
$$

Examining these equations reveals every bracketed quantity is a constant physical parameter of the system, which leaves one unknown torque, nine unknown displacements, nine unknown velocities, and nine unknown accelerations for a total of 28 unknowns with only nine equations. All of the equations are linear and coupled, and a displacement function can be specified for one DOF in such a manner that the velocity and acceleration can be expressed in terms of the displacement. Due to the linearity of the system all other DOF will have kinematics of the same form as the specified DOF.

One convenient form is to specify a simple harmonic displacement of the form

$$
\begin{equation*}
x=X e^{i \omega t} \tag{2.2.18}
\end{equation*}
$$

where x is the displacement function with a displacement phasor

$$
\begin{equation*}
x=a+i b \tag{2.2.19}
\end{equation*}
$$

where a and b are real coefficients and i is equal to the square root of -1 . Equation (2.2.19) contains both magnitude and phase information for the displacement function, Equation (2.2.18), which oscillates simple harmonically in time at an angular frequency ω. The amplitude of the displacement is the magnitude or modulus of the displacement phasor and can be expressed as

$$
\begin{equation*}
|x|=\operatorname{SQRT}\left(a^{2}+b^{2}\right) \tag{2.2.20}
\end{equation*}
$$

The phase angle or argument of the displacement phasor can be expressed as

$$
\begin{equation*}
\phi=\operatorname{ARCTAN}(b / a) \tag{2.2.21}
\end{equation*}
$$

Using this form of the displacement function the velocity function can be found by taking the time rate of change of displacement yielding:

Figure 2.2.9 Phasor diagram of kinematic response

$$
\begin{equation*}
\dot{x}=i \omega X e^{i \omega t} \tag{2.2.22}
\end{equation*}
$$

Note that the velocity oscillates at the same angular frequency and its phasor is expressed as $i \omega X$. Similarly the acceleration function can be found by taking the time rate of change of velocity yielding:

$$
\begin{equation*}
\ddot{x}=-\omega^{2} x e^{i \omega t} \tag{2.2.23}
\end{equation*}
$$

Again note that the acceleration oscillates at the same angular frequency as the displacement and its phasor is expressed as $-\omega^{2} x$.

To see the phase relationship between the kinematic functions it is useful to use a phasor diagram as shown in Fig. (2.2.9). At time t the displacement phasor is at an angle wt from the real axis. The velocity phasor leads the displacement by 90 degrees making an angle of $\omega t+90$ degrees from the real axis. The acceleration phasor leads the displacement by 180 degrees and makes an angle of $\omega t+180$ degrees from the real axis.

This form of displacement function is unique in the sense that the velocity and acceleration functions, as well as higher order derivatives, can be expressed in terms of the displacement function itself. Thus by specifying a displacement function of the form of Equation (2.2.18) for a particular DOF we are really specifying the complete kinematics of that DOF. In fact because the equations are linear and coupled we are really specifying the form of the kinematics for the whole system. If all kinematics are simple harmonic we can also
expect the driving torque and other dynamics to be simple harmonic as well.

This approach is convenient for reducing the number of unknown variables in the system, as will be shown, and it is also appropriate to the nature of the tow carriage use. Tow specimens will be tested with both simple harmonic and random kinematics to simulate monochromatic and random waves. Random kinematics can be modeled as the superposition of many simple harmonic signals.

Using the kinematic form expressed in Equations (2.2.18), (2.2.22), and (2.2.23) and substituting into the equations of motion previously developed for the system model, Equation (2.2.5b) yields:

$$
\begin{equation*}
\theta_{1}\left(-2 k_{c} R_{1}^{2}+\omega^{2} I_{1}-i 2 \omega c_{c} R_{1}^{2}\right)+X_{2}\left(k_{c} R_{1}+i \omega c_{c} R_{1}\right)+X_{10}\left(-k_{c} R_{1}-i \omega c_{c} R_{1}\right)+T=0 \tag{2.2.24}
\end{equation*}
$$

Equation (2.2.6b) becomes:

$$
\begin{equation*}
x_{1}\left(k_{c} R_{1}+i \omega c_{c} R_{1}\right)+x_{2}\left(-2 k_{c}+m_{c} \omega^{2}-i 2 c_{c} \omega\right)+x_{3}\left(k_{c}+i c_{c} \omega\right)=0 \tag{2.2.25}
\end{equation*}
$$

Equation (2.2.8b) becomes:

$$
\begin{equation*}
x_{2}\left(k_{c}+i \omega c_{c}\right)+x_{4}\left(k_{c}+i \omega c_{c}\right)+x_{3}\left(-2 k_{c}+\omega^{2} m_{T}-i \omega\left(2 c_{c}+c_{e f f}\right)\right)=0 \tag{2.2.26}
\end{equation*}
$$

Equation (2.2.10c) becomes:

$$
\begin{equation*}
x_{4}\left(k_{c}+i \omega c_{c}\right)+x_{6}\left(-2 k_{c}-k_{6}+\omega^{2} m_{6}-i \omega\left(2 c_{c}+c_{6}\right)\right)+x_{8}\left(k_{c}+i \omega c_{c}\right)=0 \tag{2.2.27}
\end{equation*}
$$

Equation (2.2.13b) becomes:
$X_{4}\left(k_{c} R_{2}+i \omega c_{c} R_{2}\right)+\theta_{2}\left(-2 k_{c} R_{2}^{2}+I_{2} \omega^{2}-i \omega\left(2 c_{c} R_{2}+c_{8}\right)\right)+X_{8}\left(-k_{c} R_{2}-i \omega c_{c} R_{2}\right)=0$

Equation (2.2.14c) becomes:
$X_{4}\left(-2 k_{c}+\omega^{2} m_{c}-i 2 c_{c} \omega\right)+\theta_{\hat{i}}\left(k_{c} R_{2}+i \omega R_{2} c_{c}\right)+X_{6}\left(k_{c}+i \omega c_{c}\right)+X_{3}\left(k_{c}+i \omega c_{c}\right)=0$

Equation (2.2.15) becomes:
$\theta_{2}\left(-k_{c} R_{2}+i \omega c_{c} R_{2}\right)+X_{E}\left(k_{c}+i \omega c_{c}\right)+X_{8}\left(-2 k_{c}+\omega^{2} m_{c}-i 2 \omega c_{c}\right)+X_{9}\left(k_{c}+i \omega c_{c}\right)$

Equation (2.2.16) becomes:
$x_{8}\left(k_{c}+i \omega c_{c}\right)+x_{9}\left(-2 k_{c}+\omega^{2} m_{c}-i 2 \omega c_{c}\right)+X_{10}\left(k_{c}+i \omega c_{c}\right)=0$

And (Equation) 2.2.17b becomes:
$\theta_{i}\left(-k_{c} R_{1}-i \omega c_{c} R_{1}\right)+X_{9}\left(k_{c}+i \omega c_{c}\right)+X_{10}\left(-2 k_{c}+\omega^{2} m_{c}-i 2 \omega c_{c}\right)=0$

Thus by specifying the form of the kinematics to be simple harmonic the 28 unknown variables of the system model have been reduced to nine unknown displacements and one unknown torque for the nine equations. To solve this linear system we must specify either one of the displacement phasors or the torque phasor as well as the angular
frequency reducing the number of unknowns to nine. It seems logical to prescribe the desired kinematics of the carriage/specimen variable X_{3} and solve for the remaining kinematics and dynamics that would be necessary to generate the desired X_{3}.

As previously stated to fully prescribe the kinematics of the carriage/specimen variable both frequency and phasor must be given. The phase information embedded in the displacement phasor specifies the position of the variable at time zero, i.e., the initial condition. By setting the initial phase of the carriage/specimen displacement to 0 degrees the displacement will be at the maximum real value at time zero with the velocity at the maximum imaginary value or zero on the real axis and the acceleration will be at the maximum negative value on the real axis. Fig. (2.2.10) shows the kinematic relationships for a displacement phase angle of zero at various positions in time. Since the response is temporal and quasi-steady state the phase angle of the specified displacement is arbitrary and can be set to equal to zero for convenience. With this selection all other phase angles can be conveniently referenced to the carriage/specimen displacement.

As a result of the kinematic form being specified as simple harmonic, the eight unknown displacement functions and unknown torque function have been reduced to unknown phasors. With this simple harmonic motion the system model has been reduced to nine linear coupled equations with nine unknown phasors and can be solved using complex linear mathematics. To due this it is necessary to write the equations in matrix form. The given displacement phasor X_{3} can be separated from the other variables and transformed into the matrix form

$$
[A]\{X\}=\{B\}
$$

where the square matrix [A] contains the coefficients of the unknown column matrix $\{X\}$ and set equal to the known column matrix $\{B\}$. Both the [A] matrix and the $\{B\}$ matrix contain the given frequency of oscillation ω as can be seen in Fig. (2.2.11). Thus the unknown phasors of the $\{X\}$ matrix can be solved for by the equation

$$
\{X\}=[A]^{-1}\{B\}
$$

given the physical parameters of the system as well as the displacement phasor and frequency of x_{3}. This is done by the Fortran program Towplot which is documented in Appendix (A).

Figure 2.2.10 Kinematic phasors at various positions of the cycle

Figure 2.2.11 Matrix representation of system equations

2.3 System Dynamics

2.3.1 Carriage/Specimen Forces

There are three forces which act on the carriage/specimen model as previously discussed in Section (2.2): 1) the drag force which produces forces 180 degrees out of phase with the carriage/specimen velocity , 2) the inertial force which produces forces 180 degrees out of phase with the carriage/specimen acceleration, and 3) the wire rope force which provides motivation. The wire rope forces were discussed in detail in Section (2.2) and will not be expanded on here.

1) Carriage/specimen drag force: The drag force on the carriage/specimen is due to the interaction of the tow specimen with the water in the wave tank. To describe the drag force in terms of the carriage/specimen kinematics we can use the familiar turbulent drag equation

$$
\begin{equation*}
F_{d}=1 / 2 \rho C_{d} A V|V| \tag{2.3.1}
\end{equation*}
$$

where ρ is the mass density of the fluid, C_{d} is the experimentally determined drag coefficient, A is the reference frontal area used to measure the drag coefficient, and V is the velocity of the specimen relative to the still fluid.

The solution technique for the system of equations requires that all equations be linear. Since the drag force on the tow specimen is proportional to the square of the velocity it must be linearized. Noting that the solution of the system model is quasi-steady an
equivalent linear drag force can be developed that will give the same power or energy dissipation/absorption over one tow cycle or period. To do this we must first equate the non-linear drag force to another non-linear drag force of the form

$$
\begin{equation*}
F_{d}=1 / 2 \rho C A V V_{\max } \tag{2.3.2}
\end{equation*}
$$

where C is a drag coefficient based on the reference area A and $V_{\max }$ is the maximum velocity of the kinematic cycle. The energy dissipated or absorbed over one cycle can be expressed as the time integral of power

$$
\begin{equation*}
\text { Energy }=\int_{t}^{t+\tau} F_{d} \bullet V d t \tag{2.3.3}
\end{equation*}
$$

where τ is the period of the cycle. Substituting Equation (2.3.1) for F_{d} into Equation (2.3.3) yields

$$
\begin{equation*}
\text { Energy }=\int_{t}^{t+\tau} 1 / 2 \rho C_{d} A V|V| \cdot V d t \tag{2.3.4}
\end{equation*}
$$

Substituting Equation (2.3.2) for F_{d} into Equation (2.3.3) yields

$$
\begin{equation*}
\text { Energy }=\int_{t}^{t+\tau} 1 / 2 \rho C A V_{\max } V \cdot V d t \tag{2.3.5}
\end{equation*}
$$

Equating energy, Equations (2.3.4) and (2.3.5) yields

$$
\begin{gather*}
\text { Energy }=\int_{t}^{t+\tau} 1 / 2 \rho C_{d} A V|V| \cdot V d t= \\
\int_{t}^{t+\tau} 1 / 2 \rho C A V_{\max } V \cdot V d t \tag{2.3.6}
\end{gather*}
$$

With the drag force always being in line with the velocity the dot product can be dropped yielding

$$
\begin{gather*}
\text { Energy }=\int_{t}^{t+\tau} 1 / 2 \rho A C_{d}|V|^{3} d t= \\
\int_{t}^{t+\tau} 1 / 2 \rho A C V_{\max } V^{2} d t \tag{2.3.7}
\end{gather*}
$$

This is a statement of Lorentz's condition of equivalent work, (Dean and Dalrymple, 1984).

From Section (2.2) we found the velocity could be expressed as

$$
\begin{equation*}
V=V_{\max } e^{i \omega t}=V_{\max }[\cos (\omega t)+i \sin (\omega t)] \tag{2.3.8}
\end{equation*}
$$

with real component

$$
\begin{equation*}
\operatorname{Re}\{V\}=V_{\max } \cos (\omega t) \tag{2.3.9}
\end{equation*}
$$

Substituting Equation (2.3.9) into Equation (2.3.7) yields

$$
\begin{gather*}
\text { Energy }=\int_{t}^{t+\tau} 1 / 2 \rho C_{d} V_{\max }^{3}|\cos |^{3}(\omega t) d t= \\
\int_{t}^{t+\tau} 1 / 2 \rho A C V_{\max }^{3} \cos ^{2}(\rho t) d t \tag{2.3.10}
\end{gather*}
$$

Cancelling like terms yields
$C_{d} \int_{t}^{t+\tau} \cos ^{3}(\omega t) d t=C \int_{t}^{t+\tau} \cos ^{2}(\omega t) d t$

Substituting for the integrals in Equation (2.3.11) yields

$$
\begin{gather*}
C_{d} / 3\left[\left(2+\cos ^{3}(\omega t)\right) \sin (\omega t)\right]_{t}^{t+\tau}= \\
C[2 \omega t+\sin (2 \omega t)]_{t}^{t+\tau} \tag{2.3.12}
\end{gather*}
$$

Evaluate the integral over one half wave period where both sin and cos are positive. The results are symmetric over the other half period and will simply produce a multiplier of two on both sides of the equation. Letting

$$
t=-\pi / 2
$$

and

$$
t+\tau=\pi / 2
$$

Evaluating Equation (2.3.12) yields

$$
\begin{equation*}
C=8 / 3 \pi \quad C_{d} \tag{2.3.13}
\end{equation*}
$$

We seek a linear drag force of the form

$$
\begin{equation*}
F_{d}=C_{e f f} V \tag{2.3.14}
\end{equation*}
$$

where $C_{\text {eff }}$ is the equivalent linear coefficient for energy dissipation/absorption over one kinematic cycle. Equating Equation (2.3.14) and Equation (2.3.2)

$$
F_{d}=C_{e f f} V=1 / 2 \rho C A V_{\max } V
$$

which reduces to

$$
\begin{equation*}
C_{e f f}=1 / 2 \rho C A V_{\max } \tag{2.3.15}
\end{equation*}
$$

Substituting Equation (2.3.13) for C into Equation (2.3.15) yields

$$
\begin{equation*}
C_{e f f}=4 / 3 \pi \rho C_{d} A V_{\max } \tag{2.3.16}
\end{equation*}
$$

The velocity of interest is that of the carriage/specimen model and from Section (2.2) can be expressed as

$$
\begin{equation*}
V_{\max }=\omega\left|x_{3}\right| \tag{2.3.17}
\end{equation*}
$$

where $\left|X_{3}\right|$ is the magnitude of the carriage/specimen displacement amplitude and ω is the angular frequency of oscillation. Substituting Equation (2.3.17) into Equation (2.3.16) yields

$$
\begin{equation*}
C_{e f f}=4 / 3 \pi \quad \rho C_{d} A \omega\left|X_{3}\right| . \tag{2.3.18}
\end{equation*}
$$

The drag force of the specimen has been linearized by equating energy dissipation/absorption over one kinematic cycle of oscillation and is expressed in terms of the tow specimen kinematics, geometry, fluid density, and experimental drag coefficient.
2) Carriage/specimen inertial force: The second force acting on the carriage/specimen is the inertial force F_{i}. This quantity is used in force calculations that are 180 degrees out of phase with the
acceleration. The inertial force is linearly proportional to the acceleration and can be expressed as

$$
\begin{equation*}
F_{i}=m_{T} \ddot{X} \tag{2.3.19}
\end{equation*}
$$

where m_{T} is the effective mass of the carriage/specimen model. The effective mass is composed of three components, 1) the lumped mass of the wire rope near the carriage, 2) the structural mass of the carriage and tow specimen, and 3) the added mass of the tow specimen interacting with the water in the wave tank. The first two components are straight forward and will not receive any more detail in this Section. The actual values used for these and other parameters are discussed in Section (2.4). The added mass term of the specimen is the result of accelerating a body in a still fluid and can be expressed as

$$
\begin{equation*}
F_{i s}=\rho \forall C_{i} \ddot{X} \tag{2.3.20}
\end{equation*}
$$

where ρ is the mass density of the fluid, \forall is the displaced volume of the fluid by the body, C_{i} is the analytically determined added mass coefficient, and \ddot{X} is the acceleration of the body. The total effective mass of the carriage/specimen model can now be expressed as

$$
\begin{equation*}
m_{T}=m_{c}+m_{s}+\rho \forall C_{i} \tag{2.3.21}
\end{equation*}
$$

where m_{c} is the lumped wire rope mass and m_{s} is the structural mass of the carriage and tow specimen.

2.3.2 Power Calculations

To quantify the power requirements of the system four different expressions for power are investigated ,l) the instantaneous power based on the linearized drag force, 2) the average power based on the linearized drag force, 3) peak power based on the linearized drag force , and 4) peak power based on the non-linear drag force.

1) Instantaneous power based on the linearized drag force: Power by definition can be expressed as the product of the real part of the drive torque and the real part of the angular velocity of the drive torque as specified in Equation (2.3.22).

$$
\begin{equation*}
P=\operatorname{Re}\left\{T_{D}\right\} * \operatorname{Re}\{\dot{\theta}\} \tag{2.3.22}
\end{equation*}
$$

Power is introduced into the system at the drive pulley where the solution of the system equations yields the drive torque

$$
\begin{equation*}
T_{0}=\left|T_{0}\right| e^{i(\omega t+\phi T)} \tag{2.3.23}
\end{equation*}
$$

where $\left|T_{D}\right|$ is the magnitude of the torque phasor given by Equation (2.2.20) and ϕ_{T} is the phase angle of the drive torque phasor given by Equation (2.2.21). The angular velocity of the driver pulley can be expressed as

$$
\begin{equation*}
\dot{\theta}_{1}=i \omega\left|\theta_{1}\right| e^{\mathrm{i}(\omega t+\phi 1)} \tag{2.3.24}
\end{equation*}
$$

where $\left|\theta_{1}\right|$ is the magnitude of the rotational phasor θ_{1} and ϕ_{1} is the phase angle. Both drive torque and angular velocity can be expanded in terms of their real and imaginary parts as follows:

$$
\begin{equation*}
T_{0}=\left|T_{0}\right|\left[\cos \left(\omega t+\phi_{T}\right)+i \sin \left(\omega t+\phi_{T}\right)\right] \tag{2.3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\theta}_{1}=i \omega\left|\theta_{1}\right|\left[\cos \left(\omega t+\phi_{1}\right)+i \sin \left(\omega t+\phi_{1}\right)\right] \tag{2.3.26}
\end{equation*}
$$

From Equation (2.3.25) the real part of the drive torque can be expressed as

$$
\begin{equation*}
\operatorname{Re}\left\{T_{D}\right\}=\left|T_{D}\right| \cos \left(\omega t+\phi_{T}\right) \tag{2.3.27}
\end{equation*}
$$

and the real part of the angular velocity can be found from Equation (2.3.26) as

$$
\begin{equation*}
\operatorname{Re}\{\dot{\theta}\}=-\omega\left|\theta_{1}\right| \sin \left(\omega t+\phi_{1}\right) \tag{2.3.28}
\end{equation*}
$$

The instantaneous power can be found by substituting Equations (2.3.27) and (2.3.28) into Equation (2.3.22).

$$
\begin{equation*}
P=-\omega\left|T_{0}\right|\left|\theta_{1}\right| \sin \left(\omega t+\phi_{1}\right) \cos \left(\omega t+\phi_{T}\right) \tag{2.3.29}
\end{equation*}
$$

Using the trigonometric identity
$\sin (a x+b) \cos (a x+c)=1 / 2[\sin (2 a x+b+c)+\sin (a-b)]$
the instantaneous power can be expressed as :

$$
\begin{equation*}
P=-1 / 2 \omega\left|T_{0}\right|\left|\theta_{1}\right|\left[\sin \left(2 \omega t+\phi_{1}+\phi_{T}\right)+\sin \left(\phi_{1}-\phi_{T}\right)\right] \tag{2.3.31}
\end{equation*}
$$

Since the torque and the angular velocity are calculated using the linearized drag coefficient, Equation (2.3.31) is also based on the linearized drag coefficient and approximates the required power. Note that a positive value of power implies energy is being input into the system and conversely a negative value implies energy being extracted form the system.
2) Average power based on the linearized drag force: the average power can be found by integrating Equation (2.3.31) over one wave period which is identical to setting the temporal component of the instantaneous power, Equation (2.3.31), to zero yielding:

$$
\begin{equation*}
P_{a v e}=-1 / 2 \omega\left|T_{D}\right|\left|\theta_{1}\right| \sin \left(\phi_{1}-\phi_{T}\right) \tag{2.3.32}
\end{equation*}
$$

Note that in order to have a positive value for average power, which must be the case, the difference in phase angles $\phi_{1}-\phi_{\mathrm{T}}$ must be negative. Since the drag force was linearized by equating average power for linear and non-linear drag forces the average power expression should more closely approximate the actual power requirements of the system than the other expressions for power.
3) Maximum instantaneous power based on the linearized drag force: To find the maximum power required per cycle an examination of the response of Equation (2.3.31) will give some insight; see Fig. (2.3.1). The instantaneous power oscillates about the average value given by Equation (2.3.32) at angular frequency 2ω. The maximum value occurs when the temporal component is equal to -1 . Thus the maximum instantaneous power based on the linearized drag force can be expressed as :

$$
\begin{equation*}
P_{\max }=-1 / 2 \omega\left|T_{D}\right|\left|\theta_{1}\right|\left[\sin \left(\phi_{1}-\phi_{T}\right)-1\right] \tag{2.3.33}
\end{equation*}
$$

4) Maximum power based on the non-linear drag force: The fourth expression for power that is of interest is that due solely to the drag force of the specimen. Instead of expressing power as the product of torque and angular velocity it can be represented as the product of force and velocity, specifically

$$
P=F_{d} \dot{X}
$$

where F_{d} is the drag force on the specimen being towed at velocity \dot{x}. Substituting the non-linear drag force, Equation (2.3.21), for F_{d} in terms of the carriage/specimen displacement yields:

$$
\begin{equation*}
P_{d}=1 / 2 \rho C_{d} A\left|\omega X_{3}\right|^{3} \tag{2.3.34}
\end{equation*}
$$

Given the specified kinematics of the carriage/specimen the maximum power due to drag can be calculated with Equation (2.3.34) and used for comparison to Equation (2.3.33). Unlike Equation (2.3.33), Equation (2.3.34) does not account for power due to inertial forces. For a kinematic specification that produces a drag dominated power, Equation (2.3.34) will give a better indication of the peak power required.

Figure 2.3.1 Instantaneous power requirement response

3.0 Tow Carriage System Behavior

3.1 Parameter Quantification

The physical parameters of the system must be quantified in order to evaluate results of the dynamic tow carriage mathematical model. A summary of these parameters can be seen in Table (3.1.1). These parameters are listed in four categories, each corresponding to the particular sub-model they belong to, i.e., wire rope, driver pulley, idler pulley, and carriage/specimen models.

Wire rope model parameters: There are three physical parameters that describe the wire rope model, 1) the lumped mass m_{c}, 2) the linear spring constant k_{c}, and 3) the linear damping coefficient c_{c}. In order to quantify these parameters a particular wire rope must be selected. The major performance criteria for selecting a wire rope are l) the strand configuration, 2) the ultimate strength, 3) the stiffness, and $3)$ the unit mass.

The strand configuration or lay determines the ropes resistance to abrasion and bending stresses. A lay that has good abrasion resistance will in general have poor resistance to bending stresses as can be seen in Fig. (3.1.1), (Bethlehem Steel, 1985). Bending stresses will dominate over abrasion for this application and a 6×19 s class wire rope was selected with 19 outside wires per strand. This selection is adequate for this primary analysis but may need refinement as the design progresses. The manufactures properties for this class of wire rope can be seen in Tables (3.1.2) and (3.1.3), (Bethlehem Steel, 1985).

Table 3.1.1 Physical parameters of the tow carriage model.

Parameter	Sub-model	Description	Status	Dimensions
m_{c}	Wire rope	Lumped mass	Fixed	M
k_{c}	Wire rope	Spring constant	Fixed	F / L
c_{c}	Wire rope	Damping coefficient	Fixed	M / T
R_{1}	Driver pulley	Radius	Fixed	L
I_{1}	Driver pulley	Rotational inertia	Fixed	$\mathrm{M}-\mathrm{L}^{2}$
R_{2}	Idler pulley	Radius	Fixed	L
I_{2}	Idler pulley	Rotational inertia	Fixed	$\mathrm{M}-\mathrm{L}^{2}$
$\mathrm{~m}_{6}$	Idler pulley	Lumped mass	Fixed	M
k_{6}	Idler pulley	Spring constant	Fixed	F / L
c_{6}	Idler pulley	Damping coefficient	Fixed	M / T
c_{6}	Idler pulley	Damping coefficient	Fixed	$\mathrm{M}-\mathrm{L}^{2} / \mathrm{T}$
$\mathrm{c}_{\text {eff }}$	Carriage	Damping coefficient	Variable M / T	
m_{T}	Carriage	Lumped mass	Variable M	

Best scan
available. Text on
original is blurry.

Figure 3.1.1 X-chart for wire rope lay selection.

Table 3.1.2 Wire rope mass and strength.

Table 3.1.3 Wire rope modulus of elasticity.

Table 16 Approximate Modulus of Elasticity
(Pounds per square inch)

Rope Classification	Zero through 20\% Loading	21% to 65% Loading
6×7 with fiber core	$11,700,000$	$13,000,000$
6×19 with fiber core	$10,800,000$	$12,000,000$
6×37 with fiber core	$9,900,000$	$11,000,000$
8×19 with fiber core	$8,100,000$	$9,000,000$
6×19 with IWRC	$13,500,000$	$15,000,000$
6×37 with IWRC	$12,600,000$	$14,000,000$

- Applicable 10 new rope. i.e.. not previously loaded

The ultimate strength needed can be estimated from the maximum load the wire rope is expected to experience multiplied by an appropriate factor of safety. The maximum wire rope load is the sum of the maximum dynamic load plus the static preload. The maximum dynamic load can be found in Table (3.2.2) as approximately 50 kN (11.2 kips). The static preload is needed to minimize the dynamic vertical deflection of the wire rope termed " cable whip". The vertical deflection can be roughly estimated by a static analysis as follows. The static tension H_{s} required to have a vertical deflection or sag h can be expressed as

$$
\begin{equation*}
H_{s}=W L_{h s}^{2} / 2 h \tag{3.1.1}
\end{equation*}
$$

where $L_{n s}$ and w are the half span and unit weight of the wire rope respectively (Baumeister, et al., 1978). The cable guides, Section (5.2), are designed for 0.152 m (6 in.) of sag and the cable span can be estimated as one half the distance between the secondary idler pulley, 41.91 m (137.5 ft.) plus a carriage stroke of 30 m (98.4 ft.$)$ giving a maximum span of 71.91 m (236 ft.) with half span 35.96 m (118 ft .) . For the 0.035 m ($13 / 8 \mathrm{in}$.) diameter wire rope in Table (3.1.2) the unit weight is $5.22 \mathrm{~kg} / \mathrm{m}(3.5 \mathrm{lb} . / \mathrm{ft}$.$) . Substituting these values$ into Equation (3.1.1) yields a static preload of 216.6 kN (48.7 kips). Adding the maximum dynamic load yields a maximum rope loading of 266.6 $\mathrm{kN}(60 \mathrm{kips})$. Selecting the 0.035 m ($13 / 8 \mathrm{in}$.) IWRC Purple Plus wire rope will give a total safety factor of 3.2 and a dynamic safety factor of 11.8 . Thus with a static preload of $216.6 \mathrm{kN}(48.7 \mathrm{kips})$ a dynamic
load of 587 kN (132 kips) would be needed to break the rope, 11.8 times the maximum design dynamic load.

The third consideration for selecting a wire rope is the stiffness. The spring forces generated by the wire rope model are of the form

$$
\begin{equation*}
F=k_{c} \Delta x \tag{3.1.2}
\end{equation*}
$$

where k_{c} is the linear spring rate and Δx is the difference in linked nodal displacements. Using the familiar formula for the length wise deflection of a slender rod

$$
\begin{equation*}
\Delta x=F L / E A \tag{3.1.3}
\end{equation*}
$$

where F is the longitudinal force acting on the free end of the fixed rod of length L, cross Sectional area A and modulus of elasticity E. Substituting Equation (3.1.3) into Equation (3.1.2) and solving for k_{c} yields

$$
\begin{equation*}
k_{c}=E A / L \tag{3.1.4}
\end{equation*}
$$

The appropriate length is the total span between the driver pulley and primary idler pulley 99.06 m (325 ft .) divided by the number of spring models on the upper or lower span, which is four, giving a length of $24.76 \mathrm{~m}(81.25 \mathrm{ft}$.). The area A of the wire rope can be approximated as

$$
\begin{equation*}
A=\pi d^{2} / 4 \tag{3.1.5}
\end{equation*}
$$

where d is the nominal diameter of the wire rope. The modulus of elasticity E can be found from Table (3.1.3). The sensitivity of the system to wire rope stiffness can be seen in Fig. (3.1.2) which varies the diameter and hence k_{c} as calculated by Equation (3.1.4) for $6 \times 19 \mathrm{~s}$ class wire rope using a modulus of elasticity of $93.07 \mathrm{GPa}(13.5 \mathrm{E} 6$ psi). Increasing the diameter increases the wire rope mass as well as stiffness. This increased mass does not affect the fundamental resonance frequency or period of the system appreciably but will produce a significant increase in inertial loading. As implied above, the decrease in fundamental period with cable diameter is due to the increased stiffness with limited gains using a wire rope diameter greater then 0.035 m ($13 / 8 \mathrm{in}$.$) , which is the selected diameter for$ the model.

The lumped mass m_{c} of the wire rope model is calculated by discretizing the total span between the driver and primary idler pulley into the three mass nodes on either the upper or lower span of the system model. The appropriate length is thus $99.06 \mathrm{~m}(325 \mathrm{ft}$.) or 33.02 m (108.3 ft.$)$ per node. The lumped mass is the length per node multiplied by the unit mass of the wire rope as taken from Table (3.1.2). A summary of the discretized stiffness and mass of the wire rope model is shown for various diameters in Table (3.1.4).

The last wire rope model parameter to be quantified is the damping coefficient c_{c}. From Section (2.2) we found the damping of the wire rope model produced forces of the form

Figure 3.1.2 System sensitvity to wire rope size.

Table 3.1.4 Stiffness and mass values for wire rope model.

Diameter (cm.:in.)	Modulus (Gpa)	$\mathrm{k}_{\mathrm{c}-}(\mathrm{N} / \mathrm{mi})$	$\mathrm{m}_{\mathrm{c}}(\mathrm{Kg})$
$1.59: 5 / 8$	93.08	7.439 E 5	35.4
$2.54: 1$	93.08	1.904 E 6	91.0
$3.49: 13 / 8$	93.08	3.600 E 6	172
$4.44: 13 / 4$	93.08	5.832 E 6	279
$5.08: 2$	93.08	7.612 E 6	363

$$
\begin{equation*}
F_{c}=c_{c}\left(\dot{x}_{i}-\dot{x}_{i+1}\right) \tag{3.1.6}
\end{equation*}
$$

where $\dot{X}_{i}-\dot{X}_{i+1}$ is the difference in linked nodal velocities. By making the substitution

$$
\dot{x}=\dot{x}_{i}-\dot{x}_{i+1}
$$

the wire rope model can be reduced to the single DOF system as seen in Figure (3.1.3).

Figuro 3.1.3 Reduced wire rope model.
The familiar Equation of motion for this system is given by Equation (3.1.7).

$$
\begin{equation*}
m \ddot{x}+c \dot{X}+k X=0 \tag{3.1.7}
\end{equation*}
$$

The critical damping for the system is given by Equation (3.1.8) (Baumeister, et al.).

$$
\begin{equation*}
c_{x}=2 * \operatorname{SQRT}(\mathrm{~km}) \tag{3.1.8}
\end{equation*}
$$

The damping ratio ξ is defined as the ratio of actual damping c to critical damping c_{x} given by Equation (3.1.9).

$$
\begin{equation*}
\xi=c / c_{x} \tag{3.1.9}
\end{equation*}
$$

One method of quantifying the amount of damping present in an oscillatory system is to measure the rate of decay of free oscillations as shown in Fig. (3.1.4).

Figure 3.1.4 Response of linear damped free vibration.

This can be expressed by the logarithmic decrement, δ, which is defined as the natural logirithm of the ratio of two successive amplitudes as

$$
\delta=\ln \left(x_{i} / x_{i+1}\right)=2 \pi \xi / \operatorname{SQRT}\left(1-\xi^{2}\right) \approx 2 \pi \xi
$$

which when solved for ξ yields Equation (3.1.10)

$$
\begin{equation*}
\xi=\delta / 2 \pi \tag{3.1.10}
\end{equation*}
$$

Solving Equation (3.1.9) for c yields

$$
c=\xi c_{x}
$$

and substituting Equation (3.1.10) for ξ yields

$$
\begin{equation*}
c=\delta c_{x} / 2 \pi \tag{3.1.11}
\end{equation*}
$$

Substitution of Equation (3.1.8) into Equation (3.1.11) yields

$$
\begin{equation*}
c=\delta \operatorname{SQRT}(\mathrm{km}) / \pi \tag{3.1.12}
\end{equation*}
$$

Thus Equation (3.1.12) expresses the actual damping in terms of the representative mass and stiffness and the measured \log decrement. For this analysis the representative mass is the structural mass of the carriage/specimen and cable and the representative spring constant can be calculated by discretizing the span of wire rope between the carriage and driver pulley into a single spring. As previously stated the structural mass of the carriage is $1068 \mathrm{Kg} .(2350 \mathrm{lb}$.$) and the$ appropriate cable length is 49.5 m (162.4 ft .) giving a spring rate of 1.8E6 N / m (1.2E5 lb/ft.) for the selected wire rope.

Ramberg and Griffen, (1977), measured the \log decrement of $5 / 8 \mathrm{in}$. (0.016 m) diameter double armor steel cable as a function of tension in the cable as seen in Fig. (3.1.5). The numbers in the bracket below the data points represent the amplitude of vertical vibration cable diameters. It was concluded that the \log decrement and hence damping

Figure 3.1.5 Log decrement of wire rope versus tension

Figure 3.1.6 System sensitivity to cable damping
decreased with cable tension. The maximum tension that data was collected at was 500 lbs which yielded a value for δ on the order of 0.01 . Using this value in Equation (3.1.12) with the mass and stiffness discussed above yields a damping coefficient of $135 \mathrm{Kg} / \mathrm{s}(297 \mathrm{lb} / \mathrm{s})$.

This estimate of the damping present in the wire rope used for this particular model is obviously very approximate. None the less it seems reasonable to assume this value is within four or five orders of magnitude of the real value. The sensitivity of the model to wire rope damping is very small as can be seen in Fig. (3.1.6). In fact no significant difference can seen in fundamental resonance when the cable damping is varied over five orders of magnitude for a 0.035 m (l 3/8 in.) diameter wire rope. If the cable damping did affect the system response significantly it would imply that a significant amount of cable deflection was occurring which would be unacceptable. Thus when a properly selected wire rope is used the internal damping can be neglected for this first order analysis. For completeness, the value of $135 \mathrm{Kg} / \mathrm{s}$ is used in the model.

Driver pulley model parameters: There are two physical parameters that describe the driver pulley model are the radius and rotational inertia of the pulley. Both of these parameters must be selected to best represent the real system geometry which differs slightly from the model. As can be seen in Fig. (3.1.7) the layout design of the dynamic tow carriage has the driver pulley conceptualized as a drum with several wrappings of wire rope, component (4). The wire rope also partially wraps around two secondary idler pulleys, components (2),

(1) Primary idler pulley
(2) Secondary idler pulley
(5) Carriage bearing structure with cable way
(3) Driver cable guide
(6) Carriage bearing structure
(4) Driver drum \& drive train
(7) Tow carriage structure

Figure 3.1.7 Layout drawing of dynamic tow carriage system

Figure 3.1.8 Driver drum with cable wrap
before spanning the existing wave channel and partially wrapping around two more secondary idler pulley and then wrapping around the primary idler pulley, component (1). In order to properly quantify the rotational inertia of the driver pulley model the inertial contributions of both the driver drum and the first two secondary idler pulleys must be considered. Table (3.1.5) is a summary of the components, equations, and parameters used to model the driver pulley. The following discussion explains the equations and values expressed in Table (3.1.5).

The radius of the driver drum was selected by considering the geometry of the existing wave channel and the minimum radius of curvature suggested for the selected rope by the manufacturer. From Table (3.1.5), (Bethlehem Steel, 1978) the minimum drum diameter D to rope diameter d ratio is 34 for a 6×19 S wire rope and the suggested ratio is 51 . These ratios are suggested by the manufacturer to minimize bending stresses in the wire rope. A ratio of 43 was selected after considering the geometry of the existing wave channel. With a wire rope diameter of 0.035 m ($13 / 8 \mathrm{in}$.$) the corresponding drum diameter$ is 1.5 m (59 in.) with a radius of 0.75 m (29.5 in.).

The rotational inertia of the driver drum can be estimated by modeling the drum as a hollow cylinder of width W, outside radius R, and inside radius r. The outside radius has already been specified as 0.75 m . The inside radius was selected as 0.7405 m to give a wall thickness of $9.5 \mathrm{~mm}(3 / 8 \mathrm{in}$.$) . The actual thickness to be used in$ construction is unknown at this stage of the design so the value used is an estimate.

The width is calculated by considering the wire rope diameter and the number of wraps around the drum. The maximum carriage travel is expected to be 60 m (196.9 ft .) peak to peak which implies 60 m of active cable must be stored on the drum. Dividing the active length by the circumference of the drum yields 12.7 or 13 wraps around the driver drum. Adding three dead wraps for safety yields a total of 16 wraps; see Fig. (3.1.8). Sixteen cable diameters of 0.035 m equates to a width of 0.56 m (22 in.). Allowing an extra 10% of free width on either side of the wrapping gives a total width of 0.67 m (26.3 in.).

With the pertinent dimensions of the driver drum defined, the rotational inertia can be calculated by Equation (3.1.13)

$$
\begin{equation*}
I=\frac{M}{12\left(3 R^{2}+3 r^{2}+w^{2}\right)}\left(3 R^{2}+3 r^{2}+w^{2}\right) \tag{3.1.13}
\end{equation*}
$$

where the mass of the cylinder is given by Equation (3.1.14).

$$
\begin{equation*}
\text { mass } \left.=(\pi / 4)\left(R^{2}-r^{2}\right) \rho_{\text {stee }}\right) \tag{3.1.14}
\end{equation*}
$$

Using the previously defined dimensions in Equations (3.1.14) and (3.1.13) yields a mass and inertia of $234 \mathrm{Kg}(515 \mathrm{lb}$.$) and 73.7 \mathrm{Kg}-\mathrm{m}^{2}$ ($1745 \mathrm{lb} .-\mathrm{ft}^{2}$) respectively. The added mass of the wire rope windings can be estimated by multiplying the linear length and unit mass of the wire rope on the drum which yields 394 Kg (867 lb .) of wire rope. The added rotational inertia can be estimated by Equation (3.1.13) using
a mass of 394 Kg , width of 0.56 m , inside radius of 0.75 m , and outside radius of 0.785 m yielding $90.3 \mathrm{Kg}-\mathrm{m}^{2}$ (2138 lb. $-\mathrm{ft} .^{2}$).

The secondary idler pulleys are modeled as steel rings with a outside radius of 0.75 m , inside radius of 0.67 m and thickness of 0.07 m . Again these values are for estimation of the rotational inertia only and do not imply final dimensions. Equations (3.1.15) and (3.1.16) are used to calculate the mass and inertia of each ring respectively.

$$
\begin{align*}
& \quad \text { mass }=\pi t \rho_{\text {stee }}\left(R^{2}-r^{2}\right) \tag{3.1.15}\\
& I=(\text { mass } / 2)\left(R^{2}-r^{2}\right) \tag{3.1.16}
\end{align*}
$$

Each ring has a mass of $196 \mathrm{Kg}(431 \mathrm{lb}$.$) and inertia of 11.1 \mathrm{Kg}-\mathrm{m}^{2}$ (263 lb.-ft ${ }^{2}$.). Each secondary idler pulley has two rings and there are two pulleys in the vicinity of the driver drum for a total of four rings having a rotational inertia of $44.4 \mathrm{Kg}-\mathrm{m}^{2}$ (1051 1b-ft ${ }^{2}$.). When added to the inertia of the drum and wrapped cable, the driver pulley model has a total rotational inertia I_{1} of $208.5 \mathrm{Kg}-\mathrm{m}^{2}$ ($4937 \mathrm{lb}-\mathrm{ft}^{2}$.).

Idler pulley model parameters: The idler pulley model has six physical parameters that describe its role in the system model, l) the radius $R_{2}, 2$) the rotational inertia $I_{2}, 3$) The dynamic mass $m_{6}, 4$) the spring constant $\left.k_{6}, 5\right)$ the translational damping coefficient c_{6}, and 6) the rotational damping coefficient c_{θ}. Referring to Fig. (3.1.7) there are two secondary idler pulleys in the vicinity of the primary idler pulley. The rotational inertia of the idler pulley model must include both primary and secondary idler pulley contributions. Table (3.1.7)

Table 3.1.5 Summary of driver pulley rotational inertia calculation.

Part desription	Parameters	Equations	Value
Driver drum	$\begin{aligned} & \text { R:outside radius } \\ & \text { r:inside radius } \\ & \text { W:width } \\ & \rho_{\text {steel }} \text { :unit mass of steel } \end{aligned}$	$\begin{aligned} & \text { mass }=\pi / 4 \quad\left(R^{2}-r^{2}\right) \rho_{\text {stee } 1} \\ & I_{01}=\text { mass } / 12\left(3 R^{2}+3 r^{2}+W^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{R}=0.75 \mathrm{~m} \\ & \mathrm{r}=0.7405 \mathrm{~m} \\ & \mathrm{~W}=0.67 \mathrm{~m} \\ & \rho_{\text {steel }}=7833 \mathrm{Kg} / \mathrm{m}^{3} \\ & \mathrm{mass}=234 \mathrm{Kg} \\ & \mathrm{I}_{\mathrm{D} 1}=73.7 \mathrm{Kg}-\mathrm{m}^{2} \end{aligned}$
Wire rope wrapping	R:outside radius r:inside radius W:width L : length of rope m:unit mass of rope	$\begin{aligned} & \text { mass }=L m \\ & I_{02}=\text { mass } / 12 \quad\left(3 R^{2}+3 r^{2}+W^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{R}=0.785 \mathrm{~m} \\ & \mathrm{r}=0.75 \mathrm{~m} \\ & \mathrm{~W}=0.56 \mathrm{~m} \\ & \mathrm{~L}=75.4 \mathrm{~m} \\ & \mathrm{~m}=5.22 \mathrm{Kg} / \mathrm{m} \\ & \mathrm{mass}=394 \mathrm{~kg} \\ & \mathrm{I}_{\mathrm{D} 2}=90.3 \mathrm{~kg}-\mathrm{m}^{2} \end{aligned}$
Secondary idler ring	R:outside radius r:inside radius t : thickness	$\begin{aligned} & \text { mass }=\pi t \rho_{\text {stee }}\left(R^{2}-r^{2}\right) \\ & I_{D 3}=\text { mass } / 2\left(R^{2}-r^{2}\right) \end{aligned}$	$\begin{gathered} \mathrm{R}=0.75 \mathrm{~m} \\ \mathrm{r}=0.67 \mathrm{~m} \\ \mathrm{t}=0.07 \mathrm{~m} \\ \mathrm{mass}=196 \mathrm{Kg} \\ \mathrm{I}_{03}=11.1 \mathrm{Kg}-\mathrm{m}^{2} \end{gathered}$
Driver pulley inertia		$\mathrm{I}_{1}=\mathrm{I}_{01}+\mathrm{I}_{02}+4 \mathrm{I}_{03}$	$\mathrm{I}_{1}=208.5 \mathrm{Kg}-\mathrm{m}^{2}$

presents a summary of the components, equations, and parameters used for the model.

The primary idler pulley is modeled as a circular ring identical to the secondary pulley. The radius R_{2} was chosen to be the same as the driver pulley. The total rotational inertia is the sum of the contributions from the primary idler ring and four secondary idler rings giving a total inertia of $55.5 \mathrm{Kg}-\mathrm{m}^{2} \quad$ ($1314 \mathrm{lb}-\mathrm{ft}^{2}$.).

In the real system the primary idler pulley is attached to two rigidly supported hydraulic cylinders which provide the static preload on the wire rope. Assuming the support structure to be infinitely rigid these cylinders will control the spring rate k_{6} and translational damping C_{6}. In order to parameterize these two physical parameters the hydraulic cylinders must first be sized. Fig. (3.1.9) shows a FBD of the cylinders of length 1 and diameter d. The travel of the free end is X_{6} being loaded by the force F. The force F is the sum of the maximum dynamic cable load $F_{R 2}$ plus twice the static preload $F_{s 2}$. From the cable parameterization $\mathrm{F}_{\mathrm{r} 2}$ and $\mathrm{F}_{\mathrm{s} 2}$ were found to be 49.8 kN (11.2 kips) and $216.7 \mathrm{kN}(48.7 \mathrm{kips})$ respectively giving a total load F of $483.2 \mathrm{kN}(108.6 \mathrm{kips})$. The required cross Sectional area of both cylinders can be calculated by Equation (3.1.17) where σ is the hydraulic pressure in the cylinders.

$$
\begin{equation*}
\text { Area }=F / \sigma \tag{3.1.17}
\end{equation*}
$$

Table 3.1.6 Drum to cable diameter ratios

Proper Sheave and Drum Sizes

Construction	Suggested D/d ${ }^{\text {ratio }}$	Minimum D/d* ratio
6×7	72	42
19×7 or 18×7		
Reiation Restslant	51	34
6×19 Seale	51	34
$6 \times 27 \mathrm{H}$ lamened strand	45	30
$6 \times 31 \mathrm{~V}$ flattened stiand	45	30
$6 . \times 21$ filler wire	45	30
6×25 filler wire	29	26
6×31 Warrington Seale	39	26
6×36 Warrington Seale	35	23
8×19 Seale	41	27
8×25 tiller wire	32	21
6×41 Warrington Seale	32	21
6×42 wlier	21	14

Figure 3.1.9 FBD of hydraulic cylinders

With a hydraulic pressure of $24.13 \mathrm{MPa}(3500 \mathrm{psi}), 0.020 \mathrm{~m}^{2}$ (31.03 in. ${ }^{2}$) total cylinder area is needed. This can be achieved by two 0.112 m (4.44 in.) diameter cylinders. An active cylinder length of 0.61 m (24 in.) was chosen to compensate for cable stretch. The spring rate of the combined cylinders can be estimated by Equation (3.1.18) (See Appendix D for derivation) where E_{v} is the bulk modulus of elasticity of the hydraulic fluid and $F_{S 2}$ is the static preload on the wire rope.

$$
\begin{equation*}
k_{6}=2 F_{s 2} E_{v} / \sigma 1 \tag{3.1.18}
\end{equation*}
$$

With a static preload of 216.7 kN , a bulk modulus of 1.303 GPa , hydraulic pressure of 24.13 MPa , and length of 0.61 m Equation (3.1.18) yields a stiffness of $38.5 \mathrm{E} 6 \mathrm{~N} / \mathrm{m}$. This predicts an extremely rigid connection and thus the idler pulley will experience very small deflection in the model simulation. Small deflections will cause low velocities for the frequency range of interest and thus the translational damping will have a negligible influence on the model

Table 3.1.7 Summary of idler pulley model parameter quantification.

Parameter	Description	Equations	Value
R_{2}	Primary idler ring	mass $=\pi \rho_{\text {stee }} 1 t\left(R^{2}-r^{2}\right)$	$\begin{gathered} R=0.75 \mathrm{~m} \\ r=0.67 \mathrm{~m} \\ \mathrm{t}=0.07 \mathrm{~m} \end{gathered}$
I_{2}		$\mathrm{I}_{\mathrm{P} 1}=\mathrm{mass} / 2\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)$	$\begin{aligned} \operatorname{mass} & =196 \mathrm{Kg} \\ \mathrm{I}_{\mathrm{P} 2} & =11.1 \mathrm{Kg}-\mathrm{m}^{2} \end{aligned}$
m_{6}			$\begin{aligned} & \mathrm{R}=0.75 \mathrm{~m} \\ & \mathrm{r}=0.67 \mathrm{~m} \end{aligned}$
	Secondary idler ring	$\begin{aligned} & \text { mass }=\pi \rho_{\text {stee } 1} t\left(R^{2}-r^{2}\right) \\ & I_{P 2}=\text { mass } / 2\left(R^{2}-r^{2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{t}=0.07 \mathrm{~m} \\ & \quad \operatorname{mass}=196 \mathrm{Kg} \\ & \mathrm{I}_{\mathrm{P} 2}=11.1 \mathrm{Kg}-\mathrm{m}^{2} \end{aligned}$
	Total inertia of idler	$\mathrm{I}_{2}=\mathrm{I}_{\mathrm{P} 1}+4 \mathrm{I}_{\mathrm{P} 2}$	$\mathrm{I}_{2}=55.5 \mathrm{Kg}-\mathrm{m}^{2}$
	Lumped mass of idler	m_{6}-mass of primary	$\mathrm{m}_{6}=196 \mathrm{Kg}$
k_{6}	Hydraulic cylinders	$\mathrm{k}_{6}=2 \mathrm{~F}_{5 ?} \mathrm{E}_{\mathrm{v}} / \sigma 1$	$\begin{gathered} \mathrm{F}_{\mathrm{S2}}=216.7 \mathrm{kN} \\ \mathrm{E}_{\mathrm{v}}=1.303 \mathrm{GPa} \\ \sigma=24.13 \mathrm{MPa} \\ \mathrm{l}=0.61 \mathrm{~m} \\ \mathrm{k}_{6}=38.4 \mathrm{E} 6 \mathrm{~N} / \mathrm{M} \end{gathered}$
c_{6}	Damping of cylinders	N/A	$\mathrm{c}_{6}=0 \mathrm{Kg} / \mathrm{s}$
c_{θ}	Brake damping	N/A	$\mathrm{c}_{\theta}=0 \mathrm{Kg}-\mathrm{m}^{2} / \mathrm{s}$

simulation so it can be neglected. The rotational damping coefficient c_{θ} was installed in the system to model braking if needed. At this stage of the analysis there is no need for braking of the idler pulley and thus c_{θ} was set equal to zero.

Carriage/specimen model parameters: Two physical parameters are needed for the carriage/specimen model, the linearized drag coefficient $C_{\text {eff }}$ and the total mass m_{t}. As seen in Fig. 3.1.10, the tow specimen is modeled as a horizontal circular cylinder supported by two vertical and one horizontal shrouded strut. The struts are cylinders that have a symmetric airfoil cross Section. The circular cylinder is characterized by the length L and diameter d.

The diameter is a system variable and the length is fixed at 3.05 m (10 ft.) which is slightly short of 3.66 (12 ft .) internal width of the existing wave tank. The drag of the circular cylinder is proportional to the frontal area and drag coefficient as discussed in Section (2.3). The value of the drag coefficient used was 0.7 which applies to Reynolds numbers above 1E6, (Gerhart and Gross, 1985). The frontal area is the product of length and diameter and therefore is a system variable. The vertical struts have a chord length cof 1 m (39.4 in.$)$, a maximum thickness t of 0.127 m (5 in.$)$, and a wetted length b of $3.05 \mathrm{~m}(10) \mathrm{ft}$. These dimensions were selected for structural and fluid flow performance as discussed in Chapter (4). From Fig. (3.1.11) (Hoerner, 1965) the drag coefficient, based on strut area bxc is 0.08 for a thickness ratio of 13% and Reynolds number similar to that used for the circular cylinder. The horizontal strut has chord length c of

1 m , a thickness t of $0.076 \mathrm{~m}(3 \mathrm{in}$.$) , and a wetted length of 3.05 \mathrm{~m}$. From figure (3.1.11) the drag coefficient is 0.07 for a thickness ratio of 7%.

From Equation (2.3.18) $\mathrm{c}_{\text {eff }}$ is found to be a function of a drag coefficient C_{d} and an area A. A sum of the product $C_{d} A$ from each of the three components contributing to the drag can be used in Equation (2.3.18). This sum will contain the variable diameter d of the tow specimen cylinder. Table (3.1.7) shows a summary of models, equations, and values used to parameterize $\mathrm{C}_{\text {eff }}$.

The mass m_{t} is the sum of the wire rope model mass in the vicinity of the carriage m_{c}, the structural mass of the carriage m_{s}, and the added mass of the tow specimen interaction with the fluid. From the parameterization of the wire rope model the mass m_{c} was found to be 172 Kg . The structural mass of the carriage can be found in Appendix (C) as 1068 Kg . The added mass of the tow specimen is the product of displaced volume of the tow specimen, the added mass coefficient, and the density of the fluid. Since the volume is a function of the diameter the added mass is also a system variable. The added mass coefficient for a circular cylinder is 1.0 (Sarpkaya and Isaacson, 1987). The added mass of the struts interaction with the fluid is not accounted for in this analysis. Table (3.1.8) shows a summary of the mass calculation.

Table 3.1.8 Summary of carriage/specimen model parameter quantification.

Figure 3.1 .10 Tow specimen with supports.

Best scan available. Original is blurry.

Figure 3.1.11 Drag coefficient of airfoil Sections.

3.2. Applications of the System Model

With the physical parameters of the system model quantified the performance can now be investigated. The input variables of the system are the modulus of the carriage/specimen displacement function X_{3}, the angular frequency of oscillation ω, and the tow specimen cylinder diameter d. For the driving frequency range of interest it is convenient to express the oscillation frequency in terms of the period τ which is given by Equation (3.2.0.1).

$$
\begin{equation*}
\tau=2 \pi / \omega \tag{3.2.0.1}
\end{equation*}
$$

The performance is presented as plots of the specific performance parameters of interest versus driving period. Each plot has a fixed tow specimen diameter with a family of response curves for various displacement modulus or half strokes. The period is varied from 0.1 seconds to 30 seconds with enough data points in between to generate a smooth curve. The half strokes are plotted for $1,5,10,20$, and 30 meters for the specified period range. These families of curves are plotted for tow specimen cylinder diameters of $0.0,0.0254,0.0762,0.1524,0.3048$, and 0.6096 meters which corresponds to $0,1,3,6,12$, and 24 inches. The performance parameters of interest can be classified as either kinematic or dynamic and are summarized in Table (3.2.0.1).

Table (3.2.0.1) Summary of Performance Parameters

Classification Parameter Description

Kinematic	$\theta_{1} R_{1} / x_{3}$	Maximum angular displacement per cyc le
	of driver pulley non-dimensionalized	
	with carriage displacement.	
	ϕ_{1}	Phase angle of driver pulley displacement
	relative to carriage displacement phase.	

Dynamic

$D F_{\text {max }}$	Maximum drag force per cycle of the
towspecimen and supports as computed	
	with the linearized drag force equation.
$I F_{\text {max }}$	Maximuminertial force per cycle of the
	carriage structure and tow specimen.

Force Ratio $D F_{\text {max }} / I F_{\text {max }}$

TD Maximum drive torque per cycle.
$\phi_{T} \quad$ Drive torque phase ang le relative to the carriage displacement phase.
$P_{\text {max }} \quad$ Maximum power required per cycle based on the linearized drag force.

Pave Average power required per cycle based on the linearized drag force.

Pratio The ratio of the maximum non-linearized to linearized power per cycle.

3.2.1 Kinematics

With the carriage/specimen kinematics specified as input the best means of investigating the response of the system is to examine the driver pulley response. This response can be represented by the ratio of driver pulley displacement modulus to carriage/specimen displacement modulus. Thus any variation in the response curve reflects a variation of the driver pulley displacement relative to the carriage/specimen displacement. For driving periods that produce a steady state response this ratio is expected to be near unity implying small wire rope deflection between the driver pulley and carriage/specimen model. Fig. (3.2.1.1) shows this response for six tow specimen cylinder diameters. As the ratio becomes smaller than unity the driver pulley is required to go through a smaller displacement to move the carriage/specimen, which implies the wire rope model between the driver and carriage is experiencing stretch release and the remaining rope is stretching. In the real system the driver pulley motion will be specified and the carriage will follow. Operating in the period range where the displacement ratio is less then unity would result in a magnification of the carriage/specimen motion. This magnification continues to increase as the driving period decreases until a peak is reached at the resonant period.

The resonant period depicted in Fig. (3.2.1.1), is the fundamental resonant period. Other resonant periods exist theoretically at lower periods for each DOF of the system model. In the real system there are an infinite number of DOF's and therefore an infinite number of resonant periods. For this system the fundamental resonant period will

Figure 3.2.1.la Displacement amplitude ratio response

Figure 3.2.1.1b Displacement amplitude ratio response

Figure 3.2.1.1c Displacement amplitude ratio response

Figure 3.2.1.1d Displacement amplitude ratio response

Figure 3.2.1.1e Displacement amplitude ratio response

Figure 3.2.1.1f Displacement amplitude ratio response
produce the greatest magnification. The fundamental resonance must be completely avoided in the real system or severe damage could result to both the tow carriage system and the existing wave channel. For the given operating period range the only way to avoid this condition is to drive the system at periods greater then the resonant period. For this reason the shorter resonant periods are not plotted here but are calculated and discussed in Section (3.3).

The fundamental resonant period ranges from approximately 0.15 seconds with no tow specimen to 0.25 seconds with the 0.6096 m diameter tow specimen. Equation (3.2.1.2) gives the resonant period for an undamped one DOF system. Since the carriage/specimen mass dominates the other masses of the system and damping has only a second order effect on resonance this equation can approximate the fundamental resonant period. Using the structural mass of the carriage for m and the linear spring rate of the wire rope model Equation (3.2.1.2) predicts a fundamental resonant period of 0.12 seconds. This value is in good agreement with the damped responses in Fig. (3.2.1.1).

$$
\begin{equation*}
\tau_{\text {res }} \simeq 2 \pi S Q R T(\mathrm{~m} / \mathrm{k}) \tag{3.2.1.2}
\end{equation*}
$$

The stiffness k is a constant and the mass m varies with specimen size. This would indicate a slight increase in the resonant period as the specimen diameter increased. This trend is present in the response curves of Fig. (3.2.1.1).

The amount of magnification at resonance is a function of the damping present in the system, specifically the damping associated
with the carriage/specimen model $\mathrm{C}_{\text {eff }}$. Larger damping reduces the magnification of the carriage/specimen motion. The damping coefficient $C_{\text {eff }}$ increases with both specimen diameter and tow velocity as discussed in Section (2.3). For a given diameter the peak velocity of the specimen increases with half stroke X_{3} thus increasing the damping with reduced magnification.

For a given half stroke X_{3} the damping increases with tow specimen diameter. This can be seen in the response by decreasing magnification at resonance. In fact for diameters 0.0254 m and greater no magnification occurs at resonance. This can be interpreted as the wire rope model between the driver pulley and the carriage stretching which causes large displacement of the driver relative to the carriage.

The phase angle of the driver pulley displacement relative to the carriage/specimen displacement can be seen in Fig. (3.2.1.2). For periods much greater then resonance the driver is in phase, zero phase angle, with the carriage and damping has a very small effect on the response. As the period of oscillation decreases and approaches resonance the phase angle or difference approaches 90 degrees. The damping of the system affects the approach to resonance. Small damping maintains a near zero phase angle right up to resonance and then increases rapidly where as large damping produces a phase angle that reaches the resonant value more uniformly. At resonance the amount of damping present has no effect on the phase angle. For periods shorter then resonance the damping again plays a significant role in determining the phase angle with small damping approaching a maximum of 180 degrees and large damping increasing just over 90 degrees.

Figure 3.2.1.2a Driver phase response

Figure 3.2.1.2b Driver phase response

Figure 3.2.1.2c Driver phase response

Figure 3.2.1.2d Driver phase response

Figure 3.2.1.2e Driver phase response

Figure 3.2.1.2f Driver phase response

Similar to the displacement modulus the phase angle response behaves like a single DOF system for periods greater than the fundamental resonance and for shorter periods the other DOF's become significant.

3.2.2 Dynamics

The linearized drag force of the tow specimen and supports can be seen in Fig. (3.2.2.1). Each family of curves responds inversely proportional to the square of the period approaching zero drag force at long periods and infinity as the period approaches resonance. The drag force is proportional to the velocity squared which is equal to $\left(\omega X_{z}\right)^{2}$. For the simulation with no tow specimen the cycle half stroke length X_{3} has a small effect on drag for the larger periods with increasing significance as the period becomes shorter. This drag is due solely to the supports of the tow specimen. For larger tow specimens the half stroke length plays a stronger role in the drag for the entire range of periods.

The inertial force of the carriage/specimen model can be seen in Fig. (3.2.2.2). This response is similar to the linearized drag force and is inversely proportional to the square of the period. The inertial force is proportional to acceleration which is equal to $\omega^{2} x_{3}$. The inertial force is not as sensitive to carriage half stroke as the drag force for the period range plotted because the inertial force is linearly proportional to X_{3} while the drag force is proportional to the square of X_{3}. The inertial force family of curves for no tow specimen is due solely to the structural mass of the carriage. Increasing the

Figure 3.2.2.1a Drag force response

Figure 3.2.2.1b Drag force response

Figure 3.2.2.1c Drag force response

Figure 3.2.2.1d Drag force response

Figure 3.2.2.le Drag force response

Figure 3.2.2.lf Drag force response

Figure 3.2.2.2a Inertial force response

Figure 3.2.2.2b Inertial force response

Figure 3.2.2.2c Inertial force response

Figure 3.2.2.2d Inertial force response

Figure 3.2.2.2e Inertial force response

Figure 3.2.2.2f Inertial force response
tow specimen diameter increases the inertial force due to the added mass effect of the specimen interaction with the fluid.

The ratio of the linearized drag force to inertial force can be seen in Fig. (3.2.2.3) This ratio gives insight into which force is dominant for a particular simulation. With no tow specimen the system is inertially dominant for all but the 30 m half stroke implying that the inertial force of the carriage structure is larger than the drag due the specimen supports. As the tow specimen diameter is increased both the inertial and drag forces increase but the system becomes predominantly drag dominate for the larger half strokes. The response is a straight line because both forces have equal dependance on the period and only differ by a constant coefficient. The ratio of the coefficients is equal to the force ratio. The drag force coefficient is proportional to the frontal area of the tow specimen and hence the diameter. The inertial force is proportional to the volume of the tow specimen and hence the square of the diameter. The inertial force will thus dominate when the specimen diameter is significantly increased. This can be seen by comparing the force ratio of the 0.3048 m and 0.6096 m diameter simulations. The later simulation shows a slight decrease in the force ratio for a given half stroke. Note that for the cylinder diameters of interest the drag force is generally dominant.

The drive torque required to propel the carriage/specimen model at the specified kinematics is plotted in Fig. (3.2.2.4). Since the drive torque is a linear combination of both the drag and inertial forces of the system it also is inversely proportional to the square of the period. Similar to the drag and inertial forces, the drive

Figure 3.2.2.3a Force ratio response

Figure 3.2.2.3b Force ratio response

Figure 3.2.2.3c Force ratio response

Figure 3.2.2.3d Force ratio response

Figure 3.2.2.3e Force ratio response

Figure 3.2.2.3f Force ratio response
torque also increases with both the carriage half stroke and tow specimen cylinder diameter.

The phase angle of the drive torque relative to the carriage/specimen displacement is plotted in Fig. (3.2.2.5). This phase angle is quite linear and constant for periods greater than resonance. As resonance is approached the phase angle abruptly reaches 180 degrees and then drops. The steady state value depends on the dominant force of the system. For inertially dominant simulations the torque phase angle is near 180 degrees out of phase with the carriage/specimen displacement. This corresponds to acceleration being 180 degrees out of phase with displacement. As the simulation becomes more drag dominant at larger tow specimen diameters, the torque phase angle approaches 90 degrees with a minimum of 100 degrees for the diameter range plotted. This corresponds to the velocity being 90 degrees out of phase with displacement.

The average power required based on the linearized drag force is plotted in Fig. (3.2.2.6). This power is calculated from Equation (2.3.32). From the response of the driver pulley phase angle ϕ_{1}, previously discussed, the phase angle was found to be very near zero except at resonance. Since the real system is not going to be operated near resonance the corresponding resonant power requirement is not of interest. Noting that ϕ_{1} can be set equal to zero in Equation (2.3.32) which when expressed in terms of the driving period, reduces to

$$
\begin{equation*}
P_{\mathrm{ave}}=\pi / \tau\left|T_{D}\right|\left|\theta_{1}\right| \sin \left(\phi_{T}\right) \tag{3.2.2.1}
\end{equation*}
$$

Figure 3.2.2.4a Drive torque response

Figure 3.2.2.4b Drive torque response

Figure 3.2.2.4c Drive torque response

Figure 3.2.2.4d Drive torque response

Figure 3.2.2.4e Drive torque response

Figure 3.2.2.4f Drive torque response

With the drive torque T_{D} being inversely proportional to the square of the period τ the average power is inversely proportional to the cube of the period. Also note it is directly proportional to the sine of the drive torque phase angle. The strong dependence on the period can be seen in the steepness of the response curve at short periods. For simulations that are inertially dominant and hence have a drive torque phase angle near 180 degrees the average power is small due to the dependence on sine. Physically this caused by low energy dissipation. Most of the energy input to the system oscillates between potential energy stored in the springs and kinetic energy of the masses. Thus, for this nearly undamped simulation, the average power is low. As damping or drag is increased more energy is dissipated in a nonconservative manner and the torque phase angle decrease from near 180 degrees thus increasing the average power prediction.

The maximum power based on the linearized drag force can be seen in Fig. (3.2.2.7). This response was calculated from Equation (2.3.33) which can be reduced in a similar manner to the average power yielding

$$
\begin{equation*}
\mathrm{P}_{\max }=\pi / \tau\left|T_{\mathrm{D}}\right|\left|\theta_{1}\right|\left[\sin \left(\phi_{T}\right)+1\right] \tag{3.2.2.2}
\end{equation*}
$$

This response is quite similar to the average power except at a torque phase angle of 180 degrees the maximum power is not zero,as is the average power. This is due to the large spring rate of the wire rope model which causes the energy to be stored at a high force and low deformation over a short time span thus yielding large power requirements.

Figure 3.2.2.5a Drive torque phase response

Figure 3.2.2.5b Drive torque phase response

Figure 3.2.2.5c Drive torque phase response

Figure 3.2.2.5d Drive torque phase response

Figure 3.2.2.5e Drive torque phase response

Figure 3.2.2.5f Drive torque phase response

Figure 3.2.2.6a Average power response

Figure 3.2.2.6b Average power response

Figure 3.2.2.6c Average power response

Figure 3.2.2.6d Average power response

Figure 3.2.2.6e Average power response

Figure 3.2.2.6f Average power response

Figure 3.2.2.7a Maximum power response

Figure 3.2.2.7b Maximum power response

Figure 3.2.2.7c Maximum power response

Figure 3.2.2.7d Maximum power response

Figure 3.2.2.7e Maximum power response

Figure 3.2.2.7f Maximum power response

Figure 3.2.2.8a Power ratio response

Figure 3.2.2.8b Power ratio response

Figure 3.2.2.8c Power ratio response

Figure 3.2.2.8d Power ratio response

Figure 3.2.2.8e Power ratio response

Figure 3.2.2.8f Power ratio response

The ratio of maximum power based on the linearized drag force, Equation (2.3.33), to the maximum power based on the nonlinear drag force, Equation (2.3.35), is plotted in Fig. (3.2.2.8). Equation (2.3.35) when expressed in terms of the driving period yields

$$
\begin{equation*}
P_{D}=4 \pi^{3} \rho C_{d} A\left(\left|X_{3}\right| / \tau\right)^{3} \tag{3.2.2.3}
\end{equation*}
$$

Both Equation (2.3.33) and Equation (2.3.35) have an inverse period cubed dependence and thus their ratio is a straight line. This parameter is used to give an indication as to which Equation, (2.3.33) or (2.3.35), will give the best indication of maximum power requirements. If the ratio is less than or equal to one then Equation (2.3.33) is probably the better of the two. If the ratio is significantly larger than one then Equation (2.3.35) will give better results. As can be seen in the figures the linearized power equation should work well for the applications investigated.

3.2.3 Maximum Performance Selection

Figures (3.2.1.1) through (3.2.2.8) represent various performance responses of the system model. Both the half stroke and tow cylinder diameter ranges are good representations of the anticipated use of the dynamic tow carriage. Not all of the driving periods represent real system use. For a given half stroke and cylinder diameter the force and power requirements predicted by the model may not be achievable by the real system. With this in mind a minimum period, and hence maximum
performance, must be selected for each curve in order to be consistent with the real system.

The fundamental limiting criteria is the power requirement. Section (5.3) discusses in detail the sizing of the real system power train. It was found that a maximum power of 400 kW is a reasonable upper limit. A second limiting factor is the maximum drive torque. High torque loads can exist with low power requirements when carriage/specimen acceleration is large. Thus the maximum acceleration over a particular cycle must be limited. Since most of the experimental work to be done with the carriage will be to simulate gravity waves it is reasonable to limit the carriage/specimen acceleration to $9.81 \mathrm{~m} / \mathrm{s}^{2}$. When selecting the minimum drive period, or maximum performance of a particular simulation, the maximum power is limited to 400 kW as long as the peak acceleration of the carriage/specimen model is less than or equal to lg . If the acceleration exceeds lg then the acceleration will be the limiting parameter. Table (3.2.3.1) is a summary of this selection process. All values represent the maximum performance over one cycle.

The maximum velocity of the carriage ranges from $3.1 \mathrm{~m} / \mathrm{s}$ to 17.1 m / s with maximum acceleration ranging from 0.23 to 1 g . The maximum inertial force is near 10 kN with the exception of the largest specimen at 1 and 5 m half strokes which generates 30 kN inertial forces. The maximum drag force is on the average two to three times larger then the inertial force with a peak of 56 kN for the largest tow specimen at the 20 and 30 m half strokes. Even with the imposed power limit the system shows drag dominance. The maximum power has a ceiling of 400 kW and the

Table (3.2.3.1) Summary of Maximum Performance Selection.

$\min _{(\sec)}$	Spec imen dia. (m)	$\begin{gathered} x_{3} \\ (\mathrm{~m}) \end{gathered}$	limiting parameter	$\begin{aligned} & \dot{x}_{3} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & x_{3} \\ & \text { (g's) } \end{aligned}$	$\mathrm{IF}_{\text {pax }}$	$\mathrm{DF}_{\text {max }}$	Fratio	$P_{\text {riax }}\left({ }_{R}\right)$	Pake	Pratio	$\mathrm{T}_{(\mathrm{k} N-m)}$	${ }^{\phi}(\mathrm{deq})$	R_{ed}	$K C_{D}$
	$\frac{(m)}{0.0254}$	(m) 1.00	acceleration	$\frac{3.1}{} 3$	1.0	$\frac{9.91}{}$	0.68	0.07	35.8	0.90	0.08	16.7	179	6.0 E 4	2.5 E 2
2.01 4.49	0.0254	1.00 5.00	acceleration	7.0	1.0	9.78	3.36	0.34	77.7	9.96	0.38	16.7	172	1.4E5	1.2 E 3
4.34		10.00	acce leration	9.7	1.0	9.38	6.45	0.69	132	26.5	0.62	16.4	166	1.9 E 5	2.4 E 3
8.97		20.00	acceleration	14.0	1.0	9.78	13.4	1.4	253	79.7	0.90	18.6	153	2.7E5	7.4E3
11.0		30.00	acceleration	17.1	1.0	9.82	20.7	2.1	388	147	1.02	21.1	142		
2.01	0.0762	1.00	acceleration	3.1	1.0	10.2	1.32	0.13	37.2	1.76	0.16	17.0	177	1.8E5	8.2 El
4.49		5.00	acceleration	7.0	1.0	10.1	6.5	0.64	99.8	19.4	0.60	17.3	166	4.1E5	4.1E2
6.34		10.00	acceleration	9.7	1.0	9.65	12.5	1.3	167	51.4	0.88	17.9	154	5.6 E 5	8.1 E 2
8.97		20.00	acce leration	14.0	1.0	10.1	26.1	2.6	374	155	1.06	23.6	135	8.165	2.5E3
12.82		30.00	max power	14.7	0.74	7.45	29.0	3.9	400	181	1.14	22.26	124	8.6 E	2.5 E3
2.01	0.1524	1.00	acceleration	3.1	1.0	11.2	2.3	0.21	40.1	3.00	0.24	17.7	175	$3.6 E 5$	4.1E1
4.49	0.152	5.00	acceleration	7.0	1.0	11.1	11.3	1.0	122	33.5	0.80	18.9	159	8.1E5	2.1E2
6.34		10.00	acceleration	9.7	1.0	10.6	21.6	2.0	229	88.8	1.02	21.7	141	1.1 E 6	4.0E2
10.48		20.00	max power	12.0	0.73	8.15	33.3	4.1	400	164	1.14	24.5	121	1.4E6	- 1.3 E 2
15.07		30.00	max power	12.5	0.53	5.91	36.3	6.1	400	193	1.16	24.9	112	1.5E6	1.253
2.01	0.3048	1.00	acceleration	3.1	1.0	15.1	4.2	0.28	49.0	5.60	0.34	20.8	173	7.2 ES	2.0E1
4.49		5.00	acceleration	7.0	1.0	14.9	20.8	1.4	175	61.6	0.96	32.1	148	1.6E6	1.0E2
6.34		10.00	acceleration	9.7	1.0	14.3	39.9	2.8	370	164	1.10	32.1	128	2.3E6	2.0 E 2
12.31		20.00	max power	10.2	0.53	8.00	44.5	5.6	400	193	1.16	30.3	111	2.4E6	6.2E2
18.34		30.00	max power	10.3	0.36	5.40	45.1	8.4	400	197	1.18	29.7	104	2.46	6.2E2
2.01	0.6096	1.00	acceleration	3.1	1.0	30.9	8.1	0.26	78.7	10.8	0.38	32.9	171	1.4E6	1.0E1
4.49		5.00	acceleration	7.0	1.0	30.6	39.8	1.3	307	118	0.96	40.9	142	3.3 E 6	5.2 E 2
8.29		10.00	max power	7.6	0.59	18.1	47.1	2.6	400	152	1.12	35.5	122	3.5E6	1.0E2
15.23		20.00	max power	8.3	0.35	10.7	55.7	5.2	400	195	1.18	37.2	108	3.9E6	3.1E2
22.73		30.00	max power	8.3	0.23	7.19	56.2	7.8	400	198	1.19	36.6	102	3.956	3.15

average power peaks at near 200 kW . Even with the inertial forces being one-third or less of the drag forces, the maximum power is still double the average power. This demonstrates the strong effect inertial forces have on maximum power requirements. The drive torque ranges from $17 \mathrm{kN}-\mathrm{m}$ to $40 \mathrm{kN}-\mathrm{m}$. The Reynolds number based on tow cylinder diameter has maximum values ranging from 6.0×10^{4} to 3.9×10^{6} and KeuleganCarpenter parameter ranging from 1.02×10^{1} to 7.41×10^{3}.

3.3 Free Vibration Analysis of System Model

In Section (2.2) the governing equations of motion for the system model yielded a matrix equation of the form

$$
[A]\{X\}=\{B\}
$$

The square matrix [A] contained the coefficients of the unknown displacement column matrix $\{X\}$ which could be solved for when set equal to the given column matrix $\{B\}$. The results of this forced vibration allowed the investigation of the fundamental resonant or natural period $\tau_{\text {res }}$ by interpreting the displacement response of the driver pulley model relative to the carriage/specimen model displacement. Another means of investigating the fundamental period of the system is to perform a undamped free vibration analysis. The advantage of this method is that the fundamental period of the carriage/specimen model is solved for directly without having to interpret plots. The disadvantage is that damping is not accounted for. Equation (3.3.1) shows the natural period of a one DOF damped system τ_{d} in terms of the
undamped natural period $\tau_{\text {ud }}$ and the damping ratio ζ that was discussed in Section (2.4).

$$
\begin{equation*}
\tau_{\mathrm{d}}=\tau_{\mathrm{ud}} 1 / \operatorname{SQRT}\left(1-\zeta^{2}\right) \tag{3.3.1}
\end{equation*}
$$

Considering that the damping has only a second order effect on the resonant period the results should not differ much from the damped system. In general an undamped system will have a slightly shorter natural period than a damped system of equal stiffness and mass.

The governing equation of motion for a free vibration system can be arranged in the form

$$
\begin{equation*}
[M]\{\ddot{X}\}+[C]\{\dot{X}\}+[K]\{X\}=\{0\} \tag{3.3.2}
\end{equation*}
$$

where $[M],[C]$, and $[K]$ are the mass, damping, and stiffness matrices of the system model respectively. Setting the damping matrix to zero for undamped free vibration yields

$$
\begin{equation*}
[M]\{\ddot{X}\}+[K]\{X\}=\{0\} \tag{3.3.3}
\end{equation*}
$$

Since the system is linear and therefore deterministic a displacement function of the form

$$
\begin{align*}
& x_{i}=a_{i} \sin (\omega t-\phi) \tag{3.3.4}\\
& i=1,2, \ldots n
\end{align*}
$$

can be chosen where a_{i} is the amplitude of motion of the $i^{\text {th }}$ coordinate and n is the number of DOF. In matrix form Equation (3.3.4) can be written

$$
\{X\}=\{a\} \sin (\omega t-\phi)
$$

Substituting for $\{X\}$ in Equation (3.3.3) yields

$$
-\omega^{2}[M]\{a\} \sin (\omega t-\phi)+[K]\{a\} \sin (\omega t-\phi)=\{0\}
$$

rearranging terms

$$
\left[[K]-\omega^{2}[M]\right]\{a\}=\{0\}
$$

Since both the stiffness and mass matrices are linear we have an algebraic system of linear homogeneous equations with n unknown displacements a_{i} and an unknown parameter ω^{2}. A non-trivial solution requires that the determinate of the matrix factor of $\{a\}$ be equal to zero yielding

$$
\begin{equation*}
\left|[K]-\omega^{2}[M]\right|=0 \tag{3.3.5}
\end{equation*}
$$

In general the solution of this eigen problem results in a polynomial equation of degree n in ω^{2}. The n values of ω^{2} are each unique and represent the square of the natural frequencies for the system. The natural or resonant period can be found from Equation (3.3.6).

$$
\begin{equation*}
\tau_{u d}=2 \pi / \operatorname{SQRT}\left(\omega_{u d}^{2}\right) \tag{3.3.6}
\end{equation*}
$$

The stiffness and mass matrices for this system can be seen in Fig.s (3.3.1) and (3.3.2) respectively. Without damping, the DOF's of the system are completely unrestrained so the first mode is that associated with rigid body motion and a natural frequency of zero. This produces a numerical instability in the solution routine used which can be avoided by applying a virtual spring constant k_{v} to the driver pulley affecting the θ_{1} DOF. This spring constant will give the first natural period a finite value which does not apply to the real model. Therefore the first natural period is associated with the virtual spring and must be ignored. The second natural period of the solution is the first natural period of the system model. Table (3.3.1) shows the natural frequencies and periods for the system as solved for by the FORTRAN program Toweigen (see Appendix B).

Using the second natural period from each group of data the results range from 0.073 seconds for the 0.0254 m diameter specimen to 0.077 seconds for the 0.6096 m diameter specimen. The natural period can be seen to decrease slightly with increasing specimen diameter for the first two diameters listed. This is not in agreement with either the expected response or the response predicted in Section (3.2.1) for damped resonance. The solution technique used exhibited slight numerical instabilities for various combinations of mass and stiffness and may have caused this discrepancy. Nevertheless the results are reasonably close to the resonant period range of 0.15 to 0.30 seconds
predicted by the damped model. The undamped natural period is shorter than the damped period as expected.

θ_{1}	X_{2}	x_{3}	X_{4}	x_{5}	x_{6}	X_{8}	x_{0}	X_{10}
$\begin{gathered} -2 k_{c} \\ -k_{v} / R^{2} \end{gathered}$	$k_{\text {c }} /$ /							
k_{c} / \mathbb{R}	$2 \mathrm{~K}_{\mathrm{c}} / \mathrm{R}^{2}$	k_{c} / R^{2}						
	k_{c} / R^{2}	$2 \mathrm{k}_{\mathrm{c}} / 7{ }^{\text {e }}$	$\mathrm{k}_{\mathrm{c}} / \mathbb{R}^{2}$					
		k_{c} / R^{2}	-2ke/ R^{2}	$k_{c} /$ R	k_{c} / R^{2}			
			k_{c} /R	$\begin{gathered} -2 k_{c} \\ -k_{v} / R^{2} \end{gathered}$		$-k_{\text {d }} / \mathrm{P}$		
					$\begin{aligned} & -2 k_{c} / R^{2} \\ & -k_{d} / P P^{2} \end{aligned}$	$\mathrm{k}_{\mathrm{c}} / \mathrm{R}^{2}$		
				k_{c} / \mathbb{R}	k_{c} / R^{2}	$2 k_{c} / R^{2}$	k_{c} / \mathbf{R}^{2}	
							$2 k_{c} / R^{2}$	$k_{c} \mathbb{R}^{2}$
							k_{c} / R^{2}	$2 \mathrm{k}_{\mathrm{c}} / \mathrm{R}^{2}$

[k]

Figure 3.3.1 Stiffness matrix

[m]

Figure 3.3.2 Mass matrix

Table 3.3.1 Natural frequencies and periods of undamped system

Tow specimen diameter (m)	Mode \#	Frequency (Hz)	Period (sec)
0.00	1	2.618	0.382
	2	13.758	0.073
	3	21.945	0.046
	4	29.286	0.034
	5	35.946	0.028
	6	45.125	0.022
	7	51.175	0.020
	8	60.468	0.017
	9	106.749	0.009
0.0254	1	2.512	0.398
	2	13.758	0.073
	3	21.945	0.046
	4	29.286	0.034
	5	35.946	0.028
	6	45.125	0.022
	7	51.175	0.020
	8	60.468	0.017
	9	106.749	0.009
0.0762	1	2.627	0.381
	2	13.926	0.072
	3	22.478	0.044
	4	29.598	0.033
	5	36.877	0.027
	6	46.283	0.022
	7	52.538	0.019
	8	61.769	0.016
	9	109.593	0.009
0.1524	1	2.564	0.390
	2	13.926	0.072
	3	22.478	0.044
	4	29.598	0.033
	5	36.877	0.027
	6	46.283	0.022
	7	52.538	0.019
	8	61.769	0.016
	9	109.593	0.009
0.3048	1	2.344	0.427
	2	13.926	0.072
	3	22.478	0.044
	4	29.598	0.033
	5	36.877	0.027
	6	46.283	0.022
	7	52.538	0.019
	8	61.769	0.016
	9	109.593	0.009
0.6096	1	1.708	0.585
	2	13.926	0.072
	3	22.478	0.044
	4	29.598	0.033
	5	36.877	0.027
	6	46.283	0.022
	7	52.538	0.019
	8	61.769	0.016
	9	109.593	0.009

4.0 Tow Carriage Structural Analysis and Design

4.1 Carriage Structure Performance Requirements

The loading on the various system components has been estimated utilizing results from the system model of Chapter 2. With this loading information each component must be designed to perform under the specified conditions. The first component to be analyzed is the carriage structure which supports the tow specimen.

The function of the carriage is to rigidly support and guide the tow specimen and transfer the dynamic cable force in order to motivate the specimen through the wave channel. The major design criteria for the carriage structure are ordered as follows:

1) The structure must be light weight to minimize inertial loading of the system.
2) The structure must be rigid to minimize deflections when loaded both statically and dynamically.
3) The wetted portion of the structure must have a small drag force to minimize wasted power and provide a relatively undisturbed flow near the specimen.
4) The structure must withstand the corrosive environment of the wave channel.
5) Construction cost must be kept low relative to the overall system cost.

The above design criteria are ranked in order of importance. The weight of the structure is the most important constraint because the system model is very sensitive to the carriage mass. A large carriage mass significantly increases inertial loading which in turn increases maximum power requirements. The resonant period is also increased but to a lesser degree.

The rigidity of the structure is also an important constraint. With static loads of more than 50 kN and dynamic loads on the same order the structural integrity of the carriage is important. Since the carriage is to be instrumented, vibration is also a major concern. The stiffness to mass ratio must be kept large in order to have high natural frequencies for the various modes of vibration.

With a tow specimen being towed completely submerged a portion of the carriage structure will also be submerged or wetted. This portion of the structure must have good external flow properties in order to minimize lost power and interference with the specimen interaction with the fluid.

The structure must also withstand the corrosive environment of the wave channel for the life of the structure. The least important design criteria is cost. The performance criteria stated above are more critical because if they are not met the system will not function properly. Certainly compromises will have to be made to keep the construction costs feasible. The rest of this chapter describes a possible conceptual design of the carriage followed by the supporting analysis.

4.2 Description of the Carriage Structure Design and Model

The conceptual design of the system specifies the use of linear motion bearings that nearly span the length of the existing wave channel (see Section 5.2). These bearings when fitted to the existing facilities specify the width of the carriage structure to 3.66 m (12 ft.). The maximum depth of the structure below the bearing rail is specified by the depth of the tank to be $4.67 \mathrm{~m}(15 \mathrm{ft}$.). With these two fixed dimensions the carriage structure was designed to best meet the design criteria. A conceptual design of the carriage can be seen in Fig. (4.1.1). This design is the result of a trial and error approach constrained by the previously mentioned criteria.

The overall width is $3.66 \mathrm{~m}(12 \mathrm{ft}$.) with a length of 5.79 m (18 ft.$)$, and a height of 5.79 m (19 ft.). The main Section of the structure is a 3.66 m by 5.49 m by 1.22 m space frame. The frame is composed of 0.13 m (5 in.) diameter main support tubes reinforced with 0.06 m (2.5 in.) diameter tubes. This part of the structure attaches to the bearing rails as indicated restricting motion to the x-direction only. This space frame also provides support for the extended tow specimen supports.

The two vertical tow specimen supports or struts, are 5.79 m (19 ft.) long tubes with a symmetric hydrofoil cross Section. The cord length is 1 m (39.4 in.) and the maximum thickness of 0.13 m (5 in .) occurs at mid chord. This thickness distribution should provide similar flow characteristics for both forward and reverse towing. The single

Figure 4.1.1 Conceptual design of tow carriage structure
horizontal support strut is also a symmetric hydrofoil in cross Section with a chord length of 1 m and a maximum thickness of 0.08 m (3 in.at mid chord. The tow specimen can be attached either vertically or horizontally. The specific details of how the specimen attaches to the carriage are not presented in the design nor are the details of how the specimen support struts are raised and lowered relative to the main frame.

4.3 Material Selection for the Carriage Structure

The materials were selected by considering stiffness, weight, corrosion resistance, and cost. A finite element model was developed to model the design. Using the loading predicted by the system model, a preliminary design was investigated using steel as the material. The analysis provided the required member sizes for a specified maximum deflection. The product of elastic modulus and Sectional inertia was computed for the specimen support struts, which primarily experience bending, and the product of elastic modulus and Sectional area was computed for the circular tube members of the space frame, which mainly experience axial loading. Equating similar products for various materials the overall mass of the structure was computed for each material. The stiffness product for a typical member divided by the total mass of the structure has a K/M flavor and seems appropriate for such a design where rigidity and mass are both major concerns.

Steel, aluminum, and titanium were the materials used for comparison. Alloying of these materials generally does not effect the stiffness as much as the strength. Therefore the specific alloy is not
stiffness as much as the strength. Therefore the specific alloy is not important at this point in the analysis because the structure was designed for deflections and not stresses.

Titanium had the highest stiffness to mass characteristics and steel the worst with aluminum nearly in between. Both titanium and aluminum have good to excellent corrosion properties depending on the alloy compared to steel. The cost, ease of manufacturing, and availability of these materials all rank in the opposite order of stiffness to weight. Steel is by far the cheapest and easiest material to work with, aluminum is slightly more expensive and more difficult to work with, and titanium is very expensive and difficult to work with. At this stage of the design aluminum appears to be the best compromise between performance and cost and is therefore used for the remainder of the analysis.
4.4 Description of the Finite Element Model of the Carriage Structure In order to quantify the structural response of the tow carriage frame a finite element model was constructed. Each member of the frame was given a beginning and ending node with an element connecting the nodes. Several members may share a common node but each member has only one element. A total of 55 nodes and 137 elements are needed to model the structure. Fig. (4.4.1) shows the model of the tow carriage structure with the nodes labeled. Element numbers were left out for clarity. The global coordinates of the model are also shown. In addition to the global coordinates each node has a set of local coordinates.

Right Side Panel

Left Side Panel

Fig. 4.4.la Side view of finite element model

Top Panel

Bottom Panel

Figure 4.4.1b Top view of finite element model

Figure 4.4.1c Front view of finite element model

The finite element program ANSYS (Swanson, 1985) was used to develop and analyze the model. Each element is modeled as a 3-D beam element. This element is a uniaxial element with compression, tension, torsion, and bending capabilities. Each element has six DOF at each of its two nodes: translation in the local x, y, and z directions and rotations about the local x, y, and z axes. Shear deflections are not considered. Each element is defined by its length, orientation, and Sectional properties. The length and orientation are computed from the geometry of the model and the Sectional properties are input directly into the program.

A total of four different Sectional properties are used for this model. Each Section can be seen in Fig. (4.4.2). The first Section is that of the main supports of the space frame which are 12.7 cm (5 in.) diameter circular aluminum tubes. A total of 40 elements are used with this cross Section. The second Section models the reinforcement members of the space frame which are $6.35 \mathrm{~cm}(2.5 \mathrm{in}$.) diameter circular aluminum tubes. A total of 87 elements are used with this cross Section. The third Section in the model is for the vertical tow specimen support struts. These elements model the hydrofoil Sectioned tubes of the conceptual design. A rectangular tube cross Section approximates this shape having a thickness of 12.7 cm . and a width of 91.4 cm (36 in.). The last Section of the model represents the horizontal tow specimen support strut. An aluminum rectangle with a thickness of 7.6 cm (3 in.) and a width of 91.4 cm approximates this hydrofoil Section.

Cross-section

$$
\begin{aligned}
& \mathrm{I}=0.0000318 \mathrm{ft}^{4} \\
& \mathrm{~J}=0.0000636 \mathrm{ft}^{4} \\
& \mathrm{~A}=0.006477 \mathrm{ft}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& I=0.000275 \mathrm{ft}^{4} \\
& J=0.00045 \mathrm{ft}^{4} \\
& A=0.013295 \mathrm{ft}^{2}
\end{aligned}
$$

$l_{11}=0.12842 \mathrm{ft}^{4}$
$\mathrm{l}_{12}=0.005084 \mathrm{ft}^{4}$
$J=0.01851 \mathrm{ft}^{4}$
$A=0.140625 \mathrm{ft}^{2}$

$$
\begin{aligned}
& l_{11}=0.11301 \mathrm{tt}^{4} \\
& \mathrm{l}_{12}=0.00168 \mathrm{tt}^{4} \\
& J=0.0063 \mathrm{ft}^{4} \\
& A=0.13368 \mathrm{t}^{2}
\end{aligned}
$$

$1 \mathrm{ft}=0.305 \mathrm{~m}$
$1 \mathrm{ft}^{2}=0.093 \mathrm{~m}^{2}$
$1 \mathrm{ft}^{4}=0.0087 \mathrm{~m}^{4}$

Figure 4.4.2 Cross Sectional model of element members

The interaction between the tow carriage structure and the bearing guide rails is modeled at nodes $10,26,30$, and 14 . Each of these nodes is only allowed one DOF in the global x-direction which is consistent with the motion of the bearings. All other translational and rotational DOF's at these four nodes are forced to have zero displacement. Thus the bearings and connection between the bearings and carriage structure are assumed infinitely rigid.

The interaction between the wire rope and the carriage structure is modeled at node 12. Here the translational DOF in the global x direction is forced to zero. All other DOF are unrestricted from external interactions. Both a static and dynamic analysis were preformed on this model. The above description of the model and boundary conditions are common to both analyses.

4.5 Static Analysis of the Finite Element Model

The static analysis is composed of two separate load steps. The first load step is to model the maximum force imposed on the carriage structure by a horizontal tow specimen at the bottom of the support frame in the global x-direction. This force is the result of both the drag and inertial forces of the tow specimen as discussed in Section (3.2). The maximum force from this loading was found to be approximately 50 kN . This is modeled as two 25 kN forces acting in the x-direction at nodes 16 and 32 .

With the above input the analysis provides the state of stresses at the end of each element, the deflection of each node, and the reaction forces of the structure. The output stresses include the net

Figure 4.5.1 Stress output of finite element model
axial stresses at the ends of each element. From Fig. (4.5.1) the net stresses, sigl and sig3, are defined as the sum of the axial stresses due to direct axial loading sdir, and axial stresses due to bending about the local y and z axes of the element sby and sbz. Shear stresses have only a small contribution to the overall maximum deflection and the overall stress level for slender elastic beams and are therefore not included in the analysis.

As stated above the stresses sigl and sig3 are axial stresses only. Since the shear stresses are small the largest of these two stresses will closely approximate the maximum stress in a particular element. With the indicated loading stresses in all elements are less than 7000 psi. Many common alloys of aluminum have yield stresses greater then 30,000 psi resulting in a safety factor greater then four.

The maximum deflection occurs at nodes 16 and 32 . Node 16 has a deflection in the global x-direction of $14.5 \mathrm{~mm}(0.57 \mathrm{in}$.$) and node$ 32 has a similar deflection of 16.0 mm (0.63 in.$)$. All other deflections are an order of magnitude smaller. Thus the carriage structure is quite rigid for this loading direction. The reaction forces are listed in Table (4.5.1) and are discussed later in the text.

The second load step of the static analysis considers lift forces from the tow specimen, i.e., forces that are directed normal to the relative flow field about the tow specimen. For a horizontally mounted tow specimen the lift force would act in the global z-direction. For a vertically mounted tow specimen the lift force would act in the global y-direction. Because the structure is much stiffer when loaded

Table 4.5.1 Summary of reaction forces on carriage structure

X-direction loading

Node \#	${ }_{F}^{F}(\hat{N})$	$\begin{aligned} & F \\ & (N) \end{aligned}$	(${ }^{F}$)	$M_{(N-m)}$	$\begin{aligned} & M_{N-m} \\ & (N-m \end{aligned}$	$M_{(n-m)}$
10	0	-8411	-16867	-156	549	7.3
12	-49996	0	0	0	0	0
14	0	-8411	16867	156	549	7.3
26	0	-8211	-25225	-20.6	631	98
30	0	8211	25225	20.6	631	98

Y-direction loading

Node \#	$F^{F}(\hat{R})$	$F_{(N)}$	$\begin{aligned} & F \\ & (\mathbb{N}) \end{aligned}$	${ }_{(N-m)}$	$M_{(x-m)}$	$M_{7}(n-m)$
10	0	-1112	-2769	20	140	-13
12	0	0	0	0	0	0
14	0	-1112	-2769	20	-140	13
26	0	-1112	2769	20	-140	-13
30	0	-1112	2769	20	140	13

Sum of loading from X and Y directions plus gravity loading

Node $\#$	F	F	F	M	M	M
	(N)	(N)	(\mathbb{N})	$(N-m)$	$(N-m)$	$(N-m)$
10	0	9523	22248	176	689	20.3
12	49996	0	0	0	0	0
14	0	9523	22248	176	689	20.3
26	0	9323	30606	40.6	771	111

in the global z-direction compared to the y-direction,only the y direction loading is analyzed.

For the circular cylinder tow specimen used for the system analysis lift forces are generally caused by vortex shedding. Vortex shedding and hence the lift force on these symmetric specimens is a very dynamic and complicated phenomena. This paper does not attempt to accurately quantify these forces. Instead a lift force an order of magnitude smaller than the maximum drag force is used. This is done by applying a 2.2 kN force in the global y -direction at both nodes 16 and 32.

The maximum stress from this load step is 1150 psi which implies a safety factor of 26 . The maximum deflection of 8.4 mm (0.33 in) occurs at nodes 16 and 32 in the global y-direction. All other deflections are an order of magnitude or more smaller. Thus, the structure is also quite stiff for this loading direction as well.

The reaction forces for this load step and the previous are presented in Table (4.5.1). The sum of the reaction forces from each load step is used in selecting the appropriate linear guide bearing in Section (5.2).

As mentioned above the lift force was not accurately quantified and could approach the same magnitude as the drag force. If this were to occur unacceptable deflections and stresses could result. This structure could be further stiffened for y-direction loading at the probable cost of increased mass and drag from the tow specimen supports. The above analysis and results seems sufficient for the conceptual design so the static analysis is not carried any further.

4.6 Modal Analysis of Carriage Frame

As previously discussed the lift forces on the circular cylinder tow specimen resulted from the fluid dynamic phenomena of vortex shedding. This phenomena produces harmonic fluctuating forces both normal and tangent to the specimen velocity vector. These unsteady forces can excite the structure and cause significant vibration which can interfere with instrumentation and in extreme cases cause structural damage.

Performing a modal analysis of the structure provides insight into the vibration response of the structure. The purpose of the modal analysis for this design is to find the natural frequencies and corresponding mode shape of the structure.

In terms of the carriage structure the governing equation of motion for free, undamped vibration is :

$$
\begin{equation*}
M+K U=0 \tag{4.6.1}
\end{equation*}
$$

where M, K, and U are the mass, stiffness, and displacement matrices of the structure respectively. As previously discussed, for linear structures the displacements are harmonic of the form:

$$
\begin{equation*}
U=U_{0} \cos \omega t \tag{4.6.2}
\end{equation*}
$$

Substituting for U and in Equation (4.6.1) gives the eigen value equation :

$$
\begin{equation*}
\left(K-\omega^{2} M\right) U_{0}=0 \tag{4.6.3}
\end{equation*}
$$

For non-trivial solutions $\left(U_{0} \neq 0\right)$, the determinate of $\left[K-\omega^{2} M\right]$ must vanish yielding:

$$
\begin{equation*}
\left|K-\omega^{2} M\right|=0 \tag{4.6.4}
\end{equation*}
$$

If n is the order of the matrices, then Equation (4.6.4) results in a polynomial of order n, which has n roots: $\omega_{1}^{2}, \omega_{2}^{2}, \ldots, \omega_{n}^{2}$. These roots are the eigen values of Equation (4.6.4). Substituting the n eigen values into Equation (4.6.3) yields n corresponding eigen vectors U_{0}. In a modal analysis the eigen values represent the square of the natural circular frequencies and the eigen vectors represent the corresponding mode shapes.

In order to compare the response of the structure to various natural frequencies both the participation factor (PF) and effective mass (EM) are useful parameters. The PF may be defined as a measure of the response of a structure at a given natural frequency. The PF represents how much each mode will contribute to deflections (and hence stresses) in a particular direction. The higher the PF for a given frequency and direction the more significant the mode. The actual value of the PF is only useful to compare the structural response to various frequencies and direction in the analysis. In other words the output does not represent true displacements. A PF ratio can be defined as the ratio of the PF of a particular frequency and direction to the maximum PF of the direction of interest.

The effective mass , EM, is approximately the amount of mass that is active for a particular mode shape. The higher the EM the more significant the mode. A EM ratio can be defined as the ratio of the EM for a particular frequency and direction to the total mass of the structure.

A modal analysis of the tow carriage structure yielded the following results. In the global x-direction the first and most significant mode occurs at 19.44 Hz with a PF of 5.4 and a effective mass of 430 Kg . Fig. (4.6.1) and (4.6.2) show the frequency response for $P F$ and $E M$ ratios. Two other frequencies also have significant responses at 52.66 and 143.8 Hz . Figure (4.6.3) shows the mode shape for the 19.47 Hz response. This response mainly involves motion of the tow specimen support struts with minor contributions from the members of the space frame.

In the global y-direction significant modes occur at 8.08 and 40.44 Hz . The corresponding PF and EM are 4.9 and 354 Kg for the 8.08 Hz response and 5.0 and 374 Kg for the 40.44 Hz response. Figures (4.6.4) and (4.6.5) show the PF and EM ratios for the y-direction. From Fig. (4.6.6) we find the 8.08 Hz mode shape mainly excites the tow specimen support struts with minor activity in the space frame. Figure (4.6.7) shows the response to 40.44 Hz which activates the tow specimen support struts and space frame to a greater degree.

In the global z-direction the fundamental and most significant mode occurs at 31.79 Hz with a PF of 4.9 and a effective mass of 355 Kg . Figures (4.6.8) and (4.6.9) show the z-direction response of the PF and EM ratios. From the mode shape in Fig. (4.6.10) it can be seen

Figure 4.6.1 Participation factors in X-direction

Figure 4.6.2 Effective masses in X-direction

Figure 4.6.3 Mode shape for 19.467 Hz

Figure 4.6.4 Participation factors for γ-direction

Figure 4.6.5 Effective masses for Y-direction

Figure 4.6.6 Mode shape at 8.077 Hz

Figure 4.6.7 Mode shape at 40.44 hz

Figure 4.6.8 Participation factors for Z-direction

Figure 4.6.9 Effective masses for Z-direction

Figure 4.6.10 Mode shape at 31.75 Hz
that most of the excitation occurs in the reinforcement members of the space frame while the tow specimen support struts are relatively inactive.

The modes activating the tow specimen support struts are a worst case example. The tow carriage is modeled with the support struts extended nearly to the bottom of the wave tank. The majority of its use will probably have theses supports raised significantly. Raising the tow specimen support struts should significantly increase the natural frequency activating them and thus lower both the PF and EM.

Each of the natural frequencies discussed could cause unwanted noise in instrumentation or possible damage if adequately excited. As previously discussed, the main source of external excitement would come from vortex shedding on the tow specimen. Depending on the tow specimen orientation this fluctuating force could occur in any direction. Table (4.6.1) list the approximate value of vortex shedding frequencies for a circular cylinder using a Strouhal number of 0.2 . The velocities listed are the maximum expected from Section (3.2). It can be seen that the vortex shedding frequency range and hence excitation frequency range completely covers the significant frequencies of the structure with tow specimen support struts fully extended.

The excitation frequency is a given phenomena. Either the carriage frames natural frequencies need to be increased by stiffening or the effect of the vibration on the present design needs to be further investigated. As stated, a significant increase in the natural frequencies can be obtained by raising the tow specimen support struts. In order to investigate the actual response of the present structure

Table 4.6.1 Vortex shedding frequencies of circular cylinders.

Diameter (m)	Maximum velocity $(\mathrm{m} / \mathrm{s})$	Frequency (Hz)
0.0254	17.1	135
0.0762	14.7	38.6
0.1524	12.5	16.4
0.3048	10.3	6.76
0.6096	8.3	2.72

to harmonic loading near the natural frequencies a harmonic analysis needs to be performed. The results of such an analysis are stongly dependent on both the structural and viscous damping present. Determining the damping of this structure and its interaction with the surrounding fluid is beyond the scope of this paper. The structure is quite rigid in both x and z-directions. The harmonic loading due to vortex shedding will probably have the most significant effect in the y-direction. This could result from fluctuating lift forces on a vertically mounted tow specimen. Fortunately the damping due to the interaction of the support struts and the fluid is most significant in this direction. Until further analysis can be done it will suffice to conclude that the high rigidity of the structure and fluid damping will allow reasonable harmonic loading without damage to the structure.

5.0 Conceptual Design of the Tow Carriage System

5.1 Conceptual Layout of System

The conceptual model of the dynamic tow carriage system has five major components, 1) the carriage structure, 2) the carriage guide rail, 3) the power train, 4) the primary idler pulley, and 5) the secondary idler pulleys. A layout drawing of these components appear in Fig. (5.1.1). This chapter details the design of these various components with the exception of the carriage frame, which was discussed in Chapter 4. Each design is merely a possible conceptual layout of how these components may appear in the actual system.

5.2 Guide Rail and Support Structure

As mentioned in Chapter 3, the carriage structure is to be guided by linear motion bearings. Linear motion bearings offer the advantage over other bearing types of high rigidity, smooth operation, and low friction. For a typical bearing selection two major parameters are of concern, loading and service life. The loading for this application can be estimated from the carriage structure reaction forces in Chapter 3. Table (4.5.1) is a summary of the summation of loading magnitudes for each of the four bearings including the force contributed by gravity in the z-direction. The maximum force occurs at nodes 26 and 30 in the z-direction with a value of 3120 Kgf . From the manufactures catalog (THK) the basic static load rating C_{o} of the bearing must be selected by considering the maximum expected load and a safety factor. The maximum lower limit for a safety factor is between 2.5 and 5.0 as

(1) Primary idler pulley
(2) Secondary idler pulley
(5) Carriage bearing structure with cable way
(3) Driver cable guide
(6) Carriage bearing structure
(4) Driver drum \& drive train
(7) Tow carriage structure

Figure 5.1.1 Layout of system components
recommended by the manufacture. Table (5.2.1) presents the pertinent parameters for selecting a linear motion bearing. The HSR 55HTA bearing has a basic static load rating of 13800 Kgf which would give a safety factor of 4.4. The maximum moment in the x, y, and z directions is found to be $17.9,78.6$, and 11.3 Kgf respectively from Table (4.5.1). The corresponding maximum moments from Table (5.2.1) M_{C}, M_{A}, and M_{B} are 275.7, 275.7 , and $363.7 \mathrm{Kgf-m}$. This rail and bearing will easily handle the loads estimated from Chapter 3. The second consideration when selecting a bearing is the service life. The nominal life of the bearing L can be calculated from Equation (5.2.1), where C is the basic dynamic load rating and P is the maximum expected load (THK).

$$
\begin{equation*}
L=(C / P)^{3} * 50 \tag{5.2.1}
\end{equation*}
$$

From Table (5.2.2) C is equal to 10600 Kgf and from Table (4.5.1) P is equal to 30606 N (3120 Kgf) yielding a nominal life of 1960 Km .

The service life time Lh can be estimated from Equation (5.2.2) where l_{s} is the average stroke length and n_{1} is the maximum number of reciprocating operations per minute (THK).

$$
\begin{equation*}
\left.L h=\left(L * 10^{3}\right) /(2 *]_{s} * n_{1} * 60\right) \tag{5.2.2}
\end{equation*}
$$

From Table (3.2.2) the average stroke length is 26.4 m and the average period is 8 seconds which is equal to 7.5 operations per minute, yielding a service life of 83 hours. This estimate assumes that the maximum load on the carriage structure exists for the entire cycle.

Figure 5.2.1 Load versus friction relationship for linear bearings

Table 5.2.1 Manufactures data on THK linear motion bearing

Considering that this severe loading case will not exist in actual use and that the nominal life L is a cubic function of the loading the actual service life will most likely be greater than 1000 hours of use before any measurable decay in bearing performance can be detected. If a more detailed and accurate estimate reveals that this particular bearing is under sized a larger model can be easily incorporated into the design. These bearings are offered with chrome plating to further increase service life and resistance to a corrosive environment.

The dynamic friction force F of the loaded carriage structure can be estimated from Equation (5.2.3) where μ is the friction coefficient and P is the radial load on the bearing.

$$
\begin{equation*}
\mathrm{F}=\mu \mathrm{P} \tag{5.2.3}
\end{equation*}
$$

Figure (5.2.1) shows the relationship between load and friction coefficient. With a maximum load L of 3120 Kgf and a dynamic load rating C of 10600 Kgf the friction coefficient for unsealed bearings is 0.003 and the friction force per bearing is 9.4 Kgf . With four bearings the total friction force is 37 Kgf . This small force, approximately 1% of the load P, justifies neglecting friction of the bearing in Chapter 2.

The support structure for the bearing rail has two major components. The first component supports the rail on the side of the wave channel that does not involve the cable drive system. This structure is to run parallel to the east side of the wave channel and span the middle 70 m as seen in Fig. (5.1.1). A typical cross Section
of this structure can be seen in Fig. (5.2.2). The triangular support frame constructed of rectangular tubing, secures an I-beam. Each triangular support is rigidly attached to a foundation. This I-beam is attached to the support frame with bolts and shims. The shims will allow alignment of the I-beam in both the vertical and horizontal directions to help meet the precise alignment needs of the bearing rail. The bearing rail is shimmed to the I-beam for further alignment capability. Figure (5.2.3) shows a typical length of the rail and support structure. With the given spacing between supports the maximum deflection of the rail with the 3120 kgf vertical bearing load is less than 0.15 mm .

The second component of the support structure for the bearing rail is similar to the above with the exception of the cable housing. This structure which runs parallel to the west side of the wave channel must , in addition to provide support for the bearing rail, provide a housing for the drive cable that motivates the carriage structure.

Figure (5.2.4) shows a typical cross Section of the support structure and rail. This structure has the same features as the previously discussed structure with the addition of the cable housing both above and below the rail. The lower housing limits the whip of the return cable. This housing has an access plate on the left side as shown. The inside of the housing is lined with a graphite filled nylon liner to reduce cable wear and vibration as the cable whips either vertically or horizontally.

The upper cable housing performs a similar function for the upper or drive side of the cable. This housing has an opening on the right

(1) Rectangular steel tubing $6^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$
(2) Angle steel L $12^{\prime \prime} \times 6^{\prime \prime} \times 1 / 2$ "
(3) I-beam S $12 \times 5012^{\prime \prime}$ depth - $51 / 2^{\prime \prime}$ width
(4) Square steel tubing $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$
(5) Bearing rail THK model HSR-55 HTA

Scale: $1: 10 \mathrm{in}$
$1 \mathrm{in}=2.54 \mathrm{~cm}$
Figure 5.2.2 Typical cross-section of rail support

(1) Bearing rail THK model HSR-55 HTA
(2) 1 -beam $512 \times 50 \quad 12^{*}$ depth $-51 / 2^{* *}$ thickness
(3) Rectangular Steel tubing $6^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$
(4) Square steel tubing $3^{*} \times 3^{*} \times 1 / 4^{*}$

Scale: 1:40 in
$1 \mathrm{in}=2.54 \mathrm{~cm}$

Figure 5.2.3 Typical length section of rail support

(1) Carbon steel rectangular tube $6^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$
(2) Carbon steel Angle L12" $\times 6^{\prime \prime} \times 1 / 2^{\prime \prime}$
(8) Carbon steel I-beam $\mathrm{S} 12 \times 50$
(4) Carbon steel square tube $3^{\prime \prime} \times 3^{\prime \prime} \times 1 / 4^{\prime \prime}$
(5) Bearing rail THK model HSR-55 HTA
(6) Upper wire rope housing
(7) Lower wire rope housing with inspection plate

Scale: 1:20 in
1 in $=2.54 \mathrm{~cm}$

Figure 5.2.4 Typical cross-section of cable side rail support

(1) Reinforcement webbing $1 / 4^{\prime \prime}$ thick carbon steel plate
(2) Carbon steel channel $12^{\prime \prime} \times 8^{\prime \prime} \times 3 / 8^{\prime \prime}$
(3) Graphite Filled Nylon liner
(4) Revovable cover plate
(5) $13 / 8^{\prime \prime}$ wire rope 6×19 Class

Figure 5.2.5 Exploded view of cable guide

Figure 5.2.6 Typical length section of cable side guide rail
side that runs the length of the guide rail. Figure (5.2.5) shows an exploded view of the upper cable housing. The open slot allows a rigid arm from the carriage structure to attach to the cable. The right face may be removed for maintenance of the polymer lining. Figure (5.2.6) shows a typical length of the support structure. Both the upper and lower cable housings has reinforcement webbing spaced every 5 ft . to add rigidity.

5.3 Power Train

The power train is composed of three major components, 1) the driver drum, 2) the cable guidance system , and 3) the power source. As mentioned in Section 3.1 the driver drum is a 1.5 m diameter drum with a width of 0.67 m . The cable is wrapped for 13 active wraps and 3 dead wraps. One span of the cable leaves the top of the drum and the other leaves the bottom. As the carriage structure is moved closer to the drum, the upper span of the cable is wrapped onto the drum and the lower span is paid out thus keeping a total of 16 wraps on the drum at all times. For reverse motion of the carriage structure the upper span pays out and the lower span takes up. The detailed design of the driver drum and bearing support is left for a manufacture such as Superior-Linderwood-Mundy Corp. ${ }^{1}$

A typical driver drum has helixed grooves on the cable bearing surface to aid in positioning the cable as it is wrapped and unwrapped. This works fine for the slow operating speeds typically encountered in

[^0]cable drum systems. However, this particular system is going to be operated at much higher speeds than a typical system, up to 245 rpm . It is unlikely that a grooved drum alone could guide the cable as it wraps and unwraps at these high speeds. In order to stabilize the cable motion as it wraps and unwraps from the drum an active cable guidance device has been conceptualized.

Figure (5.3.1) shows a front view of the active cable guide. This device has an active guide for both the upper and lower cables that allows controlled horizontal motion only. This motion is guided by a pair of linear motion bearings (THK model LBH 50). Figure (5.3.2) shows an individual guide which is composed of a front set of small rollers that limit vertical cable motion and a rear set that limits horizontal cable motion relative to the guide. Each of these two guides are attached to a pair of linear motion bearings and a hydraulic cylinder. The cylinder positions the guides such that the cable is properly fed or paid out from the driver drum via a feedback control system.

Instead of using hydraulic cylinders to position the cable guides, a mechanical system directly coupled to the drum could be used. The hydraulic approach offers the advantage of incorporating a speed dependent lag or lead in the response to system needs. This is merely a conceptual design and will need further refinement by an experienced hydraulic engineer.

A large power source is needed to drive the system. Good to excellent control of the power is required over a range of tens to hundreds of kilowatts to meet the desired performance and safe operation of the system. Internal combustion, electric, and

Figure 5.3.1 Cable guide frame

Figure 5.3.2 Individual cable guide

Figure 5.3.3 Simplified schematic of servovalve controlled motor

Figure 5.3.4 Torque response of servo valve controlled motor
hydraulicpower systems are all capable of delivering the needed power, although only electric and hydraulic systems are capable of providing the control response needed. This paper examines a conceptual hydraulic system.

Two common methods of hydraulic power control are servovalve controlled hydraulic motors and secondary control hydrostatic drives. Both methods use a constant pressure source,typically a fixed or variable displacement pump powered by an electric motor. Figure (5.3.3) shows a schematic diagram of a typical servovalve controlled hydraulic motor with the torque vs. speed output performance shown in Fig. (5.3.4). This system uses a servovalve to throttle the flow and hence fluid power from the pump to the motor. The servovalve causes an appreciable amount of lost power as can be seen in the sharp decrease in torque with increasing motor speed.

The secondary control hydrostatic drive uses a variable displacement motor, as opposed to the fixed displacement motor for the servovalve system, controlled by a hydraulic control cylinder as can be seen in the simplified schematic in Fig. (5.3.5). Only a small amount of flow is channeled through the pilot control valve thus decreasing flow power losses substantially. The output torque response is more linear and efficient than the servovalve controlled motor as can be seen in Fig. (5.3.6).

A summary of the advantages and disadvantages of each method can be found in Table (5.3.1). Comparing these two methods the servovalve system has a very fast response and a wide dynamic range at the cost of efficiency. The hydrostatic drive is somewhat slower in response

Figure 5.3.5 Simplified schematic of secondary controlled hydrostatic drive

Figure 5.3.6 Torque response of secondary controlled hydrostatic drive

Table 5.3.1 Summary of performance characteristics of servovalve controlled motors and secondary control hydrostatic drives.

Servovalve controlled motor
Advantages: Faster response time
flow from zero to full volume in milliseconds
small signal response of valve/motor
Wide dynamic range velocity range of > 100:1

Disadvantages: Efficiency
for damping loads approximately 40% of available
peak power is dissipated in servovalve
throttling thus a bigger motor and pump are
required
velocity range of approximately 50:1
Secondary control hydrostatic drive
Advantages: Efficiency
no loss at servovalve so smaller motor and pump can
be used
Disadvantages: Slower response time zero to full volume in approximately 0.25 seconds Narrower dynamic range
time and has a narrower dynamic range. The slower response time is not a major concern because most operating periods are greater than 2 seconds and a 0.25 second response time should prove adequate. The major tradeoff is between the wide dynamic range of the servovalve system and the high efficiency of the hydrostatic system. Due to the large power requirements of the tow carriage system and the high cost of hydraulic power systems the efficiency of the hydrostatic drive may outweigh the reduction in dynamic range.

In order to size the hydrostatic drive the operating range of the driver drum must be estimated. The tow carriage system must operate at high speed/low torque for small tow specimens and low speed/high torque for large tow specimens. Referring to Table (3.2.2) the operating range of the smallest tow specimen has a minimum speed and torque of $3.1 \mathrm{~m} / \mathrm{s}$ and $16.7 \mathrm{kN}-\mathrm{m}$ and a maximum speed and torque of $17.1 \mathrm{~m} / \mathrm{s}$ and 21.1 kN m . The largest specimen has a minimum speed and torque of $3.1 \mathrm{~m} / \mathrm{s}$ and $32.9 \mathrm{kN}-\mathrm{m}$ and a maximum speed and torque of $8.3 \mathrm{~m} / \mathrm{s}$ and $36.6 \mathrm{kN}-\mathrm{m}$. Table (5.3.2) summarizes these operating ranges with both carriage velocity and driver drum velocity.

With the load characteristics of the driver drum specified an appropriate hydraulic motor must be selected. One of the larger commercially available hydraulic motors is the Rexroth AA2FM. This motor and sister pump both have a $250 \mathrm{~cm}^{3} / \mathrm{rev}$ variable displacement with a maximum speed of 2000 rpm and power capability of 255 kW . The maximum recommended operating pressure is 400 bar (5800 psi). Due to plumbing limitations an operating pressure of 293 bar (4100 psi) is a more practical limit.

The available torque at the motor shaft T_{M} can be estimated by Equation (5.3.1) where η is the volumetric efficiency of the motor and plumping, ΔP is the operating pressure and V is the volume displacement of the motor.

$$
\begin{equation*}
T_{M}=\eta \Delta P V \tag{5.3.1}
\end{equation*}
$$

Using the recommended value of 0.85 for η (Bushey, 1988), the maximum available torque is $957 \mathrm{n}-\mathrm{m}$ ($705 \mathrm{ft} .-1 \mathrm{bs}$.$) per motor. With a gear$ reduction of $10: 1$ between the motors and the driver drum the small tow specimen operating range can be nearly met by running two motors in parallel at a maximum motor speed of 2000 rpm . This would require a fluid power source of $264 \mathrm{gal} / \mathrm{min}$ at 4100 psi or $471 \mathrm{~kW}(632 \mathrm{hp}$) at the pumps. Two of the above mentioned pumps running at 2000 rpm could provide this power. The maximum driver drum speed and torque is 200 rpm and $19.14 \mathrm{kN}-\mathrm{m}$. For the large tow specimen operating range running four motors at a maximum speed of 1000 rpm will develop $38.3 \mathrm{kN}-\mathrm{m}$ at 100 rpm at the driver drum using an equivalent source. A 700 hp electric motor could be used to power the pumps, running one pump at each end of the motor output shaft.

Figure (5.3.7) shows the conceptual layout of this power train system minus the pumps and electric motor. The four hydraulic motors are connected to an idler shaft through electromagnetic clutches. The clutches will allow one to four motors to be operated at any time. This in combination with the variable displacement pumps and motors will

Table 5.3.2 Operating range of driver drum

| Specimen dia. (m) | Carriage Vel. (m/s) | Drum speed (rpm) | Drive torque ($\mathrm{kN}-\mathrm{m}$) |
| :--- | :--- | :--- | :--- | :--- |
| 0.0254 | 3.1 | 44 | 16.7 |
| | 17.1 | 244 | 21.1 |
| 0.6096 | 3.1 | 44 | |
| | 8.3 | 118 | 32.9 |
| | | | 36.6 |

1.5 m

Figure 5.3.7 Top view of conceptual layout of drive train

Figure 5.3.8 Side view of conceptual layout of power train
give the system a very broad and controllable operating range. The idler shaft transfers the power to the driver drum with a 10:1 gearreduction. High velocity link chain is used to efficiently transfer the large torque loads. Figure (5.3.8) shows a side view of the power train and cable guidance system.

5.4 Primary Idler Pulley

The primary idler pulley has two main functions, first it provides the bearing that returns the cable back to the driver drum and second it provides an adjustable preload tension on the cable. The first function is met by a simple pulley wheel mounted with the axis of rotation horizontal and perpendicular to the plane of the two cable spans. The wheel is 1.5 m in diameter and 7 cm thick with a groove around the circumference to stabilize the cable motion.

The preload function is provided by mounting the pulley wheel on a rigid carriage. This carriage is attached to linear motion bearings that only allow one direction of motion. As the carriage moves along the bearing the cable tension is either increased or decreased. Figure (5.4.1) shows a conceptual layout of the carriage that holds the pulley wheel. Figure (5.4.2) shows a blow up of the bearing housings. Since the motion of this carriage when the system is in use is very limited, on the order of a few millimeters, the bearings need not be very precise. In fact a loose fit would greatly reduce the possibility of jamming. The inside of the bearing housing is to be lined with a graphite filled polyamide. This material has both a substantially higher pressure-velocity rating and cost relative to the graphite
filled nylon used in the cable housing on the tow carriage guide rail supports.

Figure (5.4.3) shows an over view of the primary idler pulley. The pulley wheel carriage bears against round steel tubing which attaches to the two reinforced concrete support blocks. The support blocks are in turn fixed to the ground. Two 5 in . diameter hydraulic cylinders provide the preload on the cable with an active length of 24 in . to compensate for cable sag and stretch. These cylinders can be relaxed when the system is not in use. They will also be useful for prestretching new cable. The cable is stabilized by a roller cable guide on both top and bottom spans similar to the guides used for the cable guidance system of the driver drum.

5.5 Secondary Idler Pulley

Since the existing unidirectional wave channel is enclosed, space is limited for installing the tow carriage system. Secondary idler pulleys are used to position both the primary idler and driver drum to minimize wasted space as shown in Fig. (5.1.1). A total of four secondary idler pulleys are required, each one changing the direction of the cable by 90 degrees.

These pulleys are simple grooved pulley wheels 30 in . in diameter and 7 cm in thickness. The cable only partially wraps around these pulleys which reduces the required minimum diameter ratio.

(1) Bearing housing
(2) Steel channel $5^{\prime \prime} \times 2^{\prime \prime} \times 1 / 4^{\prime \prime}$
(3) Pulley hub $1 / 2^{\prime \prime}$ thick steel plate with hydraulic cylinder bearing
(4) $1 / 4^{\prime \prime}$ steel plate
(5) Spindal axis for $3^{\prime \prime}$ axial roller bearing

Scale: 1:20 in
1 in $=2.54 \mathrm{~cm}$

Figure 5.4.1 Primary idler pulley carriage design

(1) Carbon steel Round tubing 4" O.D. 3.625 I.D. Cold drawn seamless
(2) Graphite Filled Polymide bearing 3.6"O.D. 3.15"I.D.
(3) Carbon steel rectangular tubing ${10^{\prime \prime}}^{\prime \prime} \times 5^{\prime \prime} \times 1 / 4^{\prime \prime}$
(4) Bearing retainer thread onto tube and set with screw

Scale: $1: 30$ in

$$
1 \mathrm{in}=2.54 \mathrm{~cm}
$$

Figure 5.4.2 Exploded view of primary idler carriage rail bearing

(1) Carbon steel Round tubing $31 / 4^{\prime \prime}$ O.D. $21 / 4^{\prime \prime}$ I.D. Cold drawn seamless
(4) Idler pulley 59 " nominal diameter $3^{\prime \prime}$ axial with roller bearing
(2) Hydraulic cylinders $5^{\prime \prime}$ diameter $\mathbf{2 4}^{\prime \prime}$ travel
(5) Reinforced concrete support block
(3) Wire rope guide

Figure 5.4.3 Conceptual design of primary idler pulley

Figure 5.5.1 Top view of secondary idler pulley

Figure 5.5.2 Side view of secondary idler pulley

Each pulley has two wheels which are mounted with their axis of rotation in the vertical direction. Each wheel moves independently of the other. The upper wheel provides a bearing for the upper cable span and the lower wheel provides a bearing for the lower cable span. Each wheel is attached to a rigid support frame which in turn is secured to the ground. The secondary idler closest to the driver drum also provides stabilization of the cable motion as it traverses the width of the drum. Fig.s (5.5.1) and (5.5.2) show top and side views respectively of the conceptual layout for the secondary idler pulleys.

5.6 Total System Cost Estimation

The complete feasibility study for the dynamic tow carriage system consists of three major parts, 1) the mathematical model which quantifies system performance, 2) the conceptual design that could fulfill the desired performance, and 3) a cost estimation of the design. The first two components have been covered in detail in Chapters 2-5. The remainder of this chapter briefly covers a cost estimate of the total system.

The cost estimate is divided into five parts, l) the drive train, 2) the carriage guidance, 3) the primary idler pulley , 4) the secondary idler pulley, and 5) the carriage structure. A summary of the cost estimate is presented seen in Table (5.6.1). Drive Train: From Table (5.6.1) the drive train is divided into four components, 1) the drive drum and support, 2) the active cable guide that positions the cable on the drum, 3) the power system, and 4) engineering and assembly. The drive drum and support cost estimate was
attained from Superior-Linderwood-Mundy Corp. The cable guide cost was estimated by the various components that make up the device by contacting suppliers of each component. Engineering and assembly costs were estimated by the author. This latter cost mainly involves coordinating the hydraulic controls of the drive train.

Carriage Guidance: The carriage guidance system is composed of the guide rail bearings and the support structure. The cost estimate for the system is composed of materials and engineering and assembly. The cost of the guide rail is an upper estimate from THK. The support structure costs were estimated by determining the needed steel from the conceptual design in Section (5.2) and then contacting a supplier for costs. Engineering and assembly costs were estimated by the author. Primary Idler Pulley: The primary idler pulley cost estimate was developed by estimating the required materials from Section (5.4) and contacting suppliers for an upper cost estimate. Again the engineering and assembly costs were estimated by the author.

Secondary Idler pulley: The cost estimate for the secondary idler pulleys was developed by estimating the materials, engineering, and labor cost for one pulley, in a similar manner to the primary idler pulley, and then multiplying by four to get total cost.

Carriage Structure: Material costs for the carriage structure cab be divided into two components, the first being the round aluminum tubing of the space frame and the second being the aluminum hydrofoil specimen support struts. A quantity estimate of tubing was determined from the finite element model of Section (4.4) and a supplier provided a cost estimate. The hydrofoil support struts cost was estimated from an
airplane wing of similar size. Engineering and assembly costs were estimated by the author.

Table 5.6.1 Cost estimation of total system

Drive Train

A. Drive drum and support $1-(1.5 \mathrm{~m}$ dia., 0.67 m width grooved for $13 / 8 " \mathrm{cable})$	\$30,000
B. Cable guidance	
2-(1 1/2" dia. hydraulic cyld., 24"stroke)	\$300
4-(linear motion bearings. 7 HK LBH50)	\$2,000
1-(steel support frame)	\$500
C. Power	
2-(Rexroth model AAAVSG series $10,250 \mathrm{~cm}^{3} / \mathrm{rev}$ pump w/control)	\$19,068
4 -(Rexroth model AA2FM series $10,250 \mathrm{~cm}^{3} / \mathrm{rev}$ motor $\mathrm{w} /$ control)	\$12,324
1 -(Bouge electric motor 7110 CS 700 hp)	\$20,000
4-(Pitts model F-49 electromagnetic clutch)	\$5,416
1 -(Bethlehem steel wire rope $13 / 8^{\prime \prime}$ dia. 6×19 Seale IWRC $1000 \mathrm{ft}$.)	\$3,580
D. Engineering and assembly	\$15,000
	Sub-total \$108,188

Carriage Guidance

```
A. Materials
    1-(THK HSR 55HTA linear motion bearing 140 m)
    1-( S12\times50 I-beam 4EO ft.) $10,258
    1-(6"\times3"\times1/4" stee) tube 1035 fi.)
    $6,334
    1-(3"\times3"\times1/4"" steel tube 107 ft.)
        $416
    $2,415
    1-(12"X6"X1/4" steel channel 230 ft.)
    $1,656
B. Engineering and assembly
    Labor (240 hrs © $14.00/hr.) $ $3,360
    Engineering $10,000
    Sub-total $74,440
```

Primary Idler Pulley

Table 5.6.1 (continued)

Secondary Idler Pulley

```
A. Materials
    1-(8'\times4'\times1/8' steel tube }72\textrm{ft.
    $487
    -(8'x4'X3/8' 
    $254
    -(8'\times4'\times3/8' steel tube 20 ft.)
    $427
    1-(8''\times4'\times1/2' steel tube 24 ft.)
    2-(76.2cm dia. 7cm thick pulley wheel w/bearings) $5,600
E. Engineering and assemble
    Labor (60 hrs @ $14.00/hr.) $840
    Engineering ($5,000 total or $1,250 per pulley) $1,250
Sub-total per pulley
    $8.858
                                    Sub-total
$35,432
A. Materials
A-(2 \(1 / 2^{\prime \prime}\) dia. \(1 / 8^{\prime \prime}\) thick aluminum tubing 6061 T6511 400 ft )
1-(5" dia. \(1 / 8^{\prime \prime}\) thick aluminum tubing 6051 T6511 200 ft .)
2-(Vertical specimen support aluminum \(36^{\prime \prime} \times 5^{\prime \prime}\) hydrofoil 19 ft long)
\(\$ 5,000\)
1 -(Horizontal specimen support aluminum \(36^{\prime \prime} \times 3^{\prime \prime}\) hydrofoil 10 ft long)
\(\$ 1,500\)
B. Engineering and assembly
Labor ( 320 hrs a \(\$ 14.00 / \mathrm{hr}\) )
\(\$ 4,480\)
Eng ineering

\subsection*{6.0 Conclusions}

\subsection*{6.1 Summary}

The purpose of this research study is to demonstrate that a dynamic tow carriage is feasible and to develop a conceptual design. The function of the design is to illustrate the feasibility analysis and is not necessarily a final design for the optimum dynamic tow carriage.

The conceptual design consists of a lightweight yet rigid space frame used to support a hydrodynamic tow specimen. The frame or carriage is rigidly supported by high speed, low friction linear motion bearings that allow the carriage and specimen to move along the length of the wave channel. The carriage/specimen is propelled by a cable/pulley/drum reeving which in turn is powered by a hydrostatic drive system. A mathematical model of the tow carriage system predicts the carriage and specimen can be driven to speeds in excess of 55 \(\mathrm{ft} / \mathrm{sec}\) and accelerations of 1 g over a 200 ft stroke. With cylindrical test specimens having a length of 11 ft and diameter ranging from 1 in to 2 ft Reynolds numbers near \(4 \times 10^{6}\) and Keulegan Carpenter parameters in excess of \(8 \times 10^{3}\) appear feasible.

\subsection*{6.2 Conclusions}
1) A first order mathematical model consisting of descretized mass coupled by linear springs and viscous dashpots can be used to develop design parameters for a conceptual design of the system.
2) For small diameter tow cylinder specimens, \(0-8 \mathrm{~cm}\) diameter with a length of 3.3 m , the system is inertially dominant which causes the maximum power to be much larger than the average power consumed over one simple harmonic cycle.
3) For large diameter two cylinder specimens, \(15-61 \mathrm{~cm}\) diameter with a length of 3.3 m , the system is drag dominant which causes the maximum and average power per cycle to be nearly equal.
4) Tow speeds of up to \(17 \mathrm{~m} / \mathrm{s}\) and accelerations of l g are possible with a power input of less than 400 Kw yielding Reynolds numbers approaching \(4 \times 10^{6}\) and Keulegan-Carpenter parameters approaching \(8 \times\) \(10^{3}\).
5) The fundamental resonant period of the system is between 0.13 and 0.40 seconds.
6) With an input power 400 Kw and accelerations limited to 1 g the maximum force on the tow carriage structure is due to viscous fluid drag with a magnitude of 50 kN .
7) The tow carriage structure when constructed of aluminum tubing and hydrofoil specimen support struts will have a mass of less than 1100 Kg .
8) The tow specimen when mounted on the carriage structure and loaded with a 50 kN fluid drag force will have a maximum deflection of less than 16 mm .
9) The lower frequency modes of vibration of the tow carriage structure corresponds with the vortex shedding frequencies of the tow specimen. Further analysis may be needed to quantify the dynamic response of the structure.
10) Linear motion rail bearings can provide a rigid guidance for the tow carriage with very low friction.
11) A cable drum-pulley system powered by hydraulic motors with an electric motor primemover can provide stable power over a broad operating range.
12) The total cost of the system is on the order of \(\$ 250,000\).

\subsection*{6.3 Recommendations for Future Studies}

The following items need further investigation and/or optimization before a final design of the dynamic tow carriage system can be completed.
1) The vertical motion of the cable termed "cable whip" should be investigated in order to determine the dynamic response. This motion should be a strong function of the static preload of the system. The
analysis should determine the appropriate preload and the size and strength of the cable guides that span the guide rails.
2) the cable placement on the driver drum needs further investigation. The smooth operation of this component is essential to the safe operation of the system. The investigation should determine a safe operating speed/??? range for the driver drum and give insight to possible instabilities.
3) The dynamic structural response of the tow carriage frame needs further investigation as well as optimization. Quantification of the combined fluid/structural damping present in the system will allow the dynamic response to the model. The structures geometry may need alterations to lower noises and improve strength to weight ratio.
4) A computerized control system needs to be developed. Various sources of feedback from both the drive system and carriage frame can be used to operate the system in a stable and repeatable manner.
5) The safe operation of the dynamic tow carriage system must also be investigated. The system has the potential to cause periodic damage to both the existing equipment itself, and the operators. Both safety features and procedures must be developed to reduce the risk of damage.

\section*{REFERENCES}
1. Swanson Analysis Systems, Inc., Ansys PC-Linear Software, Houston, PA, 1985.
2. Baumeister, T., Avallone, E.A., Baumeister III, T., Mark's Standard Handbook for Mechanical Engineers, McGraw-Hill Book Co., New York, 1978.
3. Bethlehem Wire Rope Catalog 3161-c, Bethlehem Steel Co., Williamsport, PA, 1985.
4. Bushey, John Personal Communication, MTS Systems Corp., Minneapolis, Minnesota, June 3, 1988.
5. Dean, R.G. and Dalrymple, R.A., Water Wave Mechanics for Engineers and Scientist's, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984.
6. Gerhart, P.M. and Gross, R.J., Fundamentals of Fluid Mechanics, Addison-Wesley Publishing Co., Reading, Massachusetts, 1985.
7. Hoerner, S.F., Fluid-Dynamic Drag, Published by Author, Bricktown, New Jersey, 1965.
8. Ramberg, S.E. and Owen, M.G., "Free Vibrations in Taut and Slack Marine Cables", Journal of the Structural Division, ASCE Vol.101, No. STll, Proc. Paper 13321, Nov., 1977.
9. Sarpkaya, T. and Isaacson, M., Mechanics of Wave Forces on Offshore Structures, Van Nostrand Reinhold Co., New York, 1987.
10. THK Linear Motion Systems Catalog 75DE, THK Co., LTD., Tokyo, Japan, 1987.

APPENDICES

APPENDIX A. PROGRAM TOWPLOT
\$DEBUG

\section*{PROGRAM TOWPLOT}

C PROGRAM TOWPLOT DEFINES THE [A] AND \{B\} MATRICES FOR THE C MATHEMATICAL MODEL OF THE DYNAMIC TOW CARRAIGE SYSTEM AS DEVELOPED C IN CHAPTER 2. THE INDEPENDANT VARIABLE OF THE PROGRAM ARE THE C DISPLACEMENT PHASOR OF THE CARRIAGE/SPECIMEN MODEL \(X_{3}\), THE PERIOD C OF OSCILLATION \(\tau\), AND THE DIAMETER OF THE TOW SPECIMEN CYLINDER C d. WITH THE GIVEN INPUT THE [A] MATRIX IS INVERTED BY THE C SUBROUTINE MATRIXC AND THE 8 UNKNOWN DISPLACEMENT PHASORS \(\theta_{1}, X_{2} C, X_{4}, \theta_{2}, X_{6}, X_{8}\) , \(X_{9}, X_{10}\) AND UNKOWN DRIVE TORQUE \(T_{D}\) ARE SOLVED FOR C AS A FUNCTION OF TIME.

OUTPUT VARIABLE AS A FUNCTION OF TIME
DISAMP-RATIO OF \(X_{3} / \theta_{1}\) R
MAXDF-MAXIMUM NON-LINEAR DRAG FORCE PER PERIOD MAXIF-MAXIMUM INERTIAL FORCE PER PERIOD MAXPWR-MAXIMUM LINEARIZED POWER PER PERIOD PMAX-MAXIMUM NON-LINEAR POWER PER PERIOD (DRAG ONLY) AVEPWR-AVERAGE LINEARIZED POWER PER PERIOD MAG(9)-MAXIMUM DRIVE TORQUE PER PERIOD PHI(1)-PHASE ANGLE OF DRIVER PULLEY PHI(9)-PHASE ANGLE OF DRIVE TORQUE

INITIALIZE VARIABLES
CHARACTER*20 INFILE
REAL*8 R,ROTIl,DENSITY,M6,K6,C,C0,C6,K,M,Ci,Cd,M3,AREA
REAL*8 XX3R, Pi,VOL,W,PERIOD,Ceff,VAR1,VAR2, RX(9), IMX(9), PHI (9)
REAL*8 DIAMETER
REAL*8 XX1R,XX11R,XX5R,XX7R,DISAMP,PPD,F1,F11,F5,F7,MAXPWR
REAL*8 AVEPWR,MAXDF,MAXIF,MAG(9),DPHI1,DPHI2,XX3I,MAGXX3
REAL*8 OMEGA,F6,SPEED,ROTI2, ace1x3,ANGLE, PMAX, PRATIO,FRATIO
COMPLEX*16 XX3, \(\mathrm{A}(9,9), \mathrm{B}(9), \mathrm{X}(9), \operatorname{SUM}, \mathrm{BB}(9), \mathrm{AA}(9,9), \mathrm{BI}(9), \mathrm{D}, \mathrm{II}\)
INTEGER N,L,I,J,H,INC
COMMON / DAT6 / A
COMMON / DAT61 / B,X
C DEFINE MODEL CONSTANTS
\(\mathrm{R}=0.75\)
\(\mathrm{Ci}=2.0\)
Cd=0.7
M3 \(=1068.0\)
\(\mathrm{Pi}=4.0 * \operatorname{DATAN}(1.0)\)
ROTIl=208.50
DENSITY=1000.0
```

 ROTI2=55.50
 M6=196.0
 K6=38.4E6
 C=135.0
 CO=0.0
 C6=0.0
 K=3.6E6
 M=172.0
 C INPUT MODEL VARIABLES
WRITE(*,*)'INPUT TOW CYLINDER DIAMETER M'
READ(*,11)DIAMETER
C START STROKE LOOP
11 FORMAT(E13.8)
DO 22O H=1,5
WRITE(*,*)'INPUT REAL TOW DISPLACEMENT AMPLITUDE M'
READ(*,11)XX3R
WRITE(*,*)'INPUT IMAG TOW DISPLACEMENT AMPLITUDE M'
READ(*,*)XX3I
WRITE(*,1)
1 FORMAT(///,1X,'INPUT DATA FILE NAME')
READ(*,2)INFILE
FORMAT(A)
AREA= 3.658*DIAMETER
VOL=(Pi*DIAMETER**2./4.0)*3.658
VAR2 = (M+M3+Ci*DENSITY*VOL)
XX3=CMPLX(XX3R,XX3I)
MAGXX3=CABS (XX3)
N=9
OPEN(11,FILE=INFILE,STATUS='UNKNOWN')
C START PERIOD LOOP
DO 150 L=10,300
PERIOD=(DBLE(L))/10.0
W=(20.*Pi)/(DBLE(L))
Ceff=0.42441318*DENSITY*(Cd*AREA+0.073)*W*MAGXX3
VAR1=(2.*C+Ceff)
C CLEAR VARIABLE A
D=CMPLX(0.0,0.0)
DO 5 I=1,9
DO 5 J=1,9
A(I,J)=CMPLX (0.0,0.0)
5 CONTINUE
C DEFINE VARIABLE A

```
\(A(1,1)=C M P L X(-K * R,-W * C * R)\)
\(A(1,7)=C M P L X(K, W * C)\)
\(A(1,8)=\operatorname{CMPLX}(-2 . * K+W * * 2 * M,-2 . * W * C)\)
\(A(2,1)=C M P L X(K * R, W * C * R)\)
\(\mathrm{A}(2,2)=\mathrm{A}(1,8)\)
\(A(3,2)=A(1,7)\)
\(A(3,3)=A(1,7)\)
\(A(4,3)=A(1,8)\)
\(A(4,4)=-1 . * A(1,1)\)
\(A(4,5)=A(1,7)\)
\(A(5,3)=A(1,7)\)
\(A(5,5)=\operatorname{CMPLX}(-2 . * K-K 6+W * * 2 * M 6,-W *(2 * C+C 6))\)
\(A(5,6)=A(1,7)\)
\(A(6,3)=A(4,4)\)
\(A(6,4)=\operatorname{CMPLX}(-2 . * K * R * * 2+R O T I 2 * W * * 2,-W *(2 * C * R * * 2+C 0))\)
\(A(6,6)=A(1,1)\)
\(A(7,4)=A(1,1)\)
\(A(7,5)=A(1,7)\)
\(A(7,6)=A(2,2)\)
\(A(7,7)=A(1,7)\)
\(A(8,6)=A(1,7)\)
\(A(8,7)=A(2,2)\)
\(A(8,8)=A(1,7)\)
\(A(9,1)=C M P L X(-2 . * K * R * * 2+R O T I 1 * W * * 2,-2 . * W * C * R * * 2)\)
\(A(9,2)=A(4,4)\)
\(A(9,8)=A(1,1)\)
\(A(9,9)=\operatorname{CMPLX}(1.0,0.0)\)
DO \(19 \mathrm{I}=1,9\)
DO \(19 \mathrm{~J}=1,9\)
\(A A(I, J)=A(I, J)\)
19 CONTINUE
C CLEAR VARIABLE B AND X
DO \(20 \mathrm{I}=1,9\)
\(B(I)=\operatorname{CMPLX}(0.0,0.0)\)
\(X(I)=\operatorname{CMPLX}(0.0,0.0)\)
20 CONTINUE
C DEFINE VARIABLE B
\(B(2)=C M P L X(-K,-C * W)\)
\(B(3)=\) CMPLX \((2 . * K-W * * 2 * V A R 2, W * V A R 1)\)
```

 B(2) =B(2)*XX3
 B(3) =B(3)*XX3
 B(4)=B(2)
 DO 21 J=1,9
 BB(J)=B(J)
 C COMPUTE OUTPUT DATA AND WRITE TO FILE

```
```

 XX1R=R*RX(1)
    ```
    XX1R=R*RX(1)
    XX11R=-XX1R
    XX5R=R*RX(4)+RX(5)
    XX7R=RX(5)-R*RX(4)
    DISAMP=CABS(R*X(1))/MAGXX3
    PPD=CABS(X(1)/X(4))
    MAXDF=0.5*DENSITY*(AREA*Cd+0.073)*(W*MAGXX3)**2
    MAXIF=(Ci*DENSITY*VOL+M3)*W**2*MAGXX3
    II=CMPLX (0.0,1.0)
    ANGLE=(PI/180)*(PHI (9)-PHI(1))
    MAXPWR=(MAG(1)*W*MAG(9)/2.0)*(DSIN(ANGLE)+1)/1000.0
    AVEPWR=Pi/PERIOD*(RX(1)*IMX(9)-RX(9)*IMX(1))/1000.0
    OMEGA=W*MAG(1)*60.0/(2*Pi)
    SPEED=W*MAGXX3
    PMAX=MAXDF*SPEED/1000.0
    ace1x3=w**2*magxx3/9.81
    WRITE(11,140)PERIOD,DISAMP,MAXDF,MAXIF,MAXPWR, PMAX,
    & AVEPWR,MAG(9),PHI(1),phi(9)
140 FORMAT(10E13.5)
150 CONTINUE
220 CONTINUE
END
```


\$DEBUG

PROGRAM TOWEIGEN
C THIS PROGRAM DEFINES THE STIFFNESS MATRIX [A]
C AND THE MASS MATRIX [B] TO INPUT INTO SUBROUT INE
C JACOBI.THE OUTPUT IS THE NATURAL FREQUENCIES OF
C THE DYNAMIC TOWCARRIAGE MODEL.
DOUBLE PRECISION A,B,X,EIGV,D
DIMENSION $A(40,40), B(40,40), X(40,40), \operatorname{EIGV}(40), D(40)$
CHARACTER*20 INFILE
REAL*8 K,K6,M,M6,R,DENSITY,CI,DC,ROTI1,VOL,M3,Kv
REAL*8 FREQ(9), PERIOD(9), ROTI2
WRITE (*, 10)
10 FORMAT (///,1X,'INPUT DATA FILE NAME')
READ(*,11)INFILE
11 FORMAT (A)
$\operatorname{OPEN}(2, \mathrm{FILE}=$ INFILE, STATUS='UNKNOWN')

WRITE (*,*)' INPUT CABLE STIFFNES K (N/M)'
READ(*,*)K
WRITE(*,*)'INPUT PULLEY STIFFNESS K6 (N/M)'
$\operatorname{READ}(*, *) K 6$
WRITE (*,*)'INPUT CABLE NODAL MASS M (Kg)'
$\operatorname{READ}(*, *) M$
WRITE (*,*)'INPUT CARRIAGE MASS M3 (Kg)'
$\operatorname{READ}(*, *) M 3$
WRITE (*,*)'INPUT TOWSPECIMEN CYLINDER DIAMETER DC (M)'
$\operatorname{READ}(*, *)$ DC
ROTI $1=208.50$
ROTI2=55.5
$\mathrm{R}=0.7500$
DENSITY=1000.0
$\mathrm{N}=9$
M6=196.0
NSMAX=15
CI=2.0
L=3.7
VOL=(3.1415/4.)*DC**2.*L
DO $2 \mathrm{I}=1,9$
DO $1 \mathrm{~J}=1,9$
$A(I, J)=0.0$
$B(I, J)=0.0$
1 CONTINUE
2 CONTINUE

```
A(1,1)=2.*K+Kv/R**2.
A(1,2)=-K/R
A(1,9)=K/R
```

```
    A(2,1)=-K/R
    A(2,2)=2.*K/R**2.
    A(2,3)=-K/R**2.
    A(3,2)=-K/R**2.
    A(3,3)=2.*K/R**2.
    A(3,4)=-K/R**2.
    A(4,3)=-K/R**2.
    A(4,4)=2.*K/R**2.
    A (4,5)=-K/R
    A(4,6)=-K/R**2.
    A(5,4)=-K/R
    A(5,5)=2.*K+Kv/R**2.
    A(5,7)=K/R
    A(6,4)=-K/R**2.
    A(6,6)=2.*K/R**2.+K6/R**2.
    A(6,7)=-K/R**2.
A(7,5)=K/R**2.
A(7,6)=-K/R**2.
A(7,7)=2.*K/R**2.
A(7,8)=-K/R**2.
A(8,7)=-K/R**2.
A(8,8)=2.*K/R**2.
A(8,9) =-K/R**2.
A(9,1)=K/R
A(9,8)=-K/R**2.
A(9,9)=2.*K/R**2.
B(1,1)=ROTI1/R**2.
B(2,2)=M/R**2.
B (3,3)=(M3+M+CI*DENSITY*VOL)/R**2.
B(4,4)=M/R**2.
B(5,5)=ROTI2/R**2.
B(6,6)=M6/R**2.
B (7,7)=M/R**2.
B}(8,8)=M/R**2
B}(9,9)=M/R**2
```

C DO $12 \mathrm{I}=1, \mathrm{~N}$
C $\operatorname{WRITE}(*, 7)(A(I, J), J=1, N)$
C 7 FORMAT (9E9.2)
C 12 CONTINUE
C DO $21 \mathrm{I}=1,5$
C WRITE(*,*)
C 21 CONTINUE
C DO $14 \mathrm{I}=1, \mathrm{~N}$
C $\quad \operatorname{WRITE}(*, 7)(B(I, J), J=1, N)$
C 14 CONTINUE

```
            CALL JACOBI(A,B,X,EIGV,D,N)
            DO 16 I=1,9
            FREQ(I)=DSQRT(EIGV(I))/6.28318531
            PERIOD(I)=1/FREQ(I)
            WRITE(*,15)I,FREQ(I),I,PERIOD(I)
            CONTINUE
            FORMAT(10X,'FREQ(',I1,')=',F9.3,5X,'PERIOD(',I1,')=' ,F9.3)
            STOP
            END
            SUBROUTINE JACOBI (A,B,X,EIGV,D,N)
            DOUBLE PRECISION A,B,X,EIGV,D,EI,NX,VV,MX,Z
            DIMENSION A(40,40),B(40,40),X(40,40),EIGV(40),D(40)
            DIMENSION EI(40),NX(40),VV(40),MX(40)
C
C INITIALIZE EIGENVALUE AND EIGENVECTOR MATRICES
            IFPR=0
            NSMAX=15
            IF(D(40).NE.999.) WRITE(2,410)
            RTCL=1.D-12
            IOUT=5
            DO 20 I=1,N
            IF(A(I,I).GT.O. .AND. B(I,I).GT.O.)GO TO 10
            Z=0
            WRITE(2,440)
            STOP
            10 D(I)=A(I,I)/B(I,I)
            20 EIGV(I)=D(I)
            DO 40 I=1,N
            DO 30 J=1,N
    30 X(I,J)=0
    40 X(I,I)=1.
            IF(N.EQ.l) RETURN
C
        NSWEEP=0
            NR=N-1
    50 NSWEEP=NSWEEP+1
            IF(IFPR.EQ.1) WRITE(2,420)NSWEEP
C
C CHECK IF PRESENT OFF-DIAGONAL ELEMENT IS LARGE
EPS=(.01**NSWEEP)**2
DO 220 J=1,NR
JJ=J+1
DO 220 K=JJ,N
```

```
    EPTOLA=(A(J,K)*A(J,K))/(A(J,J)*A(K,K))
    EPTOLB=(B(J,K)*B(J,K))/(B(J,J)*B(K,K))
    IF((EPTOLA.LT.EPS).AND.(EPTOLB.LT.EPS)) GO TO 220
C
c IF ZEROING IS REQUIRED,CALCULATE THE ROTATION MATRIX
C
    AKK=A(K,K)*B(J,K)-B(K,K)*A(J,K)
    AJJ=A(J,J)*B(J,K)-B(J,J)*A(J,K)
    AB=A(J,J)*B(K,K)-A(K,K)*B(J,J)
    CHECK=(AB*AB+4.*AKK*AJJ)/4.
    IF(CHECK)60,60,70
    Z=0
    60 WRITE (2,440)
    STOP
    70 SQCH=DSQRT(CHECK)
    D1=AB/2.+SQCH
    D2=AB/2.-SQCH
    DEN=D1
    IF(DABS(D2).GT.DABS(D1))DEN=D2
    IF(DEN)90,80,90
    80 CA=0.
    CG=-A(J,K)/A(K,K)
    CG=-A(J,K)/A(K,K)
    GO TO 100
    90 CA=AKK/DEN
    CG=-AJJ/DEN
CC
    CC GENERALIZED ROTATION TO ZERO OFF-DIAGONAL ELEMENT
CC
    100 IF(N-2)110,200,110
    110 JP1=J+1
    JM1=J-1
    KP1=K+1
    KM1=K-1
    IF(JM1-1)140,120,120
    120 DO 130 I=1,JM1
    AJ=A(I,J)
    BJ=B(I,J)
    AK=A(I,K)
    BK=B(I,K)
    A(I,J)=AJ+CG*AK
    B(I,J)=BJ+CG*BK
    130 B(I,K)=BK+CA*BJ
    140 IF(KP1-N)150,150,170
    150 D0 160 I=KP1,N
    AJ=A(J,I)
    BJ=B(J,I)
    AK=A(K,I)
    BK=B(K,I)
    A(J,I)=AJ+CG*AK
    B(J,I)=BJ+CG*BK
    A(K,I)=AK+CA*AJ
```

```
    160 B(K,I)=BK+CA*BJ
    170 IF(JP1-KM1)180,180,200
    180 DO 190 I=JP1,KM1
    AJ=A(J,I)
    BJ=B(J,I)
    AK=A(I,K)
    BK=B(I,K)
    A(J,I)=AJ+CG*AK
    B(J,I)=BJ+CG*BK
    A(I,K)=AK+CA*AJ
    190 B (I,K)=BK+CA*BJ
    200 AK=A(K,K)
    BK=B(K,K)
    A(K,K)=AK+2.*CA*A(J,K)+CA*CA*A(J,J)
    B(K,K)=BK+2.*CA*B(J,K)+CA*CA*B(J,J)
    A(J,J)=A(J,J)+2.*CG*A(J,K)+CG*CG*AK
    B(J,J)=B(J,J)+2.*CG*B(J,K)+CG*CG*BK
    A(J,K)=0.
    B(J,K)=0.
CC
CC UPDATE THE EIGENVECTOR MATRIX AFTER EACH ROTATION
CC
        DO 210 I=1,N
        XJ=X(I,J)
        XK=X(I,K)
        X(I,J)=XJ+CG*XK
        210 X(I,K)=XK+CA*XJ
    220 CONTINUE
CC
CC UPDATE THE EIGENVALUES AFTER EACH SWEEP
CC
    DO 230 I=1,N
    IF (A(I,I).GT.0. .AND. B(I,I).GT.0.) GO TO 230
    Z=0
    WRITE (2,440)
    STOP
    230 EIGV(I)=A(I,I)/B(I,I)
    IF(IFPR.EQ.0) GO TO 240
    WRITE(2,430) (EIGV(I),I=1,N)
CC
CC CHECK FOR CONVERGENCE
CC
    240 DO 250 I=1,N
    TOL=RTCL*D(I)
    DIF=DABS(EIGV(I)-D(I))
    IF(DIF.GT.TOL) GO TO 390
    250 CONTINUE
CC
CC CHECK ALL OFF-DIAGONAL ELEMENTS TO SE IF ANOTHER
CC SWEEP IS REQUIRED
CC
    EPS=RTCL**2
```

```
    DO \(260 \mathrm{~J}=1, \mathrm{NR}\)
    \(\mathrm{JJ}=\mathrm{J}+1\)
    DO \(260 \mathrm{~K}=\mathrm{JJ}, \mathrm{N}\)
    EPSA \(=(A(J, K) * A(J, K)) /(A(J, J) * A(K, K))\)
    \(\operatorname{EPSB}=(B(J, K) * B(J, K)) /(B(J, J) * B(K, K))\)
    IF ((EPSA.LT.EPS).AND. (EPSB.LT.EPS)) GO TO 260
    GO TO 390
    260 CONTINUE
CC
CC FILL OUT BOTTOM TRIANGLE OF RESULTANT MATRICES
CC AND SCALE EIGENVECTORS
CC
    270 DO 280 I=1,N
        DO \(280 \mathrm{~J}=1, \mathrm{~N}\)
    \(A(J, I)=A(I, J)\)
    \(280 \quad B(J, I)=B(I, J)\)
    DO \(290 \mathrm{~J}=1, \mathrm{~N}\)
    \(\mathrm{BB}=\operatorname{DSQRT}(\mathrm{B}(\mathrm{J}, \mathrm{J}))\)
    DO \(290 \mathrm{~K}=1, \mathrm{~N}\)
    \(290 X(K, J)=X(K, J) / B B\)
CC
CC UPDATE MATRIX AND START NEW SWEEP IF ALLOWED
CC
    DO \(300 \mathrm{I}=1, \mathrm{~N}\)
    300 EI(I)=EIGV (I)
    \(K X=0\)
    DO \(320 \mathrm{~J}=1, \mathrm{~N}\)
    SMALL=1.0E20
    DO \(310 \mathrm{I}=1, \mathrm{~N}\)
    IF(EI(I).GT.SMALL) GO TO 310
    KKK=I
    SMALL=EI(I)
310 CONTINUE
    \(K X=K X+1\)
    \(N X(K X)=K K K\)
    EIGV(J)=EI (KKK)
    \(E I(K K K)=1 . E 20\)
320 CONTINUE
    DO \(330 \mathrm{I}=1, \mathrm{~N}\)
    II =NX (I)
330 MX(II) \(=\mathrm{I}\)
    DO \(360 \mathrm{~J}=1, \mathrm{~N}\)
    DO \(350 \mathrm{JT}=1, \mathrm{~N}\)
    \(\mathrm{JJ}=\mathrm{NX}(\mathrm{J})\)
    VV(JT) \(=X(J T, J)\)
    340 FORMAT 6 I5,6E15.4)
    \(X(\mathrm{JT}, \mathrm{J})=\mathrm{X}(\mathrm{JT}, \mathrm{JJ})\)
    \(X(\mathrm{JT}, \mathrm{JJ})=V V(\mathrm{JT})\)
350 CONTINUE
    \(K J=M X(J)\)
    \(N X(K J)=J J\)
    \(M X(J J)=M X(J)\)
```

360 CONTINUE
IF (D(40).EQ.999.) RETURN
WRITE $(2,430)$ (EIGV(IL), $\mathrm{IL}=1, \mathrm{~N}$)
WRITE $(2,380)$
D0 $370 \mathrm{LI}=1, \mathrm{~N}$
370
WRITE $(2,430)(X(L I, L J), L J=1, N)$
380 FORMAT $\left(/, 10 X,{ }^{\prime}\right.$ EIGENVECTORS',/)
RETURN
390 DO $400 \mathrm{I}=1, \mathrm{~N}$
400 D(I)=EIGV (I)
IF (NSWEEP.LT.NSMAX) GO TO 50
GO TO 270
410 FORMAT (//,10X,'EIGENVALUES',/)
420 FORMAT (/,'27HOSWEEP NUMBER IN *JACOBI*= ', I4)
430 FORMAT (6E8.2/)
440 FORMAT ('***ERROR MATRICES NOT POSITIVE DEFINITE STOP***') END

APPENDIX C

ANSYS Input/Output Files

A11 input/output data are in English units
Force-1bs.
Length-ft.
Mass-slugs

INPUT SWITCHED FROM FILE 5 TO FILE38 NAME=STATIC8.PRP

NEW TITLE= STATICX

```
ELEMENT TYPE 1 USES STIF 4
    KEYOPT(1-9)= [\begin{array}{lllllllllll}{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}\end{array})
    INOTPR= 0 NUMBER OF NODES= 3
ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ
    THREE-DIMENSIONAL STRUCTURE
```

 MATERIAL 1 COEFFICIENTS OF EX VS. TEMP EQUATION
 CO \(=0.1440000 \mathrm{E}+10\)
 PROPERTY TABLE EX MAT= 1 NUM. POINTS= 2
TEMPERATURE DATA TEMPERATURE DATA
$0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$
MATERIAL 1 COEFFICIENTS OF DENS VS. TEMP EQUATION
CO = 5.237000
PROPERTY TABLE DENS MAT= 1 NUM. POINTS= 2
TEMPERATURE DATA TEMPERATURE DATA
$\begin{array}{llll}0.00000 \mathrm{E}+00 & 5.2370 & 2300.0 & 5.2370\end{array}$
ELEMENT TYPE 2 USES STIF 4
KEYOPT (1-9) $=\begin{array}{ccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
INOTPR= 0 NUMBER OF NODES= 3
ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ
THREE-DIMENSIONAL STRUCTURE

```
MATERIAL 2 COEFFICIENTS OF EX VS. TEMP EQUATION \(C O=0.1440000 E+10\)
```

PROPERTY TABLE EX MAT= 2 NUM. POINTS= 2
TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 2 COEFFICIENTS OF DENS VS. TEMP EQUATION CO = 5.237000

PROPERTY TABLE DENS MAT= 2 NUM. POINTS= 2
TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \mathrm{5} .2370 \quad 2300.0 \quad 5.2370$

ELEMENT TYPE 3 USES STIF 4
$\operatorname{KEYOPT}(1-9)=\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ INOTPR $=0$ NUMBER OF NODES $=3$

ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

MATERIAL 3 COEFFICIENTS OF EX VS. TEMP EQUATION $C O=0.1440000 E+10$

PROPERTY TABLE EX MAT= 3 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 3 COEFFICIENTS OF DENS VS. TEMP EQUATION CO = 5.237000

PROPERTY TABLE DENS MAT= 3 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 5.2370 \quad 2300.0 \quad 5.2370$

ELEMENT TYPE 4 USES STIF 4
$\operatorname{KEYOPT}(1-9)=\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
INOTPR $=0$ NUMBER OF NODES= 3
ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

```
MATERIAL 4 COEFFICIENTS OF EX VS. TEMP EQUATION
CO = 0.1440000E+10
```

PROPERTY TABLE EX MAT= 4 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA

$0.00000 \mathrm{E}+000.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 4 COEFFICIENTS OF DENS VS. TEMP EQUATION CO = 5.237000

PROPERTY TABLE DENS MAT= 4 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $\begin{array}{llll}0.00000 E & 5.2370 & 2300.0 & 5.2370\end{array}$

REAL CONSTANT SET 1 ITEMS 1 TO 6 $0.13318 \mathrm{E}-01 \quad 0.27500 \mathrm{E}-03 \quad 0.27500 \mathrm{E}-03 \quad 0.41670 \quad 0.41670$ $0.00000 \mathrm{E}+00$

REAL CONSTANT SET 2 ITEMS 1 TO 6
$\begin{array}{lllll}0.64760 E-02 & 0.31800 E-04 & 0.31800 E-04 & 0.20830 & 0.20830\end{array}$
$0.00000 \mathrm{E}+00$
REAL CONSTANT SET 3 ITEMS 1 TO 6

| 0.14062 | $0.50840 \mathrm{E}-02$ | 0.12842 | 3.0000 | 0.41670 |
| :--- | :--- | :--- | :--- | :--- |

$0.00000 \mathrm{E}+00$
REAL CONSTANT SET 3 ITEMS 7 TO 10 $0.00000 \mathrm{E}+00 \quad 0.18510 \mathrm{E}-01 \quad 0.00000 \mathrm{E}+00 \quad 0.00000 \mathrm{E}+00$

REAL CONSTANT SET 4 ITEMS 1 TO 6
$\begin{array}{lllll}0.13368 & 0.16800 \mathrm{E}-02 & 0.11301 & 3.0000 & 0.25000\end{array}$
$0.00000 \mathrm{E}+00$
REAL CONSTANT SET 4 ITEMS 7 TO 10 $0.00000 \mathrm{E}+00 \quad 0.63000 \mathrm{E}-02 \quad 0.00000 \mathrm{E}+00 \quad 0.00000 \mathrm{E}+00$

ANALYSIS TYPE $=0$ (STATIC ANALYSIS)

| NODE | 1 | $K C S=0$ | $X, Y, Z=0.00000 E+00$ | $0.00000 E+00$ | 4.0000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| NODE | 2 | $K C S=0$ | $X, Y, Z=4.5000$ | $0.00000 E+00$ | 4.0000 |
| NODE | 3 | $K C S=0$ | $X, Y, Z=9.0000$ | $0.00000 E+00$ | 4.0000 |
| NODE | 4 | $K C S=0$ | $X, Y, Z=13.500$ | $0.00000 E+00$ | 4.0000 |
| NODE | 5 | $K C S=0$ | $X, Y, Z=18.000$ | $0.00000 E+00$ | 4.0000 |
| NODE | 6 | $K C S=0$ | $X, Y, Z=15.750$ | $0.00000 E+00$ | 6.0000 |
| NODE | 7 | $K C S=0$ | $X, Y, Z=11.250$ | $0.00000 E+00$ | 6.0000 |
| NODE | 8 | $K C S=0$ | $X, Y, Z=6.7500$ | $0.00000 E+00$ | 6.0000 |
| NODE | 9 | $K C S=0$ | $X, Y, Z=2.2500$ | $0.00000 E+00$ | 6.0000 |
| NODE | 10 | $K C S=0$ | $X, Y, Z=0.00000 E+00$ | $0.00000 E+00$ | 8.0000 |

| NODE | 11 | KCS $=$ | 0 | $X, Y, Z=$ | 4.5000 | $0.00000 \mathrm{E}+00$ | 8.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NODE | 12 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | $0.00000 \mathrm{E}+00$ | 8.0000 |
| NODE | 13 | KCS $=$ | 0 | $X, Y, Z=$ | 13.500 | $0.00000 \mathrm{E}+00$ | 8.0000 |
| NODE | 14 | KCS $=$ | 0 | $X, Y, Z=$ | 18.000 | $0.00000 \mathrm{E}+00$ | 8.0000 |
| NODE | 15 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | $0.00000 \mathrm{E}+00$ | 11.000 |
| NODE | 16 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | $0.00000 \mathrm{E}+00$ | 23.000 |
| NODE | 17 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 12.000 | 4.0000 |
| NODE | 18 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 4.5000 | 12.000 | 4.0000 |
| NODE | 19 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 4.0000 |
| NODE | 20 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 13.500 | 12.000 | 4.0000 |
| NODE | 21 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 18.000 | 12.000 | 4.0000 |
| NODE | 22 | KCS $=$ | 0 | $X, Y, Z=$ | 15.750 | 12.000 | 6.0000 |
| NODE | 23 | KCS $=$ | 0 | $X, Y, Z=$ | 11.250 | 12.000 | 6.0000 |
| NODE | 24 | KCS $=$ | 0 | $X, Y, Z=$ | 6.7500 | 12.000 | 6.0000 |
| NODE | 25 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 2.2500 | 12.000 | 6.0000 |
| NODE | 26 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 12.000 | 8.0000 |
| NODE | 27 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 4.5000 | 12.000 | 8.0000 |
| NODE | 28 | KCS= | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 8.0000 |
| NODE | 29 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 13.500 | 12.000 | 8.0000 |
| NODE | 30 | KCS= | 0 | $X, Y, Z=$ | 18.000 | 12.000 | 8.0000 |
| NODE | 31 | KCS= | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 11.000 |
| NODE | 32 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 23.000 |
| NODE | 33 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 6.0000 | 4.0000 |
| NODE | 34 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 9.0000 | 6.0000 |
| NODE | 35 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 3.0000 | 6.0000 |
| NODE | 36 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | $0.00000 E+00$ | 6.0000 | 8.0000 |

$\left.\begin{array}{lrrrrrr} \\ \text { NODE } & 37 & \text { KCS }=0 & X, Y, Z= & 9.0000 & 6.0000 & 4.0000 \\ \text { NODE } & 38 & K C S= & 0 & X, Y, Z= & 9.0000 & 3.0000\end{array}\right) 6.0000$

| ELEMENT | 13 | 3 | 4 | 0 |
| :--- | :--- | ---: | ---: | ---: |
| ELEMENT | 14 | 4 | 5 | 0 |
| ELEMENT | 15 | 5 | 14 | 0 |
| ELEMENT | 16 | 14 | 13 | 0 |
| ELEMENT | 17 | 13 | 12 | 0 |
| ELEMENT | 18 | 12 | 11 | 0 |
| ELEMENT | 19 | 11 | 10 | 0 |
| ELEMENT | 20 | 10 | 1 | 0 |
| ELEMENT | 21 | 17 | 33 | 0 |
| ELEMENT | 22 | 33 | 1 | 0 |
| ELEMENT | 23 | 10 | 36 | 0 |
| ELEMENT | 24 | 36 | 26 | 0 |
| ELEMENT | 25 | 21 | 41 | 0 |
| ELEMENT | 26 | 41 | 5 | 0 |
| ELEMENT | 27 | 14 | 44 | 0 |
| ELEMENT | 28 | 44 | 30 | 0 |
| ELEMENT | 29 | 3 | 37 | 0 |
| ELEMENT | 30 | 37 | 19 | 0 |
| ELEMENT | 31 | 28 | 40 | 0 |
| ELEMENT | 32 | 40 | 12 | 0 |
| ELEMENT | 33 | 36 | 40 | 0 |
| ELEMENT | 34 | 40 | 44 | 0 |
| ELEMENT | 35 | 33 | 37 | 0 |
| ELEMENT | 36 | 37 | 41 | 0 |
| ELEMENT | 37 | 13 | 15 | 0 |
| ELEMENT | 38 | 11 | 15 | 0 |
| ELEMENT | 39 | 29 | 31 | 0 |
| ELEMENT | 40 | 27 | 31 | 0 |

| REAL CONSTANT | NUMBER= | 2 | | |
| :--- | ---: | ---: | ---: | ---: |
| ELEMENT | 41 | 17 | 25 | 0 |
| ELEMENT | 42 | 25 | 27 | 0 |
| ELEMENT | 43 | 26 | 25 | 0 |
| ELEMENT | 44 | 25 | 18 | 0 |
| ELEMENT | 45 | 18 | 24 | 0 |
| ELEMENT | 46 | 27 | 24 | 0 |
| ELEMENT | 47 | 24 | 19 | 0 |
| ELEMENT | 48 | 24 | 28 | 0 |
| ELEMENT | 49 | 28 | 23 | 0 |
| ELEMENT | 50 | 19 | 23 | 0 |
| ELEMENT | 51 | 23 | 29 | 0 |
| ELEMENT | 52 | 23 | 20 | 0 |
| ELEMENT | 53 | 20 | 22 | 0 |
| ELEMENT | 54 | 29 | 22 | 0 |
| ELEMENT | 55 | 22 | 21 | 0 |
| ELEMENT | 56 | 22 | 30 | 0 |
| ELEMENT | 57 | 1 | 9 | 0 |
| ELEMENT | 58 | 10 | 9 | 0 |
| ELEMENT | 59 | 9 | 2 | 0 |
| ELEMENT | 60 | 9 | 11 | 0 |
| ELEMENT | 61 | 11 | 8 | 0 |
| ELEMENT | 62 | 2 | 8 | 0 |

| ELEMENT | 63 | 8 | 3 | 0 |
| :--- | ---: | ---: | ---: | ---: |
| ELEMENT | 64 | 8 | 12 | 0 |
| ELEMENT | 65 | 12 | 7 | 0 |
| ELEMENT | 66 | 3 | 7 | 0 |
| ELEMENT | 67 | 7 | 4 | 0 |
| ELEMENT | 68 | 7 | 13 | 0 |
| ELEMENT | 69 | 13 | 6 | 0 |
| ELEMENT | 70 | 4 | 6 | 0 |
| ELEMENT | 71 | 6 | 5 | 0 |
| ELEMENT | 72 | 6 | 14 | 0 |
| ELEMENT | 73 | 17 | 34 | 0 |
| ELEMENT | 74 | 26 | 34 | 0 |
| ELEMENT | 75 | 34 | 33 | 0 |
| ELEMENT | 76 | 34 | 36 | 0 |
| ELEMENT | 77 | 36 | 35 | 0 |
| ELEMENT | 78 | 33 | 35 | 0 |
| ELEMENT | 79 | 35 | 1 | 0 |
| ELEMENT | 80 | 35 | 10 | 0 |
| ELEMENT | 81 | 21 | 42 | 0 |
| ELEMENT | 82 | 30 | 42 | 0 |
| ELEMENT | 83 | 42 | 41 | 0 |
| ELEMENT | 84 | 42 | 44 | 0 |
| ELEMENT | 85 | 44 | 43 | 0 |
| ELEMENT | 86 | 41 | 43 | 0 |
| ELEMENT | 87 | 43 | 5 | 0 |
| ELEMENT | 88 | 43 | 14 | 0 |
| ELEMENT | 89 | 3 | 38 | 0 |
| ELEMENT | 90 | 38 | 40 | 0 |
| ELEMENT | 91 | 12 | 38 | 0 |
| ELEMENT | 92 | 38 | 37 | 0 |
| ELEMENT | 93 | 37 | 39 | 0 |
| ELEMENT | 94 | 39 | 28 | 0 |
| ELEMENT | 95 | 40 | 39 | 0 |
| ELEMENT | 96 | 39 | 19 | 0 |
| ELEMENT | 97 | 1 | 45 | 0 |
| ELEMENT | 98 | 45 | 37 | 0 |
| ELEMENT | 99 | 33 | 45 | 0 |
| ELEMENT | 100 | 45 | 3 | 0 |
| ELEMENT | 101 | 3 | 46 | 0 |
| ELEMENT | 102 | 46 | 41 | 0 |
| ELEMENT | 103 | 37 | 46 | 0 |
| ELEMENT | 104 | 46 | 5 | 0 |
| ELEMENT | 105 | 37 | 48 | 0 |
| ELEMENT | 106 | 48 | 21 | 0 |
| ELEMENT | 107 | 19 | 48 | 0 |
| ELEMENT | 108 | 48 | 41 | 0 |
| ELEMENT | 109 | 33 | 47 | 0 |
| ELEMENT | 110 | 47 | 19 | 0 |
| ELEMENT | 111 | 17 | 47 | 0 |
| ELEMENT | 112 | 47 | 37 | 0 |
| ELEMENT | 113 | 10 | 49 | 0 |
| ELEMENT | 114 | 49 | 40 | 0 |
| | | | | |

| ELEMENT | 115 | 36 | 49 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| ELEMENT | 116 | 49 | 12 | 0 |
| ELEMENT | 117 | 12 | 50 | 0 |
| ELEMENT | 118 | 50 | 44 | 0 |
| ELEMENT | 119 | 40 | 50 | 0 |
| ELEMENT | 120 | 50 | 14 | 0 |
| ELEMENT | 121 | 40 | 52 | 0 |
| ELEMENT | 122 | 52 | 30 | 0 |
| ELEMENT | 123 | 28 | 52 | 0 |
| ELEMENT | 124 | 52 | 44 | 0 |
| ELEMENT | 125 | 36 | 51 | 0 |
| ELEMENT | 126 | 51 | 28 | 0 |
| ELEMENT | 127 | 26 | 51 | 0 |
| ELEMENT | 128 | 51 | 40 | 0 |
| REAL CON | TANT | NUMBER= | 3 | |
| ELEMENT | 129 | 19 | 28 | 21 |
| ELEMENT | 130 | 28 | 31 | 30 |
| ELEMENT | 131 | 31 | 32 | 53 |
| ELEMENT | 132 | 3 | 12 | 5 |
| ELEMENT | 133 | 12 | 15 | 14 |
| ELEMENT | 134 | 15 | 16 | 54 |
| REAL CONSTANT NUMBER=
 ELEMENT 135 16 32 55
 ELEMENT 136 40 15 44
 ELEMENT 137 40 31 44 | | | | |
| | | | | |
| | | | | |
| | | | | |

SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 10 TO 10 BY 1

VALUES $=0.00000 E+000.00000 E+00$ ADDITIONAL DOFS $=~ U Z ~ R O T X ~ R O T Y ~$ ROTZ

| SPECIFIED DISP UY | FOR SELECTED NODES IN RANGE | 14 | TO | 14 | BY |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | VALUES $=0.00000 E+00$ | $0.00000 E+00$ | ADDITIONAL DOFS $=$ | $U Z$ | ROTX | ROTZ

SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 26 TO 26 BY 1

VALUES $=0.00000 \mathrm{E}+00$ 0.00000E +00 ADDITIONAL DOFS= UZ ROTX ROTY ROTZ

```
    SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 30 TO 30 BY
1
    VALUES= 0.00000E+00 0.00000E+00 ADDITIONAL DOFS= UZ ROTX ROTY
ROTZ
    SPECIFIED DISP UX FOR SELECTED NODES IN RANGE 12 TO 12 BY
1
    VALUES=0.00000E+00 0.00000E+00 ADDITIONAL DOFS=
```

MASTER DOF FOR ALL SELECTED NODES ADDITIONAL DOFS=

```
SPECIFIED FORCE FX FOR SELECTED NODES IN RANGE 16 TO 16 BY
l
    VALUES= 5620.0 0.00000E+00
SPECIFIED FORCE FX FOR SELECTED NODES IN RANGE 32 TO 32 BY
1
VALUES= 5620.0 0.00000E+00
*** NOTE ***
NPRINT IS ZERO OR GREATER THAN NITTER. SOLUTION PRINTOUT
WILL BE SUPPRESSED UNLESS OTHER PRINT CONTROLS HAVE BEEN DEFINED.
*** NOTE
DATA CHECKED - NO ERRORS FOUND
*** PREP7 GLOBAL STATUS ***
TITLE= STATICX
ANALYSIS TYPE= 0
NUMBER OF ELEMENT TYPES= 4
    137 ELEMENTS CURRENTLY SELECTED. MAX ELEMENT NUMBER = 137
    55 NODES CURRENTLY SELECTED. MAX NODE NUMBER = 55
MAXIMUM LINEAR PROPERTY NUMBER= 4
MAXIMUM REAL CONSTANT SET NUMBER= 4
ACTIVE COORDINATE SYSTEM= 0 (CARTESIAN)
NUMBER OF IMPOSED DISPLACEMENTS= 21
NUMBER OF NODAL FORCES= 2
ANALYSIS DATA WRITTEN ON FILE27
ENTER FINISH TO LEAVE PREP7
```

ALL CURRENT PREP7 DATA WRITTEN TO FILE16 NAME= FILE16.DAT
FOR POSSIBLE RESUME FROM THIS POINT
***** ROUTINE COMPLETED ***** $\quad \mathrm{CP}=\quad 59.3200$ TIME= 10.8411
STORE SG1I FOR ELEMENT TYPE STIF 4 FROM ITEM 19
STORE SG3I FOR ELEMENT TYPE STIF 4 FROM ITEM 20
STORE SGlJ FOR ELEMENT TYPE STIF 4 FROM ITEM 21
STORE SG3J FOR ELEMENT TYPE STIF 4 FROM ITEM 22
USE LOAD STEP 1 ITERATION 1 SECTION 1 FOR LOAD CASE1
GEOMETRY STORED FOR TITLE= STATICX8
DISPLACEMENT STORED FOR 55 NODES
STRESSES STORED FOR 4 SELECTED ITEMS
ITERATION SUMMARY INFORMATION STORED
NODAL FORCES STORED FOR 137 ELEMENTS
REACTIONS STORED FOR 21 REACTIONS
FOR LOAD STEP= 1 ITERATION= 1 SECTION= 1TIME $=0.000000 \mathrm{E}+00$ LOAD CASE $=1$TITLE= STATICX8
PRINT ELEMENT STRESS ITEMS PER ELEMENT
***** POSTl ELEMENT STRESS LISTING
LOAD STEP 1 ITERATION= 1 SECTION= 1TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

| ELEM | SG1I | SG3I | SGlJ | SG3J |
| ---: | :---: | :---: | :---: | :---: |
| 1 | -157811.93 | -269128.31 | -193237.42 | -233702.82 |
| 2 | -412776.40 | -502794.56 | -304013.53 | -611557.43 |
| 3 | 611557.43 | 304013.53 | 502794.56 | 412776.40 |
| 4 | 233702.82 | 193237.42 | 269128.31 | 157811.93 |
| 5 | 312968.16 | 221963.51 | 377253.07 | 157678.59 |
| 6 | 188607.93 | -557306.53 | 187214.94 | -555913.54 |
| 7 | 175117.10 | -226036.01 | 17963.359 | -68882.261 |

| 8 | 68882.261 | -17963.359 | 226036.01 | -175117.10 |
| :---: | :---: | :---: | :---: | :---: |
| 9 | 555913.54 | -187214.94 | 557306.53 | -188607.93 |
| 10 | -157678.59 | -377253.07 | -221963.51 | -312968.16 |
| 11 | -229884.99 | -254192.98 | -197338.17 | -286739.80 |
| 12 | -371772.34 | -504186.04 | -276970.01 | -598988.36 |
| 13 | 598988.36 | 276970.01 | 504186.04 | 371772.34 |
| 14 | 286739.80 | 197338.17 | 254192.98 | 229884.99 |
| ***** POST1 ELEMENT STRESS LISTING ***** | | | | |
| LOAD STEP 1 ITERATION $=$ 1 SECTION $=1$
 TIME $=$ $0.00000 E+00 \quad$ LOAD CASE $=1$ | | | | |
| ELEM | SG1I | SG3I | SG1J | SG3J |
| 15 | 254826.50 | 141758.33 | 299556.68 | 97028.141 |
| 16 | 316525.34 | -400786.51 | 302778.97 | -387040.14 |
| 17 | 292316.85 | -104473.48 | 177713.91 | 10129.455 |
| 18 | -10129.455 | -177713.91 | 104473.48 | -292316.85 |
| 19 | 387040.14 | -302778.97 | 400786.51 | -316525.34 |
| 20 | -97028.141 | -299556.68 | -141758.33 | -254826.50 |
| 21 | 82026.626 | -17744.896 | 109811.55 | -45529.817 |
| 22 | 71729.258 | -40860.833 | 51137.027 | -20268.602 |
| 23 | 138716.39 | -13311.453 | 118199.40 | 7205.5367 |
| 24 | -22365.840 | -103039.10 | -825.05161 | -124579.88 |
| 25 | 17744.896 | -82026.626 | 45529.817 | -109811.55 |
| 26 | 40860.833 | -71729.258 | 20268.602 | -51137.027 |
| 27 | 13311.453 | -138716.39 | -7205.5367 | -118199.40 |
| 28 | 103039.10 | 22365.840 | 124579.88 | 825.05161 |

***** POST1 ELEMENT STRESS LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

| ELEM | SG1I | SG3I | SG1J | SG3J |
| ---: | :---: | :---: | :---: | :---: |
| 43 | -202977.86 | -501623.90 | -215998.21 | -488603.55 |
| 44 | -88786.676 | -608144.40 | -91858.358 | -605072.71 |
| 45 | 473439.13 | 169811.87 | 538066.81 | 105184.20 |
| 46 | 296898.28 | -245673.04 | 230162.59 | -178937.34 |
| 47 | 23174.199 | 19805.337 | 30818.574 | 12160.962 |

| 48 | 326264.92 | 303124.20 | 368372.19 | 261016.93 |
| ---: | ---: | ---: | ---: | ---: |
| 49 | -261016.93 | -368372.19 | -303124.20 | -326264.92 |
| 50 | -12160.962 | -30818.574 | -19805.337 | -23174.199 |
| 51 | 178937.34 | -230162.59 | 245673.04 | -296898.28 |
| 52 | -105184.20 | -538066.81 | -169811.87 | -473439.13 |
| 53 | 605072.71 | 91858.358 | 608144.40 | 88786.676 |
| 54 | -634719.62 | -975629.41 | -640495.24 | -969853.78 |
| 55 | -752705.31 | -834062.95 | -767988.03 | -818780.23 |
| 56 | 488603.55 | 215998.21 | 501623.90 | 202977.86 |

POST1 ELEMENT STRESS LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 E+00 \quad$ LOAD CASE $=1$

| ELEM | SG1I | SG3I | SG1J | SG3J |
| ---: | ---: | ---: | ---: | ---: |
| 71 | -627465.95 | -677710.36 | -624811.13 | -680365.18 |
| 72 | 395141.28 | 178587.06 | 421480.14 | 152248.20 |
| 73 | 59601.451 | 24517.202 | 73710.077 | 10408.576 |
| 74 | -51432.930 | -137431.55 | -73037.241 | -115827.24 |
| 75 | -27939.486 | -158862.91 | 3699.0006 | -190501.39 |
| 76 | 106085.54 | -21319.961 | 131663.98 | -46898.402 |
| 77 | 53049.538 | -132227.76 | 16712.005 | -95890.228 |
| 78 | 160192.31 | 10200.477 | 149988.26 | 20404.523 |
| 79 | -4100.2207 | -77113.403 | -3260.1417 | -77953.482 |
| 80 | 128939.90 | 40423.661 | 123838.07 | 45525.497 |
| 81 | -24517.202 | -59601.451 | -10408.576 | -73710.077 |
| 82 | 137431.55 | 51432.930 | 115827.24 | 73037.241 |
| 83 | 158862.91 | 27939.486 | 190501.39 | -3699.0006 |
| 84 | 21319.961 | -106085.54 | 46898.402 | -131663.98 |

***** POST1 ELEMENT STRESS LISTING

LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD $C A S E=1$

| ELEM | SG1I | SG3I | SG1J | SG3J |
| ---: | :---: | ---: | :---: | :---: |
| 85 | 132227.76 | -53049.538 | 95890.228 | -16712.005 |
| 86 | -10200.477 | -160192.31 | -20404.523 | -149988.26 |
| 87 | 77113.403 | 4100.2207 | 77953.482 | 3260.1417 |

| 88 | -40423.661 | -128939.90 | -45525.497 | -123838.07 |
| :--- | :--- | :--- | :--- | :--- |
| 89 | 3418.8858 | -3418.8858 | 5844.4931 | -5844.4931 |
| 90 | 21113.459 | -21113.459 | 78777.193 | -78777.193 |
| 91 | 3751.8288 | -3751.8288 | 17426.909 | -17426.909 |
| 92 | 46829.623 | -46829.623 | 34307.899 | -34307.899 |
| 93 | 10160.456 | -10160.456 | 48580.694 | -48580.694 |
| 94 | 21028.756 | -21028.756 | 9625.9535 | -9625.9535 |
| 95 | 66528.054 | -66528.054 | 23881.794 | -23881.794 |
| 96 | 8524.5319 | -8524.5319 | 9538.5215 | -9538.5215 |
| 97 | 41917.546 | -23781.022 | 43134.733 | -24998.208 |
| 98 | 42902.885 | -21990.226 | 37638.166 | -16725.507 |

| 110 | 50518.745 | -29487.364 | 90374.900 | -69343.519 |
| ---: | ---: | ---: | ---: | ---: |
| 111 | -139880.79 | -233655.66 | -142595.74 | -230940.71 |
| 112 | -154844.00 | -215810.78 | -155086.52 | -215568.26 |

| LOAD STEP | | TERATION= 1 | SECTION= 1 | |
| :---: | :---: | :---: | :---: | :---: |
| TIME= | $=0.00000 \mathrm{E}+00$ | LOAD CASE= | 1 | |
| ELEM | SG1I | SG3I | SG1J | SG3J |
| 113 | 201858.50 | 102208.58 | 185889.89 | 118177.19 |
| 114 | 166174.05 | 136907.27 | 252139.53 | 50941.791 |
| 115 | -143805.31 | -169121.41 | -130331.39 | -182595.32 |
| 116 | -135598.50 | -176363.75 | -84316.925 | -227645.33 |
| 117 | 227645.33 | 84316.925 | 176363.75 | 135598.50 |
| 118 | 182595.32 | 130331.39 | 169121.41 | 143805.31 |
| 119 | -50941.791 | -252139.53 | -136907. 27 | -166174.05 |
| 120 | -118177.19 | -185889.89 | -102208.58 | -201858.50 |
| 121 | 228319.05 | 40849.753 | 149907.64 | 119261.16 |
| 122 | 172640.24 | 95554.072 | 184688.37 | 83505.943 |
| 123 | -115404.23 | -248502.18 | -155468.92 | -208437.49 |
| 124 | -154318.21 | -209268.57 | -158654.10 | -204932.68 |
| 125 | 204932.68 | 158654.10 | 209268.57 | 154318.21 |
| 126 | 208437.49 | 155468.92 | 248502.18 | 115404.23 |

***** POST1 ELEMENT STRESS LISTING
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

| ELEM | SG1I | SG3I | SG1J | SG3J |
| :---: | :---: | :---: | :---: | :---: |
| 127 | -83505.943 | -184688.37 | -95554.072 | -172640.24 |

| 128 | -119261.16 | -149907.64 | -40849.753 | -228319.05 |
| :--- | ---: | ---: | ---: | ---: |
| 129 | 5194.8480 | -5194.8480 | 560537.11 | -560537.11 |
| 130 | 560037.96 | -560037.96 | 776787.19 | -776787.19 |
| 131 | 784992.17 | -784992.17 | 303.80719 | -303.80719 |
| 132 | 4226.8567 | -4226.8567 | 637905.13 | -637905.13 |
| 133 | 637339.07 | -637339.07 | 780939.12 | -780939.12 |
| 134 | 790463.36 | -790463.36 | 303.80719 | -303.80719 |
| 135 | 945.54457 | -945.54457 | 3708.9315 | -3708.9315 |
| 136 | 1674.0020 | -1674.0020 | 8460.2739 | -8460.2739 |
| 137 | 4495.0498 | -4495.0498 | 5493.0574 | -5493.0574 |

PRINT NODAL DISPLACEMENTS

***** POST1 NODAL DISPLACEMENT LISTING
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES

| NODE ROTY | UX ROTZ UY | UY UZ | ROTX |
| :---: | :---: | :---: | :---: |
| 1 - | -0.66186323E-03 | $0.47391427 \mathrm{E}-03$ | $0.55081225 \mathrm{E}-03$ |
| $0.54937587 \mathrm{E}-04$ | 4 0.24323979E-03 | $0.94007025 \mathrm{E}-04$ | |
| 2 - | -0.14182351E-02 | $0.77876682 \mathrm{E}-03$ | $0.15054490 \mathrm{E}-04$ |
| $0.44471573 \mathrm{E}-04-0.54707842 \mathrm{E}-04-0.13267782 \mathrm{E}-05$ | | | |
| 3 | -0.27869200E-02 | -0.26802637E-18 | $0.13495330 \mathrm{E}-17$ |
| -0.90430693E-19 0.49723654E-03 -0.39779721E-03 | | | |
| 4 | -0.14182351E-02 | -0.77876682E-03 | -0.15054490E-04 |
| -0.44471573E-04-0.54707842E-04-0.13267782E-05 | | | |
| 5 | -0.66186323E-03 | -0.47391427E-03 | -0.55081225E-03 |
| -0.54937587E-0 | $04 \quad 0.24323979 \mathrm{E}-03$ | $0.94007025 \mathrm{E}-04$ | |
| 6 | $0.50627483 \mathrm{E}-03$ | -0.42788451E-03 | -0.12901570E-02 |
| -0.12630593E-0 | 03-0.97456569E-04 | $0.11101580 \mathrm{E}-03$ | |
| 7 | -0.17705822E-02 | -0.57014414E-03 | -0.12124988E-02 |
| -0.14460355E-04 0.52156504E-03-0.12934191E-03 | | | |
| 8 - | -0.17705822E-02 | $0.57014414 \mathrm{E}-03$ | $0.12124988 \mathrm{E}-02$ |
| $0.14460355 \mathrm{E}-04 \quad 0.52156504 \mathrm{E}-03-0.12934191 \mathrm{E}-03$ | | | |
| 9 | $0.50627483 \mathrm{E}-03$ | $0.42788451 \mathrm{E}-03$ | $0.12901570 \mathrm{E}-02$ |
| $0.12630593 \mathrm{E}-03$ | $3-0.97456569 \mathrm{E}-04$ | 0.11101580E-03 | |
| 10 | $0.16184718 \mathrm{E}-03$ | $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ |
| $0.00000000 \mathrm{E}+00$ | 0 0.00000000E+00 | $0.00000000 \mathrm{E}+00$ | |

| 11 | $0.29350526 \mathrm{E}-03$ | $0.57357080 \mathrm{E}-03$ | $0.36156199 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: |
| $-0.33807227 \mathrm{E}-04$ | $-0.24202419 \mathrm{E}-04$ | $0.78887096 \mathrm{E}-04$ | |
| 12 | $0.00000000 \mathrm{E}+00$ | $0.22361681 \mathrm{E}-18$ | $0.13250516 \mathrm{E}-17$ |
| $-0.18032434 \mathrm{E}-18$ | $0.10918032 \mathrm{E}-02$ | $-0.41932489 \mathrm{E}-03$ | |

***** POST1 NODAL DISPLACEMENT LISTING *****
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD $\mathrm{CASE}=1$

THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES

| $\mathrm{NODE}_{\text {ROTY }} \text { UX }$ | X ROTZ UY | Y UZ | ROTX |
| :---: | :---: | :---: | :---: |
| 13 | $0.29350526 \mathrm{E}-03$ | -0.57357080E-03 | -0.36156199E-02 |
| 0.33807227E-04 | -0.24202419E-04 | 0.78887096E-04 | |
| 14 | $0.16184718 \mathrm{E}-03$ | $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ |
| $0.00000000 \mathrm{E}+00$ | $0.00000000 E+00$ | $0.00000000 \mathrm{E}+00$ | |
| 15 | 0.47029215E-02 | $0.93682210 \mathrm{E}-18$ | $0.13145000 \mathrm{E}-17$ |
| -0.26087886E-18 | $0.20767186 \mathrm{E}-02$ | -0.49913620E-03 | |
| 16 | $0.47192773 \mathrm{E}-01$ | $0.39452175 \mathrm{E}-17$ | $0.13146223 \mathrm{E}-17$ |
| -0.23968496E-18 | 0.42732941E-02 | -0.41575017E-03 | |
| 17 | $0.18699056 \mathrm{E}-02$ | $0.67214376 \mathrm{E}-03$ | $0.74296065 \mathrm{E}-03$ |
| $0.21096789 \mathrm{E}-03$ | $0.21756394 \mathrm{E}-03$ | -0.30897528E-03 | |
| 18 | $0.12028114 \mathrm{E}-02$ | $0.55285467 \mathrm{E}-04$ | 0.47020117E-03 |
| 0.77476950E-04 | -0.65470593E-04 | -0.22873681E-04 | |
| 19 | -0.22776820E-03 | -0.29273767E-18 | -0.13301297E-17 |
| -0.18383641E-18 | $0.73087968 \mathrm{E}-03$ | -0.42179674E-04 | |
| 20 | $0.12028114 \mathrm{E}-02$ | -0.55285467E-04 | -0.47020117E-03 |
| -0.77476950E-04 | -0.65470593E-04 | -0.22873681E-04 | |
| 21 | $0.18699056 \mathrm{E}-02$ | -0.67214376E-03 | -0.74296065E-03 |
| -0.21096789E-03 | $0.21756394 \mathrm{E}-03$ | -0.30897528E-03 | |
| 22 | $0.32545005 \mathrm{E}-02$ | -0.39420981E-04 | -0.16818343E-02 |
| -0.42284441E-04 | -0.13182321E-03 | -0.39121484E-04 | |
| 23 | $0.11162499 \mathrm{E}-02$ | -0.37297978E-04 | -0.15796423E-02 |
| $0.15548746 \mathrm{E}-04$ | $0.66443079 \mathrm{E}-03$ | $0.31867075 \mathrm{E}-05$ | |
| 24 | $0.11162499 \mathrm{E}-02$ | $0.37297978 \mathrm{E}-04$ | $0.15796423 \mathrm{E}-02$ |
| -0.15548746E-04 | $0.66443079 \mathrm{E}-03$ | $0.31867075 \mathrm{E}-05$ | |
| ***** POST1 NODAL DISPLACEMENT LISTING ***** | | | |
| $\begin{array}{lc} \text { LOAD STEP } & 1 \\ \text { ITEERATION }= & 1 \\ \text { TIME }= & 0.00000 \mathrm{E}+00 \end{array} \quad \text { SECTION }=11$ | | | |

THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES

| NODE | UX | | ROTZ |
| :---: | :---: | :---: | :---: |
| ROTY | | UZ | ROTX |
| 25 | $0.32545005 \mathrm{E}-02$ | $0.39420981 \mathrm{E}-04$ | $0.16818343 \mathrm{E}-02$ |
| $0.42284441 \mathrm{E}-04$ | $-0.13182321 \mathrm{E}-03$ | $-0.39121484 \mathrm{E}-04$ | |
| 26 | $0.27449461 \mathrm{E}-02$ | $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ |
| $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ | |

| 27 | $0.33210377 \mathrm{E}-02$ | $0.70479469 \mathrm{E}-04$ | $0.41406237 \mathrm{E}-02$ |
| :---: | :---: | :---: | :---: |
| -0.14395115E-04 | $0.33493799 \mathrm{E}-05$ | $0.13796019 \mathrm{E}-04$ | |
| 28 | $0.34005984 \mathrm{E}-02$ | $0.44921368 \mathrm{E}-18$ | -0.13515660E-17 |
| -0.19606280E-18 | $0.12547056 \mathrm{E}-02$ | -0.69386025E-04 | |
| 29 | $0.33210377 \mathrm{E}-02$ | -0.70479469E-04 | -0.41406237E-02 |
| $0.14395115 \mathrm{E}-04$ | $0.33493799 \mathrm{E}-05$ | $0.13796019 \mathrm{E}-04$ | |
| 30 | 0.27449461E-02 | $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ |
| $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ | $0.00000000 \mathrm{E}+00$ | |
| 31 | $0.84819812 \mathrm{E}-02$ | $0.10817206 \mathrm{E}-17$ | -0.13767102E-17 |
| -0.24873321E-18 | $0.21830564 \mathrm{E}-02$ | -0.75736461E-04 | |
| 32 | $0.52119552 \mathrm{E}-01$ | $0.39452334 \mathrm{E}-17$ | -0.13768324E-17 |
| -0.22935432E-18 | $0.43627463 \mathrm{E}-02$ | -0.40282107E-03 | |
| $33-0$. | .68817913E-03 | $0.53822349 \mathrm{E}-03$ | $0.40524020 \mathrm{E}-04$ |
| -0.33077571E-04 | $0.12967395 \mathrm{E}-03$ | -0.19991397E-03 | |
| 34 | $0.15934630 \mathrm{E}-02$ | 0.16722017E-03 | $0.17542638 \mathrm{E}-03$ |
| $0.50003453 \mathrm{E}-04$ | $0.47000971 \mathrm{E}-03$ | -0.33024599E-03 | |
| 35 | 0.94138562E-04 | $0.48687773 \mathrm{E}-03$ | $0.34807243 \mathrm{E}-03$ |
| 0.41011653E-04 | $0.42028253 \mathrm{E}-03$ | -0.15719350E-03 | |
| 36 | 0.15845132E-02 | $0.26126028 \mathrm{E}-03$ | $0.50779775 \mathrm{E}-03$ |
| -0.51185821E-05 | -0.36361206E-03 | -0.21027207E-03 | |
| ***** POST1 NODAL DISPLACEMENT LISTING ***** | | | |
| | | | |
| | | | |
| THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES | | | |

THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES

| NODE | | | | |
| :---: | :---: | :---: | :---: | :---: |
| ROTY | UX | ROTZ | UY | ROTX |
| 37 | $-0.25778854 \mathrm{E}-03$ | $-0.21361349 \mathrm{E}-18$ | $0.14937877 \mathrm{E}-18$ | |
| $-0.22835027 \mathrm{E}-18$ | $0.87120118 \mathrm{E}-04$ | $-0.12799502 \mathrm{E}-03$ | | |
| 38 | $-0.78227291 \mathrm{E}-03$ | $0.17485726 \mathrm{E}-19$ | $0.75663315 \mathrm{E}-18$ | |
| $-0.18147944 \mathrm{E}-18$ | $0.52983436 \mathrm{E}-03$ | $-0.24223955 \mathrm{E}-03$ | | |
| 39 | $0.70869893 \mathrm{E}-03$ | $0.74676863 \mathrm{E}-19$ | $-0.53774978 \mathrm{E}-18$ | |
| $-0.22705065 \mathrm{E}-18$ | $0.69393287 \mathrm{E}-03$ | $-0.27850099 \mathrm{E}-03$ | | |
| 40 | $0.15321474 \mathrm{E}-02$ | $0.34109116 \mathrm{E}-18$ | $0.10575628 \mathrm{E}-18$ | |
| $-0.20699244 \mathrm{E}-18$ | $0.16715530 \mathrm{E}-02$ | $-0.31414766 \mathrm{E}-03$ | | |
| 41 | $-0.68817913 \mathrm{E}-03$ | $-0.53822349 \mathrm{E}-03$ | $-0.40524020 \mathrm{E}-04$ | |
| $0.33077571 \mathrm{E}-04$ | $0.12967395 \mathrm{E}-03$ | $-0.19991397 \mathrm{E}-03$ | | |
| 42 | $0.15934630 \mathrm{E}-02$ | $-0.16722017 \mathrm{E}-03$ | $-0.17542638 \mathrm{E}-03$ | |
| $-0.50003453 \mathrm{E}-04$ | $0.47000971 \mathrm{E}-03$ | $-0.33024599 \mathrm{E}-03$ | | |
| 43 | $0.94138562 \mathrm{E}-04$ | $-0.48687773 \mathrm{E}-03$ | $-0.34807243 \mathrm{E}-03$ | |
| $-0.41011653 \mathrm{E}-04$ | $0.42028253 \mathrm{E}-03$ | $-0.15719350 \mathrm{E}-03$ | | |
| 44 | $0.15845132 \mathrm{E}-02$ | $-0.26126028 \mathrm{E}-03$ | $-0.50779775 \mathrm{E}-03$ | |
| $0.51185821 \mathrm{E}-05$ | $-0.36361206 \mathrm{E}-03$ | $-0.21027207 \mathrm{E}-03$ | | |
| 45 | $-0.11094011 \mathrm{E}-02$ | $0.12066207 \mathrm{E}-02$ | $0.29977639 \mathrm{E}-03$ | |
| $-0.98515890 \mathrm{E}-04$ | $-0.36639136 \mathrm{E}-04$ | $-0.75692304 \mathrm{E}-04$ | | |
| 46 | $-0.11094011 \mathrm{E}-02$ | $-0.12066207 \mathrm{E}-02$ | $-0.29977639 \mathrm{E}-03$ | |
| $0.98515890 \mathrm{E}-04$ | $-0.36639136 \mathrm{E}-04$ | $-0.75692304 \mathrm{E}-04$ | | |
| 47 | $0.15176192 \mathrm{E}-03$ | $-0.64049517 \mathrm{E}-03$ | $0.36915770 \mathrm{E}-03$ | |
| $0.15992514 \mathrm{E}-03$ | $-0.77040513 \mathrm{E}-04$ | $-0.84488388 \mathrm{E}-04$ | | |

```
48 
```

***** POST1 NODAL DISPLACEMENT LISTING *****
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES
NODE UX UOTY UZ ROTX
$49 \quad 0.77609558 \mathrm{E}-03 \quad 0.10802115 \mathrm{E}-03 \quad 0.18877886 \mathrm{E}-02$
$0.21530940 \mathrm{E}-03-0.18958086 \mathrm{E}-03-0.10751301 \mathrm{E}-04$
$50 \quad 0.77609558 \mathrm{E}-03 \quad-0.10802115 \mathrm{E}-03 \quad-0.18877886 \mathrm{E}-02$
$-0.21530940 \mathrm{E}-03-0.18958086 \mathrm{E}-03-0.10751301 \mathrm{E}-04$
$51 \quad 0.23594642 \mathrm{E}-02 \quad 0.32972661 \mathrm{E}-03 \quad 0.19755822 \mathrm{E}-02$
$-0.18566994 \mathrm{E}-03-0.20622175 \mathrm{E}-03-0.57342526 \mathrm{E}-04$
$52 \quad 0.23594642 \mathrm{E}-02 \quad-0.32972661 \mathrm{E}-03 \quad-0.19755822 \mathrm{E}-02$
$0.18566994 \mathrm{E}-03-0.20622175 \mathrm{E}-03-0.57342526 \mathrm{E}-04$
MAXIMUMS
$\begin{array}{llllll}\text { NODE } & 32 & 46 & 29 & 50\end{array}$
$32 \quad 15$
VALUE $\quad 0.52119552 \mathrm{E}-01 \quad-0.12066207 \mathrm{E}-02 \quad-0.41406237 \mathrm{E}-02$
$-0.21530940 \mathrm{E}-03 \quad 0.43627463 \mathrm{E}-02-0.49913620 \mathrm{E}-03$
PRINT REACTION FORCES PER NODE ***** POST1 REACTION FORCE LISTING

LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

THE FOLLOWING X,Y,Z FORCES ARE IN NODAL COORDINATES

***** ROUTINE COMPLETED ***** CP= $\quad 130.1200$ TIME= 10.4555
***UNKNOWN OR NON-UNIQUE COMMAND(PREP7)= INPU
***** INPUT SWITCHED FROM FILE 5 TO FILE38 NAME=STATIC8.PRP
NEW TITLE= STATICY

```
ELEMENT TYPE 1 USES STIF 4
    KEYOPT(1-9)=}\begin{array}{lllllllllll}{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}
    INOTPR= 0 NUMBER OF NODES= 3
ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ
    THREE-DIMENSIONAL STRUCTURE
    MATERIAL 1 COEFFICIENTS OF EX VS. TEMP EQUATION
        CO = 0.1440000E+10
PROPERTY TABLE EX MAT= 1 NUM. POINTS= 2
        TEMPERATURE DATA TEMPERATURE DATA
    0.00000E+00 0.14400E+10 2300.0 0.14400E+10
    MATERIAL 1 COEFFICIENTS OF DENS VS. TEMP EQUATION
        CO = 5.237000
PROPERTY TABLE DENS MAT= 1 NUM. POINTS= 2
        TEMPERATURE DATA TEMPERATURE DATA
    0.00000E+00 5.2370 2300.0 5.2370
ELEMENT TYPE 2 USES STIF 4
    KEYOPT(1-9)=}\begin{array}{llllllllll}{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}&{0}
    INOTPR= 0 NUMBER OF NODES= 3
ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ
    THREE-DIMENSIONAL STRUCTURE
    MATERIAL 2 COEFFICIENTS OF EX VS. TEMP EQUATION
        CO = 0.1440000E+10
PROPERTY TABLE EX MAT= 2 NUM. POINTS= 2
        TEMPERATURE DATA TEMPERATURE DATA
        0.00000E+00 0.14400E+10 2300.0 0.14400E+10
MATERIAL 2 COEFFICIENTS OF DENS VS. TEMP EQUATION
    CO = 5.237000
```


PROPERTY TABLE DENS MAT= 2 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $\begin{array}{llll}0.00000 E+00 & 5.2370 & 2300.0 & 5.2370\end{array}$

ELEMENT TYPE 3 USES STIF 4
KEYOPT (1-9) $=\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ INOTPR $=0$ NUMBER OF NODES $=3$

ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

MATERIAL 3 COEFFICIENTS OF EX VS. TEMP EQUATION $C O=0.1440000 E+10$

PROPERTY TABLE EX MAT= 3 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 3 COEFFICIENTS OF DENS VS. TEMP EQUATION CO $=5.237000$

PROPERTY TABLE DENS MAT= 3 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 5.2370 \quad 2300.0 \quad 5.2370$

ELEMENT TYPE 4 USES STIF 4
$\operatorname{KEYOPT}(1-9)=\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ INOTPR= 0 NUMBER OF NODES= 3

ELASTIC BEAM, 3-D

CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

| MATERIAL 4 | 4 |
| :---: | :---: |
| $C O=0.1440000 E+10$ | COEFFICIENTS OF EX \quad VS. TEMP EQUATION |

PROPERTY TABLE EX MAT= 4 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 4 COEFFICIENTS OF DENS VS. TEMP EQUATION CO = 5.237000

PROPERTY TABLE DENS MAT= 4 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 5.2370 \quad 2300.0 \quad 5.2370$

REAL CONSTANT SET 1 ITEMS 1 TO 6

| $\begin{gathered} 0.13318 \mathrm{E}-01 \\ 0.00000 \mathrm{E}+00 \end{gathered}$ | | | 0.27500E-03 | | $0.27500 \mathrm{E}-03$ | | 0.41670 | 0.41670 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { REAL CONSTANT } \\ & 0.64760 \mathrm{E}-02 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$ | | | $\begin{array}{lccc} \text { SET } 2 & \text { ITEMS } & 1 \text { TO } & 6 \\ 0.31800 \mathrm{E}-04 & 0.31800 \mathrm{E}-04 \end{array}$ | | | | 0.20830 | | 0.20830 |
| $\begin{gathered} \text { REAI } \\ 0 \\ 0.000 \end{gathered}$ | CONS | | $\begin{array}{ll} \text { SET } 3 \text { ITEMS } & 1 \text { TO } \\ 0.50840 \mathrm{E}-02 & 0.12842 \end{array}$ | | | 6 | 3.0000 | | 0.41670 |
| | $\begin{aligned} & \text { CONS } \\ & \mathrm{jOOO} \end{aligned}$ | TANT | $\begin{array}{lccc} \text { SET } 3 \text { ITEMS } 7 \text { TO } 10 \\ 0.18510 \mathrm{E}-01 & 0.00000 \mathrm{E}+00 \end{array}$ | | | | $0.00000 \mathrm{E}+00$ | | |
| $\begin{gathered} \text { REAI } \\ 0 \\ 0.000 \end{gathered}$ | CONS | | $\begin{array}{lrrr} \text { SET } & 4 \text { ITEMS } & 1 \text { TO } \\ 0.16800 \mathrm{E}-02 & 0.11301 \end{array}$ | | | 6 | 3.0000 | | 0.25000 |
| $\begin{array}{r} \text { REAL } \\ 0.0 \end{array}$ | $\begin{aligned} & \text { CONS } \\ & \mathrm{jOOOE} \end{aligned}$ | $\begin{aligned} & \text { TANT } \\ & +\infty 0 \end{aligned}$ | $\begin{array}{lcc} \text { SET } 4 \text { ITEMS } 7 \text { T0 } 10 \\ 0.63000 \mathrm{E}-02 & 0.00000 \mathrm{E}+00 \end{array}$ | | | | $0.00000 \mathrm{E}+00$ | | |
| ANAL | IS T | $P E=$ | 0 | (STATIC | C ANALYSIS) | | | | |
| NODE | 1 | KCS $=$ | 0 | $X, Y, Z=0$ | $0.00000 \mathrm{E}+00$ | | 00000E+00 | 4.0000 | |
| NODE | 2 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 4.5000 | | .00000E+00 | 4.0000 | |
| NODE | 3 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 9.0000 | | .00000E+00 | 4.0000 | |
| NODE | 4 | KCS $=$ | 0 | $X, Y, Z=$ | 13.500 | | .00000E+00 | 4.0000 | |
| NODE | 5 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 18.000 | | .00000E+00 | 4.0000 | |
| NODE | 6 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 15.750 | | .00000E+00 | 6.0000 | |
| NODE | 7 | KCS $=$ | 0 | $X, Y, Z=$ | 11.250 | | .00000E+00 | 6.0000 | |
| NODE | 8 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 6.7500 | | .00000E+00 | 6.0000 | |
| NODE | 9 | KCS $=$ | 0 | $X, Y, Z=$ | 2.2500 | | .00000E+00 | 6.0000 | |
| NODE | 10 | KCS $=$ | 0 | $X, Y, Z=0$ | $0.00000 \mathrm{E}+00$ | | .00000E+00 | 8.0000 | |
| NODE | 11 | KCS $=$ | 0 | $X, Y, Z=$ | 4.5000 | | 00000E+00 | 8.0000 | |
| NODE | 12 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | | .00000E+00 | 8.0000 | |
| NODE | 13 | KCS $=$ | 0 | $X, Y, Z=$ | 13.500 | 0.00 | .00000E+00 | 8.0000 | |
| NODE | 14 | KCS $=$ | 0 | $X, Y, Z=$ | 18.000 | 0.00 | 00000E+00 | 8.0000 | |
| NODE | 15 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 0.00 | 00000E+00 | 11.000 | |

| NODE | 16 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | $0.00000 \mathrm{E}+00$ | 23.000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NODE | 17 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 12.000 | 4.0000 |
| NODE | 18 | KCS= | 0 | $X, Y, Z=$ | 4.5000 | 12.000 | 4.0000 |
| NODE | 19 | KCS= | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 4.0000 |
| NODE | 20 | KCS $=$ | 0 | $X, Y, Z=$ | 13.500 | 12.000 | 4.0000 |
| NODE | 21 | KCS $=$ | 0 | $X, Y, Z=$ | 18.000 | 12.000 | 4.0000 |
| NODE | 22 | KCS $=$ | 0 | $X, Y, Z=$ | 15.750 | 12.000 | 6.0000 |
| NODE | 23 | KCS $=$ | 0 | $X, Y, Z=$ | 11.250 | 12.000 | 6.0000 |
| NODE | 24 | KCS $=$ | 0 | $X, Y, Z=$ | 6.7500 | 12.000 | 6.0000 |
| NODE | 25 | KCS $=$ | 0 | $X, Y, Z=$ | 2.2500 | 12.000 | 6.0000 |
| NODE | 26 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 12.000 | 8.0000 |
| NODE | 27 | KCS $=$ | 0 | $X, Y, Z=$ | 4.5000 | 12.000 | 8.0000 |
| NODE | 28 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 8.0000 |
| NODE | 29 | KCS $=$ | 0 | $X, Y, Z=$ | 13.500 | 12.000 | 8.0000 |
| NODE | 30 | KCS $=$ | 0 | $X, Y, Z=$ | 18.000 | 12.000 | 8.0000 |
| NODE | 31 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 11.000 |
| NODE | 32 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 12.000 | 23.000 |
| NODE | 33 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 6.0000 | 4.0000 |
| NODE | 34 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 9.0000 | 6.0000 |
| NODE | 35 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 E+00$ | 3.0000 | 6.0000 |
| NODE | 36 | KCS $=$ | 0 | $X, Y, Z=$ | $0.00000 \mathrm{E}+00$ | 6.0000 | 8.0000 |
| NODE | 37 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 6.0000 | 4.0000 |
| NODE | 38 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 3.0000 | 6.0000 |
| NODE | 39 | KCS $=$ | 0 | $X, Y, Z=$ | 9.0000 | 9.0000 | 6.0000 |
| NODE | 40 | KCS= | 0 | $X, Y, Z=$ | 9.0000 | 6.0000 | 8.0000 |
| NODE | 41 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 18.000 | 6.0000 | 4.0000 |

| NODE | 42 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 18.000 | 9.0000 | 6.0000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NODE | 43 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 18.000 | 3.0000 | 6.0000 |
| NODE | 44 | KCS= | 0 | $X, Y, Z=$ | 18.000 | 6.0000 | 8.0000 |
| NODE | 45 | KCS $=$ | 0 | $X, Y, Z=$ | 4.5000 | 3.0000 | 4.0000 |
| NODE | 46 | $\mathrm{KCS}=$ | 0 | $X, Y, Z=$ | 13.500 | 3.0000 | 4.0000 |
| NODE | 47 | KCS $=$ | 0 | $X, Y, Z=$ | 4.5000 | 9.0000 | 4.0000 |
| NODE | 48 | KCS $=$ | 0 | $X, Y, Z=$ | 13.500 | 9.0000 | 4.0000 |
| NODE | 49 | KCS $=$ | 0 | $X, Y, Z=$ | 4.5000 | 3.0000 | 8.0000 |
| NODE | 50 | KCS $=$ | 0 | $X, Y, Z=$ | 13.500 | 3.0000 | 8.0000 |
| NODE | 51 | KCS $=$ | 0 | $X, Y, Z=$ | 4.5000 | 9.0000 | 8.0000 |
| NODE | 52 | KCS= | 0 | $X, Y, Z=$ | 13.500 | 9.0000 | 8.0000 |
| NODE | 53 | KCS= | 0 | $X, Y, Z=$ | 18.000 | 12.000 | 11.000 |
| NODE | 54 | KCS $=$ | 0 | $X, Y, Z=$ | 18.000 | $0.00000 \mathrm{E}+00$ | 11.000 |
| NODE | 55 | KCS $=$ | 0 | $X, Y, Z=$ | 18.000 | $0.00000 \mathrm{E}+00$ | 23.000 |
| $\text { REAL CONSTANT NUMBER= } 1$ | | | | | | | |
| ELEMENT | | 1 | | 17 | 180 | | |
| ELEMENT | | 2 | | 18 | 190 | | |
| ELEMENT | | 3 | | 19 | 200 | | |
| ELEMENT | | 4 | | 20 | 210 | | |
| ELEMENT | | 5 | | 21 | $30 \quad 0$ | | |
| ELEMENT | | 6 | | 30 | 290 | | |
| ELEMENT | | 7 | | 29 | 280 | | |
| ELEMENT | | 8 | | 28 | 270 | | |
| ELEMENT | | 9 | | 27 | 260 | | |
| ELEMENT | | 10 | | 26 | 170 | | |
| ELEMENT | | 11 | | 1 | 20 | | |
| ELEMENT | | 12 | | 2 | 30 | | |
| ELEMENT | | 13 | | 3 | 40 | | |
| ELEMENT | | 14 | | 4 | 50 | | |
| ELEMENT | | 15 | | 5 | 140 | | |
| ELEMENT | | 16 | | 14 | 130 | | |
| ELEMENT | | 17 | | 13 | 120 | | |
| ELEMENT | | 18 | | 12 | 110 | | |
| ELEMENT | | 19 | | 11 | 100 | | |
| ELEMENT | | 20 | | 10 | 10 | | |
| ELEMENT | | 21 | | 17 | 330 | | |
| ELEMENT | | 22 | | 33 | 10 | | |

| ELEMENT | 23 | 10 | 36 | 0 |
| :--- | :--- | ---: | ---: | ---: |
| ELEMENT | 24 | 36 | 26 | 0 |
| ELEMENT | 25 | 21 | 41 | 0 |
| ELEMENT | 26 | 41 | 5 | 0 |
| ELEMENT | 27 | 14 | 44 | 0 |
| ELEMENT | 28 | 44 | 30 | 0 |
| ELEMENT | 29 | 3 | 37 | 0 |
| ELEMENT | 30 | 37 | 19 | 0 |
| ELEMENT | 31 | 28 | 40 | 0 |
| ELEMENT | 32 | 40 | 12 | 0 |
| ELEMENT | 33 | 36 | 40 | 0 |
| ELEMENT | 34 | 40 | 44 | 0 |
| ELEMENT | 35 | 33 | 37 | 0 |
| ELEMENT | 36 | 37 | 41 | 0 |
| ELEMENT | 37 | 13 | 15 | 0 |
| ELEMENT | 38 | 11 | 15 | 0 |
| ELEMENT | 39 | 29 | 31 | 0 |
| ELEMENT | 40 | 27 | 31 | 0 |

| REAL CONSTANT | NUMBER= | 2 | | |
| :--- | ---: | ---: | ---: | ---: |
| ELEMENT | 41 | 17 | 25 | 0 |
| ELEMENT | 42 | 25 | 27 | 0 |
| ELEMENT | 43 | 26 | 25 | 0 |
| ELEMENT | 44 | 25 | 18 | 0 |
| ELEMENT | 45 | 18 | 24 | 0 |
| ELEMENT | 46 | 27 | 24 | 0 |
| ELEMENT | 47 | 24 | 19 | 0 |
| ELEMENT | 48 | 24 | 28 | 0 |
| ELEMENT | 49 | 28 | 23 | 0 |
| ELEMENT | 50 | 19 | 23 | 0 |
| ELEMENT | 51 | 23 | 29 | 0 |
| ELEMENT | 52 | 23 | 20 | 0 |
| ELEMENT | 53 | 20 | 22 | 0 |
| ELEMENT | 54 | 29 | 22 | 0 |
| ELEMENT | 55 | 22 | 21 | 0 |
| ELEMENT | 56 | 22 | 30 | 0 |
| ELEMENT | 57 | 1 | 9 | 0 |
| ELEMENT | 58 | 10 | 9 | 0 |
| ELEMENT | 59 | 9 | 2 | 0 |
| ELEMENT | 60 | 9 | 11 | 0 |
| ELEMENT | 61 | 11 | 8 | 0 |
| ELEMENT | 62 | 2 | 8 | 0 |
| ELEMENT | 63 | 8 | 3 | 0 |
| ELEMENT | 64 | 8 | 12 | 0 |
| ELEMENT | 65 | 12 | 7 | 0 |
| ELEMENT | 66 | 3 | 7 | 0 |
| ELEMENT | 67 | 7 | 4 | 0 |
| ELEMENT | 68 | 7 | 13 | 0 |
| ELEMENT | 69 | 13 | 6 | 0 |
| ELEMENT | 70 | 4 | 6 | 0 |
| ELEMENT | 71 | 6 | 5 | 0 |
| ELEMENT | 72 | 6 | 14 | 0 |

| ELEMENT | 73 | 17 | 34 | 0 |
| :--- | ---: | ---: | ---: | ---: |
| ELEMENT | 74 | 26 | 34 | 0 |
| ELEMENT | 75 | 34 | 33 | 0 |
| ELEMENT | 76 | 34 | 36 | 0 |
| ELEMENT | 77 | 36 | 35 | 0 |
| ELEMENT | 78 | 33 | 35 | 0 |
| ELEMENT | 79 | 35 | 1 | 0 |
| ELEMENT | 80 | 35 | 10 | 0 |
| ELEMENT | 81 | 21 | 42 | 0 |
| ELEMENT | 82 | 30 | 42 | 0 |
| ELEMENT | 83 | 42 | 41 | 0 |
| ELEMENT | 84 | 42 | 44 | 0 |
| ELEMENT | 85 | 44 | 43 | 0 |
| ELEMENT | 86 | 41 | 43 | 0 |
| ELEMENT | 87 | 43 | 5 | 0 |
| ELEMENT | 88 | 43 | 14 | 0 |
| ELEMENT | 89 | 3 | 38 | 0 |
| ELEMENT | 90 | 38 | 40 | 0 |
| ELEMENT | 91 | 12 | 38 | 0 |
| ELEMENT | 92 | 38 | 37 | 0 |
| ELEMENT | 93 | 37 | 39 | 0 |
| ELEMENT | 94 | 39 | 28 | 0 |
| ELEMENT | 95 | 40 | 39 | 0 |
| ELEMENT | 96 | 39 | 19 | 0 |
| ELEMENT | 97 | 1 | 45 | 0 |
| ELEMENT | 98 | 45 | 37 | 0 |
| ELEMENT | 99 | 33 | 45 | 0 |
| ELEMENT | 100 | 45 | 3 | 0 |
| ELEMENT | 101 | 3 | 46 | 0 |
| ELEMENT | 102 | 46 | 41 | 0 |
| ELEMENT | 103 | 37 | 46 | 0 |
| ELEMENT | 104 | 46 | 5 | 0 |
| ELEMENT | 105 | 37 | 48 | 0 |
| ELEMENT | 106 | 48 | 21 | 0 |
| ELEMENT | 107 | 19 | 48 | 0 |
| ELEMENT | 108 | 48 | 41 | 0 |
| ELEMENT | 109 | 33 | 47 | 0 |
| ELEMENT | 110 | 47 | 19 | 0 |
| ELEMENT | 111 | 17 | 47 | 0 |
| ELEMENT | 112 | 47 | 37 | 0 |
| ELEMENT | 113 | 10 | 49 | 0 |
| ELEMENT | 114 | 49 | 40 | 0 |
| ELEMENT | 115 | 36 | 49 | 0 |
| ELEMENT | 116 | 49 | 12 | 0 |
| ELEMENT | 117 | 12 | 50 | 0 |
| ELEMENT | 118 | 50 | 44 | 0 |
| ELEMENT | 119 | 40 | 50 | 0 |
| ELEMENT | 120 | 50 | 14 | 0 |
| ELEMENT | 121 | 40 | 52 | 0 |
| ELEMENT | 122 | 52 | 30 | 0 |
| ELEMENT | 123 | 28 | 52 | 0 |
| ELEMENT | 124 | 52 | 44 | 0 |

| ELEMENT | 125 | 36 | 51 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| ELEMENT | 126 | 51 | 28 | 0 |
| ELEMENT | 127 | 26 | 51 | 0 |
| ELEMENT | 128 | 51 | 40 | 0 |
| REAL CON | TANT | NUMBER= | 3 | |
| ELEMENT | 129 | 19 | 28 | 21 |
| ELEMENT | 130 | 28 | 31 | 30 |
| ELEMENT | 131 | 31 | 32 | 53 |
| ELEMENT | 132 | 3 | 12 | 5 |
| ELEMENT | 133 | 12 | 15 | 14 |
| ELEMENT | 134 | 15 | 16 | 54 |
| REAL CON | ANT | NUMBER= | 4 | |
| ELEMENT | 135 | 16 | 32 | 55 |
| ELEMENT | 136 | 40 | 15 | 44 |
| ELEMENT | 137 | 40 | 31 | 44 |

SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 10 TO 10 BY 1

VALUES $=0.00000 \mathrm{E}+00$ 0.00000E +00 ADDITIONAL DOFS $=~ U Z ~ R O T X ~ R O T Y ~$ ROTZ

SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 14 TO 14 BY 1 VALUES $=0.00000 \mathrm{E}+00$ 0.00000E+00 ADDITIONAL DOFS $=~ U Z ~ R O T X ~ R O T Y ~$ ROTZ

SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 26 TO 26 BY 1

VALUES $=0.00000 \mathrm{E}+000.00000 \mathrm{E}+00$ ADDITIONAL DOFS $=\mathrm{UZ}$ ROTX ROTY ROTZ

SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 30 TO 30 BY 1

VALUES $=0.00000 \mathrm{E}+000.00000 \mathrm{E}+00$ ADDITIONAL DOFS $=\mathrm{UZ}$ ROTX ROTY ROTZ

```
    SPECIFIED DISP UX FOR SELECTED NODES IN RANGE 12 TO 12 BY
l
    VALUES= 0.00000E+00 0.00000E+00 ADDITIONAL DOFS=
```

 MASTER DOF FOR ALL SELECTED NODES
 ADDITIONAL DOFS=
 SPECIFIED FORCE FY FOR SELECTED NODES IN RANGE 16 TO 16 BY
 1
 VALUES \(=500.00 \quad 0.00000 \mathrm{E}+00\)
 SPECIFIED FORCE FY FOR SELECTED NODES IN RANGE 32 TO 32 BY
 1
    ```
VALUES= 500.00 0.00000E+00
    *** NOTE ***
    NPRINT IS ZERO OR GREATER THAN NITTER. SOLUTION PRINTOUT
    WILL BE SUPPRESSED UNLESS OTHER PRINT CONTROLS HAVE BEEN DEFINED.
    *** NOTE ***
DATA CHECKED - NO ERRORS FOUND
*** PREP7 GLOBAL STATUS
TITLE= STATICY
ANALYSIS TYPE= 0
NUMBER OF ELEMENT TYPES= 4
    137 ELEMENTS CURRENTLY SELECTED. MAX ELEMENT NUMBER = 137
    5 5 ~ N O D E S ~ C U R R E N T L Y ~ S E L E C T E D . ~ M A X ~ N O D E ~ N U M B E R ~ = ~ 5 5 ~
MAXIMUM LINEAR PROPERTY NUMBER= 4
MAXIMUM REAL CONSTANT SET NUMBER= 4
ACTIVE COORDINATE SYSTEM= 0 (CARTESIAN)
NUMBER OF IMPOSED DISPLACEMENTS= 21
NUMBER OF NODAL FORCES= 2
ANALYSIS DATA WRITTEN ON FILE27
ENTER FINISH TO LEAVE PREP7
    ALL CURRENT PREP7 DATA WRITTEN TO FILE16 NAME= FILE16.DAT
    FOR POSSIBLE RESUME FROM THIS POINT
    ***** ROUTINE COMPLETED ***** CP= 72.7800 TIME= 10.7388
    STORE SG1I FOR ELEMENT TYPE STIF 4 FROM ITEM 19
    STORE SG3I FOR ELEMENT TYPE STIF 4 FROM ITEM }2
    STORE SG1J FOR ELEMENT TYPE STIF 4 FROM ITEM 21
    STORE SG3J FOR ELEMENT TYPE STIF 4 FROM ITEM }2
    USE LOAD STEP 1 ITERATION 1 SECTION 1 FOR LOAD CASE
l
GEOMETRY STORED FOR 55 NODES 137 ELEMENTS
    TITLE= STATICX8
```

```
DISPLACEMENT STORED FOR 55 NODES
STRESSES STORED FOR 4 SELECTED ITEMS
ITERATION SUMMARY INFORMATION STORED
NODAL FORCES STORED FOR 137 ELEMENTS
REACTIONS STORED FOR 21 REACTIONS
FOR LOAD STEP= 1 ITERATION= 1 SECTION= 1
TIME= 0.000000E+00 LOAD CASE= 1
TITLE= STATICX8
```


PRINT ELEMENT STRESS ITEMS PER ELEMENT

***** POST1 ELEMENT STRESS LISTING

LOAD	P 1 ITER	ION=	SECTION= 1	
TIME=	$0.00000 \mathrm{E}+00$	LOAD CASE=	1	
ELEM	SG1I	SG3I	SG1J	SG3J
1	22374.724	13479.104	24190.585	11663.243
2	63738.523	45231.208	81880.846	27088.885
3	81880.846	27088.885	63738.523	45231.208
4	24190.585	11663.243	22374.724	13479.104
5	27846.759	23356.163	42589.530	8613.3911
6	68998.228	-59736.034	45445.504	-36183.311
7	22229.206	-31727.786	12385.607	-21884.187
8	12385.607	-21884.187	22229.206	-31727.786
9	45445.504	-36183.311	68998.228	-59736.034
10	42589.530	8613.3911	27846.759	23356.163
11	-13479.104	-22374.724	-11663.243	-24190.585
12	-45231.208	-63738.523	-27088.885	-81880.846
13	-27088.885	-81880.846	-45231. 208	-63738.523
14	-11663.243	-24190.585	-13479.104	-22374.724

***** POST1 ELEMENT STRESS LISTING *****

33	12505.606	-12505.606	14486.094	-14486.094
34	14486.094	-14486.094	12505.606	-12505.606
35	3960.8808	-3960.8808	1628.4760	-1628.4760
36	1628.4760	-1628.4760	3960.8808	-3960.8808
37	53506.387	14348.366	68840.543	-985.79018
38	53506.387	14348.366	68840.543	-985.79018
39	-14348.366	-53506.387	985.79018	-68840.543
40	-14348.366	-53506.387	985.79018	-68840.543
41	-70528.500	-78994.424	-68793.932	-80728.992
42	-64189.033	-88170.514	-53536.690	-98822.857

55	-68793.932	-80728.992	-70528.500	-78994.424
56	69144.892	35687.597	80462.674	24369.816

***** POST1 ELEMENT STRESS LISTING *****
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD $C A S E=1$

ELEM	SGlI	SG3I	SG1J	SG3J
57	78994.424	70528.500	80728.992	68793.932
58	-24369.816	-80462.674	-35687.597	-69144.892
59	-25621.286	-78670.010	-21235.758	-83055.538
60	88170.514	64189.033	98822.857	53536.690
61	10041.162	-65315.721	-4276.8794	-50997.679
62	59611.520	36699.706	73113.437	23197.789
63	-23637.142	-32325.927	-19639.753	-36323.315
64	53897.442	40967.216	56653.731	38210.927
65	56653.731	38210.927	53897.442	40967.216
66	-19639.753	-36323.315	-23637.142	-32325.927
67	73113.437	23197.789	59611.520	36699.706
68	-4276.8794	-50997.679	10041.162	-65315.721
69	98822.857	53536.690	88170.514	64189.033
70	-21235.758	-83055.538	-25621.286	-78670.010

***** POSTl ELEMENT STRESS LISTING *****

LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

ELEM	SG1I	SG3I	SG1J	SG3J
71	80728.992	68793.932	78994.424	70528.500
72	-35687.597	-69144.892	-24369.816	-80462.674

73	-4497.7174	-6489.2534	-485.73721	-10501.234
74	11568.741	1834.0696	11713.181	1689.6296
75	9488.8738	3936.6372	8686.1556	4739.3554
76	-2438.1579	-8613.6551	-1583.9341	-9467.8790
77	9467.8790	1583.9341	8613.6551	2438.1579
78	-4739.3554	-8686.1556	-3936.6372	-9488.8738
79	10501.234	485.73721	6489.2534	4497.7174
80	-1689.6296	-11713.181	-1834.0696	-11568.741
81	-4497.7174	-6489.2534	-485.73721	-10501.234
82	11568.741	1834.0696	11713.181	1689.6296
83	9488.8738	3936.6372	8686.1556	4739.3554
84	-2438.1579	-8613.6551	-1583.9341	-9467.8790
***** POST1 ELEMENT STRESS LISTING *****				
LOAD STEP 1 ITERATION $=$ 1 SECTION $=1$ TIME $=$ 1 $0.00000 E+00 \quad$ LOAD 1				
ELEM	SG1I	SG3I	SG1J	SG3J
85	9467.8790	1583.9341	8613.6551	2438.1579
86	-4739.3554	-8686.1556	-3936.6372	-9488.8738
87	10501.234	485.73721	6489.2534	4497.7174
88	-1689.6296	-11713.181	-1834.0696	-11568.741
89	15919.557	12098.478	23537.543	4480.4918
90	39159.352	-9583.5549	59068.659	-29492.862
91	46463.535	32384.184	54426.683	24421.035
92	38317.439	37997.647	40132.720	36182.367
93	-36182.367	-40132.720	-37997.647	-38317.439
94	-24421.035	-54426.683	-32384.184	-46463.535

95	29492.862	-59068.659	9583.5549	-39159.352
96	-4480.4918	-23537.543	-12098.478	-15919.557
97	-16366.139	-26960.405	-12618.154	-30708.390
98	-14717.184	-28429.953	-19897.943	-23249.194

| LOAD STEP | 1 | ITERATION $=$ | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| TIME $=$ | $0.00000 \mathrm{E}+00$ | SECTION $=1$ | |
| LOAD | 1 | | |

ELEM	SG1I	SG3I	SGlJ	SG3J
99	168.70965	-7013.3198	467.93984	-7312.5499
100	3631.2749	-10709.298	6426.5514	-13504.575
101	6426.5514	-13504.575	3631.2749	-10709.298
102	467.93984	-7312.5499	168.70965	-7013.3198
103	-19897.943	-23249.194	-14717.184	-28429.953
104	-12618.154	-30708.390	-16366.139	-26960.405
105	23249.194	19897.943	28429.953	14717.184
106	30708.390	12618.154	26960.405	16366.139
107	13504.575	-6426.5514	10709.298	-3631.2749
108	7312.5499	-467.93984	7013.3198	-168.70965
109	7013.3198	-168.70965	7312.5499	-467.93984
110	10709.298	-3631.2749	13504.575	-6426.5514
111	26960.405	16366.139	30708.390	12618.154
112	28429.953	14717.184	23249.194	19897.943

***** POST1 ELEMENT STRESS LISTING *****
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

113	65971.524	47243.158	62518.202	50696.480
114	69889.047	43364.118	74454.529	38798.637
115	-28435.922	-31935.783	-24468.725	-35902.979
116	-14728.866	-45474.612	-15916.416	-44287.062
117	-15916.416	-44287.062	-14728.866	-45474.612
118	-24468.725	-35902.979	-28435.922	-31935.783
119	74454.529	38798.637	69889.047	43364.118
120	62518.202	50696.480	65971.524	47243.158
121	-38798.637	-74454.529	-43364.118	-69889.047
122	-50696.480	-62518.202	-47243.158	-65971.524
123	44287.062	15916.416	45474.612	14728.866
124	35902.979	24468.725	31935.783	28435.922
125	31935.783	28435.922	35902.979	24468.725
126	45474.612	14728.866	44287.062	15916.416

135	164815.81	-164815.81	164815.81	-164815.81
136	-7277.2574	-19588.143	33416.572	-60281.972
137	19588.143	7277.2574	60281.972	-33416.572

PRINT NODAL DISPLACEMENTS
***** POST1 NODAL DISPLACEMENT LISTING
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$
the following X, Y, Z displacements are in nodal coordinates

***** POSTl NODAL DISPLACEMENT LISTING *****
LOAD STEP 1 ITERATION= 1 SECTION= 1
TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$
THE FOLLOWING X,Y,Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE			
ROTY	UX UOTZ	UY	

13	$0.14841531 \mathrm{E}-04$	$0.17166769 \mathrm{E}-03$	$0.81735155 \mathrm{E}-03$
$-0.16637825 \mathrm{E}-03$	$0.12793724 \mathrm{E}-03$	$-0.48694051 \mathrm{E}-04$	
14	$0.36935416 \mathrm{E}-06$	$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$
$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$	
15	$-0.31449606 \mathrm{E}-21$	$0.13484989 \mathrm{E}-02$	$0.10248059 \mathrm{E}-02$
$-0.71922157 \mathrm{E}-03$	$0.27779439 \mathrm{E}-20$	$-0.66562389 \mathrm{E}-19$	
16	$0.24674952 \mathrm{E}-19$	$0.27533008 \mathrm{E}-01$	$0.10466836 \mathrm{E}-02$
$-0.20057340 \mathrm{E}-02$	$0.16737847 \mathrm{E}-20$	$-0.53157776 \mathrm{E}-19$	
17	$-0.22628681 \mathrm{E}-03$	$-0.55373197 \mathrm{E}-04$	$-0.71115169 \mathrm{E}-04$
$-0.18774209 \mathrm{E}-04$	$0.79503074 \mathrm{E}-04$	$0.20573878 \mathrm{E}-04$	
18	$-0.17026520 \mathrm{E}-03$	$-0.17422574 \mathrm{E}-04$	$-0.52098893 \mathrm{E}-03$
$-0.50857114 \mathrm{E}-04$	$0.12972883 \mathrm{E}-03$	$0.63277062 \mathrm{E}-05$	
19	$0.86794573 \mathrm{E}-18$	$0.67672269 \mathrm{E}-05$	$-0.10090641 \mathrm{E}-02$
$-0.10868376 \mathrm{E}-03$	$-0.60956532 \mathrm{E}-20$	$-0.52409914 \mathrm{E}-19$	
20	$0.17026520 \mathrm{E}-03$	$-0.17422574 \mathrm{E}-04$	$-0.52098893 \mathrm{E}-03$
$-0.50857114 \mathrm{E}-04$	$-0.12972883 \mathrm{E}-03$	$-0.63277062 \mathrm{E}-05$	
21	$0.22628681 \mathrm{E}-03$	$-0.55373197 \mathrm{E}-04$	$-0.71115169 \mathrm{E}-04$
$-0.18774209 \mathrm{E}-04$	$-0.79503074 \mathrm{E}-04$	$-0.20573878 \mathrm{E}-04$	
22	$0.17581601 \mathrm{E}-03$	$-0.91572185 \mathrm{E}-05$	$-0.36314681 \mathrm{E}-03$
$-0.14831293 \mathrm{E}-04$	$-0.10991383 \mathrm{E}-03$	$-0.66823725 \mathrm{E}-05$	
23	$-0.25309296 \mathrm{E}-04$	$0.13623351 \mathrm{E}-03$	$-0.89254158 \mathrm{E}-03$
$-0.77273837 \mathrm{E}-04$	$-0.46798107 \mathrm{E}-04$	$-0.53193350 \mathrm{E}-04$	
24	$0.25309296 \mathrm{E}-04$	$0.13623351 \mathrm{E}-03$	$-0.89254158 \mathrm{E}-03$
$-0.77273837 \mathrm{E}-04$	$0.46798107 \mathrm{E}-04$	$0.53193350 \mathrm{E}-04$	

***** POST1 NODAL DISPLACEMENT LISTING *****
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE ROTY	ROTZ	UZ	ROTX
25	-0.17581601E-03	-0.91572185E-05	-0.36314681E-03
-0.14831293E-04	$0.10991383 \mathrm{E}-03$	$0.66823725 \mathrm{E}-05$	
26	$0.36935416 \mathrm{E}-06$	$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$
$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$	
27	$0.14841531 \mathrm{E}-04$	$0.17166769 \mathrm{E}-03$	-0.81735155E-03
-0.16637825E-03	$0.12793724 \mathrm{E}-03$	0.48694051E-04	
28	$0.83742457 \mathrm{E}-18$	$0.43339435 \mathrm{E}-03$	-0.10133240E-02
-0.10453477E-03	-0.10774486E-19	-0.57793766E-19	
29 -0	0.14841531E-04	0.17166769E-03	-0.81735155E-03
-0.16637825E-03	-0.12793724E-03	-0.48694051E-04	
$30-0$. $36935416 \mathrm{E}-06$	$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$
$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$	$0.00000000 \mathrm{E}+00$	
31	$0.80121914 \mathrm{E}-18$	$0.13484989 \mathrm{E}-02$	-0.10248059E-02
-0.71922157E-03	-0.12346020E-19	-0.70929342E-19	
32	$0.66141278 \mathrm{E}-18$	0.27533008E-01	-0.10466836E-02
-0.20057340E-02	-0.11241860E-19	-0.53291127E-19	
33	$0.63504531 \mathrm{E}-18$	-0.40366688E-04	$0.15129185 \mathrm{E}-19$
-0.19431940E-04	-0.30511449E-18	0.34983275E-04	

34	$-0.53146470 \mathrm{E}-04$	$-0.57990146 \mathrm{E}-05$	$-0.21550878 \mathrm{E}-04$
$-0.82930271 \mathrm{E}-05$	$0.25957619 \mathrm{E}-04$	$0.94247912 \mathrm{E}-05$	
35	$0.53146470 \mathrm{E}-04$	$-0.57990146 \mathrm{E}-05$	$0.21550878 \mathrm{E}-04$
$-0.82930271 \mathrm{E}-05$	$-0.25957619 \mathrm{E}-04$	$0.94247912 \mathrm{E}-05$	
36	$0.34683123 \mathrm{E}-18$	$0.25197123 \mathrm{E}-04$	$0.58857675 \mathrm{E}-19$
$-0.50029367 \mathrm{E}-06$	$0.64592052 \mathrm{E}-19$	$0.29704935 \mathrm{E}-04$	

***** POST1 NODAL DISPLACEMENT LISTING *****
LOAD STEP 1 ITERATION= 1 SECTION= 1 TIME $=0.00000 \mathrm{E}+00 \quad$ LOAD CASE $=1$

THE FOLLOWING X, Y, Z DISPLACEMENTS ARE IN NODAL COORDINATES

NODE	UX UY		UZ
ROTY	ROTZ	ROTX	
49	$0.51048114 \mathrm{E}-04$	$0.30615267 \mathrm{E}-03$	$0.19966938 \mathrm{E}-03$

$-0.87635981 \mathrm{E}-04 \quad-0.62477030 \mathrm{E}-04 \quad 0.64022556 \mathrm{E}-04$

$\operatorname{NODE}_{\text {MY }} \quad F X$	MZ FY	FZ	MX
10	-250.00000	-622.50387	14.976753
102.39078	-9.6007942		
$12-0.16248444 \mathrm{E}-11$			
14	-250.00000	-622.50387	14.976753
-102.39078	9.6007942		
26	-250.00000	622.50387	14.976753
-102.39078	-9.6007942		
30	-250.00000	622.50387	14.976753
102.39078	9.6007942		
$\begin{array}{ccc}\text { TAL } & -0.16248444 \mathrm{E}-11 & -1000.00000 \\ 0.00000000 \mathrm{E}+00 & 0.46185278 \mathrm{E}-13\end{array}$		-0.54569682E-11	59.907013

***** ROUTINE COMPLETED ***** $\quad \mathrm{CP}=\quad 149.4500$ TIME= 10.6642
***** INPUT SWITCHED FROM FILE 5 TO FILE38 NAME=MODE8.PRP
ELEMENT TYPE 1 USES STIF 4 $\operatorname{KEYOPT}(1-9)=\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ INOTPR $=0$ NUMBER OF NODES= 3

ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

MATERIAL 1 COEFFICIENTS OF EX VS. TEMP EQUATION
CO = 0.1440000E+10
PROPERTY TABLE EX MAT= 1 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 1 COEFFICIENTS OF DENS VS. TEMP EQUATION CO = 5.237000

PROPERTY TABLE DENS MAT= 1 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00$
5.2370
$2300.0 \quad 5.2370$
ELEMENT TYPE 2 USES STIF 4
KEYOPT (1-9) = $\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ INOTPR $=0$ NUMBER OF NODES= 3

ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

MATERIAL 2 COEFFICIENTS OF EX VS. TEMP EQUATION $C O=0.1440000 \mathrm{E}+10$

PROPERTY TABLE EX MAT= 2 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 2 COEFFICIENTS OF DENS VS. TEMP EQUATION $C O=5.237000$

PROPERTY TABLE DENS MAT= 2 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \mathrm{5} .2370 \quad 2300.0 \quad 5.2370$

ELEMENT TYPE 3 USES STIF 4
$\operatorname{KEYOPT}(1-9)=\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$ INOTPR $=0$ NUMBER OF NODES= 3

ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

MATERIAL	3
$C O=0.1440000 E+10$	COEFFICIENTS OF EX \quad VS. TEMP EQUATION

PROPERTY TABLE EX MAT= 3 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

```
    MATERIAL 3
    CO = 5.237000
```

PROPERTY TABLE DENS MAT= 3 NUM. POINTS= 2
TEMPERATURE DATA TEMPERATURE DATA
$0.00000 \mathrm{E}+00 \mathrm{5} .2370 \quad 2300.0 \quad 5.2370$

ELEMENT TYPE 4 USES STIF 4
$\operatorname{KEYOPT}(1-9)=\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$
INOTPR $=0$ NUMBER OF NODES $=3$

ELASTIC BEAM, 3-D
CURRENT NODAL DOF SET IS UX UY UZ ROTX ROTY ROTZ THREE-DIMENSIONAL STRUCTURE

MATERIAL 4 COEFFICIENTS OF EX VS. TEMP EQUATION $C O=0.1440000 \mathrm{E}+10$

PROPERTY TABLE EX MAT= 4 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \quad 0.14400 \mathrm{E}+10 \quad 2300.0 \quad 0.14400 \mathrm{E}+10$

MATERIAL 4 COEFFICIENTS OF DENS VS. TEMP EQUATION CO = 5.237000

PROPERTY TABLE DENS MAT= 4 NUM. POINTS= 2 TEMPERATURE DATA TEMPERATURE DATA $0.00000 \mathrm{E}+00 \mathrm{5.2370} \quad 2300.0 \quad 5.2370$

REAL CONSTANT SET 1 ITEMS 1 TO 6
$0.13318 \mathrm{E}-01 \quad 0.27500 \mathrm{E}-03 \quad 0.27500 \mathrm{E}-03$
0.41670
0.41670
$0.00000 \mathrm{E}+00$
REAL CONSTANT SET 2 ITEMS 1 TO 6 $\begin{array}{lllll}0.64760 E-02 & 0.31800 E-04 & 0.31800 E-04 & 0.20830 & 0.20830\end{array}$ $0.00000 \mathrm{E}+00$

REAL CONSTANT SET 3 ITEMS 1 TO 6 $\begin{array}{lllll}0.14062 & 0.50840 \mathrm{E}-02 & 0.12842 & 3.0000 & 0.41670\end{array}$
$0.00000 \mathrm{E}+00$
REAL CONSTANT SET 3 ITEMS 7 TO 10 $0.00000 \mathrm{E}+00 \quad 0.18510 \mathrm{E}-01 \quad 0.00000 \mathrm{E}+00 \quad 0.00000 \mathrm{E}+00$

REAL CONSTANT SET 4 ITEMS 1 TO 6 $\begin{array}{lllll}0.13368 & 0.16800 \mathrm{E}-02 & 0.11301 & 3.0000 & 0.25000\end{array}$
$0.00000 \mathrm{E}+00$
REAL CONSTANT SET 4 ITEMS 7 TO 10 $0.00000 \mathrm{E}+00 \quad 0.63000 \mathrm{E}-02 \quad 0.00000 \mathrm{E}+00 \quad 0.00000 \mathrm{E}+00$

ANALYSIS TYPE= 2 (MODE-FREQUENCY ANALYSIS)							
$\operatorname{KAY}(3)=$							
$\operatorname{KAY}(2)=$							
NODE	1	KCS $=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	4.0000
NODE	2	$\mathrm{KCS}=$	0	$X, Y, Z=$	4.5000	$0.00000 \mathrm{E}+00$	4.0000
NODE	3	$\mathrm{KCS}=$	0	$X, Y, Z=$	9.0000	$0.00000 \mathrm{E}+00$	4.0000
NODE	4	KCS $=$	0	$X, Y, Z=$	13.500	$0.00000 \mathrm{E}+00$	4.0000
NODE	5	$\mathrm{KCS}=$	0	$X, Y, Z=$	18.000	$0.00000 \mathrm{E}+00$	4.0000
NODE	6	KCS $=$	0	$X, Y, Z=$	15.750	$0.00000 \mathrm{E}+00$	6.0000
NODE	7	KCS $=$	0	$X, Y, Z=$	11.250	$0.00000 \mathrm{E}+00$	6.0000
NODE	8	$\mathrm{KCS}=$	0	$X, Y, Z=$	6.7500	$0.00000 \mathrm{E}+00$	6.0000
NODE	9	$\mathrm{KCS}=$	0	$X, Y, Z=$	2.2500	$0.00000 \mathrm{E}+00$	6.0000
NODE	10	KCS $=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	8.0000
NODE	11	$\mathrm{KCS}=$	0	$X, Y, Z=$	4.5000	$0.00000 \mathrm{E}+00$	8.0000
NODE	12	$\mathrm{KCS}=$	0	$X, Y, Z=$	9.0000	$0.00000 \mathrm{E}+00$	8.0000
NODE	13	$\mathrm{KCS}=$	0	$X, Y, Z=$	13.500	$0.00000 E+00$	8.0000
NODE	14	KCS $=$	0	$X, Y, Z=$	18.000	$0.00000 \mathrm{E}+00$	8.0000
NODE	15	$\mathrm{KCS}=$	0	$X, Y, Z=$	9.0000	$0.00000 \mathrm{E}+00$	11.000
NODE	16	KCS $=$	0	$X, Y, Z=$	9.0000	$0.00000 \mathrm{E}+00$	23.000
NODE	17	$\mathrm{KCS}=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	12.000	4.0000
NODE	18	KCS $=$	0	$X, Y, Z=$	4.5000	12.000	4.0000
NODE	19	$\mathrm{KCS}=$	0	$X, Y, Z=$	9.0000	12.000	4.0000
NODE	20	$\mathrm{KCS}=$	0	$X, Y, Z=$	13.500	12.000	4.0000
NODE	21	KCS $=$	0	$X, Y, Z=$	18.000	12.000	4.0000
NODE	22	KCS $=$	0	$X, Y, Z=$	15.750	12.000	6.0000
NODE	23	$\mathrm{KCS}=$	0	$X, Y, Z=$	11.250	12.000	6.0000

NODE	24	$\mathrm{KCS}=$	0	$X, Y, Z=$	6.7500	12.000	6.0000
NODE	25	KCS $=$	0	$X, Y, Z=$	2.2500	12.000	6.0000
NODE	26	KCS $=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	12.000	8.0000
NODE	27	KCS $=$	0	$X, Y, Z=$	4.5000	12.000	8.0000
NODE	28	$\mathrm{KCS}=$	0	$X, Y, Z=$	9.0000	12.000	8.0000
NODE	29	KCS $=$	0	$X, Y, Z=$	13.500	12.000	8.0000
NODE	30	KCS $=$	0	$X, Y, Z=$	18.000	12.000	8.0000
NODE	31	KCS $=$	0	$X, Y, Z=$	9.0000	12.000	11.000
NODE	32	KCS $=$	0	$X, Y, Z=$	9.0000	12.000	23.000
NODE	33	KCS $=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	6.0000	4.0000
NODE	34	KCS $=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	9.0000	6.0000
NODE	35	KCS $=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	3.0000	6.0000
NODE	36	KCS $=$	0	$X, Y, Z=$	$0.00000 \mathrm{E}+00$	6.0000	8.0000
NODE	37	KCS $=$	0	$X, Y, Z=$	9.0000	6.0000	4.0000
NODE	38	KCS $=$	0	$X, Y, Z=$	9.0000	3.0000	6.0000
NODE	39	KCS $=$	0	$X, Y, Z=$	9.0000	9.0000	6.0000
NODE	40	KCS $=$	0	$X, Y, Z=$	9.0000	6.0000	8.0000
NODE	41	KCS $=$	0	$X, Y, Z=$	18.000	6.0000	4.0000
NODE	42	$\mathrm{KCS}=$	0	$X, Y, Z=$	18.000	9.0000	6.0000
NODE	43	$\mathrm{KCS}=$	0	$X, Y, Z=$	18.000	3.0000	6.0000
NODE	44	$\mathrm{KCS}=$	0	$X, Y, Z=$	18.000	6.0000	8.0000
NODE	45	$\mathrm{KCS}=$	0	$X, Y, Z=$	4.5000	3.0000	4.0000
NODE	46	$\mathrm{KCS}=$	0	$X, Y, Z=$	13.500	3.0000	4.0000
NODE	47	$\mathrm{KCS}=$	0	$X, Y, Z=$	4.5000	9.0000	4.0000
NODE	48	$\mathrm{KCS}=$	0	$X, Y, Z=$	13.500	9.0000	4.0000
NODE	49	$\mathrm{KCS}=$	0	$X, Y, Z=$	4.5000	3.0000	8.0000

NODE	50	$K C S=0$	$X, Y, Z=$	13.500	3.0000	8.0000
NODE	51	$K C S=0$	$X, Y, Z=$	4.5000	9.0000	8.0000
NODE	52	$K C S=0$	$X, Y, Z=$	13.500	9.0000	8.0000
NODE	53	KCS $=0$	$X, Y, Z=$	18.000	12.000	11.000
NODE	54	$K C S=0$	$X, Y, Z=$	18.000	$0.00000 \mathrm{E}+00$	11.000
NODE	55	$K C S=0$	$X, Y, Z=$	18.000	$0.00000 \mathrm{E}+00$	23.000
REAL CONSTANT NUMBER= 1						
ELEMENT		1	17	180		
ELEMENT		2	18	190		
ELEMENT		3	19	200		
ELEMENT		4	20	210		
ELEMENT		5	21	300		
ELEMENT		6	30	290		
ELEMENT		7	29	280		
ELEMENT		8	28	270		
ELEMENT		9	27	260		
ELEMENT		10	26	170		
ELEMENT		11	1	20		
ELEMENT		12	2	30		
ELEMENT		13	3	40		
ELEMENT		14	4	50		
ELEMENT		15	5	140		
ELEMENT		16	14	130		
ELEMENT		17	13	120		
ELEMENT		18	12	110		
ELEMENT		19	11	100		
ELEMENT		20	10	10		
ELEMENT		21	17	330		
ELEMENT		22	33	10		
ELEMENT		23	10	360		
ELEMENT		24	36	260		
ELEMENT		25	21	410		
ELEMENT		26	41	50		
ELEMENT		27	14	440		
ELEMENT		28	44	300		
ELEMENT		29	3	370		
ELEMENT		30	37	190		
ELEMENT		31	28	400		
ELEMENT		32	40	120		
ELEMENT		33	36	400		
ELEMENT		34	40	440		
ELEMENT		35	33	370		
ELEMENT		36	37	410		
ELEMENT		37	13	150		
ELEMENT		38	11	150		

ELEMENT	39	29	31	0
ELEMENT	40	27	31	0
REAL CON	ANT	NUMBER=	2	
ELEMENT	41	17	25	0
ELEMENT	42	25	27	0
ELEMENT	43	26	25	0
ELEMENT	44	25	18	0
ELEMENT	45	18	24	0
ELEMENT	46	27	24	0
ELEMENT	47	24	19	0
ELEMENT	48	24	28	0
ELEMENT	49	28	23	0
ELEMENT	50	19	23	0
ELEMENT	51	23	29	0
ELEMENT	52	23	20	0
ELEMENT	53	20	22	0
ELEMENT	54	29	22	0
ELEMENT	55	22	21	0
ELEMENT	56	22	30	0
ELEMENT	57	1	9	0
ELEMENT	58	10	9	0
ELEMENT	59	9	2	0
ELEMENT	60	9	11	0
ELEMENT	61	11	8	0
ELEMENT	62	2	8	0
ELEMENT	63	8	3	0
ELEMENT	64	8	12	0
ELEMENT	65	12	7	0
ELEMENT	66	3	7	0
ELEMENT	67	7	4	0
ELEMENT	68	7	13	0
ELEMENT	69	13	6	0
ELEMENT	70	4	6	0
ELEMENT	71	6	5	0
ELEMENT	72	6	14	0
ELEMENT	73	17	34	0
ELEMENT	74	26	34	0
ELEMENT	75	34	33	0
ELEMENT	76	34	36	0
ELEMENT	77	36	35	0
ELEMENT	78	33	35	0
ELEMENT	79	35	1	0
ELEMENT	80	35	10	0
ELEMENT	81	21	42	0
ELEMENT	82	30	42	0
ELEMENT	83	42	41	0
ELEMENT	84	42	44	0
ELEMENT	85	44	43	0
ELEMENT	86	41	43	0
ELEMENT	87	43	5	0
ELEMENT	88	43	14	0

ELEMENT	89	3	38	0
ELEMENT	90	38	40	0
ELEMENT	91	12	38	0
ELEMENT	92	38	37	0
ELEMENT	93	37	39	0
ELEMENT	94	39	28	0
ELEMENT	95	40	39	0
ELEMENT	96	39	19	0
ELEMENT	97	1	45	0
ELEMENT	98	45	37	0
ELEMENT	99	33	45	0
ELEMENT	100	45	3	0
ELEMENT	101	3	46	0
ELEMENT	102	46	41	0
ELEMENT	103	37	46	0
ELEMENT	104	46	5	0
ELEMENT	105	37	48	0
ELEMENT	106	48	21	0
ELEMENT	107	19	48	0
ELEMENT	108	48	41	0
ELEMENT	109	33	47	0
ELEMENT	110	47	19	0
ELEMENT	111	17	47	0
ELEMENT	112	47	37	0
ELEMENT	113	10	49	0
ELEMENT	114	49	40	0
ELEMENT	115	36	49	0
ELEMENT	116	49	12	0
ELEMENT	117	12	50	0
ELEMENT	118	50	44	0
ELEMENT	119	40	50	0
ELEMENT	120	50	14	0
ELEMENT	121	40	52	0
ELEMENT	122	52	30	0
ELEMENT	123	28	52	0
ELEMENT	124	52	44	0
ELEMENT	125	36	51	0
ELEMENT	126	51	28	0
ELEMENT	127	26	51	0
ELEMENT	128	51	40	0

REAL CONSTANT NUMBER= 3

ELEMENT	129	19	28	21
ELEMENT	130	28	31	30
ELEMENT	131	31	32	53
ELEMENT	132	3	12	5
ELEMENT	133	12	15	14
ELEMENT	134	15	16	54

REAL CONSTANT NUMBER= 4
ELEMENT $135 \quad 16 \quad 32 \quad 55$
$\begin{array}{lllll}\text { ELEMENT } & 136 & 40 & 15 & 44\end{array}$

```
    ELEMENT 137 40 31 44
    SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 10 TO 10 BY
1
    VALUES= 0.00000E+00 0.00000E+00 ADDITIONAL DOFS= UZ ROTX ROTY
ROTZ
    SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 14 TO 14 BY
1
    VALUES= 0.00000E+00 0.00000E+00 ADDITIONAL. DOFS= UZ ROTX ROTY
ROTZ
    SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 26 TO 26 BY
1
    VALUES= 0.00000E+00 0.00000E+00 ADDITIONAL. DOFS= UZ ROTX ROTY
ROTZ
    SPECIFIED DISP UY FOR SELECTED NODES IN RANGE 30 T0 30 BY
l
    VALUES= 0.00000E+00 0.00000E+00 ADDITIONAL DOFS= UZ ROTX ROTY
ROTZ
    SPECIFIED DISP UX FOR SELECTED NODES IN RANGE 12 TO 12 BY
1
        VALUES= 0.00000E+00 0.00000E+00 ADDITIONAL DOFS=
    MASTER DOF UX FOR SELECTED NODES IN RANGE 16 TO 16 IN STEPS
OF 1
    ADDITIONAL DOFS= UY ROTY ROTZ
    NUMBER OF MASTER DOF= 4
    MASTER DOF UX FOR SELECTED NODES IN RANGE 15 TO 15 IN STEPS
OF 1
    ADDITIONAL DOFS= UY ROTZ
    NUMBER OF MASTER DOF= 7
    MASTER DOF UX FOR SELECTED NODES IN RANGE 31 TO 31 IN STEPS
OF 1
    ADDITIONAL DOFS= UY ROTZ
    NUMBER OF MASTER DOF= 10
    MASTER DOF UX FOR SELECTED NODES IN RANGE 32 TO 32 IN STEPS
OF 1
    ADDITIONAL DOFS= UY ROTY ROTZ
    NUMBER OF MASTER DOF= 14
    TOTAL MASTER D.O.F.= 20
    NO ROTATIONAL MASTER KEY= 1
```

 NITTER \(=1\) NPRINT \(=1\) NPOST= 1
 ALL PRINT CONTROLS RESET TO 1
ALL POST DATA FILE CONTROLS RESET TO 1
*** NOTENO TITLE DEFINED FOR ANALYSIS
*** NOTEDATA CHECKED - NO ERRORS FOUND
*** PREP7 GLOBAL STATUS ***
TITLE= TITLE
ANALYSIS TYPE= 2
NUMBER OF ELEMENT TYPES= 4
137 ELEMENTS CURRENTLY SELECTED. MAX ELEMENT NUMBER = 137
55 NODES CURRENTLY SELECTED. MAX NODE NUMBER = 55
MAXIMUM LINEAR PROPERTY NUMBER= 4MAXIMUM REAL CONSTANT SET NUMBER=
ACTIVE COORDINATE SYSTEM= 0 (CARTESIAN)
NUMBER OF MASTER D.O.F. $=$ 14
TOTAL MASTER D.O.F. REQUESTED= 20
NUMBER OF IMPOSED DISPLACEMENTS= 21
ANALYSIS DATA WRITTEN ON FILE27
ENTER FINISH TO LEAVE PREP7
ALL CURRENT PREP7 DATA WRITTEN TO FILE16 NAME= FILE16.DATFOR POSSIBLE RESUME FROM THIS POINT
***** ROUTINE COMPLETED ***** CP= 49.0500 TIME= 9.2783
***** INPUT SWITCHED FROM FILE 5 TO FILE27 NAME=FILE27.DAT
NEW TITLE= TITLE
*** ANSYS REV 4.3 OREGON STATE U CP= 21.03 *** FOR SUPPORT CALL HAROLD LAURSEN PHONE (503) 754-3322 TWX
TITLE
UNIVERSITY VERSION FOR EDUCATIONAL PURPOSES ONLY
NUMBER OF ELEMENT TYPES= 4

```
VIRTUAL MEMORY DRIVER SIZE= 1.4 MB
NUMBER OF REAL CONSTANT SETS= 4
NUMBER OF ELEMENTS = 137 MAXIMUM NODE NUMBER USED = 55
SWITCHED TO FIXED FORMAT INPUT
    XMIN= 0.0000E+00 XMAX= 18.00 YMIN= 0.0000E+00 YMAX= 12.00
        ZMIN= 4.000 ZMAX= 23.00
MAXIMUM MATERIAL NUMBER= 4
M.D.O.F. PRINTOUT SUPPRESSED
NUMBER OF SPECIFIED MASTER D.O.F.= 14
TOTAL NUMBER OF MASTER D.O.F. = 20
NO ROTATION MASTER KEY= 1
***** LOAD SUMMARY - 21 DISPLACEMENTS 0 FORCES 0

CENTROID
\(X C=9.0000\)
\(Y C=6.0000\)
\(Z C=11.352\)

MOM. OF INERTIA ABOUT ORIGIN
\(I X X=0.1641 E+05\)
IYY \(=0.1901 E+05\)
\(I Z Z=0.1111 E+05\)
IXY \(=-3944\).
\(I Y Z=-4974\).
IZX \(=-7461\).

MOM. OF INERTIA
ABOUT CENTROID
\(I X X=4371\).
\(I Y Y=3683\).
\(I Z Z=2570\).
IXY \(=-0.2425 \mathrm{E}-11\)
\(I Y Z=-0.7921 E-11\)
IZX \(=-0.8677 \mathrm{E}-11\)
*** MASS SUMMARY BY ELEMENT TYPE ***
TYPE MASS
\(1 \quad 73.0293\)
RANGE OF ELEMENT MAXIMUM STIFFNESS IN GLOBAL COORDINATES MAXIMUM \(=0.246566 \mathrm{E}+09\) AT ELEMENT 133.
*** ELEMENT STIFFNESS FORMULATION TIMES TYPE NUMBER STIF TOTAL CP AVE CP
\(\begin{array}{lllll}1 & 137 & 4 & 9.310 & 0.068\end{array}\)
TIME AT END OF ELEMENT STIFFNESS FORMULATION CP= 53.220 MAXIMUM WAVE FRONT ALLOWED= 200.
EQUATION SOLUTION ELEM= 55 L.S. \(=1\) ITER \(=1 \mathrm{CP}=68.380\)
EQUATION SOLUTION ELEM= 112 L.S. \(=1\) ITER \(=1 \mathrm{CP}=98.970\)
EQUATION SOLUTION ELEM= 133 L.S. \(=1\) ITER= 1 CP=131.980

MAXIMUM IN-CORE WAVE FRONT= 156.
MATRIX SOLUTION TIMES
READ IN ELEMENT STIFFNESSES CP= 5.400
NODAL COORD. TRANSFORMATION \(\quad C P=\quad 0.000\)
MATRIX TRIANGULARIZATION \(\quad C P=\quad 74.850\)

TIME AT END OF MATRIX TRIANGULARIZATION CP=
143.570

EQUATION SOLVER MAXIMUM PIVOT= \(0.29474 E+09\) AT NODE 12. ROTY EQUATION SOLVER MINIMUM PIVOT= 13654. AT NODE 51. UZ TIME AT START OF EIGENVALUE EXTRACTION CP= 144.120 NUMBER OF MODES AVAILABLE FROM REDUCED MATRICES= 20. EIGENVALUE EXTRACTION TIME CP= 6.920
\begin{tabular}{cc}
\multicolumn{2}{c}{ ***** } \\
EIGENVALUE \\
MODE & FREQUENCY (C \\
& \\
1 & 8.07730662 \\
2 & 19.4672341 \\
3 & 26.2835498 \\
4 & 31.7942612 \\
5 & 33.4105539 \\
6 & 34.9126175 \\
7 & 35.2081983 \\
8 & 35.5266613 \\
9 & 36.1842309 \\
10 & 40.4346625 \\
11 & 46.7161086 \\
12 & 52.6619061 \\
13 & 143.792751 \\
14 & 156.406671 \\
15 & 223.487564 \\
16 & 270.222585 \\
17 & 353.737232 \\
18 & 409.856718 \\
19 & 463.415868 \\
20 & 618.267512
\end{tabular}
***** REDUCED MASS DISTRIBUTION ***** ROW NODE DIR VALUE
\begin{tabular}{rrrr}
1 & 48 & \(U Z\) & 0.37665 \\
3 & 45 & \(U Z\) & 0.43393 \\
4 & 46 & \(U Z\) & 0.42353 \\
6 & 32 & \(U X\) & 7.9528 \\
7 & 15 & \(U Y\) & 18.279 \\
8 & 49 & \(U Z\) & 0.42678 \\
9 & 16 & \(U X\) & 9.6827 \\
10 & 31 & \(U X\) & 17.537 \\
11 & 31 & \(U Y\) & 27.831 \\
12 & 31 & \(U Z\) & 38.414 \\
13 & 32 & \(U Y\) & 9.3026 \\
18 & 15 & \(U X\) & 14.759 \\
19 & 16 & \(U Y\) & 7.6691 \\
20 & 47 & \(U Z\) & 0.37051
\end{tabular}
\(\operatorname{MASS}(X, Y, Z)=49.93\)
63.08
40.45

\begin{tabular}{|c|c|c|c|}
\hline \(11 \quad 46.7161\) & 0.21406E-01 & \(0.42504 \mathrm{E}-02\) & 0.000784 \\
\hline \(0.180658 \mathrm{E}-04\) & 0.590333 & & \\
\hline \(12 \quad 52.6619\) & \(0.18989 \mathrm{E}-01\) & 3.0758 & 0.567590 \\
\hline 9.46077 & 0.779517 & & \\
\hline \(13 \quad 143.793\) & 0.69545E-02 & -3.0671 & 0.565976 \\
\hline 9.40704 & 0.967626 & & \\
\hline \(14 \quad 156.407\) & \(0.63936 \mathrm{E}-02\) & -0.28127 & 0.051903 \\
\hline \(0.791123 \mathrm{E}-01\) & 0.969208 & & \\
\hline \(15 \quad 223.488\) & \(0.44745 \mathrm{E}-02\) & 0.78443 & 0.144753 \\
\hline 0.615336 & 0.981513 & & \\
\hline \(16 \quad 270.223\) & \(0.37007 \mathrm{E}-02\) & 0.52572 & 0.097012 \\
\hline 0.276383 & 0.987040 & & \\
\hline \(17 \quad 353.737\) & 0.28270E-02 & 0.44066 & 0.081315 \\
\hline 0.194179 & 0.990923 & & \\
\hline 18409.857 & 0.24399E-02 & -0.67373 & 0.124325 \\
\hline 0.453912 & 0.999999 & & \\
\hline 19463.416 & 0.21579E-02 & -0.19849E-02 & 0.000366 \\
\hline \(0.393971 \mathrm{E}-05\) & 0.999999 & & \\
\hline 20618.268 & 0.16174E-02 & -0.52029E-02 & 0.000960 \\
\hline \(0.270705 \mathrm{E}-04\) & 1.00000 & & \\
\hline 50.0084 & & \multicolumn{2}{|l|}{SUM OF EFFECTIVE MASSES=} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 1146.7161 & 0.21406E-01 & 1.2342 & 0.244230 \\
\hline 1.52327 & 1.000000 & & \\
\hline \(12 \quad 52.6619\) & \(0.18989 \mathrm{E}-01\) & -0.14561E-02 & 0.000288 \\
\hline \(0.212030 \mathrm{E}-05\) & 1.000000 & & \\
\hline \(13 \quad 143.793\) & \(0.69545 \mathrm{E}-02\) & -0.10416E-02 & 0.000206 \\
\hline \(0.108491 \mathrm{E}-05\) & 1.000000 & & \\
\hline \(14 \quad 156.407\) & \(0.63936 \mathrm{E}-02\) & \(0.50773 \mathrm{E}-03\) & 0.000100 \\
\hline 0.257790E-06 & 1.000000 & & \\
\hline \(15 \quad 223.488\) & \(0.44745 \mathrm{E}-02\) & \(0.21581 \mathrm{E}-03\) & 0.000043 \\
\hline \(0.465726 \mathrm{E}-07\) & 1.000000 & & \\
\hline \(16 \quad 270.223\) & \(0.37007 \mathrm{E}-02\) & 0.12639E-03 & 0.000025 \\
\hline \(0.159753 \mathrm{E}-07\) & 1.000000 & & \\
\hline \(17 \quad 353.737\) & 0.28270E-02 & 0.51062E-04 & 0.000010 \\
\hline \(0.260735 \mathrm{E}-08\) & 1.000000 & & \\
\hline \(18 \quad 409.857\) & \(0.24399 \mathrm{E}-02\) & -0.10033E-03 & 0.000020 \\
\hline \(0.100669 \mathrm{E}-07\) & 1.000000 & & \\
\hline \(19 \quad 463.416\) & \(0.21579 \mathrm{E}-02\) & -0.78395E-03 & 0.000155 \\
\hline \(0.614585 \mathrm{E}-06\) & 1.000000 & & \\
\hline 20618.268 & \(0.16174 \mathrm{E}-02\) & -0.15096E-05 & 0.000000 \\
\hline \(0.227894 \mathrm{E}-11\) & 1.000000 & & \\
\hline & & \multicolumn{2}{|l|}{SUM OF EFFECTIVE MASSES=} \\
\hline
\end{tabular}
***** PARTICIPATION FACTOR CALCULATION
CUMULATIVE
MODE FREQUENCY
EFFECTIVE MASS MASS FRACTION
18.07731 \(0.186885 \mathrm{E}-01\)
219.4672 \(0.194872 \mathrm{E}-04\)
\(3 \quad 26.2835\)
\(0.878170 \mathrm{E}-04\)
4 31.7943
24.2711
\(5 \quad 33.4106\)
\(0.373470 \mathrm{E}-04\)
\(6 \quad 34.9126\)
\(0.568318 \mathrm{E}-01\)
\(7 \quad 35.2082\)
0.243751
\(8 \quad 35.5267\)
\(0.132900 \mathrm{E}-05\)
\(9 \quad 36.1842\)
2.98075
\(10 \quad 40.4347\)
2.64412
0.947674
0.12380
0.13671
0.027749
\(0.586144 \mathrm{E}-03\)
\(0.51368 \mathrm{E}-01-0.44144 \mathrm{E}-02\)
0.000896
\(0.586755 \mathrm{E}-03\)
\(0.38047 \mathrm{E}-01 \quad-0.93711 \mathrm{E}-02 \quad 0.001902\)
\(0.589510 \mathrm{E}-03\)
\(0.31452 \mathrm{E}-01 \mathrm{-4.9266} 1.000000\)
0.761827
\(0.29931 \mathrm{E}-01 \quad-0.61112 \mathrm{E}-02\)
0.001240
0.761828
\(0.28643 \mathrm{E}-01\)
0.23839
0.048389
0.763611
\(\begin{array}{lll}0.28402 \mathrm{E}-01 & -0.49371 & 0.100214\end{array}\)
0.771256
\(0.28148 \mathrm{E}-01 \quad-0.11528 \mathrm{E}-02 \quad 0.000234\)
0.771256
\(0.27636 \mathrm{E}-01 \quad 1.7265\)
0.350443
0.864744
\(0.24731 \mathrm{E}-01 \quad 1.6261\)
0.330062
\begin{tabular}{|c|c|c|c|}
\hline 1146.7161 & 0.21406E-01 & 1.2916 & 0.262180 \\
\hline 1.66836 & 1.000000 & & \\
\hline \(12 \quad 52.6619\) & \(0.18989 \mathrm{E}-01\) & \(0.71594 \mathrm{E}-03\) & 0.000145 \\
\hline 0.512568E-06 & 1.000000 & & \\
\hline \(13 \quad 143.793\) & \(0.69545 \mathrm{E}-02\) & 0.42799E-03 & 0.000087 \\
\hline \(0.183177 \mathrm{E}-06\) & 1.000000 & & \\
\hline \(14 \quad 156.407\) & \(0.63936 \mathrm{E}-02\) & -0.21218E-03 & 0.000043 \\
\hline \(0.450195 \mathrm{E}-07\) & 1.000000 & & \\
\hline \(15 \quad 223.488\) & \(0.44745 \mathrm{E}-02\) & -0.94711E-04 & 0.000019 \\
\hline \(0.897017 \mathrm{E}-08\) & 1.000000 & & \\
\hline \(16 \quad 270.223\) & 0.37007E-02 & -0.56509E-04 & 0.000011 \\
\hline \(0.319327 \mathrm{E}-08\) & 1.000000 & & \\
\hline \(17 \quad 353.737\) & 0.28270E-02 & -0.23611E-04 & 0.000005 \\
\hline \(0.557469 \mathrm{E}-09\) & 1.000000 & & \\
\hline \(18 \quad 409.857\) & 0.24399E-02 & \(0.49140 \mathrm{E}-04\) & 0.000010 \\
\hline \(0.241475 \mathrm{E}-08\) & 1.000000 & & \\
\hline \(19 \quad 463.416\) & 0.21579E-02 & -0.11490E-02 & 0.000233 \\
\hline 0.132009E-05 & 1.000000 & & \\
\hline \(20 \quad 618.268\) & \(0.16174 \mathrm{E}-02\) & \(0.64327 \mathrm{E}-06\) & 0.000000 \\
\hline \(0.413797 \mathrm{E}-12\) & 1.00000 & & \\
\hline
\end{tabular}
***** EXPANDED MODE SHAPE FOR MODE 1 LOAD STEP 1 ***** FREQUENCY \(=8.07731\) (CYCLES/TIME)


\(0.842725 \mathrm{E}-02\)
\(0.104593 \mathrm{E}-01\)
\(0.842719 \mathrm{E}-02\)
\(0.000000 \mathrm{E}+00\)
\(0.105750 \mathrm{E}-01\)
\(0.107829 E-01\)
-0.744791E-03
\(-0.550929 \mathrm{E}-02\)
-0.107382E-01
-0.550932E-02
\(-0.744859 \mathrm{E}-03\)
\(-0.384702 \mathrm{E}-02\)
\(-0.948848 \mathrm{E}-02\)
\(-0.948845 \mathrm{E}-02\)
\(-0.384696 \mathrm{E}-02\)
\(0.000000 \mathrm{E}+00\)
\(-0.869228 \mathrm{E}-02\)
\(-0.107827 \mathrm{E}-01\)
\(-0.869236 \mathrm{E}-02\)
\(0.000000 \mathrm{E}+00\)
-0.109009E-01
-0.111089E-01
\(-0.296794 \mathrm{E}-06\)
\(-0.258054 \mathrm{E}-03\)
\(0.253576 \mathrm{E}-03\)
\(-0.412423 \mathrm{E}-05\)
-0.180600E-04
```

 37 -0.102458E-07 0.450738E-03 -0.158152E-03 -0.185978E-02
 -0.296334E-07 0.147614E-08
38 -0.112223E-06 0.377531E-02 0.641175E-02 -0.208269E-02
-0.217940E-07 0.388820E-07
39 -0.126611E-06 0.377766E-02
-0.229958E-07 -0.338816E-07
40 -0.200768E-06 0.870697E-02
-0.164668E-03 0.234498E-03
-0.325101E-06 -0.219371E-03
-0.258380E-03 -0.752754E-04
0.253223E-03 -0.745350E-04
-0.517868E-05 -0.160836E-04
0.386933E-02 -0.109516E-02
0.386933E-02 -0.109511E-02
-0.388880E-02 -0.109733E-02
-0.388879E-02 -0.109738E-02
0.228839E-02 -0.917212E-03
0.202589E-02 -0.918426E-03
-0.220609E-02 -0.912645E-03
-0.220905E-02 -0.911477E-03
32
32
-0.111089E-01 -0.192330E-01
VALUE -0.246065E-02 0.265991

```


\(0.841405 \mathrm{E}-03\)
\(-0.226664 \mathrm{E}-02\)
-0.525798E-02
\(-0.495924 \mathrm{E}-02\)
\(0.500002 \mathrm{E}-02\)
\(0.527569 \mathrm{E}-02\)
\(0.000000 \mathrm{E}+00\)
\(0.159350 \mathrm{E}-01\)
\(0.226532 \mathrm{E}-04\)
-0.158979E-01
\(0.000000 \mathrm{E}+00\)
\(0.225481 \mathrm{E}-04\)
\(0.225337 \mathrm{E}-04\)
\(0.450117 \mathrm{E}-02\)
\(0.332213 \mathrm{E}-02\)
\(0.102351 \mathrm{E}-04\)
\(-0.331078 \mathrm{E}-02\)
\(-0.449885 \mathrm{E}-02\)
\(-0.102064 \mathrm{E}-01\)
\(-0.959689 \mathrm{E}-02\)
\(0.961528 \mathrm{E}-02\)
\(0.102145 \mathrm{E}-01\)
\(0.000000 \mathrm{E}+00\)
\(0.245558 \mathrm{E}-01\)
\(0.101612 \mathrm{E}-04\)
\(-0.245389 \mathrm{E}-01\)
\(0.147995 \mathrm{E}-03\)
\begin{tabular}{|c|c|c|c|c|}
\hline 30 & \(0.248142 \mathrm{E}-01\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) \\
\hline \multicolumn{5}{|l|}{\(0.000000 \mathrm{E}+00 \quad 0.000000 \mathrm{E}+00\) (0)} \\
\hline 31 & \(0.594082 \mathrm{E}-01\) & 0.929052E-05 & 0.101525E-04 & -0.187229E-05 \\
\hline \multicolumn{5}{|l|}{\(0.125189 \mathrm{E}-01\)} \\
\hline 32 & 0.296639 & -0.260717E-05 & \(0.101669 \mathrm{E}-04\) & 0.159311E-05 \\
\hline \multicolumn{5}{|l|}{\(0.229549 \mathrm{E}-01-0.615756 \mathrm{E}-02\)} \\
\hline 33 & 0.227982E-02 & 0.437156E-02 & \(0.221765 \mathrm{E}-03\) & -0.215163E-03 \\
\hline \multicolumn{5}{|l|}{\(0.632540 \mathrm{E}-03\)} \\
\hline 34 & \(0.168632 \mathrm{E}-01\) & 0.180424E-02 & \(0.698102 \mathrm{E}-03\) & 0.414833E-03 \\
\hline 0.2646 & 64E-02 -0.25 & 836E-02 & & 0.414833 \\
\hline 35 & \(0.399703 \mathrm{E}-02\) & 0.348068E-02 & 0.205670E-02 & \(0.370603 \mathrm{E}-03\) \\
\hline \multicolumn{5}{|l|}{\(0.214891 \mathrm{E}-02-0.168075 \mathrm{E}-02\)} \\
\hline 36 & \(0.145741 \mathrm{E}-01\) & 0.219239E-02 & 0.267411E-02 & -0.790774E-04 \\
\hline \multicolumn{5}{|l|}{-0.196692E-02 -0.177965E-02} \\
\hline 37 & \(0.453935 \mathrm{E}-02\) & -0.185478E-05 & 0.172027E-04 & -0.921747E-06 \\
\hline 0.5364 & 19E-03 -0.903 & 816E-03 & & 0.921747E-06 \\
\hline 38 & -0.204583E-03 & 0.191531E-05 & \(0.239383 \mathrm{E}-04\) & 0.116951E-05 \\
\hline \multicolumn{5}{|l|}{\(0.227584 \mathrm{E}-02-0.203047 \mathrm{E}-02\)} \\
\hline 39 & 0.121239E-01 & -0.349061E-05 & 0.186350E-04 & -0.116334E-05 \\
\hline \multicolumn{5}{|l|}{\(0.430945 \mathrm{E}-02-0.208074 \mathrm{E}-02\)} \\
\hline 40 & \(0.144981 \mathrm{E}-01\) & -0.291493E-06 & 0.306235E-04 & -0.878627E-05 \\
\hline \multicolumn{5}{|l|}{\(0.863990 \mathrm{E}-02-0.313897 \mathrm{E}-02\)} \\
\hline 41 & \(0.228058 \mathrm{E}-02\) & -0.437304E-02 & -0.220932E-03 & 0.214692E-03 \\
\hline 0.6342 & 14E-03 -0.17 & 420E-02 & & \\
\hline 42 & \(0.168357 \mathrm{E}-01\) & -0.180918E-02 & -0.691656E-03 & -0.411832E-03 \\
\hline \multicolumn{5}{|l|}{0.264577E-02 -0.253002E-02} \\
\hline 43 & \(0.396961 \mathrm{E}-02\) & -0.347705E-02 & -0.204940E-02 & -0.364284E-03 \\
\hline \multicolumn{5}{|l|}{0.214907E-02 -0.166907E-02} \\
\hline 44 & \(0.145743 \mathrm{E}-01\) & -0.219235E-02 & -0.265337E-02 & \(0.407600 \mathrm{E}-04\) \\
\hline \multicolumn{5}{|l|}{-0.185406E-02 -0.177942} \\
\hline 45 & -0.163331E-02 & 0.672937E-02 & \(0.195695 \mathrm{E}-02\) & -0.327153E-03 \\
\hline \multicolumn{5}{|l|}{-0.126859E-03 -0.608068E-03} \\
\hline 46 & -0.163479E-02 & -0.672684E-02 & -0.192255E-02 & \(0.325507 \mathrm{E}-03\) \\
\hline \multicolumn{5}{|l|}{-0.121787E-03 -0.608228E-03} \\
\hline 47 & \(0.838899 \mathrm{E}-02\) & -0.296678E-02 & \(0.343841 \mathrm{E}-02\) & \(0.978471 \mathrm{E}-03\) \\
\hline \multicolumn{5}{|l|}{-0.480879E-03 -0.669658E-03} \\
\hline 48 & 0.838868E-02 & 0.296064E-02 & -0.341212E-02 & -0.979462E-03 \\
\hline \multicolumn{5}{|l|}{-0.477254E-03 -0.669059E-03} \\
\hline 49 & \(0.749611 \mathrm{E}-02\) & 0.142207E-02 & 0.142870E-01 & 0.127912E-02 \\
\hline \multicolumn{5}{|l|}{-0.891245E-03 -0.154616E-03} \\
\hline 50 & \(0.749741 \mathrm{E}-02\) & -0.142336E-02 & -0.928906E-02 & -0.125488E-02 \\
\hline \multicolumn{5}{|l|}{-0.897059E-03 -0.154518E-03} \\
\hline 51 & 0.212602E-01 & \(0.239911 \mathrm{E}-02\) & 0.108309E-01 & -0.797300E-03 \\
\hline \multicolumn{5}{|l|}{-0.115854E-02 -0.358759E-03} \\
\hline 52 & 0.212600E-01 & -0.239796E-02 & -0.107610E-01 & \(0.772180 \mathrm{E}-03\) \\
\hline \multicolumn{5}{|l|}{-0.116193E-02 -0.358985E-03} \\
\hline
\end{tabular}

\section*{MAXIMUMS}
NODE 32

3216
VALUE 0.296639
\(0.672937 \mathrm{E}-02\)
\(0.229549 \mathrm{E}-01 \quad-0.853117 \mathrm{E}-02\)

45
27
\(0.245558 \mathrm{E}-01\)

21
\(-0.152465 \mathrm{E}-02\)
***** EXPANDED MODE SHAPE FOR MODE FREQUENCY \(=26.2835\) (CYCLES/TIME)
\begin{tabular}{|c|c|c|c|c|}
\hline NODE & UX & UY & UZ & ROTX \\
\hline & ROTY & ROTZ & & \\
\hline & -0.129880E-01 & -0.664888E-02 & \(0.575584 \mathrm{E}-02\) & -0.183470E-02 \\
\hline \(0.100814 \mathrm{E}-02\) & 14E-02 0.172 & 294E-02 & & \\
\hline & -0.183674E-01 & -0.435458E-02 & \(0.522015 \mathrm{E}-02\) & -0.743580E-03 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
-0.4405 \\
3
\end{gathered}
\]} & 555-03 0.28 & 589E-04 & & \\
\hline & -0.296511E-01 & \(0.249663 \mathrm{E}-04\) & \(0.773892 \mathrm{E}-04\) & \(0.347320 \mathrm{E}-06\) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
0.6007 \\
4
\end{gathered}
\]} & \(768 \mathrm{E}-02 \quad 0.254\) & 030E-02 & & \\
\hline & -0.183919E-01 & \(0.439110 \mathrm{E}-02\) & -0.513475E-02 & \(0.746112 \mathrm{E}-03\) \\
\hline \multirow[t]{2}{*}{-0.422137} & 137E-03 0.228 & 09E-04 & & \\
\hline & -0.130214E-01 & \(0.665811 \mathrm{E}-02\) & -0.574344E-02 & \(0.183755 \mathrm{E}-02\) \\
\hline \multirow[t]{2}{*}{0.102
6} & 24E-02 0.17 & 7E-02 & & \\
\hline & -0.277995E-02 & 0.242099E-02 & -0.142554E-01 & \(0.743544 \mathrm{E}-03\) \\
\hline & 532E-02 -0.460 & 70E-03 & & \\
\hline \[
-\frac{0.1345}{7}
\] & -0.186720E-01 & \(0.365976 \mathrm{E}-02\) & -0.132700E-01 & -0.198989E-03 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
0.54444 \\
8
\end{gathered}
\]} & 443E-02 0.698 & 51E-03 & & \\
\hline & -0.186766E-01 & -0.362177E-02 & \(0.134089 \mathrm{E}-01\) & \(0.207854 \mathrm{E}-03\) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
0.5437 \\
9
\end{gathered}
\]} & 48E-02 0.702 & 42E-03 & & \\
\hline & -0.275808E-02 & -0.240587E-02 & \(0.143150 \mathrm{E}-01\) & -0.738017E-03 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
-0.1363 \\
10
\end{gathered}
\]} & 315E-02 -0.45431 & 11E-03 & & \\
\hline & -0.787828E-02 & \(0.000000 \mathrm{E}+00\) & \(0.000000 E+00\) & \(0.000000 \mathrm{E}+00\) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
0.00000 \\
11
\end{gathered}
\]} & 00E \(+00 \quad 0.000\) & 00E+00 & & \\
\hline & -0.174660E-02 & -0.426846E-02 & \(0.335448 \mathrm{E}-01\) & \(0.469601 \mathrm{E}-03\) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 0.1385! \\
& 12
\end{aligned}
\]} & \(558 \mathrm{E}-03 \quad-0.6168\) & 14E-03 & & \\
\hline & \(0.000000 E+00\) & \(0.588889 \mathrm{E}-05\) & \(0.771644 \mathrm{E}-04\) & \(0.143116 \mathrm{E}-04\) \\
\hline \multirow[t]{2}{*}{0.1018} & 77E-01 0.320 & 76E-02 & & \\
\hline & -0.174016E-02 & \(0.427165 \mathrm{E}-02\) & -0.334185E-01 & -0.451944E-03 \\
\hline \multirow[t]{2}{*}{0.1576
14} & 600E-03 -0.6180 & 96E-03 & & \\
\hline & -0.786763E-02 & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
0.000 \\
15
\end{gathered}
\]} & 000E+00 0.000 & 00E+00 & & \\
\hline & \(0.402533 \mathrm{E}-01\) & -0.321668E-04 & \(0.767129 \mathrm{E}-04\) & .118151E-04 \\
\hline \multirow[t]{2}{*}{0.16767} & 70E-01 0.409 & 56E-02 & & \\
\hline & 0.352570 & -0.487480E-05 & 767101E-04 & -0.793993E-05 \\
\hline \multirow[t]{2}{*}{} & 37E-01 0.487 & 84E-01 & & \\
\hline & -0.459092E-01 & -0.632946E-02 & -0.360009E-02 & -0.161480E-02 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
-0.41910 \\
18
\end{gathered}
\]} & 03E-03 0.112 & 89E-02 & & \\
\hline & -0.428878E-01 & -0.495932E-02 & -0.411546E-02 & -0.711172E-03 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
10 \\
0.25170 \\
19
\end{gathered}
\]} & 03E-03 0.8790 & \(67 \mathrm{E}-04\) & & \\
\hline & -0.362061E-01 & -0.150204E-05 & \(0.869992 \mathrm{E}-04\) & -0.216841E-05 \\
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
-0.39591 \\
20
\end{array}
\]} & 16E-02 0.266 & 53E-02 & & \\
\hline & -0.429132E-01 & \(0.495478 \mathrm{E}-02\) & \(0.421447 \mathrm{E}-02\) & \(0.708668 \mathrm{E}-03\) \\
\hline \multirow[t]{2}{*}{0.2722} & 93E-03 0.8797 & 98E-04 & & \\
\hline & -0.459423E-01 & \(0.633368 \mathrm{E}-02\) & \(0.361484 \mathrm{E}-02\) & \(0.161480 \mathrm{E}-02\) \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
-0.3988 \\
22
\end{gathered}
\]} & 66E-03 0.113 & 23E-02 & & \\
\hline & -0.520743E-01 & \(0.274757 \mathrm{E}-02\) & \(0.927160 \mathrm{E}-02\) & \(0.886876 \mathrm{E}-03\) \\
\hline \[
\begin{gathered}
22 \\
0.9437
\end{gathered}
\] & \(75 \mathrm{E}-03-0.5350\) & 30E-03 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 23 & -0.432831E-01 & \(0.383133 \mathrm{E}-02\) & \(0.870634 \mathrm{E}-02\) & -0.112849E-03 \\
\hline \multicolumn{5}{|l|}{\(-0.345936 \mathrm{E}-02 \quad 0.786588 \mathrm{E}-03 \mathrm{l}\)} \\
\hline 24 & -0.432888E-01 & -0.382455E-02 & -0.854912E-02 & \(0.104611 \mathrm{E}-03\) \\
\hline \multicolumn{5}{|l|}{-0.346681E-02 0.787692} \\
\hline 25 & -0.520535E-01 & -0.274825E-02 & -0.920299E-02 & -0.888964E-03 \\
\hline \multicolumn{5}{|l|}{\(0.923313 \mathrm{E}-03-0.534943 \mathrm{E}-\)} \\
\hline 26 & -0.485594E-01 & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) \\
\hline 0.000 & \(000 \mathrm{E}+00 \quad 0.000\) & 00E+00 & & \\
\hline 27 & -0.532809E-01 & -0.428860E-02 & -0.205209 & \(0.402743 \mathrm{E}-03\) \\
\hline \multicolumn{5}{|l|}{-0.186313E-03} \\
\hline 28 & -0.552265E-01 & 0.165247 & 0.8684 & -0.947450E-05 \\
\hline -0.632 & 484E-02 0.31 & 95E-02 & & \\
\hline 29 & -0.532717E-01 & 0.430992E-02 & \(0.206641 \mathrm{E}-01\) & -0.417225E-03 \\
\hline \multicolumn{5}{|l|}{-0.164937E-03 -0.615654E-03} \\
\hline 30 & -0.485418E-01 & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) & \(0.000000 \mathrm{E}+00\) \\
\hline 0.0000 & \(000 \mathrm{E}+000.000\) & 000E+00 & & \\
\hline 31 & -0.793239E-01 & \(0.508436 \mathrm{E}-0\) & \(0.871952 \mathrm{E}-04\) & -0.971087E-05 \\
\hline \multicolumn{5}{|l|}{-0.968555E-02} \\
\hline 32 & -0.245417 & -0.443634E-05 & \(0.871980 \mathrm{E}-04\) & \(0.101549 \mathrm{E}-04\) \\
\hline \multicolumn{5}{|l|}{-0.151188E-01 0.496854E-01} \\
\hline 33 & -0.315914E-01 & -0.507420E-02 & 0.896965E-04 & -0.327518E-03 \\
\hline 0.1638 & 877E-04 0.279 & 294E-02 & & \\
\hline 34 & -0.401774E-01 & -0.319742E-02 & \(0.101755 \mathrm{E}-02\) & -0.618288E-03 \\
\hline \multicolumn{5}{|l|}{-0.130623E-03 0.346408E-02} \\
\hline 35 & -0.182996E-01 & -0.265376E-02 & -0.106202E-03 & -0.625598E-03 \\
\hline 0.138 & \(481 \mathrm{E}-020.382\) & 70E-02 & & \\
\hline 36 & -0.284977E-01 & -0.325035E-02 & \(0.893599 \mathrm{E}-03\) & -0.475538E-04 \\
\hline \multicolumn{5}{|l|}{-0.938161E-03 0.279303E-02} \\
\hline 37 & -0.308882E-01 & 0.112644E-04 & \(0.921143 \mathrm{E}-04\) & \(0.871253 \mathrm{E}-06\) \\
\hline 0.3149 & 942E-03 -0.34 & 28E-03 & & \\
\hline 38 & -0.227866E-01 & 0.253080E-04 & \(0.109929 \mathrm{E}-03\) & \(0.100903 \mathrm{E}-04\) \\
\hline \multicolumn{5}{|l|}{\(0.556853 \mathrm{E}-02 \quad 0.188747 \mathrm{E}-02\)} \\
\hline 39 & -0.391309E-01 & -0.249653E-05 & 0.113997E-03 & -0.464161E-05 \\
\hline -0.3848 & 813E-02 0.167 & 173E-02 & & \\
\hline 40 & -0.289837E-01 & 0.114938E-04 & \(0.163829 \mathrm{E}-03\) & -0.173599E-04 \\
\hline \multicolumn{5}{|l|}{\(0.291266 \mathrm{E}-02 \quad 0.951925 \mathrm{E}-02\)} \\
\hline 41 & -0.315864E-01 & 0.508040E-02 & -0.854645E-04 & \(0.326178 \mathrm{E}-03\) \\
\hline 0.4273 & 390E-04 0.27925 & 251E-02 & & \\
\hline 42 & -0.402389E-01 & 0.318992E-02 & -0.100015E-02 & 03 \\
\hline \multicolumn{5}{|l|}{-0.129334E-03 0.343586E-02} \\
\hline 43 & -0.183642E-01 & \(0.266848 \mathrm{E}-02\) & \(0.126574 \mathrm{E}-03\) & \(0.641685 \mathrm{E}-03\) \\
\hline 0.1384 & 459E-02 0.385 & 38E-02 & & \\
\hline 44 & -0.284987E-01 & \(0.325324 \mathrm{E}-02\) & -0.839597E-03 & -0.451304E-04 \\
\hline \multicolumn{5}{|l|}{-0.647610E-03 0.279160E-02} \\
\hline 45 & -0.265456E-01 & \(0.355670 \mathrm{E}-02\) & 0.104177E-01 & -0.131955E-02 \\
\hline \multicolumn{5}{|l|}{-0.425848E-03 0.602120E-03} \\
\hline 46 & -0.265486E-01 & -0.352041E-02 & -0.100510E-01 & \(0.132286 \mathrm{E}-02\) \\
\hline \multicolumn{5}{|l|}{\[
-0.405899 \mathrm{E}-03 \quad 0.598156 \mathrm{E}-03
\]} \\
\hline \[
47
\] & -0.359408E-01 & \(0.510320 \mathrm{E}-03\) & -0.392796E-02 & -0.995133E-03 \\
\hline \multicolumn{5}{|l|}{\(0.239635 \mathrm{E}-03 \quad 0.633395 \mathrm{E}-03\)} \\
\hline \[
48
\] & -0.359439E-01 & -0.517067E-03 & \(0.427078 \mathrm{E}-02\) & \(0.994096 \mathrm{E}-03\) \\
\hline 0.2620 & 020E-03 0.633 & 850E-03 & & \\
\hline
\end{tabular}
\(23-0.432831 \mathrm{E}-01 \quad 0.383133 \mathrm{E}-02\)
\(0.345936 \mathrm{E}-02 \quad 0.786588 \mathrm{E}-03\)
\(24-0.432888 \mathrm{E}-01 \quad-0.382455 \mathrm{E}-02\)
\(25-0.520535 \mathrm{E}-01 \quad-0.274825 \mathrm{E}-02\)
.923313E-03 -0.534943E-03
\(26-0.485594 \mathrm{E}-01 \quad 0.000000 \mathrm{E}+00\)
\(27-0.532809 \mathrm{E}-01 \quad-0.428860 \mathrm{E}-02\)
\(0.186313 \mathrm{E}-03-0.609475 \mathrm{E}-03\)
\(28-0.552265 \mathrm{E}-01 \quad 0.165247 \mathrm{E}-04\)
\(29-0.532717 \mathrm{E}-01 \quad 0.430992 \mathrm{E}-02\)
\(\begin{array}{lll}.164937 & -0.615654 \mathrm{E}-03 \\ 30 & -0.485418 \mathrm{E}-01 & 0.000000 \mathrm{E}+00\end{array}\)
\(0.000000 \mathrm{E}+00 \quad 0.000000 \mathrm{E}+00\)
\(31-0.793239 \mathrm{E}-01 \quad 0.508436 \mathrm{E}-04\)
\(32-0.245417-0.443634 \mathrm{E}-05\)
\(33-0.315914 \mathrm{E}-01 \quad-0.507420 \mathrm{E}-02\)
\(\begin{array}{ccc}.163877 \mathrm{E}-04 & 0.279294 \mathrm{E}-02 \\ 34 & -0.401774 \mathrm{E}-01 & -0.319742 \mathrm{E}-02\end{array}\)
. \(130623 \mathrm{E}-03 \quad 0.346408 \mathrm{E}-02\)
\(35-0.182996 \mathrm{E}-01 \quad-0.265376 \mathrm{E}-02\)
\(36-0.284977 \mathrm{E}-01 \quad-0.325035 \mathrm{E}-02\)
\(-0.938161 \mathrm{E}-03 \quad 0.279303 \mathrm{E}-02\)
\(37-0.308882 \mathrm{E}-01 \quad 0.112644 \mathrm{E}-04\)
\(0.314942 \mathrm{E}-03-0.341028 \mathrm{E}-03\)
\(38 \quad-0.227866 \mathrm{E}-01 \quad 0.253080 \mathrm{E}-04\)
\(0.556853 \mathrm{E}-02 \quad 0.188747 \mathrm{E}-02\)
\(39-0.391309 \mathrm{E}-01 \quad-0.249653 \mathrm{E}-05\)
\(-0.384813 \mathrm{E}-02 \quad 0.167173 \mathrm{E}-02\)
\(40 \quad-0.289837 \mathrm{E}-01 \quad 0.114938 \mathrm{E}-04\)
\(41-0.315864 \mathrm{E}-01 \quad 0.508040 \mathrm{E}-02\)
\(0.427390 \mathrm{E}-04 \quad 0.279251 \mathrm{E}-02\)
\(42-0.402389 \mathrm{E}-01 \quad 0.318992 \mathrm{E}-02\)
\(-0.129334 \mathrm{E}-03 \quad 0.343586 \mathrm{E}-02\)
\(43 \quad-0.183642 \mathrm{E}-01 \quad 0.266848 \mathrm{E}-02\)
\(0.138459 \mathrm{E}-02 \quad 0.385238 \mathrm{E}-02\)
\(44-0.284987 \mathrm{E}-01 \quad 0.325324 \mathrm{E}-02\)
\(45-0.265456 \mathrm{E}-01 \quad 0.355670 \mathrm{E}-02\)
\(-0.425848 \mathrm{E}-03 \quad 0.602120 \mathrm{E}-03\)
\(46 \quad-0.265486 \mathrm{E}-01 \quad-0.352041 \mathrm{E}-02\)
\(47-0.359408 \mathrm{E}-01 \quad 0.510320 \mathrm{E}-03\)
\(0.239635 \mathrm{E}-03 \quad 0.633395 \mathrm{E}-03\)
\(48-0.359439 \mathrm{E}-01 \quad-0.517067 \mathrm{E}-03\) \(0.262020 \mathrm{E}-03 \quad 0.633850 \mathrm{E}-03\)
\(0.870634 \mathrm{E}-02\)
\(-0.854912 \mathrm{E}-02\)
\(-0.920299 E-02\)
\(0.000000 \mathrm{E}+00\)
-0.205209E-01
\(0.868444 \mathrm{E}-04\)
\(0.206641 \mathrm{E}-01\)
\(0.000000 \mathrm{E}+00\)
\(0.871952 \mathrm{E}-04\)
\(0.871980 \mathrm{E}-04\)
\(0.896965 \mathrm{E}-04\)
\(0.101755 \mathrm{E}-02\)
\(-0.106202 \mathrm{E}-03\)
\(0.893599 \mathrm{E}-03\)
\(0.921143 \mathrm{E}-04\)
\(0.109929 E-03\)
\(0.113997 \mathrm{E}-03\)
\(0.163829 \mathrm{E}-03\)
\(-0.854645 E-04\)
\(-0.100015 \mathrm{E}-02\)
\(0.126574 \mathrm{E}-03\)
-0.839597E-03
0.104177E-01
-0.100510E-01
\(-0.392796 \mathrm{E}-02\)
\(0.427078 \mathrm{E}-02\)
\(0.994096 \mathrm{E}-03\)
```

 49 -0.157889E-01 -0.396079E-02
 -0.110937E-02 0.157082E-03
50 -0.157879E-01 0.396587E-02
-0.110737E-02 0.155869E-03
5l -0.408661E-01 -0.314473E-02
0.460480E-03 0.321732E-04
52 -0.408641E-01 0.316640E-02
0.475260E-03 0.285691E-04
MAXIMUMS
NODE 16
16 32
VALUE 0.352570 0.665811E-02
0.295737E-01 0.496854E-01

```
\(0.200695 \mathrm{E}-01 \quad-0.106218 \mathrm{E}-02\)
-0.110937E-02 0.157082E-03
\(50 \quad-0.157879 \mathrm{E}-01 \quad 0.396587 \mathrm{E}-02\)
\(-0.110737 \mathrm{E}-02 \quad 0.155869 \mathrm{E}-03\)
\(51-0.408661 \mathrm{E}-01 \quad-0.314473 \mathrm{E}-02\)
\(-0.112636 \mathrm{E}-02 \quad-0.192772 \mathrm{E}-02\)
\(52-0.408641 \mathrm{E}-01 \quad 0.316640 \mathrm{E}-02\)
\(0.475260 \mathrm{E}-03 \quad 0.285691 \mathrm{E}-04\)
-0.785410E-02 \(0.113583 \mathrm{E}-02\)
\(0.138796 \mathrm{E}-02 \quad 0.185864 \mathrm{E}-02\)

MAXIMUMS
\begin{tabular}{cccccc} 
NODE & \multicolumn{2}{c}{16} & 5 & 11 & 51 \\
& 16 & 0.352570 & 32 & \(0.665811 \mathrm{E}-02\) & \(0.335448 \mathrm{E}-01\)
\end{tabular}

```

 41 0.114008E-02 0.641394E-02
 $0.394140 \mathrm{E}-02$
$0.207013 \mathrm{E}-02$
$0.341062 \mathrm{E}-01 \quad 0.119427 \mathrm{E}-02$ $42 \quad 0.792521 \mathrm{E}-02 \quad 0.239882 \mathrm{E}-02$
$0.323500 \mathrm{E}-02 \quad 0.904805 \mathrm{E}-03$
$0.378068 \mathrm{E}-02 \quad 0.186794 \mathrm{E}-02$
$43 \quad 0.842694 \mathrm{E}-02 \quad 0.318620 \mathrm{E}-02$
$0.196609 \mathrm{E}-02 \quad 0.322926 \mathrm{E}-03$
$-0.202217 \mathrm{E}-03-0.186238 \mathrm{E}-02$
$44-0.925507 \mathrm{E}-03 \quad 0.316340 \mathrm{E}-03$
$0.340467 \mathrm{E}-02$
$0.616153 \mathrm{E}-03$
$0.105419 \mathrm{E}-01 \quad-0.477151 \mathrm{E}-03$ $45 \quad 0.242237 \mathrm{E}-03 \quad 0.165878 \mathrm{E}-01 \quad 0.442891 \quad 0.102507 \mathrm{E}-01$
-0.509945E-02 0.184561E-02
$46 \quad-0.227494 \mathrm{E}-03 \quad 0.165540 \mathrm{E}-01$
0.444933
$0.103533 \mathrm{E}-01$
$0.509451 \mathrm{E}-02 \quad-0.185982 \mathrm{E}-02$
$47 \quad 0.546289 \mathrm{E}-02 \quad 0.182013 \mathrm{E}-03$
0.617059
$0.116939 \mathrm{E}-02$
$-0.123159 \mathrm{E}-01 \quad 0.236076 \mathrm{E}-03$
$48-0.545534 \mathrm{E}-02 \quad 0.246190 \mathrm{E}-03$
0.619089
$0.106190 \mathrm{E}-02$
$0.123069 \mathrm{E}-01 \quad-0.221976 \mathrm{E}-03$
$49 \quad 0.467098 \mathrm{E}-03-0.647926 \mathrm{E}-02$
0.381502
$0.114885 \mathrm{E}-01$
$-0.990600 \mathrm{E}-02 \quad-0.136377 \mathrm{E}-02$
$50-0.744395 \mathrm{E}-03-0.636292 \mathrm{E}-02$
$0.461225 \mathrm{E}-01$
$0.993120 \mathrm{E}-02$
$0.109414 \mathrm{E}-01$
$0.139207 \mathrm{E}-02$
$51-0.265881 \mathrm{E}-02 \quad 0.191282 \mathrm{E}-02$
$0.781373 \mathrm{E}-01 \quad-0.259774 \mathrm{E}-02$
$-0.188118 \mathrm{E}-01 \quad-0.261178 \mathrm{E}-03$ $52 \quad 0.240959 \mathrm{E}-02 \quad 0.179311 \mathrm{E}-02$
$0.743428 \mathrm{E}-01$
$-0.110653 \mathrm{E}-02$
$0.193067 \mathrm{E}-01 \quad 0.233634 \mathrm{E}-03$
MAXIMUMS

NODE	21		15	48	12
VALUE	41	$-0.277854 \mathrm{E}-01$	21	$-0.525011 \mathrm{E}-01$	0.619089

*** STORAGE REQUIREMENT SUMMARY
MAXIMUM FIXED MEMORY USED $=0$
MAXIMUM TEMPORARY MEMORY USED= 0
MAXIMUM TOTAL MEMORY USED $=0$
MAXIMUM TEMPORARY AVAILABLE $=0$

```

\section*{*** PROBLEM STATISTICS}

NO. OF ACTIVE DEGREES OF FREEDOM = 271
R.M.S. WAVEFRONT SIZE \(=102.1\) NUMBER OF MASTER DEGREES OF FREEDOM = 20
*** ANSYS BINARY FILE STATISTICS
BUFFER SIZE USED= 1024
POST DATA WRITTEN ON FILE12
***** END OF INPUT ENCOUNTERED ON FILE27. FILE27 REWOUND
***** INPUT FILE SWITCHED FROM FILE27 TO FILE 5
ENTER HELP FOR ANSYS DOCUMENTATION
ENTER /EOF TO EXIT
/EOF ENCOUNTERED ON FILE 5
***** ROUTINE COMPLETE
***** CP=
220.2500 TIME \(=\)
9.3464

\section*{APPENDIX D CALCULATION OF K6} Calculation of the linear spring rate \(k_{6}\)


Figure D. 1 FBD of hydrualic cylinders

Bulk modulus of hydraulic oil, \(\mathrm{E}_{\mathrm{v}}=\sigma /(\Delta \mathrm{V} / \mathrm{V})\)
\[
\begin{gathered}
\Delta V / V=\left(X_{6} A\right) /(1 A)=X_{6} / 1 \\
\text { where } A=\pi d^{2} \\
E_{v}=\sigma /\left(X_{6} / 1\right) \\
X_{6}=\sigma 1 / E_{v} \\
F_{6}=k_{6} X_{6}=k_{6} \sigma 1 / E_{v} \\
k_{6}=F_{6} E_{v} /(\sigma 1)
\end{gathered}
\]```


[^0]:    1 Superior-Linderwood-Mundy Corp., 1101 Jolan Ave., Superior, Wisconsin, 54880

