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This paper describes methods that can be used to
evaluate stand and tree growth response to a single
application of fertilization and/or thinning with data
collected from multiple installations. Two kinds of
methods were proposed: (1) structure analysis which
applies covariance analysis in a blocked design with and
without sampling units, and (2) multi-step analysis which
first fits a control model to control data and then uses
it to evaluate treatment response. Ideally, the former
method is preferred to the latter method for evaluating
the treatment response. However, when the experimental
data are large in sampling size and/or complex in their
designed structure, structure analysis often can not be
performed on most statistical packages, and, therefore,

the multi-step analysis is a viable alternative.




The methods were applied in modeling fertilization

and thinning effects on Douglas-fir [Pseudotsuga

menziesii (Mirb.) Franco] dominant height growth and
diameter growth of single trees. Both responses due to
improved nutrition from a single application of nitrogen
fertilizer were significant (a=0.05) in the first S-year
growth period, and not significant after two 5-year
cycles. The response in diameter growth was stronger
than that in dominant height growth. Thinning neither
increased nor decreased the dominant height growth. It
accelerated diameter growth, but the interaction of
fertilization with thinning was not significant.

As a comparison, both structure analysis and two-
step analysis were used to model the direct effect of
fertilization on the gross basal area growth of plots.
The results showed that the appropriate variance
estimates to test the significance of the parameters in
fertilizer response equation were larger when using two-

step analysis than when using structure analysis.
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Analysis Methods for Modeling Tree and Stand Growth

Responses to Fertilization and Thinning

Chapter 1

Introduction

The application of chemical fertilizers to forests
in the Pacific Northwest has generated wide interest in
the last two decades. Nitrogen has been found to be the
most common limiting nutrient for coniferous tree growth
in this region (Gessel et al. 1973). Gessel et al.
(1979) reviewed the development of forest tree nutrition
research in the Northwest, and concluded that there was
little evidence that application of elements other than
nitrogen (i.e., phosphorus, potassium, and sulfur)
produced an economical response. Addition of nitrogen in
the form of urea can result in a rapid acceleration of
the stand's nutrient cycle (Cole 1979) and it can improve

tree growth of Douglas-fir [Pseudotsuga menziesii (Mirb.)

Franco] on a variety of sites in the Pacific Northwest
(Miller and Webster 1979, RFNRP 1982, Miller et al.

1986). The rates of application of nitrogen fertilizer




have generally been limited to 400 lbs per acre or less.
The biologically and economically optimum dosage of
nitrogen fertilizer for a Douglas-fir stand probably lies
between 150 and 300 lbs per acre (Miller and Fight 1979).
Throughout the region, landowners are now applying
nitrogen fertilizer to forest stands to increase growth
and improve the economic gain from forestry operations.
The ORegon Growth ANalysis and projectiON system
(ORGANON) is a single-tree/distance-independent (Munro
1974) type of growth and yield model. It predicts the
structure and composition of the stand in the future
through the application of diameter growth (Hann and
Larsen 1990), height growth (Hann and Ritchie 1988),
height to crown base (Ritchie and Hann 1987), and
mortality (Hann and Wang 1990) equations to a
representative sample of trees taken from the stand. The
southwest Oregon version of ORGANON (SW-ORGANON) (Hester
et al. 1989) is applicable to mixed conifer stands with
breast height ages from 15 to 120 years. The data set
collected to develop the model did not contain stands
that had been fertilized, nor did it contain data on type
or intensity of cuttings that may have occurred before
the start of the five-year growth period that was
measured. Therefore, the data could not be used to
estimate the effects of fertilizer on tree growth, nor to

estimate the "true effect" of thinning. The model does




predict a thinning effect under the assumption that the
trees in the stand will immediately and fully respond to
reduced density due to thinning. The longer term effect
of thinning can be characterized by increases 1in the
crown lengths of the trees, until the stand achieves
crown closure, and by continued reduced density. These
assumptions, however, should be validated through the
analysis of data from thinned stands.

Woollons and Whyte (1988) reviewed the reports on
fertilizer research cited in Forestry Abstracts, and
found that the large majority of these reports gave no or
very sparse details of statistical design and analysis.
They concluded that:

"Fertilizer trials in forest stands do not

fit easily 1into textbook examples of

experimental analysis. They are frequently

(1) very large, occupying several hectares of

forest area, (2) required to be maintained

over several decades, and (3) unbalanced with

respect to the quanta of initial growing stock

and growing conditions in each experimental

unit. The first two criteria can produce high

levels of residual variation in forest

nutrition experiments, while the third
consideration can be a source of serious

confounding, which unless removed, can produce
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badly biased estimates of treatment responses,
and low sensitivity in hypothesis testing."
(Page 770)

Objectives

The accurate and precise prediction of the response

of stands to fertilization and thinning response is

important for making decisions concerning the treatment

of stands and the allowable cut of forests. Therefore,

the objectives for this study were:

(1)

(2)

(3)

To propose analysis methods for modeling stand and
tree growth response to fertilization and thinning.
To develop fertilization response modifier equations
for the dominant height growth equation and the
diameter growth equation of Douglas-fir in SW-
ORGANON.

To develop improved thinning response modifier
equations for the dominant height growth equation
and the diameter growth equation of Douglas-fir in

SW—-ORGANON.

Two kinds of analysis methods for modeling stand and

tree growth response to treatment are proposed and

discussed in Chapter 2. Applications of these methods

for modeling the diameter and dominant height growth




response of trees to just fertilization and to both
fertilization and thinning are presented in Chapters 3
and 4, respectively. Finally, Chapter 5 compares the
results obtained by applying the two different analysis
methods to the problem of modeling stand growth response

to fertilization.

1.2 Data Source

Two substantial growth and yield data sets have been
collected in southwest Oregon. The first was collected
to develop the SW-ORGANON model and 1is composed of
temporary plots established in 391 stands covering a wide
range in site classes, stand ages, stand structures and
species mixes. The second data set 1is composed of 20
research installations in even-aged Douglas-fir stands
that were installed in southwest Oregon as part of
several different regional thinning and fertilization
studies. Since the first data set has a larger sample
size and a wider range in the stand attributes sampled,
the existing equations in SW-ORGANON will be used to
predict untreated stand response and the second data set
will be used to develop fertilizer and thinning response
modifiers for SW-ORGANON's existing equations.
Unfortunately, the development of the modifier equations

is complicated by the fact that the two data sets were




composed of different plot designs. The following is a
general description of both plot designs and a detailed
description of the thinning and fertilization

installations.

1.2.1 The SW-ORGANON Plot Design

The SW-ORGANON plot design is composed of a cluster
of 4 to 10 sampling points located at the apices of
equilateral triangles spaced 150 feet apart. Three
subplots were established at each point: a variable-
radius subplot and 2 nested fixed-area subplots. The
variable-radius subplot had a basal area factor (BAF) of
20 and was used for measuring trees with diameter at
breast height (DBH) > 8.0 inches. One of the fixed area
subplots had a radius of 15.56 feet and was used for
measuring trees with 4.0 < DBH < 8.0, and the other
fixed-area subplot had a radius of 7.78 feet and was used
for measuring trees with DBH < 4.0 inches. More details
about this data set can be found in Ritchie and Hann

(1987), Hann and Larsen (1990), and Hann and Wang (1990).

1.2.2 The Thinning and Fertilization Data of Southwest

Oregon

The thinning and fertilization data set used in this




study was part of a larger data set used by Miller et al.
(1988) to develop equations for predicting gross volume
growth response to thinning and fertilizing of Douglas-
fir stands. All Douglas-fir installations near the study
area of SW-ORGANON were visited to determine by visual
inspection if the installations had stand structures,
species mixes, and soil types similar to the stands
found in the SW-ORGANON study area. In addition, each
selected installation had to have at least one control
plot. Of the 20 installations that met the selection
criteria, 16 were established by the Regional Forest
Nutrition Research Project (RFNRP).

The number of replications and plot sizes between
installations differed because vthey were 1installed at
different times and by different organizations.
Therefore, the 20 installations had a total of 109 fixed-
area plots that ranged in size from 0.1 to 0.2 acres per
plot. The type of treatments also différed between
installations and included:

1. A single application of 200 1lbs of nitrogen

2. A single application of 400 lbs of nitrogen

3. Repeated applications of 200 lbs of nitrogen

4. A single application of 400 1lbs of nitrogen
followed by repeated applications of 200 1lbs of
nitrogen

5. A single thinning without fertilization




6. Repeated thinnings without fertilization
7. A single thinning with a single application of 200
1lbs of nitrogen
8. A single thinning with retreated applications of
200 lbs of nitrogen
In all installations, the treatments were randomly
assigned to the plots. Table 1-1 shows the number of
installations by the different types of treatments and
their replications.

On the fertilized plots, nitrogen was broadcast
uniformly by hand within both the plot boundaries and the
surrounding buffer zones. On the thinned plots, the
intensity of thinning ranged from 17% to 71% of the basal
area (BA) removed, and the ratio of quadratic mean
diameter for those thinned trees to quadratic mean
diameter for trees before thinning (i.e., the d/D ratio)
ranged from 0.492 to 0.917. When thinning from below,
the d/D should be less than 1.0, otherwise the d/D should
be greater than 1.0. Table 1-2 shows the number of plots
by their d/D ratio and the BA removed.

The total time over which measurements had been made
ranged from 6 to 18 years. Table 1-3 shows the length of
and timing of the measurements. The interval between two
successive measurements for the RFNRP's data was 2 years.
For the other data sets, the interval ranged from 2 to 5

years. At each measurement, DBH was recorded to the




Table 1-1: The number of installations by the different

types of treatments and their replications

Number Number
of of Treatment
Installations Plots Codes

1 8 ON 02 2N 2N 2N 22 4N 42
8 6 ON 02 2N 22 4N 42
5 4 ON ON 2N 2N
1 3 ON ON 2N
1 2 ON 22
1 9 ON ON ON TT TT TT TT TT TT
2 8 ON ON 2N 2N OT OT 2T 2T
1 3 ON TT 3T

Treatment Codes:
ON = No fertilizer and no thinning initially
2N = 200 1lbs N per acre initially with urea
fertilizer
4N = 400 1lbs N per acre initially with urea
fertilizer
0T = No fertilizer but thinned initially

2T = 2N plus thinned initially

4T = 4N plus thinned initially

02 = ON plus 200 lbs N per acre after 8 and 12
years with urea fertilizer

22 = 2N plus 02

42 = 4N plus 02

1T = 0T plus 02

3T = 2T plus 02

TT = No fertilizer but thinned every measurement
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Table 1-2: The number of plots by their d/D ratio and the

basal area removed

Percentage of BA Removed

10% 20% 30% 40% 50% 60% 70%

to to to to to to to
d/D 19% 29% 39% 49% 59% 69% 79% Total
---------- Number of Plots --—---——-——--

.4 to .499 1 1

.5 to .599

.6 to .699

.7 to .799 2 4 6

.8 to .899 1 1 4 1 7

.9 to .999 1 1 2
Total 1 4 5 4 1 1 16

d/D ratio: The ratio of quadratic mean diameter for
those thinned trees to gquadratic mean
diameter for trees before thinning

BA removed: The basal area removed
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Table 1-3: The length and timing of the measurements by

installations
YEAR
1111111111111111111
9999999999999999999
Installation Installation 6677777777778888888
Number Code 8901234567890123456
1 51 -E-R-R-R-R-R-R-R-I-
2 67 —=FE-R-R=-R-R-R-R-R-1I
3 92 -=E~-R-R-R-R-R-R-R-1I
4 93 --E-R-R-R-R-R-R-R-I
5 94 -—-E-R-R-R-D
6 95 --E-R-R~-R-R-R-R-R-I
7 105 --E-R-R-R-R-R-R-R-I
8 106 -~-E-R-R~-R-R-R-R-R-1
9 175 ———-—==-E~R-R-R-R-R-
10 204 ————————=F-R-R-1~--=-
11 205 ———mm———=f-R-R=] ===
12 212 ————«w——=FE~-R-R-R-R-
13 213 ~———w=ow=-—F-R-R-R-R-
14 215 ~wweeem———=FE-R-R-R-R~-
15 216 —————m——=FE~-R-R-R-R-
16 217 -—==———w=—-E-R-R-R-R-
17 310 E----R--=--R——--R---
18 355 FER-R-R-R----R
19 356 ER-R-R-R----R
20 365 —-—=-E--R-R---R
E Established
R Remeasured
D Dropped
I Inactive
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nearest 0.1 inch for all trees greater than 1.55 inches
in DBH. Total tree heights were measured to the nearest
foot on a subsample of from 10 to 20 trees, with about 10
of the trees being Douglas-fir. Finally, crown ratios
were measured on a subsample of trees in only one
installation.

The Hann and Scrivani's site 1index for an
installation was computed as the mean of the largest ten
site index values among all site trees found on the
installation. Table 1-4 shows the number of plots by
ﬁheir breast height age and site index. The data were
converted into five-year growth periods by linearly
interpolating between successive measurements (i.e., if a
tree is alive in the sixth year, its fifth year DBH is
estimated by the average of its fourth-year DBH and its
sixth-year DBH.).

Because of the small sample sizes, all data
collected after the application of a second treatment
were excluded from the data set. In the end, there were
a total of 109 plots in the first 5-year measurement
cycle, only 34 plots in the second cycle, and only 21
plots in the third cycle (Table 1-5) and, most of these
plots were either control or fertilized plots. The range
in site index and breast height age for the thinned plots

was narrower than that for unthinned plots (Table 1-5).
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Table 1-4: The number of plots by their breast height age

and site index

Site Index

Breast 60 70 80 90 100 110 120 130

Height to to to to to to to to

Age 69 79 89 99 109 119 129 139 Total
10-19 3 2 2 6 13
20-29 9 6 2 9 4 30
30-39 7 12 8 27
40-49 4 10 1 15
50-59 7 5 4 16
60-69 3 3
70-79 1 2 3
80-89 2 2

Totals 7 0 19 30 22 13 18 0 109
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Table 1-5: The number of plots for each 5-year growth
period, and the ranges of site index (SI) and
initial breast height age (AGE) by treatments

5-Year Growth Period
Initial
Treatment First Second Third SI AGE
C 39 10 7 66 - 125 11 - 83
F 54 20 14 66 - 125 13 - 81
T 11 2 0 76 - 117 16 - 50
FT 5 2 0 76 - 117 16 - 50
Total 109 34 21
C The control plots
F The fertilized only plots
T The thinned only plots
FT The fertilized and thinned plots
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Chapter 2

Analysis Methods for Modeling Stand and Tree

Growth Response to Fertilization

In fertilizer trials, the experimental unit is
usually a fixed area plot of a certain size. This
enables the gquantitative determination of response to
fertilization to be expressed on the basis of a unit of
land area, which is the same basis upon which most
management decisions are made. These trials can be
useful in the analysis of stand and tree growth response
to fertilization. Special care, however, should be taken
in distinguishing between experimental error and sampling
error 1in analyzing individual tree response to
fertilization because a tree is a sampling unit and not
an experimental unit. The error variance estimated by
ignoring experimental units and using just the sampling
units 1is in general considerably smaller than that
estimated from the experimental units (Milliken and
Johnson 1984). As a result, incorrectly assuming that
the 1individual tree 1is an experimental unit will
possibly increase the F-statistics normally used to test
for significance of fertilization response and,
therefore, can lead the experimenter to false conclusions

concerning the significance of the fertilization
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response.

To evaluate how fertilizer response changes over
time, Miller and Tarrant (1983), Auchmoody (1985), and
Opalach and Heath (1988) have partitioned long-term
fertilizer response into direct and indirect effects.
Opalach and Heath (1988) defined the direct effect as
"... that part of the response due to improved
nutrition...", and the indirect effect as "... the
remaining portion of the response due to altered stocking
brought on by fertilizer in previous growing seasons."
In general, the direct effect is the response that
modelers attempt to estimate in the development of
fertilizer response equations for growth and yield
models. Therefore, this study will deal with the
prediction of the direct effect due to fertilization.

The objective of this chapter 1is to describe
alternative analytical methods that can be used to médel

the direct response of stands or trees to a single

application of fertilizer. Two types of methods are
presented: (1) structure analysis, and (2) multi-step
analysis. Both of these methods can be useful in

estimating e€ither plot or tree response to plot level
application of fertilizer, and both methods are well
suited for analyzing repeated measurement data collected
from multiple installations. Methods appropriate for the

analysis of fertilizer effects for a single installation
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are discussed by Turnbull and Peterson (1976b), Lipas
(1979), Barclay and Brix (1985), Mize and Schultz (1985),
and Jozsa and Brix (1989).

In most of the following analytical methods, the
parameters can be estimated by either ordinary least
squares (OLS) techniques or, if the variances are not
homogeneous, by generalized 1least squares (GLS)
techniques. When exceptions occur, they will be
discussed under the specific analytical method. Possible
complications due to the presence of serial correlation
will be ignored for the following reasons:

1. Fertilization data sets are usually composed of many
independent growth series that are short in duration
and that start in different years. As a result, the
effect of serial correlation should be reduced.

2. Parameters estimated by ignoring serial correlation
are unbiased, though the variances of the parameters
are biased (Kmenta 1986). Gregoire (1987) found
that OLS estimation frequently had smaller
prediction root mean squared errors and smaller
maximum absolute prediction errors than estimation
procedures that corrected for serial correlation.
He also found that the data set must contain a
sufficient number of growth periods in order to
accurately estimate the correlation coefficient.

3. The effect of serial correlation can be minimized by
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increasing the 1length of the growth period. For
example, Gertner (1985) used diameter growth
measurements from increment cores to analyze the
effect of growth period length upon the severity of
serial correlation. He found that serial
correlation was large for annual growth periods but,
for periods over four years, the effect was
negligible.

4. Becauselcorrection for serial correlation can be a
difficult problem, especially in some of the more
complicated methods to be discussed, the gain from
correction should be substantial in order to justify

the effort needed to apply the correction.

The following are some common subscriptions that

will be wused through out the remainder of this

thesis:
i=1,...,b blocks (installations)
=1,...,t treatments {j=1 for control}
k=1,...,r plots (replications)
l1=1,...,c measurement periods (cycles)
m = 1"'°'nk,l number of trees on plot "k" and
cycle "1™
p=1,...,v number of plot-level covariates

qgq=1,...,w number of tree-level covariates
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2.1 Structure Analysis

The use of covariates to analyze split-plot and
split-block designs has been previously illustrated by
Federer (1955), Hazard and Peterson (1984) and Peterson
and Hazard (1990). In the split-plot analysis, the
significance of the whole plot covariates are tested
using the variance of whole plot error, and the
significance of the split-plot covariate(s) are tested
using the variance of split-plot error. Applying the
same rationale, this study proposes to use covariates in
the analysis of a block design with either experimental
units (plots) alone or with both experimental units
(plots) and sampling units (trees). The mean square of
experimental error will be used to test the significance
of the plot level covariate(s), and the mean square of
sampling error will be used to test for the significance

of the tree level covariate(s).

2.1.1 Estimating Plot Response using Structure Analysis

Using structure analysis, the general linear model

for estimating periodic stand increment response to

fertilization is:
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Yiqk1 = 4 + =y B3By + 3§y T11Toy
+ 3553801 751751 + TEaaTa) e11pXidkap
+ 35558500 eg1pT1% gk * €ijkl
where
Yijkl = Transformation of Gijkl
Gijkl = periodic increment of period 1, replicate k,
treatment j, installation i

mean Y

=
I

o3
I

1.0 if data from block "i",

0.0 otherwise;
Tyy1= 1.0 if data from treatment "j" at cycle "1",

0.0 otherwise;

X

plot-level covariate(s)
T11+ le, allp' ajlp = parameters

Bi and € 1 are random errors of blocks and plots,

ijk

respectively

The dependent variable, Yijkl' is often formed by taking
the logarithm of the measured periodic increment, Gijkl'

and it assumes that G.

ijk1 is with multiplicative error.

This transformation will linearize most of the nonlinear
equation forms that are used to characterize stand or
tree growth, and the residuals of this transformation
often have homogeneous variance and a normal
distribution. Several intercept corrections for possible

log-bias are available (Flewelling and Pienaar 1981).
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However, application of these intercept corrections will
not affect the estimated parameters for the direct effect

of fertilization (i.e., 1 and a’lp)’ Another useful

™5 3

transformation is:
Yijk1 = 109(Gj4x1) — 109(Gj4k1)
where

Gijkl = Predicted periodic increment from an

existing equation.

This transformation <can be wused to develop a
fertilization response modifier equation for the existing
equation, or it can be used to validate the existing
equation to the control plots and/or to the fertilized
plots.

Since the direct effect is usually the response of
interest, this general linear model can be simplified by
using a common control equation whose parameters are
estimated from data for all growth periods. This can be
done by dropping Zle 711T71 (i.e., set 74= 7T9,= 793= 0)
and changing 2%212%=1 @11pXi5k1p O Z;=l @1 pXijklp
(i.e., set @) 1p= ¥12p= ¥13p= al.p)' After simplification,

the full linear model is as follows:
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where
B =3sP_, B; By (block effect)
T = E%=2Zf=1 T41 le (treatment effect by cycles)
X = Eg=1 @1 p Xijk1p (plot-level covariates)
= vt o \'4
IX = 23=3%T=1%p=1 %j1p T31*¥Xijxip

(treatment and plot-level covariate interactions)

In this setting, an installation is treated as a block,
and a plot as an experimental unit. The appropriate
analysis of variance for equation [2-1] is shown in Table
2-1. In this plot-level analysis, all block, treatment,
covariate, and treatment-covariate interaction effects
are tested against the experimental error (eijkl)’
Woollons and Whyte (1988) have suggested that one should
first test the significance of the parameters of the
covariates and their interactions with the treatments,
dropping all insignificant covariates, and then test the
significance of the treatments' main effects, dropping
all insignificant parameters (intercepts). The
fertilization response for a treated plot from egquation

[2-1] is predicted by T + TX.
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Table 2-1: Analysis of variance for modeling stand growth
response to fertilization using structure

analysis equation [2-1]

Sources of

variance df MS F
Block error (B8) b-1 MSB MSB/MSE
Treatment (1) (t-1)c MST MST/MSE
Covariate (X) P MSX MSX/MSE
T*X (t-1)cp MSTX MSTX/MSE
Plot error (g€) n. MSE
Total nplot'l

X : Plot level covariates
(i.e. site index, stand basal area, and stand breast
height age)

ng : nplot - b - (t-1)c - p - (t-1l)cp

Npiot ° The total number of plots
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2.1.2 Estimating Tree Response using Structure Analysis

By adding three more terms into equation [2-1],

structure analysis can be extended to analysis of

individual tree responses:

>
2
It

+ +

Yijklm = K+ B+ I+

+ 2 +

IH
N

+ ‘Sijklm [2-2]

_ <b t r c
E = Z~=12j=12k=121=1 Gijkl Eijkl (plot effect)
Eijkl = 1.0, if tree comes from block i, treatment j,
plot k, cycle 1

= 0.0, otherwise

N
I

v
Zq=1 F1.q Zijklmq

y/ tree-level covariate(s)’

N ot o] w
TZ = 25-227=12g=1 I'j1q Ty1%ijklmg
Fl.q' leq = parameters

B, T, X and TX are as defined in equation [2-1].

In this formulation, an installation is treated as a
block, a plot as an experimental unit, and a tree as a
sampling unit. Equation [2-2] has three random errors for
the block (B8i), plot (eijkl) , and tree (6ijklm) levels.
It is often assumed that these three errors are mutually
independent and that the errors at each level are

independent and identically distributed random variables
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TABLE 2-2: Analysis of variance for modeling tree growth
response to fertilization using structure

analysis equation [2-2]

Sources of

variance daf MS F
Block error (B) b-1 MSB MSB/MSE
Treatment (1) (t-1)c MST MST/MSE
Covariate (X) P MSX MSX/MSE
T#*X (t-1)cp MSTX MSTX/MSE
Plot error (e€) ng MSE
Z gq MSZ MSZ/MSS
T*Z (t-1)cg MSTZ MSTZ/MSS
Tree error (§) ng MSS
Total Niree~l

X : Plot level covariates
(i.e. site index, stand basal area, and stand breast
height age)

Tree level variables

(i.e. diameter at breast height, crown ratio, and
basal area for trees larger than the subjective
tree)

I~

Ng ¢ Npjot ~ b - (t-1)c - p - (t-1)cp

Nplot * The total number of plots
Ng * Ntree ~ Nplot ~ 9 ~— (t-1l)ca

Niree The total number of trees
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with a normal distribution of N(O,c%), N(0,02%) and
N(O,o%) for block, plot and tree, respectively. The
analysis of covariance for this model is shown in Table
2-2. The mean square of sampling error (MSS) is used to
test whether any of the parameters of the tree level
variables are significantly different from 0, and the
mean square of experimental error (MSE) is used to test
whether any of the parameters of the plot level variables
are significant. The response of a tree to
fertilization can be predicted by: T + TX + TZ.

One consideration in favor of using covariates in
Equation [2-2] is that their inclusion usually explains a
considerable part of the error sums of squares with a
relatively small reduction in the number of degrees of
freedom available for testing. However, there are two
potential problems with the use of analysis of covariance
in Table 2-2. First, one can encounter the same
difficulties in making tests of significance of the fixed
effects as Federer (1955) experienced when using
covariates in split-plot and split-block designs. Both
MSZ/MSS and MSTZ/MSS in Table 2-2 are distributed as
Snedecor's F no matter whether the experiment is with a
balanced design (i.e. the numbers of sampling trees per
plot are the same) or not, but MST/MSE, MSX/MSE and
MSTX/MSE are not distributed as Snedecor's F even if the

experiment is with a balanced design. In order to solve
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this problem, an alternative equation using the mean of
the dependent variable and independent variables for each
plot and cycle can be used. This produces the following
equation:

Mijp1 = 4+ B+ T+ X+ IX

+

I

+ 7 + eijkl [2—3]

where

Mijkl = The mean of Y.

ijk1lm for each plot and cycle

Z = The mean of Z for each plot and cycle

All ejjk1 are mutually independent from an identical

normal distribution with E(eijkl) = 0 and Var(eijkl) = og
+ Ug/nijkl' If the number of sampling trees is the same
for all plot-cycles, then Var(eijkl) is constant. As a

result, equation [2-3] can be fitted by using OLS
techniques.

The second problem with using covariates in equation
[2-2] is that data sets used to develop tree level growth
and yield models are always from unbalanced experimental
designs. In order to solve this problem, one can
randomly drop sampling units (i.e., trees) such that the
number of the remaining trees is the same for all plot-
cycles, and then apply OLS to fit equation ([2-3};
however, this method can result in the 1loss of a
substantial part of the data set.

Theofetically, another method of solving the second

problem, for either equation [2-2] or equation [2-3], is
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to use a mixed model form and GLS techniques. Giesbrecht
and Burns (1985) mentioned that statisticians have used
analysis methods based on a mixed model to deal with data
with multi-sources of error and from unbalanced
experiments. A mixed model involves two parts, one
describing the fixed effects and the other describing the
random effects (Milliken and Johnson 1984, Giesbrecht and
Burns 1985):

Y= WB+U; g1 +U,; ey, +U; e [2-4]
where

W 8 = the fixed part of the model

gl e + U, e;, + g3 e3 = the random part of the model

2)

e; = independent random errors with N(0,0%¢

If one applies the mixed model form to equation [2-2],

then:
WpB=amatrix of o + T+ X + TX + 2 + TZ
U, e + U0, g5 + U3 85 =a matrix of B+ E + §

ijklm
If one applies the mixed model form to equation [2-3],

then:

+ T7F

[[N]

WE =amatrix of u + T + X + TX +

It follows that E(Y) = W 8 and V(Y) = = U;U; 0% = ¥, is a
(n by n) covariance matrix. The Dbest linear unbiased

estimate for 8 is the GLS estimator.

~

g = (wvlw)luryvly
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However, a major problem in trying to solve a mixed model

is the estimation of G% and then the computation of y"l;
the literature gives only asymptotic properties for these
estimators (Giesbrecht and Burns 1985). As a result, one
should consider the use of mixed model analysis only if
the number of sampling trees is quite different from plot

to plot and V™1 is computable.

2.1.3 Advantages and Disadvantages of Structure Analysis

The advantages of estimating plot or tree response
due to fertilization using structure analysis are:

(a) It is the statistically correct way to analyze the
underlying data structure to predict treatment
response.

(b) It uses all of the available data so that it has
the maximum number of degrees of freedom possible to

estimate the variances of the random errors.

The disadvantages of this method are:

(a) It may be difficult, if not impossible, to estimate
all of the parameters for large problems. For
example, if a data set has 50 installations, 3
treatments, 2 plot-level covariates, 2 replications,
and 3 measurements, the full 1linear equation

(Equation [2-1]) for analysis of plot response has
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70 independent variables. In addition, if the data
set has 3 tree-level covariates, the full 1linear
equation (Equation [2-2]) for analysis of tree
response has 991 independent variables. While this
example assumes a modest number of installations
(Miller et al. 1988, for example, had 114
installations), the resulting number of parameters
for equation [2-2] could: not be estimated on most
statistical packages.

(b) This method does not produce a general control plot
prediction model. Therefore, it is difficult to
predict the response of a control plot that did not
come from the modeling data set. The only
alternative available 1is to assign a new control

plot to a block that has similar characteristics.

2.1.4 Possible Simplifications to Structure Analysis to

Reduce Size of Problem

The following are possible simplifications that have
been used in prior studies to reduce the size of the
problem when estimating plot response by structure
analysis. Some of these simplifications can also be
extended to tree level analyses.

(1) If the equation has too many dummy variables for

blocks and plots such that it cannot be fit using




(2)

(3)
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standard statistical packages, it may be tempting to
simplify either equation [2-1] or equation [2-2] by
eliminating all of the dummy variables. For plot
level analysis, the block dummy variables can be
dropped only if a% is equal to zero, which implies
that the block effect is not significant (Woollons
and Whyte 1988). Similarly, both block and plot
dummy variables can be dropped in tree level

analysis only if both o% and og

are equal to zero
(i.e. that the block and plot effects are not
significant from zero). Unfortunately, to perform
these tests requires the fitting of either equation
[2-1] or equation [2-2] to the data.

Ignore possible treatment effects upon either the
plot-level covariate(s) by dropping TX from equation
[2-1] (Opalach and Heath 1988) or the tree level
covariates by dropping TZ from equation [2-2]. This
can simplify the analysis but the resulting
formulation may be underspecified. If the
covariates of TX and/or TZ are orthogonal to the
remaining covariates in the model, the resulting,
underspecified, formulation is unbiased, otherwise
problems with bias may occur.

Use paired differences between the mean of the

control plots and each of the means of the other

treatments in each block. The use of paired
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diffefences was previously used by Hazard and
Peterson (1984) and Peterson and Hazard (1990) in
their analyses of split-plot designs. This method
is only applicable to estimate plot level response
to treatment in the first growth cycle. One should
be careful while applying this method beyond one
growth cycle because, if there 1is a significant
treatment response in the first period, some plot
level covariates on the treated plots (e.g., BA)
will be greater than those on the control plots
after the first cycle due to treatment response.
This method eliminate the block effect and it
estimates the direct treatment response. However,
if there is more than one paired difference in the
block (such as different levels of fertilization),
the estimation of the variance of the difference by
OLS techniques will be biased because the paired
differences are correlated with each other. For

th instatallation

example, let us only consider the i
in the first growth period, and there are the
average of the periodic growth values in the control

plots, Yil.' the average in the 200 1lb fertilized

plots, ¥;, , and the average in the 400 1b
fertilized plots, ¥i3.- The paired differences,
¥,,.-%;1. and ¥;5 -¥;;, , are correlated since they

carry over the same random error from Yil . The




33

problem of the correlation between dependent
variables can be eliminated by using GLS techniques.
Furthermore, the paired differences among blocks are
independent. Therefore, if there are many blocks,
the fitting step is not affected very much by the
correlation between dependent variables, and, as a
result, it might be acceptable to simply ignore the

correlation.

If these simplifications are not suitable for the
problem, then the use of multi-step analysis procedures

may be appropriate.

2.2 Multi-step Analysis

A two-step fitting procedure has seen common usage
in the Pacific Northwest of the United States of America
as a method to estimate growth response to nitrogen
fertilization (Turnbull and Peterson 1976a, Peterson and
Gessel 1982, Arney 1985, Miller et al. 1988, and Heath
and Chappell 1989). The two-step method separates the
data set into two subsets: a control plot subset and a
fertilized plot subset. 1In the first step of the method,
a control equation is developed using the control plot
subset. In the second step, the difference between the
observed dependent variable for the fertilization data

set and the predicted dependent variable from the control
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equation is fit to the independent variables of the
fertilization subset.

In applying traditional two-step analysis, special
attention must be given to the procedure used to estimate
the variances of the parameters in the treatment response
equation. This problem could be very important in
Pacific Northwest region, since the most current reports
by Miller et al. (1988), and Heath and Chappell (1989)
still gave very sparse details of statistical analysis
while they applied the procedure of two-step analysis.
When data sets are collected from completely randomized
designs, the following is an example of how to compute
the appropriate variances of the parameters in the
treatment response equation when all of the equations are
simple linear forms. Computation methods for more
complex multiple linear forms are discussed in appendix
A.

Let the control equation, treatment equation,

response equation, and joint equation be defined as

follows:
control equation: Y, = ag + a;X
response equation: Yy - Qc = dg + d;X

treatment equation: Y = by + bX

joint equation: Y = ag + aix + dgT + d;TX
where
Yo = dependent variable for control data
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Yy = dependent variable for treatment data

Y. = the predicted value by control equation
Y = dependent variable for all data

X = independent variable

T = 1.0, if data from treated plot

0.0, otherwise
ag, ay, by, by, dg, and d; = estimated regression

parameters

The treatment equation is always defined with the same
form as the response equation. The two-step analysis
procedure develops only the control equation and the
response equation. Application of the structure analysis
procedure would result in the development the joint
equation and, therefore, its parameter and variance
estimates are the correct values for testing the
significance of the treatment response. The treatment
equation is of concern because, if it is of the same
exact form as the control equation, then the estimated
parameters for control and response equations are the
same as those estimated by the joint equation. If the
forms differ, the parameter estimates may also differ.
Although the estimated parameters in the response
equation are the same as those in the Jjoint equation
(assuming that the control and treatment equations have

the same form), the estimated variances of the parameters
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in the response equation are not the same as those in the
joint equation (in fact they are the same as those in the
treatment equation). Therefore, the estimated variances
of the response equation parameters derived from fitting
the response equation to the data should not be used to
test for significance of the estimated response equation
parameters.

If the model form for the control equation and the
treatment equation are the same, the following statistic
can be used to test whether one of the parameter
estimates of the response equation is significantly
different from zero:

(d;) / SQRT[Var(bi-a;)]

Since by is independent of aj and, in this case, the
variance of b; equals the variance of dj, the variance
of bj-aj is equal to the variance of d; plus the variance

of a; In addition, if the control equation and the

ie
treatment equation are with common variance, the pooled

mean square error (MSE can be computed from mean sgquare

p)
error of control equation (MSE,) and mean square error of

treatment equation (MSEy) . Then Var(bj-aj;) can be
replaced as follows:

Var(bj-aj) = [Var(bi)/MSEt+Var(ai)/MSEC]*MSEp

Obviously, if the variance of a; is small when compared

1

to the variance of d;, then the variance of a; can be

ignored in this test statistic. This condition may occur
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when the control data set is much larger in sample size
and has a wider range in the independent variables than
the treatment data set. Appendix A presents the
appropriate test statistic for the case when the form of
the control equation and the treatment equation are not

the same.
2.2.1 The General Control Plot Equation

The first step in all of the following ﬁulti—step
procedures is to either develop a general control
equation from the current study's control plots or find
an existing equation developed from previous studies.
The choice of which approach to use will depend upon the
strength of the control plot data set (i.e., its sample
size and distribution over the important independent
variables) and whether an adequate control model already
exists for the population of interest.

For plot level analyses, the general control model
takes the from:

Yoon = & + X + €59%17

where X is as defined in equation [2-1]
and for tree level analyses, the general control model
takes the form:

Yoon = # + X+ Z F €41x1n

where X and Z are as defined in equation [2-2]
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2.2.2 Estimating Plot Response by Traditional Two-step

Analysis

Step 1: Develop a new general control equation or use an
existing one.

Step 2: Each fertilized plot's response to treatment is
estimated by taking the difference between the
observed value and the value predicted by
the general control equation. These differences
are then used to fit the following response equation
using all treated plots across all blocks:

E(Yijk1~Yeon) = T + TX  (for jx1)

where X and TX are as defined in equation [2-1]
This method has been used by Miller et al. (1988) and
Heath and Chappell (1989). It is appropriate for
modeling plot growth response to fertilization when data
sets are collected from completely randomized designs,
but it may not be appropriate when data sets are
collected from randomized block designs. The two-step
analysis does not consider possible block effects, and,
therefore, if the eliminated block variables are
significant, then the approach confounds the treatment
response with the random block effect and the resulting
estimates may not represent just the treatment response.

If the block variables are insignificant, then an
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advantage of this approach is that the computation of the
appropriate variances of the response parameters can be

done in a relatively straight forward fashion.
2.2.3 Estimating Plot Response by Three-step Analysis

Step 1: Develop a new general control equation or use an
existing one.

Step 2: Calibrate the general control equation to each
block's control plots to form the following block-
specific control equation. If a new general control
equation has been developed or if the existing
general control equation was developed using plots
of the same design as the fertilization data set,

then this calibration takes the form:

-~

E(Yca1,i) = E(¥i1x1 ~ Ycon!
= B3
If the existing general control equation was
developed from data collected on plots of a design
different from the fertilization data set, then the

calibration takes the form:

-~

E(¥ca1,i) = E(¥i1x1 ~ Ycon)
= v
= Bj + Zp=1 %, i Xp,ilkl
Because the plot's estimated covariates can vary

from one plot design to another (Zumrawi 1990),

inclusion of the these covariates in the development
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of the calibration equation should help to minimize
the effects of differing plot designs. However,
application of this full calibration equation
requires that the sum of the number of cycles
measured on all control plots be at least (v+2) per
block to estimate the (v+1l) parameters and the
variance of the plot level covariates. If fewer
control plots exist, then it will be necessary to
eliminate all plot level covariates.

Step 3: Each fertilized plot's response to treatment is
estimated by taking the difference between the
observed value and the value predicted by
calibrated, block-specific control equation. These
differences are then used to fit the following

response equation using all treated plots across all

blocks:
E(Yijkl_Ycon'Ycal,i) =TI+ IX
This method does consider possible block effects. If

the block effect is significant, then it can reduce the
variance. The disadvantage of this procedure is that
computation of the appropriate variances for testing

response to fertilization can be quite complex.

2.2.4 Estimating Tree Response by Four-step Analysis

Step 1: Develop a new general control equation or use an
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existing one.
2: Calibrate the general tree level control equation
to each block's control plots, producing the

following block-specific control equations:

~

Yeal,i = Yiikim ~ Ycon

By ot 2§=1 @j1.p%ilklp

* Zg=1 Ti1.q%i1klq * $i1kim
As in the three-step analysis procedure, if a new
general control equation is developed or if the plot
design for the existing general control equation is
the same as the plot design for the fertilization
data set, then both the plot level and tree level
covariates in the above calibration equation can be
eliminated.

Again, application of the full calibration
equation, if necessary, requires that the sum of the
number of cycles measured on all contrcl plots be at
least (v+2) per block to estimate the (v+1)
parameters and the variance of the plot level
covariates. If fewer control plots exist, then it
will be necessary to eliminate all plot level

covariates, producing:

Yecal,i = Yiiklm ~ Ycon

W
Bi * 2g=1 Ti1.q Zi1kxlg * Siikim

3: Each tree's response to treatment is estimated by

taking the difference between the observed value and
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the value predicted by the calibrated, block-
specific control equation. These differences are
then used to fit, plot by plot, the following plot-

specific tree response equation:

E(Yijklm_Ycon"Ycal,i)

_ «C c oW

= Z1=1 9i§x1€1 * Z1=12g=1 ®ijk1q%ijkimg
where

¢, = 1.0, if trees come from the lth cycle

0.0, otherwise

¢ijkl' eijqu = regression parameters for plot

k, treatment j, installation i

This formulation does not have plot level covariates
because, for a given growth cycle, they are constant
for all trees on the plot. The formulation uses
dummy variables to characterize the number of cycles
since treatment and is fitted through the origin.
This second step eliminates the block effect and it
partitions trees' fertilizer response into that
which can be attributed to number of cycles since
treatment, and that which can be attributed to the
interaction of cycle with tree level covariates.
4: The parameter estimates from step 3 associated
with the number of cycles since treatment (i.e.,
¢ijkl) are now used to estimate the fertilization
main effect, by cycle, and its interaction with plot

level covariates using the following:
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E(¢jjk1) =T + IX

where X and TX are as defined in equation [2-1].
The parameter estimates from step 3 associated with
the interaction of cycle with tree level covariates
(i.e., eijqu) are now used to estimate interaction
of the fertilization effect, by cycle, with tree
level covariates using the following:

E(035k1q) = Z5=22{=1 Tj1qT51

The parameters of both of these equations (i.e.,

) can be estimated using varying-

le, lep and Fjlq
parameter (or random coefficient) regression
techniques (Biging 1985). In this method, each of

the (w+1l) equation's parameters are estimated by
applying the technique of generalized least squares
weighted by the inverse of variance-covariance
matrix associated with each dependent variable. A
tree's response to fertilization 1is then predicted
from the following:

W

_ t c
response = T + TX + Zj=221=12q=1 I'519T91%2i9k1inmg

—3

X + TZ

2.2.5 Advantages and Disadvantages of Multi-step Analysis

The advantages of multi-step analysis are as
following:

(a) It 1is less affected by size of problem than




(b)

(c)
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structure analysis.

One of the appeals of the multi-step method is that
it produces an equation that is useful in predicting
the behavior of untreated plots (i.e., control
plots).  Modelers often have more confidence with
fitting a control equation than treatment equations
because the form of the control equation has often
been well defined in previous studies.

The method can also use an existing control
equation. This can be particularly useful if the
number of control plots 1in the fertilizatioh data
set is relatively small in size or if they are not

well distributed over important plot attributes.

The disadvantages of multi-step analysis are as

following:

(a)

(b)

(c)

It has fewer degrees-of-freedom to estimate MSS and
MSE than the method of structure analysis.

It 1is more complex to compute appropriate
variance(s) to test the significance of the
parameter(s) in the fertilization response equation
(Appendix A and B).

If the independent variables in the control equation
are not the same as those in the response equation,
then the parameters estimated by multi-step analysis

may not be equal to the parameters estimated by
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structure analysis using a joint regression model
form. In addition, the multi-step equation will
have a larger variance than the joint equation.

This method assumes a correct control model which
structure analysis does not. If the data set can
not develop a good quality general control equation,
then the multi-step analysis equation will have a
larger variance than the structure analysis

equation.
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Chapter 3

Modeling Tree Growth Response

to Fertilization

The analysis methods discussed in Chapter 2 can be
applied to develop fertilizer response modifiers for the
Douglas-fir diameter growth and the dominant height
growth equations in the SW Oregon version of ORGANON, a
single-tree/distance-independent growth and yield
simulator (Hester et al. 1989). A set of 18
Douglas-fir fertilization research installations near the
ORGANON study area is used to develop the modifier
equations. These data are independent of the data set
used in construction of the growth and yield equations in
ORGANON. The data consists of 35 control and 54
fertilized plots at the first five-year growth cycle, 10
control and 20 fertilized plots at the second five-year
cycle, and 7 control and 14 fertilized plots at the third
five-year cycle. The plots used in these installations
were between 0.1 and 0.2 acres in size. For more
information about the plot design of the fertilization
data set, see Hazard and Peterson (1984), and Miller et
al. (1988).

The plot design used to construct ORGANON consisted

of a cluster of between four and ten sampling points.
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There were three subplots at each sample point: (1) a 20
basal area factor variable radius subplot for trees
greater than 8.0 inches in diameter at breast height
(DBH), (2) a fixed area subplot of radius 15.56 feet for
trees between 4.1 and 8.0 inches DBH, and (3) a fixed
area subplot of radius 7.78 feet for trees less than 4.1
inches DBH. For more information about ORGANON's plot
design, see Ritchie and Hann (1987), Hann and Larsen
(1990), and Hann and Wang (1990). The ORGANON's data set
came from 391 stands in southwest Oregon that covered a
wider range of sites, species mixes and stand structures
than the fertilization data set. Therefore, the intent
of the study was to develop fertilization modifiers for
the existing Douglas-fir diameter growth and dominant

height growth equations in ORGANON.

3.1 Modeling Dominant Height Growth Response to

Fertilization using Structure Analysis

The Douglas-fir height growth equation in ORGANON is
composed of a potential component and a vigor and
competition modifier (Hann and Ritchie 1988). The
potential component is derived from the dominant height
growth equations of Hann and Scrivani (1987) and is a
function of the stand's site index (SI) and the tree's

growth effective age (GEA), which is the age the tree
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would be if it were a dominant of the same total height.
Therefore, the potential component predicts what the
tree's five-year height growth would have been if it were
a dominant tree of the same height. The vigor and
competition modifier then reduces the potential height
growth if the tree is not in a dominant position in the
stand. The modifier component is a function of the
tree's crown ratio (CR: crown length of the tree divided
by the total height of the tree) and the estimated crown
closure of the stand at the tree's tip.

The fertilization data set could be used to develop
a fertilizer modifier on the potential height growth
component only because: (1) CR's had not been measured on
any of the 18 fertilization installations, and (2) only
about ten Douglas-fir trees were measured for height on
each plot and a majority of these were dominant trees.
As a result, only the dominant Douglas-fir trees on the
plots were used in the following analysis.

Structure analysis equation [2-2] was chosen to
model the tree's fertilization modifier to the potential
height growth component. Because the potential height
growth component for dominaﬁt trees is not strongly
affected by tree 1level variables, equation [2-2] was
simplified by excluding the tree level covariates:

Yiskim = K + B+ I + X + IX + E + 8451

Where,
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Yijklm = DOG(HGjjyx1p) — LOG(PHGjjxim)

HGijklm = The observed 5-year dominant height
growth of tree m, period 1, plot Kk,
treatment j, installation i

PHGjjx1p = The predicted 5-year dominant height

A

growth of tree m, period 1, plot K,
treatment j, installation 1 from the
existing potential height growth
equation in ORGANON
LOG = the natural logarithm
This form of the dependent variable was chosen because of
the desire to develop a fertilization modifier equation
for the potential height growth component. To analyze the
fertilization data with this equation would require 17
block and 140 plot-cycle dummy variables. However,
because this equation does not have tree level
covariates, a further simplification could be done by
using the mean of the dependent variable for each plot

and cycle and therefore eliminating the need for the 140

plot-cycle dummy variables. This produces the following
equation:
E(Mjjg1) =4 + B+ T+ X+ IX [3-1a]

Where Mijkl = The mean of Yijklm for plot k and cycle 1.

The equation was not analyzed by the mixed model
method because of the difficulty in computing y'l (V was

a 140 by 140 matrix) and because the number of dominant
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trees (i.e., sampling units) was similar from plot to
plot in this data set.

OLS would have been appropriate to estimate the
parameters 1if the number of trees on a plot had been
exactly the same across all plots and cycles. While the
number of dominants were similar across plots and cycles,
they were not exactly the same. As a compromise,
equation [3-la] was fitted by weighted regression where
the weight was the number of dominant trees on each plot
and cycle. With such a simplification, the parameters
can be estimated by the generalized linear model package
-- PC SAS Procedure GLM (SAS/STAT 1985). Using GLM, the
following four sets of independent variables were formed,

inserted into equation [3-la] and then fitted to the

data:
1. T = [FERT*Cl, FERT*C2, FERT*C3, F400*C1,
F4OO*C2, F4OO*C3]
X = [SI, A]
XT =[A*T, SI*T]
2. T = [FERT*C,, FERT*C,, FERT*C,, F400%*Cp,
F4OO*C2, F4OO*C3]
X = [LOG(SI), A]
XT = [A*T, LOG(SI)*T)
3. T = [FERT*C;, FERT*C,, FERT*C;, F400%Cy,
F4OO*C2, F4OO*C3]
X = [s1, A"y




XT = [(A™l)*T, SI*T]

4. T

X

XT

Where,

FERT

F400

C1l

c2

C3
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[FERT*C,, FERT*C,, FERT*C,, F400*Cq,

F400%C,, F400%C5]
[LoG(SI), A1

[(A™1)*T, LOG(SI)*T)

Hann and Scrivani (1987) site index for the

plot.

Stand age which should be close,

if not

equal, to the average of the GEA's for all

dominant trees on the plot.

1.0 if the plot had been fertilized with

either 200 or 400 pounds of nitrogen

per acre

0.0 otherwise.

1.0 if the plot had been fertilized with

400 pounds of nitrogen per acre

0.0 otherwise.

1.0 if the data was for the first five-year

growth cycle after fertilization

0.0 otherwise.

1.0 if the data was for the second five-

year growth cycle after fertilization

0.0 otherwise.

1.0 if the data was for the third five-year

growth cycle after fertilization
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= 0.0 otherwise.
In all four regressions, all independent variables
involving F400 , C,, C;, and the SI and A transformations
were not significantly different from zero (a=0.05).
Because C, and C; were not significant, the data for
these two cycles were removed and the following final
equation was fitted to the remaining dominant height

growth data:

18
74

M= u; + -1 a; Bj + by FERT*C, (3-1b]
M = the mean value of LOG(HG/PHG) for a plot and
| cycle
HG = actual 5-year height growth for a dominant tree
PHG = predicted 5-year dominant height growth by the
potential height growth equation in ORGANON
B; = 1, if data come from block "i"

= 0, otherwise.

u, a;, ..., ajg, bl = regression coefficients

The estimated parameters of equation [3-1b] are presented
in Table 3-1, and a plot of the residuals over the
predicted dependent variable is presented in Figure 3-1.
A check of the residuals by PC SAS Procedure UNIVARIATE
(SAS/STAT 1985) showed that they were normally

distributed (p=0.1614).



53

Table 3-1: The estimated parameters of the fertilization
response modifier equation [3-1b] for the
dominant height growth equation of Douglas-fir
in SW-ORGANON

T for HO: pr > |T| std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT -.1145921851 8 -1.36 0.1782 0.08442818
INCODE 51 -.2282785411 B -2.11 0.0376 0.10810502
67 -.2340269750 8B -2.14 0.0355 0.10956014
92 -.4172606761 B -3.81 0.0003 0.10950246
93 -.0898033126 B -0.82 0.4165 0.10998903
94 -.2123521664 B -1.79 0.0773 0.11877773
95 -.1061676805 B -0.98 0.3290 0.10816285
105 0.1038012829 8 0.96 0.3415 0.10853491
106 -.1515540728 B -1.38 0.1701 0.10956014
175 -.0394498743 8 -0.38 0.7081 0.10501197
204 0.3124376905 8 2.42 0.0178 0.12935627
205 0.0200220280 B 0.16 0.8744 0.12632108
212 0.1748331747 B 1.33 0.1862 0.13120631
213 0.0920378314 B 0.66 0.5105 0.13927607
215 0.2826772589 B 2.21 0.0296 0.12782821
216 0.2417206343 B 1.74 0.0861 0.13924666
217 0.0271498089 B 0.21 0.8323 0.12782821
355 -.0732230831 B -0.41 0.6832 0.17885225
365 0.0000000000 B . . .
FERT*C1 0.0915088524 2.35 0.0210 0.03894100
Root MSE 0.472611 R-square 0.526933
Dep Mean -0.127500 Adj R-sq 0.429058
Observation 106.000000
NOTE: The X'X matrix has been found to be singular and a generalized inverse

was used to solve the normal equations. Estimates followed by the
letter 'B' are biased, and are not unique estimators of the parameters.
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Figure 3-1:
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"O": control plots
win: fertilized plots
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Plotting of residuals (RES) on predicted Y
(YHAT) from the fertilization response
modifier equation [3-1b] for the dominant
height growth equation of Douglas-fir in SW-

ORGANON.
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3.2 Modeling Diameter Growth Response to Fertilization

using Four-step Analysis

The Douglas-fir diameter growth equation (Hann and
Larsen 1990) in ORGANON is a function of the plot's SI
and BA and the tree's DBH, CR, and stand basal area in
trees with DBH's larger than the subject tree's DBH
(BAL) . As a result, structure analysis equation [2-2]
can not be simplified by dropping tree level covariates
as was done in the height growth analysis. Therefore,
fitting Equation [2-2] would require the use of 17 block
dummy and 140 plot-cycle dummy variables. Since PC - SAS
could not solve a problem of this size, this analysis
used the following four-step method to model the tree's
fertilization response modifier to the ORGANON Douglas-
fir diameter growth equation:

Step 1: The existing diameter growth equation in ORGANON
was used to form the general control equation.

Step 2: The general diameter growth equation was
calibrated to each block's control plots, producing

the following block-specific control equation:

-~

Y = E(LOG(DGj4x1p) ~ LOG(PDG;jxiy))

cal,i

bO,i + bl’i*LOG(DBH+l.O)

+ b, ;*BAL?/LOG(DBH+1.0)  [3-2a]
14

where
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-~

Y the calibrated, block-specific control

cal,i

equation of installation i

DGijklm = the observed 5-year diameter growth

PDG'jklm = the predicted 5-year diameter growth by

1

the general control equation
= EXP{ - 3.50204

+ 0.361294 * LOG(DBH+1.0)

0.000413140 * DBH?

+ 1.34888 * [(CR+0.2)/1.2]

-+

0.765801 * LOG(SI)

0.0000425385 * [BALZ/LOG(DBH+1.0) ]

0.0127359 * SQRT(BA) }

SQRT = function of square root

Since the plot design of ORGANON's data set is
different with that of the fertilization data set,
ideally the calibration equations should have
included all of the plot level and tree independent
variables used in ORGANON's Douglas-fir diameter
growth equation. The independent variable involving
the plot's SI could be excluded from the calibration
equation because it was constant for all plots in an
installation. The remaining plot level independent
variable involving BA was dropped for two reasons:
(1) one of installations had only one control plot
and one dgrowth cycle making it impossible to

estimate the parameter and variance for the
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Table 3-2a: The estimated parameters of the calibrated,

block-specific control equations

modeling the diameter

[3-2a]

fertilization
INCODE N MSE Adj.R% by b, b,
051 391 .2656 .2120 -2.8279450  ** 1.0102810  ** .38412149E-04**
SE : ( .50466852 ) ¢ .21126783 ) ¢ .51953429E-05)
067 128 .3235 L2731 -3.3811109  ** 1,0848726  ** .32358479E-04**
SE : ( .41085235 ) ( .15458870 ) ¢ .B4L2824T6E-05)
092 213 .3311 .3042 -2.2287862  ** 71198058  ** -,92983219E-05
SE : ( .46028850 ) ¢ .18616966 ) ¢ .13204141E-04)
093 293 .3131 .0046 -.32972398 .20789985 .89683881E-05
SE : ( .45718552 ) ¢ .18797925 ) ¢ .55841996E-05)
094 62 .3001 .2636 1.8884203 -.76798511 .82249397E-04*
SE : ( 2.2112687 ) ¢ .75097105 ) ¢ .39338143E-04)
095 437 .2486 .2813 -1.1615974  ** 57945341 *% - 14849T04E-04**
SE : ( .23808265 ) ¢ .11168558 ) ¢ .4T7406381E-05)
105 190 .2236 L4759 -1.4453309  ** 80528754 ** - 10986727E-04
SE : ( .26777041 ) ¢ .11507180 ) ¢ .10522289E-04)
106 106 .2521 L0597 -.24089853 .18583077 .10726770E-04
SE : ( .33160999 ) ¢ 13245724 ) ¢ .19088799E-04)
163 37 .5304E-01 .2355 -1.7647744 ** 14345036  ** S8818742E-03*
SE : ( .46341793 ) ( .39841027 ) ( .24215276E-03)
175 146 .3661 .3506 -2.9239562 *x  1.0947165 **  39066172E-05
SE : ( .88026323 ) ( .36489359 ) ( .25124502E-04)
204 200 .3111 .1824 -4.2058630 *x  1,7713599 *%  4T7108515E-04%*
SE : ( .94160621 ) ¢ .39318529 ) ( .16075898E-04)
205 116 .3984 .2562 -4.5211606  ** 1.5839223  ** _422B0855E-04**
SE : ( .84146048 ) ( .27764304 Y ¢ .65581419E-05)
212 123 .4135 .0623 -2.8000369  ** 1.0483742 *%  20481134E-04**
SE : ( .85081404 ) ( .34850717 Y ¢ .94790383E-05)
213 79 .3839 .2156 -1.7611098 61334330 .29077421E-04
SE : ( 1.1086082 ) ( .44748363 y ¢ .25837162E-04)
215 128 .3279 .3415 1.8082328 -.76979178 L15175121E-03**
SE : ( 1.8281313 ) ( .74451543 ) ( .52203625E-04)
216 73 .4527E-01 .1108 -1.7564961 ** 96418607  ** ,18119534E-03*
SE : ( .64392047 ) ( .31277068 Y ( .74675233E-04)
217 99 .3390 .0318 -1.7601678 62450308 .19912328E-04#
SE 1 ( 1.2949733 ) ( .42647611 Y ¢ .10092928E-04)

for

growth response to
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INCODE N MSE Adj.R2 b0
355 290 .4018 .1890 -1.0596837
SE - ( .31554451
365 697 .3051 L0712 -1.1063452

SE : ( .18123423

** - 48244707E-04%*
) ( .14084083E-04)
**  21381722E-05

.98377341E-01) ( .33652883E-05)

** gjgnificant at a = 0.01, * at a

INCODE: Installation code
N: The number of trees
MSE: Mean square error

adj.R2: Adjusted R-square

SE: The standard error of the estimated parameter

0.10
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independent variable involving BA and, (2) the
independent variable did not strongly affect
predicted diameter growth for Douglas-fir (Hann and
Larsen 1990). Finally, the CR and DBH? independent
variables were excluded because: (1) the CR's in the
fertilization data set had to be predicted by the
ORGANON model, and (2) DBH? is highly correlated
with LOG(DBH+1.0) and, for most installations,
LOG(DBH+1.0) was a stronger independent variable in
the calibration equations than DBHZ . Table 3-2a
shows the resulting 18 block-specific control
equations.
3: Each tree's diameter growth response to
fertilization is estimated by taking the difference
between the tree's observed diameter growth and the
diameter growth predicted by the calibrated, block
specific diameter growth equation determined in step
2. These differences are then used to fit, plot by
plot, the following plot-specific tree response
equation:
E(Rjjy) = E(LOG(DGj5y1n) - LOG(PDGijk1m) ~ Ycal,i)
=53, $ik1C1 * =34 ©x11C1 *LOG (DBH+1.0)
+ 53, @ijkl2Cl*BAL2/LOG(DBH+1.O)
where

jth

Cy =1, if trees come from the period,

=.0, otherwise
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®i5k1 eijkll' eijklz = regression parameters of
plot k, treatment j,

installation i

To apply the varying-parameter (or random
coefficient) regression procedures in the next step,
it is necessary that each of the plot-specific
response equations have the same form. Fits of the
above full response equation to all plots resulted
in a large number of insignificant parameters and
parameters that changed sign from plot to plot.
Therefore, simpler formulations of the response
equation were examined in order to find one that had
both significant parameters and consistent signs
across the most number of plots. The response
equation which best met these objectives was:
E(Rjjx) = Zi=1 ®ijk1 C1 [3-2b]
Table 3-2b presents the estimated parameters of

these plot-specific response equations.
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Table 3-2b: The estimated parameters of the plot-specific
response equations [3-2b] for modeling the
diameter growth response to fertilization

INCODE PLOT N MSE Adj.R2 91 5 ¢
051 1303 399 .2883 .0198 .48375282 ** 29319194 ** 33362675 wox
SE : ( .68650564E-01) ( .61123645E-01)  ( .76644635E-01)
051 1304 261 .3627 .0014 .24708575 ** 14827894 11191260
SE : ( .68396637E-01) ( .87072958€-01) ( .11741380 )
051 1305 122 .3465 .0000 .21966136 *x
SE : ( .83581697E-01)
051 1306 81 .2765 .0000 .63797444 **
SE : ( .89846536E-01)
067 1398 36 .3111  .0000 .36344194 *x
SE : ( .11195088 )
067 1399 139 .2959 .0431 .63190854 ** 44133034 ** 31119600 *
SE : ( .10109402 ) ( .10661613 ) ( .12703936 )
067 1400 81 .3197 .0000 .78440756 o
SE : ( .10294659 )
067 1401 94 .3421 .0860 .57109398 ** 30698296 **  84842630E-01
SE : ( .11903361 ) ( .11432847 ) (12169223 )
092 1548 43 .3116 .0000 .57692033 *e
SE : ( .10753139 )
092 1549 141 .3067 .0882 .40888259 ** 15595873 -.42847075E-01
SE : ( .11053959 ) ( .10211758 ) ( .11562872 )
092 1550 110 .2777 .0451 .25311214 # 12353806 -.83371237E-01
SE : ( .13110301 ) ( .11625403 ) ( .12319497 )
092 1551 47 .1867 .0000 .48383644 w
SE : ( .11696581 )
093 1553 188 .3926 -.0013  .68278476E-02 .51590400E - 02 13677847
SE : ( .992234856-01) ( .81611274E-01) ( .88863941E-01)
093 1555 60 .3346 .0000 .68336107E-01
SE : ( .87417962E-01)
093 1557 29 .3960 .0000 .16036990
SE : ( .11517378 )
093 1558 120 .2907 -.0003 .27008453E-01 - 13926031 -.81605718E-01
SE : ( .13663821 ) ( .11323869 ) ( .99633830E-01)
094 1559 31 .5869 .0000 .72679949 i
SE : ( .19704822 )
094 1560 38 .3718 .0000 .59032798 *x
SE : ( .15855598 )
094 1562 36 .4261 .0000 .71630746 *
SE : ( .20031226 )
094 1563 26 .3778 .0000 .11891369
SE .19337011 )
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Table 3-2b: (Continued)
INCODE PLOT N MSE Adj.R2 T T2 T3
095 1566 317 .2390 -.0004 .17005634  ** 22868218  ** 26223731 *%
SE : ( .59321160E-01) ( .65241091E-01) ( .92355834E-01)
095 1567 204 .3223 .0287 .11816547E-02  -.45284782E-01  -.27690881 i
SE : ( .80938866E-01) ( .75108588E-01) ( .96131681E-01)
095 1569 71 .3280 .0000 .14387494  #
SE : ( .78823220E-01)
095 1570 61 .3714 .0000 -.82703181E-01
SE : ( .91296221E-01)
105 1625 65 .5504 .0000 .18449336  *
SE : ( .B6716204E-01)
105 1627 66 .2725 .0000 .39174506  **
SE : ( .10042410 )
105 1628 156 .2611 .0458 .28099856  *  .39816421E-01  -.20631060E-02
SE : ( .11299115 ) ( .94192887E-01) ( .11985408 )
105 1629 174 .3056 -.0037 .43470851 ** 33092093  ** 43336591 *
SE : ( .88625053E-01) ( .12525574 ) ( .21975668 )
106 1631 135 .3997 .0063 -.25600952  * -.41088927  * -.18946145
SE : ( .11565898 ) ( .18520259 ) ( .26584206 )
106 1632 81 .4281 .0000 .21943805
SE : ( .21441082 )
106 1634 139 .2765 .0257 .48142192  ** .58627594  *  .73903698  *
SE : ( .15660460 ) ( .23749947 ) ( .34247628 )
106 1635 26 .0831 .0000 -.75742520E-01
SE : ( .13022289 )
175 2266 95 .3029 .0350 .38292882  ** 14541773
SE : ( .11883181 ) ( .14404860 )
175 2267 54 .4217 .0000 .25658506  *
SE : ( .11267209 )
175 2269 142 .3007 .0287 .37858206  *  .16884312
SE : ( .17502000 ) ( -10722406 )
175 2270 113 .4774  .0167 .96906567  ** 74732715 **
SE : ( .12539139 ) ( .27388136 )
175 2271 62 .3966 .0000 .48226473  **
SE : ( .10720075 )
175 2272 93 .3556 .1192 .85529351 ** 40142676  #
SE : ( .17662389 ) ( .23604449 )
204 2509 72 .2797 .0000 .10350462
SE : ( .12790622 )
204 2512 110 .4463 .0000 .30383334  **
SE : ( .11597845 )
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Table 3-2b: (Continued)
INCODE PLOT N MSE Adj.R2 L] T2 T3
205 2513 45 .2090 .0000 -.23557061E-01
SE : ( .15455420 )
205 2515 52 .5454 .0000 -.27274379 *
SE : ( .11336666 )
212 2549 39 .2693 .0000 .36291385 **
. SE : ( .13018064 )
212 2551 55 .6703 .0000 .15010244
SE : ( .12118993 )
213 2559 44 .3371 .0000 -.25895588E-01
SE : ( .13901439 )
213 2560 47 .5288 .0000 .27098078
SE : ( .16586440 )
215 2565 69 .2865 .0000 -.70491865E-01
SE : ( .10305338 )
215 2568 58 .4889 .0000 .65115738 *¥
SE : ( .24330228 )
216 2570 38 .0328 .0000 .36171147 *x
SE : ( .63787146E-01)
217 2574 56 .4911 .0000 .23068431 *
SE : ( .10653638 )
217 2576 75 .3808 .0000 .11476761E-01
SE : ( .22420526 )
355 0014 149 .2342 .0000 .51842886 *x
SE : ( .64751062E-01)
365 0026 389 .3510 .0055 .83359219E-01 -.23497652E-01
SE : ( .51353676E-01) ( .58864251E-01)
365 0032 412 .6046 .0090 .12918890 * -.37655711E-01
SE : ( .60819405E-01) ( .50027992E-01)
** significant at a = 0.01, * at a = 0.05, # at a = 0.10

INCODE:

MSE :
adj.R%:

SE:

Installation code

Mean

square

: The number of trees

error

Adjusted R-square

The standard error of the estimated parameter
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Step 4: The parameter estimates from step 3 (i.e. ¢ijkl)
are now used to estimate the fertilization main
effect, by cycle, and possibly its interaction with
plot level covariates. The following three sets of
independent variables were formed:

1. T = [FERT*C,, FERT*C,, FERT*C;, F400%*Cq,
F400*C2, F400*C3]
XT = [SI*T, SI™2*T, RD*T, LOG(RD)*T]
2. T = [FERT*Cl, FERT*CZ, FERT*C3, F4OO*C1,
F4OO*C2, F4OO*C3]
XT = [LOG(SI)*T, RD*T, LOG(RD)*T]
3. T = [FERT*Cl, FERT*CZ, FERT*C5, F400*C1,
F4OO*C2, F400*C,]

[LOG(SI)*T, (BAL/2)xT]

|><
H
I

Where,

RD = Reineke's (1933) stand density index (SDI)
of the plot divided by the maximum SDI for
the species

= [N(QMD/10.0)1-6037/530
N = Number of trees per acre on the plot

QMD = {BA/[0.005454154 (N)]}1/?

The SI and RD transformations of set 1 are basically
the same as those used by Miller et al. (1988) and
the SI and BA transformations of set 3 are those

used by Hann and Larsen (1990).
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These three sets of independent variables were
then fit to the data set and their parameters
estimated using varying-parameter (or random
coefficient) regression techniques (Biging 1985).
In all three regressions, all independent variables
involving F400, and the SI, RD and BA
transformations were not significantly different
from zero (a=0.05) for all cycles. 0f the three
remaining independent variables, FERT*C;, FERT*C,
and FERT*C;, only FERT*C, was significantly
different from zero (a=0.05). However, all three
variables were included in the final equation
because: (1) the variances of the parameters of
FERT*C, and FERT*C,; are influenced (i.e., increased)
by the reduced sample sizes for these cycles, and
(2) the monotonic reduction in the size of the
parameters with increasing number of cycles since
fertilization followed expected behavior. Therefore,
the final fertilization response modifier equation

for the Douglas-fir diameter growth equation in

ORGANON is:
LOG (DGFM ) E(&ljkl)
=570 by O [3-2¢]
Where,
DGFM; = Diameter growth fertilization response

1th

modifier for the cycle
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bi,b,y,b; = estimated parameters
Because each observation is weighted by the
variance-covariance matrix for ¢ijkl that was
estimated in step 3, the following was used to
calculate the weighted residuals:
£=p1 (Y -Y) (Draper and Smith 1981)
where
f = the column matrix of weighted residuals

P—l

= the inverse matrix of P
P = a unique nonsingular symmetric matrix
= E Dgorr(z) E = (Selby 1974)
such that P2 = V, (the weighted matrix)
E : eigen vectors of V
z : the eigen values of V
QSQRT(z): a diagonal matrix with square
root of eigen values as its

diagonal elements

= the observed value of dependent variable

TR

= the predicted value

The estimated parameters of equation [3-2c] are
presented in Table 3-2c, and a plot of the weighted
residuals over the predicted weighted dependent
variable is presented in Figure 3-2. A check of the
weighted residuals by PC SAS Procedure UNIVARIATE
(SAS/STAT 1985) showed that they were normally

distributed (p=0.6067).
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Table 3-2c: The estimated parameters of the fertilization
response modifier equation [3-2c] for the

diameter growth equation of Douglas-fir in

ORGANON
VARIABLE COEFFICIENT S.E. T-VALUE TEST
Cl  .26588788 .37849400E-01 7.025 P < 0.01
c2  .75117715E-01 .49117870E-01 1.529 P > 0.10
C3  .46983624E-01 .71954360E-01 .653 P > 0.10

SSE = 478.09121

DF = 85

MSE = 5.6246025

Wt. MEAN of Y= .19244134

Wt. VAR(Y) = 6.4613520

Wt. Adj-Rsq. = .12950068
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WTRES
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Figure 3-2: Plotting of weighted residuals (WTRES) on
weighted predicted Y (WTYHAT) from the
fertilization response modifier equation [3-
2c] for the diameter growth equation of

Douglas-fir in ORGANON
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3.3 Discussion

Given equation [3-1] and its parameter estimates in
table 3-1, the direct response of dominant height growth
to fertilization in the first five years after
fertilization can be predicted by:

HGFM = EXP(0.09029)

1.09450
Where,

HGFM = Dominant height growth fertilization
modifier for the first five-year cycle
since fertilization.

Similarly, given equation 3-2c and 1its estimated
parameters in table 3-2c, the direct response of diameter
growth to fertilization in the C; cycle since

fertilization can be predicted by:

DGFM, = EXP(0.26589)
= 1.30459

DGFM, = EXP(0.07512)
= 1.07801

DGFM5 = EXP(0.04698)

1.04810

Therefore, these equations predict a 9 percent increase
in dominant height growth and a 30 percent increase in
diameter growth in the first five-years after

fertilization. For dominant height growth, there does
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not appear to be any evidence that the direct effect of
fertilization lasts any longer than one five-year cycle.
For diameter growth, the results found in this study seem
to agree with prior findings that the direct effect may
last for ten years. Though the direct effect is not
significant from zero in the second and third five-year
cycles, the effect does decline in the same monotonic
fashion as has been found previously. For example,
Stegemoeller and Chappell (1989) reported that, for
unthinned Douglas-fir, direct gross stand basal area
growth response to a single application of fertilizer
"...decreases to non-significant levels between years 10
and 12 (page 5)."

The 1lack of significance of the stand level
independent variables involving A, SI, BA and/or RD for
predicting direct response to fertilization in Douglas-
fir contradicts the findings of Miller et al. (1988) and
Heath and Chappell (1989). However, in a summary of the
findings of Regional Forest Nutrition Research Project,
Stegemoeller et al. (1989) reported that, for Douglas-
fir, "Neither stand age, site index, nor initial
stems/acre were statistically significant variables in
explaining response variability for unthinned stands in
regional analyses (page 1.19)."

This study also could not detect a significant

difference between the application of 200 pounds of
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nitrogen and the application of 400 pounds. The size of
the data set for the 400 pound application was small in
relation to the 200 pound application and the data were
concentrated in the first five-year <cycle since
fertilization. Examination of the data presented in
Stegemoeller and Chappell (1989) 1indicates a non-
significant (¢=0.05) difference in gross stand basal area
growth for the first four years after fertilization, a
significant difference in the next four years, and,
finally, a non-significant difference after eight years.
Therefore, the lack of significance in the first five-
year cycle seems to agree with the data of Stegemoeller
and Chappell (1989). The data was probably too limited
to detect a possible significant difference in the second

five-year cycle.
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Chapter 4

Modeling Tree Growth Response

to Fertilization and Thinning

The anélysis methods discussed in chapter 2 can be
applied not only in the fertilization trials but also in
the thinning trials. The examples used in Chapter 3 will
be extended to include direct thinning response in the
modifiers for the Douglas-fir diameter growth and the
dominant height growth equations in SW-ORGANON. The data
used to develop these modifiers 1includes all 20

installations described in Tables (1-1) through (1-5).

4.1 Modeling Dominant Height Growth Response to

Fertilization and Thinning using Structure Analysis

The simplified tree's structure analysis equation
[3-1] in Chapter 3 can be extended to develop the
fertilization and thinning response modifier for the
dominant height growth equation in ORGANON. This
produces the following equation:

E(Mijkl) =u+ B+ T+ X+ IX (4-1]
Where,

Mijkl = the mean of Y;:

ijklm for each plot and
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cycle

Yijkim = LOG(HGjjx1m) - LOG(PHG;jxin)

HGijklm = The observed 5-year dominant height
growth of tree m, period 1, plot XK,
treatment j, installation i

PHG

ijklm = The predicted 5-year dominant height

growth of tree m, period 1, plot Kk,
treatment j, installation i from the
existing potential height growth
equation in ORGANON

LOG = the natural logarithm

this equation must be fitted by weighted

regression where the weight is the number of dominant

trees on each plot and cycle. Also, the parameters can

be estimated by the generalized linear model package --

PC SAS Procedure GLM (SAS/STAT 1985). Using GLM, the

following four sets of independent variables were formed,

inserted into equation [4-1] and then fitted to the data:

1.

T = [FERT*C,, FERT*C,, FERT*Cjy, F400*C,,
F400*C,, F400%C5, THIN*C,, THIN*@,,

THIN*FERT*C,, THIN*FERT*C, ]

[

= [SI, A]
XTI =[A*T, SI*T]
T = [FERT*C,, FERT*C,, FERT*C,, F400%*Cq,

F400*C,, F400*C5, THIN*C,, THIN*~,,

THIN*FERT*Cl, THIN*FERT*C, ]
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X = [LOG(SI), A]
XT = [A*T, LOG(SI)*T]
3. T = [FERT*C,, FERT*C,, FERT*C;, F400*C,
F400*C,, F400%C,, THIN*C,, THIN*.,,
THIN*FERT*C,, THIN*FERT*C,]

= [(s1, a~ 1

[><

XT = [(A™l)*T, SI*T]
4. T = [FERT*Cl, FERT*C2, FERT*C3, F400*Cl,
F400*C,, F400%Cy, THIN*C;, THIN*.,,

THIN*FERT*C,, THIN*FERT*C, ]

X = [LoG(SI), A~ 1
XT = [(A71)*T, LOG(SI)*T]
Where,
THIN = 1.0 if the plot had been thinned

= 0.0 otherwise.
SI, A; FERT, F400, C,, C, and C5 have defined in

equation [3-1]

In all four regressions, all independent variables
involving F400, THIN, C,, C5, and the SI and A
transformations were not significantly different from
zero (a=0.05). Because C,, Cs and THIN were not
significant, the data for these two cycles and for the
thinnings were removed for final estimation of the
parameters. As a result, the final equation is the same

as equation [3-1b] in Chapter 3.
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4.2 Modeling Diameter Growth Response to Fertilization

and Thinning using Four-step Analysis

The four-step analysis equations [3-2a]}, [3-2b], and
[3-2c] in Chapter 3 can be extended to develop the
fertilization and thinning response modifier for the
diameter growth equation in ORGANON:

Step 1: Again, the existing diameter growth equation in
ORGANON was used to form the general control
equation.

Step 2: The general diameter growth equation was

calibrated to each block's control plots, producing

20 block-specific control equations [3-2a]. In

addition to the 18 block-specific control equations

which have already been presented in Chapter 3,

Table 4-1 shows the remaining 2 block-specific

control equations.

Step 3: Each tree's diameter growth response to
fertilization is estimated by taking the difference
between the tree's observed diameter growth and the
diameter growth predicted by the calibrated, block-
specific diameter growth equation determined in step
2. These differences are then used to fit the plot-
specific tree response equation [3-2b] (plot by

plot). In addition to those plot-specific response
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Table 4-1: The estimated parameters of the additional

calibrated,

[3-2a]

for modeling the

block-specific control equations

diameter growth

response to fertilization and thinning

INCODE

N  MSE Adj.-Rsq.

by

b b

1 2

310 468 .3911

.3800 -4.2089520

%k

1.8700881 *%  61429651E-04**

SE : ( .59268997 ) ( .27424622 y ( .23101563E-04)
356 447 .1589 L0144 -.30335662 * .19148116 # -.56945560E-05
SE : ( .14055310 ) ( .10396899 ) ( .B4993068E-05)
** gignificant at « = 0.01, * at a = 0.05, # at a = 0.10
INCODE: Installation code
N: The number of trees
MSE: Mean square error
.2 .
adj.R": Adjusted R-square
SE: The standard error of the estimated parameter
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Table 4-2: The estimated parameters of the additional

plot-specific response equations [3-2b] for
modeling the diameter growth response to

fertilization and thinning

5 . . -

INCODE PLOT N MSE Adj.R %, ) ¢
212 2553 30 .2545 .0000 1.2169265 *x
SE : ( .18413039 )
212 2554 18 .2357 .0000 .83546728 okl
SE : ( .16107452 )
212 2555 16 .2333 .0000 .78578395 faled
SE : ( .16865942 )
212 2556 28 .1353 .0000 .86457473 el
SE : ( .14380542 )
310 0051 59 .0873 .0000 .50265342 faled
SE : ( .80413929E-01)
310 0062 54 .2860 .0000 .37803769 **
SE : ( .82617189E-01)
310 0103 58 .1699 .0000 .48335499 ko
SE : ( .81562246E-01)
310 0106 57 .1524 .0000 .43133765 o
SE : ( .81583699E-01)
310 0107 54 .1350 .0000 .38558584 bl
SE : ( .83413428E-01)
310 0121 55 .1280 .0000 .48241219 ol
SE : ( .82454836E-01)
356 0021 96 .8300 .0000 -.22921748 ol
SE : ( .73330076E-01)
356 0022 50 1.279 .0000 -.46630421 *x
SE : ( .96047384E-01)
365 0025 83 .0875 .3510 .41447788 ** - 22938512E-01
SE : ( .97483845E-01) ( .97971935E-01)
365 0028 74,1280  .0800  .36425751 ** 13875955
SE : ( .10102475 ) ( .10428327 )
365 0030 77 .0578 .1117  .18043569 # .24831516E-02
SE : ( .10000000 )} ( .10194606 )
365 0031 84 .1529 .0955 .59682578 ** 33026722 ol
SE : ( .95656155E-01) ( .10202941 )

** gignificant

at « = 0.01, * at a = 0.05, # at a = 0.10
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equations which have already been presented in

Chapter 3, Table 4-2 shows the estimated parameters

of the remaining 16 ©plot-specific response

equations.

4: The parameter estimates from step 3 are now used

to estimate the fertilization and thinning main

effects, by cycle, and possibly their interaction
with plot 1level covariates. The following three
sets of independent variables were formed:

1. T = [FERT*Cl, FERT*C2, FERT*C3, F4OO*C1,
F4OO*C2, F4OO*C3, THIN*Cl, THIN*CZ,
THIN*FERT*Cl, THIN*FERT*CZ]

XT = [SI*T, SI~2+T, RD*T, LOG(RD)*T,
THIN*(RATE/EXP[ (d/D)2]}*C,
THIN*FERT*{RATE/EXP[(d/D)z}}*Clj

2. T = [FERT*C,, FERT*C,, FERT*Cy, F400%*C,,
F4OO*C2, F4OO*C3, THIN*Cl, THIN*C2,
THIN*FERT*Cl, THIN*FERT*CZ]

XT = [LOG(SI)*T, RD*T, LOG(RD)*T,

THIN*{ RATE/EXP[ (d/D)2]}*Cq,
THIN*FERT*{RATE/EXP[(d/D)z]}*Cl]

3. T = [FERT*Cl, FERT*CZ, FERT*C3, F400*C1,
F4OO*C2, F4OO*C3, THIN*Cl, THIN*C,,
THIN*FERT*Cl, THIN*FERT*Cz]

XT = [LOG(SI)*T, (BA™Y/2)xr,

THIN*{ RATE/EXP[ (d/D) %]} *Cq,
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THIN*FERT*{RATE/EXP[(d/D)2]}*Ci3
Where,
RATE = ratio of removal BA to BA before

thinning

d/D ratio of QMD for the removal trees to QMD

for the trees before thinning

These three sets of independent variables were then fit
to the data set and their parameters estimated using
varying-parameter (or random coefficient) regression
techniques (Biging 1985). In all three regressions, all
independent variables involving F400, THIN by itself, the
interaction of THIN with FERT, and the SI, RD and BA
transformations were not significantly different from
zero (a=0.05) for all cycles. Oof the four remaining
independent variables (i.e., FERT*C,, FERT*C,, FERT*C,,
and THIN*{RATE/EXP[(d/D)2]}%C;) both FERT*C, and FERT*C,
were not significantly different from zero (@=0.05).
However, all four variables were included in the final
equation because: (1) the variances of the parameters of
FERT*C, and FERT*C; are influenced (i.e., increased) by
the reduced sample sizes for these cycles, and (2) the
monotonic reduction in the size of the parameters with
increasing number of cycles since fertilization followed
expected behavior. The resulting fertilization and

thinning response modifier equation is:
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LOG (DGM) = E(éijkl)

a, FERT*C1 + a, FERT*C2 + aj FERT*C,
+ a, THIN*{RATE/EXP[(d/D)Z]}*Cl [4-2]
Where,
DGM = Diameter growth fertilization and
thinning response modifier |
a,,ap,az,a, = estimated parameters
The direct response of diameter growth to fertilization
and/or thinning can be predicted by:
DGM = EXP[a; FERT*Cl + a, FERT*C, + aj FERT*C3

+ a, THIN*(RATE/EXP[(d/D)2]}%C;]. [4-3]
4.3 Results and Discussion

Thinning does not affect dominant height growth, but
application of nitrogen fertilizer does increase it in
the first five-year cycle after treatment. Both thinning
and fertilization affects diameter growth, but the
interaction of thinning with fertilization 1is not
significant (a=0.05). Equation [4-2] indicates that the
diameter growth thinning response is significant in only
the first five-year growth cycle since thinning. Because
the sample size was small for the second five-year cycle
since thinning, all of the second cycle data was removed
and equation [4-2] was refitted to the reduced data set.

The resulting parameter estimates of equation [4-2] are




81

presented in Table 4-3. A check of the weighted residuals
by PC SAS Procedure UNIVARIATE (SAS/STAT 1985) showed
that they were normally distributed (p=0.1635).

These results indicate that the diameter growth
response to thinning currently built into SW-ORGANON is
inadequate for at 1least the first 5-year growth cycle
since thinning. Unfortunately, this study did not have
enough data to test the thinning response in subsequent
cycles. Table 4-4 shows the thinning component of the
diameter growth modifier (equation [4-31). The
magnitude of the departure in the first 5-year period
increases both as the amount of stand basal area removed
increases and as the d/D ratio decreases. The Douglas-
fir diameter growth equation in SW-ORGANON is more
sensitive to BAL than to BA (Hann and Larsen 1990). As
a result, the current equation would predict 1little
response to thinning from below. The findings of this
study indicate that, when thinning from below (i.e.,
small d/D ratios), the current SW-ORGANON's diameter

equation may underestimates the thinning response.
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Table 4-3: The estimated parameters of the modifier
equation [4-2] for modeling the diameter

growth response to fertilization and thinning

VARIABLE COEFFICIENT S.E. T-VALUE TEST
FERT*C1 .24280603 .37768500E-01 6.429 P < 0.01
FERT*C2 .70398241€E-01 .50319900E-01 1.399 P> 0.10
FERT*C3 .44045434E-01 .75999710E-01 .580 P> 0.10

RATE/EXP[(d/D)ZJ 1.1535114 .32762540 3.521 P < 0.01

SSE = 644.66620
DF = 102
MSE = 6.3202569
Wt. MEAN of Y= .20495213
Wt. VAR(Y) = 7.0832744

Wt. Adj-Rsq. = .10772101
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Table 4-4: The thinning component of the diameter growth

modifier in Equation [4-3]

BA Removal

d/D .1000 .2000 .3000 .4000 .5000 .6000 .7000 .8000 .9000

A 1.1033 - - - - - - - -

.5 1.0940 1.1968 - - - - - - -

.6 1.0838 1.1746 1.2731 - - - - - -

.7 1.0732 1.1518 1.2361 1.3267 - - - - -

.8 1.0627 1.1294 1.2002 1.2754 1.3554 1.4404 - - -

.9 1.0527 1.1081 1.1664 1.2278 1.2925 1.3606 1.4322 - -
1.0 1.0433 1.0886 1.1358 1.1850 1.2364 1.2900 1.3459 1.4042 1.4651
1.1 1.0350 1.0712 1.1087 1.1475 1.1877 1.2292 1.2722 1.3168 1.3628
1.2 1.0277 1.0562 1.0854 1.1155 1.1464 1.1782 1.2108 1.2444 1.2789
1.3 1.0215 1.0435 1.0659 1.0889 1.1123 1.1362 1.1607 1.1856 1.2111
1.4 1.0164 1.0330 1.0500 1.0672 1.0846 1.1024 1.1205 1.1388 1.1575
1.5 1.0122 1.0246 1.0371 1.0498 1.0627 1.0757 1.0888 1.1022 1.1156
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Chapter 5

Modeling Stand Growth Response

to Fertilization

The analysis methods discussed in chapter 2 can be
applied to evaluate the direct effect of fertilizer on
stand gross basal area growth. The emphasis of this
chapter is upon how fertilizer response changes over
time, and the similarities and differences between the
estimates derived from structure analysis and those
derived from the traditional two-step analysis. These
analyses were conducted using the remeasurement data from
18 fertilization research installations established in
unthinned Douglas-fir stands near the study area of
ORGANON. Chapter 1 contains a detailed description of
these installations. The availability of more recent
plot level data on five installations (numbers 212
through 217) allowed the addition of 19 more second cycle
measurements to the data set described in chapter 1.
Each installation has at least one control plot, and the
fertilized plots were treated with either 200 or 400 1lbs
of nitrogen per acre. In the following analyses, an
installation is treated as a block, and a plot 1is an

experimental unit.
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5.1 Estimating Stand Gross Basal Area Growth Response

using Structure Analysis

The general 1linear model form used for analyzing

stand gross basal area growth using structure analysis

is:

Yigk1l =

where

Yijkx1

(]

le

le

[><

p+B+T+ X+ IX+ €59%) [5-1]

= natural logarithm of 5-year stand gross basal

area growth at cycle 1, plot k, treatment j,
installation i

mean Y

9., B3B;

block effect of installation i

1.0, if data come from installation i

0.0, otherwise

25-52fo1 751751

main effect of treatment j at cycle 1

1.0, if data come from treatment j at cycle 1
0.0, otherwise

v
Zp=1 %1.pXijklp

h covariate for

the slope parameter of the pt
the control plots

the pth covariates
2§=225=1ZE=1 2351pT91%ijk1p

the slope parameter of the interaction of
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covariate p with treatment j at cycle 1

All treatment effects are fixed. The independent

variables tested in this equation were:

T = [FERT*C,, FERT*C,, FERT*Cj, F400%C,,
F400%C,, F400%Cy]

X = [SI, LOG(SI), sI~2, s17%, a, a1, a2, rp,
LOG(RD), BA, BA/A, BA/(A)2, (BA)2/(A)?,

XT = X * T

Errors were assumed to have a normal distribution with
mean zero and a constant variance. The generalized
linear model package, PC SAS Procedure GLM (1985) was
used the estimate the parameters of equation [5-1]. All
independent variables involving F400, and SI, RD, were
not significantly different from zero (a=0.05) for all
cycles. The final fertilization response equation using
structure analysis for the Douglas-fir five-year stand
gross basal area growth is as follows:
Q = u + Elgzl a;B:

+ £3_, by FERT*C; + c BA/A [5-2]

This equation shows that gross stand basal area growth
experienced a direct response to fertilization. The
estimated parameters of equation [5-2] are presented in

Table 5-1.
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Table 5-1: The estimated parameters in equation [5-2]
using structure analysis for modeling stand

gross basal area response to fertilization

T for HO: Pr > |T| std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 3.010856749 B 29.03 0.0001 0.10373261
INCODE 51 -0.309668787 B -5.33 0.0001 0.05805303
67 -0.318176538 B -5.41 0.0001 0.05876791
92 -0.409246905 8 -6.21 0.0001 0.06594011
93 -0.023987913 B -0.41 0.6849 0.05898191
94 -0.615213236 8 -7.96 0.0001 0.07731783
95 -0.035509389 8 -0.64 0.5258 0.05582233
105 0.207710480 B 3.34 0.0011 0.06217511
106 -0.025863921 B -0.40 0.6917 0.06509313
175 -0.220185294 B -3.51 0.0006 0.06274067
204 -0.007439502 B -0.09 0.9269 0.08088819
205 -0.201070943 B -2.59 0.0106 0.07764157
212 -0.231831633 B -3.37 0.0010 0.06872807
213 -0.493620293 B -6.79 0.0001 0.07266836
215 -0.706038807 B -7.98 0.0001 0.08852110
216 0.057973061 B 0.71 0.4814 0.08211165
217 -0.383119941 B -5.08 0.0001 0.07546957
355 0.102862605 B 1.07 0.2880 0.09644306
365 0.000000000 B8 . . .
BA/A 0.098502021 7.63 0.0001 0.01290515
FERT*C1 0.266879092 11.73 0.0001 0.02275019
FERT*C2 0.132268765 4.86 0.0001 0.02723701
FERT*C3 0.062592318 1.69 0.0926 0.03695992
Root MSE 0.11912 R-square 0.9119
Dep Mean 3.42613 Adj R-sq 0.8984

Observation 159.00000

NOTE: The X'X matrix has been found to be singular and a generalized inverse
was used to solve the normal equations. Estimates followed by the
letter 'B' are biased, and are not unique estimators of the parameters.
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5.2 Estimating Stand Gross Basal Area Growth Response

using Two-step Analysis

Step 1: The following general control equation without
block dummy variables was developed from the
fertilization installation's control data:

E(Y{1x1) = & + X

After an 1initial screening of the independent
variables by PC SAS procedure REG (SAS/STAT 1985),
it was found that the estimated parameters for all
of the SI transformations, while significantly
different from zero, had negative signs. Because it
was expected that stand gross basal area growth
should increase with increasing SI, all the SI
transformations were dropped from X. The remaining
independent variables were screened again, resulting
in the following final control equation:

Y = by + by A7l + b, BA/A + by BA/(A*A) [5-3]

where Y is LOG(BAG). Table 5-2 shows the estimated

parameters of equation [5-3]
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Table 5-2: The estimated parameters in the general

control equation [5-3] using two-step analysis
for modeling stand gross basal area growth

response to fertilization

Parameter Standard T for HO:
Variable DF Estimate Error  Parameter=0 Prob > |T|
INTERCEPT 1 1.832484 0.19911699 9.203 0.00061
1/A 1 29.073167 6.19772750 4.691 0.0001
BA/A 1 0.225488 0.03895914 5.788 0.0001
BA/(A*R) 1 -3.227366 0.99974277 -3.228 0.0021
Root MSE 0.21684 R-square 0.6875
Dep Mean 3.29475 Adj R-sq 0.6713
Observation  62.00000
Covariance of Estimates
covs INTERCEP 1/A BA/A BA/(A*A)
INTERCEP 0.039647575 -1.066358858 -0.00720656 0.1785501853
1/A -1.066358858 38.41182612 0.1705442923 -5.729165817
BA/A -0.00720656 0.1705442923 0.0015178146 -0.033894013
BA/(A*A) 0.1785501853 -5.729165817 -0.033894013 0.9994856078
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Step 2: Each fertilized plot's direct response to

treatment is estimated by taking the difference
between the observed value and the value predicted
by the general control equation. These differences
are then used to fit the following fertilization
response equation using all treated plots:
E(Yijkl-';{con) =TI+ IX
The appropriate estimated variances to test the
significance of the parameters in the fertilizer
response equation were computed using the techniques
described in Appendix A. After screening the same
independent Variables as was used in the final
control equation, the resulting direct fertilizer
response equation was:
LOG (BAFM) = E(Yijkl—Qcon)

3 -
£3-, aj FERT*C; [5-4]

where
BAFM = Stand gross basal area growth
fertilization response modifier

a;, a; and az = estimated parameters

Table 5-3 presents the estimated parameters in

equation [5-4].
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Table 5-3: The estimated parameters in the response
equation [5-4] using two-step analysis for
modeling the gross basal area growth response
to fertilization

Parameter Standard T for HO:

Variable DF Estimate Error  Parameter=0 Prob > |T|
FERT*C1 1 0.237315  0.05679842 4.178 P < 0.01
FERT*C2 1 0.149913  0.06875638 2.180 P < 0.05
FERT*C3 1 0.127327  0.09445454 1.348 P> 0.10

The total number of observations = 97
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5.3 Results and Discussion

Both structure analysis and two-step analysis show
that the direct fertilization response on gross stand
basal area growth declines over time, and that the
interaction of fertilization with any other covariates
are not significant. The appropriate estimated
variances to test the significance of the parameters in
fertilizer response equation [5-4], estimated using two-
step analysis, are larger than the estimated variances to
test the significance of the fertilizer response
parameters in equation [5-2], estimated wusing the
structure analysis.

A potential problem in the two step-analysis is that
the data set may be too small to develop a good gquality
general control equation. In order to check this problemn,
a control equation with block dummy variables was fitted
to the control plot data and the resulting parameter
estimates and associated statistics are presented in
Table 5-4. If this equation is used instead of equation
[5-3], the adjusted R? changes from 0.6713 to 0.9239.
Therefore, the additional covariates in équation [5-3]
(i.e. A™1l and BA/AZ) explained only a small part of the
variation due to the block effect. Because the control
equation [5-3] does not adequately explain the block

effect, the block effect is carried into the second step
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of the analysis. In the second step, this block effect
may increase the error about the equation if the block
effect is orthogonal to the fertilization independent
variables, or the block effect may change the parameter
estimates of the fertilization independent variables.
Therefore, it_is recommended that structure analysis
should be used to estimate direct stand growth response
to fertilization in the case where small data sets
preclude the estimation of a good quality control

equation.
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Table 5-4: The estimated parameters of the alternative
control equation with dummy variables for

block effects in the two-step analysis

T for HO: Pr > |T| std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 3.124042550 B 13.26 0.0001 0.23557088
INCODE 51 -0.476891690 B -5.08 0.0001 0.09391370
67 -0.568910276 8 -6.81 0.0001 0.08352748
92 -0.477435419 B -4.33 0.0001 0.11021152
93 -0.075910266 B -0.95 0.3497 0.08028527
94 -0.751312665 B -5.37 0.0001 0.13979798
95 -0.153281745 B -1.73 0.0902 0.08843990
105 0.120768915 B 1.15 0.2573 0.10519285
106 -0.097781883 B -0.73 0.4706 0.13432699
175 -0.478193105 B -4.06 0.0002 0.11772215
204 -0.080523178 B -0.60 0.5509 0.13395248
205 -0.129657980 B -1.30 0.1996 0.09951745
212 -0.276311158 B -2.36 0.0229 0.11707779
213 -0.587523001 B -4.55 0.0001 0.12922268
215 -0.766230425 8 -4.30 0.0001 0.17812954
216 -0.040598919 8 -0.29 0.7757 0.14156595
217 -0.481156352 8 -3.68 0.0007 0.13086143
355 0.079645789 B 0.68 0.4995 0.11695306
365 0.000000000 B . . .
BA/A 0.094931701 3.01 0.0043 0.03148977
Root MSE 0.10437 R-square 0.9463
Dep Mean 3.29475 Adj R-sq 0.9239
Observation 62.00000

NOTE: The X'X matrix has been found to be singular and a generalized inverse

was used to solve the normal equations.

Estimates followed by the

letter 'B' are biased, and are not unique estimators of the parameters.
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Chapter 6

Summary and Conclusions

Landowners in the Pacific Northwest of United States
are now applying nitrogen fertilizer to either thinned or
unthinned forest stands to increase growth and therefore
improve the economic gain from forest operations. As a
result, it is very important for a growth and yield model
to be able to make an accurate and precise prediction of
the fertilization and thinning response of stands.

Fertilization studies are always more complex in
experimental design and analysis than those examples
commonly presented in the textbooks because a forest
ecosystem is more complex than a soy bean experiment, and
the large majority of the reports on fertilization give
little or no details concerning their statistical design
and analysis (Woollons and Whyte 1988). Therefore, the
primary objective of this study was to present general
analysis methods for modeling direct stand and tree
growth response to fertilization and thinning. Two
methods were proposed:

(1) Structure analysis:
This method applies covariance analysis to
blocked designs with either experimental units

(plots) alone or with both experimental units




(2)

96

(plots) and sampling units (trees). The mean square
of experimental error 1is used to test the
significance of the plot level covariate(s), and the
mean square of sampling error is used to test the
significance of the tree level covariate(s).

There are two potential problems with the use
of structure analysis for modeling tree growth
response to fertilization and thinning. First,
MSB/MSE, MST/MSE, MSX/MSE AND MSTX/MSE are not
distributed as Snedecor's F. In order to solve this
problem, an alternative equation using the mean of
the dependent variable and independent variables for
each plot and cycle can be used if the experiment
has a balanced design. Second, if the data sets
used to develop tree level growth and yield models
are from unbalanced experimental designs (the usual
case), then one must either randomly drop sampling
trees such that the number of the remaining trees is
the same for all plot-cycles or one must use a mixed
model form and GLM techniques.

Multi-step analysis:

In the first step of this method, either a
general control equation is developed from the
study's control plot data or an existing general
control equation developed from a previous study is

found and used. This general control equation is
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then used to evaluate direct treatment response
using the fertilized and/or thinned ©plots.
Estimation of variances in multi-step analysis is
more difficult than in structure analysis.

A potential problem with the use of traditional
two-step analysis for modeling stand growth response
to fertilization is that past users of the method
have underestimated the appropriate variance for
testing treatment response. This study suggests
that the appropriate variance to test the
significance of a parameter in the treatment
response equation can be computed by adding the
variance of the parameter from the control equation
to the variance of the parameter from the treatment
response equation.

Ideally, structure analysis is preferred to multi-step
analysis for evaluating direct treatment response because
structure analysis pools all the data together in a joint
regression and, therefore, it has more degrees of freedom
to estimate variances. However, when the experimental
data are large in sampling size and complex in their
designed structure, structure analysis often can not be
performed on most statistical packages, and therefore
multi-step analysis is a viable alternative. Although
the multi-step equation will have a larger variance than

the joint equation, the multi-step analysis enables one
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to either use an existing or to develop a new general
control equation which is useful when building growth and
yield models.

The analysis methods were applied in modeling direct
fertilization and thinning effects on the diameter growth
and the dominant height growth of single trees. Both
dominant height growth and diameter growth responses due
to improved nutrition were significant (a=0.05) in the
first 5-year growth period, and not significant after two
5-year cycles. The response in tree's diameter growth
was larger than that in tree's dominant height growth.

Thinning neither increased nor decreased the
dominant height growth. It accelerated the diameter
growth, but the interaction of fertilization with
thinning was not significant. The diameter growth
response to thinning departs from that predicted by SW-
ORGANON in the first 5-year growth period after thinning.
The magnitude of this departure increases both as stand
basal area removed increases and as the d/D ratio
decreases. This indicates that SW-ORGANON may
underestimate the tree growth response in stands with
heavy thinning from below.

As a comparison, both structure analysis and two-
step analysis were used to model the direct fertilization

effect on the gross basal area growth of plots. The

results showed that both methods produced predictions of




99

the direct fertilization responses that declined over
time and that were significantly different from zero in
the first and second 5-year growth cycles. The
appropriate variance estimates to test the significance
of the parameters in fertilizer response equation were
larger when using two-step analysis than when using
structure analysis. Therefore, it is recommended that
structure analysis should be used to estimate direct
growth response to fertilization in the situation when
data sets are small enough to allow the application of

the method.
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Appendix A

Computation of the Appropriate Variances to Test the
Significance of the Parameters in the Treatment Response

Equation of the Traditional Two-step Analysis Method

In the general multiple regression case, the
independent variables of the response equation can be
different from those of the control equation. However,
the treatment equation must be defined with the same
independent variables as the response equation. For
example:

control equation: Y. = Xg

(197

treatment equation: Yy = 2+ b

response equation: Xt - Xc = Zt da

join equation: Y =X g* + TZ g*
where

Y. = dependent variable for control data

Yy = dependent variable for treatment data

= the predicted values by control equation using

=c
treatment data

Y = dependent variable for all data

X. = independent variables for control equation

Z¢ = common independent variables for treatment and

response equations
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TZ = Z if data comes from treated plot

I

0.0 otherwise

a, b, 4, g*, and g* = estimated parameters

In this case, the appropriate variance to test the
significance of the parameters in the response equation

should be computed as follows:

-~

d = (2" Zt)_ll't (Yy - ¥Yo)

= (2'¢ Z¢) 12'¢ (Yp - Xea)

var(d) = Var[(2'y 2¢) 1Z't (Yp - Xea)]

= Var((2'y Z¢) "12'c¥e - (2'¢ Z¢) TiZ'¢Xea) ]

var(b - (Z'y Z¢) "12'¢Xa) ]

Var(b) + Var[(Z'y Zt)-ll'tlté)]

{since b is independent with a}
where X, is the matrix of independent variables of
control equation applied to the treatment data. In
general, the response equation variances computed
directly by the two-step analysis procedure will
underestimate the appropriate variances to test the
significance of the parameters in the response equation.

In the special case where Z is the same as X, the
Var(d) is computed by:

Var(d) = Var(b) + Var(a).

In this case, d is the same as the estimated parameters

of a joint equation using the structure analysis. If 2

is not the same as X, the estimated parameters of the
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control equation and the response equation using the two-
step analysis are no longer the same as the estimated
parameters of the 3joint equation wusing structure
analysis. The latter method uses both control and
treatment data to estimate the common slope(s), but the
former method uses only one of them. The greater the
difference in the independent variables between the
control and the response equations, the greater the risk
that the estimated parameters using the former method

will depart from those using the latter method.
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Appendix B

Computation of the Variance-Covariance Matrix of
the Dependent Variable for the Fourth Fitting Step

using Four-step Analysis

It is necessary to compute the variance-covariance
matrix of the dependent variable when the varying-
parameter model (Biging 1985) is used to estimate the
parameters of the following equation 1in four-step
analysis:

¢ijk1 = I + IX + G;jkl [A-1]

where

I x1

~e

¢ijkl = estimated intercept for cycle "1" of the ijk th

plot-specific response equation

T = The treatment effect
TX = The interactions of treatments with plot level
covariate(s) by cycles
¥ = t
€ijkl = error erm

Among blocks, the b3kl is independent of Pirgrgrye (for
iXi'); however, within a block, the ¢ijkl is correlated
with ¢ij'k'l' because they use the prediction from the

same control equation. The variance-covariance matrix of




¢ is as follows:

where

o]
]

<
I

Vv 0 ...0...0
0 Vy...0 0
0O 0 ...¥;...0
0O 0 ...0 ...V

zero matrix

the covariance matrix of ¢ for the ith block,

which is a symmetric matrix
Var(¢jz11) COVI(®i311/95212)

vVar(¢jzqy)
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-+ COV(®i5711/%ijk1)

In order to compute the appropriate variances

Appendix A),

expressed in matrix notation as d

Var(¢ijkl) and COV(¢ijkl,¢ij|k|l|)
first diagonal elements of
COV(djyx1+,diyrkr1r), respectively.

[¢ 67 --- ©,]"'.

re- COV(P3212/¢i59k1)

(see

the coefficients of response equations are

The

are equal to the

var(djjxi)

covariance of 4 can be computed as following:

-1 O
Var((2'i4x12ijx1) 2'ijk1(¥ijk1~2 ijk1 Si1)]

and

The variance and

_ -1 o .
= Var(tjjx1) * Varl(2'ijyk12ijx1) 2'ijk1Z2 ijk1 Si1)l

and
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COV(dj4k1,di41%110) for jx1 and jklxj'k'l'

-1 O
COVI(Z'i5k1Zik1) "2'ijk1(¥ijk1™2 ijk1 Si1)).

1 '
(le lklllZij lklll) Zijlklll (Xijlklll-_z_?j Tkl Qil)]

-1 o
COVI(Z'i3x1Zi3x1) "2'ijk1Z ijk1Si1-
-1 o
(Z'ijlkllvlijuklln) .Z'ijnklltl ijklgil)
where

d = coefficients of plot-specific response equation

= coefficients of block-specific control

iQ

equation
t = coefficients of plot-specific treatment equation
Var(gijk) = the suggested variance Qf coefficients in
the ijkth plot-specific response equation
Var(cj7) = the variance of the coefficients of

the ith block-specific control equation

Var(;ijk) = the variance of the coefficients of the
ijkth plot-specific treatment equation

Z = variables used in the plot-specific response
equation

z® = variables used in the block-specific equation

In a special case, when the control equation and the
response equation have the same independent variables,
the variance-covariance matrix of the ith block, V;, can

be simplified to:
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Var(t121l)+Var(cil) var(c;q) .o vVar(c;q)

Var(t1212)+Var(ci1) .o vVar(cjq)

Var(tijkl)+Var(cil)

The diagonal elements of the variance-covariance matrix
are the sum of the estimated variances of the parameters
in the plot-specific treatment equations and the
estimated variances of the parameters in the block-
specific control equation. The covariances within a
block are the estimated variances of the parameters in
the block-specific control equation. All the covariances
among blocks are zero. Therefore, if there are many
blocks, the forth fitting step is not affected very much
by the correlation between dependent variables, and, as a
result, it might be acceptable to simply ignore the

correlation.




